Bayesian population approaches to the analysis of dose escalation studies

In dose escalation studies cohorts of subjects are given increasing doses of a candidate drug to assess safety and tolerability, pharmacokinetics and pharmacological response. The escalation is carried on until a predefined stopping limit is achieved, often identified by a pharmacokinetic endpoint s...

Full description

Saved in:
Bibliographic Details
Published inComputer methods and programs in biomedicine Vol. 107; no. 2; pp. 189 - 201
Main Authors Russu, Alberto, Nicolao, Giuseppe De, Poggesi, Italo, Neve, Marta, Gomeni, Roberto
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ireland Ltd 01.08.2012
Elsevier
Subjects
Online AccessGet full text
ISSN0169-2607
1872-7565
1872-7565
DOI10.1016/j.cmpb.2011.05.010

Cover

Abstract In dose escalation studies cohorts of subjects are given increasing doses of a candidate drug to assess safety and tolerability, pharmacokinetics and pharmacological response. The escalation is carried on until a predefined stopping limit is achieved, often identified by a pharmacokinetic endpoint such as peak plasma concentration or area under the plasma concentration–time profile. In the present work, the application of Bayesian methodologies to Phase I dose escalation studies is explored. A Bayesian population model is devised, which provides predictions of dose–response and dose–risk curves, both for individuals already enrolled in the trial and for a new, previously untested subject. Empirical and fully Bayesian estimation algorithms are worked out. Such methods provide equivalent performances on both experimental and simulated datasets. With respect to previous work, it is quantitatively proven not only that a more general and flexible model is identifiable, but also that such flexibility is needed in real scenarios.
AbstractList In dose escalation studies cohorts of subjects are given increasing doses of a candidate drug to assess safety and tolerability, pharmacokinetics and pharmacological response. The escalation is carried on until a predefined stopping limit is achieved, often identified by a pharmacokinetic endpoint such as peak plasma concentration or area under the plasma concentration–time profile. In the present work, the application of Bayesian methodologies to Phase I dose escalation studies is explored. A Bayesian population model is devised, which provides predictions of dose–response and dose–risk curves, both for individuals already enrolled in the trial and for a new, previously untested subject. Empirical and fully Bayesian estimation algorithms are worked out. Such methods provide equivalent performances on both experimental and simulated datasets. With respect to previous work, it is quantitatively proven not only that a more general and flexible model is identifiable, but also that such flexibility is needed in real scenarios.
In dose escalation studies cohorts of subjects are given increasing doses of a candidate drug to assess safety and tolerability, pharmacokinetics and pharmacological response. The escalation is carried on until a predefined stopping limit is achieved, often identified by a pharmacokinetic endpoint such as peak plasma concentration or area under the plasma concentrationatime profile. In the present work, the application of Bayesian methodologies to Phase I dose escalation studies is explored. A Bayesian population model is devised, which provides predictions of dosearesponse and dosearisk curves, both for individuals already enrolled in the trial and for a new, previously untested subject. Empirical and fully Bayesian estimation algorithms are worked out. Such methods provide equivalent performances on both experimental and simulated datasets. With respect to previous work, it is quantitatively proven not only that a more general and flexible model is identifiable, but also that such flexibility is needed in real scenarios.
Abstract In dose escalation studies cohorts of subjects are given increasing doses of a candidate drug to assess safety and tolerability, pharmacokinetics and pharmacological response. The escalation is carried on until a predefined stopping limit is achieved, often identified by a pharmacokinetic endpoint such as peak plasma concentration or area under the plasma concentration–time profile. In the present work, the application of Bayesian methodologies to Phase I dose escalation studies is explored. A Bayesian population model is devised, which provides predictions of dose–response and dose–risk curves, both for individuals already enrolled in the trial and for a new, previously untested subject. Empirical and fully Bayesian estimation algorithms are worked out. Such methods provide equivalent performances on both experimental and simulated datasets. With respect to previous work, it is quantitatively proven not only that a more general and flexible model is identifiable, but also that such flexibility is needed in real scenarios.
In dose escalation studies cohorts of subjects are given increasing doses of a candidate drug to assess safety and tolerability, pharmacokinetics and pharmacological response. The escalation is carried on until a predefined stopping limit is achieved, often identified by a pharmacokinetic endpoint such as peak plasma concentration or area under the plasma concentration-time profile. In the present work, the application of Bayesian methodologies to Phase I dose escalation studies is explored. A Bayesian population model is devised, which provides predictions of dose-response and dose-risk curves, both for individuals already enrolled in the trial and for a new, previously untested subject. Empirical and fully Bayesian estimation algorithms are worked out. Such methods provide equivalent performances on both experimental and simulated datasets. With respect to previous work, it is quantitatively proven not only that a more general and flexible model is identifiable, but also that such flexibility is needed in real scenarios.In dose escalation studies cohorts of subjects are given increasing doses of a candidate drug to assess safety and tolerability, pharmacokinetics and pharmacological response. The escalation is carried on until a predefined stopping limit is achieved, often identified by a pharmacokinetic endpoint such as peak plasma concentration or area under the plasma concentration-time profile. In the present work, the application of Bayesian methodologies to Phase I dose escalation studies is explored. A Bayesian population model is devised, which provides predictions of dose-response and dose-risk curves, both for individuals already enrolled in the trial and for a new, previously untested subject. Empirical and fully Bayesian estimation algorithms are worked out. Such methods provide equivalent performances on both experimental and simulated datasets. With respect to previous work, it is quantitatively proven not only that a more general and flexible model is identifiable, but also that such flexibility is needed in real scenarios.
Author Nicolao, Giuseppe De
Gomeni, Roberto
Neve, Marta
Russu, Alberto
Poggesi, Italo
Author_xml – sequence: 1
  givenname: Alberto
  surname: Russu
  fullname: Russu, Alberto
  email: alberto.russu@unipv.it, alberto.russu@yahoo.it
  organization: Department of Computer Engineering and Systems Science, University of Pavia, Italy
– sequence: 2
  givenname: Giuseppe De
  surname: Nicolao
  fullname: Nicolao, Giuseppe De
  organization: Department of Computer Engineering and Systems Science, University of Pavia, Italy
– sequence: 3
  givenname: Italo
  surname: Poggesi
  fullname: Poggesi, Italo
  organization: Clinical Pharmacology, Modeling & Simulation, GlaxoSmithKline, Verona, Italy
– sequence: 4
  givenname: Marta
  surname: Neve
  fullname: Neve, Marta
  organization: Clinical Pharmacology, Modeling & Simulation, GlaxoSmithKline, Verona, Italy
– sequence: 5
  givenname: Roberto
  surname: Gomeni
  fullname: Gomeni, Roberto
  organization: Clinical Pharmacology, Modeling & Simulation, GlaxoSmithKline, Verona, Italy
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26016278$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/21764475$$D View this record in MEDLINE/PubMed
BookMark eNqNkktv1DAUhS1URKeFP8ACZYPEJuHaiR9BqBJUPCpVYgGsLce-UT1k4mAnSPPvcToDSJUorLz5zrm-59wzcjKGEQl5SqGiQMXLbWV3U1cxoLQCXgGFB2RDlWSl5IKfkE2G2pIJkKfkLKUtADDOxSNyyqgUTSP5hly9NXtM3ozFFKZlMLMPY2GmKQZjbzAVcyjmGyzMaIZ98qkIfeFCwgKTNUc6zYvzmB6Th70ZEj45vufk6_t3Xy4_ltefPlxdvrkuLWd8LkVLRSdNbU3vpBLKgaCW14gNc4pBa5uaoRGOgZKd6ijtGu563vW1U1x0rj4nLw6--Y_fF0yz3vlkcRjMiGFJmkLdKCbbVv0HygA4ZbfosyO6dDt0eop-Z-Je_0oqA8-PgFlX76MZrU9_OJHDZnI1YgfOxpBSxP43QkGvtemtXmvTa20auM61ZZG6I7J-vk13jsYP90tfH6SYM__hMepkPY4WnY9oZ-2Cv19-cUduBz_6vOE3zIexDUvM1eeodGIa9Of1pNaLohSActpmg1d_N_jX9J8AG9m6
CitedBy_id crossref_primary_10_1109_TCST_2019_2891222
crossref_primary_10_1515_ijb_2021_0030
Cites_doi 10.1002/pst.198
10.1002/sim.2213
10.1093/biomet/58.3.545
10.1111/1467-9868.00353
10.1093/biostatistics/2.1.47
10.1162/08997660260293292
10.1063/1.1699114
10.1080/01621459.1977.10480998
10.1023/A:1008929526011
10.1002/pst.222
10.2307/2531628
10.1002/(SICI)1097-0258(19990615)18:11<1307::AID-SIM128>3.0.CO;2-X
10.1214/ss/1177011136
10.1198/000313004X8515
10.1007/s10928-005-5910-2
10.2307/2534012
10.1111/j.0006-341X.2000.00609.x
10.1109/TSSC.1968.300117
10.1214/06-BA117A
10.1002/(SICI)1097-0258(19960815)15:15<1605::AID-SIM325>3.0.CO;2-2
ContentType Journal Article
Copyright 2011 Elsevier Ireland Ltd
Elsevier Ireland Ltd
2015 INIST-CNRS
Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Copyright_xml – notice: 2011 Elsevier Ireland Ltd
– notice: Elsevier Ireland Ltd
– notice: 2015 INIST-CNRS
– notice: Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
8FD
FR3
P64
DOI 10.1016/j.cmpb.2011.05.010
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitleList
Engineering Research Database

MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1872-7565
EndPage 201
ExternalDocumentID 21764475
26016278
10_1016_j_cmpb_2011_05_010
S0169260711001519
1_s2_0_S0169260711001519
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
-~X
.1-
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
LG9
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SBC
SDF
SDG
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
T5K
UHS
WUQ
XPP
Z5R
ZGI
ZY4
~G-
AFCTW
AGRNS
RIG
AACTN
AAIAV
ABLVK
ABTAH
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
EFLBG
LCYCR
AAYXX
ACLOT
CITATION
~HD
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
8FD
FR3
P64
ID FETCH-LOGICAL-c525t-6916b7a3cafd7868d061c53ee42d8209c432ea6d2087b8b11b45df5bf3d856bd3
IEDL.DBID .~1
ISSN 0169-2607
1872-7565
IngestDate Sat Sep 27 22:27:43 EDT 2025
Sat Sep 27 23:56:01 EDT 2025
Mon Jul 21 06:05:36 EDT 2025
Mon Jul 21 09:14:00 EDT 2025
Thu Apr 24 22:58:19 EDT 2025
Wed Oct 01 03:20:56 EDT 2025
Fri Feb 23 02:26:02 EST 2024
Fri May 16 00:31:32 EDT 2025
Tue Aug 26 19:12:47 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Mixed effects model
Dose escalation
Phase I trials
Bayesian population model
Biomedical engineering
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c525t-6916b7a3cafd7868d061c53ee42d8209c432ea6d2087b8b11b45df5bf3d856bd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 21764475
PQID 1020051298
PQPubID 23479
PageCount 13
ParticipantIDs proquest_miscellaneous_1034827998
proquest_miscellaneous_1020051298
pubmed_primary_21764475
pascalfrancis_primary_26016278
crossref_primary_10_1016_j_cmpb_2011_05_010
crossref_citationtrail_10_1016_j_cmpb_2011_05_010
elsevier_sciencedirect_doi_10_1016_j_cmpb_2011_05_010
elsevier_clinicalkeyesjournals_1_s2_0_S0169260711001519
elsevier_clinicalkey_doi_10_1016_j_cmpb_2011_05_010
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-08-01
PublicationDateYYYYMMDD 2012-08-01
PublicationDate_xml – month: 08
  year: 2012
  text: 2012-08-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
– name: Ireland
PublicationTitle Computer methods and programs in biomedicine
PublicationTitleAlternate Comput Methods Programs Biomed
PublicationYear 2012
Publisher Elsevier Ireland Ltd
Elsevier
Publisher_xml – name: Elsevier Ireland Ltd
– name: Elsevier
References O’Quigley, Pepe, Fisher (bib0020) 1990; 46
Thall, Russell (bib0025) 1998; 54
Zohar, Chevret (bib0040) 2001; 20
Smith, Jones, Morris, Grieve, Tan (bib0065) 2006; 5
Vehtari, Lampinen (bib0110) 2002; 14
Rombout, Aarons, Karlsson, Man, Mentré, Nygren, Racine, Schaefer, Steimer, Troconiz, Van Peer (bib0015) 2004; 31
R Development Core Team. R: A language and environment for statistical computing, 2008. R Foundation for Statistical Computing, Vienna, Austria, ISBN 3–900051-07–0, http://www.R-project.org
Spiegelhalter, Best, Carlin, van der Linde (bib0115) 2002; 64
Robbins (bib0080) 1955
Gasparini, Eisele (bib0035) 2000; 56
Zhou, Whitehead, Bonvini, Stevens (bib0045) 2006; 5
Cowles (bib0120) 2004; 58
Patterson, Thompson (bib0105) 1971; 58
Berry, Müller, Grieve, Smith, Parke, Blazek, Mitchard, Krams (bib0060) 2001
Metropolis, Rosenbluth, Rosenbluth, Teller, Teller (bib0090) 1953; 21
Harville (bib0100) 1977; 72
Whitehead, Zhou, Patterson, Webber, Francis (bib0050) 2001; 2
Gelman (bib0125) 2006; 1
Lunn, Thomas, Best, Spiegelhalter (bib0075) 2000; 10
Whitehead, Zhou, Mander, Ritchie, Sabin, Wright (bib0055) 2006; 25
Heyd, Carlin (bib0030) 1999; 18
Piantadosi, Liu (bib0010) 1996; 15
Schielzeth, Forstmeier (bib0130) 2008
Piantadosi (bib0005) 2005
Gelman, Rubin (bib0095) 1992; 7
Jaynes (bib0085) 1968; SSC-4
Heyd (10.1016/j.cmpb.2011.05.010_bib0030) 1999; 18
Berry (10.1016/j.cmpb.2011.05.010_bib0060) 2001
Cowles (10.1016/j.cmpb.2011.05.010_bib0120) 2004; 58
Vehtari (10.1016/j.cmpb.2011.05.010_bib0110) 2002; 14
Gasparini (10.1016/j.cmpb.2011.05.010_bib0035) 2000; 56
Smith (10.1016/j.cmpb.2011.05.010_bib0065) 2006; 5
Gelman (10.1016/j.cmpb.2011.05.010_bib0095) 1992; 7
Schielzeth (10.1016/j.cmpb.2011.05.010_bib0130) 2008
Zohar (10.1016/j.cmpb.2011.05.010_bib0040) 2001; 20
Thall (10.1016/j.cmpb.2011.05.010_bib0025) 1998; 54
Spiegelhalter (10.1016/j.cmpb.2011.05.010_bib0115) 2002; 64
Rombout (10.1016/j.cmpb.2011.05.010_bib0015) 2004; 31
Lunn (10.1016/j.cmpb.2011.05.010_bib0075) 2000; 10
Jaynes (10.1016/j.cmpb.2011.05.010_bib0085) 1968; SSC-4
Harville (10.1016/j.cmpb.2011.05.010_bib0100) 1977; 72
Patterson (10.1016/j.cmpb.2011.05.010_bib0105) 1971; 58
O’Quigley (10.1016/j.cmpb.2011.05.010_bib0020) 1990; 46
Whitehead (10.1016/j.cmpb.2011.05.010_bib0050) 2001; 2
Whitehead (10.1016/j.cmpb.2011.05.010_bib0055) 2006; 25
Robbins (10.1016/j.cmpb.2011.05.010_bib0080) 1955
Piantadosi (10.1016/j.cmpb.2011.05.010_bib0010) 1996; 15
Metropolis (10.1016/j.cmpb.2011.05.010_bib0090) 1953; 21
Zhou (10.1016/j.cmpb.2011.05.010_bib0045) 2006; 5
10.1016/j.cmpb.2011.05.010_bib0070
Piantadosi (10.1016/j.cmpb.2011.05.010_bib0005) 2005
Gelman (10.1016/j.cmpb.2011.05.010_bib0125) 2006; 1
References_xml – volume: 1
  start-page: 515
  year: 2006
  end-page: 533
  ident: bib0125
  article-title: Prior distributions for variance parameters in hierarchical models
  publication-title: Bayesian Anal.
– volume: 2
  start-page: 47
  year: 2001
  end-page: 61
  ident: bib0050
  article-title: Easy-to-implement Bayesian methods for dose escalation studies in healthy volunteers
  publication-title: Biostatistics
– volume: 58
  start-page: 545
  year: 1971
  end-page: 554
  ident: bib0105
  article-title: Recovery of inter-block information when block sizes are unequal
  publication-title: Biometrika
– volume: 21
  start-page: 1087
  year: 1953
  end-page: 1091
  ident: bib0090
  article-title: Equations of state calculations by fast computing machines
  publication-title: J. Chem. Phys.
– volume: 64
  start-page: 583
  year: 2002
  end-page: 639
  ident: bib0115
  article-title: Bayesian measures of model complexity and fit (with discussion)
  publication-title: J. R. Stat. Soc. B
– volume: 25
  start-page: 433
  year: 2006
  end-page: 445
  ident: bib0055
  article-title: An evaluation of Bayesian designs for dose escalation studies in healthy volunteers
  publication-title: Stat. Med.
– volume: 14
  start-page: 2439
  year: 2002
  end-page: 2468
  ident: bib0110
  article-title: Bayesian model assessment and comparison using cross-validation predictive densities
  publication-title: Neural Comput.
– volume: SSC-4
  start-page: 227
  year: 1968
  end-page: 241
  ident: bib0085
  article-title: Prior probabilities
  publication-title: IEEE Trans. Syst. Sci. Cyber.
– start-page: 99
  year: 2001
  end-page: 181
  ident: bib0060
  article-title: Adaptive Bayesian designs for dose-ranging drug trials
  publication-title: Case Studies in Bayesian Statistics V
– volume: 5
  start-page: 39
  year: 2006
  end-page: 50
  ident: bib0065
  article-title: Implementation of a Bayesian adaptive design in a proof of concept study
  publication-title: Pharm. Stat.
– volume: 56
  start-page: 609
  year: 2000
  end-page: 615
  ident: bib0035
  article-title: A curve-free method for Phase I clinical trials
  publication-title: Biometrics
– volume: 7
  start-page: 457
  year: 1992
  end-page: 511
  ident: bib0095
  article-title: Inference from iterative simulation using multiple sequences
  publication-title: Stat. Sci.
– volume: 15
  start-page: 1605
  year: 1996
  end-page: 1618
  ident: bib0010
  article-title: Improved designs for dose escalation studies using pharmacokinetic measurements
  publication-title: Stat. Med.
– volume: 10
  start-page: 325
  year: 2000
  end-page: 337
  ident: bib0075
  article-title: WinBUGS - A Bayesian modelling framework: concepts, structure, and extensibility
  publication-title: Stat. Comput.
– reference: R Development Core Team. R: A language and environment for statistical computing, 2008. R Foundation for Statistical Computing, Vienna, Austria, ISBN 3–900051-07–0, http://www.R-project.org
– volume: 58
  start-page: 330
  year: 2004
  end-page: 336
  ident: bib0120
  article-title: Review of WinBUGS 1.4
  publication-title: Am. Stat.
– volume: 72
  start-page: 320
  year: 1977
  end-page: 338
  ident: bib0100
  article-title: Maximum Likelihood approaches to variance component estimation and to related problems
  publication-title: J. Am. Stat. Assoc.
– volume: 46
  start-page: 33
  year: 1990
  end-page: 48
  ident: bib0020
  article-title: Continual reassessment method: a practical design for Phase 1 clinical trials in cancer
  publication-title: Biometrics
– year: 2008
  ident: bib0130
  article-title: Conclusions beyond support: overconfident estimates in mixed models
  publication-title: Behav. Ecol.
– volume: 20
  start-page: 2827
  year: 2001
  end-page: 2843
  ident: bib0040
  article-title: The continual reassessment method: comparison of Bayesian stopping rules for dose-ranging studies
  publication-title: Biostatistics
– volume: 5
  start-page: 125
  year: 2006
  end-page: 133
  ident: bib0045
  article-title: Bayesian decision procedures for binary and continuous bivariate dose escalation studies
  publication-title: Pharm. Stat.
– volume: 31
  start-page: 419
  year: 2004
  end-page: 440
  ident: bib0015
  article-title: Modelling and simulation in the development and use of anti-cancer agents: an underused tool?
  publication-title: J. Pharmacokinet. Pharmacodyn.
– start-page: 157
  year: 1955
  end-page: 164
  ident: bib0080
  article-title: An Empirical Bayes approach to statistics
  publication-title: Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, Vol. 1
– volume: 54
  start-page: 251
  year: 1998
  end-page: 264
  ident: bib0025
  article-title: A strategy for dose-finding and safety monitoring based on efficacy and adverse outcomes in Phase I/II clinical trials
  publication-title: Biometrics
– start-page: 223
  year: 2005
  end-page: 250
  ident: bib0005
  article-title: Dose-finding designs
  publication-title: Clinical Trials: A Methodologic Perspective
– volume: 18
  start-page: 1307
  year: 1999
  end-page: 1321
  ident: bib0030
  article-title: Adaptive design methods in the continual reassessment method for Phase I studies
  publication-title: Stat. Med.
– ident: 10.1016/j.cmpb.2011.05.010_bib0070
– volume: 5
  start-page: 39
  year: 2006
  ident: 10.1016/j.cmpb.2011.05.010_bib0065
  article-title: Implementation of a Bayesian adaptive design in a proof of concept study
  publication-title: Pharm. Stat.
  doi: 10.1002/pst.198
– volume: 25
  start-page: 433
  year: 2006
  ident: 10.1016/j.cmpb.2011.05.010_bib0055
  article-title: An evaluation of Bayesian designs for dose escalation studies in healthy volunteers
  publication-title: Stat. Med.
  doi: 10.1002/sim.2213
– volume: 58
  start-page: 545
  year: 1971
  ident: 10.1016/j.cmpb.2011.05.010_bib0105
  article-title: Recovery of inter-block information when block sizes are unequal
  publication-title: Biometrika
  doi: 10.1093/biomet/58.3.545
– volume: 64
  start-page: 583
  year: 2002
  ident: 10.1016/j.cmpb.2011.05.010_bib0115
  article-title: Bayesian measures of model complexity and fit (with discussion)
  publication-title: J. R. Stat. Soc. B
  doi: 10.1111/1467-9868.00353
– year: 2008
  ident: 10.1016/j.cmpb.2011.05.010_bib0130
  article-title: Conclusions beyond support: overconfident estimates in mixed models
  publication-title: Behav. Ecol.
– volume: 2
  start-page: 47
  year: 2001
  ident: 10.1016/j.cmpb.2011.05.010_bib0050
  article-title: Easy-to-implement Bayesian methods for dose escalation studies in healthy volunteers
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/2.1.47
– volume: 14
  start-page: 2439
  year: 2002
  ident: 10.1016/j.cmpb.2011.05.010_bib0110
  article-title: Bayesian model assessment and comparison using cross-validation predictive densities
  publication-title: Neural Comput.
  doi: 10.1162/08997660260293292
– volume: 21
  start-page: 1087
  year: 1953
  ident: 10.1016/j.cmpb.2011.05.010_bib0090
  article-title: Equations of state calculations by fast computing machines
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1699114
– volume: 72
  start-page: 320
  year: 1977
  ident: 10.1016/j.cmpb.2011.05.010_bib0100
  article-title: Maximum Likelihood approaches to variance component estimation and to related problems
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1977.10480998
– volume: 10
  start-page: 325
  year: 2000
  ident: 10.1016/j.cmpb.2011.05.010_bib0075
  article-title: WinBUGS - A Bayesian modelling framework: concepts, structure, and extensibility
  publication-title: Stat. Comput.
  doi: 10.1023/A:1008929526011
– volume: 20
  start-page: 2827
  year: 2001
  ident: 10.1016/j.cmpb.2011.05.010_bib0040
  article-title: The continual reassessment method: comparison of Bayesian stopping rules for dose-ranging studies
  publication-title: Biostatistics
– volume: 5
  start-page: 125
  year: 2006
  ident: 10.1016/j.cmpb.2011.05.010_bib0045
  article-title: Bayesian decision procedures for binary and continuous bivariate dose escalation studies
  publication-title: Pharm. Stat.
  doi: 10.1002/pst.222
– volume: 46
  start-page: 33
  year: 1990
  ident: 10.1016/j.cmpb.2011.05.010_bib0020
  article-title: Continual reassessment method: a practical design for Phase 1 clinical trials in cancer
  publication-title: Biometrics
  doi: 10.2307/2531628
– volume: 18
  start-page: 1307
  year: 1999
  ident: 10.1016/j.cmpb.2011.05.010_bib0030
  article-title: Adaptive design methods in the continual reassessment method for Phase I studies
  publication-title: Stat. Med.
  doi: 10.1002/(SICI)1097-0258(19990615)18:11<1307::AID-SIM128>3.0.CO;2-X
– volume: 7
  start-page: 457
  year: 1992
  ident: 10.1016/j.cmpb.2011.05.010_bib0095
  article-title: Inference from iterative simulation using multiple sequences
  publication-title: Stat. Sci.
  doi: 10.1214/ss/1177011136
– start-page: 157
  year: 1955
  ident: 10.1016/j.cmpb.2011.05.010_bib0080
  article-title: An Empirical Bayes approach to statistics
– volume: 58
  start-page: 330
  year: 2004
  ident: 10.1016/j.cmpb.2011.05.010_bib0120
  article-title: Review of WinBUGS 1.4
  publication-title: Am. Stat.
  doi: 10.1198/000313004X8515
– volume: 31
  start-page: 419
  year: 2004
  ident: 10.1016/j.cmpb.2011.05.010_bib0015
  article-title: Modelling and simulation in the development and use of anti-cancer agents: an underused tool?
  publication-title: J. Pharmacokinet. Pharmacodyn.
  doi: 10.1007/s10928-005-5910-2
– volume: 54
  start-page: 251
  year: 1998
  ident: 10.1016/j.cmpb.2011.05.010_bib0025
  article-title: A strategy for dose-finding and safety monitoring based on efficacy and adverse outcomes in Phase I/II clinical trials
  publication-title: Biometrics
  doi: 10.2307/2534012
– volume: 56
  start-page: 609
  year: 2000
  ident: 10.1016/j.cmpb.2011.05.010_bib0035
  article-title: A curve-free method for Phase I clinical trials
  publication-title: Biometrics
  doi: 10.1111/j.0006-341X.2000.00609.x
– volume: SSC-4
  start-page: 227
  year: 1968
  ident: 10.1016/j.cmpb.2011.05.010_bib0085
  article-title: Prior probabilities
  publication-title: IEEE Trans. Syst. Sci. Cyber.
  doi: 10.1109/TSSC.1968.300117
– volume: 1
  start-page: 515
  year: 2006
  ident: 10.1016/j.cmpb.2011.05.010_bib0125
  article-title: Prior distributions for variance parameters in hierarchical models
  publication-title: Bayesian Anal.
  doi: 10.1214/06-BA117A
– start-page: 99
  year: 2001
  ident: 10.1016/j.cmpb.2011.05.010_bib0060
  article-title: Adaptive Bayesian designs for dose-ranging drug trials
– start-page: 223
  year: 2005
  ident: 10.1016/j.cmpb.2011.05.010_bib0005
  article-title: Dose-finding designs
– volume: 15
  start-page: 1605
  year: 1996
  ident: 10.1016/j.cmpb.2011.05.010_bib0010
  article-title: Improved designs for dose escalation studies using pharmacokinetic measurements
  publication-title: Stat. Med.
  doi: 10.1002/(SICI)1097-0258(19960815)15:15<1605::AID-SIM325>3.0.CO;2-2
SSID ssj0002556
Score 1.9832953
Snippet In dose escalation studies cohorts of subjects are given increasing doses of a candidate drug to assess safety and tolerability, pharmacokinetics and...
Abstract In dose escalation studies cohorts of subjects are given increasing doses of a candidate drug to assess safety and tolerability, pharmacokinetics and...
SourceID proquest
pubmed
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 189
SubjectTerms Bayes Theorem
Bayesian population model
Biological and medical sciences
Clinical Trials, Phase I as Topic - methods
Clinical Trials, Phase I as Topic - statistics & numerical data
Computer Simulation
Dose escalation
Dose-Response Relationship, Drug
Endpoint Determination - methods
Humans
Internal Medicine
Likelihood Functions
Medical sciences
Mixed effects model
Models, Biological
Models, Statistical
Other
Pharmaceutical Preparations - blood
Pharmacokinetics
Phase I trials
Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects)
Technology. Biomaterials. Equipments. Material. Instrumentation
Title Bayesian population approaches to the analysis of dose escalation studies
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0169260711001519
https://www.clinicalkey.es/playcontent/1-s2.0-S0169260711001519
https://dx.doi.org/10.1016/j.cmpb.2011.05.010
https://www.ncbi.nlm.nih.gov/pubmed/21764475
https://www.proquest.com/docview/1020051298
https://www.proquest.com/docview/1034827998
Volume 107
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-7565
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002556
  issn: 0169-2607
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1872-7565
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002556
  issn: 0169-2607
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1872-7565
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002556
  issn: 0169-2607
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1872-7565
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002556
  issn: 0169-2607
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-7565
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002556
  issn: 0169-2607
  databaseCode: AKRWK
  dateStart: 19850501
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9wwDDelgzEoY5_ttdvhwt5GdrZjx8ljV1quG-1LW-ibsWMFOrZLaK4Pe9nfPit2rpS2NxjkJUHCjiJLciz9RMgnCxXkUPGwyWF5JoPLyyxwlUnw3EvmtPRYKHx6Vswv5bcrdbVBDsdaGEyrTLY_2vTBWqcnsyTNWXd9PTtHHBGB8GgII6QG6E9E_wo6_eXPXZoHQmxFfO8qQ-pUOBNzvOpfnUswnojeyZ5yTlud7YPImtjr4ulgdHBKx6_IyxRN0oM44ddkAxZvyPPTdF7-lpx8tb8ByyRpt2rURUcYcejpsqUhAKQ2IZPQtqG-7YECziNS9zHR8B25PD66OJxnqXlCViuhllkR4j6nbV7bxuuyKH1w3LXKAaTwwetXtcwF2MILVmpXOs6dVL5Rrsl9qQrn8_dkc9EuYIdQB5z5OuxrKtytCOs84yCd9nhZ4SeEj1IzdUIWxwYXP82YQvbDoKQNStowZYKkJ-TziqeLuBprqfPxY5ixYjTYOBPM_lou_RgX9GmZ9oabXhhmHqjShKgV5z1t_OeI03uasnq1AbhN6HJC9kfVMWEd4-GMXUB7G6bC8P9eiL7W0iAUka6QZjvq3d0IXBcI3rj7n1PfIy_CnYi5jR_I5vLmFj6GeGvppsOCmpJnByff52d_Af7JKEo
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9wwDDflCttgjH339tF5sLcRznbsOHnsysrd2ruXtdA3Y8cKdGyX0Fwf9t_POjsZZesNBnlKJOwosiTH0k-EfLBQQQ4VD5sclmcyuLzMAleZBM-9ZE5Lj4XCy1Uxv5BfLtXlHjkeamEwrTLZ_mjTt9Y63Zklac66q6vZV8QREQiPhjBCCqE_96UKNnlC9o8Wp_PVaJARZStCfFcZMqTamZjmVf_oXELyRABPdpd_etjZPkitie0u7o5Ht37p5DF5lAJKehTn_ITswfopubdMR-bPyOKT_QlYKUm7sVcXHZDEoaebloYYkNoETkLbhvq2Bwo4j0jdx1zD5-Ti5PP58TxL_ROyWgm1yYoQ-jlt89o2XpdF6YPvrlUOIIUPjr-qZS7AFl6wUrvSce6k8o1yTe5LVTifvyCTdbuGA0IdcObrsLWpcMMirPOMg3Ta42WFnxI-SM3UCVwce1x8N0MW2TeDkjYoacOUCZKeko8jTxehNXZS58PHMEPRaDBzJlj-nVz6b1zQp5XaG256YZj5Q5umRI2ctxTynyMe3tKU8dW22G1Cl1PyflAdE5Yyns_YNbQ3YSoMf_GFAGwnDaIR6QppXka9-z0C1wXiN776z6m_I_fn58szc7ZYnb4mD8ITEVMd35DJ5voG3obwa-MO0_L6Bf2PKvU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+population+approaches+to+the+analysis+of+dose+escalation+studies&rft.jtitle=Computer+methods+and+programs+in+biomedicine&rft.au=Russu%2C+Alberto&rft.au=Nicolao%2C+Giuseppe+De&rft.au=Poggesi%2C+Italo&rft.au=Neve%2C+Marta&rft.date=2012-08-01&rft.pub=Elsevier+Ireland+Ltd&rft.issn=0169-2607&rft.eissn=1872-7565&rft.volume=107&rft.issue=2&rft.spage=189&rft.epage=201&rft_id=info:doi/10.1016%2Fj.cmpb.2011.05.010&rft.externalDocID=S0169260711001519
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F01692607%2FS0169260712X00087%2Fcov150h.gif