MEG3 activates necroptosis in human neuron xenografts modeling Alzheimer’s disease
Neuronal cell loss is a defining feature of Alzheimer’s disease (AD), but the underlying mechanisms remain unclear. We xenografted human or mouse neurons into the brain of a mouse model of AD. Only human neurons displayed tangles, Gallyas silver staining, granulovacuolar neurodegeneration (GVD), pho...
Saved in:
Published in | Science (American Association for the Advancement of Science) Vol. 381; no. 6663; pp. 1176 - 1182 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
The American Association for the Advancement of Science
15.09.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0036-8075 1095-9203 1095-9203 |
DOI | 10.1126/science.abp9556 |
Cover
Summary: | Neuronal cell loss is a defining feature of Alzheimer’s disease (AD), but the underlying mechanisms remain unclear. We xenografted human or mouse neurons into the brain of a mouse model of AD. Only human neurons displayed tangles, Gallyas silver staining, granulovacuolar neurodegeneration (GVD), phosphorylated tau blood biomarkers, and considerable neuronal cell loss. The long noncoding RNA
MEG3
was strongly up-regulated in human neurons
.
This neuron-specific long noncoding RNA is also up-regulated in AD patients.
MEG3
expression alone was sufficient to induce necroptosis in human neurons in vitro. Down-regulation of
MEG3
and inhibition of necroptosis using pharmacological or genetic manipulation of receptor-interacting protein kinase 1 (RIPK1), RIPK3, or mixed lineage kinase domain-like protein (MLKL) rescued neuronal cell loss in xenografted human neurons. This model suggests potential therapeutic approaches for AD and reveals a human-specific vulnerability to AD.
Neurons are one of the longest-living and enduring cell types of the human body. Balusu
et al
. xenografted human neurons into mouse brains containing amyloid plaques (see the Perspective by Sirkis and Yokoyama). The human neurons, but not the mouse neurons, displayed severe Alzheimer’s pathology, including tangles and necroptosis. Human neurons up-regulated the neuron-specific maternally expressed gene 3 (MEG3) in response to amyloid plaques. Down-regulation of MEG3 protected the neurons from dying in the xenograft model of Alzheimer’s disease. Downstream of MEG3, genetic or pharmacological manipulation of signaling kinases in the necroptosis pathway also protected neurons, suggesting a potential lead toward therapeutic approaches for Alzheimer’s disease. —Stella M. Hurtley
In models of Alzheimer’s disease, a long noncoding RNA activates necroptosis and necroptosis inhibition rescues neuronal loss. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 0036-8075 1095-9203 1095-9203 |
DOI: | 10.1126/science.abp9556 |