Dual subgradient algorithms for large-scale nonsmooth learning problems
“Classical” First Order (FO) algorithms of convex optimization, such as Mirror Descent algorithm or Nesterov’s optimal algorithm of smooth convex optimization, are well known to have optimal (theoretical) complexity estimates which do not depend on the problem dimension. However, to attain the optim...
Saved in:
| Published in | Mathematical programming Vol. 148; no. 1-2; pp. 143 - 180 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.12.2014
Springer Nature B.V Springer Verlag |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0025-5610 1436-4646 1436-4646 |
| DOI | 10.1007/s10107-013-0725-1 |
Cover
| Abstract | “Classical” First Order (FO) algorithms of convex optimization, such as Mirror Descent algorithm or Nesterov’s optimal algorithm of smooth convex optimization, are well known to have optimal (theoretical) complexity estimates which do not depend on the problem dimension. However, to attain the optimality, the domain of the problem should admit a “good proximal setup”. The latter essentially means that (1) the problem domain should satisfy certain geometric conditions of “favorable geometry”, and (2) the practical use of these methods is conditioned by our ability to compute at a moderate cost
proximal transformation
at each iteration. More often than not these two conditions are satisfied in optimization problems arising in computational learning, what explains why proximal type FO methods recently became methods of choice when solving various learning problems. Yet, they meet their limits in several important problems such as multi-task learning with large number of tasks, where the problem domain does not exhibit favorable geometry, and learning and matrix completion problems with nuclear norm constraint, when the numerical cost of computing proximal transformation becomes prohibitive in large-scale problems. We propose a novel approach to solving nonsmooth optimization problems arising in learning applications where Fenchel-type representation of the objective function is available. The approach is based on applying FO algorithms to the dual problem and using the
accuracy certificates
supplied by the method to recover the primal solution. While suboptimal in terms of accuracy guaranties, the proposed approach does not rely upon “good proximal setup” for the primal problem but requires the problem domain to admit a
Linear Optimization oracle
—the ability to efficiently maximize a linear form on the domain of the primal problem. |
|---|---|
| AbstractList | Issue Title: Modern Convex Analysis "Classical" First Order (FO) algorithms of convex optimization, such as Mirror Descent algorithm or Nesterov's optimal algorithm of smooth convex optimization, are well known to have optimal (theoretical) complexity estimates which do not depend on the problem dimension. However, to attain the optimality, the domain of the problem should admit a "good proximal setup". The latter essentially means that (1) the problem domain should satisfy certain geometric conditions of "favorable geometry", and (2) the practical use of these methods is conditioned by our ability to compute at a moderate cost proximal transformation at each iteration. More often than not these two conditions are satisfied in optimization problems arising in computational learning, what explains why proximal type FO methods recently became methods of choice when solving various learning problems. Yet, they meet their limits in several important problems such as multi-task learning with large number of tasks, where the problem domain does not exhibit favorable geometry, and learning and matrix completion problems with nuclear norm constraint, when the numerical cost of computing proximal transformation becomes prohibitive in large-scale problems. We propose a novel approach to solving nonsmooth optimization problems arising in learning applications where Fenchel-type representation of the objective function is available. The approach is based on applying FO algorithms to the dual problem and using the accuracy certificates supplied by the method to recover the primal solution. While suboptimal in terms of accuracy guaranties, the proposed approach does not rely upon "good proximal setup" for the primal problem but requires the problem domain to admit a Linear Optimization oracle--the ability to efficiently maximize a linear form on the domain of the primal problem.[PUBLICATION ABSTRACT] "Classical" First Order (FO) algorithms of convex optimization, such as Mirror Descent algorithm or Nesterov's optimal algorithm of smooth convex optimization, are well known to have optimal (theoretical) complexity estimates which do not depend on the problem dimension. However, to attain the optimality, the domain of the problem should admit a "good proximal setup". The latter essentially means that (1) the problem domain should satisfy certain geometric conditions of "favorable geometry", and (2) the practical use of these methods is conditioned by our ability to compute at a moderate cost proximal transformation at each iteration. More often than not these two conditions are satisfied in optimization problems arising in computational learning, what explains why proximal type FO methods recently became methods of choice when solving various learning problems. Yet, they meet their limits in several important problems such as multi-task learning with large number of tasks, where the problem domain does not exhibit favorable geometry, and learning and matrix completion problems with nuclear norm constraint, when the numerical cost of computing proximal transformation becomes prohibitive in large-scale problems. We propose a novel approach to solving nonsmooth optimization problems arising in learning applications where Fenchel-type representation of the objective function is available. The approach is based on applying FO algorithms to the dual problem and using the accuracy certificates supplied by the method to recover the primal solution. While suboptimal in terms of accuracy guaranties, the proposed approach does not rely upon "good proximal setup" for the primal problem but requires the problem domain to admit a Linear Optimization oracle--the ability to efficiently maximize a linear form on the domain of the primal problem. “Classical” First Order (FO) algorithms of convex optimization, such as Mirror Descent algorithm or Nesterov’s optimal algorithm of smooth convex optimization, are well known to have optimal (theoretical) complexity estimates which do not depend on the problem dimension. However, to attain the optimality, the domain of the problem should admit a “good proximal setup”. The latter essentially means that (1) the problem domain should satisfy certain geometric conditions of “favorable geometry”, and (2) the practical use of these methods is conditioned by our ability to compute at a moderate cost proximal transformation at each iteration. More often than not these two conditions are satisfied in optimization problems arising in computational learning, what explains why proximal type FO methods recently became methods of choice when solving various learning problems. Yet, they meet their limits in several important problems such as multi-task learning with large number of tasks, where the problem domain does not exhibit favorable geometry, and learning and matrix completion problems with nuclear norm constraint, when the numerical cost of computing proximal transformation becomes prohibitive in large-scale problems. We propose a novel approach to solving nonsmooth optimization problems arising in learning applications where Fenchel-type representation of the objective function is available. The approach is based on applying FO algorithms to the dual problem and using the accuracy certificates supplied by the method to recover the primal solution. While suboptimal in terms of accuracy guaranties, the proposed approach does not rely upon “good proximal setup” for the primal problem but requires the problem domain to admit a Linear Optimization oracle —the ability to efficiently maximize a linear form on the domain of the primal problem. |
| Author | Juditsky, Anatoli Cox, Bruce Nemirovski, Arkadi |
| Author_xml | – sequence: 1 givenname: Bruce surname: Cox fullname: Cox, Bruce organization: US Air Force – sequence: 2 givenname: Anatoli surname: Juditsky fullname: Juditsky, Anatoli email: juditsky@imag.fr organization: LJK, Université J. Fourier – sequence: 3 givenname: Arkadi surname: Nemirovski fullname: Nemirovski, Arkadi organization: Georgia Institute of Technology |
| BackLink | https://hal.science/hal-00978358$$DView record in HAL |
| BookMark | eNqNkEFr3DAQhUVJoZttfkBvhl7ag9uRZVn2MaRpUljIJTmLsTz2OsjSVrJb8u8r40BLoKWngeF7M--9c3bmvCPG3nH4xAHU58iBg8qBixxUIXP-iu14Kaq8rMrqjO0A0lJWHN6w8xgfARJZ1zt282VBm8WlHQJ2I7k5Qzv4MM7HKWa9D5nFMFAeDVrK0s84eT8fM0sY3OiG7BR8a2mKb9nrHm2ki-e5Zw9fr--vbvPD3c23q8tDbmQh57xSRiBRS6aU2KIhWZYF7xtC6lTLJYHqemO6pgXe9UhtqYoaKtEVirClRuxZsd1d3AmffqK1-hTGCcOT5qDXKvRWhU4B9VqF5kn0cRMd8TfucdS3lwe97gAaVQtZ_1jZDxubkn1fKM56GqMha9GRX6LmVVkIEFUytWfvX6CPfgkuxU9UAVI0slkptVEm-BgD9dqMM86jd3PA0f7TNn-h_J-oz_3ExLqBwh-e_ir6BRmvrd0 |
| CODEN | MHPGA4 |
| CitedBy_id | crossref_primary_10_1007_s10107_015_0876_3 crossref_primary_10_1007_s10107_018_1351_8 crossref_primary_10_1137_140992382 crossref_primary_10_1137_15M1008397 crossref_primary_10_1007_s10107_014_0778_9 crossref_primary_10_1007_s10957_016_0949_3 crossref_primary_10_1137_130941961 crossref_primary_10_1007_s10851_016_0661_9 crossref_primary_10_1137_18M1215682 crossref_primary_10_1214_21_AOS2145 crossref_primary_10_1007_s10107_022_01850_3 crossref_primary_10_1007_s10589_016_9841_1 crossref_primary_10_1016_j_ejco_2021_100015 |
| Cites_doi | 10.1017/S096249291300007X 10.24033/bsmf.1625 10.1287/moor.1090.0427 10.1016/0022-247X(78)90137-3 10.1007/s10107-004-0552-5 10.1137/S1052623403425629 10.1007/s10107-004-0553-4 10.1137/0803026 10.1145/1273496.1273499 10.1007/s10107-007-0149-x 10.1007/s10107-006-0034-z 10.1007/978-1-4419-8853-9 10.1007/s11228-010-0147-7 10.1214/11-AOS944 10.1007/BF01585555 10.1002/nav.3800030109 10.1016/0041-5553(67)90040-7 10.7551/mitpress/8996.003.0007 |
| ContentType | Journal Article |
| Copyright | Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2013 Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2014 Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2013 – notice: Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2014 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 88I 8AL 8AO 8FD 8FE 8FG 8FK 8FL ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L.0 L6V L7M L~C L~D M0C M0N M2P M7S P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U 1XC VOOES ADTOC UNPAY |
| DOI | 10.1007/s10107-013-0725-1 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced ABI/INFORM Professional Standard ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest Business Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection ABI/INFORM Professional Standard ProQuest Central Korea Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | ProQuest Business Collection (Alumni Edition) Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Mathematics Computer Science Statistics |
| EISSN | 1436-4646 |
| EndPage | 180 |
| ExternalDocumentID | oai:HAL:hal-00978358v1 3483187091 10_1007_s10107_013_0725_1 |
| Genre | Feature |
| GroupedDBID | --K --Z -52 -5D -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 199 1B1 1N0 1OL 1SB 203 28- 29M 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 7WY 88I 8AO 8FE 8FG 8FL 8TC 8UJ 8VB 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMOZ AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHQJS AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKVCP ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EAD EAP EBA EBLON EBR EBS EBU ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I-F I09 IAO IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K1G K60 K6V K6~ K7- KDC KOV KOW L6V LAS LLZTM M0C M0N M2P M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQ- NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9R PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS QWB R4E R89 R9I RHV RIG RNI RNS ROL RPX RPZ RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TH9 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 XPP YLTOR Z45 Z5O Z7R Z7S Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZL0 ZMTXR ZWQNP ~02 ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADXHL AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 7SC 7XB 8AL 8FD 8FK JQ2 L.- L.0 L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U 1XC VOOES ADTOC UNPAY |
| ID | FETCH-LOGICAL-c525t-67c3aeebec45abace54421f9eaed7b15e07dfccd9b01dfaeb4728063d27eabe93 |
| IEDL.DBID | BENPR |
| ISSN | 0025-5610 1436-4646 |
| IngestDate | Wed Aug 20 00:01:29 EDT 2025 Tue Oct 14 20:49:10 EDT 2025 Wed Oct 01 17:21:56 EDT 2025 Thu Sep 25 00:52:46 EDT 2025 Wed Oct 01 02:58:24 EDT 2025 Thu Apr 24 22:59:48 EDT 2025 Fri Feb 21 02:32:44 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1-2 |
| Keywords | 65K15 68T10 90C25 90C47 |
| Language | English |
| License | http://www.springer.com/tdm Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 other-oa |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c525t-67c3aeebec45abace54421f9eaed7b15e07dfccd9b01dfaeb4728063d27eabe93 |
| Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0001-5231-363X |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://hal.science/hal-00978358v1/file/1302.2349v2.pdf |
| PQID | 1620539596 |
| PQPubID | 25307 |
| PageCount | 38 |
| ParticipantIDs | unpaywall_primary_10_1007_s10107_013_0725_1 hal_primary_oai_HAL_hal_00978358v1 proquest_miscellaneous_1642303606 proquest_journals_1620539596 crossref_citationtrail_10_1007_s10107_013_0725_1 crossref_primary_10_1007_s10107_013_0725_1 springer_journals_10_1007_s10107_013_0725_1 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2014-12-01 |
| PublicationDateYYYYMMDD | 2014-12-01 |
| PublicationDate_xml | – month: 12 year: 2014 text: 2014-12-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationSubtitle | A Publication of the Mathematical Optimization Society |
| PublicationTitle | Mathematical programming |
| PublicationTitleAbbrev | Math. Program |
| PublicationYear | 2014 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V Springer Verlag |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V – name: Springer Verlag |
| References | CombettesPLDũngDVũBCDualization of signal recovery problemsSet-Valued Var. Anal.2010183–437340410.1007/s11228-010-0147-71229.901232739585 FrankMWolfePAn algorithm for quadratic programmingNaval Res. Logist. Q.195631–29511010.1002/nav.380003010989102 LemaréchalCNemirovskiiANesterovYNew variants of bundle methodsMath. Program.1995691–311114710.1007/BF015855550857.90102 DunnJCHarshbargerSConditional gradient algorithms with open loop step size rulesJ. Math. Anal. Appl.197862243244410.1016/0022-247X(78)90137-30374.49017487704 NemirovskiAOnnSRothblumUGAccuracy certificates for computational problems with convex structureMath. Oper. Res.2010351527810.1287/moor.1090.04271216.900672676756 PshenichnyiBNDanilinYMNumerical Methods in Extremal Problems1978MoscowMir Publishers BregmanLMThe relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programmingUSSR Comput. Math. Math. Phys.19677320021710.1016/0041-5553(67)90040-7 NesterovYDual extrapolation and its applications to solving variational inequalities and related problemsMath. Program.20071092–331934410.1007/s10107-006-0034-z1167.900142295146 NesterovY.NemirovskiA.Some first order algorithms for $$\ell _1$$ ℓ 1 /nuclear norm minimizationActa Numerica201322509575 CrammerKSingerYOn the algorithmic implementation of multiclass kernel-based vector machinesJ. Mach. Learn. Res.200222652921037.68110 NemirovskiAProx-method with rate of convergence O(1/t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {O}(1/t)$$\end{document} for variational inequalities with lipschitz continuous monotone operators and smooth convex–concave saddle point problemsSIAM J. Optim.200415122925110.1137/S10526234034256291106.900592112984 Amit, Y., Fink, M., Srebro, N., Ullman, S.: Uncovering shared structures in multiclass classification. In: Proceedings of the 24th International Conference on Machine Learning, pp. 17–24. ACM (2007) NesterovYPrimal-dual subgradient methods for convex problemsMath. Program.2009120122125910.1007/s10107-007-0149-x1191.900382496434 MoreauJ-JProximité et dualité dans un espace hilbertienBulletin de la Société mathématique de France1965932732990136.12101201952 NesterovYIntroductory Lectures on Convex Optimization: A Basic Course2004BerlinSpringer10.1007/978-1-4419-8853-9 ChenGTeboulleMConvergence analysis of a proximal-like minimization algorithm using bregman functionsSIAM J. Optim.19933353854310.1137/08030260808.901031230155 Ben-TalANemirovskiANon-euclidean restricted memory level method for large-scale convex optimizationMath. Program.2005102340745610.1007/s10107-004-0553-41066.900792136222 NemirovskiiAYudinDProblem Complexity and Method Efficiency in Optimization1983ChichesterWiley DemyanovVRubinovAApproximate Methods in Optimization Problems1970AmsterdamElsevier NesterovYSmooth minimization of non-smooth functionsMath. Program.2005103112715210.1007/s10107-004-0552-51079.901022166537 YosidaKFunctional Analysis1964BerlinSpringer MoreauJ-JFonctions convexes duales et points proximaux dans un espace hilbertienCR Acad. Sci. Paris Sér. A Math.1962255289728990118.10502144188 Juditsky, A., Nemirovski, A.: First order methods for nonsmooth large-scale convex minimization, i: General purpose methods; ii: Utilizing problem’s structure. In: Sra, S., Nowozin, S., Wright, S.J. (eds.) Optimization for Machine Learning, pp. 121–254. MIT Press, Cambridge, MA (2011) NesterovYA method for unconstrained convex minimization problem with the rate of convergence O(1/k2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {O}(1/k^2)$$\end{document}Soviet Math. Dokl.19832723723760535.90071 FanJLiaoYMinchevaMHigh dimensional covariance matrix estimation in approximate factor modelsAnn. Stat.20113963320335610.1214/11-AOS9441246.621513012410 C Lemaréchal (725_CR12) 1995; 69 J Fan (725_CR9) 2011; 39 J-J Moreau (725_CR14) 1965; 93 BN Pshenichnyi (725_CR24) 1978 G Chen (725_CR4) 1993; 3 A Nemirovski (725_CR15) 2004; 15 PL Combettes (725_CR5) 2010; 18 A Ben-Tal (725_CR2) 2005; 102 J-J Moreau (725_CR13) 1962; 255 A Nemirovski (725_CR16) 2010; 35 Y Nesterov (725_CR19) 2004 725_CR11 Y Nesterov (725_CR21) 2007; 109 V Demyanov (725_CR7) 1970 Y Nesterov (725_CR20) 2005; 103 A Nemirovskii (725_CR17) 1983 M Frank (725_CR10) 1956; 3 K Crammer (725_CR6) 2002; 2 LM Bregman (725_CR3) 1967; 7 Y Nesterov (725_CR18) 1983; 27 Y Nesterov (725_CR22) 2009; 120 K Yosida (725_CR25) 1964 JC Dunn (725_CR8) 1978; 62 725_CR23 725_CR1 |
| References_xml | – reference: NemirovskiiAYudinDProblem Complexity and Method Efficiency in Optimization1983ChichesterWiley – reference: DemyanovVRubinovAApproximate Methods in Optimization Problems1970AmsterdamElsevier – reference: NemirovskiAOnnSRothblumUGAccuracy certificates for computational problems with convex structureMath. Oper. Res.2010351527810.1287/moor.1090.04271216.900672676756 – reference: LemaréchalCNemirovskiiANesterovYNew variants of bundle methodsMath. Program.1995691–311114710.1007/BF015855550857.90102 – reference: NesterovYIntroductory Lectures on Convex Optimization: A Basic Course2004BerlinSpringer10.1007/978-1-4419-8853-9 – reference: NesterovYA method for unconstrained convex minimization problem with the rate of convergence O(1/k2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {O}(1/k^2)$$\end{document}Soviet Math. Dokl.19832723723760535.90071 – reference: CrammerKSingerYOn the algorithmic implementation of multiclass kernel-based vector machinesJ. Mach. Learn. Res.200222652921037.68110 – reference: MoreauJ-JProximité et dualité dans un espace hilbertienBulletin de la Société mathématique de France1965932732990136.12101201952 – reference: NesterovY.NemirovskiA.Some first order algorithms for $$\ell _1$$ ℓ 1 /nuclear norm minimizationActa Numerica201322509575 – reference: Juditsky, A., Nemirovski, A.: First order methods for nonsmooth large-scale convex minimization, i: General purpose methods; ii: Utilizing problem’s structure. In: Sra, S., Nowozin, S., Wright, S.J. (eds.) Optimization for Machine Learning, pp. 121–254. MIT Press, Cambridge, MA (2011) – reference: NemirovskiAProx-method with rate of convergence O(1/t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {O}(1/t)$$\end{document} for variational inequalities with lipschitz continuous monotone operators and smooth convex–concave saddle point problemsSIAM J. Optim.200415122925110.1137/S10526234034256291106.900592112984 – reference: Amit, Y., Fink, M., Srebro, N., Ullman, S.: Uncovering shared structures in multiclass classification. In: Proceedings of the 24th International Conference on Machine Learning, pp. 17–24. ACM (2007) – reference: MoreauJ-JFonctions convexes duales et points proximaux dans un espace hilbertienCR Acad. Sci. Paris Sér. A Math.1962255289728990118.10502144188 – reference: PshenichnyiBNDanilinYMNumerical Methods in Extremal Problems1978MoscowMir Publishers – reference: BregmanLMThe relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programmingUSSR Comput. Math. Math. Phys.19677320021710.1016/0041-5553(67)90040-7 – reference: CombettesPLDũngDVũBCDualization of signal recovery problemsSet-Valued Var. Anal.2010183–437340410.1007/s11228-010-0147-71229.901232739585 – reference: NesterovYPrimal-dual subgradient methods for convex problemsMath. Program.2009120122125910.1007/s10107-007-0149-x1191.900382496434 – reference: FanJLiaoYMinchevaMHigh dimensional covariance matrix estimation in approximate factor modelsAnn. Stat.20113963320335610.1214/11-AOS9441246.621513012410 – reference: FrankMWolfePAn algorithm for quadratic programmingNaval Res. Logist. Q.195631–29511010.1002/nav.380003010989102 – reference: YosidaKFunctional Analysis1964BerlinSpringer – reference: Ben-TalANemirovskiANon-euclidean restricted memory level method for large-scale convex optimizationMath. Program.2005102340745610.1007/s10107-004-0553-41066.900792136222 – reference: NesterovYDual extrapolation and its applications to solving variational inequalities and related problemsMath. Program.20071092–331934410.1007/s10107-006-0034-z1167.900142295146 – reference: NesterovYSmooth minimization of non-smooth functionsMath. Program.2005103112715210.1007/s10107-004-0552-51079.901022166537 – reference: DunnJCHarshbargerSConditional gradient algorithms with open loop step size rulesJ. Math. Anal. Appl.197862243244410.1016/0022-247X(78)90137-30374.49017487704 – reference: ChenGTeboulleMConvergence analysis of a proximal-like minimization algorithm using bregman functionsSIAM J. Optim.19933353854310.1137/08030260808.901031230155 – ident: 725_CR23 doi: 10.1017/S096249291300007X – volume-title: Numerical Methods in Extremal Problems year: 1978 ident: 725_CR24 – volume: 93 start-page: 273 year: 1965 ident: 725_CR14 publication-title: Bulletin de la Société mathématique de France doi: 10.24033/bsmf.1625 – volume: 35 start-page: 52 issue: 1 year: 2010 ident: 725_CR16 publication-title: Math. Oper. Res. doi: 10.1287/moor.1090.0427 – volume-title: Functional Analysis year: 1964 ident: 725_CR25 – volume: 62 start-page: 432 issue: 2 year: 1978 ident: 725_CR8 publication-title: J. Math. Anal. Appl. doi: 10.1016/0022-247X(78)90137-3 – volume: 103 start-page: 127 issue: 1 year: 2005 ident: 725_CR20 publication-title: Math. Program. doi: 10.1007/s10107-004-0552-5 – volume: 15 start-page: 229 issue: 1 year: 2004 ident: 725_CR15 publication-title: SIAM J. Optim. doi: 10.1137/S1052623403425629 – volume-title: Problem Complexity and Method Efficiency in Optimization year: 1983 ident: 725_CR17 – volume: 102 start-page: 407 issue: 3 year: 2005 ident: 725_CR2 publication-title: Math. Program. doi: 10.1007/s10107-004-0553-4 – volume: 3 start-page: 538 issue: 3 year: 1993 ident: 725_CR4 publication-title: SIAM J. Optim. doi: 10.1137/0803026 – ident: 725_CR1 doi: 10.1145/1273496.1273499 – volume: 2 start-page: 265 year: 2002 ident: 725_CR6 publication-title: J. Mach. Learn. Res. – volume: 120 start-page: 221 issue: 1 year: 2009 ident: 725_CR22 publication-title: Math. Program. doi: 10.1007/s10107-007-0149-x – volume: 109 start-page: 319 issue: 2–3 year: 2007 ident: 725_CR21 publication-title: Math. Program. doi: 10.1007/s10107-006-0034-z – volume: 27 start-page: 372 issue: 2 year: 1983 ident: 725_CR18 publication-title: Soviet Math. Dokl. – volume: 255 start-page: 2897 year: 1962 ident: 725_CR13 publication-title: CR Acad. Sci. Paris Sér. A Math. – volume-title: Approximate Methods in Optimization Problems year: 1970 ident: 725_CR7 – volume-title: Introductory Lectures on Convex Optimization: A Basic Course year: 2004 ident: 725_CR19 doi: 10.1007/978-1-4419-8853-9 – volume: 18 start-page: 373 issue: 3–4 year: 2010 ident: 725_CR5 publication-title: Set-Valued Var. Anal. doi: 10.1007/s11228-010-0147-7 – volume: 39 start-page: 3320 issue: 6 year: 2011 ident: 725_CR9 publication-title: Ann. Stat. doi: 10.1214/11-AOS944 – volume: 69 start-page: 111 issue: 1–3 year: 1995 ident: 725_CR12 publication-title: Math. Program. doi: 10.1007/BF01585555 – volume: 3 start-page: 95 issue: 1–2 year: 1956 ident: 725_CR10 publication-title: Naval Res. Logist. Q. doi: 10.1002/nav.3800030109 – volume: 7 start-page: 200 issue: 3 year: 1967 ident: 725_CR3 publication-title: USSR Comput. Math. Math. Phys. doi: 10.1016/0041-5553(67)90040-7 – ident: 725_CR11 doi: 10.7551/mitpress/8996.003.0007 |
| SSID | ssj0001388 |
| Score | 2.221054 |
| Snippet | “Classical” First Order (FO) algorithms of convex optimization, such as Mirror Descent algorithm or Nesterov’s optimal algorithm of smooth convex optimization,... Issue Title: Modern Convex Analysis "Classical" First Order (FO) algorithms of convex optimization, such as Mirror Descent algorithm or Nesterov's optimal... "Classical" First Order (FO) algorithms of convex optimization, such as Mirror Descent algorithm or Nesterov's optimal algorithm of smooth convex optimization,... |
| SourceID | unpaywall hal proquest crossref springer |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 143 |
| SubjectTerms | Accuracy Algorithms Analysis Calculus of Variations and Optimal Control; Optimization Combinatorics Computer science Computing costs Convex analysis Euclidean space Full Length Paper Learning Mathematical and Computational Physics Mathematical Methods in Physics Mathematical models Mathematical programming Mathematics Mathematics and Statistics Mathematics of Computing Numerical Analysis Optimization Optimization techniques Statistics Statistics Theory Studies Theoretical Transformations |
| SummonAdditionalLinks | – databaseName: SpringerLINK - Czech Republic Consortium dbid: AGYKE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZge4AeeKMuFBQQJypXcWLH8XFFHyugnFqpnCI_JlvUdLfaJK3g1zPOqwHxUI9JJo7tGdtfNDPfEPJO5o6lJrc0dFpS7iSjyqWGJhxckqcKVENffPQlmZ_wj6fitMvjLvto994l2ezUo2Q31oRJxjSUkaD4y7PR0G1NyMbs8Oun_WEDZnGa9pVaPTzonZl_auSX4-jumQ-GHCHNwTm6Se7Vy0v9_VoXxej8OXhIjvuet2En57t1ZXbtj99IHW85tEfkQYdHg1lrQI_JHVg-IZsjlkK8OhqoXcun5HCvRvmyNot1Ey1WBbpYrNbfqrOLMkAEHBQ-tpyWqHsIlmjTFys0hqCrTrEIugo25TNycrB__GFOu2oM1IpIVDSRNtbgdc6FNtqC4DxiuQINThomIJQut9YpEzKXazDcV75KYhdJ0AZU_JxM8Kuw5fPEJcpge0zmPA2tRuwMCsGeTA0DHk1J2Cslsx1Vua-YUWQ3JMt-xjKcsczPWMam5P3wymXL0_Ev4beo6UHOM2zPZ58zf6_NaxHpFQpt94aQdeu6zFgS4a6lhEqm5M3wGFekd7PoJaxqL4MQFYFBiDI7vb5HTfy9VzuDjf1_DC9u1fZLch-RHm_jcLbJpFrX8ArRVGVed6vnJzvkE0c priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7R7QF6oDzF0hYFxInK2zhx7Pi4gpYVohUHVlpOkV_ZRaS71SYpgl_PePPoggQIbnlMHFsztr9kZr4BeClyS1OdGxJaJQizghJpU004c5bnqXRyQ198fsEnU_ZulszaXxc-F2aBiLNd-_0xafIMkvSanniiohPvZxtFMZPX-EFo8x3Y5QmC8AHsTi8-jD91BVo9KtjkFcWcMM54589skuboJtwyJqFAUfrTjrSz8PGQW2Cz94_uwe16eaW-fVVFsbUFne3DrOt8E3nyZVRXemS-_8Lr-B-juwd3W1gajBs7ug-33PIB7G2RFeLZec_wWj6Et29qlC9rPV9vgsaqQBXz1fpztbgsAwTCQeFDzEmJJuCCJZr25QptImiLVMyDtpBN-QimZ6cfX09IW5SBmCRKKsKFiZXzqmeJ0sq4hLGI5tIpZ4WmiQuFzY2xUofU5spp5gtg8dhGwintZPwYBvhW98SniwuUwfaoyFkaGoUQ2knEfCLV1LFoCGGnmMy0jOW-cEaR3XAte11mqMvM6zKjQ3jVP3LV0HX8SfgFKqGX80Tbk_H7zF-7UcwQDjtjyNrpXWaUR7h4SbS8ITzvb-PE9N4WtXSr2ssgUkV8EKLMcWdEW038vlfHvZ39fQxP_0n6AO4g4GNNOM4hDKp17Y4QVFX6WTuBfgD7Phat priority: 102 providerName: Unpaywall |
| Title | Dual subgradient algorithms for large-scale nonsmooth learning problems |
| URI | https://link.springer.com/article/10.1007/s10107-013-0725-1 https://www.proquest.com/docview/1620539596 https://www.proquest.com/docview/1642303606 https://hal.science/hal-00978358 https://hal.science/hal-00978358v1/file/1302.2349v2.pdf |
| UnpaywallVersion | submittedVersion |
| Volume | 148 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1436-4646 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0001388 issn: 1436-4646 databaseCode: ABDBF dateStart: 19990101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: EBSCOhost Mathematics Source - trial do 30.11.2025 customDbUrl: eissn: 1436-4646 dateEnd: 20241105 omitProxy: false ssIdentifier: ssj0001388 issn: 1436-4646 databaseCode: AMVHM dateStart: 19711201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1436-4646 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001388 issn: 1436-4646 databaseCode: AFBBN dateStart: 19711201 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1436-4646 dateEnd: 20171231 omitProxy: true ssIdentifier: ssj0001388 issn: 1436-4646 databaseCode: BENPR dateStart: 20011001 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1436-4646 dateEnd: 20190131 omitProxy: true ssIdentifier: ssj0001388 issn: 1436-4646 databaseCode: 8FG dateStart: 20011001 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1436-4646 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001388 issn: 1436-4646 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1436-4646 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001388 issn: 1436-4646 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3Pb9MwFH5a2wPswGCAKGxVQJyYLOLEiZMDQunWHwJWTYhK2ymyY6c7ZG1ZEhD_Pc_5te7AOFWpX92k37P9qX7-PoD3PFU0kGlCbCU4YYpTEqpAEp9p5adBqMNKvvh84c-X7Muld7kHi_YsjCmrbOfEaqJWm8T8R_6R-g7mS-iF_uftT2Jco8zuamuhIRprBfWpkhjrwcAxylh9GIwni4vv3dxM3SBoTVwNc2j3OevDdLQqw3SJzbGZ3lupetemTnKHhHb7pvvwqFxvxZ_fIst2lqbpU3jScEorqpPgGezp9SEctH4NVjN8D2F_R3wQr847xdb8OczOSuwiL-XqtioCKyyRrfD5i-ub3EJia2WmZJzkCKm21piqNxvE2GpMJ1ZWY0yTv4DldPLjdE4akwWSeI5XEJ8nrtAGSuYJKRLtMebQNNRCKy6pp22u0iRRobSpSoWWzBha-a5yuBZSh-5L6OO36lfm-DfHGOyP8pQFdiKQEusQORwPJNXMGYLd_qBx0iiQGyOMLL7TTjYYxIhBbDCI6RA-dB_Z1vIbDwW_Q5S6OCOcPY--xea9-riKF_zCoKMWxLgZrnl8l1xDeNs140AzuydirTeliUHmieu9jTEnLfg7Xfz7rk66_Pj_M7x--PbewGNkbKyupzmCfnFb6mNkRYUcQS-YzkYwiMZn46l5nV19nYyaAYCtSyfCq-XiIrr6C9gdDYA |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELVKeyg98FFALBQwCC5UFnHixMmhQoW2bOnuCqFW6s34K9tDurs0CVX_HL-NceKky4Fy6nGTiTfxjO2XeOY9hN7y3NBU5ZoERnLCDKckM6kiCbMmydPMZg198XiSDE_Y19P4dAX97mphXFplNyc2E7WZa_eN_ANNQoiXLM6Sj4ufxKlGud3VTkJDemkFs9NQjPnCjiN7dQmvcOXO4R74-10YHuwffx4SrzJAdBzGFUm4jqR1z8JiqaS2MWMhzTMrreGKxjbgJtfaZCqgJpdWMafolEQm5FYq68iYYAlYYxHL4OVv7dP-5Nv3fi2gUZp2orEOqXT7qm3xHm3SPiMScDhN_1oZ75y5vMwl0Nvv026g9Xq2kFeXsiiWlsKDB-iex7B4tw26h2jFzjbR_U4fAvvpYhNtLJEdwq9xzxBbPkJf9mpooqzV9KJJOquwLKbQ39XZeYkBSOPCpaiTEkLI4hkMjfM5xBT2IhdT7IVwysfo5Fa6-wlahX-1T125OQcbaI_ynKWBlgDBbQaYkaeKWhYOUNB1qNCe8dwJbxTimqvZ-UCAD4TzgaAD9L6_ZNHSfdxk_Aa81Ns5ou7h7ki4Y215TJz-AqOtzonCTw-luA7mAXrdn4aB7XZr5MzOa2cDSBfwRQA2253zl5r4911t9_Hx_2d4dvPtvULrw-PxSIwOJ0fP0V1Ai6zN5dlCq9VFbV8AIqvUSx_2GP247ZH2B_AZR8E |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagSEAPFa-KpS0ExInKapzYcXxc0S4LtBUHVurNsuPJFinNrjYJiH_PePMgSDzEMcnESWbG9hfNzDeEvJa5Y6nNMxo6Iyl3klHlUksTDi7JUwVqS198cZnMF_zDlbjq-pxWfbZ7H5Jsaxo8S1NZn6xdfjIqfGPblMmYhjISFH9_7nDPk4AOvYimw1LM4jTte7Z6oNCHNX83xC8b0-1rnxY5wpxDmHSX3GvKtfn-zRTFaCeaPSB7HYQMpq3NH5JbUD4iuyNiQTy6GNhYq8fk3WmD8lVjl5ttglcdmGK52nypr2-qAEFrUPh0cFqhuSAo0Q1vVmi_oGsosQy6pjPVE7KYnX1-O6ddAwWaiUjUNJFZbMCbiQtjTQaC84jlCgw4aZmAULo8y5yyIXO5Act9s6okdpEEY0HF-2QHnwpPfWm3RBkcj8mcp2FmEO6CQnwmU8uARxMS9trTWccu7ptcFPonL7JXuEaFa69wzSbkzXDLuqXW-JvwKzTJIOdJsefTc-3PtaUoIv2KQoe9xXQ3FSvNkggXGiVUMiEvh8s4iXxkxJSwarwMokrcy0OUOe4tPRriz291PDjDv7_h2X-N_YLc_XQ60-fvLz8ekPuI03ibRXNIdupNA0eIhWr7fOvvPwCpr_2g |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7R7QF6oDzF0hYFxInK2zhx7Pi4gpYVohUHVlpOkV_ZRaS71SYpgl_PePPoggQIbnlMHFsztr9kZr4BeClyS1OdGxJaJQizghJpU004c5bnqXRyQ198fsEnU_ZulszaXxc-F2aBiLNd-_0xafIMkvSanniiohPvZxtFMZPX-EFo8x3Y5QmC8AHsTi8-jD91BVo9KtjkFcWcMM54589skuboJtwyJqFAUfrTjrSz8PGQW2Cz94_uwe16eaW-fVVFsbUFne3DrOt8E3nyZVRXemS-_8Lr-B-juwd3W1gajBs7ug-33PIB7G2RFeLZec_wWj6Et29qlC9rPV9vgsaqQBXz1fpztbgsAwTCQeFDzEmJJuCCJZr25QptImiLVMyDtpBN-QimZ6cfX09IW5SBmCRKKsKFiZXzqmeJ0sq4hLGI5tIpZ4WmiQuFzY2xUofU5spp5gtg8dhGwintZPwYBvhW98SniwuUwfaoyFkaGoUQ2knEfCLV1LFoCGGnmMy0jOW-cEaR3XAte11mqMvM6zKjQ3jVP3LV0HX8SfgFKqGX80Tbk_H7zF-7UcwQDjtjyNrpXWaUR7h4SbS8ITzvb-PE9N4WtXSr2ssgUkV8EKLMcWdEW038vlfHvZ39fQxP_0n6AO4g4GNNOM4hDKp17Y4QVFX6WTuBfgD7Phat |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dual+subgradient+algorithms+for+large-scale+nonsmooth+learning+problems&rft.jtitle=Mathematical+programming&rft.au=Cox%2C+Bruce&rft.au=Juditsky%2C+Anatoli+B.&rft.au=Nemirovski%2C+Arkadii+S.&rft.date=2014-12-01&rft.pub=Springer+Verlag&rft.issn=0025-5610&rft.eissn=1436-4646&rft.volume=148&rft.issue=1&rft.spage=143&rft.epage=180&rft_id=info:doi/10.1007%2Fs10107-013-0725-1&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-00978358v1 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5610&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5610&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5610&client=summon |