Real-Time Object Detector for Medical Diagnostics (RTMDet): A High-Performance Deep Learning Model for Brain Tumor Diagnosis

Background: Brain tumor diagnosis requires precise and timely detection, which directly impacts treatment decisions and patient outcomes. The integration of deep learning technologies in medical diagnostics has improved the accuracy and efficiency of these processes, yet real-time processing remains...

Full description

Saved in:
Bibliographic Details
Published inBioengineering (Basel) Vol. 12; no. 3; p. 274
Main Authors Bakhtiyorov, Sanjar, Umirzakova, Sabina, Musaev, Musabek, Abdusalomov, Akmalbek, Whangbo, Taeg Keun
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 11.03.2025
MDPI
Subjects
Online AccessGet full text
ISSN2306-5354
2306-5354
DOI10.3390/bioengineering12030274

Cover

Abstract Background: Brain tumor diagnosis requires precise and timely detection, which directly impacts treatment decisions and patient outcomes. The integration of deep learning technologies in medical diagnostics has improved the accuracy and efficiency of these processes, yet real-time processing remains a challenge due to the computational intensity of current models. This study introduces the Real-Time Object Detector for Medical Diagnostics (RTMDet), which aims to address these limitations by optimizing convolutional neural network (CNN) architectures for enhanced speed and accuracy. Methods: The RTMDet model incorporates novel depthwise convolutional blocks designed to reduce computational load while maintaining diagnostic precision. The effectiveness of the RTMDet was evaluated through extensive testing against traditional and modern CNN architectures using comprehensive medical imaging datasets, with a focus on real-time processing capabilities. Results: The RTMDet demonstrated superior performance in detecting brain tumors, achieving higher accuracy and speed compared to existing CNN models. The model’s efficiency was validated through its ability to process large datasets in real time without sacrificing the accuracy required for a reliable diagnosis. Conclusions: The RTMDet represents a significant advancement in the application of deep learning technologies to medical diagnostics. By optimizing the balance between computational efficiency and diagnostic precision, the RTMDet enhances the capabilities of medical imaging, potentially improving patient outcomes through faster and more accurate brain tumor detection. This model offers a promising solution for clinical settings where rapid and precise diagnostics are critical.
AbstractList Background: Brain tumor diagnosis requires precise and timely detection, which directly impacts treatment decisions and patient outcomes. The integration of deep learning technologies in medical diagnostics has improved the accuracy and efficiency of these processes, yet real-time processing remains a challenge due to the computational intensity of current models. This study introduces the Real-Time Object Detector for Medical Diagnostics (RTMDet), which aims to address these limitations by optimizing convolutional neural network (CNN) architectures for enhanced speed and accuracy. Methods: The RTMDet model incorporates novel depthwise convolutional blocks designed to reduce computational load while maintaining diagnostic precision. The effectiveness of the RTMDet was evaluated through extensive testing against traditional and modern CNN architectures using comprehensive medical imaging datasets, with a focus on real-time processing capabilities. Results: The RTMDet demonstrated superior performance in detecting brain tumors, achieving higher accuracy and speed compared to existing CNN models. The model’s efficiency was validated through its ability to process large datasets in real time without sacrificing the accuracy required for a reliable diagnosis. Conclusions: The RTMDet represents a significant advancement in the application of deep learning technologies to medical diagnostics. By optimizing the balance between computational efficiency and diagnostic precision, the RTMDet enhances the capabilities of medical imaging, potentially improving patient outcomes through faster and more accurate brain tumor detection. This model offers a promising solution for clinical settings where rapid and precise diagnostics are critical.
Brain tumor diagnosis requires precise and timely detection, which directly impacts treatment decisions and patient outcomes. The integration of deep learning technologies in medical diagnostics has improved the accuracy and efficiency of these processes, yet real-time processing remains a challenge due to the computational intensity of current models. This study introduces the Real-Time Object Detector for Medical Diagnostics (RTMDet), which aims to address these limitations by optimizing convolutional neural network (CNN) architectures for enhanced speed and accuracy. The RTMDet model incorporates novel depthwise convolutional blocks designed to reduce computational load while maintaining diagnostic precision. The effectiveness of the RTMDet was evaluated through extensive testing against traditional and modern CNN architectures using comprehensive medical imaging datasets, with a focus on real-time processing capabilities. The RTMDet demonstrated superior performance in detecting brain tumors, achieving higher accuracy and speed compared to existing CNN models. The model's efficiency was validated through its ability to process large datasets in real time without sacrificing the accuracy required for a reliable diagnosis. The RTMDet represents a significant advancement in the application of deep learning technologies to medical diagnostics. By optimizing the balance between computational efficiency and diagnostic precision, the RTMDet enhances the capabilities of medical imaging, potentially improving patient outcomes through faster and more accurate brain tumor detection. This model offers a promising solution for clinical settings where rapid and precise diagnostics are critical.
Brain tumor diagnosis requires precise and timely detection, which directly impacts treatment decisions and patient outcomes. The integration of deep learning technologies in medical diagnostics has improved the accuracy and efficiency of these processes, yet real-time processing remains a challenge due to the computational intensity of current models. This study introduces the Real-Time Object Detector for Medical Diagnostics (RTMDet), which aims to address these limitations by optimizing convolutional neural network (CNN) architectures for enhanced speed and accuracy.BACKGROUNDBrain tumor diagnosis requires precise and timely detection, which directly impacts treatment decisions and patient outcomes. The integration of deep learning technologies in medical diagnostics has improved the accuracy and efficiency of these processes, yet real-time processing remains a challenge due to the computational intensity of current models. This study introduces the Real-Time Object Detector for Medical Diagnostics (RTMDet), which aims to address these limitations by optimizing convolutional neural network (CNN) architectures for enhanced speed and accuracy.The RTMDet model incorporates novel depthwise convolutional blocks designed to reduce computational load while maintaining diagnostic precision. The effectiveness of the RTMDet was evaluated through extensive testing against traditional and modern CNN architectures using comprehensive medical imaging datasets, with a focus on real-time processing capabilities.METHODSThe RTMDet model incorporates novel depthwise convolutional blocks designed to reduce computational load while maintaining diagnostic precision. The effectiveness of the RTMDet was evaluated through extensive testing against traditional and modern CNN architectures using comprehensive medical imaging datasets, with a focus on real-time processing capabilities.The RTMDet demonstrated superior performance in detecting brain tumors, achieving higher accuracy and speed compared to existing CNN models. The model's efficiency was validated through its ability to process large datasets in real time without sacrificing the accuracy required for a reliable diagnosis.RESULTSThe RTMDet demonstrated superior performance in detecting brain tumors, achieving higher accuracy and speed compared to existing CNN models. The model's efficiency was validated through its ability to process large datasets in real time without sacrificing the accuracy required for a reliable diagnosis.The RTMDet represents a significant advancement in the application of deep learning technologies to medical diagnostics. By optimizing the balance between computational efficiency and diagnostic precision, the RTMDet enhances the capabilities of medical imaging, potentially improving patient outcomes through faster and more accurate brain tumor detection. This model offers a promising solution for clinical settings where rapid and precise diagnostics are critical.CONCLUSIONSThe RTMDet represents a significant advancement in the application of deep learning technologies to medical diagnostics. By optimizing the balance between computational efficiency and diagnostic precision, the RTMDet enhances the capabilities of medical imaging, potentially improving patient outcomes through faster and more accurate brain tumor detection. This model offers a promising solution for clinical settings where rapid and precise diagnostics are critical.
Audience Academic
Author Bakhtiyorov, Sanjar
Musaev, Musabek
Abdusalomov, Akmalbek
Whangbo, Taeg Keun
Umirzakova, Sabina
AuthorAffiliation 2 Department of Computer Systems, Tashkent University of Information Technologies Named after Muhammad Al-Khwarizmi, Tashkent 100200, Uzbekistan; musabekmusayev98@gmail.com
1 Department of Computer Engineering, Gachon University, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea; sanjar@gachon.ac.kr (S.B.); sabinatuit@gachon.ac.kr (S.U.); akmaljon@gachon.ac.kr (A.A.)
3 Department of Artificial Intelligence, Tashkent State University of Economics, Tashkent 100066, Uzbekistan
4 Department of International Scientific Journals and Rankings, Alfraganus University, Yukori Karakamish Street 2a, Tashkent 100190, Uzbekistan
AuthorAffiliation_xml – name: 1 Department of Computer Engineering, Gachon University, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea; sanjar@gachon.ac.kr (S.B.); sabinatuit@gachon.ac.kr (S.U.); akmaljon@gachon.ac.kr (A.A.)
– name: 2 Department of Computer Systems, Tashkent University of Information Technologies Named after Muhammad Al-Khwarizmi, Tashkent 100200, Uzbekistan; musabekmusayev98@gmail.com
– name: 3 Department of Artificial Intelligence, Tashkent State University of Economics, Tashkent 100066, Uzbekistan
– name: 4 Department of International Scientific Journals and Rankings, Alfraganus University, Yukori Karakamish Street 2a, Tashkent 100190, Uzbekistan
Author_xml – sequence: 1
  givenname: Sanjar
  surname: Bakhtiyorov
  fullname: Bakhtiyorov, Sanjar
– sequence: 2
  givenname: Sabina
  surname: Umirzakova
  fullname: Umirzakova, Sabina
– sequence: 3
  givenname: Musabek
  surname: Musaev
  fullname: Musaev, Musabek
– sequence: 4
  givenname: Akmalbek
  orcidid: 0000-0001-5923-8695
  surname: Abdusalomov
  fullname: Abdusalomov, Akmalbek
– sequence: 5
  givenname: Taeg Keun
  surname: Whangbo
  fullname: Whangbo, Taeg Keun
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40150738$$D View this record in MEDLINE/PubMed
BookMark eNqNkktv1DAQgCNUREvpX6gicSmHFD_iJOaClhZopa2Kqr1bE3uSepXYi5OAKvHj8T4oXdQDsixb9jefPWO_Tg6cd5gkp5Sccy7J-9p6dK11iMG6ljLCCSvzF8kR46TIBBf5wZP5YXIyDEtCCOVMsCJ_lRzmhApS8uoo-XWH0GUL22N6Wy9Rj-kljnHwIW1iv0FjNXTppYXW-WG0ekjP7hY3EXr3IZ2lV7a9z75hiGwPTmOMxlU6Rwgu3iy98Qa7jehTAOvSxdTH-U5mhzfJywa6AU9243Gy-PJ5cXGVzW-_Xl_M5pkWTIyZIBy5qRuo65oYEExKxg1nRpeGNsABqC5Yk_OyIJjXgnKBVUO1zIUpKuTHyfVWazws1SrYHsKD8mDVZsGHVkGIqXWoZG1oAUVJBOo8Z0JSndeNLBkUBOTGVW5dk1vBw0_oukchJWr9Our514mRH7eRq6nu0Wh0Y4Bu7zr7O87eq9b_UJRKLouN4WxnCP77hMOoejto7Dpw6KdBcVqxvCylpBF9-w-69FNwschrKhZIiKr4S7UQc7eu8fFgvZaqWcXXZSaSR-r8GSo2g73V8Wc2Nq7vBZw-zfQxxT-_LgLFFtDBD0PA5n9r-Bu8Ve-r
Cites_doi 10.1016/j.bspc.2024.107079
10.3390/rs17010125
10.1177/20552076251320288
10.1007/s41870-024-01782-5
10.1201/9781003343172-4
10.1016/j.compbiomed.2024.109507
10.1016/j.bspc.2024.107042
10.1016/j.rineng.2024.102117
10.1016/j.bj.2024.100743
10.1007/s11042-023-15557-w
10.3390/bioengineering12010062
10.3389/fonc.2024.1481430
10.1007/s11042-024-20443-0
10.1038/s41598-024-57970-7
10.1016/j.heliyon.2023.e23866
10.1016/j.neucom.2024.129182
10.1109/CVPR52733.2024.01605
10.3390/bioengineering11121302
10.1038/s41598-024-52823-9
10.1039/D4NR04394D
10.1016/j.bspc.2024.107221
10.1007/s11227-024-06800-8
10.1016/j.bspc.2024.107154
10.20944/preprints202402.0960.v1
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 by the authors. 2025
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 by the authors. 2025
DBID AAYXX
CITATION
NPM
8FE
8FG
8FH
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
L6V
LK8
M7P
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.3390/bioengineering12030274
DatabaseName CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Engineering Collection
Biological Sciences
Biological Science Database
Engineering Database
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList


PubMed
CrossRef
Publicly Available Content Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2306-5354
ExternalDocumentID oai_doaj_org_article_9bd16a6705ec442591c4bf972a60a98e
10.3390/bioengineering12030274
PMC11939674
A832992093
40150738
10_3390_bioengineering12030274
Genre Journal Article
GrantInformation_xml – fundername: GRRC program of Gyeonggi Province
  grantid: GRRC-Gachon2023(B02)
GroupedDBID 53G
5VS
8FE
8FG
8FH
AAFWJ
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
HYE
IAO
IHR
INH
ITC
KQ8
L6V
LK8
M7P
M7S
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
RPM
NPM
ABUWG
AZQEC
DWQXO
GNUQQ
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
PUEGO
5PM
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c525t-503e3dbfabbb0da529923d32dc7d1fa3aa1c62f43760e4b5135e8f1c945d68e3
IEDL.DBID BENPR
ISSN 2306-5354
IngestDate Fri Oct 03 12:52:33 EDT 2025
Sun Oct 26 03:56:15 EDT 2025
Tue Sep 30 17:04:55 EDT 2025
Fri Sep 05 17:48:32 EDT 2025
Fri Jul 25 11:48:36 EDT 2025
Mon Oct 20 22:45:23 EDT 2025
Mon Oct 20 16:52:27 EDT 2025
Tue Apr 01 01:21:43 EDT 2025
Thu Oct 16 04:39:28 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords computational efficiency
medical diagnostics
neuro-oncology
brain tumor detection
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c525t-503e3dbfabbb0da529923d32dc7d1fa3aa1c62f43760e4b5135e8f1c945d68e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5923-8695
OpenAccessLink https://www.proquest.com/docview/3181355586?pq-origsite=%requestingapplication%&accountid=15518
PMID 40150738
PQID 3181355586
PQPubID 2055440
ParticipantIDs doaj_primary_oai_doaj_org_article_9bd16a6705ec442591c4bf972a60a98e
unpaywall_primary_10_3390_bioengineering12030274
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11939674
proquest_miscellaneous_3182477991
proquest_journals_3181355586
gale_infotracmisc_A832992093
gale_infotracacademiconefile_A832992093
pubmed_primary_40150738
crossref_primary_10_3390_bioengineering12030274
PublicationCentury 2000
PublicationDate 2025-03-11
PublicationDateYYYYMMDD 2025-03-11
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-11
  day: 11
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Bioengineering (Basel)
PublicationTitleAlternate Bioengineering (Basel)
PublicationYear 2025
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Kavitha (ref_23) 2024; 17
ref_14
ref_13
ref_12
ref_11
Xu (ref_21) 2024; 10
Talukder (ref_4) 2025; 11
ref_19
ref_16
ref_15
Khan (ref_18) 2024; 7
ref_25
ref_24
ref_20
Bodapati (ref_22) 2024; 83
ref_1
Khan (ref_6) 2025; 619
ref_3
Wang (ref_10) 2025; 81
ref_26
ref_9
ref_8
Agarwal (ref_17) 2024; 22
ref_5
ref_7
Yang (ref_2) 2025; 17
References_xml – ident: ref_25
  doi: 10.1016/j.bspc.2024.107079
– volume: 17
  start-page: 632
  year: 2024
  ident: ref_23
  article-title: Brain Tumor Detection for Efficient Adaptation and Superior Diagnostic Precision by Utilizing MBConv-Finetuned-B0 and Advanced Deep Learning
  publication-title: Int. J. Intell. Eng. Syst.
– ident: ref_11
  doi: 10.3390/rs17010125
– volume: 11
  start-page: 20552076251320288
  year: 2025
  ident: ref_4
  article-title: ACU-Net: Attention-based convolutional U-Net model for segmenting brain tumors in fMRI images
  publication-title: Digital Health
  doi: 10.1177/20552076251320288
– ident: ref_24
  doi: 10.1007/s41870-024-01782-5
– ident: ref_7
  doi: 10.1201/9781003343172-4
– ident: ref_13
  doi: 10.1016/j.compbiomed.2024.109507
– ident: ref_26
  doi: 10.1016/j.bspc.2024.107042
– volume: 22
  start-page: 102117
  year: 2024
  ident: ref_17
  article-title: Deep learning for enhanced brain Tumor Detection and classification
  publication-title: Results Eng.
  doi: 10.1016/j.rineng.2024.102117
– ident: ref_8
  doi: 10.1016/j.bj.2024.100743
– volume: 83
  start-page: 22099
  year: 2024
  ident: ref_22
  article-title: TumorAwareNet: Deep representation learning with attention based sparse convolutional denoising autoencoder for brain tumor recognition
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-023-15557-w
– ident: ref_5
  doi: 10.3390/bioengineering12010062
– ident: ref_1
  doi: 10.3389/fonc.2024.1481430
– ident: ref_15
  doi: 10.1007/s11042-024-20443-0
– ident: ref_16
  doi: 10.1038/s41598-024-57970-7
– volume: 10
  start-page: e23866
  year: 2024
  ident: ref_21
  article-title: Brain tumor diagnosis from MRI based on Mobilenetv2 optimized by contracted fox optimization algorithm
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2023.e23866
– volume: 619
  start-page: 129182
  year: 2025
  ident: ref_6
  article-title: Optimized deep learning model for comprehensive medical image analysis across multiple modalities
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2024.129182
– ident: ref_9
  doi: 10.1109/CVPR52733.2024.01605
– volume: 7
  start-page: 632
  year: 2024
  ident: ref_18
  article-title: Brain tumor segmentation and classification using optimized deep learning
  publication-title: J. Comput. Biomed. Inform.
– ident: ref_3
  doi: 10.3390/bioengineering11121302
– ident: ref_20
  doi: 10.1038/s41598-024-52823-9
– volume: 17
  start-page: 3537
  year: 2025
  ident: ref_2
  article-title: Recent Advances in mRNA-Based Therapeutics for Neurodegenerative Diseases and Brain Tumors
  publication-title: Nanoscale
  doi: 10.1039/D4NR04394D
– ident: ref_12
  doi: 10.1016/j.bspc.2024.107221
– volume: 81
  start-page: 307
  year: 2025
  ident: ref_10
  article-title: RT-DETRmg: A lightweight real-time detection model for small traffic signs
  publication-title: J. Supercomput.
  doi: 10.1007/s11227-024-06800-8
– ident: ref_14
  doi: 10.1016/j.bspc.2024.107154
– ident: ref_19
  doi: 10.20944/preprints202402.0960.v1
SSID ssj0001325264
Score 2.2949471
Snippet Background: Brain tumor diagnosis requires precise and timely detection, which directly impacts treatment decisions and patient outcomes. The integration of...
Brain tumor diagnosis requires precise and timely detection, which directly impacts treatment decisions and patient outcomes. The integration of deep learning...
SourceID doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 274
SubjectTerms Accuracy
Artificial intelligence
Artificial neural networks
Automation
Brain
Brain cancer
Brain research
brain tumor detection
Brain tumors
Care and treatment
Classification
Clinical outcomes
computational efficiency
Datasets
Deep learning
Design
Detectors
Diagnosis
Diagnostic equipment (Medical)
Efficiency
Innovations
Machine learning
medical diagnostics
Medical imaging
Neural networks
neuro-oncology
Neuroimaging
Oncology
Optimization algorithms
Optimization techniques
Patients
Real time
Tumors
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA9yL6cP4rfVO4kgqA9l89mm97Z353EIp3KscG8laaa6sHYXbxcR_OOdaXt7rQr64FtpktLMTDK_JJPfMPbCCwPWRkgRzkNqECCnLuiQglZ5DkYZ1xJpn73LTj-atxf2YpDqi2LCOnrgTnCTIkSZ-SwXFiqDBlbIyoS6yJXPhC8c0OwrXDFYTLW7K1pZdPXdlWCN6_pJmC_hmuFPKkEHdmbkjVrS_t-n5oFv-jVucnfTrPz3b36xGDilkzvsdo8m-bTrxV12A5p77NaAY_A--3GOUDClmx78faBNF34M63arniNe5f1BDT_uQu6ItJm_Op-dYaXXB3zKKQ4k_XB9uwBbw4r3rKyfOKVSW7QfOqRcE3y2-YLP_cfmlw_Y7OTN7Og07VMupJVVdp1aoUHHUPsQgojeorNSOmoVqzzK2mvvZZWp2lAoDZhgpbbgalkVxsbMgX7IdpplA48ZR9Ce17YG50I02MRLDzEioHM2C1bEhE2uJF-uOmKNEhckpKvyz7pK2CEpaFubiLHbF2guZW8u5d_MJWEvSb0lDV_UYeX7Wwj400SEVU5xhsM-i0InbG9UE4ddNS6-MpCyH_aXJU6QKBFrXZaw59tiakmhbA0sN20dZfIccXnCHnX2tO2Sof2nXLuEuZGljfo8Lmnmn1tScIlIvMhISmJrlP8o2Cf_Q7BP2U1FqZEp1FHusZ311w3sI15bh2ft0PwJfTo-8w
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7B9gA98G4JFGQkJOCQNvEjcbhtKVWF1IeqrVROkR07sGLJruhGCMSPZybJbjcFoXKLYjvK2OPxZ3vmG4CXJpJeKedDhPM-lAiQQ22FDb3gaeoll7oh0j48Sg7O5Idzdd5tFCkWZuX-XuB2fMeOp_6SmC_mEd2zyZuwlijE3gNYOzs6GX5sMsjh1lgJJdsw4H807q1ADVH_n-Z4ZT266it5q65m5sd3M5msLET7d-F4IULrf_Jlu57b7eLnFXbH68t4D-50mJQNWyW6Dzd89QDWV5gKH8KvUwSUIcWLsGNLRzdsz8-bA3-GqJd11z1sr3XcI-pn9vp0dIiV3rxlQ0beJOHJZYwCtvYz1nG7fmKUkG3SfGiXMlawUf0Vn7uPjS8ewWj__ejdQdglbggLxdU8VJHwwtnSWGsjZxQueVw4wV2Rurg0wpi4SHgpySHHS6tiobwu4yKTyiXaiw0YVNPKPwaG0D8tVem1tk5iExMb7xzCQq0SqyIXwM5iLPNZS8-R47aGujX_e7cGsEtDvqxN9NrNCxyRvJuteWZdnJgkjZQvJFq1LC6kLbOUmyQymfYBvCKFyckIoFYUpotlwJ8mOq18iHYSZY4yEcBWryZO3qJfvFC5vDMeFzmaWewRpXQSwItlMbUkh7jKT-umDpdpiug-gM1WQ5ciSTrFSoUOQPd0tydzv6Qaf26oxWPE81lCvRQt1fyaHfvk_5s8hduc0imTe2S8BYP5t9o_Q4w3t8-7if0bdF1ReA
  priority: 102
  providerName: Unpaywall
Title Real-Time Object Detector for Medical Diagnostics (RTMDet): A High-Performance Deep Learning Model for Brain Tumor Diagnosis
URI https://www.ncbi.nlm.nih.gov/pubmed/40150738
https://www.proquest.com/docview/3181355586
https://www.proquest.com/docview/3182477991
https://pubmed.ncbi.nlm.nih.gov/PMC11939674
https://doi.org/10.3390/bioengineering12030274
https://doaj.org/article/9bd16a6705ec442591c4bf972a60a98e
UnpaywallVersion publishedVersion
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Colorado Digital library
  customDbUrl:
  eissn: 2306-5354
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001325264
  issn: 2306-5354
  databaseCode: KQ8
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2306-5354
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001325264
  issn: 2306-5354
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCO - Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2306-5354
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001325264
  issn: 2306-5354
  databaseCode: ABDBF
  dateStart: 20180301
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2306-5354
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001325264
  issn: 2306-5354
  databaseCode: M~E
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2306-5354
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001325264
  issn: 2306-5354
  databaseCode: RPM
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2306-5354
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001325264
  issn: 2306-5354
  databaseCode: BENPR
  dateStart: 20140301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2306-5354
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001325264
  issn: 2306-5354
  databaseCode: 8FG
  dateStart: 20140301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3di9NAEB_u2gf1Qfw2epYVBPUhXLIf-RBEWnv1EK6W0oPzKexmN2ehpvWuRQT_eGfS9CMq4lvb3Q3dndnZX2ZnfgPwQgfSKWWdj3De-RIBsp8YYXwneBw7yWVSEWmfDaPTc_nxQl0cwHCTC0NhlRubWBlqO8_JR36MuhcKIqeK3i2--VQ1im5XNyU0dF1awb6tKMYOoc2JGasF7d7JcDTeeV0EVwgB1qnCAt_3j8107nbMfyEP6CJPNk6pisz_T5O9d2b9Hk95Y1Uu9I_vejbbO6wGd-B2jTJZd60Wd-HAlffg1h734H34OUaI6FMGCPtkyBnD-m5ZufAZ4lhWX-Cw_joUj8ic2avx5Aw7vX7DuoziQ_zRLusAR7sFq9laLxmVWJtVD-pRDQo2WX3Fz_XDptcPYDI4mbw_9etSDH6uuFr6KhBOWFNoY0xgtcJDjAsruM1jGxZaaB3mES8khdg4aRSKyiVFmKdS2Shx4iG0ynnpHgNDMB8XqnBJYqzEITrUzloEeomKjAqsB8eblc8Wa8KNDF9USFbZ32XlQY8EtO1NhNnVD_Ory6zef1lqbBjpKA6UyyXaqTTMpSnSmOso0GniPHhJ4s1oW6MMc11nJ-CfJoKsrIuWD-ccpMKDo0ZP3I55s3mjIFltDq6znfJ68HzbTCMpxK1081XVh8s4RrzuwaO1Pm2nJMkvFYvEg6ShaY05N1vK6ZeKLDxEhJ5GtErBVin_c2Gf_HsqT-Emp2LIFNwYHkFrebVyzxChLU0HDpPBhw60u71-b9CpN2Gn8nfgt_PhqPv5FwnJQjE
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ZbxMxELZK-1B4QNwsFDASCHhYZdfHHkgVSkirlDahioLUN8tee0uksAlNoqoSf43_xsxmcywgxEvfovjQ2nN4xp75hpBXOhBOSut8MOedL8BA9hPDje84i2MnmEhKIO1uL-p8EZ_O5NkW-bnMhcGwyqVOLBW1HWd4R94A3gs5glNFHybffawaha-ryxIauiqtYPdLiLEqsePYXV2CCzfdP2oDvV8zdngw-NjxqyoDfiaZnPky4I5bk2tjTGC1BP3MuOXMZrENc821DrOI5QKjR5wwEr7CJXmYpULaKHEcpr1BdgQXKfh-O62D3ml_fcnDmQSLY5GZzHkaNMxw7NZAgyEL8N1Q1A7FsnbAnyfExhH5e_jm7ryY6KtLPRptnI2Hd8jtyqilzQUX3iVbrrhHbm1AHd4nP_pgkfqYcEI_G7z7oW03K18MKJjNtHovou1F5B9iR9O3_UEXOr17T5sUw1H803WSA4x2E1qBw55TrOg2KidqYckLOph_g9_VZMPpAzK4Dpo8JNvFuHCPCQXfIc5l7pLEWAFDdKidtWBXJjIyMrAeaSx3Xk0W-B4K_CKklfo7rTzSQgKteiM-d_nH-OJcVeKuUmPDSEdxIF0mQC2mYSZMnsZMR4FOE-eRN0hehVoEaJjpKhkCPhrxuFQTFC2sOUi5R_ZqPUH6s3rzkkFUpX2mai0rHnm5asaRGFFXuPG87MNEHIN74JFHC35aLUngNVjME48kNU6rrbneUgy_ltjkITgEaYS7FKyY8j839sm_l_KC7HYG3RN1ctQ7fkpuMqzDjHGV4R7Znl3M3TMwDmfmeSWClKhrFvpfQsZ6gA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEB6VInE8IG4MBRYJBH2wYu_hAwmhlBBaSktVBalv1q53XSIFJzSJqkr8Mf4dM7aT1IAQL32Lsoe8O8fO7M58A_BcB9IpZZ2P5rzzJRrIfmKE8Z3gcewkl0kFpL23H21_kR-P1NEa_FzkwlBY5UInVorajnO6I-8g74WCwKmiTtGERRz0-m8n332qIEUvrYtyGjWL7LqzU3Tfpm92ekjrF5z33w_ebftNhQE_V1zNfBUIJ6wptDEmsFqhbubCCm7z2IaFFlqHecQLSZEjThqFX-CSIsxTqWyUOIHTXoLLMYG4U5J6_8PqekdwhbZGnZMsRBp0zHDsVhCDIQ_oxVC2jsOqasCfZ8O5w_H3wM2r83Kiz071aHTuVOzfhBuNOcu6Nf_dgjVX3obr50AO78CPQ7RFfUo1YZ8N3fqwnptVbwUMDWbWvBSxXh3zR6jR7NXhYA87bb5mXUaBKP7BKr0BR7sJa2BhjxnVchtVE21RsQs2mH_D381kw-ldGFwERe7Bejku3QNg6DXEhSpckhgrcYgOtbMWLcpERUYF1oPOYuezSY3skaFHRLTK_k4rD7aIQMvehMxd_TE-Oc4aQc9SY8NIR3GgXC5RIaZhLk2RxlxHgU4T58FLIm9G-gNpmOsmDQI_mpC4si6qWFxzkAoPNlo9Ue7zdvOCQbJG70yzlZR48GzZTCMplq5043nVh8s4RsfAg_s1Py2XJOkCLBaJB0mL01prbreUw68VKnmIrkAa0S4FS6b8z419-O-lPIUrKOrZp5393UdwjVMBZgqoDDdgfXYyd4_RKpyZJ5X8McguWN5_AfvaeBo
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7B9gA98G4JFGQkJOCQNvEjcbhtKVWF1IeqrVROkR07sGLJruhGCMSPZybJbjcFoXKLYjvK2OPxZ3vmG4CXJpJeKedDhPM-lAiQQ22FDb3gaeoll7oh0j48Sg7O5Idzdd5tFCkWZuX-XuB2fMeOp_6SmC_mEd2zyZuwlijE3gNYOzs6GX5sMsjh1lgJJdsw4H807q1ADVH_n-Z4ZT266it5q65m5sd3M5msLET7d-F4IULrf_Jlu57b7eLnFXbH68t4D-50mJQNWyW6Dzd89QDWV5gKH8KvUwSUIcWLsGNLRzdsz8-bA3-GqJd11z1sr3XcI-pn9vp0dIiV3rxlQ0beJOHJZYwCtvYz1nG7fmKUkG3SfGiXMlawUf0Vn7uPjS8ewWj__ejdQdglbggLxdU8VJHwwtnSWGsjZxQueVw4wV2Rurg0wpi4SHgpySHHS6tiobwu4yKTyiXaiw0YVNPKPwaG0D8tVem1tk5iExMb7xzCQq0SqyIXwM5iLPNZS8-R47aGujX_e7cGsEtDvqxN9NrNCxyRvJuteWZdnJgkjZQvJFq1LC6kLbOUmyQymfYBvCKFyckIoFYUpotlwJ8mOq18iHYSZY4yEcBWryZO3qJfvFC5vDMeFzmaWewRpXQSwItlMbUkh7jKT-umDpdpiug-gM1WQ5ciSTrFSoUOQPd0tydzv6Qaf26oxWPE81lCvRQt1fyaHfvk_5s8hduc0imTe2S8BYP5t9o_Q4w3t8-7if0bdF1ReA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real-Time+Object+Detector+for+Medical+Diagnostics+%28RTMDet%29%3A+A+High-Performance+Deep+Learning+Model+for+Brain+Tumor+Diagnosis&rft.jtitle=Bioengineering+%28Basel%29&rft.au=Bakhtiyorov%2C+Sanjar&rft.au=Umirzakova%2C+Sabina&rft.au=Musaev%2C+Musabek&rft.au=Abdusalomov%2C+Akmalbek&rft.date=2025-03-11&rft.pub=MDPI&rft.eissn=2306-5354&rft.volume=12&rft.issue=3&rft_id=info:doi/10.3390%2Fbioengineering12030274&rft.externalDocID=PMC11939674
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2306-5354&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2306-5354&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2306-5354&client=summon