Reduced resting-state brain activity in the “default network” in normal aging
Normal aging is associated with cognitive decline. Functions such as attention, information processing, and working memory are compromised. It has been hypothesized that not only regional changes, but also alterations in the integration of regional brain activity (functional brain connectivity) unde...
Saved in:
Published in | Cerebral cortex (New York, N.Y. 1991) Vol. 18; no. 8; pp. 1856 - 1864 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Oxford University Press
01.08.2008
Oxford Publishing Limited (England) |
Subjects | |
Online Access | Get full text |
ISSN | 1047-3211 1460-2199 1460-2199 |
DOI | 10.1093/cercor/bhm207 |
Cover
Abstract | Normal aging is associated with cognitive decline. Functions such as attention, information processing, and working memory are compromised. It has been hypothesized that not only regional changes, but also alterations in the integration of regional brain activity (functional brain connectivity) underlie the observed age-related deficits. Here, we examined the functional properties of brain networks based on spontaneous fluctuations within brain systems using functional magnetic resonance imaging. We hypothesized that functional connectivity of intrinsic brain activity in the “default-mode” network (DMN) is affected by normal aging and that this relates to cognitive function. Ten younger and 22 older subjects were scanned at “rest,” that is, lying awake with eyes closed. Our results show decreased activity in older versus younger subjects in 2 resting-state networks (RSNs) resembling the previously described DMN, containing the superior and middle frontal gyrus, posterior cingulate, middle temporal gyrus, and the superior parietal region. These results remain significant after correction for RSN-specific gray matter volume. The relevance of these findings is illustrated by the correlation between reduced activity of one of these RSNs and less effective executive functioning/processing speed in the older group. |
---|---|
AbstractList | Normal aging is associated with cognitive decline. Functions such as attention, information processing, and working memory are compromised. It has been hypothesized that not only regional changes, but also alterations in the integration of regional brain activity (functional brain connectivity) underlie the observed age-related deficits. Here, we examined the functional properties of brain networks based on spontaneous fluctuations within brain systems using functional magnetic resonance imaging. We hypothesized that functional connectivity of intrinsic brain activity in the 'default-mode' network (DMN) is affected by normal aging and that this relates to cognitive function. Ten younger and 22 older subjects were scanned at 'rest,' that is, lying awake with eyes closed. Our results show decreased activity in older versus younger subjects in 2 resting-state networks (RSNs) resembling the previously described DMN, containing the superior and middle frontal gyrus, posterior cingulate, middle temporal gyrus, and the superior parietal region. These results remain significant after correction for RSN-specific gray matter volume. The relevance of these findings is illustrated by the correlation between reduced activity of one of these RSNs and less effective executive functioning/processing speed in the older group. Normal aging is associated with cognitive decline. Functions such as attention, information processing, and working memory are compromised. It has been hypothesized that not only regional changes, but also alterations in the integration of regional brain activity (functional brain connectivity) underlie the observed age-related deficits. Here, we examined the functional properties of brain networks based on spontaneous fluctuations within brain systems using functional magnetic resonance imaging. We hypothesized that functional connectivity of intrinsic brain activity in the "default-mode" network (DMN) is affected by normal aging and that this relates to cognitive function. Ten younger and 22 older subjects were scanned at "rest," that is, lying awake with eyes closed. Our results show decreased activity in older versus younger subjects in 2 resting-state networks (RSNs) resembling the previously described DMN, containing the superior and middle frontal gyrus, posterior cingulate, middle temporal gyrus, and the superior parietal region. These results remain significant after correction for RSN-specific gray matter volume. The relevance of these findings is illustrated by the correlation between reduced activity of one of these RSNs and less effective executive functioning/processing speed in the older group.Normal aging is associated with cognitive decline. Functions such as attention, information processing, and working memory are compromised. It has been hypothesized that not only regional changes, but also alterations in the integration of regional brain activity (functional brain connectivity) underlie the observed age-related deficits. Here, we examined the functional properties of brain networks based on spontaneous fluctuations within brain systems using functional magnetic resonance imaging. We hypothesized that functional connectivity of intrinsic brain activity in the "default-mode" network (DMN) is affected by normal aging and that this relates to cognitive function. Ten younger and 22 older subjects were scanned at "rest," that is, lying awake with eyes closed. Our results show decreased activity in older versus younger subjects in 2 resting-state networks (RSNs) resembling the previously described DMN, containing the superior and middle frontal gyrus, posterior cingulate, middle temporal gyrus, and the superior parietal region. These results remain significant after correction for RSN-specific gray matter volume. The relevance of these findings is illustrated by the correlation between reduced activity of one of these RSNs and less effective executive functioning/processing speed in the older group. |
Author | Rombouts, S.A.R.B. Stam, C.J. Beckmann, C.F. Barkhof, F. Smith, S.M. Damoiseaux, J.S. Scheltens, Ph Arigita, E.J. Sanz |
Author_xml | – sequence: 1 givenname: J.S. surname: Damoiseaux fullname: Damoiseaux, J.S. email: J.Damoiseaux@vumc.nl organization: Department of Neurology, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands – sequence: 2 givenname: C.F. surname: Beckmann fullname: Beckmann, C.F. organization: Oxford Centre for Functional Magnetic Resonance Imaging of the Brain, University Oxford, John Radcliffe Hospital, UK – sequence: 3 givenname: E.J. Sanz surname: Arigita fullname: Arigita, E.J. Sanz organization: Department of Radiology, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands – sequence: 4 givenname: F. surname: Barkhof fullname: Barkhof, F. organization: Department of Radiology, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands – sequence: 5 givenname: Ph surname: Scheltens fullname: Scheltens, Ph organization: Department of Neurology, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands – sequence: 6 givenname: C.J. surname: Stam fullname: Stam, C.J. organization: Department of Clinical Neurophysiology, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands – sequence: 7 givenname: S.M. surname: Smith fullname: Smith, S.M. organization: Oxford Centre for Functional Magnetic Resonance Imaging of the Brain, University Oxford, John Radcliffe Hospital, UK – sequence: 8 givenname: S.A.R.B. surname: Rombouts fullname: Rombouts, S.A.R.B. organization: Department of Physics and Medical Technology, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/18063564$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1KHjEUhoNY_KvLbsvQRXEzNf8zWbbSVsFS1BaKm5DJJBqdSb4mmVp3Xkh7c16J-ZivLoQiHDgH8pyXnPfdBus-eAPAKwTfISjIvjZRh7jfXY4YNmtgC1EOa4yEWC8zpE1NMEKbYDulKwhRgxneAJuohZwwTrfAyanpJ236KpqUnb-oU1bZVF1UzldKZ_fL5duqzPnSVPd3f3pj1TTkypt8E-L1_d3f5aMPcVRDpS6Kwkvwwqohmd1V3wHfP338dnBYH3_9fHTw_rjWDLNcEwVFKUEabDXGAmEiOGdUW9ERyjrOLSQaMYEZ6RGmzFrYIWF72AvYKkN2wNtZdxHDz6n8Xo4uaTMMypswJcnF8nIInwUxbFvCBC_gmyfgVZiiL0dIJNqGIoFogV6voKkbTS8X0Y0q3sp_lhaAzICOIaVorNSueOqCz8XUQSIol8HJOTg5B1e26idbj8L_4fdmPkyLZ9GVtEvZ_H6EVbyWvCENk4c_zuWXD2ctPTs5lQ15AElWugU |
CitedBy_id | crossref_primary_10_1016_j_cortex_2014_12_001 crossref_primary_10_1371_journal_pone_0005226 crossref_primary_10_1016_j_neuroimage_2017_11_062 crossref_primary_10_1002_hbm_23256 crossref_primary_10_1016_j_bspc_2022_104151 crossref_primary_10_1016_j_neuroimage_2014_12_023 crossref_primary_10_1016_j_neurobiolaging_2011_09_009 crossref_primary_10_1016_j_neuroimage_2009_10_080 crossref_primary_10_1016_j_bbr_2017_12_011 crossref_primary_10_1016_j_siny_2012_06_002 crossref_primary_10_1080_10874208_2012_730408 crossref_primary_10_1007_s00429_014_0896_4 crossref_primary_10_1080_23273798_2020_1828946 crossref_primary_10_1016_j_neuroimage_2021_117740 crossref_primary_10_14336_AD_2020_0407 crossref_primary_10_1038_s41380_023_02306_6 crossref_primary_10_3389_fnins_2024_1443578 crossref_primary_10_1002_hbm_24578 crossref_primary_10_1109_TNSRE_2012_2221480 crossref_primary_10_1016_j_biopsych_2009_01_019 crossref_primary_10_1016_j_neubiorev_2014_03_019 crossref_primary_10_1088_1741_2552_acaccb crossref_primary_10_1523_JNEUROSCI_3189_09_2009 crossref_primary_10_1007_s12017_009_8109_7 crossref_primary_10_1016_j_nicl_2019_101848 crossref_primary_10_1007_s40520_015_0379_3 crossref_primary_10_1093_cercor_bhr339 crossref_primary_10_3389_fnins_2015_00280 crossref_primary_10_3233_JAD_210159 crossref_primary_10_1017_S1355617711001093 crossref_primary_10_1038_jcbfm_2014_190 crossref_primary_10_1089_brain_2019_0724 crossref_primary_10_1111_jon_12653 crossref_primary_10_3389_fnagi_2016_00070 crossref_primary_10_1093_cercor_bhz090 crossref_primary_10_1016_j_neuroimage_2008_06_030 crossref_primary_10_7554_eLife_36011 crossref_primary_10_1093_braincomms_fcae048 crossref_primary_10_1007_s11682_019_00242_0 crossref_primary_10_1016_j_neurobiolaging_2022_08_006 crossref_primary_10_1371_journal_pone_0078830 crossref_primary_10_1016_j_neuroimage_2014_12_016 crossref_primary_10_1002_hbm_22175 crossref_primary_10_1080_02699052_2020_1832257 crossref_primary_10_1089_brain_2019_0735 crossref_primary_10_1111_jne_13075 crossref_primary_10_1002_hbm_21081 crossref_primary_10_1016_j_neuroscience_2017_11_042 crossref_primary_10_1016_j_yebeh_2012_07_019 crossref_primary_10_1007_s00426_014_0587_z crossref_primary_10_1016_j_neuroimage_2019_05_008 crossref_primary_10_1002_hbm_23499 crossref_primary_10_1016_j_expneurol_2008_05_017 crossref_primary_10_1007_s11682_016_9524_7 crossref_primary_10_1016_j_bbr_2012_02_011 crossref_primary_10_3389_fpsyg_2019_02198 crossref_primary_10_1002_hbm_21034 crossref_primary_10_3389_fnins_2024_1223230 crossref_primary_10_1002_jmri_22788 crossref_primary_10_1589_rika_38_338 crossref_primary_10_1007_s40140_017_0241_6 crossref_primary_10_1016_j_neuropsychologia_2014_10_042 crossref_primary_10_3389_fnins_2019_00856 crossref_primary_10_1162_jocn_a_01368 crossref_primary_10_1371_journal_pone_0088690 crossref_primary_10_1002_hbm_21268 crossref_primary_10_1093_scan_nss053 crossref_primary_10_1016_j_neulet_2015_03_047 crossref_primary_10_1007_s11357_023_00946_8 crossref_primary_10_1093_scan_nss056 crossref_primary_10_1002_hbm_23200 crossref_primary_10_1093_cercor_bhq297 crossref_primary_10_1371_journal_pone_0088214 crossref_primary_10_1016_j_bbr_2017_04_041 crossref_primary_10_1007_s11682_019_00157_w crossref_primary_10_1002_hbm_22104 crossref_primary_10_1002_hbm_23439 crossref_primary_10_1155_2016_8457612 crossref_primary_10_1007_s11682_022_00651_8 crossref_primary_10_3389_fnagi_2022_763494 crossref_primary_10_4306_pi_2016_13_1_1 crossref_primary_10_1016_j_neuroimage_2024_120532 crossref_primary_10_1016_j_drugalcdep_2018_09_013 crossref_primary_10_3389_fnins_2014_00223 crossref_primary_10_1162_jocn_2010_21560 crossref_primary_10_3389_fnins_2023_1096232 crossref_primary_10_3389_fnana_2017_00034 crossref_primary_10_3389_fnhum_2016_00156 crossref_primary_10_1016_j_ynirp_2024_100225 crossref_primary_10_1111_cns_13775 crossref_primary_10_1007_s11682_024_00869_8 crossref_primary_10_1016_j_heliyon_2022_e09702 crossref_primary_10_3389_fneur_2019_00777 crossref_primary_10_1080_13825585_2017_1377681 crossref_primary_10_1371_journal_pone_0203766 crossref_primary_10_1097_YCO_0b013e328337d78d crossref_primary_10_1111_ane_12831 crossref_primary_10_1016_j_neuroimage_2016_08_011 crossref_primary_10_1002_hbm_21280 crossref_primary_10_1007_s11682_018_0033_8 crossref_primary_10_1016_j_neuroimage_2011_04_011 crossref_primary_10_3233_JAD_150810 crossref_primary_10_1002_hbm_24312 crossref_primary_10_1016_j_brs_2021_06_007 crossref_primary_10_1002_hbm_21286 crossref_primary_10_1016_j_neubiorev_2013_07_014 crossref_primary_10_1016_j_neuroimage_2009_01_001 crossref_primary_10_1016_j_neuroimage_2012_03_077 crossref_primary_10_1016_j_neurol_2010_01_008 crossref_primary_10_1162_jocn_a_00269 crossref_primary_10_1177_0271678X18803948 crossref_primary_10_1016_j_neuroimage_2013_08_037 crossref_primary_10_1016_j_ejrad_2013_04_009 crossref_primary_10_1089_brain_2020_0911 crossref_primary_10_1186_s12991_023_00449_y crossref_primary_10_1002_hbm_22129 crossref_primary_10_1016_j_neurobiolaging_2014_06_028 crossref_primary_10_1016_j_brainres_2012_05_050 crossref_primary_10_1162_netn_a_00323 crossref_primary_10_1586_14737175_2016_1146590 crossref_primary_10_1111_ejn_12640 crossref_primary_10_1007_s12194_014_0295_9 crossref_primary_10_1016_j_neuroimage_2008_05_059 crossref_primary_10_1093_cercor_bhx297 crossref_primary_10_1016_j_neurobiolaging_2018_10_012 crossref_primary_10_3389_fnagi_2021_755931 crossref_primary_10_1002_hbm_23403 crossref_primary_10_1016_j_neuroimage_2017_01_048 crossref_primary_10_1111_ejn_12659 crossref_primary_10_1016_j_brainres_2022_147882 crossref_primary_10_1016_j_neulet_2011_08_059 crossref_primary_10_1111_jon_13136 crossref_primary_10_1007_s12021_012_9145_2 crossref_primary_10_1155_2017_3530723 crossref_primary_10_1016_j_neuroimage_2020_117299 crossref_primary_10_1007_s12311_023_01577_7 crossref_primary_10_1016_j_neuroimage_2017_12_018 crossref_primary_10_1002_hbm_21250 crossref_primary_10_1002_mrm_22818 crossref_primary_10_1073_pnas_1601485113 crossref_primary_10_1371_journal_pone_0024126 crossref_primary_10_1177_0333102410365164 crossref_primary_10_1016_j_neuroimage_2017_01_077 crossref_primary_10_1016_j_neurobiolaging_2012_05_004 crossref_primary_10_1016_j_neurobiolaging_2017_03_003 crossref_primary_10_1002_brb3_2307 crossref_primary_10_1016_j_neuroimage_2020_117289 crossref_primary_10_1002_hbm_22335 crossref_primary_10_1080_17470919_2016_1176599 crossref_primary_10_1093_braincomms_fcae205 crossref_primary_10_14336_AD_2019_0226 crossref_primary_10_3389_fneur_2021_645974 crossref_primary_10_1016_j_brainresbull_2009_11_014 crossref_primary_10_1002_ajmg_b_32116 crossref_primary_10_1148_radiol_14132388 crossref_primary_10_3389_fnagi_2016_00215 crossref_primary_10_1038_s41598_025_91457_3 crossref_primary_10_1007_s11357_023_00999_9 crossref_primary_10_3389_fnagi_2020_00071 crossref_primary_10_3389_fpsyt_2024_1336370 crossref_primary_10_1002_hbm_21475 crossref_primary_10_1093_cercor_bhac248 crossref_primary_10_1002_hbm_23653 crossref_primary_10_1016_j_neuroimage_2014_11_062 crossref_primary_10_1093_braincomms_fcad126 crossref_primary_10_1089_brain_2016_0452 crossref_primary_10_3389_fnins_2017_00510 crossref_primary_10_3389_fpsyg_2018_01475 crossref_primary_10_1186_1471_2202_12_33 crossref_primary_10_1371_journal_pone_0226816 crossref_primary_10_3233_JAD_170496 crossref_primary_10_3389_fnagi_2015_00237 crossref_primary_10_1111_ejn_14627 crossref_primary_10_1152_physrev_00035_2008 crossref_primary_10_3389_fnagi_2015_00233 crossref_primary_10_1016_j_neuroimage_2023_120277 crossref_primary_10_3389_fnagi_2016_00047 crossref_primary_10_1016_j_nbas_2024_100114 crossref_primary_10_3109_21695717_2015_1022986 crossref_primary_10_1007_s11060_013_1304_2 crossref_primary_10_3389_fninf_2022_882126 crossref_primary_10_1177_0891988719868304 crossref_primary_10_3389_fnagi_2020_00061 crossref_primary_10_1093_brain_awp317 crossref_primary_10_3389_fpsyg_2018_02376 crossref_primary_10_1089_brain_2016_0438 crossref_primary_10_1162_netn_a_00358 crossref_primary_10_1162_netn_a_00110 crossref_primary_10_3389_fnagi_2020_535770 crossref_primary_10_1007_s11682_017_9686_y crossref_primary_10_3389_fnagi_2017_00152 crossref_primary_10_1089_brain_2012_0139 crossref_primary_10_1109_TMI_2014_2358681 crossref_primary_10_3389_fnagi_2016_00285 crossref_primary_10_1016_j_biopsych_2022_03_019 crossref_primary_10_1093_brain_awp307 crossref_primary_10_1089_brain_2014_0327 crossref_primary_10_1038_nrn2961 crossref_primary_10_1089_brain_2016_0429 crossref_primary_10_3389_fnagi_2015_00256 crossref_primary_10_3389_fnhum_2021_623766 crossref_primary_10_1007_s11357_021_00367_5 crossref_primary_10_1016_j_neuroimage_2012_01_079 crossref_primary_10_1016_j_jneumeth_2017_04_009 crossref_primary_10_1016_j_pneurobio_2011_05_012 crossref_primary_10_3389_fneur_2021_633500 crossref_primary_10_1016_j_neuroimage_2022_118926 crossref_primary_10_1038_s41598_017_05425_7 crossref_primary_10_1016_j_euroneuro_2010_03_008 crossref_primary_10_1016_j_psychres_2022_114971 crossref_primary_10_1016_j_biopsych_2012_11_007 crossref_primary_10_1016_j_brainres_2014_12_036 crossref_primary_10_1016_j_pneurobio_2011_05_008 crossref_primary_10_1002_hbm_22779 crossref_primary_10_1007_s11336_012_9291_3 crossref_primary_10_1016_j_neuroscience_2013_09_009 crossref_primary_10_1093_cercor_bhab102 crossref_primary_10_1002_hipo_23042 crossref_primary_10_1016_j_neuroimage_2011_07_049 crossref_primary_10_1093_cercor_bhaa021 crossref_primary_10_1016_j_neubiorev_2014_02_011 crossref_primary_10_3233_JAD_150653 crossref_primary_10_1155_2013_857807 crossref_primary_10_1212_WNL_0b013e318245287d crossref_primary_10_1016_j_arr_2016_02_006 crossref_primary_10_1186_s40798_024_00778_6 crossref_primary_10_1186_1471_244X_13_84 crossref_primary_10_1016_j_neuroimage_2009_10_022 crossref_primary_10_1016_j_bbr_2017_11_017 crossref_primary_10_1093_cercor_bhac209 crossref_primary_10_1016_j_neurobiolaging_2017_04_015 crossref_primary_10_1371_journal_pone_0058653 crossref_primary_10_1007_s10334_010_0213_z crossref_primary_10_52294_001c_129695 crossref_primary_10_1016_j_neuroimage_2022_119521 crossref_primary_10_1016_j_neuroimage_2015_11_067 crossref_primary_10_1186_s12883_021_02389_0 crossref_primary_10_1007_s00429_015_1100_1 crossref_primary_10_3389_fpsyg_2024_1377342 crossref_primary_10_3389_fnagi_2020_00020 crossref_primary_10_1007_s11065_014_9249_6 crossref_primary_10_1016_j_trf_2025_01_036 crossref_primary_10_1016_j_neurobiolaging_2013_02_012 crossref_primary_10_1371_journal_pone_0093673 crossref_primary_10_1007_s00429_009_0218_4 crossref_primary_10_1002_jnr_25039 crossref_primary_10_3389_fnhum_2014_00629 crossref_primary_10_1016_j_mri_2008_05_008 crossref_primary_10_1089_brain_2015_0375 crossref_primary_10_12688_f1000research_10652_1 crossref_primary_10_1016_j_neuroimage_2013_07_061 crossref_primary_10_1371_journal_pone_0106609 crossref_primary_10_1073_pnas_1410233111 crossref_primary_10_3233_JAD_160353 crossref_primary_10_1016_j_neurobiolaging_2010_04_013 crossref_primary_10_3389_fnagi_2014_00105 crossref_primary_10_3389_fnagi_2014_00344 crossref_primary_10_1007_s11357_021_00441_y crossref_primary_10_1016_j_neuroimage_2016_04_006 crossref_primary_10_1016_j_neuroimage_2013_06_018 crossref_primary_10_1523_JNEUROSCI_2287_11_2011 crossref_primary_10_1016_j_ijpsycho_2015_04_004 crossref_primary_10_1073_pnas_1714021115 crossref_primary_10_3389_fnagi_2017_00275 crossref_primary_10_1089_brain_2015_0345 crossref_primary_10_1007_s11682_024_00927_1 crossref_primary_10_1016_j_neuroimage_2021_118136 crossref_primary_10_3389_fphys_2018_00518 crossref_primary_10_1016_j_neubiorev_2015_09_008 crossref_primary_10_1007_s11682_018_00034_y crossref_primary_10_1016_j_neuroimage_2019_116373 crossref_primary_10_1016_j_biopsycho_2016_10_010 crossref_primary_10_1016_j_neuroimage_2012_12_055 crossref_primary_10_3389_fnins_2022_984647 crossref_primary_10_1523_JNEUROSCI_2135_15_2015 crossref_primary_10_1523_JNEUROSCI_0897_20_2020 crossref_primary_10_1016_j_neurobiolaging_2012_08_018 crossref_primary_10_1371_journal_pone_0108807 crossref_primary_10_1038_srep40107 crossref_primary_10_1016_j_neuroimage_2015_10_044 crossref_primary_10_1109_TNSRE_2017_2679056 crossref_primary_10_1523_JNEUROSCI_3408_16_2017 crossref_primary_10_1007_s00429_016_1203_3 crossref_primary_10_1016_j_neuroimage_2015_10_045 crossref_primary_10_1016_j_psyneuen_2011_05_004 crossref_primary_10_1002_hbm_21514 crossref_primary_10_1016_j_jchemneu_2022_102136 crossref_primary_10_1093_cercor_bhac133 crossref_primary_10_1007_s00520_017_4013_0 crossref_primary_10_1016_j_yebeh_2014_01_008 crossref_primary_10_1016_j_nicl_2014_08_022 crossref_primary_10_3389_fnhum_2016_00610 crossref_primary_10_1371_journal_pone_0060312 crossref_primary_10_1590_S1980_57642009DN30100010 crossref_primary_10_1097_CM9_0000000000000277 crossref_primary_10_3389_fnagi_2016_00330 crossref_primary_10_1016_j_neuroimage_2016_03_029 crossref_primary_10_1016_j_yfrne_2017_07_001 crossref_primary_10_1097_PSY_0000000000000218 crossref_primary_10_18632_aging_101091 crossref_primary_10_3389_fphy_2020_00082 crossref_primary_10_3389_fnhum_2015_00255 crossref_primary_10_1016_j_neurobiolaging_2015_07_028 crossref_primary_10_1097_JGP_0b013e3181e9b9d9 crossref_primary_10_1523_JNEUROSCI_0810_09_2009 crossref_primary_10_3389_fnins_2020_561594 crossref_primary_10_1155_2008_381243 crossref_primary_10_1162_netn_a_00196 crossref_primary_10_1093_braincomms_fcad103 crossref_primary_10_1038_s41598_020_74012_0 crossref_primary_10_1002_hbm_25097 crossref_primary_10_3389_fnagi_2016_00306 crossref_primary_10_1111_nyas_14666 crossref_primary_10_3389_fnins_2016_00440 crossref_primary_10_1177_0333102413519514 crossref_primary_10_3233_NRE_210264 crossref_primary_10_1002_art_27497 crossref_primary_10_1007_s12035_016_0358_5 crossref_primary_10_1016_j_brainres_2014_10_024 crossref_primary_10_1016_j_cortex_2019_04_026 crossref_primary_10_1016_j_bbr_2022_114203 crossref_primary_10_1111_ejn_16559 crossref_primary_10_1016_j_arr_2024_102510 crossref_primary_10_1016_j_neulet_2022_136618 crossref_primary_10_1002_hbm_23901 crossref_primary_10_3389_fnagi_2023_1110434 crossref_primary_10_3389_fnins_2016_00452 crossref_primary_10_3758_s13423_018_1490_1 crossref_primary_10_2174_1567205017666201203085524 crossref_primary_10_1007_s11682_018_9843_y crossref_primary_10_3389_fnagi_2017_00097 crossref_primary_10_1016_j_neuropsychologia_2020_107620 crossref_primary_10_1002_hbm_20860 crossref_primary_10_1093_scan_nsy008 crossref_primary_10_3389_fnagi_2019_00067 crossref_primary_10_1162_jocn_a_00947 crossref_primary_10_1212_WNL_0b013e318233b33d crossref_primary_10_1002_ima_22012 crossref_primary_10_1038_s41598_024_60311_3 crossref_primary_10_1016_j_jpain_2009_09_001 crossref_primary_10_1016_j_neubiorev_2013_03_013 crossref_primary_10_1007_s11065_009_9113_2 crossref_primary_10_1371_journal_pone_0071009 crossref_primary_10_1016_j_brainres_2016_12_017 crossref_primary_10_54101_ACEN_2022_2_2 crossref_primary_10_3389_fnins_2014_00015 crossref_primary_10_1017_nws_2019_9 crossref_primary_10_1186_1753_4631_4_S1_S9 crossref_primary_10_1007_s00115_011_3307_6 crossref_primary_10_1016_j_neuroimage_2020_116521 crossref_primary_10_1146_annurev_clinpsy_072720_014213 crossref_primary_10_3390_app132011471 crossref_primary_10_1162_nol_a_00007 crossref_primary_10_1024_2235_0977_a000081 crossref_primary_10_1016_j_neuroimage_2016_03_047 crossref_primary_10_1073_pnas_1007921107 crossref_primary_10_1016_j_arr_2013_01_006 crossref_primary_10_3389_fnagi_2025_1496725 crossref_primary_10_1016_j_media_2014_10_006 crossref_primary_10_1016_j_neuroimage_2013_04_006 crossref_primary_10_1007_s11060_018_2987_1 crossref_primary_10_1038_mp_2016_19 crossref_primary_10_1111_psyp_14469 crossref_primary_10_1038_srep15181 crossref_primary_10_1371_journal_pone_0250222 crossref_primary_10_1093_cercor_bht030 crossref_primary_10_1523_JNEUROSCI_1230_11_2011 crossref_primary_10_3390_biomedicines11061765 crossref_primary_10_1007_s11357_023_00805_6 crossref_primary_10_1016_j_neurobiolaging_2013_03_004 crossref_primary_10_1016_j_neuroimage_2011_03_004 crossref_primary_10_1002_alz_14299 crossref_primary_10_1016_j_neuropsychologia_2011_11_024 crossref_primary_10_1523_JNEUROSCI_2964_08_2008 crossref_primary_10_1016_j_neurobiolaging_2017_08_027 crossref_primary_10_1002_brb3_876 crossref_primary_10_1016_j_neuroimage_2011_02_073 crossref_primary_10_1523_JNEUROSCI_3146_13_2013 crossref_primary_10_1111_pcn_13652 crossref_primary_10_1073_pnas_1110024108 crossref_primary_10_1093_gerona_glu095 crossref_primary_10_1016_j_eplepsyres_2016_11_018 crossref_primary_10_1016_j_bbr_2012_01_058 crossref_primary_10_1089_brain_2018_0598 crossref_primary_10_1007_s11065_020_09455_3 crossref_primary_10_1007_BF03077125 crossref_primary_10_1016_j_cortex_2014_05_007 crossref_primary_10_3389_fnagi_2022_757861 crossref_primary_10_1073_pnas_1317424111 crossref_primary_10_3389_fnagi_2021_605158 crossref_primary_10_1177_1352458510394609 crossref_primary_10_1016_j_jad_2010_12_015 crossref_primary_10_1016_j_biopsych_2010_12_032 crossref_primary_10_1016_j_cortex_2017_01_008 crossref_primary_10_1038_s41598_019_47922_x crossref_primary_10_1002_hbm_24385 crossref_primary_10_1016_j_neurobiolaging_2017_08_003 crossref_primary_10_1016_j_neuroimage_2011_01_010 crossref_primary_10_1161_STROKEAHA_110_596155 crossref_primary_10_1016_j_expneurol_2012_06_014 crossref_primary_10_1111_cns_12260 crossref_primary_10_1016_j_neulet_2020_135548 crossref_primary_10_1155_2019_7067592 crossref_primary_10_1523_JNEUROSCI_3067_17_2018 crossref_primary_10_1016_j_bbadis_2011_08_003 crossref_primary_10_1016_j_pscychresns_2015_07_006 crossref_primary_10_1016_j_neuroimage_2013_06_066 crossref_primary_10_1016_j_media_2017_08_007 crossref_primary_10_1093_schbul_sbr128 crossref_primary_10_1162_jocn_a_02065 crossref_primary_10_1093_cercor_bhu133 crossref_primary_10_1017_S1366728919000178 crossref_primary_10_1027_0269_8803_a000232 crossref_primary_10_3389_fnins_2018_00004 crossref_primary_10_1016_j_neuroimage_2015_08_016 crossref_primary_10_1038_mp_2016_55 crossref_primary_10_1002_brb3_202 crossref_primary_10_1111_nyas_15113 crossref_primary_10_1016_j_neurobiolaging_2017_09_026 crossref_primary_10_1016_j_cortex_2016_09_005 crossref_primary_10_1016_j_psyneuen_2016_08_012 crossref_primary_10_1109_JSTSP_2016_2599010 crossref_primary_10_1002_hbm_25250 crossref_primary_10_1016_j_neubiorev_2015_08_013 crossref_primary_10_1016_j_neuroscience_2022_01_008 crossref_primary_10_1038_nature12486 crossref_primary_10_1371_journal_pone_0072159 crossref_primary_10_1002_alz_14096 crossref_primary_10_1016_j_neuroscience_2015_09_045 crossref_primary_10_1073_pnas_1525309113 crossref_primary_10_1002_gps_4482 crossref_primary_10_1080_23273798_2016_1227858 crossref_primary_10_1002_hbm_23067 crossref_primary_10_1016_j_neurobiolaging_2010_06_020 crossref_primary_10_1177_1073858411403316 crossref_primary_10_1097_j_pain_0000000000001209 crossref_primary_10_31083_JIN25041 crossref_primary_10_3389_fnins_2016_00055 crossref_primary_10_1111_jne_12587 crossref_primary_10_1145_3372043 crossref_primary_10_1016_j_neurobiolaging_2010_06_022 crossref_primary_10_3389_fpsyg_2023_1088975 crossref_primary_10_1007_s00401_016_1570_0 crossref_primary_10_1093_scan_nsu046 crossref_primary_10_1016_j_neuroimage_2013_06_042 crossref_primary_10_1016_j_jad_2017_12_052 crossref_primary_10_1371_journal_pone_0054512 crossref_primary_10_3390_e20100742 crossref_primary_10_3390_e22090917 crossref_primary_10_1016_j_bbadis_2011_07_008 crossref_primary_10_1016_j_dadm_2016_12_007 crossref_primary_10_1016_j_nicl_2013_03_001 crossref_primary_10_4103_1673_5374_255976 crossref_primary_10_1371_journal_pone_0065884 crossref_primary_10_3389_fpsyt_2024_1336881 crossref_primary_10_1007_s11357_023_00967_3 crossref_primary_10_1016_j_compmedimag_2013_12_007 crossref_primary_10_3233_JAD_160922 crossref_primary_10_1097_WNP_0b013e3182767d15 crossref_primary_10_1016_j_neurobiolaging_2019_02_014 crossref_primary_10_1111_eci_13026 crossref_primary_10_1007_s00429_013_0696_2 crossref_primary_10_1016_j_neurobiolaging_2022_01_003 crossref_primary_10_1038_s41598_021_98848_2 crossref_primary_10_3389_fnhum_2016_00490 crossref_primary_10_1007_s11682_016_9623_5 crossref_primary_10_1016_j_yebeh_2013_09_010 crossref_primary_10_1016_j_jneumeth_2018_12_012 crossref_primary_10_1016_j_neurobiolaging_2016_04_010 crossref_primary_10_1155_2018_1672708 crossref_primary_10_3233_JAD_180541 crossref_primary_10_3389_fnhum_2022_857768 crossref_primary_10_1371_journal_pone_0215849 crossref_primary_10_1016_j_neuroimage_2012_09_071 crossref_primary_10_1016_j_psiq_2011_05_001 crossref_primary_10_1186_1744_9081_10_33 crossref_primary_10_3174_ajnr_A4094 crossref_primary_10_1093_cercor_bhaa321 crossref_primary_10_1016_j_ijpsycho_2016_07_501 crossref_primary_10_1016_j_neubiorev_2013_01_017 crossref_primary_10_1002_hbm_24241 crossref_primary_10_1016_j_neuroimage_2018_05_052 crossref_primary_10_1016_j_neuroimage_2016_01_039 crossref_primary_10_1016_j_neurobiolaging_2010_07_011 crossref_primary_10_1002_hbm_23157 crossref_primary_10_1016_j_neuroimage_2012_08_061 crossref_primary_10_3390_e23030286 crossref_primary_10_7554_eLife_49458 crossref_primary_10_1016_j_heliyon_2020_e03951 crossref_primary_10_1016_j_neubiorev_2012_06_004 crossref_primary_10_1007_s00062_019_00814_z crossref_primary_10_1093_cercor_bhr002 crossref_primary_10_1007_s11682_021_00470_3 crossref_primary_10_1186_alzrt106 crossref_primary_10_1016_j_jad_2020_12_081 crossref_primary_10_1007_s11682_014_9323_y crossref_primary_10_1109_TBME_2011_2164793 crossref_primary_10_1002_jmri_23961 crossref_primary_10_1111_jon_12547 crossref_primary_10_3389_fnagi_2021_618623 crossref_primary_10_1093_cercor_bhq151 crossref_primary_10_1016_j_neuropsychologia_2018_03_031 crossref_primary_10_1111_acer_12505 crossref_primary_10_1016_j_neurobiolaging_2018_07_025 crossref_primary_10_1093_geronb_gbaa005 crossref_primary_10_1371_journal_pone_0018876 crossref_primary_10_1080_17588928_2016_1206874 crossref_primary_10_1186_s40035_020_0186_4 crossref_primary_10_1089_brain_2014_0277 crossref_primary_10_1016_j_rehab_2021_101620 crossref_primary_10_1111_acel_12271 crossref_primary_10_1186_s12984_024_01387_w crossref_primary_10_1093_scan_nsad044 crossref_primary_10_1016_j_neuroimage_2009_08_060 crossref_primary_10_3389_fnagi_2017_00412 crossref_primary_10_1093_cercor_bhr025 crossref_primary_10_1016_j_jagp_2016_05_001 crossref_primary_10_3389_fnagi_2017_00419 crossref_primary_10_3390_brainsci13071006 crossref_primary_10_1089_brain_2014_0286 crossref_primary_10_1016_j_brs_2017_05_007 crossref_primary_10_1111_jsm_12819 crossref_primary_10_1007_s11682_018_9914_0 crossref_primary_10_1111_j_1460_9568_2010_07080_x crossref_primary_10_1016_j_neuropsychologia_2015_11_017 crossref_primary_10_1016_j_neuropsychologia_2023_108483 crossref_primary_10_1007_s11682_013_9244_1 crossref_primary_10_3233_JAD_200444 crossref_primary_10_1016_j_neuroimage_2015_07_053 crossref_primary_10_1186_s13195_018_0420_9 crossref_primary_10_1016_j_nicl_2018_06_016 crossref_primary_10_1016_j_arr_2021_101531 crossref_primary_10_3389_fnagi_2017_00426 crossref_primary_10_7874_jao_2023_00619 crossref_primary_10_1002_hbm_24202 crossref_primary_10_1002_hbm_23595 crossref_primary_10_1371_journal_pone_0140134 crossref_primary_10_17533_udea_iatreia_v29n4a05 crossref_primary_10_3390_biology9080236 crossref_primary_10_1016_j_metrad_2023_100023 crossref_primary_10_1155_2016_7296125 crossref_primary_10_1016_j_neuropsychologia_2010_01_005 crossref_primary_10_1016_j_neurobiolaging_2016_04_003 crossref_primary_10_1002_hbm_23587 crossref_primary_10_1016_j_neuroscience_2010_04_072 crossref_primary_10_1109_JBHI_2023_3304974 crossref_primary_10_1016_j_neuroimage_2013_10_039 crossref_primary_10_1080_10874208_2011_623093 crossref_primary_10_1016_j_ijchp_2022_100317 crossref_primary_10_3389_fnhum_2021_755017 crossref_primary_10_1002_hbm_21166 crossref_primary_10_1007_s00429_023_02661_8 crossref_primary_10_1016_j_neurobiolaging_2016_05_020 crossref_primary_10_1371_journal_pone_0117151 crossref_primary_10_1016_j_neuroimage_2010_03_039 crossref_primary_10_1016_j_neuroimage_2020_116662 crossref_primary_10_1111_ncn3_12470 crossref_primary_10_1016_j_pnpbp_2021_110328 crossref_primary_10_1007_s11682_014_9312_1 crossref_primary_10_1016_j_bbr_2011_02_032 crossref_primary_10_1016_j_nicl_2016_03_008 crossref_primary_10_1016_j_ijchp_2024_100526 crossref_primary_10_1016_j_nbas_2022_100036 crossref_primary_10_1016_j_dcn_2013_11_004 crossref_primary_10_1038_s41598_021_83125_z crossref_primary_10_1016_j_bpsc_2019_12_020 crossref_primary_10_3389_fnagi_2022_858405 crossref_primary_10_1017_S1355617711000051 crossref_primary_10_1016_j_neuropsychologia_2018_04_013 crossref_primary_10_1093_cercor_bhp207 crossref_primary_10_1002_hbm_22437 crossref_primary_10_1002_hbm_23527 crossref_primary_10_1016_j_neulet_2011_11_012 crossref_primary_10_1093_cercor_bhab252 crossref_primary_10_1371_journal_pone_0099273 crossref_primary_10_1002_hbm_22670 crossref_primary_10_1016_j_neuroimage_2010_11_049 crossref_primary_10_1093_scan_nsaf017 crossref_primary_10_1016_j_neurobiolaging_2016_02_020 crossref_primary_10_1016_j_neuroimage_2020_117177 crossref_primary_10_1089_brain_2019_0676 crossref_primary_10_1093_cercor_bhac349 crossref_primary_10_1186_1471_2202_10_137 crossref_primary_10_1371_journal_pone_0078345 crossref_primary_10_1002_hbm_21132 crossref_primary_10_1152_jn_00783_2009 crossref_primary_10_1093_scan_nss115 crossref_primary_10_3389_fnagi_2016_00110 crossref_primary_10_3389_fncom_2022_940922 crossref_primary_10_1093_cercor_bhaa179 crossref_primary_10_3389_fnins_2016_00417 crossref_primary_10_1089_brain_2014_0266 crossref_primary_10_1002_hbm_22450 crossref_primary_10_1007_s11739_024_03662_z crossref_primary_10_1016_j_neurobiolaging_2021_09_018 crossref_primary_10_1093_cercor_bhz121 crossref_primary_10_1038_s41380_024_02779_z crossref_primary_10_1016_j_mri_2018_05_005 crossref_primary_10_1093_geronb_gbq035 crossref_primary_10_3389_fnagi_2017_00203 crossref_primary_10_1007_s11357_022_00702_4 crossref_primary_10_1093_braincomms_fcad245 crossref_primary_10_1002_hbm_23532 crossref_primary_10_1002_hbm_25714 crossref_primary_10_3389_fnagi_2015_00194 crossref_primary_10_1111_j_1460_9568_2009_07008_x crossref_primary_10_1016_j_brainres_2013_03_007 crossref_primary_10_1016_j_neuroimage_2010_11_016 crossref_primary_10_3389_fnagi_2021_741445 crossref_primary_10_3233_BPL_190084 crossref_primary_10_3389_fnagi_2017_00011 crossref_primary_10_1523_JNEUROSCI_2775_13_2013 crossref_primary_10_1016_j_jneumeth_2010_01_014 crossref_primary_10_1016_j_pnpbp_2020_109916 crossref_primary_10_1007_s00702_016_1673_8 crossref_primary_10_1016_j_neuroimage_2012_08_004 crossref_primary_10_1017_S0261444819000235 crossref_primary_10_1017_S1355617719000274 crossref_primary_10_3389_fnagi_2014_00256 crossref_primary_10_1038_s41598_019_41739_4 crossref_primary_10_3389_fpsyg_2019_02485 crossref_primary_10_1016_j_neubiorev_2021_10_013 crossref_primary_10_3389_fnagi_2016_00158 crossref_primary_10_1016_j_cortex_2015_03_013 crossref_primary_10_1093_cercor_bhy295 crossref_primary_10_1016_j_neuropsychologia_2014_07_035 crossref_primary_10_1016_j_neuroimage_2010_05_010 crossref_primary_10_1073_pnas_2101403118 crossref_primary_10_1002_hbm_23717 crossref_primary_10_1016_j_neubiorev_2022_104639 crossref_primary_10_1093_cercor_bhaa367 crossref_primary_10_1038_s41598_019_38816_z crossref_primary_10_1371_journal_pone_0119710 crossref_primary_10_3389_fnagi_2020_00177 crossref_primary_10_1002_hbm_24802 crossref_primary_10_3389_fnagi_2014_00288 crossref_primary_10_1016_j_neuroimage_2015_04_009 crossref_primary_10_1093_cercor_bhab220 crossref_primary_10_1089_neu_2011_2125 crossref_primary_10_1016_j_neuroimage_2015_05_054 crossref_primary_10_1371_journal_pone_0013788 crossref_primary_10_1016_j_neuropsychologia_2012_03_024 crossref_primary_10_1186_1471_2202_11_145 crossref_primary_10_1162_netn_a_00220 crossref_primary_10_1002_hbm_22418 crossref_primary_10_1016_j_ecosta_2019_01_002 crossref_primary_10_1016_j_neulet_2016_12_029 crossref_primary_10_1016_j_ynirp_2022_100142 crossref_primary_10_1016_j_neurobiolaging_2024_06_006 crossref_primary_10_1002_pchj_212 crossref_primary_10_1148_radiol_11111299 crossref_primary_10_3389_fnagi_2016_00137 crossref_primary_10_1371_journal_pone_0087078 crossref_primary_10_1007_s11682_016_9560_3 crossref_primary_10_1016_j_neuroimage_2019_02_024 crossref_primary_10_1038_srep21001 crossref_primary_10_3390_brainsci14070671 crossref_primary_10_3389_fnagi_2019_00341 crossref_primary_10_1093_cercor_bhac295 crossref_primary_10_1016_j_neuroimage_2009_12_008 crossref_primary_10_2337_db11_1358 crossref_primary_10_1002_uog_11119 crossref_primary_10_1002_hbm_22717 crossref_primary_10_1016_j_neuropsychologia_2023_108723 crossref_primary_10_1371_journal_pone_0101035 crossref_primary_10_1016_j_bbr_2018_02_007 crossref_primary_10_1016_j_neuroimage_2016_12_022 crossref_primary_10_1523_JNEUROSCI_5511_11_2012 crossref_primary_10_1016_j_nic_2017_06_005 crossref_primary_10_1212_WNL_0b013e31822c61f2 crossref_primary_10_3174_ajnr_A4889 crossref_primary_10_18632_aging_102023 crossref_primary_10_1093_cercor_bhw233 crossref_primary_10_1162_netn_a_00275 crossref_primary_10_3389_fnagi_2022_782738 crossref_primary_10_1080_87565641_2017_1306529 crossref_primary_10_1016_j_nicl_2022_103112 crossref_primary_10_1007_s11682_025_00979_x crossref_primary_10_1016_j_neuroimage_2011_11_063 crossref_primary_10_1016_j_neuron_2013_01_002 crossref_primary_10_1371_journal_pone_0049847 crossref_primary_10_1007_s00429_016_1202_4 crossref_primary_10_1016_j_neurobiolaging_2011_06_024 crossref_primary_10_1371_journal_pone_0096834 crossref_primary_10_1371_journal_pone_0267608 crossref_primary_10_1007_s00429_013_0700_x crossref_primary_10_1111_j_1532_5415_2009_02679_x crossref_primary_10_1038_mp_2011_81 crossref_primary_10_1007_s00424_021_02520_7 crossref_primary_10_1002_ima_22197 crossref_primary_10_1016_j_bandc_2019_04_002 crossref_primary_10_3390_ijms25073881 crossref_primary_10_3233_JAD_161120 crossref_primary_10_3389_fnins_2018_00109 crossref_primary_10_1016_j_neuroimage_2016_11_005 crossref_primary_10_1371_journal_pone_0107829 crossref_primary_10_1016_j_neures_2022_09_005 crossref_primary_10_1007_s11682_012_9191_2 crossref_primary_10_1080_23273798_2019_1608072 crossref_primary_10_1016_j_psychsport_2020_101840 crossref_primary_10_1155_2015_535618 crossref_primary_10_1016_j_neuroimage_2019_116012 crossref_primary_10_1075_jsls_00003_sin crossref_primary_10_1002_jmri_24139 crossref_primary_10_1007_s10484_016_9331_3 crossref_primary_10_1089_brain_2024_0014 crossref_primary_10_1371_journal_pone_0160214 crossref_primary_10_1007_s10072_023_07255_0 crossref_primary_10_1016_j_ijdevneu_2011_10_006 crossref_primary_10_1016_j_neuroimage_2022_119414 crossref_primary_10_1002_hbm_26096 crossref_primary_10_1016_j_nicl_2023_103434 crossref_primary_10_1016_j_neuropsychologia_2021_108138 crossref_primary_10_3389_fnhum_2021_753836 crossref_primary_10_3389_fnins_2021_768418 crossref_primary_10_1002_hbm_22720 crossref_primary_10_1016_j_neurobiolaging_2011_06_007 crossref_primary_10_1162_jocn_a_00869 crossref_primary_10_22599_jesla_36 crossref_primary_10_4061_2011_535816 crossref_primary_10_1002_hbm_25199 crossref_primary_10_1093_cercor_bhv190 crossref_primary_10_1007_s00234_017_1875_2 crossref_primary_10_3389_fnsys_2014_00123 crossref_primary_10_1038_s41398_025_03301_x crossref_primary_10_3389_fnagi_2016_00204 crossref_primary_10_1016_j_neuroimage_2008_09_029 crossref_primary_10_1016_j_neuroimage_2017_07_049 crossref_primary_10_1002_hbm_20737 crossref_primary_10_1002_hbm_22914 crossref_primary_10_1007_s12021_017_9324_2 crossref_primary_10_1212_WNL_0000000000000309 crossref_primary_10_1007_s00429_021_02226_7 crossref_primary_10_1093_cercor_bhy218 crossref_primary_10_1371_journal_pone_0025701 crossref_primary_10_3389_fnagi_2019_00158 crossref_primary_10_1016_j_euroneuro_2022_12_002 crossref_primary_10_1016_j_neuroimage_2014_08_003 crossref_primary_10_1016_j_neuroimage_2015_04_069 crossref_primary_10_1101_lm_048199_118 crossref_primary_10_1016_j_neuroimage_2015_04_065 crossref_primary_10_1016_j_neulet_2013_03_044 crossref_primary_10_1016_j_neuroimage_2025_121119 crossref_primary_10_1016_j_neuroimage_2011_12_052 crossref_primary_10_3389_fnagi_2019_00173 crossref_primary_10_1093_brain_awr327 crossref_primary_10_1371_journal_pone_0017081 crossref_primary_10_1038_s41380_023_02157_1 crossref_primary_10_1523_JNEUROSCI_1163_11_2011 crossref_primary_10_1038_s41598_021_96333_4 crossref_primary_10_1016_j_ynpai_2023_100129 crossref_primary_10_1002_hbm_20968 crossref_primary_10_1038_s41380_022_01931_x crossref_primary_10_5665_sleep_3108 crossref_primary_10_3389_fnins_2018_00762 crossref_primary_10_1007_s00415_012_6695_z crossref_primary_10_1016_j_brainresbull_2009_06_006 crossref_primary_10_1016_j_dcn_2018_04_011 crossref_primary_10_1039_C5AY00699F crossref_primary_10_1016_j_biopsycho_2024_108979 crossref_primary_10_3389_fnhum_2021_766935 crossref_primary_10_1016_j_cmpb_2011_03_010 crossref_primary_10_1097_RMR_0b013e3182699283 crossref_primary_10_1111_nyas_12360 crossref_primary_10_3389_fpsyg_2023_1140399 crossref_primary_10_3389_fnhum_2017_00365 crossref_primary_10_1016_j_neuroimage_2018_10_074 crossref_primary_10_1093_cercor_bhac039 crossref_primary_10_1371_journal_pone_0063727 crossref_primary_10_1016_j_cortex_2022_03_005 crossref_primary_10_3389_fnagi_2021_631172 crossref_primary_10_2463_mrms_mp_2020_0081 crossref_primary_10_1093_brain_awq010 crossref_primary_10_1371_journal_pone_0028196 crossref_primary_10_3233_ADR_220082 crossref_primary_10_1007_s40042_021_00078_2 crossref_primary_10_1016_j_jad_2018_04_065 crossref_primary_10_1016_j_cortex_2009_05_006 crossref_primary_10_1162_imag_a_00394 crossref_primary_10_1016_j_brainresbull_2009_06_021 crossref_primary_10_3233_JAD_161146 crossref_primary_10_1109_ACCESS_2019_2923274 crossref_primary_10_1002_hbm_22920 crossref_primary_10_1016_j_neuroimage_2022_119247 crossref_primary_10_1016_j_neuroimage_2010_03_062 crossref_primary_10_1162_jocn_2009_21331 crossref_primary_10_1371_journal_pone_0123462 crossref_primary_10_1155_2015_172192 crossref_primary_10_1016_j_mad_2021_111493 crossref_primary_10_3233_JAD_180932 crossref_primary_10_1002_hbm_26472 crossref_primary_10_1007_s10548_018_0642_y crossref_primary_10_1073_pnas_1415122111 crossref_primary_10_1111_jne_12282 crossref_primary_10_18632_aging_102421 crossref_primary_10_1002_hbm_26471 crossref_primary_10_1155_2018_5080981 crossref_primary_10_1371_journal_pone_0037238 crossref_primary_10_1093_brain_aws296 crossref_primary_10_1016_j_biopsych_2013_04_015 crossref_primary_10_1007_s00429_017_1527_7 crossref_primary_10_1016_j_neuroimage_2022_119025 crossref_primary_10_1007_s11357_022_00535_1 crossref_primary_10_1007_s10439_011_0258_9 crossref_primary_10_1016_j_comppsych_2023_152445 crossref_primary_10_3389_fnins_2020_00493 crossref_primary_10_1016_j_yebeh_2013_04_001 crossref_primary_10_1089_brain_2013_0160 crossref_primary_10_1093_cercor_bhu237 crossref_primary_10_1089_brain_2011_0039 crossref_primary_10_26599_BSA_2023_9050019 crossref_primary_10_3389_fnagi_2022_845912 crossref_primary_10_1007_s00429_020_02205_4 crossref_primary_10_1080_00207454_2019_1586688 crossref_primary_10_1002_brb3_533 crossref_primary_10_4103_ipj_ipj_198_23 crossref_primary_10_1177_1971400917739273 crossref_primary_10_1016_j_neuroimage_2012_06_060 crossref_primary_10_1017_pen_2020_4 crossref_primary_10_1016_j_nlm_2021_107424 crossref_primary_10_1089_brain_2013_0178 crossref_primary_10_3390_bs14040349 crossref_primary_10_1080_15564886_2023_2211570 crossref_primary_10_1016_j_neurobiolaging_2018_09_014 crossref_primary_10_1093_brain_awt162 crossref_primary_10_3171_2015_1_JNS141633 crossref_primary_10_1016_j_neuroimage_2018_10_027 crossref_primary_10_3389_fnins_2021_748426 crossref_primary_10_1016_j_neuroimage_2012_06_074 crossref_primary_10_1002_hbm_26683 crossref_primary_10_1007_s11357_024_01417_4 crossref_primary_10_1097_JGP_0b013e318202bf3a crossref_primary_10_1016_j_mhpa_2023_100552 crossref_primary_10_1097_WNR_0000000000000850 crossref_primary_10_1155_2014_462765 crossref_primary_10_1089_brain_2013_0146 crossref_primary_10_1016_j_neurobiolaging_2012_01_010 crossref_primary_10_1016_j_ynirp_2025_100248 crossref_primary_10_3389_fnins_2016_00180 crossref_primary_10_1089_brain_2020_0982 crossref_primary_10_1007_s11682_018_9824_1 crossref_primary_10_2117_psysoc_2012_112 crossref_primary_10_3389_fnins_2021_747362 crossref_primary_10_1016_j_ijpsycho_2014_01_007 crossref_primary_10_1016_j_jchemneu_2018_05_004 crossref_primary_10_1016_j_neuropsychologia_2008_02_026 crossref_primary_10_1016_j_jneumeth_2010_07_028 crossref_primary_10_1016_j_neurobiolaging_2016_06_004 crossref_primary_10_1002_hbm_23161 crossref_primary_10_1093_cercor_bhae287 crossref_primary_10_29220_CSAM_2020_27_6_603 crossref_primary_10_1016_j_neuroimage_2018_11_030 crossref_primary_10_1016_j_psc_2011_02_010 crossref_primary_10_1089_brain_2021_0079 crossref_primary_10_1007_s11517_016_1544_3 crossref_primary_10_1111_cns_12396 crossref_primary_10_1002_gps_4342 crossref_primary_10_1016_j_neurobiolaging_2014_03_012 crossref_primary_10_1093_cercor_bhv102 crossref_primary_10_1016_j_neuropsychologia_2019_107133 crossref_primary_10_1038_nrn3256 crossref_primary_10_2139_ssrn_4008862 crossref_primary_10_1146_annurev_pharmtox_051921_093711 crossref_primary_10_3389_fnins_2018_00365 crossref_primary_10_1016_j_nlm_2016_05_008 crossref_primary_10_1016_j_neucom_2020_07_079 crossref_primary_10_1016_j_neuroimage_2012_04_051 crossref_primary_10_1038_s41467_021_25492_9 crossref_primary_10_1016_j_bbr_2018_03_032 crossref_primary_10_1212_WNL_0b013e3181d9ed91 crossref_primary_10_3389_fpsyg_2015_00663 crossref_primary_10_4236_jbbs_2012_23044 crossref_primary_10_1016_j_neuroimage_2023_119982 crossref_primary_10_1002_hbm_24287 crossref_primary_10_1146_annurev_psych_59_103006_093656 crossref_primary_10_1007_s11682_013_9276_6 crossref_primary_10_1016_j_neuroimage_2018_11_008 crossref_primary_10_1016_j_cortex_2021_09_022 crossref_primary_10_31083_j_jin2106170 crossref_primary_10_1016_j_arr_2019_100912 crossref_primary_10_1093_cercor_bhx307 crossref_primary_10_1109_TNSRE_2014_2332353 crossref_primary_10_1093_brain_aws281 crossref_primary_10_1016_j_biopsych_2019_10_011 crossref_primary_10_1016_j_neucom_2016_09_056 crossref_primary_10_1038_s41371_020_00476_2 crossref_primary_10_1002_hbm_24033 crossref_primary_10_1093_alcalc_agab079 crossref_primary_10_1016_j_neurobiolaging_2011_07_003 crossref_primary_10_1016_j_neurobiolaging_2021_12_012 crossref_primary_10_1089_brain_2011_0060 crossref_primary_10_1016_j_neuroimage_2010_01_044 crossref_primary_10_1097_ACO_0000000000000237 crossref_primary_10_1016_j_mri_2017_09_001 crossref_primary_10_1186_s13229_020_0316_y crossref_primary_10_1371_journal_pone_0063317 crossref_primary_10_3389_fpsyg_2023_1207988 crossref_primary_10_1142_S0129065715500082 crossref_primary_10_1016_j_neuroimage_2010_02_082 |
Cites_doi | 10.1109/TMI.2003.822821 10.1073/pnas.0604187103 10.1093/cercor/bhj112 10.1016/j.neuroimage.2006.11.042 10.1073/pnas.0601417103 10.1016/j.neuroimage.2006.03.061 10.1016/j.neuroimage.2006.10.007 10.1016/j.neulet.2007.02.081 10.1002/1097-4679(198707)43:4<402::AID-JCLP2270430411>3.0.CO;2-E 10.1016/j.neuroimage.2005.08.035 10.1126/science.1131295 10.3758/BF03197257 10.1176/ajp.2007.164.3.450 10.1073/pnas.98.2.676 10.1016/j.mri.2006.04.018 10.1016/j.biopsych.2006.09.020 10.1093/cercor/7.3.193 10.1093/cercor/7.3.268 10.1098/rstb.2005.1634 10.1006/nimg.1996.0015 10.1093/cercor/bhg133 10.1073/pnas.2235925100 10.1002/gps.1678 10.1212/WNL.57.4.632 10.1016/j.neulet.2007.06.011 10.1162/jocn.2006.18.2.227 10.1037/0882-7974.4.2.136 10.1097/01.wnr.0000236852.63092.9f 10.1006/nimg.2001.0786 10.1038/nrn2201 10.1038/nature05758 10.1016/j.neuroimage.2004.07.051 10.1002/mrm.1910340409 10.1073/pnas.0308627101 10.1073/pnas.0600674103 10.1016/j.neuroimage.2004.10.043 10.1162/089892999563265 10.1006/nimg.2002.1271 10.1371/journal.pcbi.0030017 10.1016/j.brainresbull.2006.06.012 10.1523/JNEUROSCI.14-03-01450.1994 10.1016/j.neuroimage.2006.02.048 10.1016/j.neuroimage.2007.01.010 10.1037/0882-7974.11.4.621 10.1093/cercor/bhj109 10.1006/nimg.1999.0530 10.1002/hbm.10062 10.1016/j.neuroimage.2007.02.041 10.1037/0882-7974.18.1.91 10.1016/S1053-8119(03)00435-X 10.1006/nimg.2002.1132 10.1109/42.906424 10.1016/j.neurobiolaging.2005.08.011 |
ContentType | Journal Article |
Copyright | The Author 2007. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oxfordjournals.org 2008 The Author 2007. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oxfordjournals.org |
Copyright_xml | – notice: The Author 2007. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oxfordjournals.org 2008 – notice: The Author 2007. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oxfordjournals.org |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QR 7TK 7U7 8FD C1K FR3 K9. P64 7X8 |
DOI | 10.1093/cercor/bhm207 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Chemoreception Abstracts Neurosciences Abstracts Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Toxicology Abstracts ProQuest Health & Medical Complete (Alumni) Chemoreception Abstracts Engineering Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | Neurosciences Abstracts MEDLINE MEDLINE - Academic Technology Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1460-2199 |
EndPage | 1864 |
ExternalDocumentID | 1516337161 18063564 10_1093_cercor_bhm207 10.1093/cercor/bhm207 ark_67375_HXZ_MBS84SQR_7 |
Genre | Research Support, Non-U.S. Gov't Journal Article Comparative Study |
GroupedDBID | --- -E4 .2P .I3 .ZR 0R~ 1TH 29B 2WC 4.4 482 48X 53G 5GY 5RE 5VS 5WA 5WD 70D AABZA AACZT AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPNW AAPQZ AAPXW AARHZ AAUAY AAUQX AAVAP AAVLN ABDFA ABEJV ABEUO ABGNP ABIVO ABIXL ABJNI ABKDP ABLJU ABMNT ABNGD ABNHQ ABNKS ABPQP ABPTD ABQLI ABVGC ABWST ABXVV ABXZS ABZBJ ACGFS ACIWK ACPRK ACUFI ACUKT ACUTJ ACUTO ADBBV ADEYI ADEZT ADFTL ADGKP ADGZP ADHKW ADHZD ADIPN ADNBA ADOCK ADQBN ADRTK ADVEK ADYVW ADZTZ ADZXQ AEGPL AEJOX AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AGINJ AGKEF AGORE AGQPQ AGQXC AGSYK AHMBA AHMMS AHXPO AIJHB AJBYB AJEEA AJNCP AKHUL AKWXX ALMA_UNASSIGNED_HOLDINGS ALUQC ALXQX APIBT APWMN ARIXL ASPBG ATGXG AVWKF AXUDD AYOIW AZFZN BAWUL BAYMD BCRHZ BEYMZ BHONS BQDIO BSCLL BSWAC BTRTY BVRKM C1A CAG CDBKE COF CS3 CZ4 DAKXR DIK DILTD DU5 D~K E3Z EBS EE~ EJD EMOBN F5P F9B FEDTE FHSFR FLUFQ FOEOM FOTVD FQBLK GAUVT GJXCC H13 H5~ HAR HVGLF HW0 HZ~ IOX J21 JXSIZ KAQDR KBUDW KOP KQ8 KSI KSN M-Z ML0 N9A NGC NLBLG NOMLY NOYVH NTWIH NU- NVLIB O0~ O9- OAWHX OBOKY OCZFY ODMLO OJQWA OJZSN OK1 OPAEJ OVD OWPYF P2P P6G PAFKI PB- PEELM PQQKQ Q1. Q5Y QBD R44 RD5 ROL ROX ROZ RUSNO RW1 RXO TCN TEORI TJX TLC TR2 W8F WOQ X7H YAYTL YKOAZ YXANX ZKX ~91 .GJ 6.Y AAPGJ AASNB AAWDT ABQTQ ABSAR ABSMQ ACFRR ACMRT ACPQN ACZBC ADJQC ADRIX AEKPW AFFNX AFSHK AFXEN AFYAG AGKRT AGMDO ANFBD APJGH AQDSO AQKUS ASAOO ATDFG ATTQO AVNTJ BZKNY CXTWN DFGAJ EIHJH ELUNK KC5 M49 MBLQV MBTAY O~Y RIG RNI RZF RZO TMA UQL AAYXX ABIME ABPIB ABZEO ACVCV ADMTO AEHUL AFFQV AHGBF AJDVS CITATION OBFPC CGR CUY CVF ECM EIF NPM 7QR 7TK 7U7 8FD C1K FR3 K9. P64 7X8 |
ID | FETCH-LOGICAL-c525t-3a09a099372fc22912396654cf9b345b66f03c159253d1245ff0b19fd0d908ae3 |
ISSN | 1047-3211 1460-2199 |
IngestDate | Sat Sep 27 23:18:36 EDT 2025 Sun Sep 28 11:09:54 EDT 2025 Mon Jun 30 16:54:23 EDT 2025 Mon Jul 21 05:45:12 EDT 2025 Tue Jul 01 02:59:18 EDT 2025 Thu Apr 24 22:58:38 EDT 2025 Wed Aug 28 03:24:10 EDT 2024 Sat Sep 20 11:01:53 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | neuropsychology fMRI default-mode network connectivity intrinsic brain activity ICA |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c525t-3a09a099372fc22912396654cf9b345b66f03c159253d1245ff0b19fd0d908ae3 |
Notes | ark:/67375/HXZ-MBS84SQR-7 istex:D0B877B0BB9F4662705EE7C3261D8AAC9428082A ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 content type line 23 |
OpenAccessLink | https://academic.oup.com/cercor/article-pdf/18/8/1856/17300529/bhm207.pdf |
PMID | 18063564 |
PQID | 198741914 |
PQPubID | 31422 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_69321100 proquest_miscellaneous_20883596 proquest_journals_198741914 pubmed_primary_18063564 crossref_citationtrail_10_1093_cercor_bhm207 crossref_primary_10_1093_cercor_bhm207 oup_primary_10_1093_cercor_bhm207 istex_primary_ark_67375_HXZ_MBS84SQR_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2008-08-01 |
PublicationDateYYYYMMDD | 2008-08-01 |
PublicationDate_xml | – month: 08 year: 2008 text: 2008-08-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Oxford |
PublicationTitle | Cerebral cortex (New York, N.Y. 1991) |
PublicationTitleAlternate | Cereb Cortex |
PublicationYear | 2008 |
Publisher | Oxford University Press Oxford Publishing Limited (England) |
Publisher_xml | – name: Oxford University Press – name: Oxford Publishing Limited (England) |
References | Biswal ( key 20170520225636_bib8) 1995; 34 Damoiseaux ( key 20170520225636_bib14) 2006; 103 De Luca ( key 20170520225636_bib16) 2006; 29 Garrity ( key 20170520225636_bib21) 2007; 164 Wink ( key 20170520225636_bib52) 2006; 27 Rombouts ( key 20170520225636_bib43) 2007 Teasdale ( key 20170520225636_bib50) 1995; 23 Vincent ( key 20170520225636_bib51) 2007; 447 Cook ( key 20170520225636_bib11) 2007; 22 Daselaar ( key 20170520225636_bib15) 2006; 16 O'Sullivan ( key 20170520225636_bib36) 2001; 57 Prvulovic ( key 20170520225636_bib39) 2002; 17 Greicius ( key 20170520225636_bib26) 2007; 62 Rowe ( key 20170520225636_bib44) 2006; 32 Smith ( key 20170520225636_bib48) 2002; 17 Cabeza ( key 20170520225636_bib10) 2004; 14 Grady ( key 20170520225636_bib25) 2006; 18 Johnson ( key 20170520225636_bib30) 2000; 11 Fox ( key 20170520225636_bib19) 2007; 8 Achard ( key 20170520225636_bib1) 2007; 3 Jenkinson ( key 20170520225636_bib29) 2002; 17 Wu ( key 20170520225636_bib53) 2007; 422 Lustig ( key 20170520225636_bib32) 2003; 100 Smith ( key 20170520225636_bib49) 2004; 23 Beckmann ( key 20170520225636_bib3) 2003; 20 Shulman ( key 20170520225636_bib47) 1997; 7 Beckmann ( key 20170520225636_bib5) 2005; 25 Good ( key 20170520225636_bib23) 2001; 14 Esposito ( key 20170520225636_bib17) 2006; 70 Birn ( key 20170520225636_bib7) 2006; 31 Corrigan ( key 20170520225636_bib12) 1987; 43 Fox ( key 20170520225636_bib18) 2006; 103 Raichle ( key 20170520225636_bib41) 2007; 37 Grady ( key 20170520225636_bib24) 1994; 14 Buckner ( key 20170520225636_bib9) 2007; 37 Otsuka ( key 20170520225636_bib37) 2006; 17 He ( key 20170520225636_bib28) 2007; 35 Zhang ( key 20170520225636_bib54) 2001; 20 Mason ( key 20170520225636_bib34) 2007; 315 Greicius ( key 20170520225636_bib27) 2004; 101 Sharp ( key 20170520225636_bib46) 2006; 16 Park ( key 20170520225636_bib38) 1996; 11 Giambra ( key 20170520225636_bib22) 1989; 4 Raz ( key 20170520225636_bib42) 1997; 7 Kennedy ( key 20170520225636_bib31) 2006; 103 Madden ( key 20170520225636_bib33) 1996; 3 Zhou ( key 20170520225636_bib55) 2007; 417 Oakes ( key 20170520225636_bib35) 2007; 34 Fukunaga ( key 20170520225636_bib20) 2006; 24 Beckmann ( key 20170520225636_bib2) 2005; 360 Craik ( key 20170520225636_bib13) 2000 Raichle ( key 20170520225636_bib40) 2001; 98 Salthouse ( key 20170520225636_bib45) 2003; 18 Beckmann ( key 20170520225636_bib4) 2004; 23 Binder ( key 20170520225636_bib6) 1999; 11 |
References_xml | – volume: 23 start-page: 137 year: 2004 ident: key 20170520225636_bib4 article-title: Probabilistic independent component analysis for functional magnetic resonance imaging publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2003.822821 – year: 2007 ident: key 20170520225636_bib43 article-title: Model-free group analysis shows altered BOLD FMRI networks in dementia publication-title: Hum Brain Mapp – volume: 103 start-page: 10046 year: 2006 ident: key 20170520225636_bib18 article-title: Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0604187103 – volume: 16 start-page: 1771 year: 2006 ident: key 20170520225636_bib15 article-title: Effects of healthy aging on hippocampal and rhinal memory functions: an event-related fMRI study publication-title: Cereb Cortex doi: 10.1093/cercor/bhj112 – volume: 35 start-page: 488 year: 2007 ident: key 20170520225636_bib28 article-title: Regional coherence changes in the early stages of Alzheimer's disease: a combined structural and resting-state functional MRI study publication-title: NeuroImage doi: 10.1016/j.neuroimage.2006.11.042 – volume: 103 start-page: 13848 year: 2006 ident: key 20170520225636_bib14 article-title: Consistent resting-state networks across healthy subjects publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0601417103 – volume: 32 start-page: 747 year: 2006 ident: key 20170520225636_bib44 article-title: Aging is associated with contrasting changes in local and distant cortical connectivity in the human motor system publication-title: NeuroImage doi: 10.1016/j.neuroimage.2006.03.061 – volume: 34 start-page: 500 year: 2007 ident: key 20170520225636_bib35 article-title: Integrating VBM into the general linear model with voxelwise anatomical covariates publication-title: NeuroImage doi: 10.1016/j.neuroimage.2006.10.007 – volume: 417 start-page: 297 year: 2007 ident: key 20170520225636_bib55 article-title: Functional dysconnectivity of the dorsolateral prefrontal cortex in first-episode schizophrenia using resting-state fMRI publication-title: Neurosci Lett doi: 10.1016/j.neulet.2007.02.081 – volume: 43 start-page: 402 year: 1987 ident: key 20170520225636_bib12 article-title: Relationships between parts A and B of the Trail Making Test publication-title: J Clin Psychol doi: 10.1002/1097-4679(198707)43:4<402::AID-JCLP2270430411>3.0.CO;2-E – volume: 29 start-page: 1359 year: 2006 ident: key 20170520225636_bib16 article-title: fMRI resting state networks define distinct modes of long-distance interactions in the human brain publication-title: NeuroImage doi: 10.1016/j.neuroimage.2005.08.035 – volume: 315 start-page: 393 year: 2007 ident: key 20170520225636_bib34 article-title: Wandering minds: the default network and stimulus-independent thought publication-title: Science doi: 10.1126/science.1131295 – volume: 23 start-page: 551 year: 1995 ident: key 20170520225636_bib50 article-title: Stimulus-independent thought depends on central executive resources publication-title: Mem Cognit doi: 10.3758/BF03197257 – volume: 164 start-page: 450 year: 2007 ident: key 20170520225636_bib21 article-title: Aberrant “default mode” functional connectivity in schizophrenia publication-title: Am J Psychiatry doi: 10.1176/ajp.2007.164.3.450 – volume: 98 start-page: 676 year: 2001 ident: key 20170520225636_bib40 article-title: A default mode of brain function publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.98.2.676 – volume: 24 start-page: 979 year: 2006 ident: key 20170520225636_bib20 article-title: Large-amplitude, spatially correlated fluctuations in BOLD fMRI signals during extended rest and early sleep stages publication-title: Magn Reson Imaging doi: 10.1016/j.mri.2006.04.018 – volume: 62 start-page: 429 year: 2007 ident: key 20170520225636_bib26 article-title: Resting-state functional connectivity in major depression: abnormally increased contributions from subgenual cingulate cortex and thalamus publication-title: Biol Psychiatry doi: 10.1016/j.biopsych.2006.09.020 – volume: 7 start-page: 193 year: 1997 ident: key 20170520225636_bib47 article-title: Top-down modulation of early sensory cortex publication-title: Cereb Cortex doi: 10.1093/cercor/7.3.193 – volume: 7 start-page: 268 year: 1997 ident: key 20170520225636_bib42 article-title: Selective aging of the human cerebral cortex observed in vivo: differential vulnerability of the prefrontal gray matter publication-title: Cereb Cortex doi: 10.1093/cercor/7.3.268 – volume: 360 start-page: 1001 year: 2005 ident: key 20170520225636_bib2 article-title: Investigations into resting-state connectivity using independent component analysis publication-title: Philos Trans R Soc Lond B Biol Sci doi: 10.1098/rstb.2005.1634 – volume: 3 start-page: 127 year: 1996 ident: key 20170520225636_bib33 article-title: Adult age differences in regional cerebral blood flow during visual world identification: evidence from H215O PET publication-title: NeuroImage doi: 10.1006/nimg.1996.0015 – volume: 14 start-page: 364 year: 2004 ident: key 20170520225636_bib10 article-title: Task-independent and task-specific age effects on brain activity during working memory, visual attention and episodic retrieval publication-title: Cereb Cortex doi: 10.1093/cercor/bhg133 – volume: 100 start-page: 14504 year: 2003 ident: key 20170520225636_bib32 article-title: Functional deactivations: change with age and dementia of the Alzheimer type publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.2235925100 – volume: 22 start-page: 332 year: 2007 ident: key 20170520225636_bib11 article-title: Aging and brain activation with working memory tasks: an fMRI study of connectivity publication-title: Int J Geriatr Psychiatry doi: 10.1002/gps.1678 – volume: 57 start-page: 632 year: 2001 ident: key 20170520225636_bib36 article-title: Evidence for cortical “disconnection” as a mechanism of age-related cognitive decline publication-title: Neurology doi: 10.1212/WNL.57.4.632 – volume: 422 start-page: 164 year: 2007 ident: key 20170520225636_bib53 article-title: Aging influence on functional connectivity of the motor network in the resting state publication-title: Neurosci Lett doi: 10.1016/j.neulet.2007.06.011 – volume: 18 start-page: 227 year: 2006 ident: key 20170520225636_bib25 article-title: Age-related changes in brain activity across the adult lifespan publication-title: J Cogn Neurosci doi: 10.1162/jocn.2006.18.2.227 – volume: 4 start-page: 136 year: 1989 ident: key 20170520225636_bib22 article-title: Task-unrelated-thought frequency as a function of age: a laboratory study publication-title: Psychol Aging doi: 10.1037/0882-7974.4.2.136 – volume: 17 start-page: 1479 year: 2006 ident: key 20170520225636_bib37 article-title: Decreased activation of anterior cingulate cortex in the working memory of the elderly publication-title: Neuroreport doi: 10.1097/01.wnr.0000236852.63092.9f – volume: 14 start-page: 21 year: 2001 ident: key 20170520225636_bib23 article-title: A voxel-based morphometric study of ageing in 465 normal adult human brains publication-title: NeuroImage doi: 10.1006/nimg.2001.0786 – volume: 8 start-page: 700 year: 2007 ident: key 20170520225636_bib19 article-title: Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging publication-title: Nat Rev Neurosci doi: 10.1038/nrn2201 – volume: 447 start-page: 83 year: 2007 ident: key 20170520225636_bib51 article-title: Intrinsic functional architecture in the anaesthetized monkey brain publication-title: Nature doi: 10.1038/nature05758 – volume: 23 start-page: S208 year: 2004 ident: key 20170520225636_bib49 article-title: Advances in functional and structural MR image analysis and implementation as FSL publication-title: NeuroImage doi: 10.1016/j.neuroimage.2004.07.051 – volume: 34 start-page: 537 year: 1995 ident: key 20170520225636_bib8 article-title: Functional connectivity in the motor cortex of resting human brain using echo-planar MRI publication-title: Magn Reson Med doi: 10.1002/mrm.1910340409 – volume: 101 start-page: 4637 year: 2004 ident: key 20170520225636_bib27 article-title: Default-mode network activity distinguishes Alzheimer's disease from healthy aging: evidence from functional MRI publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0308627101 – volume: 103 start-page: 8275 year: 2006 ident: key 20170520225636_bib31 article-title: Failing to deactivate: resting functional abnormalities in autism publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0600674103 – volume: 25 start-page: 294 year: 2005 ident: key 20170520225636_bib5 article-title: Tensorial extensions of independent component analysis for multisubject FMRI analysis publication-title: NeuroImage doi: 10.1016/j.neuroimage.2004.10.043 – volume: 11 start-page: 80 year: 1999 ident: key 20170520225636_bib6 article-title: Conceptual processing during the conscious resting state. A functional MRI study publication-title: J Cogn Neurosci doi: 10.1162/089892999563265 – volume: 17 start-page: 1403 year: 2002 ident: key 20170520225636_bib39 article-title: Functional imaging of visuospatial processing in Alzheimer's disease publication-title: NeuroImage doi: 10.1006/nimg.2002.1271 – volume: 3 start-page: e17 year: 2007 ident: key 20170520225636_bib1 article-title: Efficiency and cost of economical brain functional networks publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.0030017 – volume: 70 start-page: 263 year: 2006 ident: key 20170520225636_bib17 article-title: Independent component model of the default-mode brain function: assessing the impact of active thinking publication-title: Brain Res Bull doi: 10.1016/j.brainresbull.2006.06.012 – volume: 14 start-page: 1450 year: 1994 ident: key 20170520225636_bib24 article-title: Age-related changes in cortical blood flow activation during visual processing of faces and location publication-title: J Neurosci doi: 10.1523/JNEUROSCI.14-03-01450.1994 – volume: 31 start-page: 1536 year: 2006 ident: key 20170520225636_bib7 article-title: Separating respiratory-variation-related fluctuations from neuronal-activity-related fluctuations in fMRI publication-title: NeuroImage doi: 10.1016/j.neuroimage.2006.02.048 – volume: 37 start-page: 1091 year: 2007 ident: key 20170520225636_bib9 article-title: Unrest at rest: default activity and spontaneous network correlations publication-title: NeuroImage doi: 10.1016/j.neuroimage.2007.01.010 – volume: 11 start-page: 621 year: 1996 ident: key 20170520225636_bib38 article-title: Mediators of long-term memory performance across the life span publication-title: Psychol Aging doi: 10.1037/0882-7974.11.4.621 – volume: 16 start-page: 1739 year: 2006 ident: key 20170520225636_bib46 article-title: The neural correlates of declining performance with age: evidence for age-related changes in cognitive control publication-title: Cereb Cortex doi: 10.1093/cercor/bhj109 – volume: 11 start-page: 179 year: 2000 ident: key 20170520225636_bib30 article-title: The relationship between fMRI activation and cerebral atrophy: comparison of normal aging and alzheimer disease publication-title: NeuroImage doi: 10.1006/nimg.1999.0530 – volume: 17 start-page: 143 year: 2002 ident: key 20170520225636_bib48 article-title: Fast robust automated brain extraction publication-title: Hum Brain Mapp doi: 10.1002/hbm.10062 – year: 2000 ident: key 20170520225636_bib13 publication-title: The Handbook of aging and cognition. Mahwah, (NJ): Lawrence Erlbaum Associates – volume: 37 start-page: 1083 year: 2007 ident: key 20170520225636_bib41 article-title: A default mode of brain function: a brief history of an evolving idea publication-title: NeuroImage doi: 10.1016/j.neuroimage.2007.02.041 – volume: 18 start-page: 91 year: 2003 ident: key 20170520225636_bib45 article-title: What needs to be explained to account for age-related effects on multiple cognitive variables? publication-title: Psychol Aging doi: 10.1037/0882-7974.18.1.91 – volume: 20 start-page: 1052 year: 2003 ident: key 20170520225636_bib3 article-title: General multilevel linear modeling for group analysis in FMRI publication-title: NeuroImage doi: 10.1016/S1053-8119(03)00435-X – volume: 17 start-page: 825 year: 2002 ident: key 20170520225636_bib29 article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images publication-title: NeuroImage doi: 10.1006/nimg.2002.1132 – volume: 20 start-page: 45 year: 2001 ident: key 20170520225636_bib54 article-title: Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm publication-title: IEEE Trans Med Imaging doi: 10.1109/42.906424 – volume: 27 start-page: 1395 year: 2006 ident: key 20170520225636_bib52 article-title: Age and cholinergic effects on hemodynamics and functional coherence of human hippocampus publication-title: Neurobiol Aging doi: 10.1016/j.neurobiolaging.2005.08.011 |
SSID | ssj0017252 |
Score | 2.519235 |
Snippet | Normal aging is associated with cognitive decline. Functions such as attention, information processing, and working memory are compromised. It has been... |
SourceID | proquest pubmed crossref oup istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1856 |
SubjectTerms | Adult Age Factors Aged Aging - physiology Brain - physiology Brain Mapping - methods connectivity default-mode network Female fMRI Humans ICA intrinsic brain activity Male Middle Aged Nerve Net - physiology neuropsychology Rest - physiology |
Title | Reduced resting-state brain activity in the “default network” in normal aging |
URI | https://api.istex.fr/ark:/67375/HXZ-MBS84SQR-7/fulltext.pdf https://www.ncbi.nlm.nih.gov/pubmed/18063564 https://www.proquest.com/docview/198741914 https://www.proquest.com/docview/20883596 https://www.proquest.com/docview/69321100 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLaqTUK8INi4lHEJE-wlpEudW_1Yyqoy1iHWVqp4iRzX0cTaFLWJNPhP_EfOsZ20hY6bVEWRbcVuzon9-fic7xDykjFYNyRPHCkC7vgtxh3OmmjIxzDIyHeFomvqn4e9kX86Dsa12vc1r6UiTxri29a4kv-RKpSBXDFK9h8kWz0UCuAe5AtXkDBc_0rGF8i7KjH-ZIney46KDrITzPqgSDJUXgjjyPiK0olMeTHN7Uy7fkMJVmaIWqe2yla0DlU7coGHykgfssjl9ba0PTZ6NK3ZEt7y2RwPfAq1op3aKxO8FFczk465Y6cVjG98btgDQKd2G_Nz5SvjAF9cXc7TledxaZdoVV5x-Xq845oxzURs4XBNgpJygHrqRc4Ij5qpV-oyP3QdmFPZ9vm6KP199eQL0CPcuipoxiwhFwJNIN3kckZ1qt1N_u3zD3F3dHYWD0_Gw81avV0KALt6sL-EzfYujQCqIQZ_9746tIpoQEvyC_wjhtIVej_WfR_rnjcg0C5-zdc_hVf-sstRaGd4l9wx2xSrrXXuHqnJbI_stzOez2dfrSNLOQ6rE5k9cqtv_DP2Sd9opLWhkZbSSKvUSAvuQSOtQ6OPltHHQ6zQ2mgpbbxPRt2TYafnmIQdjghokDsedxn8APHSVFDKABUxzG4tUpZ4fpCEYep6AgA0DbwJAMsgTd2kydKJO2Fui0vvAdnJ5pl8RKyoyQEn-UIxDkYy4lJwlrg8CgGSukLWyevyHcbCsNljUpVprL0qvFi_8li_8jo5qpp_0TQuNzZUAqlagb6j72MUxL3xp7j_ZtDyBx8vYmj4AiT2p4cdlPKMzbSxjNHK5yOrYp08r2phTseDOp7JebGMKSz9XsDCm1uEDBXMdevkoVaT1UBaLlJO-o9_2_cBub36Zp-QnXxRyKeArvPkmdLpHySIzVk |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reduced+resting-state+brain+activity+in+the+%22default+network%22+in+normal+aging&rft.jtitle=Cerebral+cortex+%28New+York%2C+N.Y.+1991%29&rft.au=Damoiseaux%2C+J+s&rft.au=Beckmann%2C+C+f&rft.au=E.j.+Sanz+Arigita&rft.au=Barkhof%2C+F&rft.date=2008-08-01&rft.pub=Oxford+Publishing+Limited+%28England%29&rft.issn=1047-3211&rft.eissn=1460-2199&rft.volume=18&rft.issue=8&rft.spage=1856&rft_id=info:doi/10.1093%2Fcercor%2Fbhm207&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=1516337161 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1047-3211&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1047-3211&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1047-3211&client=summon |