Adoption of the Q transcriptional regulatory system for zebrafish transgenesis
•Q transcriptional regulatory system of Neurospora crassa functions in zebrafish.•Tissue-specific QF driver lines activate a QUAS:GFP transgenic reporter.•Silencing of QUAS-regulated transgenes not observed in F4 generation.•Q reagents cloned into Tol2 Gateway vectors for ease of use and distributio...
        Saved in:
      
    
          | Published in | Methods (San Diego, Calif.) Vol. 66; no. 3; pp. 433 - 440 | 
|---|---|
| Main Authors | , , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          Elsevier Inc
    
        01.04.2014
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1046-2023 1095-9130 1095-9130  | 
| DOI | 10.1016/j.ymeth.2013.06.012 | 
Cover
| Abstract | •Q transcriptional regulatory system of Neurospora crassa functions in zebrafish.•Tissue-specific QF driver lines activate a QUAS:GFP transgenic reporter.•Silencing of QUAS-regulated transgenes not observed in F4 generation.•Q reagents cloned into Tol2 Gateway vectors for ease of use and distribution.
The Gal4–UAS regulatory system of yeast is widely used to modulate gene expression in Drosophila; however, there are limitations to its usefulness in transgenic zebrafish, owing to progressive methylation and silencing of the CpG-rich multicopy upstream activation sequence. Although a modified, less repetitive UAS construct may overcome this problem, it is highly desirable to have additional transcriptional regulatory systems that can be applied independently or in combination with the Gal4/UAS system for intersectional gene expression. The Q transcriptional regulatory system of Neurospora crassa functions similarly to Gal4/UAS. QF is a transcriptional activator that binds to the QUAS upstream regulatory sequence to drive reporter gene expression. Unlike Gal4, the QF binding site does not contain essential CpG dinucleotide sequences that are subject to DNA methylation. The QS protein is a repressor of QF mediated transcriptional activation akin to Gal80. The functionality of the Q system has been demonstrated in Drosophila and Caenorhabditis elegans and we now report its successful application to a vertebrate model, the zebrafish, Danio rerio. Several tissue-specific promoters were used to drive QF expression in stable transgenic lines, as assessed by activation of a QUAS:GFP transgene. The QS repressor was found to dramatically reduce QF activity in injected zebrafish embryos; however, a similar repression has not yet been achieved in transgenic animals expressing QS under the control of ubiquitous promoters. A dual reporter construct containing both QUAS and UAS, each upstream of different fluorescent proteins was also generated and tested in transient assays, demonstrating that the two systems can work in parallel within the same cell. The adoption of the Q system should greatly increase the versatility and power of transgenic approaches for regulating gene expression in zebrafish. | 
    
|---|---|
| AbstractList | The Gal4-UAS regulatory system of yeast is widely used to modulate gene expression in Drosophila; however, there are limitations to its usefulness in transgenic zebrafish, owing to progressive methylation and silencing of the CpG-rich multicopy upstream activation sequence. Although a modified, less repetitive UAS construct may overcome this problem, it is highly desirable to have additional transcriptional regulatory systems that can be applied independently or in combination with the Gal4/UAS system for intersectional gene expression. The Q transcriptional regulatory system of Neurospora crassa functions similarly to Gal4/UAS. QF is a transcriptional activator that binds to the QUAS upstream regulatory sequence to drive reporter gene expression. Unlike Gal4, the QF binding site does not contain essential CpG dinucleotide sequences that are subject to DNA methylation. The QS protein is a repressor of QF mediated transcriptional activation akin to Gal80. The functionality of the Q system has been demonstrated in Drosophila and C. elegans and we now report its successful application to a vertebrate model, the zebrafish, Danio rerio. Several tissue-specific promoters were used to drive QF expression in stable transgenic lines, as assessed by activation of a QUAS:GFP transgene. The QS repressor was found to dramatically reduce QF activity in injected zebrafish embryos; however, a similar repression has not yet been achieved in transgenic animals expressing QS under the control of ubiquitous promoters. A dual reporter construct containing both QUAS and UAS, each upstream of different fluorescent proteins was also generated and tested in transient assays, demonstrating that the two systems can work in parallel within the same cell. The adoption of the Q system should greatly increase the versatility and power of transgenic approaches for regulating gene expression in zebrafish. The Gal4–UAS regulatory system of yeast is widely used to modulate gene expression in Drosophila; however, there are limitations to its usefulness in transgenic zebrafish, owing to progressive methylation and silencing of the CpG-rich multicopy upstream activation sequence. Although a modified, less repetitive UAS construct may overcome this problem, it is highly desirable to have additional transcriptional regulatory systems that can be applied independently or in combination with the Gal4/UAS system for intersectional gene expression. The Q transcriptional regulatory system of Neurospora crassa functions similarly to Gal4/UAS. QF is a transcriptional activator that binds to the QUAS upstream regulatory sequence to drive reporter gene expression. Unlike Gal4, the QF binding site does not contain essential CpG dinucleotide sequences that are subject to DNA methylation. The QS protein is a repressor of QF mediated transcriptional activation akin to Gal80. The functionality of the Q system has been demonstrated in Drosophila and Caenorhabditis elegans and we now report its successful application to a vertebrate model, the zebrafish, Danio rerio. Several tissue-specific promoters were used to drive QF expression in stable transgenic lines, as assessed by activation of a QUAS:GFP transgene. The QS repressor was found to dramatically reduce QF activity in injected zebrafish embryos; however, a similar repression has not yet been achieved in transgenic animals expressing QS under the control of ubiquitous promoters. A dual reporter construct containing both QUAS and UAS, each upstream of different fluorescent proteins was also generated and tested in transient assays, demonstrating that the two systems can work in parallel within the same cell. The adoption of the Q system should greatly increase the versatility and power of transgenic approaches for regulating gene expression in zebrafish. The Gal4-UAS regulatory system of yeast is widely used to modulate gene expression in Drosophila; however, there are limitations to its usefulness in transgenic zebrafish, owing to progressive methylation and silencing of the CpG-rich multicopy upstream activation sequence. Although a modified, less repetitive UAS construct may overcome this problem, it is highly desirable to have additional transcriptional regulatory systems that can be applied independently or in combination with the Gal4/UAS system for intersectional gene expression. The Q transcriptional regulatory system of Neurospora crassa functions similarly to Gal4/UAS. QF is a transcriptional activator that binds to the QUAS upstream regulatory sequence to drive reporter gene expression. Unlike Gal4, the QF binding site does not contain essential CpG dinucleotide sequences that are subject to DNA methylation. The QS protein is a repressor of QF mediated transcriptional activation akin to Gal80. The functionality of the Q system has been demonstrated in Drosophila and Caenorhabditis elegans and we now report its successful application to a vertebrate model, the zebrafish, Danio rerio. Several tissue-specific promoters were used to drive QF expression in stable transgenic lines, as assessed by activation of a QUAS:GFP transgene. The QS repressor was found to dramatically reduce QF activity in injected zebrafish embryos; however, a similar repression has not yet been achieved in transgenic animals expressing QS under the control of ubiquitous promoters. A dual reporter construct containing both QUAS and UAS, each upstream of different fluorescent proteins was also generated and tested in transient assays, demonstrating that the two systems can work in parallel within the same cell. The adoption of the Q system should greatly increase the versatility and power of transgenic approaches for regulating gene expression in zebrafish.The Gal4-UAS regulatory system of yeast is widely used to modulate gene expression in Drosophila; however, there are limitations to its usefulness in transgenic zebrafish, owing to progressive methylation and silencing of the CpG-rich multicopy upstream activation sequence. Although a modified, less repetitive UAS construct may overcome this problem, it is highly desirable to have additional transcriptional regulatory systems that can be applied independently or in combination with the Gal4/UAS system for intersectional gene expression. The Q transcriptional regulatory system of Neurospora crassa functions similarly to Gal4/UAS. QF is a transcriptional activator that binds to the QUAS upstream regulatory sequence to drive reporter gene expression. Unlike Gal4, the QF binding site does not contain essential CpG dinucleotide sequences that are subject to DNA methylation. The QS protein is a repressor of QF mediated transcriptional activation akin to Gal80. The functionality of the Q system has been demonstrated in Drosophila and Caenorhabditis elegans and we now report its successful application to a vertebrate model, the zebrafish, Danio rerio. Several tissue-specific promoters were used to drive QF expression in stable transgenic lines, as assessed by activation of a QUAS:GFP transgene. The QS repressor was found to dramatically reduce QF activity in injected zebrafish embryos; however, a similar repression has not yet been achieved in transgenic animals expressing QS under the control of ubiquitous promoters. A dual reporter construct containing both QUAS and UAS, each upstream of different fluorescent proteins was also generated and tested in transient assays, demonstrating that the two systems can work in parallel within the same cell. The adoption of the Q system should greatly increase the versatility and power of transgenic approaches for regulating gene expression in zebrafish. •Q transcriptional regulatory system of Neurospora crassa functions in zebrafish.•Tissue-specific QF driver lines activate a QUAS:GFP transgenic reporter.•Silencing of QUAS-regulated transgenes not observed in F4 generation.•Q reagents cloned into Tol2 Gateway vectors for ease of use and distribution. The Gal4–UAS regulatory system of yeast is widely used to modulate gene expression in Drosophila; however, there are limitations to its usefulness in transgenic zebrafish, owing to progressive methylation and silencing of the CpG-rich multicopy upstream activation sequence. Although a modified, less repetitive UAS construct may overcome this problem, it is highly desirable to have additional transcriptional regulatory systems that can be applied independently or in combination with the Gal4/UAS system for intersectional gene expression. The Q transcriptional regulatory system of Neurospora crassa functions similarly to Gal4/UAS. QF is a transcriptional activator that binds to the QUAS upstream regulatory sequence to drive reporter gene expression. Unlike Gal4, the QF binding site does not contain essential CpG dinucleotide sequences that are subject to DNA methylation. The QS protein is a repressor of QF mediated transcriptional activation akin to Gal80. The functionality of the Q system has been demonstrated in Drosophila and Caenorhabditis elegans and we now report its successful application to a vertebrate model, the zebrafish, Danio rerio. Several tissue-specific promoters were used to drive QF expression in stable transgenic lines, as assessed by activation of a QUAS:GFP transgene. The QS repressor was found to dramatically reduce QF activity in injected zebrafish embryos; however, a similar repression has not yet been achieved in transgenic animals expressing QS under the control of ubiquitous promoters. A dual reporter construct containing both QUAS and UAS, each upstream of different fluorescent proteins was also generated and tested in transient assays, demonstrating that the two systems can work in parallel within the same cell. The adoption of the Q system should greatly increase the versatility and power of transgenic approaches for regulating gene expression in zebrafish.  | 
    
| Author | Goll, Mary G. Parsons, Michael J. Halpern, Marnie E. Subedi, Abhignya Gee, Stephen T. Monge, Estela Macurak, Michelle Potter, Christopher J.  | 
    
| AuthorAffiliation | a Carnegie Institution for Science, Department of Embryology, Baltimore, MD 21218 USA b Department of Biology, Johns Hopkins University, Baltimore, MD 21218 USA d The Solomon H. Snyder Department of Neuroscience, Johns Hopkins Medical Institute c Department of Surgery, Johns Hopkins Medical Institute  | 
    
| AuthorAffiliation_xml | – name: c Department of Surgery, Johns Hopkins Medical Institute – name: d The Solomon H. Snyder Department of Neuroscience, Johns Hopkins Medical Institute – name: b Department of Biology, Johns Hopkins University, Baltimore, MD 21218 USA – name: a Carnegie Institution for Science, Department of Embryology, Baltimore, MD 21218 USA  | 
    
| Author_xml | – sequence: 1 givenname: Abhignya surname: Subedi fullname: Subedi, Abhignya organization: Carnegie Institution for Science, Department of Embryology, Baltimore, MD 21218, USA – sequence: 2 givenname: Michelle surname: Macurak fullname: Macurak, Michelle organization: Carnegie Institution for Science, Department of Embryology, Baltimore, MD 21218, USA – sequence: 3 givenname: Stephen T. surname: Gee fullname: Gee, Stephen T. organization: Department of Surgery, Johns Hopkins Medical Institute, Baltimore, MD, 21205, USA – sequence: 4 givenname: Estela surname: Monge fullname: Monge, Estela organization: Carnegie Institution for Science, Department of Embryology, Baltimore, MD 21218, USA – sequence: 5 givenname: Mary G. surname: Goll fullname: Goll, Mary G. organization: Carnegie Institution for Science, Department of Embryology, Baltimore, MD 21218, USA – sequence: 6 givenname: Christopher J. surname: Potter fullname: Potter, Christopher J. organization: The Solomon H. Snyder Department of Neuroscience, Johns Hopkins Medical Institute, Baltimore, MD, 21205, USA – sequence: 7 givenname: Michael J. surname: Parsons fullname: Parsons, Michael J. organization: Department of Surgery, Johns Hopkins Medical Institute, Baltimore, MD, 21205, USA – sequence: 8 givenname: Marnie E. surname: Halpern fullname: Halpern, Marnie E. email: halpern@ciwemb.edu organization: Carnegie Institution for Science, Department of Embryology, Baltimore, MD 21218, USA  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23792917$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqNUduK1TAUDTLiXPQLBOmjL625NGn6oDAM3mBQBH0Oabp7Tg5tckzSkfr15pyO1wdnSCCbZK2VvdY-RyfOO0DoKcEVwUS82FXLBGlbUUxYhUWFCX2AzghuedkShk8OdS1Kiik7Recx7jDOkEY-QqeUNS1tSXOGPlz2fp-sd4UfirSF4lORgnbRBHu81mMRYDOPOvmwFHGJCaZi8KH4Dl3Qg43bFb8BB9HGx-jhoMcIT27PC_TlzevPV-_K649v319dXpeGU55KqvNq26ERWkpKjOywBFxjyTou-8F0jEsCjOKWcFJT0fQg-ppQ0emac0LZBapX3dnt9fJNj6PaBzvpsCiC1SEetVPHeNQhHoWFwkfaq5W2n7sJegMuN_-b6rVVf784u1Ubf6OYlHnLLPD8ViD4rzPEpCYbDYyjduDnmD_LGTMuanEnlGQjosaCtveAEtFQho-qz_508Kv1nxPNgHYFmOBjDDAoY5M-jDIbsuMd8bB_uPcL9eXKgjzwGwtBRWPBGehtAJNU7-1_-T8A-EjeUQ | 
    
| CitedBy_id | crossref_primary_10_1534_genetics_119_302034 crossref_primary_10_1038_nprot_2014_187 crossref_primary_10_1038_s41592_021_01364_4 crossref_primary_10_7554_eLife_89516_3 crossref_primary_10_1016_j_cub_2020_11_010 crossref_primary_10_1016_j_devcel_2019_08_001 crossref_primary_10_1021_acssynbio_7b00149 crossref_primary_10_1186_s12934_019_1253_3 crossref_primary_10_1007_s11356_017_8711_4 crossref_primary_10_1093_nar_gkv035 crossref_primary_10_3389_fpls_2020_00245 crossref_primary_10_1016_j_cub_2023_05_039 crossref_primary_10_1016_j_ydbio_2014_07_021 crossref_primary_10_1016_j_ydbio_2023_10_006 crossref_primary_10_3389_fnana_2023_1196868 crossref_primary_10_1038_s42003_021_02923_3 crossref_primary_10_1016_j_omtm_2024_101202 crossref_primary_10_1093_oons_kvac018 crossref_primary_10_1083_jcb_201908225 crossref_primary_10_1016_j_celrep_2018_01_084 crossref_primary_10_1016_j_ymeth_2014_03_033 crossref_primary_10_3390_cells10030566 crossref_primary_10_1002_bit_28497 crossref_primary_10_1038_s41593_024_01815_z crossref_primary_10_1016_j_isci_2018_12_023 crossref_primary_10_1111_ejn_12932 crossref_primary_10_1371_journal_pone_0183757 crossref_primary_10_1016_j_cub_2020_05_037 crossref_primary_10_1016_j_ydbio_2020_07_007 crossref_primary_10_7554_eLife_89516 crossref_primary_10_1242_dev_177998 crossref_primary_10_7554_eLife_38393 crossref_primary_10_1038_s41467_021_24434_9 crossref_primary_10_1038_s41467_024_50462_2 crossref_primary_10_3109_10408444_2014_965805 crossref_primary_10_7554_eLife_72345 crossref_primary_10_1038_s41589_018_0004_9 crossref_primary_10_1021_acssynbio_1c00229  | 
    
| Cites_doi | 10.1534/genetics.109.102079 10.1038/nmeth.1800 10.1006/dbio.1999.9376 10.1016/S0091-679X(08)61893-2 10.1089/zeb.2008.0530 10.1111/j.1440-169X.2008.01044.x 10.1016/j.ydbio.2008.04.042 10.1073/pnas.91.16.7568 10.1006/dbio.1995.1265 10.1016/j.ydbio.2012.03.001 10.1073/pnas.0903060106 10.1016/j.cell.2010.02.025 10.1002/dvg.20766 10.1128/MCB.17.5.2679 10.1534/genetics.106.060244 10.1016/j.ydbio.2005.04.017 10.1002/dvdy.21354 10.1073/pnas.97.21.11403 10.1534/genetics.110.119917 10.1126/science.8016657 10.1002/dvdy.21343 10.1038/nmeth.1929 10.1016/j.ydbio.2008.02.034 10.1006/dbio.2001.0242 10.1038/nprot.2011.347 10.1016/j.ydbio.2011.01.002 10.1242/dev.059345 10.1073/pnas.1007799107 10.1073/pnas.1204520109 10.1016/j.mod.2009.07.002 10.1093/jhered/82.1.1 10.1016/0378-1119(94)90070-1 10.1007/978-1-60327-977-2_9 10.1016/j.mod.2006.11.005 10.1007/s1012601-0053-4 10.1002/dvdy.21863 10.1016/S0014-5793(03)00157-1  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2013 The Authors Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved. No copyright information found. Please enter mannually.  | 
    
| Copyright_xml | – notice: 2013 The Authors – notice: Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved. – notice: No copyright information found. Please enter mannually.  | 
    
| DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7QO 8FD F1W FR3 H95 L.G P64 RC3 7S9 L.6 5PM ADTOC UNPAY  | 
    
| DOI | 10.1016/j.ymeth.2013.06.012 | 
    
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Biotechnology Research Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Biotechnology and BioEngineering Abstracts Genetics Abstracts AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Genetics Abstracts Biotechnology Research Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitleList | AGRICOLA Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE MEDLINE - Academic  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Anatomy & Physiology Chemistry  | 
    
| EISSN | 1095-9130 | 
    
| EndPage | 440 | 
    
| ExternalDocumentID | 10.1016/j.ymeth.2013.06.012 PMC3883888 23792917 10_1016_j_ymeth_2013_06_012 S1046202313002132  | 
    
| Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural  | 
    
| GrantInformation_xml | – fundername: National Institute of Diabetes and Digestive and Kidney Diseases grantid: R01 DK080730 – fundername: National Institute of General Medical Sciences grantid: T32 GM007231 – fundername: NIDDK NIH HHS grantid: R01DK080730 – fundername: National Institute of Child Health & Human Development grantid: R01 HD058530 – fundername: National Institute on Deafness and Other Communication Disorders grantid: R01 DC013079 – fundername: NICHD NIH HHS grantid: 1R01HD058530 – fundername: National Institute of Child Health & Human Development grantid: R01 HD078220  | 
    
| GroupedDBID | --- --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 6I. 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AAOAW AAQFI AAXUO ABFRF ABGSF ABJNI ABMAC ABUDA ABXDB ABYKQ ACDAQ ACGFO ACGFS ACRLP ADBBV ADEZE ADUVX AEBSH AEFWE AEHWI AEKER AENEX AFKWA AFTJW AFXIZ AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DM4 DOVZS DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA HMG IHE J1W K-O KOM LG5 LX2 LZ5 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SCC SDF SDG SDP SES SPCBC SSU SSZ T5K XPP Y6R ZMT ZU3 ~G- --K .GJ 29M 53G AAHBH AALRI AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ACLOT ACRPL ACVFH ADCNI ADFGL ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGHFR AGQPQ AGRDE AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CAG CITATION COF EFKBS FEDTE FGOYB G-2 HLW HVGLF HZ~ R2- SBG SEW SIN WUQ ZGI ~HD CGR CUY CVF ECM EIF NPM 7X8 7QO 8FD F1W FR3 H95 L.G P64 RC3 7S9 L.6 5PM ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c525t-2a2a299f76a8821c8b08e04083b58dfcb3581e32091514267de6d4126ba455123 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 1046-2023 1095-9130  | 
    
| IngestDate | Wed Oct 29 11:53:09 EDT 2025 Tue Sep 30 16:58:33 EDT 2025 Sat Sep 27 21:18:13 EDT 2025 Tue Oct 07 09:51:14 EDT 2025 Sun Sep 28 05:49:43 EDT 2025 Wed Feb 19 02:34:46 EST 2025 Sat Oct 25 05:18:12 EDT 2025 Thu Apr 24 23:08:11 EDT 2025 Fri Feb 23 02:31:08 EST 2024  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 3 | 
    
| Keywords | QF activator Qa locus Gal4 QS repressor Transcriptional activation  | 
    
| Language | English | 
    
| License | http://creativecommons.org/licenses/by-nc-nd/3.0 Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved. cc-by-nc-nd  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c525t-2a2a299f76a8821c8b08e04083b58dfcb3581e32091514267de6d4126ba455123 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Current address: Developmental Biology Program, Sloan-Kettering Institute, New York, NY 10065 USA  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.ymeth.2013.06.012 | 
    
| PMID | 23792917 | 
    
| PQID | 1516723046 | 
    
| PQPubID | 23479 | 
    
| PageCount | 8 | 
    
| ParticipantIDs | unpaywall_primary_10_1016_j_ymeth_2013_06_012 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3883888 proquest_miscellaneous_2000135646 proquest_miscellaneous_1551640629 proquest_miscellaneous_1516723046 pubmed_primary_23792917 crossref_citationtrail_10_1016_j_ymeth_2013_06_012 crossref_primary_10_1016_j_ymeth_2013_06_012 elsevier_sciencedirect_doi_10_1016_j_ymeth_2013_06_012  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2014-04-01 | 
    
| PublicationDateYYYYMMDD | 2014-04-01 | 
    
| PublicationDate_xml | – month: 04 year: 2014 text: 2014-04-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States | 
    
| PublicationTitle | Methods (San Diego, Calif.) | 
    
| PublicationTitleAlternate | Methods | 
    
| PublicationYear | 2014 | 
    
| Publisher | Elsevier Inc | 
    
| Publisher_xml | – name: Elsevier Inc | 
    
| References | Zelenchuk, Bruses (b0080) 2011; 49 Parsons, Pisharath, Yusuff, Moore, Siekmann, Lawson, Leach (b0130) 2009; 126 Akitake, Macurak, Halpern, Goll (b0020) 2011; 352 Amsterdam, Lin, Hopkins (b0050) 1995; 171 Kwan, Fujimoto, Grabher, Mangum, Hardy, Campbell, Parant, Yost, Kanki, Chien (b0140) 2007; 236 Distel, Wullimann, Koster (b0155) 2009; 106 Linney, Hardison, Lonze, Lyons, DiNapoli (b0055) 1999; 213 Asakawa, Kawakami (b0150) 2008; 50 Knopf, Schnabel, Haase, Pfeifer, Anastassiadis, Weidinger (b0160) 2010; 107 Kawakami, Shima, Kawakami (b0040) 2000; 97 Johnson, Krieg (b0045) 1994; 147 Nakano, Windrem, Zappavigna, Goldman (b0075) 2005; 283 Urasaki, Morvan, Kawakami (b0060) 2006; 174 Villefranc, Amigo, Lawson (b0185) 2007; 236 Goll, Anderson, Stainier, Spradling, Halpern (b0015) 2009; 182 Ogura, Okuda, Kondoh, Kamachi (b0175) 2009; 238 Pfeiffer, Truman, Rubin (b0180) 2012; 109 Emelyanov, Parinov (b0090) 2008; 320 Potter, Tasic, Russler, Liang, Luo (b0030) 2010; 141 Wei, Potter, Luo, Shen (b0035) 2012; 9 Karlsson, von Hofsten, Olsson (b0135) 2001; 3 Giles, Geever, Asch, Avalos, Case (b0025) 1991; 82 Minoguchi, Taniguchi, Kato, Okazaki, Strobl, Zimber-Strobl, Bornkamm, Honjo (b0120) 1997; 17 Koster, Fraser (b0010) 2001; 233 Potter, Luo (b0170) 2011; 6 Walker (b0070) 1999; 60 Pisharath, Parsons (b0125) 2009; 546 del Valle Rodriguez, Didiano, Desplan (b0005) 2012; 9 Farooq, Sulochana, Pan, To, Sheng, Gong, Ge (b0095) 2008; 317 Mosimann, Kaufman, Li, Pugach, Tamplin, Zon (b0065) 2011; 138 Pisharath, Rhee, Swanson, Leach, Parsons (b0105) 2007; 124 Henkel, Ling, Hayward, Peterson (b0115) 1994; 265 Grossman, Johannsen, Tong, Yalamanchili, Kieff (b0110) 1994; 91 Halpern, Rhee, Goll, Akitake, Parsons, Leach (b0145) 2008; 5 Pfeiffer, Ngo, Hibbard, Murphy, Jenett, Truman, Rubin (b0165) 2010; 186 Arkhipova, Wendik, Devos, Ek, Peers, Meyer (b0085) 2012; 365 Her, Chiang, Chen, Wu (b0100) 2003; 538 Kawakami (10.1016/j.ymeth.2013.06.012_b0040) 2000; 97 Nakano (10.1016/j.ymeth.2013.06.012_b0075) 2005; 283 Halpern (10.1016/j.ymeth.2013.06.012_b0145) 2008; 5 Ogura (10.1016/j.ymeth.2013.06.012_b0175) 2009; 238 Walker (10.1016/j.ymeth.2013.06.012_b0070) 1999; 60 Henkel (10.1016/j.ymeth.2013.06.012_b0115) 1994; 265 Potter (10.1016/j.ymeth.2013.06.012_b0170) 2011; 6 Potter (10.1016/j.ymeth.2013.06.012_b0030) 2010; 141 Johnson (10.1016/j.ymeth.2013.06.012_b0045) 1994; 147 Grossman (10.1016/j.ymeth.2013.06.012_b0110) 1994; 91 Arkhipova (10.1016/j.ymeth.2013.06.012_b0085) 2012; 365 Asakawa (10.1016/j.ymeth.2013.06.012_b0150) 2008; 50 Pisharath (10.1016/j.ymeth.2013.06.012_b0105) 2007; 124 Pfeiffer (10.1016/j.ymeth.2013.06.012_b0165) 2010; 186 Koster (10.1016/j.ymeth.2013.06.012_b0010) 2001; 233 Mosimann (10.1016/j.ymeth.2013.06.012_b0065) 2011; 138 Giles (10.1016/j.ymeth.2013.06.012_b0025) 1991; 82 Linney (10.1016/j.ymeth.2013.06.012_b0055) 1999; 213 Amsterdam (10.1016/j.ymeth.2013.06.012_b0050) 1995; 171 Pisharath (10.1016/j.ymeth.2013.06.012_b0125) 2009; 546 Distel (10.1016/j.ymeth.2013.06.012_b0155) 2009; 106 Villefranc (10.1016/j.ymeth.2013.06.012_b0185) 2007; 236 Goll (10.1016/j.ymeth.2013.06.012_b0015) 2009; 182 Zelenchuk (10.1016/j.ymeth.2013.06.012_b0080) 2011; 49 Karlsson (10.1016/j.ymeth.2013.06.012_b0135) 2001; 3 Akitake (10.1016/j.ymeth.2013.06.012_b0020) 2011; 352 Emelyanov (10.1016/j.ymeth.2013.06.012_b0090) 2008; 320 Minoguchi (10.1016/j.ymeth.2013.06.012_b0120) 1997; 17 Parsons (10.1016/j.ymeth.2013.06.012_b0130) 2009; 126 del Valle Rodriguez (10.1016/j.ymeth.2013.06.012_b0005) 2012; 9 Her (10.1016/j.ymeth.2013.06.012_b0100) 2003; 538 Wei (10.1016/j.ymeth.2013.06.012_b0035) 2012; 9 Urasaki (10.1016/j.ymeth.2013.06.012_b0060) 2006; 174 Farooq (10.1016/j.ymeth.2013.06.012_b0095) 2008; 317 Knopf (10.1016/j.ymeth.2013.06.012_b0160) 2010; 107 Kwan (10.1016/j.ymeth.2013.06.012_b0140) 2007; 236 Pfeiffer (10.1016/j.ymeth.2013.06.012_b0180) 2012; 109  | 
    
| References_xml | – volume: 182 start-page: 747 year: 2009 end-page: 755 ident: b0015 publication-title: Genetics – volume: 9 start-page: 47 year: 2012 end-page: 55 ident: b0005 publication-title: Nat. Methods – volume: 317 start-page: 336 year: 2008 end-page: 353 ident: b0095 publication-title: Dev. Biol. – volume: 106 start-page: 13365 year: 2009 end-page: 13370 ident: b0155 publication-title: Proc. Natl. Acad. Sci. USA – volume: 236 start-page: 3088 year: 2007 end-page: 3099 ident: b0140 publication-title: Dev. Dyn. – volume: 213 start-page: 207 year: 1999 end-page: 216 ident: b0055 publication-title: Dev. Biol. – volume: 49 start-page: 546 year: 2011 end-page: 554 ident: b0080 publication-title: Genesis – volume: 171 start-page: 123 year: 1995 end-page: 129 ident: b0050 publication-title: Dev. Biol. – volume: 283 start-page: 474 year: 2005 end-page: 485 ident: b0075 publication-title: Dev. Biol. – volume: 97 start-page: 11403 year: 2000 end-page: 11408 ident: b0040 publication-title: Proc. Natl. Acad. Sci. USA – volume: 138 start-page: 169 year: 2011 end-page: 177 ident: b0065 publication-title: Development – volume: 147 start-page: 223 year: 1994 end-page: 226 ident: b0045 publication-title: Gene – volume: 233 start-page: 329 year: 2001 end-page: 346 ident: b0010 publication-title: Dev. Biol. – volume: 82 start-page: 1 year: 1991 end-page: 7 ident: b0025 publication-title: J. Hered. – volume: 124 start-page: 218 year: 2007 end-page: 229 ident: b0105 publication-title: Mech. Dev. – volume: 141 start-page: 536 year: 2010 end-page: 548 ident: b0030 publication-title: Cell – volume: 320 start-page: 113 year: 2008 end-page: 121 ident: b0090 publication-title: Dev. Biol. – volume: 60 start-page: 43 year: 1999 end-page: 70 ident: b0070 publication-title: Methods Cell Biol. – volume: 238 start-page: 641 year: 2009 end-page: 655 ident: b0175 publication-title: Dev. Dyn. – volume: 538 start-page: 125 year: 2003 end-page: 133 ident: b0100 publication-title: FEBS Lett. – volume: 546 start-page: 133 year: 2009 end-page: 143 ident: b0125 publication-title: Methods Mol. Biol. – volume: 109 start-page: 6626 year: 2012 end-page: 6631 ident: b0180 publication-title: Proc. Natl. Acad. Sci. USA – volume: 9 start-page: 391 year: 2012 end-page: 395 ident: b0035 publication-title: Nat. Methods – volume: 265 start-page: 92 year: 1994 end-page: 95 ident: b0115 publication-title: Science – volume: 107 start-page: 19933 year: 2010 end-page: 19938 ident: b0160 publication-title: Proc. Natl. Acad. Sci. USA – volume: 186 start-page: 735 year: 2010 end-page: 755 ident: b0165 publication-title: Genetics – volume: 5 start-page: 97 year: 2008 end-page: 110 ident: b0145 publication-title: Zebrafish – volume: 174 start-page: 639 year: 2006 end-page: 649 ident: b0060 publication-title: Genetics – volume: 126 start-page: 898 year: 2009 end-page: 912 ident: b0130 publication-title: Mech. Dev. – volume: 50 start-page: 391 year: 2008 end-page: 399 ident: b0150 publication-title: Dev. Growth Differ. – volume: 236 start-page: 3077 year: 2007 end-page: 3087 ident: b0185 publication-title: Dev. Dyn. – volume: 6 start-page: 1105 year: 2011 end-page: 1120 ident: b0170 publication-title: Nat. Protoc. – volume: 3 start-page: 522 year: 2001 end-page: 527 ident: b0135 publication-title: Mar. Biotechnol. (NY) – volume: 352 start-page: 191 year: 2011 end-page: 201 ident: b0020 publication-title: Dev. Biol. – volume: 365 start-page: 290 year: 2012 end-page: 302 ident: b0085 publication-title: Dev. Biol. – volume: 91 start-page: 7568 year: 1994 end-page: 7572 ident: b0110 publication-title: Proc. Natl. Acad. Sci. USA – volume: 17 start-page: 2679 year: 1997 end-page: 2687 ident: b0120 publication-title: Mol. Cell. Biol. – volume: 182 start-page: 747 year: 2009 ident: 10.1016/j.ymeth.2013.06.012_b0015 publication-title: Genetics doi: 10.1534/genetics.109.102079 – volume: 9 start-page: 47 year: 2012 ident: 10.1016/j.ymeth.2013.06.012_b0005 publication-title: Nat. Methods doi: 10.1038/nmeth.1800 – volume: 213 start-page: 207 year: 1999 ident: 10.1016/j.ymeth.2013.06.012_b0055 publication-title: Dev. Biol. doi: 10.1006/dbio.1999.9376 – volume: 60 start-page: 43 year: 1999 ident: 10.1016/j.ymeth.2013.06.012_b0070 publication-title: Methods Cell Biol. doi: 10.1016/S0091-679X(08)61893-2 – volume: 5 start-page: 97 year: 2008 ident: 10.1016/j.ymeth.2013.06.012_b0145 publication-title: Zebrafish doi: 10.1089/zeb.2008.0530 – volume: 50 start-page: 391 year: 2008 ident: 10.1016/j.ymeth.2013.06.012_b0150 publication-title: Dev. Growth Differ. doi: 10.1111/j.1440-169X.2008.01044.x – volume: 320 start-page: 113 year: 2008 ident: 10.1016/j.ymeth.2013.06.012_b0090 publication-title: Dev. Biol. doi: 10.1016/j.ydbio.2008.04.042 – volume: 91 start-page: 7568 year: 1994 ident: 10.1016/j.ymeth.2013.06.012_b0110 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.91.16.7568 – volume: 171 start-page: 123 year: 1995 ident: 10.1016/j.ymeth.2013.06.012_b0050 publication-title: Dev. Biol. doi: 10.1006/dbio.1995.1265 – volume: 365 start-page: 290 year: 2012 ident: 10.1016/j.ymeth.2013.06.012_b0085 publication-title: Dev. Biol. doi: 10.1016/j.ydbio.2012.03.001 – volume: 106 start-page: 13365 year: 2009 ident: 10.1016/j.ymeth.2013.06.012_b0155 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0903060106 – volume: 141 start-page: 536 year: 2010 ident: 10.1016/j.ymeth.2013.06.012_b0030 publication-title: Cell doi: 10.1016/j.cell.2010.02.025 – volume: 49 start-page: 546 year: 2011 ident: 10.1016/j.ymeth.2013.06.012_b0080 publication-title: Genesis doi: 10.1002/dvg.20766 – volume: 17 start-page: 2679 year: 1997 ident: 10.1016/j.ymeth.2013.06.012_b0120 publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.17.5.2679 – volume: 174 start-page: 639 year: 2006 ident: 10.1016/j.ymeth.2013.06.012_b0060 publication-title: Genetics doi: 10.1534/genetics.106.060244 – volume: 283 start-page: 474 year: 2005 ident: 10.1016/j.ymeth.2013.06.012_b0075 publication-title: Dev. Biol. doi: 10.1016/j.ydbio.2005.04.017 – volume: 236 start-page: 3077 year: 2007 ident: 10.1016/j.ymeth.2013.06.012_b0185 publication-title: Dev. Dyn. doi: 10.1002/dvdy.21354 – volume: 97 start-page: 11403 year: 2000 ident: 10.1016/j.ymeth.2013.06.012_b0040 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.97.21.11403 – volume: 186 start-page: 735 year: 2010 ident: 10.1016/j.ymeth.2013.06.012_b0165 publication-title: Genetics doi: 10.1534/genetics.110.119917 – volume: 265 start-page: 92 year: 1994 ident: 10.1016/j.ymeth.2013.06.012_b0115 publication-title: Science doi: 10.1126/science.8016657 – volume: 236 start-page: 3088 year: 2007 ident: 10.1016/j.ymeth.2013.06.012_b0140 publication-title: Dev. Dyn. doi: 10.1002/dvdy.21343 – volume: 9 start-page: 391 year: 2012 ident: 10.1016/j.ymeth.2013.06.012_b0035 publication-title: Nat. Methods doi: 10.1038/nmeth.1929 – volume: 317 start-page: 336 year: 2008 ident: 10.1016/j.ymeth.2013.06.012_b0095 publication-title: Dev. Biol. doi: 10.1016/j.ydbio.2008.02.034 – volume: 233 start-page: 329 year: 2001 ident: 10.1016/j.ymeth.2013.06.012_b0010 publication-title: Dev. Biol. doi: 10.1006/dbio.2001.0242 – volume: 6 start-page: 1105 year: 2011 ident: 10.1016/j.ymeth.2013.06.012_b0170 publication-title: Nat. Protoc. doi: 10.1038/nprot.2011.347 – volume: 352 start-page: 191 year: 2011 ident: 10.1016/j.ymeth.2013.06.012_b0020 publication-title: Dev. Biol. doi: 10.1016/j.ydbio.2011.01.002 – volume: 138 start-page: 169 year: 2011 ident: 10.1016/j.ymeth.2013.06.012_b0065 publication-title: Development doi: 10.1242/dev.059345 – volume: 107 start-page: 19933 year: 2010 ident: 10.1016/j.ymeth.2013.06.012_b0160 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1007799107 – volume: 109 start-page: 6626 year: 2012 ident: 10.1016/j.ymeth.2013.06.012_b0180 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1204520109 – volume: 126 start-page: 898 year: 2009 ident: 10.1016/j.ymeth.2013.06.012_b0130 publication-title: Mech. Dev. doi: 10.1016/j.mod.2009.07.002 – volume: 82 start-page: 1 year: 1991 ident: 10.1016/j.ymeth.2013.06.012_b0025 publication-title: J. Hered. doi: 10.1093/jhered/82.1.1 – volume: 147 start-page: 223 year: 1994 ident: 10.1016/j.ymeth.2013.06.012_b0045 publication-title: Gene doi: 10.1016/0378-1119(94)90070-1 – volume: 546 start-page: 133 year: 2009 ident: 10.1016/j.ymeth.2013.06.012_b0125 publication-title: Methods Mol. Biol. doi: 10.1007/978-1-60327-977-2_9 – volume: 124 start-page: 218 year: 2007 ident: 10.1016/j.ymeth.2013.06.012_b0105 publication-title: Mech. Dev. doi: 10.1016/j.mod.2006.11.005 – volume: 3 start-page: 522 year: 2001 ident: 10.1016/j.ymeth.2013.06.012_b0135 publication-title: Mar. Biotechnol. (NY) doi: 10.1007/s1012601-0053-4 – volume: 238 start-page: 641 year: 2009 ident: 10.1016/j.ymeth.2013.06.012_b0175 publication-title: Dev. Dyn. doi: 10.1002/dvdy.21863 – volume: 538 start-page: 125 year: 2003 ident: 10.1016/j.ymeth.2013.06.012_b0100 publication-title: FEBS Lett. doi: 10.1016/S0014-5793(03)00157-1  | 
    
| SSID | ssj0001278 | 
    
| Score | 2.31612 | 
    
| Snippet | •Q transcriptional regulatory system of Neurospora crassa functions in zebrafish.•Tissue-specific QF driver lines activate a QUAS:GFP transgenic... The Gal4-UAS regulatory system of yeast is widely used to modulate gene expression in Drosophila; however, there are limitations to its usefulness in... The Gal4–UAS regulatory system of yeast is widely used to modulate gene expression in Drosophila; however, there are limitations to its usefulness in...  | 
    
| SourceID | unpaywall pubmedcentral proquest pubmed crossref elsevier  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 433 | 
    
| SubjectTerms | Animals Animals, Genetically Modified - metabolism binding sites Caenorhabditis elegans Danio rerio DNA methylation Drosophila fluorescent proteins Freshwater Gal4 gene expression Gene Expression Regulation - genetics Gene Expression Regulation, Developmental Genes, Fungal Genetic Engineering - methods Green Fluorescent Proteins - analysis Green Fluorescent Proteins - genetics Neurospora crassa Neurospora crassa - genetics Qa locus QF activator QS repressor reporter genes transactivators transcription (genetics) Transcription Factors - genetics Transcriptional Activation transgenes transgenesis transgenic animals vertebrates yeasts Zebrafish - genetics  | 
    
| SummonAdditionalLinks | – databaseName: ScienceDirect (Elsevier) dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9swEBalL91LWdu1y9YWDcae5saWZEl5DKGlDFYYW6FvQrLl1SO1Q35Q0of-7b2T7XShNIxhv9g-CftOOn2WPt0R8lkW3g5sLiKeSZytEknkbJpFTLtUxwX4v5Ct4fuVvLwW327Smy0y6vbCIK2y9f2NTw_eur3Tb7XZn5Rl_yeuTmLyb1yQYfBThTvYhcIsBmePzzSPhKlmO5yQEUp3kYcCx2uJaZqR38VDEM-EvTY6vUSfL0mUO4tqYpf3djz-a4S6eEt2W2hJh83b75EtX-2Tg2EFv9V3S_qFBrJnmEXfJzujLtHbAbka5nVwHLQuKOBB-oPOcQTr_AnUOW0y1tfTJW1CP1PAuvQBF52LcnbbyP9Gt1nO3pHri_Nfo8uoTbMQZSlL5xGzcAwGhZIW4HaSaRdrD31bczBXXmQOQ6R5zgBZALpiUuVe5iJh0lkBeIvxQ7Jd1ZV_T2jhBcslIK4klyLm3DkZi8RpGTvhnUp7hHXqNVkbgxxTYYxNRzb7Y4JNDNrEIOUuYT3ydVVo0oTg2CwuO7uZtZZkYJDYXPBTZ2UDFsCFE1v5ejEz8N1S4ey53CQDQoCO2OB1GRYQdyqxnqOm9ay-iHGFelM9otba1UoA44CvP6nK2xAPnGsNp-6RaNUC_0VRH_5XUR_JG7hq-UvHZHs-XfgTgGZzdxr63hPXpzcM priority: 102 providerName: Elsevier  | 
    
| Title | Adoption of the Q transcriptional regulatory system for zebrafish transgenesis | 
    
| URI | https://dx.doi.org/10.1016/j.ymeth.2013.06.012 https://www.ncbi.nlm.nih.gov/pubmed/23792917 https://www.proquest.com/docview/1516723046 https://www.proquest.com/docview/1551640629 https://www.proquest.com/docview/2000135646 https://pubmed.ncbi.nlm.nih.gov/PMC3883888 https://doi.org/10.1016/j.ymeth.2013.06.012  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 66 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1095-9130 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001278 issn: 1095-9130 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1095-9130 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001278 issn: 1095-9130 databaseCode: ACRLP dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1095-9130 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001278 issn: 1095-9130 databaseCode: AIKHN dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1095-9130 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001278 issn: 1095-9130 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1095-9130 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001278 issn: 1095-9130 databaseCode: AKRWK dateStart: 19900801 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB5Be1guPHZ5lEdlJMSJVIntOOkxWrEqICqQqLScojhxdgslWbWpUPfAb2fGTirKstWi5JAoE0u2J-Mv9vj7AF6p0mTjrJCeyBXNVsnA01mYezzWYeyXGP-sWsPHqZrM5PvT8LTl2aa9MDvr9zYPa0NSypSDJSzRJikK91WIwLsH_dn0U_LV8Q0oj4TA7bVTH_Q7jqF_l3LdOHQVZ15NlzxYVxfZ5me2WPwxFp3cc5u8V5bCkFJQvo_WjR7ll38RPN6wmvfhbotJWeKc6AHcMtUhHCUV_o__2LDXzGaJ2un3Qzg47hTijmCaFLWNOKwuGQJJ9pk1NPR1gQjLXDqp-3q5YY4zmiFIZpe0Wl3OV-fO_ozi7Xz1EGYnb78cT7xWn8HLQx42Hs_wGI_LSGWI04M81n5sMCjEAvu5KHNN3GpGcIQkCMu4igqjChlwpTOJQI2LR9Cr6so8AVYayQuFUC0olPSF0Fr5MtCx8rU0OgoHwLveSvOWvJw0NBZpl6X2LbUtmFILppSrF_ABvNm-dOG4O_abq84N0hZ-OFiRYm_tf_Fl5zQp9gCtuGSVqderFOutIpp2V_ts0AhhFR9fb8MtVA8VlfPYOeO2RlxE1G7RAKIdN90aEIH47pNqfm6JxEUc4xkPwNs69E0a6ul_2j-DO3jX5js9h16zXJsXCOUaPYTbo1_BEPrJuw-T6bD9oH8DpgNFgg | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB4ty6FcEOzyKE8jIU6EJrZjp8eqYlVgtxJiV9qbFScOG1SSqg-hcuC3M-MkhWq1FULJKRlbyYw9_mx_ngF4rQqXDtNcBiJTtFolo8CmcRbwxMZJWKD_89kazqZqciE_XsaXBzDuzsIQrbL1_Y1P9966fTJotTmYl-XgC-1OUvJv2pDhOKm6BbdlzDXNwN79-sPziLhuzsNJFZB4F3rIk7w2lKeZCF7CR_GM-E3D03X4eZ1F2VtX83TzI53N_hqiTu7B3RZbslHz-ffhwFVHcDyqcF79fcPeMM_29MvoR9Abd5nejmE6ymvvOVhdMASE7DNb0RDWORSsc9GkrK8XG9bEfmYIdtlP2nUuyuVVI_-V_Ga5fAAXJ-_Px5OgzbMQZDGPVwFP8RoOC61SxNtRltgwcdi5E4H2yovMUow0JzhCC4RXXOncqVxGXNlUIuDi4iEcVnXlHgMrnOS5QsgV5UqGQlirQhnZRIVWOqvjPvBOvSZrg5BTLoyZ6dhm34y3iSGbGOLcRbwPb7eF5k0Mjv3iqrOb2WlKBkeJ_QVfdVY2aAHaOUkrV6-XBv9baVo-V_tkUAjhER_eLMM95I4V1fOoaT3bP-JCk950H_ROu9oKUCDw3TdVeeUDgoskwTvpQ7Btgf-iqCf_q6iX0Jucn52a0w_TT0_hDr5pyUzP4HC1WLvniNNW9oXvh78BfAI6Lw | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1da9swFBUlfehe9tHuI906NBh7mostybLyGMpKGTR0sED7JCRbXrNldkkcRvrre69kh2ZtQ4v9YONrgaTrq2Pp6hxCPsvSmYEpRMRzibNVIomsSfOIKZuquIT459UaTkfyZCy-n6fnLc827oVZW7_3eVhLlFLGHCzuiTZRUXhbpgC8e2R7PDobXgS-ARmhELi_DuqDcccxdH8pD41Dd3Hm3XTJnUV1ZZb_zHR6ayw6fhE2ec89hSGmoPw5XDT2ML_-j-DxkdV8SZ63mJQOgxO9Iluu2iV7wwr-x_8u6Rfqs0T99Psu2TnqFOL2yGhY1D7i0LqkACTpD9rg0NcFIihzFqTu69mSBs5oCiCZXuNqdTmZXwb7XxhvJ_PXZHz87efRSdTqM0R5ytImYgaOwaDMpAGcnuTKxspBUFAc-rkoc4vcao4zgCQAy5jMCicLkTBpjQCgxvgb0qvqyr0jtHSCFRKgWlJIEXNurYxFYpWMrXA2S_uEdb2l85a8HDU0prrLUvutfQtqbEGNuXoJ65Ovq5euAnfHZnPZuYFu4UeAFRp6a_OLnzqn0dADuOJiKlcv5hrqLTOcdpebbMAIYBUbPGzDPFRPJZbzNjjjqkaMZ9huWZ9ka266MkAC8fUn1eTSE4lzpeBUfRKtHPoxDbX_RPv35BnctflOH0ivmS3cAUC5xn5sP-Eb7_ZC9g | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adoption+of+the+Q+transcriptional+regulatory+system+for+zebrafish+transgenesis&rft.jtitle=Methods+%28San+Diego%2C+Calif.%29&rft.au=Subedi%2C+Abhignya&rft.au=Macurak%2C+Michelle&rft.au=Gee%2C+Stephen+T&rft.au=Monge%2C+Estela&rft.date=2014-04-01&rft.eissn=1095-9130&rft.volume=66&rft.issue=3&rft.spage=433&rft_id=info:doi/10.1016%2Fj.ymeth.2013.06.012&rft_id=info%3Apmid%2F23792917&rft.externalDocID=23792917 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1046-2023&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1046-2023&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1046-2023&client=summon |