Real-Time Object Detector for Medical Diagnostics (RTMDet): A High-Performance Deep Learning Model for Brain Tumor Diagnosis
Background: Brain tumor diagnosis requires precise and timely detection, which directly impacts treatment decisions and patient outcomes. The integration of deep learning technologies in medical diagnostics has improved the accuracy and efficiency of these processes, yet real-time processing remains...
Saved in:
| Published in | Bioengineering (Basel) Vol. 12; no. 3; p. 274 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Switzerland
MDPI AG
11.03.2025
MDPI |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2306-5354 2306-5354 |
| DOI | 10.3390/bioengineering12030274 |
Cover
| Abstract | Background: Brain tumor diagnosis requires precise and timely detection, which directly impacts treatment decisions and patient outcomes. The integration of deep learning technologies in medical diagnostics has improved the accuracy and efficiency of these processes, yet real-time processing remains a challenge due to the computational intensity of current models. This study introduces the Real-Time Object Detector for Medical Diagnostics (RTMDet), which aims to address these limitations by optimizing convolutional neural network (CNN) architectures for enhanced speed and accuracy. Methods: The RTMDet model incorporates novel depthwise convolutional blocks designed to reduce computational load while maintaining diagnostic precision. The effectiveness of the RTMDet was evaluated through extensive testing against traditional and modern CNN architectures using comprehensive medical imaging datasets, with a focus on real-time processing capabilities. Results: The RTMDet demonstrated superior performance in detecting brain tumors, achieving higher accuracy and speed compared to existing CNN models. The model’s efficiency was validated through its ability to process large datasets in real time without sacrificing the accuracy required for a reliable diagnosis. Conclusions: The RTMDet represents a significant advancement in the application of deep learning technologies to medical diagnostics. By optimizing the balance between computational efficiency and diagnostic precision, the RTMDet enhances the capabilities of medical imaging, potentially improving patient outcomes through faster and more accurate brain tumor detection. This model offers a promising solution for clinical settings where rapid and precise diagnostics are critical. |
|---|---|
| AbstractList | Background: Brain tumor diagnosis requires precise and timely detection, which directly impacts treatment decisions and patient outcomes. The integration of deep learning technologies in medical diagnostics has improved the accuracy and efficiency of these processes, yet real-time processing remains a challenge due to the computational intensity of current models. This study introduces the Real-Time Object Detector for Medical Diagnostics (RTMDet), which aims to address these limitations by optimizing convolutional neural network (CNN) architectures for enhanced speed and accuracy. Methods: The RTMDet model incorporates novel depthwise convolutional blocks designed to reduce computational load while maintaining diagnostic precision. The effectiveness of the RTMDet was evaluated through extensive testing against traditional and modern CNN architectures using comprehensive medical imaging datasets, with a focus on real-time processing capabilities. Results: The RTMDet demonstrated superior performance in detecting brain tumors, achieving higher accuracy and speed compared to existing CNN models. The model’s efficiency was validated through its ability to process large datasets in real time without sacrificing the accuracy required for a reliable diagnosis. Conclusions: The RTMDet represents a significant advancement in the application of deep learning technologies to medical diagnostics. By optimizing the balance between computational efficiency and diagnostic precision, the RTMDet enhances the capabilities of medical imaging, potentially improving patient outcomes through faster and more accurate brain tumor detection. This model offers a promising solution for clinical settings where rapid and precise diagnostics are critical. Brain tumor diagnosis requires precise and timely detection, which directly impacts treatment decisions and patient outcomes. The integration of deep learning technologies in medical diagnostics has improved the accuracy and efficiency of these processes, yet real-time processing remains a challenge due to the computational intensity of current models. This study introduces the Real-Time Object Detector for Medical Diagnostics (RTMDet), which aims to address these limitations by optimizing convolutional neural network (CNN) architectures for enhanced speed and accuracy. The RTMDet model incorporates novel depthwise convolutional blocks designed to reduce computational load while maintaining diagnostic precision. The effectiveness of the RTMDet was evaluated through extensive testing against traditional and modern CNN architectures using comprehensive medical imaging datasets, with a focus on real-time processing capabilities. The RTMDet demonstrated superior performance in detecting brain tumors, achieving higher accuracy and speed compared to existing CNN models. The model's efficiency was validated through its ability to process large datasets in real time without sacrificing the accuracy required for a reliable diagnosis. The RTMDet represents a significant advancement in the application of deep learning technologies to medical diagnostics. By optimizing the balance between computational efficiency and diagnostic precision, the RTMDet enhances the capabilities of medical imaging, potentially improving patient outcomes through faster and more accurate brain tumor detection. This model offers a promising solution for clinical settings where rapid and precise diagnostics are critical. Brain tumor diagnosis requires precise and timely detection, which directly impacts treatment decisions and patient outcomes. The integration of deep learning technologies in medical diagnostics has improved the accuracy and efficiency of these processes, yet real-time processing remains a challenge due to the computational intensity of current models. This study introduces the Real-Time Object Detector for Medical Diagnostics (RTMDet), which aims to address these limitations by optimizing convolutional neural network (CNN) architectures for enhanced speed and accuracy.BACKGROUNDBrain tumor diagnosis requires precise and timely detection, which directly impacts treatment decisions and patient outcomes. The integration of deep learning technologies in medical diagnostics has improved the accuracy and efficiency of these processes, yet real-time processing remains a challenge due to the computational intensity of current models. This study introduces the Real-Time Object Detector for Medical Diagnostics (RTMDet), which aims to address these limitations by optimizing convolutional neural network (CNN) architectures for enhanced speed and accuracy.The RTMDet model incorporates novel depthwise convolutional blocks designed to reduce computational load while maintaining diagnostic precision. The effectiveness of the RTMDet was evaluated through extensive testing against traditional and modern CNN architectures using comprehensive medical imaging datasets, with a focus on real-time processing capabilities.METHODSThe RTMDet model incorporates novel depthwise convolutional blocks designed to reduce computational load while maintaining diagnostic precision. The effectiveness of the RTMDet was evaluated through extensive testing against traditional and modern CNN architectures using comprehensive medical imaging datasets, with a focus on real-time processing capabilities.The RTMDet demonstrated superior performance in detecting brain tumors, achieving higher accuracy and speed compared to existing CNN models. The model's efficiency was validated through its ability to process large datasets in real time without sacrificing the accuracy required for a reliable diagnosis.RESULTSThe RTMDet demonstrated superior performance in detecting brain tumors, achieving higher accuracy and speed compared to existing CNN models. The model's efficiency was validated through its ability to process large datasets in real time without sacrificing the accuracy required for a reliable diagnosis.The RTMDet represents a significant advancement in the application of deep learning technologies to medical diagnostics. By optimizing the balance between computational efficiency and diagnostic precision, the RTMDet enhances the capabilities of medical imaging, potentially improving patient outcomes through faster and more accurate brain tumor detection. This model offers a promising solution for clinical settings where rapid and precise diagnostics are critical.CONCLUSIONSThe RTMDet represents a significant advancement in the application of deep learning technologies to medical diagnostics. By optimizing the balance between computational efficiency and diagnostic precision, the RTMDet enhances the capabilities of medical imaging, potentially improving patient outcomes through faster and more accurate brain tumor detection. This model offers a promising solution for clinical settings where rapid and precise diagnostics are critical. |
| Audience | Academic |
| Author | Bakhtiyorov, Sanjar Musaev, Musabek Abdusalomov, Akmalbek Whangbo, Taeg Keun Umirzakova, Sabina |
| AuthorAffiliation | 2 Department of Computer Systems, Tashkent University of Information Technologies Named after Muhammad Al-Khwarizmi, Tashkent 100200, Uzbekistan; musabekmusayev98@gmail.com 1 Department of Computer Engineering, Gachon University, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea; sanjar@gachon.ac.kr (S.B.); sabinatuit@gachon.ac.kr (S.U.); akmaljon@gachon.ac.kr (A.A.) 3 Department of Artificial Intelligence, Tashkent State University of Economics, Tashkent 100066, Uzbekistan 4 Department of International Scientific Journals and Rankings, Alfraganus University, Yukori Karakamish Street 2a, Tashkent 100190, Uzbekistan |
| AuthorAffiliation_xml | – name: 1 Department of Computer Engineering, Gachon University, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea; sanjar@gachon.ac.kr (S.B.); sabinatuit@gachon.ac.kr (S.U.); akmaljon@gachon.ac.kr (A.A.) – name: 2 Department of Computer Systems, Tashkent University of Information Technologies Named after Muhammad Al-Khwarizmi, Tashkent 100200, Uzbekistan; musabekmusayev98@gmail.com – name: 3 Department of Artificial Intelligence, Tashkent State University of Economics, Tashkent 100066, Uzbekistan – name: 4 Department of International Scientific Journals and Rankings, Alfraganus University, Yukori Karakamish Street 2a, Tashkent 100190, Uzbekistan |
| Author_xml | – sequence: 1 givenname: Sanjar surname: Bakhtiyorov fullname: Bakhtiyorov, Sanjar – sequence: 2 givenname: Sabina surname: Umirzakova fullname: Umirzakova, Sabina – sequence: 3 givenname: Musabek surname: Musaev fullname: Musaev, Musabek – sequence: 4 givenname: Akmalbek orcidid: 0000-0001-5923-8695 surname: Abdusalomov fullname: Abdusalomov, Akmalbek – sequence: 5 givenname: Taeg Keun surname: Whangbo fullname: Whangbo, Taeg Keun |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40150738$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkktv1DAQgCNUREvpX6gicSmHFD_iJOaClhZopa2Kqr1bE3uSepXYi5OAKvHj8T4oXdQDsixb9jefPWO_Tg6cd5gkp5Sccy7J-9p6dK11iMG6ljLCCSvzF8kR46TIBBf5wZP5YXIyDEtCCOVMsCJ_lRzmhApS8uoo-XWH0GUL22N6Wy9Rj-kljnHwIW1iv0FjNXTppYXW-WG0ekjP7hY3EXr3IZ2lV7a9z75hiGwPTmOMxlU6Rwgu3iy98Qa7jehTAOvSxdTH-U5mhzfJywa6AU9243Gy-PJ5cXGVzW-_Xl_M5pkWTIyZIBy5qRuo65oYEExKxg1nRpeGNsABqC5Yk_OyIJjXgnKBVUO1zIUpKuTHyfVWazws1SrYHsKD8mDVZsGHVkGIqXWoZG1oAUVJBOo8Z0JSndeNLBkUBOTGVW5dk1vBw0_oukchJWr9Our514mRH7eRq6nu0Wh0Y4Bu7zr7O87eq9b_UJRKLouN4WxnCP77hMOoejto7Dpw6KdBcVqxvCylpBF9-w-69FNwschrKhZIiKr4S7UQc7eu8fFgvZaqWcXXZSaSR-r8GSo2g73V8Wc2Nq7vBZw-zfQxxT-_LgLFFtDBD0PA5n9r-Bu8Ve-r |
| Cites_doi | 10.1016/j.bspc.2024.107079 10.3390/rs17010125 10.1177/20552076251320288 10.1007/s41870-024-01782-5 10.1201/9781003343172-4 10.1016/j.compbiomed.2024.109507 10.1016/j.bspc.2024.107042 10.1016/j.rineng.2024.102117 10.1016/j.bj.2024.100743 10.1007/s11042-023-15557-w 10.3390/bioengineering12010062 10.3389/fonc.2024.1481430 10.1007/s11042-024-20443-0 10.1038/s41598-024-57970-7 10.1016/j.heliyon.2023.e23866 10.1016/j.neucom.2024.129182 10.1109/CVPR52733.2024.01605 10.3390/bioengineering11121302 10.1038/s41598-024-52823-9 10.1039/D4NR04394D 10.1016/j.bspc.2024.107221 10.1007/s11227-024-06800-8 10.1016/j.bspc.2024.107154 10.20944/preprints202402.0960.v1 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2025 by the authors. 2025 |
| Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2025 by the authors. 2025 |
| DBID | AAYXX CITATION NPM 8FE 8FG 8FH ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO GNUQQ HCIFZ L6V LK8 M7P M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.3390/bioengineering12030274 |
| DatabaseName | CrossRef PubMed ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Engineering Collection Biological Sciences Biological Science Database Engineering Database Proquest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) Engineering Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | PubMed CrossRef Publicly Available Content Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2306-5354 |
| ExternalDocumentID | oai_doaj_org_article_9bd16a6705ec442591c4bf972a60a98e 10.3390/bioengineering12030274 PMC11939674 A832992093 40150738 10_3390_bioengineering12030274 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: GRRC program of Gyeonggi Province grantid: GRRC-Gachon2023(B02) |
| GroupedDBID | 53G 5VS 8FE 8FG 8FH AAFWJ AAYXX ABDBF ABJCF ACUHS ADBBV AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BGLVJ BHPHI CCPQU CITATION GROUPED_DOAJ HCIFZ HYE IAO IHR INH ITC KQ8 L6V LK8 M7P M7S MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PQGLB PROAC PTHSS RPM NPM ABUWG AZQEC DWQXO GNUQQ PKEHL PQEST PQQKQ PQUKI PRINS 7X8 PUEGO 5PM ADTOC IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c525t-503e3dbfabbb0da529923d32dc7d1fa3aa1c62f43760e4b5135e8f1c945d68e3 |
| IEDL.DBID | BENPR |
| ISSN | 2306-5354 |
| IngestDate | Fri Oct 03 12:52:33 EDT 2025 Sun Oct 26 03:56:15 EDT 2025 Tue Sep 30 17:04:55 EDT 2025 Fri Sep 05 17:48:32 EDT 2025 Fri Jul 25 11:48:36 EDT 2025 Mon Oct 20 22:45:23 EDT 2025 Mon Oct 20 16:52:27 EDT 2025 Tue Apr 01 01:21:43 EDT 2025 Thu Oct 16 04:39:28 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | computational efficiency medical diagnostics neuro-oncology brain tumor detection |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c525t-503e3dbfabbb0da529923d32dc7d1fa3aa1c62f43760e4b5135e8f1c945d68e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-5923-8695 |
| OpenAccessLink | https://www.proquest.com/docview/3181355586?pq-origsite=%requestingapplication%&accountid=15518 |
| PMID | 40150738 |
| PQID | 3181355586 |
| PQPubID | 2055440 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_9bd16a6705ec442591c4bf972a60a98e unpaywall_primary_10_3390_bioengineering12030274 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11939674 proquest_miscellaneous_3182477991 proquest_journals_3181355586 gale_infotracmisc_A832992093 gale_infotracacademiconefile_A832992093 pubmed_primary_40150738 crossref_primary_10_3390_bioengineering12030274 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-03-11 |
| PublicationDateYYYYMMDD | 2025-03-11 |
| PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-11 day: 11 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Bioengineering (Basel) |
| PublicationTitleAlternate | Bioengineering (Basel) |
| PublicationYear | 2025 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Kavitha (ref_23) 2024; 17 ref_14 ref_13 ref_12 ref_11 Xu (ref_21) 2024; 10 Talukder (ref_4) 2025; 11 ref_19 ref_16 ref_15 Khan (ref_18) 2024; 7 ref_25 ref_24 ref_20 Bodapati (ref_22) 2024; 83 ref_1 Khan (ref_6) 2025; 619 ref_3 Wang (ref_10) 2025; 81 ref_26 ref_9 ref_8 Agarwal (ref_17) 2024; 22 ref_5 ref_7 Yang (ref_2) 2025; 17 |
| References_xml | – ident: ref_25 doi: 10.1016/j.bspc.2024.107079 – volume: 17 start-page: 632 year: 2024 ident: ref_23 article-title: Brain Tumor Detection for Efficient Adaptation and Superior Diagnostic Precision by Utilizing MBConv-Finetuned-B0 and Advanced Deep Learning publication-title: Int. J. Intell. Eng. Syst. – ident: ref_11 doi: 10.3390/rs17010125 – volume: 11 start-page: 20552076251320288 year: 2025 ident: ref_4 article-title: ACU-Net: Attention-based convolutional U-Net model for segmenting brain tumors in fMRI images publication-title: Digital Health doi: 10.1177/20552076251320288 – ident: ref_24 doi: 10.1007/s41870-024-01782-5 – ident: ref_7 doi: 10.1201/9781003343172-4 – ident: ref_13 doi: 10.1016/j.compbiomed.2024.109507 – ident: ref_26 doi: 10.1016/j.bspc.2024.107042 – volume: 22 start-page: 102117 year: 2024 ident: ref_17 article-title: Deep learning for enhanced brain Tumor Detection and classification publication-title: Results Eng. doi: 10.1016/j.rineng.2024.102117 – ident: ref_8 doi: 10.1016/j.bj.2024.100743 – volume: 83 start-page: 22099 year: 2024 ident: ref_22 article-title: TumorAwareNet: Deep representation learning with attention based sparse convolutional denoising autoencoder for brain tumor recognition publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-023-15557-w – ident: ref_5 doi: 10.3390/bioengineering12010062 – ident: ref_1 doi: 10.3389/fonc.2024.1481430 – ident: ref_15 doi: 10.1007/s11042-024-20443-0 – ident: ref_16 doi: 10.1038/s41598-024-57970-7 – volume: 10 start-page: e23866 year: 2024 ident: ref_21 article-title: Brain tumor diagnosis from MRI based on Mobilenetv2 optimized by contracted fox optimization algorithm publication-title: Heliyon doi: 10.1016/j.heliyon.2023.e23866 – volume: 619 start-page: 129182 year: 2025 ident: ref_6 article-title: Optimized deep learning model for comprehensive medical image analysis across multiple modalities publication-title: Neurocomputing doi: 10.1016/j.neucom.2024.129182 – ident: ref_9 doi: 10.1109/CVPR52733.2024.01605 – volume: 7 start-page: 632 year: 2024 ident: ref_18 article-title: Brain tumor segmentation and classification using optimized deep learning publication-title: J. Comput. Biomed. Inform. – ident: ref_3 doi: 10.3390/bioengineering11121302 – ident: ref_20 doi: 10.1038/s41598-024-52823-9 – volume: 17 start-page: 3537 year: 2025 ident: ref_2 article-title: Recent Advances in mRNA-Based Therapeutics for Neurodegenerative Diseases and Brain Tumors publication-title: Nanoscale doi: 10.1039/D4NR04394D – ident: ref_12 doi: 10.1016/j.bspc.2024.107221 – volume: 81 start-page: 307 year: 2025 ident: ref_10 article-title: RT-DETRmg: A lightweight real-time detection model for small traffic signs publication-title: J. Supercomput. doi: 10.1007/s11227-024-06800-8 – ident: ref_14 doi: 10.1016/j.bspc.2024.107154 – ident: ref_19 doi: 10.20944/preprints202402.0960.v1 |
| SSID | ssj0001325264 |
| Score | 2.2949471 |
| Snippet | Background: Brain tumor diagnosis requires precise and timely detection, which directly impacts treatment decisions and patient outcomes. The integration of... Brain tumor diagnosis requires precise and timely detection, which directly impacts treatment decisions and patient outcomes. The integration of deep learning... |
| SourceID | doaj unpaywall pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database |
| StartPage | 274 |
| SubjectTerms | Accuracy Artificial intelligence Artificial neural networks Automation Brain Brain cancer Brain research brain tumor detection Brain tumors Care and treatment Classification Clinical outcomes computational efficiency Datasets Deep learning Design Detectors Diagnosis Diagnostic equipment (Medical) Efficiency Innovations Machine learning medical diagnostics Medical imaging Neural networks neuro-oncology Neuroimaging Oncology Optimization algorithms Optimization techniques Patients Real time Tumors |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA9yL6cP4rfVO4kgqA9l89mm97Z353EIp3KscG8laaa6sHYXbxcR_OOdaXt7rQr64FtpktLMTDK_JJPfMPbCCwPWRkgRzkNqECCnLuiQglZ5DkYZ1xJpn73LTj-atxf2YpDqi2LCOnrgTnCTIkSZ-SwXFiqDBlbIyoS6yJXPhC8c0OwrXDFYTLW7K1pZdPXdlWCN6_pJmC_hmuFPKkEHdmbkjVrS_t-n5oFv-jVucnfTrPz3b36xGDilkzvsdo8m-bTrxV12A5p77NaAY_A--3GOUDClmx78faBNF34M63arniNe5f1BDT_uQu6ItJm_Op-dYaXXB3zKKQ4k_XB9uwBbw4r3rKyfOKVSW7QfOqRcE3y2-YLP_cfmlw_Y7OTN7Og07VMupJVVdp1aoUHHUPsQgojeorNSOmoVqzzK2mvvZZWp2lAoDZhgpbbgalkVxsbMgX7IdpplA48ZR9Ce17YG50I02MRLDzEioHM2C1bEhE2uJF-uOmKNEhckpKvyz7pK2CEpaFubiLHbF2guZW8u5d_MJWEvSb0lDV_UYeX7Wwj400SEVU5xhsM-i0InbG9UE4ddNS6-MpCyH_aXJU6QKBFrXZaw59tiakmhbA0sN20dZfIccXnCHnX2tO2Sof2nXLuEuZGljfo8Lmnmn1tScIlIvMhISmJrlP8o2Cf_Q7BP2U1FqZEp1FHusZ311w3sI15bh2ft0PwJfTo-8w priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7B9gA98G4JFGQkJOCQNvEjcbhtKVWF1IeqrVROkR07sGLJruhGCMSPZybJbjcFoXKLYjvK2OPxZ3vmG4CXJpJeKedDhPM-lAiQQ22FDb3gaeoll7oh0j48Sg7O5Idzdd5tFCkWZuX-XuB2fMeOp_6SmC_mEd2zyZuwlijE3gNYOzs6GX5sMsjh1lgJJdsw4H807q1ADVH_n-Z4ZT266it5q65m5sd3M5msLET7d-F4IULrf_Jlu57b7eLnFXbH68t4D-50mJQNWyW6Dzd89QDWV5gKH8KvUwSUIcWLsGNLRzdsz8-bA3-GqJd11z1sr3XcI-pn9vp0dIiV3rxlQ0beJOHJZYwCtvYz1nG7fmKUkG3SfGiXMlawUf0Vn7uPjS8ewWj__ejdQdglbggLxdU8VJHwwtnSWGsjZxQueVw4wV2Rurg0wpi4SHgpySHHS6tiobwu4yKTyiXaiw0YVNPKPwaG0D8tVem1tk5iExMb7xzCQq0SqyIXwM5iLPNZS8-R47aGujX_e7cGsEtDvqxN9NrNCxyRvJuteWZdnJgkjZQvJFq1LC6kLbOUmyQymfYBvCKFyckIoFYUpotlwJ8mOq18iHYSZY4yEcBWryZO3qJfvFC5vDMeFzmaWewRpXQSwItlMbUkh7jKT-umDpdpiug-gM1WQ5ciSTrFSoUOQPd0tydzv6Qaf26oxWPE81lCvRQt1fyaHfvk_5s8hduc0imTe2S8BYP5t9o_Q4w3t8-7if0bdF1ReA priority: 102 providerName: Unpaywall |
| Title | Real-Time Object Detector for Medical Diagnostics (RTMDet): A High-Performance Deep Learning Model for Brain Tumor Diagnosis |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/40150738 https://www.proquest.com/docview/3181355586 https://www.proquest.com/docview/3182477991 https://pubmed.ncbi.nlm.nih.gov/PMC11939674 https://doi.org/10.3390/bioengineering12030274 https://doaj.org/article/9bd16a6705ec442591c4bf972a60a98e |
| UnpaywallVersion | publishedVersion |
| Volume | 12 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Colorado Digital library customDbUrl: eissn: 2306-5354 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001325264 issn: 2306-5354 databaseCode: KQ8 dateStart: 20140101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2306-5354 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001325264 issn: 2306-5354 databaseCode: DOA dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCO - Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2306-5354 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001325264 issn: 2306-5354 databaseCode: ABDBF dateStart: 20180301 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2306-5354 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001325264 issn: 2306-5354 databaseCode: M~E dateStart: 20140101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2306-5354 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001325264 issn: 2306-5354 databaseCode: RPM dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2306-5354 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001325264 issn: 2306-5354 databaseCode: BENPR dateStart: 20140301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2306-5354 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001325264 issn: 2306-5354 databaseCode: 8FG dateStart: 20140301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3di9NAEB_u2gf1Qfw2epYVBPUhXLIf-RBEWnv1EK6W0oPzKexmN2ehpvWuRQT_eGfS9CMq4lvb3Q3dndnZX2ZnfgPwQgfSKWWdj3De-RIBsp8YYXwneBw7yWVSEWmfDaPTc_nxQl0cwHCTC0NhlRubWBlqO8_JR36MuhcKIqeK3i2--VQ1im5XNyU0dF1awb6tKMYOoc2JGasF7d7JcDTeeV0EVwgB1qnCAt_3j8107nbMfyEP6CJPNk6pisz_T5O9d2b9Hk95Y1Uu9I_vejbbO6wGd-B2jTJZd60Wd-HAlffg1h734H34OUaI6FMGCPtkyBnD-m5ZufAZ4lhWX-Cw_joUj8ic2avx5Aw7vX7DuoziQ_zRLusAR7sFq9laLxmVWJtVD-pRDQo2WX3Fz_XDptcPYDI4mbw_9etSDH6uuFr6KhBOWFNoY0xgtcJDjAsruM1jGxZaaB3mES8khdg4aRSKyiVFmKdS2Shx4iG0ynnpHgNDMB8XqnBJYqzEITrUzloEeomKjAqsB8eblc8Wa8KNDF9USFbZ32XlQY8EtO1NhNnVD_Ory6zef1lqbBjpKA6UyyXaqTTMpSnSmOso0GniPHhJ4s1oW6MMc11nJ-CfJoKsrIuWD-ccpMKDo0ZP3I55s3mjIFltDq6znfJ68HzbTCMpxK1081XVh8s4RrzuwaO1Pm2nJMkvFYvEg6ShaY05N1vK6ZeKLDxEhJ5GtErBVin_c2Gf_HsqT-Emp2LIFNwYHkFrebVyzxChLU0HDpPBhw60u71-b9CpN2Gn8nfgt_PhqPv5FwnJQjE |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ZbxMxELZK-1B4QNwsFDASCHhYZdfHHkgVSkirlDahioLUN8tee0uksAlNoqoSf43_xsxmcywgxEvfovjQ2nN4xp75hpBXOhBOSut8MOedL8BA9hPDje84i2MnmEhKIO1uL-p8EZ_O5NkW-bnMhcGwyqVOLBW1HWd4R94A3gs5glNFHybffawaha-ryxIauiqtYPdLiLEqsePYXV2CCzfdP2oDvV8zdngw-NjxqyoDfiaZnPky4I5bk2tjTGC1BP3MuOXMZrENc821DrOI5QKjR5wwEr7CJXmYpULaKHEcpr1BdgQXKfh-O62D3ml_fcnDmQSLY5GZzHkaNMxw7NZAgyEL8N1Q1A7FsnbAnyfExhH5e_jm7ryY6KtLPRptnI2Hd8jtyqilzQUX3iVbrrhHbm1AHd4nP_pgkfqYcEI_G7z7oW03K18MKJjNtHovou1F5B9iR9O3_UEXOr17T5sUw1H803WSA4x2E1qBw55TrOg2KidqYckLOph_g9_VZMPpAzK4Dpo8JNvFuHCPCQXfIc5l7pLEWAFDdKidtWBXJjIyMrAeaSx3Xk0W-B4K_CKklfo7rTzSQgKteiM-d_nH-OJcVeKuUmPDSEdxIF0mQC2mYSZMnsZMR4FOE-eRN0hehVoEaJjpKhkCPhrxuFQTFC2sOUi5R_ZqPUH6s3rzkkFUpX2mai0rHnm5asaRGFFXuPG87MNEHIN74JFHC35aLUngNVjME48kNU6rrbneUgy_ltjkITgEaYS7FKyY8j839sm_l_KC7HYG3RN1ctQ7fkpuMqzDjHGV4R7Znl3M3TMwDmfmeSWClKhrFvpfQsZ6gA |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEB6VInE8IG4MBRYJBH2wYu_hAwmhlBBaSktVBalv1q53XSIFJzSJqkr8Mf4dM7aT1IAQL32Lsoe8O8fO7M58A_BcB9IpZZ2P5rzzJRrIfmKE8Z3gcewkl0kFpL23H21_kR-P1NEa_FzkwlBY5UInVorajnO6I-8g74WCwKmiTtGERRz0-m8n332qIEUvrYtyGjWL7LqzU3Tfpm92ekjrF5z33w_ebftNhQE_V1zNfBUIJ6wptDEmsFqhbubCCm7z2IaFFlqHecQLSZEjThqFX-CSIsxTqWyUOIHTXoLLMYG4U5J6_8PqekdwhbZGnZMsRBp0zHDsVhCDIQ_oxVC2jsOqasCfZ8O5w_H3wM2r83Kiz071aHTuVOzfhBuNOcu6Nf_dgjVX3obr50AO78CPQ7RFfUo1YZ8N3fqwnptVbwUMDWbWvBSxXh3zR6jR7NXhYA87bb5mXUaBKP7BKr0BR7sJa2BhjxnVchtVE21RsQs2mH_D381kw-ldGFwERe7Bejku3QNg6DXEhSpckhgrcYgOtbMWLcpERUYF1oPOYuezSY3skaFHRLTK_k4rD7aIQMvehMxd_TE-Oc4aQc9SY8NIR3GgXC5RIaZhLk2RxlxHgU4T58FLIm9G-gNpmOsmDQI_mpC4si6qWFxzkAoPNlo9Ue7zdvOCQbJG70yzlZR48GzZTCMplq5043nVh8s4RsfAg_s1Py2XJOkCLBaJB0mL01prbreUw68VKnmIrkAa0S4FS6b8z419-O-lPIUrKOrZp5393UdwjVMBZgqoDDdgfXYyd4_RKpyZJ5X8McguWN5_AfvaeBo |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7B9gA98G4JFGQkJOCQNvEjcbhtKVWF1IeqrVROkR07sGLJruhGCMSPZybJbjcFoXKLYjvK2OPxZ3vmG4CXJpJeKedDhPM-lAiQQ22FDb3gaeoll7oh0j48Sg7O5Idzdd5tFCkWZuX-XuB2fMeOp_6SmC_mEd2zyZuwlijE3gNYOzs6GX5sMsjh1lgJJdsw4H807q1ADVH_n-Z4ZT266it5q65m5sd3M5msLET7d-F4IULrf_Jlu57b7eLnFXbH68t4D-50mJQNWyW6Dzd89QDWV5gKH8KvUwSUIcWLsGNLRzdsz8-bA3-GqJd11z1sr3XcI-pn9vp0dIiV3rxlQ0beJOHJZYwCtvYz1nG7fmKUkG3SfGiXMlawUf0Vn7uPjS8ewWj__ejdQdglbggLxdU8VJHwwtnSWGsjZxQueVw4wV2Rurg0wpi4SHgpySHHS6tiobwu4yKTyiXaiw0YVNPKPwaG0D8tVem1tk5iExMb7xzCQq0SqyIXwM5iLPNZS8-R47aGujX_e7cGsEtDvqxN9NrNCxyRvJuteWZdnJgkjZQvJFq1LC6kLbOUmyQymfYBvCKFyckIoFYUpotlwJ8mOq18iHYSZY4yEcBWryZO3qJfvFC5vDMeFzmaWewRpXQSwItlMbUkh7jKT-umDpdpiug-gM1WQ5ciSTrFSoUOQPd0tydzv6Qaf26oxWPE81lCvRQt1fyaHfvk_5s8hduc0imTe2S8BYP5t9o_Q4w3t8-7if0bdF1ReA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real-Time+Object+Detector+for+Medical+Diagnostics+%28RTMDet%29%3A+A+High-Performance+Deep+Learning+Model+for+Brain+Tumor+Diagnosis&rft.jtitle=Bioengineering+%28Basel%29&rft.au=Bakhtiyorov%2C+Sanjar&rft.au=Umirzakova%2C+Sabina&rft.au=Musaev%2C+Musabek&rft.au=Abdusalomov%2C+Akmalbek&rft.date=2025-03-11&rft.pub=MDPI&rft.eissn=2306-5354&rft.volume=12&rft.issue=3&rft_id=info:doi/10.3390%2Fbioengineering12030274&rft.externalDocID=PMC11939674 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2306-5354&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2306-5354&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2306-5354&client=summon |