Dual subgradient algorithms for large-scale nonsmooth learning problems

“Classical” First Order (FO) algorithms of convex optimization, such as Mirror Descent algorithm or Nesterov’s optimal algorithm of smooth convex optimization, are well known to have optimal (theoretical) complexity estimates which do not depend on the problem dimension. However, to attain the optim...

Full description

Saved in:
Bibliographic Details
Published inMathematical programming Vol. 148; no. 1-2; pp. 143 - 180
Main Authors Cox, Bruce, Juditsky, Anatoli, Nemirovski, Arkadi
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2014
Springer Nature B.V
Springer Verlag
Subjects
Online AccessGet full text
ISSN0025-5610
1436-4646
1436-4646
DOI10.1007/s10107-013-0725-1

Cover

Abstract “Classical” First Order (FO) algorithms of convex optimization, such as Mirror Descent algorithm or Nesterov’s optimal algorithm of smooth convex optimization, are well known to have optimal (theoretical) complexity estimates which do not depend on the problem dimension. However, to attain the optimality, the domain of the problem should admit a “good proximal setup”. The latter essentially means that (1) the problem domain should satisfy certain geometric conditions of “favorable geometry”, and (2) the practical use of these methods is conditioned by our ability to compute at a moderate cost proximal transformation at each iteration. More often than not these two conditions are satisfied in optimization problems arising in computational learning, what explains why proximal type FO methods recently became methods of choice when solving various learning problems. Yet, they meet their limits in several important problems such as multi-task learning with large number of tasks, where the problem domain does not exhibit favorable geometry, and learning and matrix completion problems with nuclear norm constraint, when the numerical cost of computing proximal transformation becomes prohibitive in large-scale problems. We propose a novel approach to solving nonsmooth optimization problems arising in learning applications where Fenchel-type representation of the objective function is available. The approach is based on applying FO algorithms to the dual problem and using the accuracy certificates supplied by the method to recover the primal solution. While suboptimal in terms of accuracy guaranties, the proposed approach does not rely upon “good proximal setup” for the primal problem but requires the problem domain to admit a Linear Optimization oracle —the ability to efficiently maximize a linear form on the domain of the primal problem.
AbstractList Issue Title: Modern Convex Analysis "Classical" First Order (FO) algorithms of convex optimization, such as Mirror Descent algorithm or Nesterov's optimal algorithm of smooth convex optimization, are well known to have optimal (theoretical) complexity estimates which do not depend on the problem dimension. However, to attain the optimality, the domain of the problem should admit a "good proximal setup". The latter essentially means that (1) the problem domain should satisfy certain geometric conditions of "favorable geometry", and (2) the practical use of these methods is conditioned by our ability to compute at a moderate cost proximal transformation at each iteration. More often than not these two conditions are satisfied in optimization problems arising in computational learning, what explains why proximal type FO methods recently became methods of choice when solving various learning problems. Yet, they meet their limits in several important problems such as multi-task learning with large number of tasks, where the problem domain does not exhibit favorable geometry, and learning and matrix completion problems with nuclear norm constraint, when the numerical cost of computing proximal transformation becomes prohibitive in large-scale problems. We propose a novel approach to solving nonsmooth optimization problems arising in learning applications where Fenchel-type representation of the objective function is available. The approach is based on applying FO algorithms to the dual problem and using the accuracy certificates supplied by the method to recover the primal solution. While suboptimal in terms of accuracy guaranties, the proposed approach does not rely upon "good proximal setup" for the primal problem but requires the problem domain to admit a Linear Optimization oracle--the ability to efficiently maximize a linear form on the domain of the primal problem.[PUBLICATION ABSTRACT]
"Classical" First Order (FO) algorithms of convex optimization, such as Mirror Descent algorithm or Nesterov's optimal algorithm of smooth convex optimization, are well known to have optimal (theoretical) complexity estimates which do not depend on the problem dimension. However, to attain the optimality, the domain of the problem should admit a "good proximal setup". The latter essentially means that (1) the problem domain should satisfy certain geometric conditions of "favorable geometry", and (2) the practical use of these methods is conditioned by our ability to compute at a moderate cost proximal transformation at each iteration. More often than not these two conditions are satisfied in optimization problems arising in computational learning, what explains why proximal type FO methods recently became methods of choice when solving various learning problems. Yet, they meet their limits in several important problems such as multi-task learning with large number of tasks, where the problem domain does not exhibit favorable geometry, and learning and matrix completion problems with nuclear norm constraint, when the numerical cost of computing proximal transformation becomes prohibitive in large-scale problems. We propose a novel approach to solving nonsmooth optimization problems arising in learning applications where Fenchel-type representation of the objective function is available. The approach is based on applying FO algorithms to the dual problem and using the accuracy certificates supplied by the method to recover the primal solution. While suboptimal in terms of accuracy guaranties, the proposed approach does not rely upon "good proximal setup" for the primal problem but requires the problem domain to admit a Linear Optimization oracle--the ability to efficiently maximize a linear form on the domain of the primal problem.
“Classical” First Order (FO) algorithms of convex optimization, such as Mirror Descent algorithm or Nesterov’s optimal algorithm of smooth convex optimization, are well known to have optimal (theoretical) complexity estimates which do not depend on the problem dimension. However, to attain the optimality, the domain of the problem should admit a “good proximal setup”. The latter essentially means that (1) the problem domain should satisfy certain geometric conditions of “favorable geometry”, and (2) the practical use of these methods is conditioned by our ability to compute at a moderate cost proximal transformation at each iteration. More often than not these two conditions are satisfied in optimization problems arising in computational learning, what explains why proximal type FO methods recently became methods of choice when solving various learning problems. Yet, they meet their limits in several important problems such as multi-task learning with large number of tasks, where the problem domain does not exhibit favorable geometry, and learning and matrix completion problems with nuclear norm constraint, when the numerical cost of computing proximal transformation becomes prohibitive in large-scale problems. We propose a novel approach to solving nonsmooth optimization problems arising in learning applications where Fenchel-type representation of the objective function is available. The approach is based on applying FO algorithms to the dual problem and using the accuracy certificates supplied by the method to recover the primal solution. While suboptimal in terms of accuracy guaranties, the proposed approach does not rely upon “good proximal setup” for the primal problem but requires the problem domain to admit a Linear Optimization oracle —the ability to efficiently maximize a linear form on the domain of the primal problem.
Author Juditsky, Anatoli
Cox, Bruce
Nemirovski, Arkadi
Author_xml – sequence: 1
  givenname: Bruce
  surname: Cox
  fullname: Cox, Bruce
  organization: US Air Force
– sequence: 2
  givenname: Anatoli
  surname: Juditsky
  fullname: Juditsky, Anatoli
  email: juditsky@imag.fr
  organization: LJK, Université J. Fourier
– sequence: 3
  givenname: Arkadi
  surname: Nemirovski
  fullname: Nemirovski, Arkadi
  organization: Georgia Institute of Technology
BackLink https://hal.science/hal-00978358$$DView record in HAL
BookMark eNqNkEFr3DAQhUVJoZttfkBvhl7ag9uRZVn2MaRpUljIJTmLsTz2OsjSVrJb8u8r40BLoKWngeF7M--9c3bmvCPG3nH4xAHU58iBg8qBixxUIXP-iu14Kaq8rMrqjO0A0lJWHN6w8xgfARJZ1zt282VBm8WlHQJ2I7k5Qzv4MM7HKWa9D5nFMFAeDVrK0s84eT8fM0sY3OiG7BR8a2mKb9nrHm2ki-e5Zw9fr--vbvPD3c23q8tDbmQh57xSRiBRS6aU2KIhWZYF7xtC6lTLJYHqemO6pgXe9UhtqYoaKtEVirClRuxZsd1d3AmffqK1-hTGCcOT5qDXKvRWhU4B9VqF5kn0cRMd8TfucdS3lwe97gAaVQtZ_1jZDxubkn1fKM56GqMha9GRX6LmVVkIEFUytWfvX6CPfgkuxU9UAVI0slkptVEm-BgD9dqMM86jd3PA0f7TNn-h_J-oz_3ExLqBwh-e_ir6BRmvrd0
CODEN MHPGA4
CitedBy_id crossref_primary_10_1007_s10107_015_0876_3
crossref_primary_10_1007_s10107_018_1351_8
crossref_primary_10_1137_140992382
crossref_primary_10_1137_15M1008397
crossref_primary_10_1007_s10107_014_0778_9
crossref_primary_10_1007_s10957_016_0949_3
crossref_primary_10_1137_130941961
crossref_primary_10_1007_s10851_016_0661_9
crossref_primary_10_1137_18M1215682
crossref_primary_10_1214_21_AOS2145
crossref_primary_10_1007_s10107_022_01850_3
crossref_primary_10_1007_s10589_016_9841_1
crossref_primary_10_1016_j_ejco_2021_100015
Cites_doi 10.1017/S096249291300007X
10.24033/bsmf.1625
10.1287/moor.1090.0427
10.1016/0022-247X(78)90137-3
10.1007/s10107-004-0552-5
10.1137/S1052623403425629
10.1007/s10107-004-0553-4
10.1137/0803026
10.1145/1273496.1273499
10.1007/s10107-007-0149-x
10.1007/s10107-006-0034-z
10.1007/978-1-4419-8853-9
10.1007/s11228-010-0147-7
10.1214/11-AOS944
10.1007/BF01585555
10.1002/nav.3800030109
10.1016/0041-5553(67)90040-7
10.7551/mitpress/8996.003.0007
ContentType Journal Article
Copyright Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2013
Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2014
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2013
– notice: Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2014
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
88I
8AL
8AO
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L.0
L6V
L7M
L~C
L~D
M0C
M0N
M2P
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
1XC
VOOES
ADTOC
UNPAY
DOI 10.1007/s10107-013-0725-1
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ABI/INFORM Professional Standard
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ABI/INFORM Professional Standard
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ProQuest Business Collection (Alumni Edition)

Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
Computer Science
Statistics
EISSN 1436-4646
EndPage 180
ExternalDocumentID oai:HAL:hal-00978358v1
3483187091
10_1007_s10107_013_0725_1
Genre Feature
GroupedDBID --K
--Z
-52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1B1
1N0
1OL
1SB
203
28-
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
7WY
88I
8AO
8FE
8FG
8FL
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMOZ
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EBA
EBLON
EBR
EBS
EBU
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IAO
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAS
LLZTM
M0C
M0N
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQ-
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9R
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
QWB
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RPZ
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TH9
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
XPP
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZL0
ZMTXR
ZWQNP
~02
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADXHL
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L.0
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
1XC
VOOES
ADTOC
UNPAY
ID FETCH-LOGICAL-c525t-67c3aeebec45abace54421f9eaed7b15e07dfccd9b01dfaeb4728063d27eabe93
IEDL.DBID BENPR
ISSN 0025-5610
1436-4646
IngestDate Wed Aug 20 00:01:29 EDT 2025
Tue Oct 14 20:49:10 EDT 2025
Wed Oct 01 17:21:56 EDT 2025
Thu Sep 25 00:52:46 EDT 2025
Wed Oct 01 02:58:24 EDT 2025
Thu Apr 24 22:59:48 EDT 2025
Fri Feb 21 02:32:44 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1-2
Keywords 65K15
68T10
90C25
90C47
Language English
License http://www.springer.com/tdm
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
other-oa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c525t-67c3aeebec45abace54421f9eaed7b15e07dfccd9b01dfaeb4728063d27eabe93
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5231-363X
OpenAccessLink https://proxy.k.utb.cz/login?url=https://hal.science/hal-00978358v1/file/1302.2349v2.pdf
PQID 1620539596
PQPubID 25307
PageCount 38
ParticipantIDs unpaywall_primary_10_1007_s10107_013_0725_1
hal_primary_oai_HAL_hal_00978358v1
proquest_miscellaneous_1642303606
proquest_journals_1620539596
crossref_citationtrail_10_1007_s10107_013_0725_1
crossref_primary_10_1007_s10107_013_0725_1
springer_journals_10_1007_s10107_013_0725_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-12-01
PublicationDateYYYYMMDD 2014-12-01
PublicationDate_xml – month: 12
  year: 2014
  text: 2014-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle A Publication of the Mathematical Optimization Society
PublicationTitle Mathematical programming
PublicationTitleAbbrev Math. Program
PublicationYear 2014
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Springer Verlag
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: Springer Verlag
References CombettesPLDũngDVũBCDualization of signal recovery problemsSet-Valued Var. Anal.2010183–437340410.1007/s11228-010-0147-71229.901232739585
FrankMWolfePAn algorithm for quadratic programmingNaval Res. Logist. Q.195631–29511010.1002/nav.380003010989102
LemaréchalCNemirovskiiANesterovYNew variants of bundle methodsMath. Program.1995691–311114710.1007/BF015855550857.90102
DunnJCHarshbargerSConditional gradient algorithms with open loop step size rulesJ. Math. Anal. Appl.197862243244410.1016/0022-247X(78)90137-30374.49017487704
NemirovskiAOnnSRothblumUGAccuracy certificates for computational problems with convex structureMath. Oper. Res.2010351527810.1287/moor.1090.04271216.900672676756
PshenichnyiBNDanilinYMNumerical Methods in Extremal Problems1978MoscowMir Publishers
BregmanLMThe relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programmingUSSR Comput. Math. Math. Phys.19677320021710.1016/0041-5553(67)90040-7
NesterovYDual extrapolation and its applications to solving variational inequalities and related problemsMath. Program.20071092–331934410.1007/s10107-006-0034-z1167.900142295146
NesterovY.NemirovskiA.Some first order algorithms for $$\ell _1$$ ℓ 1 /nuclear norm minimizationActa Numerica201322509575
CrammerKSingerYOn the algorithmic implementation of multiclass kernel-based vector machinesJ. Mach. Learn. Res.200222652921037.68110
NemirovskiAProx-method with rate of convergence O(1/t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {O}(1/t)$$\end{document} for variational inequalities with lipschitz continuous monotone operators and smooth convex–concave saddle point problemsSIAM J. Optim.200415122925110.1137/S10526234034256291106.900592112984
Amit, Y., Fink, M., Srebro, N., Ullman, S.: Uncovering shared structures in multiclass classification. In: Proceedings of the 24th International Conference on Machine Learning, pp. 17–24. ACM (2007)
NesterovYPrimal-dual subgradient methods for convex problemsMath. Program.2009120122125910.1007/s10107-007-0149-x1191.900382496434
MoreauJ-JProximité et dualité dans un espace hilbertienBulletin de la Société mathématique de France1965932732990136.12101201952
NesterovYIntroductory Lectures on Convex Optimization: A Basic Course2004BerlinSpringer10.1007/978-1-4419-8853-9
ChenGTeboulleMConvergence analysis of a proximal-like minimization algorithm using bregman functionsSIAM J. Optim.19933353854310.1137/08030260808.901031230155
Ben-TalANemirovskiANon-euclidean restricted memory level method for large-scale convex optimizationMath. Program.2005102340745610.1007/s10107-004-0553-41066.900792136222
NemirovskiiAYudinDProblem Complexity and Method Efficiency in Optimization1983ChichesterWiley
DemyanovVRubinovAApproximate Methods in Optimization Problems1970AmsterdamElsevier
NesterovYSmooth minimization of non-smooth functionsMath. Program.2005103112715210.1007/s10107-004-0552-51079.901022166537
YosidaKFunctional Analysis1964BerlinSpringer
MoreauJ-JFonctions convexes duales et points proximaux dans un espace hilbertienCR Acad. Sci. Paris Sér. A Math.1962255289728990118.10502144188
Juditsky, A., Nemirovski, A.: First order methods for nonsmooth large-scale convex minimization, i: General purpose methods; ii: Utilizing problem’s structure. In: Sra, S., Nowozin, S., Wright, S.J. (eds.) Optimization for Machine Learning, pp. 121–254. MIT Press, Cambridge, MA (2011)
NesterovYA method for unconstrained convex minimization problem with the rate of convergence O(1/k2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {O}(1/k^2)$$\end{document}Soviet Math. Dokl.19832723723760535.90071
FanJLiaoYMinchevaMHigh dimensional covariance matrix estimation in approximate factor modelsAnn. Stat.20113963320335610.1214/11-AOS9441246.621513012410
C Lemaréchal (725_CR12) 1995; 69
J Fan (725_CR9) 2011; 39
J-J Moreau (725_CR14) 1965; 93
BN Pshenichnyi (725_CR24) 1978
G Chen (725_CR4) 1993; 3
A Nemirovski (725_CR15) 2004; 15
PL Combettes (725_CR5) 2010; 18
A Ben-Tal (725_CR2) 2005; 102
J-J Moreau (725_CR13) 1962; 255
A Nemirovski (725_CR16) 2010; 35
Y Nesterov (725_CR19) 2004
725_CR11
Y Nesterov (725_CR21) 2007; 109
V Demyanov (725_CR7) 1970
Y Nesterov (725_CR20) 2005; 103
A Nemirovskii (725_CR17) 1983
M Frank (725_CR10) 1956; 3
K Crammer (725_CR6) 2002; 2
LM Bregman (725_CR3) 1967; 7
Y Nesterov (725_CR18) 1983; 27
Y Nesterov (725_CR22) 2009; 120
K Yosida (725_CR25) 1964
JC Dunn (725_CR8) 1978; 62
725_CR23
725_CR1
References_xml – reference: NemirovskiiAYudinDProblem Complexity and Method Efficiency in Optimization1983ChichesterWiley
– reference: DemyanovVRubinovAApproximate Methods in Optimization Problems1970AmsterdamElsevier
– reference: NemirovskiAOnnSRothblumUGAccuracy certificates for computational problems with convex structureMath. Oper. Res.2010351527810.1287/moor.1090.04271216.900672676756
– reference: LemaréchalCNemirovskiiANesterovYNew variants of bundle methodsMath. Program.1995691–311114710.1007/BF015855550857.90102
– reference: NesterovYIntroductory Lectures on Convex Optimization: A Basic Course2004BerlinSpringer10.1007/978-1-4419-8853-9
– reference: NesterovYA method for unconstrained convex minimization problem with the rate of convergence O(1/k2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {O}(1/k^2)$$\end{document}Soviet Math. Dokl.19832723723760535.90071
– reference: CrammerKSingerYOn the algorithmic implementation of multiclass kernel-based vector machinesJ. Mach. Learn. Res.200222652921037.68110
– reference: MoreauJ-JProximité et dualité dans un espace hilbertienBulletin de la Société mathématique de France1965932732990136.12101201952
– reference: NesterovY.NemirovskiA.Some first order algorithms for $$\ell _1$$ ℓ 1 /nuclear norm minimizationActa Numerica201322509575
– reference: Juditsky, A., Nemirovski, A.: First order methods for nonsmooth large-scale convex minimization, i: General purpose methods; ii: Utilizing problem’s structure. In: Sra, S., Nowozin, S., Wright, S.J. (eds.) Optimization for Machine Learning, pp. 121–254. MIT Press, Cambridge, MA (2011)
– reference: NemirovskiAProx-method with rate of convergence O(1/t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {O}(1/t)$$\end{document} for variational inequalities with lipschitz continuous monotone operators and smooth convex–concave saddle point problemsSIAM J. Optim.200415122925110.1137/S10526234034256291106.900592112984
– reference: Amit, Y., Fink, M., Srebro, N., Ullman, S.: Uncovering shared structures in multiclass classification. In: Proceedings of the 24th International Conference on Machine Learning, pp. 17–24. ACM (2007)
– reference: MoreauJ-JFonctions convexes duales et points proximaux dans un espace hilbertienCR Acad. Sci. Paris Sér. A Math.1962255289728990118.10502144188
– reference: PshenichnyiBNDanilinYMNumerical Methods in Extremal Problems1978MoscowMir Publishers
– reference: BregmanLMThe relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programmingUSSR Comput. Math. Math. Phys.19677320021710.1016/0041-5553(67)90040-7
– reference: CombettesPLDũngDVũBCDualization of signal recovery problemsSet-Valued Var. Anal.2010183–437340410.1007/s11228-010-0147-71229.901232739585
– reference: NesterovYPrimal-dual subgradient methods for convex problemsMath. Program.2009120122125910.1007/s10107-007-0149-x1191.900382496434
– reference: FanJLiaoYMinchevaMHigh dimensional covariance matrix estimation in approximate factor modelsAnn. Stat.20113963320335610.1214/11-AOS9441246.621513012410
– reference: FrankMWolfePAn algorithm for quadratic programmingNaval Res. Logist. Q.195631–29511010.1002/nav.380003010989102
– reference: YosidaKFunctional Analysis1964BerlinSpringer
– reference: Ben-TalANemirovskiANon-euclidean restricted memory level method for large-scale convex optimizationMath. Program.2005102340745610.1007/s10107-004-0553-41066.900792136222
– reference: NesterovYDual extrapolation and its applications to solving variational inequalities and related problemsMath. Program.20071092–331934410.1007/s10107-006-0034-z1167.900142295146
– reference: NesterovYSmooth minimization of non-smooth functionsMath. Program.2005103112715210.1007/s10107-004-0552-51079.901022166537
– reference: DunnJCHarshbargerSConditional gradient algorithms with open loop step size rulesJ. Math. Anal. Appl.197862243244410.1016/0022-247X(78)90137-30374.49017487704
– reference: ChenGTeboulleMConvergence analysis of a proximal-like minimization algorithm using bregman functionsSIAM J. Optim.19933353854310.1137/08030260808.901031230155
– ident: 725_CR23
  doi: 10.1017/S096249291300007X
– volume-title: Numerical Methods in Extremal Problems
  year: 1978
  ident: 725_CR24
– volume: 93
  start-page: 273
  year: 1965
  ident: 725_CR14
  publication-title: Bulletin de la Société mathématique de France
  doi: 10.24033/bsmf.1625
– volume: 35
  start-page: 52
  issue: 1
  year: 2010
  ident: 725_CR16
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.1090.0427
– volume-title: Functional Analysis
  year: 1964
  ident: 725_CR25
– volume: 62
  start-page: 432
  issue: 2
  year: 1978
  ident: 725_CR8
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/0022-247X(78)90137-3
– volume: 103
  start-page: 127
  issue: 1
  year: 2005
  ident: 725_CR20
  publication-title: Math. Program.
  doi: 10.1007/s10107-004-0552-5
– volume: 15
  start-page: 229
  issue: 1
  year: 2004
  ident: 725_CR15
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623403425629
– volume-title: Problem Complexity and Method Efficiency in Optimization
  year: 1983
  ident: 725_CR17
– volume: 102
  start-page: 407
  issue: 3
  year: 2005
  ident: 725_CR2
  publication-title: Math. Program.
  doi: 10.1007/s10107-004-0553-4
– volume: 3
  start-page: 538
  issue: 3
  year: 1993
  ident: 725_CR4
  publication-title: SIAM J. Optim.
  doi: 10.1137/0803026
– ident: 725_CR1
  doi: 10.1145/1273496.1273499
– volume: 2
  start-page: 265
  year: 2002
  ident: 725_CR6
  publication-title: J. Mach. Learn. Res.
– volume: 120
  start-page: 221
  issue: 1
  year: 2009
  ident: 725_CR22
  publication-title: Math. Program.
  doi: 10.1007/s10107-007-0149-x
– volume: 109
  start-page: 319
  issue: 2–3
  year: 2007
  ident: 725_CR21
  publication-title: Math. Program.
  doi: 10.1007/s10107-006-0034-z
– volume: 27
  start-page: 372
  issue: 2
  year: 1983
  ident: 725_CR18
  publication-title: Soviet Math. Dokl.
– volume: 255
  start-page: 2897
  year: 1962
  ident: 725_CR13
  publication-title: CR Acad. Sci. Paris Sér. A Math.
– volume-title: Approximate Methods in Optimization Problems
  year: 1970
  ident: 725_CR7
– volume-title: Introductory Lectures on Convex Optimization: A Basic Course
  year: 2004
  ident: 725_CR19
  doi: 10.1007/978-1-4419-8853-9
– volume: 18
  start-page: 373
  issue: 3–4
  year: 2010
  ident: 725_CR5
  publication-title: Set-Valued Var. Anal.
  doi: 10.1007/s11228-010-0147-7
– volume: 39
  start-page: 3320
  issue: 6
  year: 2011
  ident: 725_CR9
  publication-title: Ann. Stat.
  doi: 10.1214/11-AOS944
– volume: 69
  start-page: 111
  issue: 1–3
  year: 1995
  ident: 725_CR12
  publication-title: Math. Program.
  doi: 10.1007/BF01585555
– volume: 3
  start-page: 95
  issue: 1–2
  year: 1956
  ident: 725_CR10
  publication-title: Naval Res. Logist. Q.
  doi: 10.1002/nav.3800030109
– volume: 7
  start-page: 200
  issue: 3
  year: 1967
  ident: 725_CR3
  publication-title: USSR Comput. Math. Math. Phys.
  doi: 10.1016/0041-5553(67)90040-7
– ident: 725_CR11
  doi: 10.7551/mitpress/8996.003.0007
SSID ssj0001388
Score 2.221054
Snippet “Classical” First Order (FO) algorithms of convex optimization, such as Mirror Descent algorithm or Nesterov’s optimal algorithm of smooth convex optimization,...
Issue Title: Modern Convex Analysis "Classical" First Order (FO) algorithms of convex optimization, such as Mirror Descent algorithm or Nesterov's optimal...
"Classical" First Order (FO) algorithms of convex optimization, such as Mirror Descent algorithm or Nesterov's optimal algorithm of smooth convex optimization,...
SourceID unpaywall
hal
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 143
SubjectTerms Accuracy
Algorithms
Analysis
Calculus of Variations and Optimal Control; Optimization
Combinatorics
Computer science
Computing costs
Convex analysis
Euclidean space
Full Length Paper
Learning
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematical models
Mathematical programming
Mathematics
Mathematics and Statistics
Mathematics of Computing
Numerical Analysis
Optimization
Optimization techniques
Statistics
Statistics Theory
Studies
Theoretical
Transformations
SummonAdditionalLinks – databaseName: SpringerLINK - Czech Republic Consortium
  dbid: AGYKE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZge4AeeKMuFBQQJypXcWLH8XFFHyugnFqpnCI_JlvUdLfaJK3g1zPOqwHxUI9JJo7tGdtfNDPfEPJO5o6lJrc0dFpS7iSjyqWGJhxckqcKVENffPQlmZ_wj6fitMvjLvto994l2ezUo2Q31oRJxjSUkaD4y7PR0G1NyMbs8Oun_WEDZnGa9pVaPTzonZl_auSX4-jumQ-GHCHNwTm6Se7Vy0v9_VoXxej8OXhIjvuet2En57t1ZXbtj99IHW85tEfkQYdHg1lrQI_JHVg-IZsjlkK8OhqoXcun5HCvRvmyNot1Ey1WBbpYrNbfqrOLMkAEHBQ-tpyWqHsIlmjTFys0hqCrTrEIugo25TNycrB__GFOu2oM1IpIVDSRNtbgdc6FNtqC4DxiuQINThomIJQut9YpEzKXazDcV75KYhdJ0AZU_JxM8Kuw5fPEJcpge0zmPA2tRuwMCsGeTA0DHk1J2Cslsx1Vua-YUWQ3JMt-xjKcsczPWMam5P3wymXL0_Ev4beo6UHOM2zPZ58zf6_NaxHpFQpt94aQdeu6zFgS4a6lhEqm5M3wGFekd7PoJaxqL4MQFYFBiDI7vb5HTfy9VzuDjf1_DC9u1fZLch-RHm_jcLbJpFrX8ArRVGVed6vnJzvkE0c
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7R7QF6oDzF0hYFxInK2zhx7Pi4gpYVohUHVlpOkV_ZRaS71SYpgl_PePPoggQIbnlMHFsztr9kZr4BeClyS1OdGxJaJQizghJpU004c5bnqXRyQ198fsEnU_ZulszaXxc-F2aBiLNd-_0xafIMkvSanniiohPvZxtFMZPX-EFo8x3Y5QmC8AHsTi8-jD91BVo9KtjkFcWcMM54589skuboJtwyJqFAUfrTjrSz8PGQW2Cz94_uwe16eaW-fVVFsbUFne3DrOt8E3nyZVRXemS-_8Lr-B-juwd3W1gajBs7ug-33PIB7G2RFeLZec_wWj6Et29qlC9rPV9vgsaqQBXz1fpztbgsAwTCQeFDzEmJJuCCJZr25QptImiLVMyDtpBN-QimZ6cfX09IW5SBmCRKKsKFiZXzqmeJ0sq4hLGI5tIpZ4WmiQuFzY2xUofU5spp5gtg8dhGwintZPwYBvhW98SniwuUwfaoyFkaGoUQ2knEfCLV1LFoCGGnmMy0jOW-cEaR3XAte11mqMvM6zKjQ3jVP3LV0HX8SfgFKqGX80Tbk_H7zF-7UcwQDjtjyNrpXWaUR7h4SbS8ITzvb-PE9N4WtXSr2ssgUkV8EKLMcWdEW038vlfHvZ39fQxP_0n6AO4g4GNNOM4hDKp17Y4QVFX6WTuBfgD7Phat
  priority: 102
  providerName: Unpaywall
Title Dual subgradient algorithms for large-scale nonsmooth learning problems
URI https://link.springer.com/article/10.1007/s10107-013-0725-1
https://www.proquest.com/docview/1620539596
https://www.proquest.com/docview/1642303606
https://hal.science/hal-00978358
https://hal.science/hal-00978358v1/file/1302.2349v2.pdf
UnpaywallVersion submittedVersion
Volume 148
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1436-4646
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0001388
  issn: 1436-4646
  databaseCode: ABDBF
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Mathematics Source - trial do 30.11.2025
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 20241105
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 1436-4646
  databaseCode: AMVHM
  dateStart: 19711201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1436-4646
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 1436-4646
  databaseCode: AFBBN
  dateStart: 19711201
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1436-4646
  dateEnd: 20171231
  omitProxy: true
  ssIdentifier: ssj0001388
  issn: 1436-4646
  databaseCode: BENPR
  dateStart: 20011001
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 20190131
  omitProxy: true
  ssIdentifier: ssj0001388
  issn: 1436-4646
  databaseCode: 8FG
  dateStart: 20011001
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 1436-4646
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001388
  issn: 1436-4646
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3Pb9MwFH5a2wPswGCAKGxVQJyYLOLEiZMDQunWHwJWTYhK2ymyY6c7ZG1ZEhD_Pc_5te7AOFWpX92k37P9qX7-PoD3PFU0kGlCbCU4YYpTEqpAEp9p5adBqMNKvvh84c-X7Muld7kHi_YsjCmrbOfEaqJWm8T8R_6R-g7mS-iF_uftT2Jco8zuamuhIRprBfWpkhjrwcAxylh9GIwni4vv3dxM3SBoTVwNc2j3OevDdLQqw3SJzbGZ3lupetemTnKHhHb7pvvwqFxvxZ_fIst2lqbpU3jScEorqpPgGezp9SEctH4NVjN8D2F_R3wQr847xdb8OczOSuwiL-XqtioCKyyRrfD5i-ub3EJia2WmZJzkCKm21piqNxvE2GpMJ1ZWY0yTv4DldPLjdE4akwWSeI5XEJ8nrtAGSuYJKRLtMebQNNRCKy6pp22u0iRRobSpSoWWzBha-a5yuBZSh-5L6OO36lfm-DfHGOyP8pQFdiKQEusQORwPJNXMGYLd_qBx0iiQGyOMLL7TTjYYxIhBbDCI6RA-dB_Z1vIbDwW_Q5S6OCOcPY--xea9-riKF_zCoKMWxLgZrnl8l1xDeNs140AzuydirTeliUHmieu9jTEnLfg7Xfz7rk66_Pj_M7x--PbewGNkbKyupzmCfnFb6mNkRYUcQS-YzkYwiMZn46l5nV19nYyaAYCtSyfCq-XiIrr6C9gdDYA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELVKeyg98FFALBQwCC5UFnHixMmhQoW2bOnuCqFW6s34K9tDurs0CVX_HL-NceKky4Fy6nGTiTfxjO2XeOY9hN7y3NBU5ZoERnLCDKckM6kiCbMmydPMZg198XiSDE_Y19P4dAX97mphXFplNyc2E7WZa_eN_ANNQoiXLM6Sj4ufxKlGud3VTkJDemkFs9NQjPnCjiN7dQmvcOXO4R74-10YHuwffx4SrzJAdBzGFUm4jqR1z8JiqaS2MWMhzTMrreGKxjbgJtfaZCqgJpdWMafolEQm5FYq68iYYAlYYxHL4OVv7dP-5Nv3fi2gUZp2orEOqXT7qm3xHm3SPiMScDhN_1oZ75y5vMwl0Nvv026g9Xq2kFeXsiiWlsKDB-iex7B4tw26h2jFzjbR_U4fAvvpYhNtLJEdwq9xzxBbPkJf9mpooqzV9KJJOquwLKbQ39XZeYkBSOPCpaiTEkLI4hkMjfM5xBT2IhdT7IVwysfo5Fa6-wlahX-1T125OQcbaI_ynKWBlgDBbQaYkaeKWhYOUNB1qNCe8dwJbxTimqvZ-UCAD4TzgaAD9L6_ZNHSfdxk_Aa81Ns5ou7h7ki4Y215TJz-AqOtzonCTw-luA7mAXrdn4aB7XZr5MzOa2cDSBfwRQA2253zl5r4911t9_Hx_2d4dvPtvULrw-PxSIwOJ0fP0V1Ai6zN5dlCq9VFbV8AIqvUSx_2GP247ZH2B_AZR8E
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagSEAPFa-KpS0ExInKapzYcXxc0S4LtBUHVurNsuPJFinNrjYJiH_PePMgSDzEMcnESWbG9hfNzDeEvJa5Y6nNMxo6Iyl3klHlUksTDi7JUwVqS198cZnMF_zDlbjq-pxWfbZ7H5Jsaxo8S1NZn6xdfjIqfGPblMmYhjISFH9_7nDPk4AOvYimw1LM4jTte7Z6oNCHNX83xC8b0-1rnxY5wpxDmHSX3GvKtfn-zRTFaCeaPSB7HYQMpq3NH5JbUD4iuyNiQTy6GNhYq8fk3WmD8lVjl5ttglcdmGK52nypr2-qAEFrUPh0cFqhuSAo0Q1vVmi_oGsosQy6pjPVE7KYnX1-O6ddAwWaiUjUNJFZbMCbiQtjTQaC84jlCgw4aZmAULo8y5yyIXO5Act9s6okdpEEY0HF-2QHnwpPfWm3RBkcj8mcp2FmEO6CQnwmU8uARxMS9trTWccu7ptcFPonL7JXuEaFa69wzSbkzXDLuqXW-JvwKzTJIOdJsefTc-3PtaUoIv2KQoe9xXQ3FSvNkggXGiVUMiEvh8s4iXxkxJSwarwMokrcy0OUOe4tPRriz291PDjDv7_h2X-N_YLc_XQ60-fvLz8ekPuI03ibRXNIdupNA0eIhWr7fOvvPwCpr_2g
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7R7QF6oDzF0hYFxInK2zhx7Pi4gpYVohUHVlpOkV_ZRaS71SYpgl_PePPoggQIbnlMHFsztr9kZr4BeClyS1OdGxJaJQizghJpU004c5bnqXRyQ198fsEnU_ZulszaXxc-F2aBiLNd-_0xafIMkvSanniiohPvZxtFMZPX-EFo8x3Y5QmC8AHsTi8-jD91BVo9KtjkFcWcMM54589skuboJtwyJqFAUfrTjrSz8PGQW2Cz94_uwe16eaW-fVVFsbUFne3DrOt8E3nyZVRXemS-_8Lr-B-juwd3W1gajBs7ug-33PIB7G2RFeLZec_wWj6Et29qlC9rPV9vgsaqQBXz1fpztbgsAwTCQeFDzEmJJuCCJZr25QptImiLVMyDtpBN-QimZ6cfX09IW5SBmCRKKsKFiZXzqmeJ0sq4hLGI5tIpZ4WmiQuFzY2xUofU5spp5gtg8dhGwintZPwYBvhW98SniwuUwfaoyFkaGoUQ2knEfCLV1LFoCGGnmMy0jOW-cEaR3XAte11mqMvM6zKjQ3jVP3LV0HX8SfgFKqGX80Tbk_H7zF-7UcwQDjtjyNrpXWaUR7h4SbS8ITzvb-PE9N4WtXSr2ssgUkV8EKLMcWdEW038vlfHvZ39fQxP_0n6AO4g4GNNOM4hDKp17Y4QVFX6WTuBfgD7Phat
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dual+subgradient+algorithms+for+large-scale+nonsmooth+learning+problems&rft.jtitle=Mathematical+programming&rft.au=Cox%2C+Bruce&rft.au=Juditsky%2C+Anatoli+B.&rft.au=Nemirovski%2C+Arkadii+S.&rft.date=2014-12-01&rft.pub=Springer+Verlag&rft.issn=0025-5610&rft.eissn=1436-4646&rft.volume=148&rft.issue=1&rft.spage=143&rft.epage=180&rft_id=info:doi/10.1007%2Fs10107-013-0725-1&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-00978358v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5610&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5610&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5610&client=summon