Adoption of the Q transcriptional regulatory system for zebrafish transgenesis

•Q transcriptional regulatory system of Neurospora crassa functions in zebrafish.•Tissue-specific QF driver lines activate a QUAS:GFP transgenic reporter.•Silencing of QUAS-regulated transgenes not observed in F4 generation.•Q reagents cloned into Tol2 Gateway vectors for ease of use and distributio...

Full description

Saved in:
Bibliographic Details
Published inMethods (San Diego, Calif.) Vol. 66; no. 3; pp. 433 - 440
Main Authors Subedi, Abhignya, Macurak, Michelle, Gee, Stephen T., Monge, Estela, Goll, Mary G., Potter, Christopher J., Parsons, Michael J., Halpern, Marnie E.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.04.2014
Subjects
Online AccessGet full text
ISSN1046-2023
1095-9130
1095-9130
DOI10.1016/j.ymeth.2013.06.012

Cover

Abstract •Q transcriptional regulatory system of Neurospora crassa functions in zebrafish.•Tissue-specific QF driver lines activate a QUAS:GFP transgenic reporter.•Silencing of QUAS-regulated transgenes not observed in F4 generation.•Q reagents cloned into Tol2 Gateway vectors for ease of use and distribution. The Gal4–UAS regulatory system of yeast is widely used to modulate gene expression in Drosophila; however, there are limitations to its usefulness in transgenic zebrafish, owing to progressive methylation and silencing of the CpG-rich multicopy upstream activation sequence. Although a modified, less repetitive UAS construct may overcome this problem, it is highly desirable to have additional transcriptional regulatory systems that can be applied independently or in combination with the Gal4/UAS system for intersectional gene expression. The Q transcriptional regulatory system of Neurospora crassa functions similarly to Gal4/UAS. QF is a transcriptional activator that binds to the QUAS upstream regulatory sequence to drive reporter gene expression. Unlike Gal4, the QF binding site does not contain essential CpG dinucleotide sequences that are subject to DNA methylation. The QS protein is a repressor of QF mediated transcriptional activation akin to Gal80. The functionality of the Q system has been demonstrated in Drosophila and Caenorhabditis elegans and we now report its successful application to a vertebrate model, the zebrafish, Danio rerio. Several tissue-specific promoters were used to drive QF expression in stable transgenic lines, as assessed by activation of a QUAS:GFP transgene. The QS repressor was found to dramatically reduce QF activity in injected zebrafish embryos; however, a similar repression has not yet been achieved in transgenic animals expressing QS under the control of ubiquitous promoters. A dual reporter construct containing both QUAS and UAS, each upstream of different fluorescent proteins was also generated and tested in transient assays, demonstrating that the two systems can work in parallel within the same cell. The adoption of the Q system should greatly increase the versatility and power of transgenic approaches for regulating gene expression in zebrafish.
AbstractList The Gal4-UAS regulatory system of yeast is widely used to modulate gene expression in Drosophila; however, there are limitations to its usefulness in transgenic zebrafish, owing to progressive methylation and silencing of the CpG-rich multicopy upstream activation sequence. Although a modified, less repetitive UAS construct may overcome this problem, it is highly desirable to have additional transcriptional regulatory systems that can be applied independently or in combination with the Gal4/UAS system for intersectional gene expression. The Q transcriptional regulatory system of Neurospora crassa functions similarly to Gal4/UAS. QF is a transcriptional activator that binds to the QUAS upstream regulatory sequence to drive reporter gene expression. Unlike Gal4, the QF binding site does not contain essential CpG dinucleotide sequences that are subject to DNA methylation. The QS protein is a repressor of QF mediated transcriptional activation akin to Gal80. The functionality of the Q system has been demonstrated in Drosophila and C. elegans and we now report its successful application to a vertebrate model, the zebrafish, Danio rerio. Several tissue-specific promoters were used to drive QF expression in stable transgenic lines, as assessed by activation of a QUAS:GFP transgene. The QS repressor was found to dramatically reduce QF activity in injected zebrafish embryos; however, a similar repression has not yet been achieved in transgenic animals expressing QS under the control of ubiquitous promoters. A dual reporter construct containing both QUAS and UAS, each upstream of different fluorescent proteins was also generated and tested in transient assays, demonstrating that the two systems can work in parallel within the same cell. The adoption of the Q system should greatly increase the versatility and power of transgenic approaches for regulating gene expression in zebrafish.
The Gal4–UAS regulatory system of yeast is widely used to modulate gene expression in Drosophila; however, there are limitations to its usefulness in transgenic zebrafish, owing to progressive methylation and silencing of the CpG-rich multicopy upstream activation sequence. Although a modified, less repetitive UAS construct may overcome this problem, it is highly desirable to have additional transcriptional regulatory systems that can be applied independently or in combination with the Gal4/UAS system for intersectional gene expression. The Q transcriptional regulatory system of Neurospora crassa functions similarly to Gal4/UAS. QF is a transcriptional activator that binds to the QUAS upstream regulatory sequence to drive reporter gene expression. Unlike Gal4, the QF binding site does not contain essential CpG dinucleotide sequences that are subject to DNA methylation. The QS protein is a repressor of QF mediated transcriptional activation akin to Gal80. The functionality of the Q system has been demonstrated in Drosophila and Caenorhabditis elegans and we now report its successful application to a vertebrate model, the zebrafish, Danio rerio. Several tissue-specific promoters were used to drive QF expression in stable transgenic lines, as assessed by activation of a QUAS:GFP transgene. The QS repressor was found to dramatically reduce QF activity in injected zebrafish embryos; however, a similar repression has not yet been achieved in transgenic animals expressing QS under the control of ubiquitous promoters. A dual reporter construct containing both QUAS and UAS, each upstream of different fluorescent proteins was also generated and tested in transient assays, demonstrating that the two systems can work in parallel within the same cell. The adoption of the Q system should greatly increase the versatility and power of transgenic approaches for regulating gene expression in zebrafish.
The Gal4-UAS regulatory system of yeast is widely used to modulate gene expression in Drosophila; however, there are limitations to its usefulness in transgenic zebrafish, owing to progressive methylation and silencing of the CpG-rich multicopy upstream activation sequence. Although a modified, less repetitive UAS construct may overcome this problem, it is highly desirable to have additional transcriptional regulatory systems that can be applied independently or in combination with the Gal4/UAS system for intersectional gene expression. The Q transcriptional regulatory system of Neurospora crassa functions similarly to Gal4/UAS. QF is a transcriptional activator that binds to the QUAS upstream regulatory sequence to drive reporter gene expression. Unlike Gal4, the QF binding site does not contain essential CpG dinucleotide sequences that are subject to DNA methylation. The QS protein is a repressor of QF mediated transcriptional activation akin to Gal80. The functionality of the Q system has been demonstrated in Drosophila and Caenorhabditis elegans and we now report its successful application to a vertebrate model, the zebrafish, Danio rerio. Several tissue-specific promoters were used to drive QF expression in stable transgenic lines, as assessed by activation of a QUAS:GFP transgene. The QS repressor was found to dramatically reduce QF activity in injected zebrafish embryos; however, a similar repression has not yet been achieved in transgenic animals expressing QS under the control of ubiquitous promoters. A dual reporter construct containing both QUAS and UAS, each upstream of different fluorescent proteins was also generated and tested in transient assays, demonstrating that the two systems can work in parallel within the same cell. The adoption of the Q system should greatly increase the versatility and power of transgenic approaches for regulating gene expression in zebrafish.The Gal4-UAS regulatory system of yeast is widely used to modulate gene expression in Drosophila; however, there are limitations to its usefulness in transgenic zebrafish, owing to progressive methylation and silencing of the CpG-rich multicopy upstream activation sequence. Although a modified, less repetitive UAS construct may overcome this problem, it is highly desirable to have additional transcriptional regulatory systems that can be applied independently or in combination with the Gal4/UAS system for intersectional gene expression. The Q transcriptional regulatory system of Neurospora crassa functions similarly to Gal4/UAS. QF is a transcriptional activator that binds to the QUAS upstream regulatory sequence to drive reporter gene expression. Unlike Gal4, the QF binding site does not contain essential CpG dinucleotide sequences that are subject to DNA methylation. The QS protein is a repressor of QF mediated transcriptional activation akin to Gal80. The functionality of the Q system has been demonstrated in Drosophila and Caenorhabditis elegans and we now report its successful application to a vertebrate model, the zebrafish, Danio rerio. Several tissue-specific promoters were used to drive QF expression in stable transgenic lines, as assessed by activation of a QUAS:GFP transgene. The QS repressor was found to dramatically reduce QF activity in injected zebrafish embryos; however, a similar repression has not yet been achieved in transgenic animals expressing QS under the control of ubiquitous promoters. A dual reporter construct containing both QUAS and UAS, each upstream of different fluorescent proteins was also generated and tested in transient assays, demonstrating that the two systems can work in parallel within the same cell. The adoption of the Q system should greatly increase the versatility and power of transgenic approaches for regulating gene expression in zebrafish.
•Q transcriptional regulatory system of Neurospora crassa functions in zebrafish.•Tissue-specific QF driver lines activate a QUAS:GFP transgenic reporter.•Silencing of QUAS-regulated transgenes not observed in F4 generation.•Q reagents cloned into Tol2 Gateway vectors for ease of use and distribution. The Gal4–UAS regulatory system of yeast is widely used to modulate gene expression in Drosophila; however, there are limitations to its usefulness in transgenic zebrafish, owing to progressive methylation and silencing of the CpG-rich multicopy upstream activation sequence. Although a modified, less repetitive UAS construct may overcome this problem, it is highly desirable to have additional transcriptional regulatory systems that can be applied independently or in combination with the Gal4/UAS system for intersectional gene expression. The Q transcriptional regulatory system of Neurospora crassa functions similarly to Gal4/UAS. QF is a transcriptional activator that binds to the QUAS upstream regulatory sequence to drive reporter gene expression. Unlike Gal4, the QF binding site does not contain essential CpG dinucleotide sequences that are subject to DNA methylation. The QS protein is a repressor of QF mediated transcriptional activation akin to Gal80. The functionality of the Q system has been demonstrated in Drosophila and Caenorhabditis elegans and we now report its successful application to a vertebrate model, the zebrafish, Danio rerio. Several tissue-specific promoters were used to drive QF expression in stable transgenic lines, as assessed by activation of a QUAS:GFP transgene. The QS repressor was found to dramatically reduce QF activity in injected zebrafish embryos; however, a similar repression has not yet been achieved in transgenic animals expressing QS under the control of ubiquitous promoters. A dual reporter construct containing both QUAS and UAS, each upstream of different fluorescent proteins was also generated and tested in transient assays, demonstrating that the two systems can work in parallel within the same cell. The adoption of the Q system should greatly increase the versatility and power of transgenic approaches for regulating gene expression in zebrafish.
Author Goll, Mary G.
Parsons, Michael J.
Halpern, Marnie E.
Subedi, Abhignya
Gee, Stephen T.
Monge, Estela
Macurak, Michelle
Potter, Christopher J.
AuthorAffiliation a Carnegie Institution for Science, Department of Embryology, Baltimore, MD 21218 USA
b Department of Biology, Johns Hopkins University, Baltimore, MD 21218 USA
d The Solomon H. Snyder Department of Neuroscience, Johns Hopkins Medical Institute
c Department of Surgery, Johns Hopkins Medical Institute
AuthorAffiliation_xml – name: c Department of Surgery, Johns Hopkins Medical Institute
– name: d The Solomon H. Snyder Department of Neuroscience, Johns Hopkins Medical Institute
– name: b Department of Biology, Johns Hopkins University, Baltimore, MD 21218 USA
– name: a Carnegie Institution for Science, Department of Embryology, Baltimore, MD 21218 USA
Author_xml – sequence: 1
  givenname: Abhignya
  surname: Subedi
  fullname: Subedi, Abhignya
  organization: Carnegie Institution for Science, Department of Embryology, Baltimore, MD 21218, USA
– sequence: 2
  givenname: Michelle
  surname: Macurak
  fullname: Macurak, Michelle
  organization: Carnegie Institution for Science, Department of Embryology, Baltimore, MD 21218, USA
– sequence: 3
  givenname: Stephen T.
  surname: Gee
  fullname: Gee, Stephen T.
  organization: Department of Surgery, Johns Hopkins Medical Institute, Baltimore, MD, 21205, USA
– sequence: 4
  givenname: Estela
  surname: Monge
  fullname: Monge, Estela
  organization: Carnegie Institution for Science, Department of Embryology, Baltimore, MD 21218, USA
– sequence: 5
  givenname: Mary G.
  surname: Goll
  fullname: Goll, Mary G.
  organization: Carnegie Institution for Science, Department of Embryology, Baltimore, MD 21218, USA
– sequence: 6
  givenname: Christopher J.
  surname: Potter
  fullname: Potter, Christopher J.
  organization: The Solomon H. Snyder Department of Neuroscience, Johns Hopkins Medical Institute, Baltimore, MD, 21205, USA
– sequence: 7
  givenname: Michael J.
  surname: Parsons
  fullname: Parsons, Michael J.
  organization: Department of Surgery, Johns Hopkins Medical Institute, Baltimore, MD, 21205, USA
– sequence: 8
  givenname: Marnie E.
  surname: Halpern
  fullname: Halpern, Marnie E.
  email: halpern@ciwemb.edu
  organization: Carnegie Institution for Science, Department of Embryology, Baltimore, MD 21218, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23792917$$D View this record in MEDLINE/PubMed
BookMark eNqNUduK1TAUDTLiXPQLBOmjL625NGn6oDAM3mBQBH0Oabp7Tg5tckzSkfr15pyO1wdnSCCbZK2VvdY-RyfOO0DoKcEVwUS82FXLBGlbUUxYhUWFCX2AzghuedkShk8OdS1Kiik7Recx7jDOkEY-QqeUNS1tSXOGPlz2fp-sd4UfirSF4lORgnbRBHu81mMRYDOPOvmwFHGJCaZi8KH4Dl3Qg43bFb8BB9HGx-jhoMcIT27PC_TlzevPV-_K649v319dXpeGU55KqvNq26ERWkpKjOywBFxjyTou-8F0jEsCjOKWcFJT0fQg-ppQ0emac0LZBapX3dnt9fJNj6PaBzvpsCiC1SEetVPHeNQhHoWFwkfaq5W2n7sJegMuN_-b6rVVf784u1Ubf6OYlHnLLPD8ViD4rzPEpCYbDYyjduDnmD_LGTMuanEnlGQjosaCtveAEtFQho-qz_508Kv1nxPNgHYFmOBjDDAoY5M-jDIbsuMd8bB_uPcL9eXKgjzwGwtBRWPBGehtAJNU7-1_-T8A-EjeUQ
CitedBy_id crossref_primary_10_1534_genetics_119_302034
crossref_primary_10_1038_nprot_2014_187
crossref_primary_10_1038_s41592_021_01364_4
crossref_primary_10_7554_eLife_89516_3
crossref_primary_10_1016_j_cub_2020_11_010
crossref_primary_10_1016_j_devcel_2019_08_001
crossref_primary_10_1021_acssynbio_7b00149
crossref_primary_10_1186_s12934_019_1253_3
crossref_primary_10_1007_s11356_017_8711_4
crossref_primary_10_1093_nar_gkv035
crossref_primary_10_3389_fpls_2020_00245
crossref_primary_10_1016_j_cub_2023_05_039
crossref_primary_10_1016_j_ydbio_2014_07_021
crossref_primary_10_1016_j_ydbio_2023_10_006
crossref_primary_10_3389_fnana_2023_1196868
crossref_primary_10_1038_s42003_021_02923_3
crossref_primary_10_1016_j_omtm_2024_101202
crossref_primary_10_1093_oons_kvac018
crossref_primary_10_1083_jcb_201908225
crossref_primary_10_1016_j_celrep_2018_01_084
crossref_primary_10_1016_j_ymeth_2014_03_033
crossref_primary_10_3390_cells10030566
crossref_primary_10_1002_bit_28497
crossref_primary_10_1038_s41593_024_01815_z
crossref_primary_10_1016_j_isci_2018_12_023
crossref_primary_10_1111_ejn_12932
crossref_primary_10_1371_journal_pone_0183757
crossref_primary_10_1016_j_cub_2020_05_037
crossref_primary_10_1016_j_ydbio_2020_07_007
crossref_primary_10_7554_eLife_89516
crossref_primary_10_1242_dev_177998
crossref_primary_10_7554_eLife_38393
crossref_primary_10_1038_s41467_021_24434_9
crossref_primary_10_1038_s41467_024_50462_2
crossref_primary_10_3109_10408444_2014_965805
crossref_primary_10_7554_eLife_72345
crossref_primary_10_1038_s41589_018_0004_9
crossref_primary_10_1021_acssynbio_1c00229
Cites_doi 10.1534/genetics.109.102079
10.1038/nmeth.1800
10.1006/dbio.1999.9376
10.1016/S0091-679X(08)61893-2
10.1089/zeb.2008.0530
10.1111/j.1440-169X.2008.01044.x
10.1016/j.ydbio.2008.04.042
10.1073/pnas.91.16.7568
10.1006/dbio.1995.1265
10.1016/j.ydbio.2012.03.001
10.1073/pnas.0903060106
10.1016/j.cell.2010.02.025
10.1002/dvg.20766
10.1128/MCB.17.5.2679
10.1534/genetics.106.060244
10.1016/j.ydbio.2005.04.017
10.1002/dvdy.21354
10.1073/pnas.97.21.11403
10.1534/genetics.110.119917
10.1126/science.8016657
10.1002/dvdy.21343
10.1038/nmeth.1929
10.1016/j.ydbio.2008.02.034
10.1006/dbio.2001.0242
10.1038/nprot.2011.347
10.1016/j.ydbio.2011.01.002
10.1242/dev.059345
10.1073/pnas.1007799107
10.1073/pnas.1204520109
10.1016/j.mod.2009.07.002
10.1093/jhered/82.1.1
10.1016/0378-1119(94)90070-1
10.1007/978-1-60327-977-2_9
10.1016/j.mod.2006.11.005
10.1007/s1012601-0053-4
10.1002/dvdy.21863
10.1016/S0014-5793(03)00157-1
ContentType Journal Article
Copyright 2013 The Authors
Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
No copyright information found. Please enter mannually.
Copyright_xml – notice: 2013 The Authors
– notice: Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
– notice: No copyright information found. Please enter mannually.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
8FD
F1W
FR3
H95
L.G
P64
RC3
7S9
L.6
5PM
ADTOC
UNPAY
DOI 10.1016/j.ymeth.2013.06.012
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Biotechnology Research Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1095-9130
EndPage 440
ExternalDocumentID 10.1016/j.ymeth.2013.06.012
PMC3883888
23792917
10_1016_j_ymeth_2013_06_012
S1046202313002132
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institute of Diabetes and Digestive and Kidney Diseases
  grantid: R01 DK080730
– fundername: National Institute of General Medical Sciences
  grantid: T32 GM007231
– fundername: NIDDK NIH HHS
  grantid: R01DK080730
– fundername: National Institute of Child Health & Human Development
  grantid: R01 HD058530
– fundername: National Institute on Deafness and Other Communication Disorders
  grantid: R01 DC013079
– fundername: NICHD NIH HHS
  grantid: 1R01HD058530
– fundername: National Institute of Child Health & Human Development
  grantid: R01 HD078220
GroupedDBID ---
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
6I.
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AAOAW
AAQFI
AAXUO
ABFRF
ABGSF
ABJNI
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DM4
DOVZS
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HMG
IHE
J1W
K-O
KOM
LG5
LX2
LZ5
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPCBC
SSU
SSZ
T5K
XPP
Y6R
ZMT
ZU3
~G-
--K
.GJ
29M
53G
AAHBH
AALRI
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADFGL
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGHFR
AGQPQ
AGRDE
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
EFKBS
FEDTE
FGOYB
G-2
HLW
HVGLF
HZ~
R2-
SBG
SEW
SIN
WUQ
ZGI
~HD
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
8FD
F1W
FR3
H95
L.G
P64
RC3
7S9
L.6
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c525t-2a2a299f76a8821c8b08e04083b58dfcb3581e32091514267de6d4126ba455123
IEDL.DBID UNPAY
ISSN 1046-2023
1095-9130
IngestDate Wed Oct 29 11:53:09 EDT 2025
Tue Sep 30 16:58:33 EDT 2025
Sat Sep 27 21:18:13 EDT 2025
Tue Oct 07 09:51:14 EDT 2025
Sun Sep 28 05:49:43 EDT 2025
Wed Feb 19 02:34:46 EST 2025
Sat Oct 25 05:18:12 EDT 2025
Thu Apr 24 23:08:11 EDT 2025
Fri Feb 23 02:31:08 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords QF activator
Qa locus
Gal4
QS repressor
Transcriptional activation
Language English
License http://creativecommons.org/licenses/by-nc-nd/3.0
Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c525t-2a2a299f76a8821c8b08e04083b58dfcb3581e32091514267de6d4126ba455123
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Current address: Developmental Biology Program, Sloan-Kettering Institute, New York, NY 10065 USA
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.ymeth.2013.06.012
PMID 23792917
PQID 1516723046
PQPubID 23479
PageCount 8
ParticipantIDs unpaywall_primary_10_1016_j_ymeth_2013_06_012
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3883888
proquest_miscellaneous_2000135646
proquest_miscellaneous_1551640629
proquest_miscellaneous_1516723046
pubmed_primary_23792917
crossref_citationtrail_10_1016_j_ymeth_2013_06_012
crossref_primary_10_1016_j_ymeth_2013_06_012
elsevier_sciencedirect_doi_10_1016_j_ymeth_2013_06_012
PublicationCentury 2000
PublicationDate 2014-04-01
PublicationDateYYYYMMDD 2014-04-01
PublicationDate_xml – month: 04
  year: 2014
  text: 2014-04-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Methods (San Diego, Calif.)
PublicationTitleAlternate Methods
PublicationYear 2014
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Zelenchuk, Bruses (b0080) 2011; 49
Parsons, Pisharath, Yusuff, Moore, Siekmann, Lawson, Leach (b0130) 2009; 126
Akitake, Macurak, Halpern, Goll (b0020) 2011; 352
Amsterdam, Lin, Hopkins (b0050) 1995; 171
Kwan, Fujimoto, Grabher, Mangum, Hardy, Campbell, Parant, Yost, Kanki, Chien (b0140) 2007; 236
Distel, Wullimann, Koster (b0155) 2009; 106
Linney, Hardison, Lonze, Lyons, DiNapoli (b0055) 1999; 213
Asakawa, Kawakami (b0150) 2008; 50
Knopf, Schnabel, Haase, Pfeifer, Anastassiadis, Weidinger (b0160) 2010; 107
Kawakami, Shima, Kawakami (b0040) 2000; 97
Johnson, Krieg (b0045) 1994; 147
Nakano, Windrem, Zappavigna, Goldman (b0075) 2005; 283
Urasaki, Morvan, Kawakami (b0060) 2006; 174
Villefranc, Amigo, Lawson (b0185) 2007; 236
Goll, Anderson, Stainier, Spradling, Halpern (b0015) 2009; 182
Ogura, Okuda, Kondoh, Kamachi (b0175) 2009; 238
Pfeiffer, Truman, Rubin (b0180) 2012; 109
Emelyanov, Parinov (b0090) 2008; 320
Potter, Tasic, Russler, Liang, Luo (b0030) 2010; 141
Wei, Potter, Luo, Shen (b0035) 2012; 9
Karlsson, von Hofsten, Olsson (b0135) 2001; 3
Giles, Geever, Asch, Avalos, Case (b0025) 1991; 82
Minoguchi, Taniguchi, Kato, Okazaki, Strobl, Zimber-Strobl, Bornkamm, Honjo (b0120) 1997; 17
Koster, Fraser (b0010) 2001; 233
Potter, Luo (b0170) 2011; 6
Walker (b0070) 1999; 60
Pisharath, Parsons (b0125) 2009; 546
del Valle Rodriguez, Didiano, Desplan (b0005) 2012; 9
Farooq, Sulochana, Pan, To, Sheng, Gong, Ge (b0095) 2008; 317
Mosimann, Kaufman, Li, Pugach, Tamplin, Zon (b0065) 2011; 138
Pisharath, Rhee, Swanson, Leach, Parsons (b0105) 2007; 124
Henkel, Ling, Hayward, Peterson (b0115) 1994; 265
Grossman, Johannsen, Tong, Yalamanchili, Kieff (b0110) 1994; 91
Halpern, Rhee, Goll, Akitake, Parsons, Leach (b0145) 2008; 5
Pfeiffer, Ngo, Hibbard, Murphy, Jenett, Truman, Rubin (b0165) 2010; 186
Arkhipova, Wendik, Devos, Ek, Peers, Meyer (b0085) 2012; 365
Her, Chiang, Chen, Wu (b0100) 2003; 538
Kawakami (10.1016/j.ymeth.2013.06.012_b0040) 2000; 97
Nakano (10.1016/j.ymeth.2013.06.012_b0075) 2005; 283
Halpern (10.1016/j.ymeth.2013.06.012_b0145) 2008; 5
Ogura (10.1016/j.ymeth.2013.06.012_b0175) 2009; 238
Walker (10.1016/j.ymeth.2013.06.012_b0070) 1999; 60
Henkel (10.1016/j.ymeth.2013.06.012_b0115) 1994; 265
Potter (10.1016/j.ymeth.2013.06.012_b0170) 2011; 6
Potter (10.1016/j.ymeth.2013.06.012_b0030) 2010; 141
Johnson (10.1016/j.ymeth.2013.06.012_b0045) 1994; 147
Grossman (10.1016/j.ymeth.2013.06.012_b0110) 1994; 91
Arkhipova (10.1016/j.ymeth.2013.06.012_b0085) 2012; 365
Asakawa (10.1016/j.ymeth.2013.06.012_b0150) 2008; 50
Pisharath (10.1016/j.ymeth.2013.06.012_b0105) 2007; 124
Pfeiffer (10.1016/j.ymeth.2013.06.012_b0165) 2010; 186
Koster (10.1016/j.ymeth.2013.06.012_b0010) 2001; 233
Mosimann (10.1016/j.ymeth.2013.06.012_b0065) 2011; 138
Giles (10.1016/j.ymeth.2013.06.012_b0025) 1991; 82
Linney (10.1016/j.ymeth.2013.06.012_b0055) 1999; 213
Amsterdam (10.1016/j.ymeth.2013.06.012_b0050) 1995; 171
Pisharath (10.1016/j.ymeth.2013.06.012_b0125) 2009; 546
Distel (10.1016/j.ymeth.2013.06.012_b0155) 2009; 106
Villefranc (10.1016/j.ymeth.2013.06.012_b0185) 2007; 236
Goll (10.1016/j.ymeth.2013.06.012_b0015) 2009; 182
Zelenchuk (10.1016/j.ymeth.2013.06.012_b0080) 2011; 49
Karlsson (10.1016/j.ymeth.2013.06.012_b0135) 2001; 3
Akitake (10.1016/j.ymeth.2013.06.012_b0020) 2011; 352
Emelyanov (10.1016/j.ymeth.2013.06.012_b0090) 2008; 320
Minoguchi (10.1016/j.ymeth.2013.06.012_b0120) 1997; 17
Parsons (10.1016/j.ymeth.2013.06.012_b0130) 2009; 126
del Valle Rodriguez (10.1016/j.ymeth.2013.06.012_b0005) 2012; 9
Her (10.1016/j.ymeth.2013.06.012_b0100) 2003; 538
Wei (10.1016/j.ymeth.2013.06.012_b0035) 2012; 9
Urasaki (10.1016/j.ymeth.2013.06.012_b0060) 2006; 174
Farooq (10.1016/j.ymeth.2013.06.012_b0095) 2008; 317
Knopf (10.1016/j.ymeth.2013.06.012_b0160) 2010; 107
Kwan (10.1016/j.ymeth.2013.06.012_b0140) 2007; 236
Pfeiffer (10.1016/j.ymeth.2013.06.012_b0180) 2012; 109
References_xml – volume: 182
  start-page: 747
  year: 2009
  end-page: 755
  ident: b0015
  publication-title: Genetics
– volume: 9
  start-page: 47
  year: 2012
  end-page: 55
  ident: b0005
  publication-title: Nat. Methods
– volume: 317
  start-page: 336
  year: 2008
  end-page: 353
  ident: b0095
  publication-title: Dev. Biol.
– volume: 106
  start-page: 13365
  year: 2009
  end-page: 13370
  ident: b0155
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 236
  start-page: 3088
  year: 2007
  end-page: 3099
  ident: b0140
  publication-title: Dev. Dyn.
– volume: 213
  start-page: 207
  year: 1999
  end-page: 216
  ident: b0055
  publication-title: Dev. Biol.
– volume: 49
  start-page: 546
  year: 2011
  end-page: 554
  ident: b0080
  publication-title: Genesis
– volume: 171
  start-page: 123
  year: 1995
  end-page: 129
  ident: b0050
  publication-title: Dev. Biol.
– volume: 283
  start-page: 474
  year: 2005
  end-page: 485
  ident: b0075
  publication-title: Dev. Biol.
– volume: 97
  start-page: 11403
  year: 2000
  end-page: 11408
  ident: b0040
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 138
  start-page: 169
  year: 2011
  end-page: 177
  ident: b0065
  publication-title: Development
– volume: 147
  start-page: 223
  year: 1994
  end-page: 226
  ident: b0045
  publication-title: Gene
– volume: 233
  start-page: 329
  year: 2001
  end-page: 346
  ident: b0010
  publication-title: Dev. Biol.
– volume: 82
  start-page: 1
  year: 1991
  end-page: 7
  ident: b0025
  publication-title: J. Hered.
– volume: 124
  start-page: 218
  year: 2007
  end-page: 229
  ident: b0105
  publication-title: Mech. Dev.
– volume: 141
  start-page: 536
  year: 2010
  end-page: 548
  ident: b0030
  publication-title: Cell
– volume: 320
  start-page: 113
  year: 2008
  end-page: 121
  ident: b0090
  publication-title: Dev. Biol.
– volume: 60
  start-page: 43
  year: 1999
  end-page: 70
  ident: b0070
  publication-title: Methods Cell Biol.
– volume: 238
  start-page: 641
  year: 2009
  end-page: 655
  ident: b0175
  publication-title: Dev. Dyn.
– volume: 538
  start-page: 125
  year: 2003
  end-page: 133
  ident: b0100
  publication-title: FEBS Lett.
– volume: 546
  start-page: 133
  year: 2009
  end-page: 143
  ident: b0125
  publication-title: Methods Mol. Biol.
– volume: 109
  start-page: 6626
  year: 2012
  end-page: 6631
  ident: b0180
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 9
  start-page: 391
  year: 2012
  end-page: 395
  ident: b0035
  publication-title: Nat. Methods
– volume: 265
  start-page: 92
  year: 1994
  end-page: 95
  ident: b0115
  publication-title: Science
– volume: 107
  start-page: 19933
  year: 2010
  end-page: 19938
  ident: b0160
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 186
  start-page: 735
  year: 2010
  end-page: 755
  ident: b0165
  publication-title: Genetics
– volume: 5
  start-page: 97
  year: 2008
  end-page: 110
  ident: b0145
  publication-title: Zebrafish
– volume: 174
  start-page: 639
  year: 2006
  end-page: 649
  ident: b0060
  publication-title: Genetics
– volume: 126
  start-page: 898
  year: 2009
  end-page: 912
  ident: b0130
  publication-title: Mech. Dev.
– volume: 50
  start-page: 391
  year: 2008
  end-page: 399
  ident: b0150
  publication-title: Dev. Growth Differ.
– volume: 236
  start-page: 3077
  year: 2007
  end-page: 3087
  ident: b0185
  publication-title: Dev. Dyn.
– volume: 6
  start-page: 1105
  year: 2011
  end-page: 1120
  ident: b0170
  publication-title: Nat. Protoc.
– volume: 3
  start-page: 522
  year: 2001
  end-page: 527
  ident: b0135
  publication-title: Mar. Biotechnol. (NY)
– volume: 352
  start-page: 191
  year: 2011
  end-page: 201
  ident: b0020
  publication-title: Dev. Biol.
– volume: 365
  start-page: 290
  year: 2012
  end-page: 302
  ident: b0085
  publication-title: Dev. Biol.
– volume: 91
  start-page: 7568
  year: 1994
  end-page: 7572
  ident: b0110
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 17
  start-page: 2679
  year: 1997
  end-page: 2687
  ident: b0120
  publication-title: Mol. Cell. Biol.
– volume: 182
  start-page: 747
  year: 2009
  ident: 10.1016/j.ymeth.2013.06.012_b0015
  publication-title: Genetics
  doi: 10.1534/genetics.109.102079
– volume: 9
  start-page: 47
  year: 2012
  ident: 10.1016/j.ymeth.2013.06.012_b0005
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1800
– volume: 213
  start-page: 207
  year: 1999
  ident: 10.1016/j.ymeth.2013.06.012_b0055
  publication-title: Dev. Biol.
  doi: 10.1006/dbio.1999.9376
– volume: 60
  start-page: 43
  year: 1999
  ident: 10.1016/j.ymeth.2013.06.012_b0070
  publication-title: Methods Cell Biol.
  doi: 10.1016/S0091-679X(08)61893-2
– volume: 5
  start-page: 97
  year: 2008
  ident: 10.1016/j.ymeth.2013.06.012_b0145
  publication-title: Zebrafish
  doi: 10.1089/zeb.2008.0530
– volume: 50
  start-page: 391
  year: 2008
  ident: 10.1016/j.ymeth.2013.06.012_b0150
  publication-title: Dev. Growth Differ.
  doi: 10.1111/j.1440-169X.2008.01044.x
– volume: 320
  start-page: 113
  year: 2008
  ident: 10.1016/j.ymeth.2013.06.012_b0090
  publication-title: Dev. Biol.
  doi: 10.1016/j.ydbio.2008.04.042
– volume: 91
  start-page: 7568
  year: 1994
  ident: 10.1016/j.ymeth.2013.06.012_b0110
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.91.16.7568
– volume: 171
  start-page: 123
  year: 1995
  ident: 10.1016/j.ymeth.2013.06.012_b0050
  publication-title: Dev. Biol.
  doi: 10.1006/dbio.1995.1265
– volume: 365
  start-page: 290
  year: 2012
  ident: 10.1016/j.ymeth.2013.06.012_b0085
  publication-title: Dev. Biol.
  doi: 10.1016/j.ydbio.2012.03.001
– volume: 106
  start-page: 13365
  year: 2009
  ident: 10.1016/j.ymeth.2013.06.012_b0155
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0903060106
– volume: 141
  start-page: 536
  year: 2010
  ident: 10.1016/j.ymeth.2013.06.012_b0030
  publication-title: Cell
  doi: 10.1016/j.cell.2010.02.025
– volume: 49
  start-page: 546
  year: 2011
  ident: 10.1016/j.ymeth.2013.06.012_b0080
  publication-title: Genesis
  doi: 10.1002/dvg.20766
– volume: 17
  start-page: 2679
  year: 1997
  ident: 10.1016/j.ymeth.2013.06.012_b0120
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.17.5.2679
– volume: 174
  start-page: 639
  year: 2006
  ident: 10.1016/j.ymeth.2013.06.012_b0060
  publication-title: Genetics
  doi: 10.1534/genetics.106.060244
– volume: 283
  start-page: 474
  year: 2005
  ident: 10.1016/j.ymeth.2013.06.012_b0075
  publication-title: Dev. Biol.
  doi: 10.1016/j.ydbio.2005.04.017
– volume: 236
  start-page: 3077
  year: 2007
  ident: 10.1016/j.ymeth.2013.06.012_b0185
  publication-title: Dev. Dyn.
  doi: 10.1002/dvdy.21354
– volume: 97
  start-page: 11403
  year: 2000
  ident: 10.1016/j.ymeth.2013.06.012_b0040
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.97.21.11403
– volume: 186
  start-page: 735
  year: 2010
  ident: 10.1016/j.ymeth.2013.06.012_b0165
  publication-title: Genetics
  doi: 10.1534/genetics.110.119917
– volume: 265
  start-page: 92
  year: 1994
  ident: 10.1016/j.ymeth.2013.06.012_b0115
  publication-title: Science
  doi: 10.1126/science.8016657
– volume: 236
  start-page: 3088
  year: 2007
  ident: 10.1016/j.ymeth.2013.06.012_b0140
  publication-title: Dev. Dyn.
  doi: 10.1002/dvdy.21343
– volume: 9
  start-page: 391
  year: 2012
  ident: 10.1016/j.ymeth.2013.06.012_b0035
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1929
– volume: 317
  start-page: 336
  year: 2008
  ident: 10.1016/j.ymeth.2013.06.012_b0095
  publication-title: Dev. Biol.
  doi: 10.1016/j.ydbio.2008.02.034
– volume: 233
  start-page: 329
  year: 2001
  ident: 10.1016/j.ymeth.2013.06.012_b0010
  publication-title: Dev. Biol.
  doi: 10.1006/dbio.2001.0242
– volume: 6
  start-page: 1105
  year: 2011
  ident: 10.1016/j.ymeth.2013.06.012_b0170
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2011.347
– volume: 352
  start-page: 191
  year: 2011
  ident: 10.1016/j.ymeth.2013.06.012_b0020
  publication-title: Dev. Biol.
  doi: 10.1016/j.ydbio.2011.01.002
– volume: 138
  start-page: 169
  year: 2011
  ident: 10.1016/j.ymeth.2013.06.012_b0065
  publication-title: Development
  doi: 10.1242/dev.059345
– volume: 107
  start-page: 19933
  year: 2010
  ident: 10.1016/j.ymeth.2013.06.012_b0160
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1007799107
– volume: 109
  start-page: 6626
  year: 2012
  ident: 10.1016/j.ymeth.2013.06.012_b0180
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1204520109
– volume: 126
  start-page: 898
  year: 2009
  ident: 10.1016/j.ymeth.2013.06.012_b0130
  publication-title: Mech. Dev.
  doi: 10.1016/j.mod.2009.07.002
– volume: 82
  start-page: 1
  year: 1991
  ident: 10.1016/j.ymeth.2013.06.012_b0025
  publication-title: J. Hered.
  doi: 10.1093/jhered/82.1.1
– volume: 147
  start-page: 223
  year: 1994
  ident: 10.1016/j.ymeth.2013.06.012_b0045
  publication-title: Gene
  doi: 10.1016/0378-1119(94)90070-1
– volume: 546
  start-page: 133
  year: 2009
  ident: 10.1016/j.ymeth.2013.06.012_b0125
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-60327-977-2_9
– volume: 124
  start-page: 218
  year: 2007
  ident: 10.1016/j.ymeth.2013.06.012_b0105
  publication-title: Mech. Dev.
  doi: 10.1016/j.mod.2006.11.005
– volume: 3
  start-page: 522
  year: 2001
  ident: 10.1016/j.ymeth.2013.06.012_b0135
  publication-title: Mar. Biotechnol. (NY)
  doi: 10.1007/s1012601-0053-4
– volume: 238
  start-page: 641
  year: 2009
  ident: 10.1016/j.ymeth.2013.06.012_b0175
  publication-title: Dev. Dyn.
  doi: 10.1002/dvdy.21863
– volume: 538
  start-page: 125
  year: 2003
  ident: 10.1016/j.ymeth.2013.06.012_b0100
  publication-title: FEBS Lett.
  doi: 10.1016/S0014-5793(03)00157-1
SSID ssj0001278
Score 2.31612
Snippet •Q transcriptional regulatory system of Neurospora crassa functions in zebrafish.•Tissue-specific QF driver lines activate a QUAS:GFP transgenic...
The Gal4-UAS regulatory system of yeast is widely used to modulate gene expression in Drosophila; however, there are limitations to its usefulness in...
The Gal4–UAS regulatory system of yeast is widely used to modulate gene expression in Drosophila; however, there are limitations to its usefulness in...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 433
SubjectTerms Animals
Animals, Genetically Modified - metabolism
binding sites
Caenorhabditis elegans
Danio rerio
DNA methylation
Drosophila
fluorescent proteins
Freshwater
Gal4
gene expression
Gene Expression Regulation - genetics
Gene Expression Regulation, Developmental
Genes, Fungal
Genetic Engineering - methods
Green Fluorescent Proteins - analysis
Green Fluorescent Proteins - genetics
Neurospora crassa
Neurospora crassa - genetics
Qa locus
QF activator
QS repressor
reporter genes
transactivators
transcription (genetics)
Transcription Factors - genetics
Transcriptional Activation
transgenes
transgenesis
transgenic animals
vertebrates
yeasts
Zebrafish - genetics
SummonAdditionalLinks – databaseName: ScienceDirect (Elsevier)
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9swEBalL91LWdu1y9YWDcae5saWZEl5DKGlDFYYW6FvQrLl1SO1Q35Q0of-7b2T7XShNIxhv9g-CftOOn2WPt0R8lkW3g5sLiKeSZytEknkbJpFTLtUxwX4v5Ct4fuVvLwW327Smy0y6vbCIK2y9f2NTw_eur3Tb7XZn5Rl_yeuTmLyb1yQYfBThTvYhcIsBmePzzSPhKlmO5yQEUp3kYcCx2uJaZqR38VDEM-EvTY6vUSfL0mUO4tqYpf3djz-a4S6eEt2W2hJh83b75EtX-2Tg2EFv9V3S_qFBrJnmEXfJzujLtHbAbka5nVwHLQuKOBB-oPOcQTr_AnUOW0y1tfTJW1CP1PAuvQBF52LcnbbyP9Gt1nO3pHri_Nfo8uoTbMQZSlL5xGzcAwGhZIW4HaSaRdrD31bczBXXmQOQ6R5zgBZALpiUuVe5iJh0lkBeIvxQ7Jd1ZV_T2jhBcslIK4klyLm3DkZi8RpGTvhnUp7hHXqNVkbgxxTYYxNRzb7Y4JNDNrEIOUuYT3ydVVo0oTg2CwuO7uZtZZkYJDYXPBTZ2UDFsCFE1v5ejEz8N1S4ey53CQDQoCO2OB1GRYQdyqxnqOm9ay-iHGFelM9otba1UoA44CvP6nK2xAPnGsNp-6RaNUC_0VRH_5XUR_JG7hq-UvHZHs-XfgTgGZzdxr63hPXpzcM
  priority: 102
  providerName: Elsevier
Title Adoption of the Q transcriptional regulatory system for zebrafish transgenesis
URI https://dx.doi.org/10.1016/j.ymeth.2013.06.012
https://www.ncbi.nlm.nih.gov/pubmed/23792917
https://www.proquest.com/docview/1516723046
https://www.proquest.com/docview/1551640629
https://www.proquest.com/docview/2000135646
https://pubmed.ncbi.nlm.nih.gov/PMC3883888
https://doi.org/10.1016/j.ymeth.2013.06.012
UnpaywallVersion publishedVersion
Volume 66
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1095-9130
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001278
  issn: 1095-9130
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1095-9130
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001278
  issn: 1095-9130
  databaseCode: ACRLP
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1095-9130
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001278
  issn: 1095-9130
  databaseCode: AIKHN
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1095-9130
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001278
  issn: 1095-9130
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1095-9130
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001278
  issn: 1095-9130
  databaseCode: AKRWK
  dateStart: 19900801
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB5Be1guPHZ5lEdlJMSJVIntOOkxWrEqICqQqLScojhxdgslWbWpUPfAb2fGTirKstWi5JAoE0u2J-Mv9vj7AF6p0mTjrJCeyBXNVsnA01mYezzWYeyXGP-sWsPHqZrM5PvT8LTl2aa9MDvr9zYPa0NSypSDJSzRJikK91WIwLsH_dn0U_LV8Q0oj4TA7bVTH_Q7jqF_l3LdOHQVZ15NlzxYVxfZ5me2WPwxFp3cc5u8V5bCkFJQvo_WjR7ll38RPN6wmvfhbotJWeKc6AHcMtUhHCUV_o__2LDXzGaJ2un3Qzg47hTijmCaFLWNOKwuGQJJ9pk1NPR1gQjLXDqp-3q5YY4zmiFIZpe0Wl3OV-fO_ozi7Xz1EGYnb78cT7xWn8HLQx42Hs_wGI_LSGWI04M81n5sMCjEAvu5KHNN3GpGcIQkCMu4igqjChlwpTOJQI2LR9Cr6so8AVYayQuFUC0olPSF0Fr5MtCx8rU0OgoHwLveSvOWvJw0NBZpl6X2LbUtmFILppSrF_ABvNm-dOG4O_abq84N0hZ-OFiRYm_tf_Fl5zQp9gCtuGSVqderFOutIpp2V_ts0AhhFR9fb8MtVA8VlfPYOeO2RlxE1G7RAKIdN90aEIH47pNqfm6JxEUc4xkPwNs69E0a6ul_2j-DO3jX5js9h16zXJsXCOUaPYTbo1_BEPrJuw-T6bD9oH8DpgNFgg
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB4ty6FcEOzyKE8jIU6EJrZjp8eqYlVgtxJiV9qbFScOG1SSqg-hcuC3M-MkhWq1FULJKRlbyYw9_mx_ngF4rQqXDtNcBiJTtFolo8CmcRbwxMZJWKD_89kazqZqciE_XsaXBzDuzsIQrbL1_Y1P9966fTJotTmYl-XgC-1OUvJv2pDhOKm6BbdlzDXNwN79-sPziLhuzsNJFZB4F3rIk7w2lKeZCF7CR_GM-E3D03X4eZ1F2VtX83TzI53N_hqiTu7B3RZbslHz-ffhwFVHcDyqcF79fcPeMM_29MvoR9Abd5nejmE6ymvvOVhdMASE7DNb0RDWORSsc9GkrK8XG9bEfmYIdtlP2nUuyuVVI_-V_Ga5fAAXJ-_Px5OgzbMQZDGPVwFP8RoOC61SxNtRltgwcdi5E4H2yovMUow0JzhCC4RXXOncqVxGXNlUIuDi4iEcVnXlHgMrnOS5QsgV5UqGQlirQhnZRIVWOqvjPvBOvSZrg5BTLoyZ6dhm34y3iSGbGOLcRbwPb7eF5k0Mjv3iqrOb2WlKBkeJ_QVfdVY2aAHaOUkrV6-XBv9baVo-V_tkUAjhER_eLMM95I4V1fOoaT3bP-JCk950H_ROu9oKUCDw3TdVeeUDgoskwTvpQ7Btgf-iqCf_q6iX0Jucn52a0w_TT0_hDr5pyUzP4HC1WLvniNNW9oXvh78BfAI6Lw
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1da9swFBUlfehe9tHuI906NBh7mostybLyGMpKGTR0sED7JCRbXrNldkkcRvrre69kh2ZtQ4v9YONrgaTrq2Pp6hxCPsvSmYEpRMRzibNVIomsSfOIKZuquIT459UaTkfyZCy-n6fnLc827oVZW7_3eVhLlFLGHCzuiTZRUXhbpgC8e2R7PDobXgS-ARmhELi_DuqDcccxdH8pD41Dd3Hm3XTJnUV1ZZb_zHR6ayw6fhE2ec89hSGmoPw5XDT2ML_-j-DxkdV8SZ63mJQOgxO9Iluu2iV7wwr-x_8u6Rfqs0T99Psu2TnqFOL2yGhY1D7i0LqkACTpD9rg0NcFIihzFqTu69mSBs5oCiCZXuNqdTmZXwb7XxhvJ_PXZHz87efRSdTqM0R5ytImYgaOwaDMpAGcnuTKxspBUFAc-rkoc4vcao4zgCQAy5jMCicLkTBpjQCgxvgb0qvqyr0jtHSCFRKgWlJIEXNurYxFYpWMrXA2S_uEdb2l85a8HDU0prrLUvutfQtqbEGNuXoJ65Ovq5euAnfHZnPZuYFu4UeAFRp6a_OLnzqn0dADuOJiKlcv5hrqLTOcdpebbMAIYBUbPGzDPFRPJZbzNjjjqkaMZ9huWZ9ka266MkAC8fUn1eTSE4lzpeBUfRKtHPoxDbX_RPv35BnctflOH0ivmS3cAUC5xn5sP-Eb7_ZC9g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adoption+of+the+Q+transcriptional+regulatory+system+for+zebrafish+transgenesis&rft.jtitle=Methods+%28San+Diego%2C+Calif.%29&rft.au=Subedi%2C+Abhignya&rft.au=Macurak%2C+Michelle&rft.au=Gee%2C+Stephen+T&rft.au=Monge%2C+Estela&rft.date=2014-04-01&rft.eissn=1095-9130&rft.volume=66&rft.issue=3&rft.spage=433&rft_id=info:doi/10.1016%2Fj.ymeth.2013.06.012&rft_id=info%3Apmid%2F23792917&rft.externalDocID=23792917
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1046-2023&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1046-2023&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1046-2023&client=summon