Bayesian population approaches to the analysis of dose escalation studies
In dose escalation studies cohorts of subjects are given increasing doses of a candidate drug to assess safety and tolerability, pharmacokinetics and pharmacological response. The escalation is carried on until a predefined stopping limit is achieved, often identified by a pharmacokinetic endpoint s...
Saved in:
Published in | Computer methods and programs in biomedicine Vol. 107; no. 2; pp. 189 - 201 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ireland Ltd
01.08.2012
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0169-2607 1872-7565 1872-7565 |
DOI | 10.1016/j.cmpb.2011.05.010 |
Cover
Abstract | In dose escalation studies cohorts of subjects are given increasing doses of a candidate drug to assess safety and tolerability, pharmacokinetics and pharmacological response. The escalation is carried on until a predefined stopping limit is achieved, often identified by a pharmacokinetic endpoint such as peak plasma concentration or area under the plasma concentration–time profile. In the present work, the application of Bayesian methodologies to Phase I dose escalation studies is explored. A Bayesian population model is devised, which provides predictions of dose–response and dose–risk curves, both for individuals already enrolled in the trial and for a new, previously untested subject. Empirical and fully Bayesian estimation algorithms are worked out. Such methods provide equivalent performances on both experimental and simulated datasets. With respect to previous work, it is quantitatively proven not only that a more general and flexible model is identifiable, but also that such flexibility is needed in real scenarios. |
---|---|
AbstractList | In dose escalation studies cohorts of subjects are given increasing doses of a candidate drug to assess safety and tolerability, pharmacokinetics and pharmacological response. The escalation is carried on until a predefined stopping limit is achieved, often identified by a pharmacokinetic endpoint such as peak plasma concentration or area under the plasma concentration–time profile. In the present work, the application of Bayesian methodologies to Phase I dose escalation studies is explored. A Bayesian population model is devised, which provides predictions of dose–response and dose–risk curves, both for individuals already enrolled in the trial and for a new, previously untested subject. Empirical and fully Bayesian estimation algorithms are worked out. Such methods provide equivalent performances on both experimental and simulated datasets. With respect to previous work, it is quantitatively proven not only that a more general and flexible model is identifiable, but also that such flexibility is needed in real scenarios. In dose escalation studies cohorts of subjects are given increasing doses of a candidate drug to assess safety and tolerability, pharmacokinetics and pharmacological response. The escalation is carried on until a predefined stopping limit is achieved, often identified by a pharmacokinetic endpoint such as peak plasma concentration or area under the plasma concentrationatime profile. In the present work, the application of Bayesian methodologies to Phase I dose escalation studies is explored. A Bayesian population model is devised, which provides predictions of dosearesponse and dosearisk curves, both for individuals already enrolled in the trial and for a new, previously untested subject. Empirical and fully Bayesian estimation algorithms are worked out. Such methods provide equivalent performances on both experimental and simulated datasets. With respect to previous work, it is quantitatively proven not only that a more general and flexible model is identifiable, but also that such flexibility is needed in real scenarios. Abstract In dose escalation studies cohorts of subjects are given increasing doses of a candidate drug to assess safety and tolerability, pharmacokinetics and pharmacological response. The escalation is carried on until a predefined stopping limit is achieved, often identified by a pharmacokinetic endpoint such as peak plasma concentration or area under the plasma concentration–time profile. In the present work, the application of Bayesian methodologies to Phase I dose escalation studies is explored. A Bayesian population model is devised, which provides predictions of dose–response and dose–risk curves, both for individuals already enrolled in the trial and for a new, previously untested subject. Empirical and fully Bayesian estimation algorithms are worked out. Such methods provide equivalent performances on both experimental and simulated datasets. With respect to previous work, it is quantitatively proven not only that a more general and flexible model is identifiable, but also that such flexibility is needed in real scenarios. In dose escalation studies cohorts of subjects are given increasing doses of a candidate drug to assess safety and tolerability, pharmacokinetics and pharmacological response. The escalation is carried on until a predefined stopping limit is achieved, often identified by a pharmacokinetic endpoint such as peak plasma concentration or area under the plasma concentration-time profile. In the present work, the application of Bayesian methodologies to Phase I dose escalation studies is explored. A Bayesian population model is devised, which provides predictions of dose-response and dose-risk curves, both for individuals already enrolled in the trial and for a new, previously untested subject. Empirical and fully Bayesian estimation algorithms are worked out. Such methods provide equivalent performances on both experimental and simulated datasets. With respect to previous work, it is quantitatively proven not only that a more general and flexible model is identifiable, but also that such flexibility is needed in real scenarios.In dose escalation studies cohorts of subjects are given increasing doses of a candidate drug to assess safety and tolerability, pharmacokinetics and pharmacological response. The escalation is carried on until a predefined stopping limit is achieved, often identified by a pharmacokinetic endpoint such as peak plasma concentration or area under the plasma concentration-time profile. In the present work, the application of Bayesian methodologies to Phase I dose escalation studies is explored. A Bayesian population model is devised, which provides predictions of dose-response and dose-risk curves, both for individuals already enrolled in the trial and for a new, previously untested subject. Empirical and fully Bayesian estimation algorithms are worked out. Such methods provide equivalent performances on both experimental and simulated datasets. With respect to previous work, it is quantitatively proven not only that a more general and flexible model is identifiable, but also that such flexibility is needed in real scenarios. |
Author | Nicolao, Giuseppe De Gomeni, Roberto Neve, Marta Russu, Alberto Poggesi, Italo |
Author_xml | – sequence: 1 givenname: Alberto surname: Russu fullname: Russu, Alberto email: alberto.russu@unipv.it, alberto.russu@yahoo.it organization: Department of Computer Engineering and Systems Science, University of Pavia, Italy – sequence: 2 givenname: Giuseppe De surname: Nicolao fullname: Nicolao, Giuseppe De organization: Department of Computer Engineering and Systems Science, University of Pavia, Italy – sequence: 3 givenname: Italo surname: Poggesi fullname: Poggesi, Italo organization: Clinical Pharmacology, Modeling & Simulation, GlaxoSmithKline, Verona, Italy – sequence: 4 givenname: Marta surname: Neve fullname: Neve, Marta organization: Clinical Pharmacology, Modeling & Simulation, GlaxoSmithKline, Verona, Italy – sequence: 5 givenname: Roberto surname: Gomeni fullname: Gomeni, Roberto organization: Clinical Pharmacology, Modeling & Simulation, GlaxoSmithKline, Verona, Italy |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26016278$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/21764475$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkktv1DAUhS1URKeFP8ACZYPEJuHaiR9BqBJUPCpVYgGsLce-UT1k4mAnSPPvcToDSJUorLz5zrm-59wzcjKGEQl5SqGiQMXLbWV3U1cxoLQCXgGFB2RDlWSl5IKfkE2G2pIJkKfkLKUtADDOxSNyyqgUTSP5hly9NXtM3ozFFKZlMLMPY2GmKQZjbzAVcyjmGyzMaIZ98qkIfeFCwgKTNUc6zYvzmB6Th70ZEj45vufk6_t3Xy4_ltefPlxdvrkuLWd8LkVLRSdNbU3vpBLKgaCW14gNc4pBa5uaoRGOgZKd6ijtGu563vW1U1x0rj4nLw6--Y_fF0yz3vlkcRjMiGFJmkLdKCbbVv0HygA4ZbfosyO6dDt0eop-Z-Je_0oqA8-PgFlX76MZrU9_OJHDZnI1YgfOxpBSxP43QkGvtemtXmvTa20auM61ZZG6I7J-vk13jsYP90tfH6SYM__hMepkPY4WnY9oZ-2Cv19-cUduBz_6vOE3zIexDUvM1eeodGIa9Of1pNaLohSActpmg1d_N_jX9J8AG9m6 |
CitedBy_id | crossref_primary_10_1109_TCST_2019_2891222 crossref_primary_10_1515_ijb_2021_0030 |
Cites_doi | 10.1002/pst.198 10.1002/sim.2213 10.1093/biomet/58.3.545 10.1111/1467-9868.00353 10.1093/biostatistics/2.1.47 10.1162/08997660260293292 10.1063/1.1699114 10.1080/01621459.1977.10480998 10.1023/A:1008929526011 10.1002/pst.222 10.2307/2531628 10.1002/(SICI)1097-0258(19990615)18:11<1307::AID-SIM128>3.0.CO;2-X 10.1214/ss/1177011136 10.1198/000313004X8515 10.1007/s10928-005-5910-2 10.2307/2534012 10.1111/j.0006-341X.2000.00609.x 10.1109/TSSC.1968.300117 10.1214/06-BA117A 10.1002/(SICI)1097-0258(19960815)15:15<1605::AID-SIM325>3.0.CO;2-2 |
ContentType | Journal Article |
Copyright | 2011 Elsevier Ireland Ltd Elsevier Ireland Ltd 2015 INIST-CNRS Copyright © 2011 Elsevier Ireland Ltd. All rights reserved. |
Copyright_xml | – notice: 2011 Elsevier Ireland Ltd – notice: Elsevier Ireland Ltd – notice: 2015 INIST-CNRS – notice: Copyright © 2011 Elsevier Ireland Ltd. All rights reserved. |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 7QO 8FD FR3 P64 |
DOI | 10.1016/j.cmpb.2011.05.010 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | Engineering Research Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1872-7565 |
EndPage | 201 |
ExternalDocumentID | 21764475 26016278 10_1016_j_cmpb_2011_05_010 S0169260711001519 1_s2_0_S0169260711001519 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M -~X .1- .DC .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABJNI ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACNNM ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HMK HMO HVGLF HZ~ IHE J1W KOM LG9 M29 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SBC SDF SDG SEL SES SEW SPC SPCBC SSH SSV SSZ T5K UHS WUQ XPP Z5R ZGI ZY4 ~G- AFCTW AGRNS RIG AACTN AAIAV ABLVK ABTAH ABYKQ AFKWA AJBFU AJOXV AMFUW EFLBG LCYCR AAYXX ACLOT CITATION ~HD IQODW CGR CUY CVF ECM EIF NPM 7X8 7QO 8FD FR3 P64 |
ID | FETCH-LOGICAL-c525t-6916b7a3cafd7868d061c53ee42d8209c432ea6d2087b8b11b45df5bf3d856bd3 |
IEDL.DBID | .~1 |
ISSN | 0169-2607 1872-7565 |
IngestDate | Sat Sep 27 22:27:43 EDT 2025 Sat Sep 27 23:56:01 EDT 2025 Mon Jul 21 06:05:36 EDT 2025 Mon Jul 21 09:14:00 EDT 2025 Thu Apr 24 22:58:19 EDT 2025 Wed Oct 01 03:20:56 EDT 2025 Fri Feb 23 02:26:02 EST 2024 Fri May 16 00:31:32 EDT 2025 Tue Aug 26 19:12:47 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Mixed effects model Dose escalation Phase I trials Bayesian population model Biomedical engineering |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 Copyright © 2011 Elsevier Ireland Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c525t-6916b7a3cafd7868d061c53ee42d8209c432ea6d2087b8b11b45df5bf3d856bd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 21764475 |
PQID | 1020051298 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_1034827998 proquest_miscellaneous_1020051298 pubmed_primary_21764475 pascalfrancis_primary_26016278 crossref_primary_10_1016_j_cmpb_2011_05_010 crossref_citationtrail_10_1016_j_cmpb_2011_05_010 elsevier_sciencedirect_doi_10_1016_j_cmpb_2011_05_010 elsevier_clinicalkeyesjournals_1_s2_0_S0169260711001519 elsevier_clinicalkey_doi_10_1016_j_cmpb_2011_05_010 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-08-01 |
PublicationDateYYYYMMDD | 2012-08-01 |
PublicationDate_xml | – month: 08 year: 2012 text: 2012-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington – name: Ireland |
PublicationTitle | Computer methods and programs in biomedicine |
PublicationTitleAlternate | Comput Methods Programs Biomed |
PublicationYear | 2012 |
Publisher | Elsevier Ireland Ltd Elsevier |
Publisher_xml | – name: Elsevier Ireland Ltd – name: Elsevier |
References | O’Quigley, Pepe, Fisher (bib0020) 1990; 46 Thall, Russell (bib0025) 1998; 54 Zohar, Chevret (bib0040) 2001; 20 Smith, Jones, Morris, Grieve, Tan (bib0065) 2006; 5 Vehtari, Lampinen (bib0110) 2002; 14 Rombout, Aarons, Karlsson, Man, Mentré, Nygren, Racine, Schaefer, Steimer, Troconiz, Van Peer (bib0015) 2004; 31 R Development Core Team. R: A language and environment for statistical computing, 2008. R Foundation for Statistical Computing, Vienna, Austria, ISBN 3–900051-07–0, http://www.R-project.org Spiegelhalter, Best, Carlin, van der Linde (bib0115) 2002; 64 Robbins (bib0080) 1955 Gasparini, Eisele (bib0035) 2000; 56 Zhou, Whitehead, Bonvini, Stevens (bib0045) 2006; 5 Cowles (bib0120) 2004; 58 Patterson, Thompson (bib0105) 1971; 58 Berry, Müller, Grieve, Smith, Parke, Blazek, Mitchard, Krams (bib0060) 2001 Metropolis, Rosenbluth, Rosenbluth, Teller, Teller (bib0090) 1953; 21 Harville (bib0100) 1977; 72 Whitehead, Zhou, Patterson, Webber, Francis (bib0050) 2001; 2 Gelman (bib0125) 2006; 1 Lunn, Thomas, Best, Spiegelhalter (bib0075) 2000; 10 Whitehead, Zhou, Mander, Ritchie, Sabin, Wright (bib0055) 2006; 25 Heyd, Carlin (bib0030) 1999; 18 Piantadosi, Liu (bib0010) 1996; 15 Schielzeth, Forstmeier (bib0130) 2008 Piantadosi (bib0005) 2005 Gelman, Rubin (bib0095) 1992; 7 Jaynes (bib0085) 1968; SSC-4 Heyd (10.1016/j.cmpb.2011.05.010_bib0030) 1999; 18 Berry (10.1016/j.cmpb.2011.05.010_bib0060) 2001 Cowles (10.1016/j.cmpb.2011.05.010_bib0120) 2004; 58 Vehtari (10.1016/j.cmpb.2011.05.010_bib0110) 2002; 14 Gasparini (10.1016/j.cmpb.2011.05.010_bib0035) 2000; 56 Smith (10.1016/j.cmpb.2011.05.010_bib0065) 2006; 5 Gelman (10.1016/j.cmpb.2011.05.010_bib0095) 1992; 7 Schielzeth (10.1016/j.cmpb.2011.05.010_bib0130) 2008 Zohar (10.1016/j.cmpb.2011.05.010_bib0040) 2001; 20 Thall (10.1016/j.cmpb.2011.05.010_bib0025) 1998; 54 Spiegelhalter (10.1016/j.cmpb.2011.05.010_bib0115) 2002; 64 Rombout (10.1016/j.cmpb.2011.05.010_bib0015) 2004; 31 Lunn (10.1016/j.cmpb.2011.05.010_bib0075) 2000; 10 Jaynes (10.1016/j.cmpb.2011.05.010_bib0085) 1968; SSC-4 Harville (10.1016/j.cmpb.2011.05.010_bib0100) 1977; 72 Patterson (10.1016/j.cmpb.2011.05.010_bib0105) 1971; 58 O’Quigley (10.1016/j.cmpb.2011.05.010_bib0020) 1990; 46 Whitehead (10.1016/j.cmpb.2011.05.010_bib0050) 2001; 2 Whitehead (10.1016/j.cmpb.2011.05.010_bib0055) 2006; 25 Robbins (10.1016/j.cmpb.2011.05.010_bib0080) 1955 Piantadosi (10.1016/j.cmpb.2011.05.010_bib0010) 1996; 15 Metropolis (10.1016/j.cmpb.2011.05.010_bib0090) 1953; 21 Zhou (10.1016/j.cmpb.2011.05.010_bib0045) 2006; 5 10.1016/j.cmpb.2011.05.010_bib0070 Piantadosi (10.1016/j.cmpb.2011.05.010_bib0005) 2005 Gelman (10.1016/j.cmpb.2011.05.010_bib0125) 2006; 1 |
References_xml | – volume: 1 start-page: 515 year: 2006 end-page: 533 ident: bib0125 article-title: Prior distributions for variance parameters in hierarchical models publication-title: Bayesian Anal. – volume: 2 start-page: 47 year: 2001 end-page: 61 ident: bib0050 article-title: Easy-to-implement Bayesian methods for dose escalation studies in healthy volunteers publication-title: Biostatistics – volume: 58 start-page: 545 year: 1971 end-page: 554 ident: bib0105 article-title: Recovery of inter-block information when block sizes are unequal publication-title: Biometrika – volume: 21 start-page: 1087 year: 1953 end-page: 1091 ident: bib0090 article-title: Equations of state calculations by fast computing machines publication-title: J. Chem. Phys. – volume: 64 start-page: 583 year: 2002 end-page: 639 ident: bib0115 article-title: Bayesian measures of model complexity and fit (with discussion) publication-title: J. R. Stat. Soc. B – volume: 25 start-page: 433 year: 2006 end-page: 445 ident: bib0055 article-title: An evaluation of Bayesian designs for dose escalation studies in healthy volunteers publication-title: Stat. Med. – volume: 14 start-page: 2439 year: 2002 end-page: 2468 ident: bib0110 article-title: Bayesian model assessment and comparison using cross-validation predictive densities publication-title: Neural Comput. – volume: SSC-4 start-page: 227 year: 1968 end-page: 241 ident: bib0085 article-title: Prior probabilities publication-title: IEEE Trans. Syst. Sci. Cyber. – start-page: 99 year: 2001 end-page: 181 ident: bib0060 article-title: Adaptive Bayesian designs for dose-ranging drug trials publication-title: Case Studies in Bayesian Statistics V – volume: 5 start-page: 39 year: 2006 end-page: 50 ident: bib0065 article-title: Implementation of a Bayesian adaptive design in a proof of concept study publication-title: Pharm. Stat. – volume: 56 start-page: 609 year: 2000 end-page: 615 ident: bib0035 article-title: A curve-free method for Phase I clinical trials publication-title: Biometrics – volume: 7 start-page: 457 year: 1992 end-page: 511 ident: bib0095 article-title: Inference from iterative simulation using multiple sequences publication-title: Stat. Sci. – volume: 15 start-page: 1605 year: 1996 end-page: 1618 ident: bib0010 article-title: Improved designs for dose escalation studies using pharmacokinetic measurements publication-title: Stat. Med. – volume: 10 start-page: 325 year: 2000 end-page: 337 ident: bib0075 article-title: WinBUGS - A Bayesian modelling framework: concepts, structure, and extensibility publication-title: Stat. Comput. – reference: R Development Core Team. R: A language and environment for statistical computing, 2008. R Foundation for Statistical Computing, Vienna, Austria, ISBN 3–900051-07–0, http://www.R-project.org – volume: 58 start-page: 330 year: 2004 end-page: 336 ident: bib0120 article-title: Review of WinBUGS 1.4 publication-title: Am. Stat. – volume: 72 start-page: 320 year: 1977 end-page: 338 ident: bib0100 article-title: Maximum Likelihood approaches to variance component estimation and to related problems publication-title: J. Am. Stat. Assoc. – volume: 46 start-page: 33 year: 1990 end-page: 48 ident: bib0020 article-title: Continual reassessment method: a practical design for Phase 1 clinical trials in cancer publication-title: Biometrics – year: 2008 ident: bib0130 article-title: Conclusions beyond support: overconfident estimates in mixed models publication-title: Behav. Ecol. – volume: 20 start-page: 2827 year: 2001 end-page: 2843 ident: bib0040 article-title: The continual reassessment method: comparison of Bayesian stopping rules for dose-ranging studies publication-title: Biostatistics – volume: 5 start-page: 125 year: 2006 end-page: 133 ident: bib0045 article-title: Bayesian decision procedures for binary and continuous bivariate dose escalation studies publication-title: Pharm. Stat. – volume: 31 start-page: 419 year: 2004 end-page: 440 ident: bib0015 article-title: Modelling and simulation in the development and use of anti-cancer agents: an underused tool? publication-title: J. Pharmacokinet. Pharmacodyn. – start-page: 157 year: 1955 end-page: 164 ident: bib0080 article-title: An Empirical Bayes approach to statistics publication-title: Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, Vol. 1 – volume: 54 start-page: 251 year: 1998 end-page: 264 ident: bib0025 article-title: A strategy for dose-finding and safety monitoring based on efficacy and adverse outcomes in Phase I/II clinical trials publication-title: Biometrics – start-page: 223 year: 2005 end-page: 250 ident: bib0005 article-title: Dose-finding designs publication-title: Clinical Trials: A Methodologic Perspective – volume: 18 start-page: 1307 year: 1999 end-page: 1321 ident: bib0030 article-title: Adaptive design methods in the continual reassessment method for Phase I studies publication-title: Stat. Med. – ident: 10.1016/j.cmpb.2011.05.010_bib0070 – volume: 5 start-page: 39 year: 2006 ident: 10.1016/j.cmpb.2011.05.010_bib0065 article-title: Implementation of a Bayesian adaptive design in a proof of concept study publication-title: Pharm. Stat. doi: 10.1002/pst.198 – volume: 25 start-page: 433 year: 2006 ident: 10.1016/j.cmpb.2011.05.010_bib0055 article-title: An evaluation of Bayesian designs for dose escalation studies in healthy volunteers publication-title: Stat. Med. doi: 10.1002/sim.2213 – volume: 58 start-page: 545 year: 1971 ident: 10.1016/j.cmpb.2011.05.010_bib0105 article-title: Recovery of inter-block information when block sizes are unequal publication-title: Biometrika doi: 10.1093/biomet/58.3.545 – volume: 64 start-page: 583 year: 2002 ident: 10.1016/j.cmpb.2011.05.010_bib0115 article-title: Bayesian measures of model complexity and fit (with discussion) publication-title: J. R. Stat. Soc. B doi: 10.1111/1467-9868.00353 – year: 2008 ident: 10.1016/j.cmpb.2011.05.010_bib0130 article-title: Conclusions beyond support: overconfident estimates in mixed models publication-title: Behav. Ecol. – volume: 2 start-page: 47 year: 2001 ident: 10.1016/j.cmpb.2011.05.010_bib0050 article-title: Easy-to-implement Bayesian methods for dose escalation studies in healthy volunteers publication-title: Biostatistics doi: 10.1093/biostatistics/2.1.47 – volume: 14 start-page: 2439 year: 2002 ident: 10.1016/j.cmpb.2011.05.010_bib0110 article-title: Bayesian model assessment and comparison using cross-validation predictive densities publication-title: Neural Comput. doi: 10.1162/08997660260293292 – volume: 21 start-page: 1087 year: 1953 ident: 10.1016/j.cmpb.2011.05.010_bib0090 article-title: Equations of state calculations by fast computing machines publication-title: J. Chem. Phys. doi: 10.1063/1.1699114 – volume: 72 start-page: 320 year: 1977 ident: 10.1016/j.cmpb.2011.05.010_bib0100 article-title: Maximum Likelihood approaches to variance component estimation and to related problems publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1977.10480998 – volume: 10 start-page: 325 year: 2000 ident: 10.1016/j.cmpb.2011.05.010_bib0075 article-title: WinBUGS - A Bayesian modelling framework: concepts, structure, and extensibility publication-title: Stat. Comput. doi: 10.1023/A:1008929526011 – volume: 20 start-page: 2827 year: 2001 ident: 10.1016/j.cmpb.2011.05.010_bib0040 article-title: The continual reassessment method: comparison of Bayesian stopping rules for dose-ranging studies publication-title: Biostatistics – volume: 5 start-page: 125 year: 2006 ident: 10.1016/j.cmpb.2011.05.010_bib0045 article-title: Bayesian decision procedures for binary and continuous bivariate dose escalation studies publication-title: Pharm. Stat. doi: 10.1002/pst.222 – volume: 46 start-page: 33 year: 1990 ident: 10.1016/j.cmpb.2011.05.010_bib0020 article-title: Continual reassessment method: a practical design for Phase 1 clinical trials in cancer publication-title: Biometrics doi: 10.2307/2531628 – volume: 18 start-page: 1307 year: 1999 ident: 10.1016/j.cmpb.2011.05.010_bib0030 article-title: Adaptive design methods in the continual reassessment method for Phase I studies publication-title: Stat. Med. doi: 10.1002/(SICI)1097-0258(19990615)18:11<1307::AID-SIM128>3.0.CO;2-X – volume: 7 start-page: 457 year: 1992 ident: 10.1016/j.cmpb.2011.05.010_bib0095 article-title: Inference from iterative simulation using multiple sequences publication-title: Stat. Sci. doi: 10.1214/ss/1177011136 – start-page: 157 year: 1955 ident: 10.1016/j.cmpb.2011.05.010_bib0080 article-title: An Empirical Bayes approach to statistics – volume: 58 start-page: 330 year: 2004 ident: 10.1016/j.cmpb.2011.05.010_bib0120 article-title: Review of WinBUGS 1.4 publication-title: Am. Stat. doi: 10.1198/000313004X8515 – volume: 31 start-page: 419 year: 2004 ident: 10.1016/j.cmpb.2011.05.010_bib0015 article-title: Modelling and simulation in the development and use of anti-cancer agents: an underused tool? publication-title: J. Pharmacokinet. Pharmacodyn. doi: 10.1007/s10928-005-5910-2 – volume: 54 start-page: 251 year: 1998 ident: 10.1016/j.cmpb.2011.05.010_bib0025 article-title: A strategy for dose-finding and safety monitoring based on efficacy and adverse outcomes in Phase I/II clinical trials publication-title: Biometrics doi: 10.2307/2534012 – volume: 56 start-page: 609 year: 2000 ident: 10.1016/j.cmpb.2011.05.010_bib0035 article-title: A curve-free method for Phase I clinical trials publication-title: Biometrics doi: 10.1111/j.0006-341X.2000.00609.x – volume: SSC-4 start-page: 227 year: 1968 ident: 10.1016/j.cmpb.2011.05.010_bib0085 article-title: Prior probabilities publication-title: IEEE Trans. Syst. Sci. Cyber. doi: 10.1109/TSSC.1968.300117 – volume: 1 start-page: 515 year: 2006 ident: 10.1016/j.cmpb.2011.05.010_bib0125 article-title: Prior distributions for variance parameters in hierarchical models publication-title: Bayesian Anal. doi: 10.1214/06-BA117A – start-page: 99 year: 2001 ident: 10.1016/j.cmpb.2011.05.010_bib0060 article-title: Adaptive Bayesian designs for dose-ranging drug trials – start-page: 223 year: 2005 ident: 10.1016/j.cmpb.2011.05.010_bib0005 article-title: Dose-finding designs – volume: 15 start-page: 1605 year: 1996 ident: 10.1016/j.cmpb.2011.05.010_bib0010 article-title: Improved designs for dose escalation studies using pharmacokinetic measurements publication-title: Stat. Med. doi: 10.1002/(SICI)1097-0258(19960815)15:15<1605::AID-SIM325>3.0.CO;2-2 |
SSID | ssj0002556 |
Score | 1.9832953 |
Snippet | In dose escalation studies cohorts of subjects are given increasing doses of a candidate drug to assess safety and tolerability, pharmacokinetics and... Abstract In dose escalation studies cohorts of subjects are given increasing doses of a candidate drug to assess safety and tolerability, pharmacokinetics and... |
SourceID | proquest pubmed pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 189 |
SubjectTerms | Bayes Theorem Bayesian population model Biological and medical sciences Clinical Trials, Phase I as Topic - methods Clinical Trials, Phase I as Topic - statistics & numerical data Computer Simulation Dose escalation Dose-Response Relationship, Drug Endpoint Determination - methods Humans Internal Medicine Likelihood Functions Medical sciences Mixed effects model Models, Biological Models, Statistical Other Pharmaceutical Preparations - blood Pharmacokinetics Phase I trials Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects) Technology. Biomaterials. Equipments. Material. Instrumentation |
Title | Bayesian population approaches to the analysis of dose escalation studies |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0169260711001519 https://www.clinicalkey.es/playcontent/1-s2.0-S0169260711001519 https://dx.doi.org/10.1016/j.cmpb.2011.05.010 https://www.ncbi.nlm.nih.gov/pubmed/21764475 https://www.proquest.com/docview/1020051298 https://www.proquest.com/docview/1034827998 |
Volume | 107 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-7565 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002556 issn: 0169-2607 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1872-7565 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002556 issn: 0169-2607 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1872-7565 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002556 issn: 0169-2607 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1872-7565 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002556 issn: 0169-2607 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-7565 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002556 issn: 0169-2607 databaseCode: AKRWK dateStart: 19850501 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9wwDDelgzEoY5_ttdvhwt5GdrZjx8ljV1quG-1LW-ibsWMFOrZLaK4Pe9nfPit2rpS2NxjkJUHCjiJLciz9RMgnCxXkUPGwyWF5JoPLyyxwlUnw3EvmtPRYKHx6Vswv5bcrdbVBDsdaGEyrTLY_2vTBWqcnsyTNWXd9PTtHHBGB8GgII6QG6E9E_wo6_eXPXZoHQmxFfO8qQ-pUOBNzvOpfnUswnojeyZ5yTlud7YPImtjr4ulgdHBKx6_IyxRN0oM44ddkAxZvyPPTdF7-lpx8tb8ByyRpt2rURUcYcejpsqUhAKQ2IZPQtqG-7YECziNS9zHR8B25PD66OJxnqXlCViuhllkR4j6nbV7bxuuyKH1w3LXKAaTwwetXtcwF2MILVmpXOs6dVL5Rrsl9qQrn8_dkc9EuYIdQB5z5OuxrKtytCOs84yCd9nhZ4SeEj1IzdUIWxwYXP82YQvbDoKQNStowZYKkJ-TziqeLuBprqfPxY5ixYjTYOBPM_lou_RgX9GmZ9oabXhhmHqjShKgV5z1t_OeI03uasnq1AbhN6HJC9kfVMWEd4-GMXUB7G6bC8P9eiL7W0iAUka6QZjvq3d0IXBcI3rj7n1PfIy_CnYi5jR_I5vLmFj6GeGvppsOCmpJnByff52d_Af7JKEo |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9wwDDflCttgjH339tF5sLcRznbsOHnsysrd2ruXtdA3Y8cKdGyX0Fwf9t_POjsZZesNBnlKJOwosiTH0k-EfLBQQQ4VD5sclmcyuLzMAleZBM-9ZE5Lj4XCy1Uxv5BfLtXlHjkeamEwrTLZ_mjTt9Y63Zklac66q6vZV8QREQiPhjBCCqE_96UKNnlC9o8Wp_PVaJARZStCfFcZMqTamZjmVf_oXELyRABPdpd_etjZPkitie0u7o5Ht37p5DF5lAJKehTn_ITswfopubdMR-bPyOKT_QlYKUm7sVcXHZDEoaebloYYkNoETkLbhvq2Bwo4j0jdx1zD5-Ti5PP58TxL_ROyWgm1yYoQ-jlt89o2XpdF6YPvrlUOIIUPjr-qZS7AFl6wUrvSce6k8o1yTe5LVTifvyCTdbuGA0IdcObrsLWpcMMirPOMg3Ta42WFnxI-SM3UCVwce1x8N0MW2TeDkjYoacOUCZKeko8jTxehNXZS58PHMEPRaDBzJlj-nVz6b1zQp5XaG256YZj5Q5umRI2ctxTynyMe3tKU8dW22G1Cl1PyflAdE5Yyns_YNbQ3YSoMf_GFAGwnDaIR6QppXka9-z0C1wXiN776z6m_I_fn58szc7ZYnb4mD8ITEVMd35DJ5voG3obwa-MO0_L6Bf2PKvU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+population+approaches+to+the+analysis+of+dose+escalation+studies&rft.jtitle=Computer+methods+and+programs+in+biomedicine&rft.au=Russu%2C+Alberto&rft.au=Nicolao%2C+Giuseppe+De&rft.au=Poggesi%2C+Italo&rft.au=Neve%2C+Marta&rft.date=2012-08-01&rft.pub=Elsevier+Ireland+Ltd&rft.issn=0169-2607&rft.eissn=1872-7565&rft.volume=107&rft.issue=2&rft.spage=189&rft.epage=201&rft_id=info:doi/10.1016%2Fj.cmpb.2011.05.010&rft.externalDocID=S0169260711001519 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F01692607%2FS0169260712X00087%2Fcov150h.gif |