Calcium sensitive ring-like oligomers formed by synaptotagmin

The synaptic vesicle protein synaptotagmin-1 (SYT) is required to couple calcium influx to the membrane fusion machinery. However, the structural mechanism underlying this process is unclear. Here we report an unexpected circular arrangement (ring) of SYT’s cytosolic domain (C2AB) formed on lipid mo...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 111; no. 38; pp. 13966 - 13971
Main Authors Wang, Jing, Bello, Oscar, Auclair, Sarah M., Coleman, Jeff, Pincet, Frederic, Krishnakumar, Shyam S., Sindelar, Charles V., Rothman, James E.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 23.09.2014
National Acad Sciences
Subjects
Online AccessGet full text
ISSN0027-8424
1091-6490
1091-6490
DOI10.1073/pnas.1415849111

Cover

Abstract The synaptic vesicle protein synaptotagmin-1 (SYT) is required to couple calcium influx to the membrane fusion machinery. However, the structural mechanism underlying this process is unclear. Here we report an unexpected circular arrangement (ring) of SYT’s cytosolic domain (C2AB) formed on lipid monolayers in the absence of free calcium ions as revealed by electron microscopy. Rings vary in diameter from 18–43 nm, corresponding to 11–26 molecules of SYT. Continuous stacking of the SYT rings occasionally converts both lipid monolayers and bilayers into protein-coated tubes. Helical reconstruction of the SYT tubes shows that one of the C2 domains (most likely C2B, based on its biochemical properties) interacts with the membrane and is involved in ring formation, and the other C2 domain points radially outward. SYT rings are disrupted rapidly by physiological concentrations of free calcium but not by magnesium. Assuming that calcium-free SYT rings are physiologically relevant, these results suggest a simple and novel mechanism by which SYT regulates neurotransmitter release: The ring acts as a spacer to prevent the completion of the soluble N -ethylmaleimide–sensitive factor activating protein receptor (SNARE) complex assembly, thereby clamping fusion in the absence of calcium. When the ring disassembles in the presence of calcium, fusion proceeds unimpeded. Significance Synaptotagmin-1 is the calcium sensor for synchronous neurotransmitter release. It couples calcium influx to the soluble N -ethylmaleimide–sensitive factor activating protein receptor (SNARE)-catalyzed fusion, but how this coupling happens is unknown. Here, using electron microscopy, we report that the cytosolic domain of synaptotagmin can assemble into ring-like oligomers under calcium-free conditions, and these rings disassemble rapidly upon calcium binding. This process suggests a novel but speculative mechanism to explain calcium coupling, in which the synaptotagmin rings separate the vesicle and plasma membranes and prevent the completion of SNARE complex assembly until the influx of calcium.
AbstractList Synaptotagmin-1 is the calcium sensor for synchronous neurotransmitter release. It couples calcium influx to the soluble N -ethylmaleimide–sensitive factor activating protein receptor (SNARE)-catalyzed fusion, but how this coupling happens is unknown. Here, using electron microscopy, we report that the cytosolic domain of synaptotagmin can assemble into ring-like oligomers under calcium-free conditions, and these rings disassemble rapidly upon calcium binding. This process suggests a novel but speculative mechanism to explain calcium coupling, in which the synaptotagmin rings separate the vesicle and plasma membranes and prevent the completion of SNARE complex assembly until the influx of calcium. The synaptic vesicle protein synaptotagmin-1 (SYT) is required to couple calcium influx to the membrane fusion machinery. However, the structural mechanism underlying this process is unclear. Here we report an unexpected circular arrangement (ring) of SYT’s cytosolic domain (C2AB) formed on lipid monolayers in the absence of free calcium ions as revealed by electron microscopy. Rings vary in diameter from 18–43 nm, corresponding to 11–26 molecules of SYT. Continuous stacking of the SYT rings occasionally converts both lipid monolayers and bilayers into protein-coated tubes. Helical reconstruction of the SYT tubes shows that one of the C2 domains (most likely C2B, based on its biochemical properties) interacts with the membrane and is involved in ring formation, and the other C2 domain points radially outward. SYT rings are disrupted rapidly by physiological concentrations of free calcium but not by magnesium. Assuming that calcium-free SYT rings are physiologically relevant, these results suggest a simple and novel mechanism by which SYT regulates neurotransmitter release: The ring acts as a spacer to prevent the completion of the soluble N -ethylmaleimide–sensitive factor activating protein receptor (SNARE) complex assembly, thereby clamping fusion in the absence of calcium. When the ring disassembles in the presence of calcium, fusion proceeds unimpeded.
The synaptic vesicle protein synaptotagmin-1 (SYT) is required to couple calcium influx to the membrane fusion machinery. However, the structural mechanism underlying this process is unclear. Here we report an unexpected circular arrangement (ring) of SYT's cytosolic domain (C2AB) formed on lipid monolayers in the absence of free calcium ions as revealed by electron microscopy. Rings vary in diameter from 18-43 nm, corresponding to 11-26 molecules of SYT. Continuous stacking of the SYT rings occasionally converts both lipid monolayers and bilayers into protein-coated tubes. Helical reconstruction of the SYT tubes shows that one of the C2 domains (most likely C2B, based on its biochemical properties) interacts with the membrane and is involved in ring formation, and the other C2 domain points radially outward. SYT rings are disrupted rapidly by physiological concentrations of free calcium but not by magnesium. Assuming that calcium-free SYT rings are physiologically relevant these results suggest a simple and novel mechanism by which SYT regulates neurotransmitter release: The ring acts as a spacer to prevent the completion of the soluble /V-ethylmaleimide-sensitive factor activating protein receptor (SNARE) complex assembly, thereby clamping fusion in the absence of calcium. When the ring disassembles in the presence of calcium, fusion proceeds unimpeded.
The synaptic vesicle protein synaptotagmin-1 (SYT) is required to couple calcium influx to the membrane fusion machinery. However, the structural mechanism underlying this process is unclear. Here we report an unexpected circular arrangement (ring) of SYT's cytosolic domain (C2AB) formed on lipid monolayers in the absence of free calcium ions as revealed by electron microscopy. Rings vary in diameter from 18-43 nm, corresponding to 11-26 molecules of SYT. Continuous stacking of the SYT rings occasionally converts both lipid monolayers and bilayers into protein-coated tubes. Helical reconstruction of the SYT tubes shows that one of the C2 domains (most likely C2B, based on its biochemical properties) interacts with the membrane and is involved in ring formation, and the other C2 domain points radially outward. SYT rings are disrupted rapidly by physiological concentrations of free calcium but not by magnesium. Assuming that calcium-free SYT rings are physiologically relevant, these results suggest a simple and novel mechanism by which SYT regulates neurotransmitter release: The ring acts as a spacer to prevent the completion of the soluble N-ethylmaleimide-sensitive factor activating protein receptor (SNARE) complex assembly, thereby clamping fusion in the absence of calcium. When the ring disassembles in the presence of calcium, fusion proceeds unimpeded.
The synaptic vesicle protein synaptotagmin-1 (SYT) is required to couple calcium influx to the membrane fusion machinery. However, the structural mechanism underlying this process is unclear. Here we report an unexpected circular arrangement (ring) of SYT’s cytosolic domain (C2AB) formed on lipid monolayers in the absence of free calcium ions as revealed by electron microscopy. Rings vary in diameter from 18–43 nm, corresponding to 11–26 molecules of SYT. Continuous stacking of the SYT rings occasionally converts both lipid monolayers and bilayers into protein-coated tubes. Helical reconstruction of the SYT tubes shows that one of the C2 domains (most likely C2B, based on its biochemical properties) interacts with the membrane and is involved in ring formation, and the other C2 domain points radially outward. SYT rings are disrupted rapidly by physiological concentrations of free calcium but not by magnesium. Assuming that calcium-free SYT rings are physiologically relevant, these results suggest a simple and novel mechanism by which SYT regulates neurotransmitter release: The ring acts as a spacer to prevent the completion of the soluble N -ethylmaleimide–sensitive factor activating protein receptor (SNARE) complex assembly, thereby clamping fusion in the absence of calcium. When the ring disassembles in the presence of calcium, fusion proceeds unimpeded. Significance Synaptotagmin-1 is the calcium sensor for synchronous neurotransmitter release. It couples calcium influx to the soluble N -ethylmaleimide–sensitive factor activating protein receptor (SNARE)-catalyzed fusion, but how this coupling happens is unknown. Here, using electron microscopy, we report that the cytosolic domain of synaptotagmin can assemble into ring-like oligomers under calcium-free conditions, and these rings disassemble rapidly upon calcium binding. This process suggests a novel but speculative mechanism to explain calcium coupling, in which the synaptotagmin rings separate the vesicle and plasma membranes and prevent the completion of SNARE complex assembly until the influx of calcium.
The synaptic vesicle protein synaptotagmin-1 (SYT) is required to couple calcium influx to the membrane fusion machinery. However, the structural mechanism underlying this process is unclear. Here we report an unexpected circular arrangement (ring) of SYT's cytosolic domain (C2AB) formed on lipid monolayers in the absence of free calcium ions as revealed by electron microscopy. Rings vary in diameter from 18-43 nm, corresponding to 11-26 molecules of SYT. Continuous stacking of the SYT rings occasionally converts both lipid monolayers and bilayers into protein-coated tubes. Helical reconstruction of the SYT tubes shows that one of the C2 domains (most likely C2B, based on its biochemical properties) interacts with the membrane and is involved in ring formation, and the other C2 domain points radially outward. SYT rings are disrupted rapidly by physiological concentrations of free calcium but not by magnesium. Assuming that calcium-free SYT rings are physiologically relevant, these results suggest a simple and novel mechanism by which SYT regulates neurotransmitter release: The ring acts as a spacer to prevent the completion of the soluble N-ethylmaleimide-sensitive factor activating protein receptor (SNARE) complex assembly, thereby clamping fusion in the absence of calcium. When the ring disassembles in the presence of calcium, fusion proceeds unimpeded.The synaptic vesicle protein synaptotagmin-1 (SYT) is required to couple calcium influx to the membrane fusion machinery. However, the structural mechanism underlying this process is unclear. Here we report an unexpected circular arrangement (ring) of SYT's cytosolic domain (C2AB) formed on lipid monolayers in the absence of free calcium ions as revealed by electron microscopy. Rings vary in diameter from 18-43 nm, corresponding to 11-26 molecules of SYT. Continuous stacking of the SYT rings occasionally converts both lipid monolayers and bilayers into protein-coated tubes. Helical reconstruction of the SYT tubes shows that one of the C2 domains (most likely C2B, based on its biochemical properties) interacts with the membrane and is involved in ring formation, and the other C2 domain points radially outward. SYT rings are disrupted rapidly by physiological concentrations of free calcium but not by magnesium. Assuming that calcium-free SYT rings are physiologically relevant, these results suggest a simple and novel mechanism by which SYT regulates neurotransmitter release: The ring acts as a spacer to prevent the completion of the soluble N-ethylmaleimide-sensitive factor activating protein receptor (SNARE) complex assembly, thereby clamping fusion in the absence of calcium. When the ring disassembles in the presence of calcium, fusion proceeds unimpeded.
Author Bello, Oscar
Coleman, Jeff
Pincet, Frederic
Krishnakumar, Shyam S.
Rothman, James E.
Auclair, Sarah M.
Sindelar, Charles V.
Wang, Jing
Author_xml – sequence: 1
  givenname: Jing
  surname: Wang
  fullname: Wang, Jing
– sequence: 2
  givenname: Oscar
  surname: Bello
  fullname: Bello, Oscar
– sequence: 3
  givenname: Sarah M.
  surname: Auclair
  fullname: Auclair, Sarah M.
– sequence: 4
  givenname: Jeff
  surname: Coleman
  fullname: Coleman, Jeff
– sequence: 5
  givenname: Frederic
  surname: Pincet
  fullname: Pincet, Frederic
– sequence: 6
  givenname: Shyam S.
  surname: Krishnakumar
  fullname: Krishnakumar, Shyam S.
– sequence: 7
  givenname: Charles V.
  surname: Sindelar
  fullname: Sindelar, Charles V.
– sequence: 8
  givenname: James E.
  surname: Rothman
  fullname: Rothman, James E.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25201968$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1v1DAQxS1URLeFMycgUi9c0s74I7EPIKFV-ZAqcYCeLSdxgpfEXuxspf3v8XaXBXqAky3Nb2bevHdGTnzwlpDnCJcINbtae5MukaOQXCHiI7JAUFhWXMEJWQDQupSc8lNyltIKAJSQ8IScUkEBVSUX5M3SjK3bTEWyPrnZ3dkiOj-Uo_tuizC6IUw2pqIPcbJd0WyLtPVmPYfZDJPzT8nj3ozJPju85-T2_fXX5cfy5vOHT8t3N2UrqJhLRNsrqHhljeFN3cgKoAFqZS8a2veYf6zrABmjqlMgeF0p1pqmqxk22Ft2Tt7u5643TdbRWj9HM-p1dJOJWx2M039XvPumh3CnOUrGQOYBrw8DYvixsWnWk0utHUfjbdgkjRIY1Ao5_B8VlRBAs-kZvXiArsIm-uzEPSWz3WK3--Wf4o-qf4WQgas90MaQUrT9EUHQu5j1Lmb9O-bcIR50tG42swu76934j77iIGVXOG5B1ExqZKqqMvJij6zSHOKR4Qw4o_f2vNrXexO0GaJL-vZLPiRHikxWlLKfmOHIlQ
CitedBy_id crossref_primary_10_1002_smtd_202300218
crossref_primary_10_7554_eLife_73585
crossref_primary_10_7554_eLife_27441
crossref_primary_10_7554_eLife_30493
crossref_primary_10_1016_j_ceca_2017_07_008
crossref_primary_10_3389_fphys_2017_00005
crossref_primary_10_1016_j_chembiol_2020_07_017
crossref_primary_10_1002_pro_3445
crossref_primary_10_1016_j_pneurobio_2015_09_004
crossref_primary_10_1371_journal_pone_0149457
crossref_primary_10_1002_1873_3468_13040
crossref_primary_10_1073_pnas_1611506114
crossref_primary_10_1016_j_jmb_2022_167629
crossref_primary_10_1038_s42003_024_07317_9
crossref_primary_10_1146_annurev_biophys_070816_034117
crossref_primary_10_1016_j_cell_2017_01_004
crossref_primary_10_1002_1873_3468_12874
crossref_primary_10_1042_BST20231333
crossref_primary_10_7554_eLife_54506
crossref_primary_10_1038_s41598_020_74923_y
crossref_primary_10_1016_j_conb_2020_04_006
crossref_primary_10_1038_s41467_023_44414_5
crossref_primary_10_1172_JCI79765
crossref_primary_10_1085_jgp_201711944
crossref_primary_10_1093_jmcb_mjae011
crossref_primary_10_3389_fpls_2019_00108
crossref_primary_10_1083_jcb_202408073
crossref_primary_10_1002_1873_3468_14718
crossref_primary_10_3389_fnsyn_2021_798225
crossref_primary_10_7554_eLife_17262
crossref_primary_10_1073_pnas_1914361117
crossref_primary_10_3389_fnsyn_2021_740318
crossref_primary_10_1073_pnas_1920403117
crossref_primary_10_1073_pnas_2121259119
crossref_primary_10_1083_jcb_202311191
crossref_primary_10_1073_pnas_2208337119
crossref_primary_10_1073_pnas_1604000113
crossref_primary_10_1038_s41467_019_10391_x
crossref_primary_10_1074_jbc_RA119_008107
crossref_primary_10_1016_j_bpj_2019_12_021
crossref_primary_10_1073_pnas_1808792115
crossref_primary_10_3389_fnmol_2017_00048
crossref_primary_10_1002_1873_3468_14157
crossref_primary_10_1073_pnas_2417941121
crossref_primary_10_1002_1873_3468_13317
crossref_primary_10_1038_s41467_021_25737_7
crossref_primary_10_1002_1873_3468_13916
crossref_primary_10_1073_pnas_2113859118
crossref_primary_10_1073_pnas_1512779113
crossref_primary_10_7554_eLife_07728
crossref_primary_10_1038_s41594_018_0130_9
crossref_primary_10_1146_annurev_biophys_111821_104732
crossref_primary_10_1073_pnas_2024029118
crossref_primary_10_1073_pnas_2311484120
crossref_primary_10_1016_j_conb_2018_05_006
crossref_primary_10_1021_acs_biochem_8b01235
crossref_primary_10_3389_fncel_2015_00029
crossref_primary_10_1002_1873_3468_13193
crossref_primary_10_7554_eLife_14211
crossref_primary_10_1002_1873_3468_13277
crossref_primary_10_3390_ijms21197298
crossref_primary_10_1002_2211_5463_13473
crossref_primary_10_1038_nature14975
crossref_primary_10_1152_jn_00879_2014
crossref_primary_10_7554_eLife_31013
crossref_primary_10_1002_1873_3468_13316
Cites_doi 10.1038/nsmb.2075
10.1146/annurev.biochem.72.121801.161504
10.1073/pnas.1310327110
10.1038/nsmb1056
10.1006/jsbi.1996.0004
10.1126/science.1142614
10.1016/S0304-3991(00)00010-3
10.1126/science.1064002
10.1016/S0006-3495(02)75611-7
10.1016/j.conb.2005.05.006
10.1146/annurev.biochem.77.062005.101135
10.2337/diabetes.51.2007.S3
10.1126/science.1129450
10.1016/j.neuron.2009.09.043
10.1038/nsmb1310
10.1074/jbc.M114.569327
10.1073/pnas.0509153102
10.1038/nsmb.1463
10.1038/nsmb.1763
10.1523/JNEUROSCI.0197-08.2008
10.1016/j.cub.2010.12.015
10.1038/35022702
10.1016/0092-8674(94)90556-8
10.1038/nature00846
10.1016/j.jsb.2006.05.015
10.1038/375594a0
10.1016/j.cell.2009.05.049
10.1038/nn.3681
10.1016/j.jsb.2011.12.020
10.1073/pnas.91.23.10888
10.1038/sj.emboj.7601256
10.1016/j.cell.2006.08.030
10.1016/j.brainres.2011.05.011
10.1038/emboj.2012.164
10.1073/pnas.0435872100
10.1083/jcb.201104079
10.1016/j.cell.2009.07.027
10.1523/JNEUROSCI.3153-09.2011
10.1038/nsmb.2103
10.1523/JNEUROSCI.3212-12.2012
10.1523/JNEUROSCI.18-19-07662.1998
10.1126/science.1589771
10.1016/j.jsb.2006.06.010
10.1038/35065004
10.1074/jbc.M105356200
10.1038/nsmb.2570
10.1038/nsmb.2061
10.1074/jbc.M112.386805
10.1126/science.1252884
10.1038/nsmb.2101
10.1523/JNEUROSCI.1236-13.2013
10.1016/j.cell.2006.10.030
10.1021/bi701651k
10.1074/jbc.C200692200
10.1016/j.jmb.2009.01.064
10.1016/j.bpj.2013.10.029
10.1038/emboj.2012.57
10.1523/JNEUROSCI.3804-06.2006
10.1016/S0092-8674(01)00192-1
10.1016/j.jmb.2008.07.023
10.1016/j.mcn.2010.07.012
10.1038/nn1980
10.1073/pnas.0711563105
10.1016/j.cub.2010.12.014
10.1091/mbc.e08-05-0457
10.1523/JNEUROSCI.4652-11.2012
10.1038/nsmb709
10.1523/JNEUROSCI.4087-12.2013
10.1016/S0076-6879(10)82005-1
ContentType Journal Article
Copyright copyright © 1993–2008 National Academy of Sciences of the United States of America
Copyright National Academy of Sciences Sep 23, 2014
Copyright_xml – notice: copyright © 1993–2008 National Academy of Sciences of the United States of America
– notice: Copyright National Academy of Sciences Sep 23, 2014
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
5PM
DOI 10.1073/pnas.1415849111
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
CrossRef

Virology and AIDS Abstracts
MEDLINE

MEDLINE - Academic
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Ring-like oligomers of synaptotagmin-1
EISSN 1091-6490
EndPage 13971
ExternalDocumentID PMC4183308
3444743281
25201968
10_1073_pnas_1415849111
111_38_13966
43043240
US201600138622
Genre Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM071458
– fundername: NIGMS NIH HHS
  grantid: R01 GM110530
– fundername: NIGMS NIH HHS
  grantid: GM 071458
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
692
6TJ
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABPTK
ABTLG
ABZEH
ACGOD
ACIWK
ACKIV
ACNCT
ACPRK
ADULT
ADZLD
AENEX
AEUPB
AEXZC
AFDAS
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DNJUQ
DOOOF
DU5
DWIUU
E3Z
EBS
EJD
F20
F5P
FBQ
FRP
GX1
HGD
HH5
HQ3
HTVGU
HYE
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
VQA
W8F
WH7
WHG
WOQ
WOW
X7M
XFK
XSW
Y6R
YBH
YKV
YSK
ZA5
ZCA
ZCG
~02
~KM
ABXSQ
ACHIC
ADQXQ
ADXHL
AQVQM
H13
IPSME
-
02
0R
1AW
55
AAPBV
ABFLS
ADACO
DZ
KM
PQEST
X
XHC
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
YIF
YIN
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c525t-11ef90646eaa4b7b8600b02e8f5b2ff12e83dd013329d90547693cabd731b1fe3
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 18:34:13 EDT 2025
Fri Sep 05 09:26:59 EDT 2025
Fri Sep 05 03:41:31 EDT 2025
Sat Aug 16 22:21:03 EDT 2025
Wed Feb 19 02:42:08 EST 2025
Tue Jul 01 01:53:14 EDT 2025
Thu Apr 24 22:54:28 EDT 2025
Wed Nov 11 00:30:10 EST 2020
Thu May 29 08:40:54 EDT 2025
Wed Dec 27 19:16:06 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 38
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c525t-11ef90646eaa4b7b8600b02e8f5b2ff12e83dd013329d90547693cabd731b1fe3
Notes http://dx.doi.org/10.1073/pnas.1415849111
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Contributed by James E. Rothman, August 15, 2014 (sent for review May 27, 2014; reviewed by Thomas Söllner and Nikolaus Grigorieff)
Reviewers: T.S., University of Heidelberg; and N.G., Howard Hughes Medical Institute, Janelia Farm Research Campus.
Author contributions: Jing Wang, F.P., S.S.K., C.V.S., and J.E.R. designed research; Jing Wang, O.B., S.M.A., and Jing Wang performed research; J.C. contributed new reagents/analytic tools; Jing Wang, O.B., S.M.A., F.P., S.S.K., C.V.S., and J.E.R. analyzed data; and Jing Wang, S.S.K., C.V.S., and J.E.R. wrote the paper.
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/4183308
PMID 25201968
PQID 1565809558
PQPubID 42026
PageCount 6
ParticipantIDs crossref_primary_10_1073_pnas_1415849111
jstor_primary_43043240
proquest_miscellaneous_1565502141
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4183308
crossref_citationtrail_10_1073_pnas_1415849111
pnas_primary_111_38_13966
pubmed_primary_25201968
fao_agris_US201600138622
proquest_miscellaneous_1803079140
proquest_journals_1565809558
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-09-23
PublicationDateYYYYMMDD 2014-09-23
PublicationDate_xml – month: 09
  year: 2014
  text: 2014-09-23
  day: 23
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2014
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References e_1_3_3_50_2
e_1_3_3_16_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_58_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_56_2
e_1_3_3_33_2
e_1_3_3_54_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_52_2
e_1_3_3_40_2
e_1_3_3_61_2
e_1_3_3_5_2
e_1_3_3_7_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_23_2
e_1_3_3_48_2
e_1_3_3_69_2
e_1_3_3_25_2
e_1_3_3_46_2
e_1_3_3_67_2
e_1_3_3_1_2
e_1_3_3_44_2
e_1_3_3_65_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
e_1_3_3_63_2
e_1_3_3_51_2
e_1_3_3_17_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_59_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_57_2
e_1_3_3_32_2
e_1_3_3_55_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_53_2
e_1_3_3_62_2
e_1_3_3_60_2
e_1_3_3_6_2
e_1_3_3_8_2
e_1_3_3_28_2
e_1_3_3_49_2
e_1_3_3_24_2
e_1_3_3_47_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_68_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_66_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
e_1_3_3_64_2
17873870 - Nat Neurosci. 2007 Oct;10(10):1235-7
17956130 - Biochemistry. 2007 Nov 13;46(45):13041-8
14527322 - Annu Rev Biochem. 2003;72:175-207
22248449 - J Struct Biol. 2012 Feb;177(2):302-13
16794037 - Science. 2006 Aug 4;313(5787):676-80
22810233 - J Biol Chem. 2012 Sep 7;287(37):31041-9
17906638 - Nat Struct Mol Biol. 2007 Oct;14(10):890-6
7954835 - Cell. 1994 Nov 18;79(4):717-27
16352718 - Proc Natl Acad Sci U S A. 2005 Dec 20;102(51):18664-9
22705946 - EMBO J. 2012 Aug 1;31(15):3270-81
19703397 - Cell. 2009 Aug 21;138(4):709-21
23345244 - J Neurosci. 2013 Jan 23;33(4):1714-27
15919191 - Curr Opin Neurobiol. 2005 Jun;15(3):266-74
11691996 - Science. 2001 Nov 2;294(5544):1111-5
17110340 - Cell. 2006 Nov 17;127(4):831-46
10896136 - Ultramicroscopy. 2000 Jul;84(1-2):1-14
18275379 - Annu Rev Biochem. 2008;77:615-41
24973220 - J Biol Chem. 2014 Aug 8;289(32):22161-71
18622390 - Nat Struct Mol Biol. 2008 Aug;15(8):827-35
12578982 - Proc Natl Acad Sci U S A. 2003 Feb 18;100(4):2082-7
11514560 - J Biol Chem. 2001 Oct 26;276(43):40319-25
21621748 - Brain Res. 2011 Jun 29;1398:126-38
21307261 - J Neurosci. 2011 Feb 9;31(6):2248-57
16919474 - J Struct Biol. 2007 Jan;157(1):83-94
21215634 - Curr Biol. 2011 Jan 25;21(2):97-105
23238737 - J Neurosci. 2012 Dec 12;32(50):18234-45
24657966 - Nat Neurosci. 2014 May;17(5):670-7
9742137 - J Neurosci. 1998 Oct 1;18(19):7662-73
20888960 - Methods Enzymol. 2010;482:131-65
22279210 - J Neurosci. 2012 Jan 25;32(4):1253-60
10972290 - Nature. 2000 Aug 24;406(6798):889-93
16491093 - Nat Struct Mol Biol. 2006 Mar;13(3):209-17
11163241 - Cell. 2001 Jan 12;104(1):71-81
12110842 - Nature. 2002 Jul 18;418(6895):340-4
20173763 - Nat Struct Mol Biol. 2010 Mar;17(3):318-24
21215631 - Curr Biol. 2011 Jan 25;21(2):106-13
16902411 - EMBO J. 2006 Aug 23;25(16):3725-37
1589771 - Science. 1992 May 15;256(5059):1021-5
16963278 - J Struct Biol. 2007 Jan;157(1):281-7
21785414 - Nat Struct Mol Biol. 2011 Aug;18(8):927-33
24876496 - Science. 2014 May 30;344(6187):1023-8
24005294 - J Neurosci. 2013 Sep 4;33(36):14417-30
19914185 - Neuron. 2009 Nov 12;64(3):367-80
23665582 - Nat Struct Mol Biol. 2013 Jun;20(6):679-86
20678575 - Mol Cell Neurosci. 2010 Dec;45(4):389-97
21642968 - Nat Struct Mol Biol. 2011 Jul;18(7):805-12
23918375 - Proc Natl Acad Sci U S A. 2013 Aug 20;110(34):E3243-52
18843044 - Mol Biol Cell. 2008 Dec;19(12):5327-37
21642967 - Nat Struct Mol Biol. 2011 Jul;18(7):813-21
17478680 - Science. 2007 May 25;316(5828):1205-8
18669655 - Proc Natl Acad Sci U S A. 2008 Aug 5;105(31):10803-8
14718921 - Nat Struct Mol Biol. 2004 Jan;11(1):36-44
7791877 - Nature. 1995 Jun 15;375(6532):594-9
11815450 - Diabetes. 2002 Feb;51 Suppl 1:S3-11
19716167 - Cell. 2009 Sep 4;138(5):935-46
16990140 - Cell. 2006 Sep 22;126(6):1175-87
18655791 - J Mol Biol. 2008 Oct 3;382(2):423-33
19302798 - J Mol Biol. 2009 Mar 27;387(2):284-94
21785412 - Nat Struct Mol Biol. 2011 Aug;18(8):934-40
24314081 - Biophys J. 2013 Dec 3;105(11):2507-16
8742718 - J Struct Biol. 1996 Jan-Feb;116(1):17-24
11242035 - Nature. 2001 Mar 1;410(6824):41-9
11964256 - Biophys J. 2002 May;82(5):2700-8
12496268 - J Biol Chem. 2003 Feb 21;278(8):5501-4
7971978 - Proc Natl Acad Sci U S A. 1994 Nov 8;91(23):10888-92
22407297 - EMBO J. 2012 May 2;31(9):2144-55
18650324 - J Neurosci. 2008 Jul 23;28(30):7458-66
22184197 - J Cell Biol. 2011 Dec 26;195(7):1159-70
17135417 - J Neurosci. 2006 Nov 29;26(48):12556-65
References_xml – ident: e_1_3_3_38_2
  doi: 10.1038/nsmb.2075
– ident: e_1_3_3_43_2
  doi: 10.1146/annurev.biochem.72.121801.161504
– ident: e_1_3_3_10_2
  doi: 10.1073/pnas.1310327110
– ident: e_1_3_3_39_2
  doi: 10.1038/nsmb1056
– ident: e_1_3_3_67_2
  doi: 10.1006/jsbi.1996.0004
– ident: e_1_3_3_11_2
  doi: 10.1126/science.1142614
– ident: e_1_3_3_35_2
  doi: 10.1016/S0304-3991(00)00010-3
– ident: e_1_3_3_61_2
  doi: 10.1126/science.1064002
– ident: e_1_3_3_28_2
  doi: 10.1016/S0006-3495(02)75611-7
– ident: e_1_3_3_65_2
  doi: 10.1016/j.conb.2005.05.006
– ident: e_1_3_3_4_2
  doi: 10.1146/annurev.biochem.77.062005.101135
– ident: e_1_3_3_62_2
  doi: 10.2337/diabetes.51.2007.S3
– ident: e_1_3_3_23_2
  doi: 10.1126/science.1129450
– ident: e_1_3_3_58_2
  doi: 10.1016/j.neuron.2009.09.043
– ident: e_1_3_3_40_2
  doi: 10.1038/nsmb1310
– ident: e_1_3_3_33_2
  doi: 10.1074/jbc.M114.569327
– ident: e_1_3_3_15_2
  doi: 10.1073/pnas.0509153102
– ident: e_1_3_3_45_2
  doi: 10.1038/nsmb.1463
– ident: e_1_3_3_19_2
  doi: 10.1038/nsmb.1763
– ident: e_1_3_3_13_2
  doi: 10.1523/JNEUROSCI.0197-08.2008
– ident: e_1_3_3_48_2
  doi: 10.1016/j.cub.2010.12.015
– ident: e_1_3_3_64_2
  doi: 10.1038/35022702
– ident: e_1_3_3_2_2
  doi: 10.1016/0092-8674(94)90556-8
– ident: e_1_3_3_16_2
  doi: 10.1038/nature00846
– ident: e_1_3_3_36_2
  doi: 10.1016/j.jsb.2006.05.015
– ident: e_1_3_3_6_2
  doi: 10.1038/375594a0
– ident: e_1_3_3_31_2
  doi: 10.1016/j.cell.2009.05.049
– ident: e_1_3_3_41_2
  doi: 10.1038/nn.3681
– ident: e_1_3_3_37_2
  doi: 10.1016/j.jsb.2011.12.020
– ident: e_1_3_3_44_2
  doi: 10.1073/pnas.91.23.10888
– ident: e_1_3_3_52_2
  doi: 10.1038/sj.emboj.7601256
– ident: e_1_3_3_25_2
  doi: 10.1016/j.cell.2006.08.030
– ident: e_1_3_3_63_2
  doi: 10.1016/j.brainres.2011.05.011
– ident: e_1_3_3_26_2
  doi: 10.1038/emboj.2012.164
– ident: e_1_3_3_42_2
  doi: 10.1073/pnas.0435872100
– ident: e_1_3_3_56_2
  doi: 10.1083/jcb.201104079
– ident: e_1_3_3_18_2
  doi: 10.1016/j.cell.2009.07.027
– ident: e_1_3_3_14_2
  doi: 10.1523/JNEUROSCI.3153-09.2011
– ident: e_1_3_3_27_2
  doi: 10.1038/nsmb.2103
– ident: e_1_3_3_46_2
  doi: 10.1523/JNEUROSCI.3212-12.2012
– ident: e_1_3_3_55_2
  doi: 10.1523/JNEUROSCI.18-19-07662.1998
– ident: e_1_3_3_1_2
  doi: 10.1126/science.1589771
– ident: e_1_3_3_69_2
  doi: 10.1016/j.jsb.2006.06.010
– ident: e_1_3_3_3_2
  doi: 10.1038/35065004
– ident: e_1_3_3_32_2
  doi: 10.1074/jbc.M105356200
– ident: e_1_3_3_53_2
  doi: 10.1038/nsmb.2570
– ident: e_1_3_3_12_2
  doi: 10.1038/nsmb.2061
– ident: e_1_3_3_9_2
  doi: 10.1074/jbc.M112.386805
– ident: e_1_3_3_60_2
  doi: 10.1126/science.1252884
– ident: e_1_3_3_24_2
  doi: 10.1038/nsmb.2101
– ident: e_1_3_3_21_2
  doi: 10.1523/JNEUROSCI.1236-13.2013
– ident: e_1_3_3_5_2
  doi: 10.1016/j.cell.2006.10.030
– ident: e_1_3_3_30_2
  doi: 10.1021/bi701651k
– ident: e_1_3_3_17_2
  doi: 10.1074/jbc.C200692200
– ident: e_1_3_3_8_2
  doi: 10.1016/j.jmb.2009.01.064
– ident: e_1_3_3_20_2
  doi: 10.1016/j.bpj.2013.10.029
– ident: e_1_3_3_54_2
  doi: 10.1038/emboj.2012.57
– ident: e_1_3_3_22_2
  doi: 10.1523/JNEUROSCI.3804-06.2006
– ident: e_1_3_3_50_2
  doi: 10.1016/S0092-8674(01)00192-1
– ident: e_1_3_3_29_2
  doi: 10.1016/j.jmb.2008.07.023
– ident: e_1_3_3_57_2
  doi: 10.1016/j.mcn.2010.07.012
– ident: e_1_3_3_49_2
  doi: 10.1038/nn1980
– ident: e_1_3_3_34_2
  doi: 10.1073/pnas.0711563105
– ident: e_1_3_3_59_2
  doi: 10.1016/j.cub.2010.12.014
– ident: e_1_3_3_51_2
  doi: 10.1091/mbc.e08-05-0457
– ident: e_1_3_3_66_2
  doi: 10.1523/JNEUROSCI.4652-11.2012
– ident: e_1_3_3_7_2
  doi: 10.1038/nsmb709
– ident: e_1_3_3_47_2
  doi: 10.1523/JNEUROSCI.4087-12.2013
– ident: e_1_3_3_68_2
  doi: 10.1016/S0076-6879(10)82005-1
– reference: 23918375 - Proc Natl Acad Sci U S A. 2013 Aug 20;110(34):E3243-52
– reference: 8742718 - J Struct Biol. 1996 Jan-Feb;116(1):17-24
– reference: 16902411 - EMBO J. 2006 Aug 23;25(16):3725-37
– reference: 16794037 - Science. 2006 Aug 4;313(5787):676-80
– reference: 20173763 - Nat Struct Mol Biol. 2010 Mar;17(3):318-24
– reference: 19703397 - Cell. 2009 Aug 21;138(4):709-21
– reference: 19302798 - J Mol Biol. 2009 Mar 27;387(2):284-94
– reference: 21785412 - Nat Struct Mol Biol. 2011 Aug;18(8):934-40
– reference: 17135417 - J Neurosci. 2006 Nov 29;26(48):12556-65
– reference: 23665582 - Nat Struct Mol Biol. 2013 Jun;20(6):679-86
– reference: 24973220 - J Biol Chem. 2014 Aug 8;289(32):22161-71
– reference: 18669655 - Proc Natl Acad Sci U S A. 2008 Aug 5;105(31):10803-8
– reference: 17110340 - Cell. 2006 Nov 17;127(4):831-46
– reference: 14718921 - Nat Struct Mol Biol. 2004 Jan;11(1):36-44
– reference: 15919191 - Curr Opin Neurobiol. 2005 Jun;15(3):266-74
– reference: 19716167 - Cell. 2009 Sep 4;138(5):935-46
– reference: 22705946 - EMBO J. 2012 Aug 1;31(15):3270-81
– reference: 22248449 - J Struct Biol. 2012 Feb;177(2):302-13
– reference: 21215631 - Curr Biol. 2011 Jan 25;21(2):106-13
– reference: 11242035 - Nature. 2001 Mar 1;410(6824):41-9
– reference: 20678575 - Mol Cell Neurosci. 2010 Dec;45(4):389-97
– reference: 11514560 - J Biol Chem. 2001 Oct 26;276(43):40319-25
– reference: 20888960 - Methods Enzymol. 2010;482:131-65
– reference: 12496268 - J Biol Chem. 2003 Feb 21;278(8):5501-4
– reference: 22407297 - EMBO J. 2012 May 2;31(9):2144-55
– reference: 9742137 - J Neurosci. 1998 Oct 1;18(19):7662-73
– reference: 21785414 - Nat Struct Mol Biol. 2011 Aug;18(8):927-33
– reference: 11964256 - Biophys J. 2002 May;82(5):2700-8
– reference: 7971978 - Proc Natl Acad Sci U S A. 1994 Nov 8;91(23):10888-92
– reference: 18650324 - J Neurosci. 2008 Jul 23;28(30):7458-66
– reference: 23238737 - J Neurosci. 2012 Dec 12;32(50):18234-45
– reference: 18622390 - Nat Struct Mol Biol. 2008 Aug;15(8):827-35
– reference: 22810233 - J Biol Chem. 2012 Sep 7;287(37):31041-9
– reference: 17956130 - Biochemistry. 2007 Nov 13;46(45):13041-8
– reference: 11691996 - Science. 2001 Nov 2;294(5544):1111-5
– reference: 17478680 - Science. 2007 May 25;316(5828):1205-8
– reference: 21215634 - Curr Biol. 2011 Jan 25;21(2):97-105
– reference: 22279210 - J Neurosci. 2012 Jan 25;32(4):1253-60
– reference: 16990140 - Cell. 2006 Sep 22;126(6):1175-87
– reference: 22184197 - J Cell Biol. 2011 Dec 26;195(7):1159-70
– reference: 16491093 - Nat Struct Mol Biol. 2006 Mar;13(3):209-17
– reference: 24657966 - Nat Neurosci. 2014 May;17(5):670-7
– reference: 12578982 - Proc Natl Acad Sci U S A. 2003 Feb 18;100(4):2082-7
– reference: 21307261 - J Neurosci. 2011 Feb 9;31(6):2248-57
– reference: 16963278 - J Struct Biol. 2007 Jan;157(1):281-7
– reference: 24005294 - J Neurosci. 2013 Sep 4;33(36):14417-30
– reference: 24314081 - Biophys J. 2013 Dec 3;105(11):2507-16
– reference: 11815450 - Diabetes. 2002 Feb;51 Suppl 1:S3-11
– reference: 14527322 - Annu Rev Biochem. 2003;72:175-207
– reference: 21621748 - Brain Res. 2011 Jun 29;1398:126-38
– reference: 7791877 - Nature. 1995 Jun 15;375(6532):594-9
– reference: 12110842 - Nature. 2002 Jul 18;418(6895):340-4
– reference: 10972290 - Nature. 2000 Aug 24;406(6798):889-93
– reference: 11163241 - Cell. 2001 Jan 12;104(1):71-81
– reference: 7954835 - Cell. 1994 Nov 18;79(4):717-27
– reference: 17906638 - Nat Struct Mol Biol. 2007 Oct;14(10):890-6
– reference: 18655791 - J Mol Biol. 2008 Oct 3;382(2):423-33
– reference: 24876496 - Science. 2014 May 30;344(6187):1023-8
– reference: 17873870 - Nat Neurosci. 2007 Oct;10(10):1235-7
– reference: 21642967 - Nat Struct Mol Biol. 2011 Jul;18(7):813-21
– reference: 19914185 - Neuron. 2009 Nov 12;64(3):367-80
– reference: 23345244 - J Neurosci. 2013 Jan 23;33(4):1714-27
– reference: 21642968 - Nat Struct Mol Biol. 2011 Jul;18(7):805-12
– reference: 10896136 - Ultramicroscopy. 2000 Jul;84(1-2):1-14
– reference: 16919474 - J Struct Biol. 2007 Jan;157(1):83-94
– reference: 18843044 - Mol Biol Cell. 2008 Dec;19(12):5327-37
– reference: 1589771 - Science. 1992 May 15;256(5059):1021-5
– reference: 16352718 - Proc Natl Acad Sci U S A. 2005 Dec 20;102(51):18664-9
– reference: 18275379 - Annu Rev Biochem. 2008;77:615-41
SSID ssj0009580
Score 2.4226577
Snippet The synaptic vesicle protein synaptotagmin-1 (SYT) is required to couple calcium influx to the membrane fusion machinery. However, the structural mechanism...
Synaptotagmin-1 is the calcium sensor for synchronous neurotransmitter release. It couples calcium influx to the soluble N -ethylmaleimide–sensitive factor...
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 13966
SubjectTerms Biological Sciences
Calcium
Calcium - chemistry
Cell membranes
electron microscopy
Exocytosis
Humans
Lipid Bilayers - chemistry
Lipids
Magnesium
Membranes
Molecules
Multiprotein Complexes - chemistry
Multiprotein Complexes - ultrastructure
Neuroscience
Neurotransmitters
Oligomers
P branes
Physiological regulation
plasma membrane
Protein Structure, Tertiary
Proteins
SNARE Proteins - chemistry
synaptic transmission
Synaptotagmin I - chemistry
Synaptotagmins
Title Calcium sensitive ring-like oligomers formed by synaptotagmin
URI https://www.jstor.org/stable/43043240
http://www.pnas.org/content/111/38/13966.abstract
https://www.ncbi.nlm.nih.gov/pubmed/25201968
https://www.proquest.com/docview/1565809558
https://www.proquest.com/docview/1565502141
https://www.proquest.com/docview/1803079140
https://pubmed.ncbi.nlm.nih.gov/PMC4183308
Volume 111
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfKuHBBDBgLGyhIHIaqlMZ2Pnqsqk3TNLpJtKK3yHaTUZEl09Ietj-Fv5b3YsdtRpmASxQljuP4vbwvv_czIR8VCLwsVJhR0488HqrMEyyKvGgeU86Y9Fldx_1lHJ5O-dksmHU6PzeyllZL2VP3W-tK_oeqcA3oilWy_0BZ2ylcgHOgLxyBwnD8KxqPRK4Wq-tuhVnodQ4QRum8fPEj7Zb54qrEoHRdn6jtzOquEDdLXIi6NoDbxiy9tGqsapIGxk2UcLiuOTGCoOp63cvxegfjbybmfNaoQVP3U0dhLyolbALwcKVysbi1oeh1LHZU5qkJxuKa82YwwueYOaHrhTexvLcObVMKU9CMXNdO91IteMFu8UKutw61ktnIYc2CGgXGCFowXPVuLb-pAJBZuG9xISrQAj7YV1act8C2xxfJyfT8PJkczybtu0a5cw7GFcWq_qc0ArusiQRZQOdYlzeZb2lgoyL2-cG7WxbPk0yUTeor4ulC022-zcMU3Q2bZ_KCPDfOijvUnLdLOmnxkuw2U-0eGczyT69Iw4quZUXXsqJrWdHVrOjKO7fFiq_J9OR4Mjr1zM4cngposPR8P80GYMyGqRBcRjIGs1n2aRpngaRZ5sMZm8_Bu2B0MB-AV4A7bioh5xHzpZ-lbI_sFGWR7hM3poOYKynA8JTcV6EIVRgGIsqAAOC6xA7pNbOXKANbj7un5EmdPhGxBOcwWU-3Q47sAzcaseXPTfeBHIm4An2aTL9SRFvElfuQUofs1TSyXXCmwSsd4tS92K7BgWZxUvOjQw4bSiZGTMDrwGWKEegRPuWDvQ1CHFfmRJGWK90mQPRC_5E2MerjgY9DeKOZww6CBhRxruANUYttbAMEkW_fKRbfazB5Djqd9eO3jw_9gDxb_-6HZGd5u0rfgTW-lO_r3-IXajPbAA
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Calcium+sensitive+ring-like+oligomers+formed+by+synaptotagmin&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Wang%2C+Jing&rft.au=Bello%2C+Oscar&rft.au=Auclair%2C+Sarah+M&rft.au=Coleman%2C+Jeff&rft.date=2014-09-23&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=111&rft.issue=38&rft.spage=13966&rft_id=info:doi/10.1073%2Fpnas.1415849111&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3444743281
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F111%2F38.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F111%2F38.cover.gif