Calcium sensitive ring-like oligomers formed by synaptotagmin
The synaptic vesicle protein synaptotagmin-1 (SYT) is required to couple calcium influx to the membrane fusion machinery. However, the structural mechanism underlying this process is unclear. Here we report an unexpected circular arrangement (ring) of SYT’s cytosolic domain (C2AB) formed on lipid mo...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 111; no. 38; pp. 13966 - 13971 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
23.09.2014
National Acad Sciences |
Subjects | |
Online Access | Get full text |
ISSN | 0027-8424 1091-6490 1091-6490 |
DOI | 10.1073/pnas.1415849111 |
Cover
Abstract | The synaptic vesicle protein synaptotagmin-1 (SYT) is required to couple calcium influx to the membrane fusion machinery. However, the structural mechanism underlying this process is unclear. Here we report an unexpected circular arrangement (ring) of SYT’s cytosolic domain (C2AB) formed on lipid monolayers in the absence of free calcium ions as revealed by electron microscopy. Rings vary in diameter from 18–43 nm, corresponding to 11–26 molecules of SYT. Continuous stacking of the SYT rings occasionally converts both lipid monolayers and bilayers into protein-coated tubes. Helical reconstruction of the SYT tubes shows that one of the C2 domains (most likely C2B, based on its biochemical properties) interacts with the membrane and is involved in ring formation, and the other C2 domain points radially outward. SYT rings are disrupted rapidly by physiological concentrations of free calcium but not by magnesium. Assuming that calcium-free SYT rings are physiologically relevant, these results suggest a simple and novel mechanism by which SYT regulates neurotransmitter release: The ring acts as a spacer to prevent the completion of the soluble N -ethylmaleimide–sensitive factor activating protein receptor (SNARE) complex assembly, thereby clamping fusion in the absence of calcium. When the ring disassembles in the presence of calcium, fusion proceeds unimpeded.
Significance Synaptotagmin-1 is the calcium sensor for synchronous neurotransmitter release. It couples calcium influx to the soluble N -ethylmaleimide–sensitive factor activating protein receptor (SNARE)-catalyzed fusion, but how this coupling happens is unknown. Here, using electron microscopy, we report that the cytosolic domain of synaptotagmin can assemble into ring-like oligomers under calcium-free conditions, and these rings disassemble rapidly upon calcium binding. This process suggests a novel but speculative mechanism to explain calcium coupling, in which the synaptotagmin rings separate the vesicle and plasma membranes and prevent the completion of SNARE complex assembly until the influx of calcium. |
---|---|
AbstractList | Synaptotagmin-1 is the calcium sensor for synchronous neurotransmitter release. It couples calcium influx to the soluble
N
-ethylmaleimide–sensitive factor activating protein receptor (SNARE)-catalyzed fusion, but how this coupling happens is unknown. Here, using electron microscopy, we report that the cytosolic domain of synaptotagmin can assemble into ring-like oligomers under calcium-free conditions, and these rings disassemble rapidly upon calcium binding. This process suggests a novel but speculative mechanism to explain calcium coupling, in which the synaptotagmin rings separate the vesicle and plasma membranes and prevent the completion of SNARE complex assembly until the influx of calcium.
The synaptic vesicle protein synaptotagmin-1 (SYT) is required to couple calcium influx to the membrane fusion machinery. However, the structural mechanism underlying this process is unclear. Here we report an unexpected circular arrangement (ring) of SYT’s cytosolic domain (C2AB) formed on lipid monolayers in the absence of free calcium ions as revealed by electron microscopy. Rings vary in diameter from 18–43 nm, corresponding to 11–26 molecules of SYT. Continuous stacking of the SYT rings occasionally converts both lipid monolayers and bilayers into protein-coated tubes. Helical reconstruction of the SYT tubes shows that one of the C2 domains (most likely C2B, based on its biochemical properties) interacts with the membrane and is involved in ring formation, and the other C2 domain points radially outward. SYT rings are disrupted rapidly by physiological concentrations of free calcium but not by magnesium. Assuming that calcium-free SYT rings are physiologically relevant, these results suggest a simple and novel mechanism by which SYT regulates neurotransmitter release: The ring acts as a spacer to prevent the completion of the soluble
N
-ethylmaleimide–sensitive factor activating protein receptor (SNARE) complex assembly, thereby clamping fusion in the absence of calcium. When the ring disassembles in the presence of calcium, fusion proceeds unimpeded. The synaptic vesicle protein synaptotagmin-1 (SYT) is required to couple calcium influx to the membrane fusion machinery. However, the structural mechanism underlying this process is unclear. Here we report an unexpected circular arrangement (ring) of SYT's cytosolic domain (C2AB) formed on lipid monolayers in the absence of free calcium ions as revealed by electron microscopy. Rings vary in diameter from 18-43 nm, corresponding to 11-26 molecules of SYT. Continuous stacking of the SYT rings occasionally converts both lipid monolayers and bilayers into protein-coated tubes. Helical reconstruction of the SYT tubes shows that one of the C2 domains (most likely C2B, based on its biochemical properties) interacts with the membrane and is involved in ring formation, and the other C2 domain points radially outward. SYT rings are disrupted rapidly by physiological concentrations of free calcium but not by magnesium. Assuming that calcium-free SYT rings are physiologically relevant these results suggest a simple and novel mechanism by which SYT regulates neurotransmitter release: The ring acts as a spacer to prevent the completion of the soluble /V-ethylmaleimide-sensitive factor activating protein receptor (SNARE) complex assembly, thereby clamping fusion in the absence of calcium. When the ring disassembles in the presence of calcium, fusion proceeds unimpeded. The synaptic vesicle protein synaptotagmin-1 (SYT) is required to couple calcium influx to the membrane fusion machinery. However, the structural mechanism underlying this process is unclear. Here we report an unexpected circular arrangement (ring) of SYT's cytosolic domain (C2AB) formed on lipid monolayers in the absence of free calcium ions as revealed by electron microscopy. Rings vary in diameter from 18-43 nm, corresponding to 11-26 molecules of SYT. Continuous stacking of the SYT rings occasionally converts both lipid monolayers and bilayers into protein-coated tubes. Helical reconstruction of the SYT tubes shows that one of the C2 domains (most likely C2B, based on its biochemical properties) interacts with the membrane and is involved in ring formation, and the other C2 domain points radially outward. SYT rings are disrupted rapidly by physiological concentrations of free calcium but not by magnesium. Assuming that calcium-free SYT rings are physiologically relevant, these results suggest a simple and novel mechanism by which SYT regulates neurotransmitter release: The ring acts as a spacer to prevent the completion of the soluble N-ethylmaleimide-sensitive factor activating protein receptor (SNARE) complex assembly, thereby clamping fusion in the absence of calcium. When the ring disassembles in the presence of calcium, fusion proceeds unimpeded. The synaptic vesicle protein synaptotagmin-1 (SYT) is required to couple calcium influx to the membrane fusion machinery. However, the structural mechanism underlying this process is unclear. Here we report an unexpected circular arrangement (ring) of SYT’s cytosolic domain (C2AB) formed on lipid monolayers in the absence of free calcium ions as revealed by electron microscopy. Rings vary in diameter from 18–43 nm, corresponding to 11–26 molecules of SYT. Continuous stacking of the SYT rings occasionally converts both lipid monolayers and bilayers into protein-coated tubes. Helical reconstruction of the SYT tubes shows that one of the C2 domains (most likely C2B, based on its biochemical properties) interacts with the membrane and is involved in ring formation, and the other C2 domain points radially outward. SYT rings are disrupted rapidly by physiological concentrations of free calcium but not by magnesium. Assuming that calcium-free SYT rings are physiologically relevant, these results suggest a simple and novel mechanism by which SYT regulates neurotransmitter release: The ring acts as a spacer to prevent the completion of the soluble N -ethylmaleimide–sensitive factor activating protein receptor (SNARE) complex assembly, thereby clamping fusion in the absence of calcium. When the ring disassembles in the presence of calcium, fusion proceeds unimpeded. Significance Synaptotagmin-1 is the calcium sensor for synchronous neurotransmitter release. It couples calcium influx to the soluble N -ethylmaleimide–sensitive factor activating protein receptor (SNARE)-catalyzed fusion, but how this coupling happens is unknown. Here, using electron microscopy, we report that the cytosolic domain of synaptotagmin can assemble into ring-like oligomers under calcium-free conditions, and these rings disassemble rapidly upon calcium binding. This process suggests a novel but speculative mechanism to explain calcium coupling, in which the synaptotagmin rings separate the vesicle and plasma membranes and prevent the completion of SNARE complex assembly until the influx of calcium. The synaptic vesicle protein synaptotagmin-1 (SYT) is required to couple calcium influx to the membrane fusion machinery. However, the structural mechanism underlying this process is unclear. Here we report an unexpected circular arrangement (ring) of SYT's cytosolic domain (C2AB) formed on lipid monolayers in the absence of free calcium ions as revealed by electron microscopy. Rings vary in diameter from 18-43 nm, corresponding to 11-26 molecules of SYT. Continuous stacking of the SYT rings occasionally converts both lipid monolayers and bilayers into protein-coated tubes. Helical reconstruction of the SYT tubes shows that one of the C2 domains (most likely C2B, based on its biochemical properties) interacts with the membrane and is involved in ring formation, and the other C2 domain points radially outward. SYT rings are disrupted rapidly by physiological concentrations of free calcium but not by magnesium. Assuming that calcium-free SYT rings are physiologically relevant, these results suggest a simple and novel mechanism by which SYT regulates neurotransmitter release: The ring acts as a spacer to prevent the completion of the soluble N-ethylmaleimide-sensitive factor activating protein receptor (SNARE) complex assembly, thereby clamping fusion in the absence of calcium. When the ring disassembles in the presence of calcium, fusion proceeds unimpeded.The synaptic vesicle protein synaptotagmin-1 (SYT) is required to couple calcium influx to the membrane fusion machinery. However, the structural mechanism underlying this process is unclear. Here we report an unexpected circular arrangement (ring) of SYT's cytosolic domain (C2AB) formed on lipid monolayers in the absence of free calcium ions as revealed by electron microscopy. Rings vary in diameter from 18-43 nm, corresponding to 11-26 molecules of SYT. Continuous stacking of the SYT rings occasionally converts both lipid monolayers and bilayers into protein-coated tubes. Helical reconstruction of the SYT tubes shows that one of the C2 domains (most likely C2B, based on its biochemical properties) interacts with the membrane and is involved in ring formation, and the other C2 domain points radially outward. SYT rings are disrupted rapidly by physiological concentrations of free calcium but not by magnesium. Assuming that calcium-free SYT rings are physiologically relevant, these results suggest a simple and novel mechanism by which SYT regulates neurotransmitter release: The ring acts as a spacer to prevent the completion of the soluble N-ethylmaleimide-sensitive factor activating protein receptor (SNARE) complex assembly, thereby clamping fusion in the absence of calcium. When the ring disassembles in the presence of calcium, fusion proceeds unimpeded. |
Author | Bello, Oscar Coleman, Jeff Pincet, Frederic Krishnakumar, Shyam S. Rothman, James E. Auclair, Sarah M. Sindelar, Charles V. Wang, Jing |
Author_xml | – sequence: 1 givenname: Jing surname: Wang fullname: Wang, Jing – sequence: 2 givenname: Oscar surname: Bello fullname: Bello, Oscar – sequence: 3 givenname: Sarah M. surname: Auclair fullname: Auclair, Sarah M. – sequence: 4 givenname: Jeff surname: Coleman fullname: Coleman, Jeff – sequence: 5 givenname: Frederic surname: Pincet fullname: Pincet, Frederic – sequence: 6 givenname: Shyam S. surname: Krishnakumar fullname: Krishnakumar, Shyam S. – sequence: 7 givenname: Charles V. surname: Sindelar fullname: Sindelar, Charles V. – sequence: 8 givenname: James E. surname: Rothman fullname: Rothman, James E. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25201968$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1v1DAQxS1URLeFMycgUi9c0s74I7EPIKFV-ZAqcYCeLSdxgpfEXuxspf3v8XaXBXqAky3Nb2bevHdGTnzwlpDnCJcINbtae5MukaOQXCHiI7JAUFhWXMEJWQDQupSc8lNyltIKAJSQ8IScUkEBVSUX5M3SjK3bTEWyPrnZ3dkiOj-Uo_tuizC6IUw2pqIPcbJd0WyLtPVmPYfZDJPzT8nj3ozJPju85-T2_fXX5cfy5vOHT8t3N2UrqJhLRNsrqHhljeFN3cgKoAFqZS8a2veYf6zrABmjqlMgeF0p1pqmqxk22Ft2Tt7u5643TdbRWj9HM-p1dJOJWx2M039XvPumh3CnOUrGQOYBrw8DYvixsWnWk0utHUfjbdgkjRIY1Ao5_B8VlRBAs-kZvXiArsIm-uzEPSWz3WK3--Wf4o-qf4WQgas90MaQUrT9EUHQu5j1Lmb9O-bcIR50tG42swu76934j77iIGVXOG5B1ExqZKqqMvJij6zSHOKR4Qw4o_f2vNrXexO0GaJL-vZLPiRHikxWlLKfmOHIlQ |
CitedBy_id | crossref_primary_10_1002_smtd_202300218 crossref_primary_10_7554_eLife_73585 crossref_primary_10_7554_eLife_27441 crossref_primary_10_7554_eLife_30493 crossref_primary_10_1016_j_ceca_2017_07_008 crossref_primary_10_3389_fphys_2017_00005 crossref_primary_10_1016_j_chembiol_2020_07_017 crossref_primary_10_1002_pro_3445 crossref_primary_10_1016_j_pneurobio_2015_09_004 crossref_primary_10_1371_journal_pone_0149457 crossref_primary_10_1002_1873_3468_13040 crossref_primary_10_1073_pnas_1611506114 crossref_primary_10_1016_j_jmb_2022_167629 crossref_primary_10_1038_s42003_024_07317_9 crossref_primary_10_1146_annurev_biophys_070816_034117 crossref_primary_10_1016_j_cell_2017_01_004 crossref_primary_10_1002_1873_3468_12874 crossref_primary_10_1042_BST20231333 crossref_primary_10_7554_eLife_54506 crossref_primary_10_1038_s41598_020_74923_y crossref_primary_10_1016_j_conb_2020_04_006 crossref_primary_10_1038_s41467_023_44414_5 crossref_primary_10_1172_JCI79765 crossref_primary_10_1085_jgp_201711944 crossref_primary_10_1093_jmcb_mjae011 crossref_primary_10_3389_fpls_2019_00108 crossref_primary_10_1083_jcb_202408073 crossref_primary_10_1002_1873_3468_14718 crossref_primary_10_3389_fnsyn_2021_798225 crossref_primary_10_7554_eLife_17262 crossref_primary_10_1073_pnas_1914361117 crossref_primary_10_3389_fnsyn_2021_740318 crossref_primary_10_1073_pnas_1920403117 crossref_primary_10_1073_pnas_2121259119 crossref_primary_10_1083_jcb_202311191 crossref_primary_10_1073_pnas_2208337119 crossref_primary_10_1073_pnas_1604000113 crossref_primary_10_1038_s41467_019_10391_x crossref_primary_10_1074_jbc_RA119_008107 crossref_primary_10_1016_j_bpj_2019_12_021 crossref_primary_10_1073_pnas_1808792115 crossref_primary_10_3389_fnmol_2017_00048 crossref_primary_10_1002_1873_3468_14157 crossref_primary_10_1073_pnas_2417941121 crossref_primary_10_1002_1873_3468_13317 crossref_primary_10_1038_s41467_021_25737_7 crossref_primary_10_1002_1873_3468_13916 crossref_primary_10_1073_pnas_2113859118 crossref_primary_10_1073_pnas_1512779113 crossref_primary_10_7554_eLife_07728 crossref_primary_10_1038_s41594_018_0130_9 crossref_primary_10_1146_annurev_biophys_111821_104732 crossref_primary_10_1073_pnas_2024029118 crossref_primary_10_1073_pnas_2311484120 crossref_primary_10_1016_j_conb_2018_05_006 crossref_primary_10_1021_acs_biochem_8b01235 crossref_primary_10_3389_fncel_2015_00029 crossref_primary_10_1002_1873_3468_13193 crossref_primary_10_7554_eLife_14211 crossref_primary_10_1002_1873_3468_13277 crossref_primary_10_3390_ijms21197298 crossref_primary_10_1002_2211_5463_13473 crossref_primary_10_1038_nature14975 crossref_primary_10_1152_jn_00879_2014 crossref_primary_10_7554_eLife_31013 crossref_primary_10_1002_1873_3468_13316 |
Cites_doi | 10.1038/nsmb.2075 10.1146/annurev.biochem.72.121801.161504 10.1073/pnas.1310327110 10.1038/nsmb1056 10.1006/jsbi.1996.0004 10.1126/science.1142614 10.1016/S0304-3991(00)00010-3 10.1126/science.1064002 10.1016/S0006-3495(02)75611-7 10.1016/j.conb.2005.05.006 10.1146/annurev.biochem.77.062005.101135 10.2337/diabetes.51.2007.S3 10.1126/science.1129450 10.1016/j.neuron.2009.09.043 10.1038/nsmb1310 10.1074/jbc.M114.569327 10.1073/pnas.0509153102 10.1038/nsmb.1463 10.1038/nsmb.1763 10.1523/JNEUROSCI.0197-08.2008 10.1016/j.cub.2010.12.015 10.1038/35022702 10.1016/0092-8674(94)90556-8 10.1038/nature00846 10.1016/j.jsb.2006.05.015 10.1038/375594a0 10.1016/j.cell.2009.05.049 10.1038/nn.3681 10.1016/j.jsb.2011.12.020 10.1073/pnas.91.23.10888 10.1038/sj.emboj.7601256 10.1016/j.cell.2006.08.030 10.1016/j.brainres.2011.05.011 10.1038/emboj.2012.164 10.1073/pnas.0435872100 10.1083/jcb.201104079 10.1016/j.cell.2009.07.027 10.1523/JNEUROSCI.3153-09.2011 10.1038/nsmb.2103 10.1523/JNEUROSCI.3212-12.2012 10.1523/JNEUROSCI.18-19-07662.1998 10.1126/science.1589771 10.1016/j.jsb.2006.06.010 10.1038/35065004 10.1074/jbc.M105356200 10.1038/nsmb.2570 10.1038/nsmb.2061 10.1074/jbc.M112.386805 10.1126/science.1252884 10.1038/nsmb.2101 10.1523/JNEUROSCI.1236-13.2013 10.1016/j.cell.2006.10.030 10.1021/bi701651k 10.1074/jbc.C200692200 10.1016/j.jmb.2009.01.064 10.1016/j.bpj.2013.10.029 10.1038/emboj.2012.57 10.1523/JNEUROSCI.3804-06.2006 10.1016/S0092-8674(01)00192-1 10.1016/j.jmb.2008.07.023 10.1016/j.mcn.2010.07.012 10.1038/nn1980 10.1073/pnas.0711563105 10.1016/j.cub.2010.12.014 10.1091/mbc.e08-05-0457 10.1523/JNEUROSCI.4652-11.2012 10.1038/nsmb709 10.1523/JNEUROSCI.4087-12.2013 10.1016/S0076-6879(10)82005-1 |
ContentType | Journal Article |
Copyright | copyright © 1993–2008 National Academy of Sciences of the United States of America Copyright National Academy of Sciences Sep 23, 2014 |
Copyright_xml | – notice: copyright © 1993–2008 National Academy of Sciences of the United States of America – notice: Copyright National Academy of Sciences Sep 23, 2014 |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 5PM |
DOI | 10.1073/pnas.1415849111 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef Virology and AIDS Abstracts MEDLINE MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | Ring-like oligomers of synaptotagmin-1 |
EISSN | 1091-6490 |
EndPage | 13971 |
ExternalDocumentID | PMC4183308 3444743281 25201968 10_1073_pnas_1415849111 111_38_13966 43043240 US201600138622 |
Genre | Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01 GM071458 – fundername: NIGMS NIH HHS grantid: R01 GM110530 – fundername: NIGMS NIH HHS grantid: GM 071458 |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 692 6TJ 79B 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABPTK ABTLG ABZEH ACGOD ACIWK ACKIV ACNCT ACPRK ADULT ADZLD AENEX AEUPB AEXZC AFDAS AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS ASUFR AS~ BKOMP CS3 D0L DCCCD DIK DNJUQ DOOOF DU5 DWIUU E3Z EBS EJD F20 F5P FBQ FRP GX1 HGD HH5 HQ3 HTVGU HYE JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST KQ8 L7B LU7 MVM N9A NEJ NHB N~3 O9- OK1 P-O PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH VQA W8F WH7 WHG WOQ WOW X7M XFK XSW Y6R YBH YKV YSK ZA5 ZCA ZCG ~02 ~KM ABXSQ ACHIC ADQXQ ADXHL AQVQM H13 IPSME - 02 0R 1AW 55 AAPBV ABFLS ADACO DZ KM PQEST X XHC AAYXX CITATION CGR CUY CVF ECM EIF NPM YIF YIN 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c525t-11ef90646eaa4b7b8600b02e8f5b2ff12e83dd013329d90547693cabd731b1fe3 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 18:34:13 EDT 2025 Fri Sep 05 09:26:59 EDT 2025 Fri Sep 05 03:41:31 EDT 2025 Sat Aug 16 22:21:03 EDT 2025 Wed Feb 19 02:42:08 EST 2025 Tue Jul 01 01:53:14 EDT 2025 Thu Apr 24 22:54:28 EDT 2025 Wed Nov 11 00:30:10 EST 2020 Thu May 29 08:40:54 EDT 2025 Wed Dec 27 19:16:06 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 38 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c525t-11ef90646eaa4b7b8600b02e8f5b2ff12e83dd013329d90547693cabd731b1fe3 |
Notes | http://dx.doi.org/10.1073/pnas.1415849111 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 Contributed by James E. Rothman, August 15, 2014 (sent for review May 27, 2014; reviewed by Thomas Söllner and Nikolaus Grigorieff) Reviewers: T.S., University of Heidelberg; and N.G., Howard Hughes Medical Institute, Janelia Farm Research Campus. Author contributions: Jing Wang, F.P., S.S.K., C.V.S., and J.E.R. designed research; Jing Wang, O.B., S.M.A., and Jing Wang performed research; J.C. contributed new reagents/analytic tools; Jing Wang, O.B., S.M.A., F.P., S.S.K., C.V.S., and J.E.R. analyzed data; and Jing Wang, S.S.K., C.V.S., and J.E.R. wrote the paper. |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/4183308 |
PMID | 25201968 |
PQID | 1565809558 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | crossref_primary_10_1073_pnas_1415849111 jstor_primary_43043240 proquest_miscellaneous_1565502141 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4183308 crossref_citationtrail_10_1073_pnas_1415849111 pnas_primary_111_38_13966 pubmed_primary_25201968 fao_agris_US201600138622 proquest_miscellaneous_1803079140 proquest_journals_1565809558 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-09-23 |
PublicationDateYYYYMMDD | 2014-09-23 |
PublicationDate_xml | – month: 09 year: 2014 text: 2014-09-23 day: 23 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2014 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | e_1_3_3_50_2 e_1_3_3_16_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_58_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_56_2 e_1_3_3_33_2 e_1_3_3_54_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_52_2 e_1_3_3_40_2 e_1_3_3_61_2 e_1_3_3_5_2 e_1_3_3_7_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_23_2 e_1_3_3_48_2 e_1_3_3_69_2 e_1_3_3_25_2 e_1_3_3_46_2 e_1_3_3_67_2 e_1_3_3_1_2 e_1_3_3_44_2 e_1_3_3_65_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 e_1_3_3_63_2 e_1_3_3_51_2 e_1_3_3_17_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_59_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_57_2 e_1_3_3_32_2 e_1_3_3_55_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_53_2 e_1_3_3_62_2 e_1_3_3_60_2 e_1_3_3_6_2 e_1_3_3_8_2 e_1_3_3_28_2 e_1_3_3_49_2 e_1_3_3_24_2 e_1_3_3_47_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_68_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_66_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 e_1_3_3_64_2 17873870 - Nat Neurosci. 2007 Oct;10(10):1235-7 17956130 - Biochemistry. 2007 Nov 13;46(45):13041-8 14527322 - Annu Rev Biochem. 2003;72:175-207 22248449 - J Struct Biol. 2012 Feb;177(2):302-13 16794037 - Science. 2006 Aug 4;313(5787):676-80 22810233 - J Biol Chem. 2012 Sep 7;287(37):31041-9 17906638 - Nat Struct Mol Biol. 2007 Oct;14(10):890-6 7954835 - Cell. 1994 Nov 18;79(4):717-27 16352718 - Proc Natl Acad Sci U S A. 2005 Dec 20;102(51):18664-9 22705946 - EMBO J. 2012 Aug 1;31(15):3270-81 19703397 - Cell. 2009 Aug 21;138(4):709-21 23345244 - J Neurosci. 2013 Jan 23;33(4):1714-27 15919191 - Curr Opin Neurobiol. 2005 Jun;15(3):266-74 11691996 - Science. 2001 Nov 2;294(5544):1111-5 17110340 - Cell. 2006 Nov 17;127(4):831-46 10896136 - Ultramicroscopy. 2000 Jul;84(1-2):1-14 18275379 - Annu Rev Biochem. 2008;77:615-41 24973220 - J Biol Chem. 2014 Aug 8;289(32):22161-71 18622390 - Nat Struct Mol Biol. 2008 Aug;15(8):827-35 12578982 - Proc Natl Acad Sci U S A. 2003 Feb 18;100(4):2082-7 11514560 - J Biol Chem. 2001 Oct 26;276(43):40319-25 21621748 - Brain Res. 2011 Jun 29;1398:126-38 21307261 - J Neurosci. 2011 Feb 9;31(6):2248-57 16919474 - J Struct Biol. 2007 Jan;157(1):83-94 21215634 - Curr Biol. 2011 Jan 25;21(2):97-105 23238737 - J Neurosci. 2012 Dec 12;32(50):18234-45 24657966 - Nat Neurosci. 2014 May;17(5):670-7 9742137 - J Neurosci. 1998 Oct 1;18(19):7662-73 20888960 - Methods Enzymol. 2010;482:131-65 22279210 - J Neurosci. 2012 Jan 25;32(4):1253-60 10972290 - Nature. 2000 Aug 24;406(6798):889-93 16491093 - Nat Struct Mol Biol. 2006 Mar;13(3):209-17 11163241 - Cell. 2001 Jan 12;104(1):71-81 12110842 - Nature. 2002 Jul 18;418(6895):340-4 20173763 - Nat Struct Mol Biol. 2010 Mar;17(3):318-24 21215631 - Curr Biol. 2011 Jan 25;21(2):106-13 16902411 - EMBO J. 2006 Aug 23;25(16):3725-37 1589771 - Science. 1992 May 15;256(5059):1021-5 16963278 - J Struct Biol. 2007 Jan;157(1):281-7 21785414 - Nat Struct Mol Biol. 2011 Aug;18(8):927-33 24876496 - Science. 2014 May 30;344(6187):1023-8 24005294 - J Neurosci. 2013 Sep 4;33(36):14417-30 19914185 - Neuron. 2009 Nov 12;64(3):367-80 23665582 - Nat Struct Mol Biol. 2013 Jun;20(6):679-86 20678575 - Mol Cell Neurosci. 2010 Dec;45(4):389-97 21642968 - Nat Struct Mol Biol. 2011 Jul;18(7):805-12 23918375 - Proc Natl Acad Sci U S A. 2013 Aug 20;110(34):E3243-52 18843044 - Mol Biol Cell. 2008 Dec;19(12):5327-37 21642967 - Nat Struct Mol Biol. 2011 Jul;18(7):813-21 17478680 - Science. 2007 May 25;316(5828):1205-8 18669655 - Proc Natl Acad Sci U S A. 2008 Aug 5;105(31):10803-8 14718921 - Nat Struct Mol Biol. 2004 Jan;11(1):36-44 7791877 - Nature. 1995 Jun 15;375(6532):594-9 11815450 - Diabetes. 2002 Feb;51 Suppl 1:S3-11 19716167 - Cell. 2009 Sep 4;138(5):935-46 16990140 - Cell. 2006 Sep 22;126(6):1175-87 18655791 - J Mol Biol. 2008 Oct 3;382(2):423-33 19302798 - J Mol Biol. 2009 Mar 27;387(2):284-94 21785412 - Nat Struct Mol Biol. 2011 Aug;18(8):934-40 24314081 - Biophys J. 2013 Dec 3;105(11):2507-16 8742718 - J Struct Biol. 1996 Jan-Feb;116(1):17-24 11242035 - Nature. 2001 Mar 1;410(6824):41-9 11964256 - Biophys J. 2002 May;82(5):2700-8 12496268 - J Biol Chem. 2003 Feb 21;278(8):5501-4 7971978 - Proc Natl Acad Sci U S A. 1994 Nov 8;91(23):10888-92 22407297 - EMBO J. 2012 May 2;31(9):2144-55 18650324 - J Neurosci. 2008 Jul 23;28(30):7458-66 22184197 - J Cell Biol. 2011 Dec 26;195(7):1159-70 17135417 - J Neurosci. 2006 Nov 29;26(48):12556-65 |
References_xml | – ident: e_1_3_3_38_2 doi: 10.1038/nsmb.2075 – ident: e_1_3_3_43_2 doi: 10.1146/annurev.biochem.72.121801.161504 – ident: e_1_3_3_10_2 doi: 10.1073/pnas.1310327110 – ident: e_1_3_3_39_2 doi: 10.1038/nsmb1056 – ident: e_1_3_3_67_2 doi: 10.1006/jsbi.1996.0004 – ident: e_1_3_3_11_2 doi: 10.1126/science.1142614 – ident: e_1_3_3_35_2 doi: 10.1016/S0304-3991(00)00010-3 – ident: e_1_3_3_61_2 doi: 10.1126/science.1064002 – ident: e_1_3_3_28_2 doi: 10.1016/S0006-3495(02)75611-7 – ident: e_1_3_3_65_2 doi: 10.1016/j.conb.2005.05.006 – ident: e_1_3_3_4_2 doi: 10.1146/annurev.biochem.77.062005.101135 – ident: e_1_3_3_62_2 doi: 10.2337/diabetes.51.2007.S3 – ident: e_1_3_3_23_2 doi: 10.1126/science.1129450 – ident: e_1_3_3_58_2 doi: 10.1016/j.neuron.2009.09.043 – ident: e_1_3_3_40_2 doi: 10.1038/nsmb1310 – ident: e_1_3_3_33_2 doi: 10.1074/jbc.M114.569327 – ident: e_1_3_3_15_2 doi: 10.1073/pnas.0509153102 – ident: e_1_3_3_45_2 doi: 10.1038/nsmb.1463 – ident: e_1_3_3_19_2 doi: 10.1038/nsmb.1763 – ident: e_1_3_3_13_2 doi: 10.1523/JNEUROSCI.0197-08.2008 – ident: e_1_3_3_48_2 doi: 10.1016/j.cub.2010.12.015 – ident: e_1_3_3_64_2 doi: 10.1038/35022702 – ident: e_1_3_3_2_2 doi: 10.1016/0092-8674(94)90556-8 – ident: e_1_3_3_16_2 doi: 10.1038/nature00846 – ident: e_1_3_3_36_2 doi: 10.1016/j.jsb.2006.05.015 – ident: e_1_3_3_6_2 doi: 10.1038/375594a0 – ident: e_1_3_3_31_2 doi: 10.1016/j.cell.2009.05.049 – ident: e_1_3_3_41_2 doi: 10.1038/nn.3681 – ident: e_1_3_3_37_2 doi: 10.1016/j.jsb.2011.12.020 – ident: e_1_3_3_44_2 doi: 10.1073/pnas.91.23.10888 – ident: e_1_3_3_52_2 doi: 10.1038/sj.emboj.7601256 – ident: e_1_3_3_25_2 doi: 10.1016/j.cell.2006.08.030 – ident: e_1_3_3_63_2 doi: 10.1016/j.brainres.2011.05.011 – ident: e_1_3_3_26_2 doi: 10.1038/emboj.2012.164 – ident: e_1_3_3_42_2 doi: 10.1073/pnas.0435872100 – ident: e_1_3_3_56_2 doi: 10.1083/jcb.201104079 – ident: e_1_3_3_18_2 doi: 10.1016/j.cell.2009.07.027 – ident: e_1_3_3_14_2 doi: 10.1523/JNEUROSCI.3153-09.2011 – ident: e_1_3_3_27_2 doi: 10.1038/nsmb.2103 – ident: e_1_3_3_46_2 doi: 10.1523/JNEUROSCI.3212-12.2012 – ident: e_1_3_3_55_2 doi: 10.1523/JNEUROSCI.18-19-07662.1998 – ident: e_1_3_3_1_2 doi: 10.1126/science.1589771 – ident: e_1_3_3_69_2 doi: 10.1016/j.jsb.2006.06.010 – ident: e_1_3_3_3_2 doi: 10.1038/35065004 – ident: e_1_3_3_32_2 doi: 10.1074/jbc.M105356200 – ident: e_1_3_3_53_2 doi: 10.1038/nsmb.2570 – ident: e_1_3_3_12_2 doi: 10.1038/nsmb.2061 – ident: e_1_3_3_9_2 doi: 10.1074/jbc.M112.386805 – ident: e_1_3_3_60_2 doi: 10.1126/science.1252884 – ident: e_1_3_3_24_2 doi: 10.1038/nsmb.2101 – ident: e_1_3_3_21_2 doi: 10.1523/JNEUROSCI.1236-13.2013 – ident: e_1_3_3_5_2 doi: 10.1016/j.cell.2006.10.030 – ident: e_1_3_3_30_2 doi: 10.1021/bi701651k – ident: e_1_3_3_17_2 doi: 10.1074/jbc.C200692200 – ident: e_1_3_3_8_2 doi: 10.1016/j.jmb.2009.01.064 – ident: e_1_3_3_20_2 doi: 10.1016/j.bpj.2013.10.029 – ident: e_1_3_3_54_2 doi: 10.1038/emboj.2012.57 – ident: e_1_3_3_22_2 doi: 10.1523/JNEUROSCI.3804-06.2006 – ident: e_1_3_3_50_2 doi: 10.1016/S0092-8674(01)00192-1 – ident: e_1_3_3_29_2 doi: 10.1016/j.jmb.2008.07.023 – ident: e_1_3_3_57_2 doi: 10.1016/j.mcn.2010.07.012 – ident: e_1_3_3_49_2 doi: 10.1038/nn1980 – ident: e_1_3_3_34_2 doi: 10.1073/pnas.0711563105 – ident: e_1_3_3_59_2 doi: 10.1016/j.cub.2010.12.014 – ident: e_1_3_3_51_2 doi: 10.1091/mbc.e08-05-0457 – ident: e_1_3_3_66_2 doi: 10.1523/JNEUROSCI.4652-11.2012 – ident: e_1_3_3_7_2 doi: 10.1038/nsmb709 – ident: e_1_3_3_47_2 doi: 10.1523/JNEUROSCI.4087-12.2013 – ident: e_1_3_3_68_2 doi: 10.1016/S0076-6879(10)82005-1 – reference: 23918375 - Proc Natl Acad Sci U S A. 2013 Aug 20;110(34):E3243-52 – reference: 8742718 - J Struct Biol. 1996 Jan-Feb;116(1):17-24 – reference: 16902411 - EMBO J. 2006 Aug 23;25(16):3725-37 – reference: 16794037 - Science. 2006 Aug 4;313(5787):676-80 – reference: 20173763 - Nat Struct Mol Biol. 2010 Mar;17(3):318-24 – reference: 19703397 - Cell. 2009 Aug 21;138(4):709-21 – reference: 19302798 - J Mol Biol. 2009 Mar 27;387(2):284-94 – reference: 21785412 - Nat Struct Mol Biol. 2011 Aug;18(8):934-40 – reference: 17135417 - J Neurosci. 2006 Nov 29;26(48):12556-65 – reference: 23665582 - Nat Struct Mol Biol. 2013 Jun;20(6):679-86 – reference: 24973220 - J Biol Chem. 2014 Aug 8;289(32):22161-71 – reference: 18669655 - Proc Natl Acad Sci U S A. 2008 Aug 5;105(31):10803-8 – reference: 17110340 - Cell. 2006 Nov 17;127(4):831-46 – reference: 14718921 - Nat Struct Mol Biol. 2004 Jan;11(1):36-44 – reference: 15919191 - Curr Opin Neurobiol. 2005 Jun;15(3):266-74 – reference: 19716167 - Cell. 2009 Sep 4;138(5):935-46 – reference: 22705946 - EMBO J. 2012 Aug 1;31(15):3270-81 – reference: 22248449 - J Struct Biol. 2012 Feb;177(2):302-13 – reference: 21215631 - Curr Biol. 2011 Jan 25;21(2):106-13 – reference: 11242035 - Nature. 2001 Mar 1;410(6824):41-9 – reference: 20678575 - Mol Cell Neurosci. 2010 Dec;45(4):389-97 – reference: 11514560 - J Biol Chem. 2001 Oct 26;276(43):40319-25 – reference: 20888960 - Methods Enzymol. 2010;482:131-65 – reference: 12496268 - J Biol Chem. 2003 Feb 21;278(8):5501-4 – reference: 22407297 - EMBO J. 2012 May 2;31(9):2144-55 – reference: 9742137 - J Neurosci. 1998 Oct 1;18(19):7662-73 – reference: 21785414 - Nat Struct Mol Biol. 2011 Aug;18(8):927-33 – reference: 11964256 - Biophys J. 2002 May;82(5):2700-8 – reference: 7971978 - Proc Natl Acad Sci U S A. 1994 Nov 8;91(23):10888-92 – reference: 18650324 - J Neurosci. 2008 Jul 23;28(30):7458-66 – reference: 23238737 - J Neurosci. 2012 Dec 12;32(50):18234-45 – reference: 18622390 - Nat Struct Mol Biol. 2008 Aug;15(8):827-35 – reference: 22810233 - J Biol Chem. 2012 Sep 7;287(37):31041-9 – reference: 17956130 - Biochemistry. 2007 Nov 13;46(45):13041-8 – reference: 11691996 - Science. 2001 Nov 2;294(5544):1111-5 – reference: 17478680 - Science. 2007 May 25;316(5828):1205-8 – reference: 21215634 - Curr Biol. 2011 Jan 25;21(2):97-105 – reference: 22279210 - J Neurosci. 2012 Jan 25;32(4):1253-60 – reference: 16990140 - Cell. 2006 Sep 22;126(6):1175-87 – reference: 22184197 - J Cell Biol. 2011 Dec 26;195(7):1159-70 – reference: 16491093 - Nat Struct Mol Biol. 2006 Mar;13(3):209-17 – reference: 24657966 - Nat Neurosci. 2014 May;17(5):670-7 – reference: 12578982 - Proc Natl Acad Sci U S A. 2003 Feb 18;100(4):2082-7 – reference: 21307261 - J Neurosci. 2011 Feb 9;31(6):2248-57 – reference: 16963278 - J Struct Biol. 2007 Jan;157(1):281-7 – reference: 24005294 - J Neurosci. 2013 Sep 4;33(36):14417-30 – reference: 24314081 - Biophys J. 2013 Dec 3;105(11):2507-16 – reference: 11815450 - Diabetes. 2002 Feb;51 Suppl 1:S3-11 – reference: 14527322 - Annu Rev Biochem. 2003;72:175-207 – reference: 21621748 - Brain Res. 2011 Jun 29;1398:126-38 – reference: 7791877 - Nature. 1995 Jun 15;375(6532):594-9 – reference: 12110842 - Nature. 2002 Jul 18;418(6895):340-4 – reference: 10972290 - Nature. 2000 Aug 24;406(6798):889-93 – reference: 11163241 - Cell. 2001 Jan 12;104(1):71-81 – reference: 7954835 - Cell. 1994 Nov 18;79(4):717-27 – reference: 17906638 - Nat Struct Mol Biol. 2007 Oct;14(10):890-6 – reference: 18655791 - J Mol Biol. 2008 Oct 3;382(2):423-33 – reference: 24876496 - Science. 2014 May 30;344(6187):1023-8 – reference: 17873870 - Nat Neurosci. 2007 Oct;10(10):1235-7 – reference: 21642967 - Nat Struct Mol Biol. 2011 Jul;18(7):813-21 – reference: 19914185 - Neuron. 2009 Nov 12;64(3):367-80 – reference: 23345244 - J Neurosci. 2013 Jan 23;33(4):1714-27 – reference: 21642968 - Nat Struct Mol Biol. 2011 Jul;18(7):805-12 – reference: 10896136 - Ultramicroscopy. 2000 Jul;84(1-2):1-14 – reference: 16919474 - J Struct Biol. 2007 Jan;157(1):83-94 – reference: 18843044 - Mol Biol Cell. 2008 Dec;19(12):5327-37 – reference: 1589771 - Science. 1992 May 15;256(5059):1021-5 – reference: 16352718 - Proc Natl Acad Sci U S A. 2005 Dec 20;102(51):18664-9 – reference: 18275379 - Annu Rev Biochem. 2008;77:615-41 |
SSID | ssj0009580 |
Score | 2.4226577 |
Snippet | The synaptic vesicle protein synaptotagmin-1 (SYT) is required to couple calcium influx to the membrane fusion machinery. However, the structural mechanism... Synaptotagmin-1 is the calcium sensor for synchronous neurotransmitter release. It couples calcium influx to the soluble N -ethylmaleimide–sensitive factor... |
SourceID | pubmedcentral proquest pubmed crossref pnas jstor fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 13966 |
SubjectTerms | Biological Sciences Calcium Calcium - chemistry Cell membranes electron microscopy Exocytosis Humans Lipid Bilayers - chemistry Lipids Magnesium Membranes Molecules Multiprotein Complexes - chemistry Multiprotein Complexes - ultrastructure Neuroscience Neurotransmitters Oligomers P branes Physiological regulation plasma membrane Protein Structure, Tertiary Proteins SNARE Proteins - chemistry synaptic transmission Synaptotagmin I - chemistry Synaptotagmins |
Title | Calcium sensitive ring-like oligomers formed by synaptotagmin |
URI | https://www.jstor.org/stable/43043240 http://www.pnas.org/content/111/38/13966.abstract https://www.ncbi.nlm.nih.gov/pubmed/25201968 https://www.proquest.com/docview/1565809558 https://www.proquest.com/docview/1565502141 https://www.proquest.com/docview/1803079140 https://pubmed.ncbi.nlm.nih.gov/PMC4183308 |
Volume | 111 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfKuHBBDBgLGyhIHIaqlMZ2Pnqsqk3TNLpJtKK3yHaTUZEl09Ietj-Fv5b3YsdtRpmASxQljuP4vbwvv_czIR8VCLwsVJhR0488HqrMEyyKvGgeU86Y9Fldx_1lHJ5O-dksmHU6PzeyllZL2VP3W-tK_oeqcA3oilWy_0BZ2ylcgHOgLxyBwnD8KxqPRK4Wq-tuhVnodQ4QRum8fPEj7Zb54qrEoHRdn6jtzOquEDdLXIi6NoDbxiy9tGqsapIGxk2UcLiuOTGCoOp63cvxegfjbybmfNaoQVP3U0dhLyolbALwcKVysbi1oeh1LHZU5qkJxuKa82YwwueYOaHrhTexvLcObVMKU9CMXNdO91IteMFu8UKutw61ktnIYc2CGgXGCFowXPVuLb-pAJBZuG9xISrQAj7YV1act8C2xxfJyfT8PJkczybtu0a5cw7GFcWq_qc0ArusiQRZQOdYlzeZb2lgoyL2-cG7WxbPk0yUTeor4ulC022-zcMU3Q2bZ_KCPDfOijvUnLdLOmnxkuw2U-0eGczyT69Iw4quZUXXsqJrWdHVrOjKO7fFiq_J9OR4Mjr1zM4cngposPR8P80GYMyGqRBcRjIGs1n2aRpngaRZ5sMZm8_Bu2B0MB-AV4A7bioh5xHzpZ-lbI_sFGWR7hM3poOYKynA8JTcV6EIVRgGIsqAAOC6xA7pNbOXKANbj7un5EmdPhGxBOcwWU-3Q47sAzcaseXPTfeBHIm4An2aTL9SRFvElfuQUofs1TSyXXCmwSsd4tS92K7BgWZxUvOjQw4bSiZGTMDrwGWKEegRPuWDvQ1CHFfmRJGWK90mQPRC_5E2MerjgY9DeKOZww6CBhRxruANUYttbAMEkW_fKRbfazB5Djqd9eO3jw_9gDxb_-6HZGd5u0rfgTW-lO_r3-IXajPbAA |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Calcium+sensitive+ring-like+oligomers+formed+by+synaptotagmin&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Wang%2C+Jing&rft.au=Bello%2C+Oscar&rft.au=Auclair%2C+Sarah+M&rft.au=Coleman%2C+Jeff&rft.date=2014-09-23&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=111&rft.issue=38&rft.spage=13966&rft_id=info:doi/10.1073%2Fpnas.1415849111&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3444743281 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F111%2F38.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F111%2F38.cover.gif |