Array comparative genomic hybridization (aCGH) analysis in Prader-Willi syndrome

Prader–Willi syndrome (PWS) is due to loss of paternally expressed genes in the 15q11–q13 region generally from a paternal 15q11–q13 deletion. The proximal deletion breakpoint in the 15q11–q13 region occurs at one of two sites located within either of two large duplicons allowing for identification...

Full description

Saved in:
Bibliographic Details
Published inAmerican journal of medical genetics. Part A Vol. 146A; no. 7; pp. 854 - 860
Main Authors Butler, Merlin G., Fischer, William, Kibiryeva, Nataliya, Bittel, Douglas C.
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.04.2008
Wiley-Liss
Subjects
Online AccessGet full text
ISSN1552-4825
1552-4833
1552-4833
DOI10.1002/ajmg.a.32249

Cover

Abstract Prader–Willi syndrome (PWS) is due to loss of paternally expressed genes in the 15q11–q13 region generally from a paternal 15q11–q13 deletion. The proximal deletion breakpoint in the 15q11–q13 region occurs at one of two sites located within either of two large duplicons allowing for identification of two typical deletion subgroups. The larger type I (TI) deletion involving breakpoint 1 (BP1) is nearer to the centromere and located proximal to the microsatellite marker D15S1035, while the smaller type II (TII) deletion involves breakpoint 2 (BP2) and distal to D15S1035. Breakpoint 3 (BP3) is located at the distal end of the 15q11–q13 region and common to both typical deletion subgroups. Using high resolution aCGH, BP1 spanned a region from 18.683 to 20.220 Mb, BP2 from 20.812 to 21.357 Mb and BP3 from 25.941 to 27.286 Mb. The TI deletion ranged in size from 5.721 to 8.147 Mb (mean 6.583) and the type II deletion from 4.770 to 6.435 Mb (mean 5.330). A subset of the TI subjects showed larger deletions including the loss of at least three genes/transcripts (i.e., LOC283755, POTE5, OR4N4) in addition to the four genes between BP1 and BP2 (i.e., GCP5, CYFIP1, NIPA1, NIPA2). Interestingly, four PWS subjects had duplications of the 15q11 region in addition to the typical deletion. Furthermore, most PWS subjects had copy number variation (CNV) of 50 kb or larger in other chromosome regions; most common were deletions and duplications of 8p and 3q, previously recognized sites of CNV in the human genome. © 2008 Wiley‐Liss, Inc.
AbstractList Prader-Willi syndrome (PWS) is due to loss of paternally expressed genes in the 15q11-q13 region generally from a paternal 15q11-q13 deletion. The proximal deletion breakpoint in the 15q11-q13 region occurs at one of two sites located within either of two large duplicons allowing for identification of two typical deletion subgroups. The larger type I (TI) deletion involving breakpoint 1 (BP1) is nearer to the centromere and located proximal to the microsatellite marker D15S1035, while the smaller type II (TII) deletion involves breakpoint 2 (BP2) and distal to D15S1035. Breakpoint 3 (BP3) is located at the distal end of the 15q11-q13 region and common to both typical deletion subgroups. Using high resolution aCGH, BP1 spanned a region from 18.683 to 20.220 Mb, BP2 from 20.812 to 21.357 Mb and BP3 from 25.941 to 27.286 Mb. The TI deletion ranged in size from 5.721 to 8.147 Mb (mean 6.583) and the type II deletion from 4.770 to 6.435 Mb (mean 5.330). A subset of the TI subjects showed larger deletions including the loss of at least three genes/transcripts (i.e., LOC283755, POTE5, OR4N4) in addition to the four genes between BP1 and BP2 (i.e., GCP5, CYFIP1, NIPA1, NIPA2). Interestingly, four PWS subjects had duplications of the 15q11 region in addition to the typical deletion. Furthermore, most PWS subjects had copy number variation (CNV) of 50 kb or larger in other chromosome regions; most common were deletions and duplications of 8p and 3q, previously recognized sites of CNV in the human genome.
Prader–Willi syndrome (PWS) is due to loss of paternally expressed genes in the 15q11–q13 region generally from a paternal 15q11–q13 deletion. The proximal deletion breakpoint in the 15q11–q13 region occurs at one of two sites located within either of two large duplicons allowing for identification of two typical deletion subgroups. The larger type I (TI) deletion involving breakpoint 1 (BP1) is nearer to the centromere and located proximal to the microsatellite marker D15S1035, while the smaller type II (TII) deletion involves breakpoint 2 (BP2) and distal to D15S1035. Breakpoint 3 (BP3) is located at the distal end of the 15q11–q13 region and common to both typical deletion subgroups. Using high resolution aCGH, BP1 spanned a region from 18.683 to 20.220 Mb, BP2 from 20.812 to 21.357 Mb and BP3 from 25.941 to 27.286 Mb. The TI deletion ranged in size from 5.721 to 8.147 Mb (mean 6.583) and the type II deletion from 4.770 to 6.435 Mb (mean 5.330). A subset of the TI subjects showed larger deletions including the loss of at least three genes/transcripts (i.e., LOC283755, POTE5, OR4N4) in addition to the four genes between BP1 and BP2 (i.e., GCP5, CYFIP1, NIPA1, NIPA2). Interestingly, four PWS subjects had duplications of the 15q11 region in addition to the typical deletion. Furthermore, most PWS subjects had copy number variation (CNV) of 50 kb or larger in other chromosome regions; most common were deletions and duplications of 8p and 3q, previously recognized sites of CNV in the human genome. © 2008 Wiley‐Liss, Inc.
Prader-Willi syndrome (PWS) is due to loss of paternally expressed genes in the 15q11-q13 region generally from a paternal 15q11-q13 deletion. The proximal deletion breakpoint in the 15q11-q13 region occurs at one of two sites located within either of two large duplicons allowing for identification of two typical deletion subgroups. The larger type I (TI) deletion involving breakpoint 1 (BP1) is nearer to the centromere and located proximal to the microsatellite marker D15S1035, while the smaller type II (TII) deletion involves breakpoint 2 (BP2) and distal to D15S1035. Breakpoint 3 (BP3) is located at the distal end of the 15q11-q13 region and common to both typical deletion subgroups. Using high resolution aCGH, BP1 spanned a region from 18.683 to 20.220 Mb, BP2 from 20.812 to 21.357 Mb and BP3 from 25.941 to 27.286 Mb. The TI deletion ranged in size from 5.721 to 8.147 Mb (mean 6.583) and the type II deletion from 4.770 to 6.435 Mb (mean 5.330). A subset of the TI subjects showed larger deletions including the loss of at least three genes/transcripts (i.e., LOC283755, POTE5, OR4N4) in addition to the four genes between BP1 and BP2 (i.e., GCP5, CYFIP1, NIPA1, NIPA2). Interestingly, four PWS subjects had duplications of the 15q11 region in addition to the typical deletion. Furthermore, most PWS subjects had copy number variation (CNV) of 50 kb or larger in other chromosome regions; most common were deletions and duplications of 8p and 3q, previously recognized sites of CNV in the human genome.Prader-Willi syndrome (PWS) is due to loss of paternally expressed genes in the 15q11-q13 region generally from a paternal 15q11-q13 deletion. The proximal deletion breakpoint in the 15q11-q13 region occurs at one of two sites located within either of two large duplicons allowing for identification of two typical deletion subgroups. The larger type I (TI) deletion involving breakpoint 1 (BP1) is nearer to the centromere and located proximal to the microsatellite marker D15S1035, while the smaller type II (TII) deletion involves breakpoint 2 (BP2) and distal to D15S1035. Breakpoint 3 (BP3) is located at the distal end of the 15q11-q13 region and common to both typical deletion subgroups. Using high resolution aCGH, BP1 spanned a region from 18.683 to 20.220 Mb, BP2 from 20.812 to 21.357 Mb and BP3 from 25.941 to 27.286 Mb. The TI deletion ranged in size from 5.721 to 8.147 Mb (mean 6.583) and the type II deletion from 4.770 to 6.435 Mb (mean 5.330). A subset of the TI subjects showed larger deletions including the loss of at least three genes/transcripts (i.e., LOC283755, POTE5, OR4N4) in addition to the four genes between BP1 and BP2 (i.e., GCP5, CYFIP1, NIPA1, NIPA2). Interestingly, four PWS subjects had duplications of the 15q11 region in addition to the typical deletion. Furthermore, most PWS subjects had copy number variation (CNV) of 50 kb or larger in other chromosome regions; most common were deletions and duplications of 8p and 3q, previously recognized sites of CNV in the human genome.
Prader–Willi syndrome (PWS) is due to loss of paternally expressed genes in the 15q11–q13 region generally from a paternal 15q11–q13 deletion. The proximal deletion breakpoint in the 15q11–q13 region occurs at one of two sites located within either of two large duplicons allowing for identification of two typical deletion subgroups. The larger type I (TI) deletion involving breakpoint 1 (BP1) is nearer to the centromere and located proximal to the microsatellite marker D15S1035, while the smaller type II (TII) deletion involves breakpoint 2 (BP2) and distal to D15S1035. Breakpoint 3 (BP3) is located at the distal end of the 15q11–q13 region and common to both typical deletion subgroups. Using high resolution aCGH, BP1 spanned a region from 18.683 to 20.220 Mb, BP2 from 20.812 to 21.357 Mb and BP3 from 25.941 to 27.286 Mb. The TI deletion ranged in size from 5.721 to 8.147 Mb (mean 6.583) and the type II deletion from 4.770 to 6.435 Mb (mean 5.330). A subset of the TI subjects showed larger deletions including the loss of at least three genes/transcripts (i.e., LOC283755 , POTE5 , OR4N4 ) in addition to the four genes between BP1 and BP2 (i.e., GCP5 , CYFIP1 , NIPA1 , NIPA2 ). Interestingly, four PWS subjects had duplications of the 15q11 region in addition to the typical deletion. Furthermore, most PWS subjects had copy number variation (CNV) of 50 kb or larger in other chromosome regions; most common were deletions and duplications of 8p and 3q, previously recognized sites of CNV in the human genome. © 2008 Wiley‐Liss, Inc.
Author Butler, Merlin G.
Kibiryeva, Nataliya
Fischer, William
Bittel, Douglas C.
Author_xml – sequence: 1
  givenname: Merlin G.
  surname: Butler
  fullname: Butler, Merlin G.
  email: mgbutler@cmh.edu
  organization: Children's Mercy Hospitals and Clinics and University of Missouri-Kansas City School of Medicine, Kansas City, Missouri
– sequence: 2
  givenname: William
  surname: Fischer
  fullname: Fischer, William
  organization: Children's Mercy Hospitals and Clinics and University of Missouri-Kansas City School of Medicine, Kansas City, Missouri
– sequence: 3
  givenname: Nataliya
  surname: Kibiryeva
  fullname: Kibiryeva, Nataliya
  organization: Children's Mercy Hospitals and Clinics and University of Missouri-Kansas City School of Medicine, Kansas City, Missouri
– sequence: 4
  givenname: Douglas C.
  surname: Bittel
  fullname: Bittel, Douglas C.
  organization: Children's Mercy Hospitals and Clinics and University of Missouri-Kansas City School of Medicine, Kansas City, Missouri
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20239410$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/18266248$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtv1DAUhS1URB-wY42yAYFEBj_iPDZIoxGkDAVGvLq0bhxn6taxBzvTEn49mU6YAhJ0Zcv-ztG95xyiPeusQughwROCMX0B5-1yAhNGaVLcQQeEcxonOWN7uzvl--gwhHOMGeZZeg_tk5ymKU3yA7SYeg99JF27Ag-dvlTRUlnXahmd9ZXXtf4xvDobPYVZefwsAgumDzpE2kYLD7Xy8ak2Rkeht7V3rbqP7jZggnownkfoy-tXn2fH8cmH8s1sehJLTnkRc5rIWiWVpDkw3mSEpjIHrAoucZUVGYYGqyobKEYUl6nCOMNNzjmpC1zlNTtC8dZ3bVfQX4ExYuV1C74XBItNMmKTjABxnczAv9zyq3XVqloq23m40TjQ4s8fq8_E0l0KnrAhrWQweDIaePdtrUInWh2kMgascusgMpxwwll6K0gxLnJO8QA--n2km_nHdgbg8QhAkGAaD1bqsOMopqxIyMaIbjnpXQheNULq7rq2YRNt_hXI879Et-THtviVNqr_Lyum83flL9XYkg6d-r5Tgb8QacYyLk7fl-Lj4u3Xcj5PxSf2Ex0_34Q
CitedBy_id crossref_primary_10_1016_j_mehy_2011_12_020
crossref_primary_10_1038_mp_2009_2
crossref_primary_10_1038_nature07239
crossref_primary_10_1038_oby_2010_323
crossref_primary_10_1002_ajmg_a_32459
crossref_primary_10_1515_jpem_2016_0435
crossref_primary_10_3928_00904481_20130924_10
crossref_primary_10_1176_foc_8_3_foc307
crossref_primary_10_1186_s13023_022_02302_z
crossref_primary_10_1002_ajmg_a_33197
crossref_primary_10_1186_1755_8166_5_11
crossref_primary_10_1002_ajmg_a_36307
crossref_primary_10_1007_s10815_009_9353_3
crossref_primary_10_1002_ajmg_a_36306
crossref_primary_10_1097_01_MXE_0000484369_78928_9e
crossref_primary_10_1007_s40618_015_0312_9
crossref_primary_10_3390_ijms252413562
crossref_primary_10_1146_annurev_genom_091212_153431
crossref_primary_10_2174_1573396315666190716120925
crossref_primary_10_1002_ajmg_b_32022
crossref_primary_10_1002_ajmg_a_35980
crossref_primary_10_3390_ijms16024068
crossref_primary_10_6000_2292_2598_2014_02_03_2
crossref_primary_10_1002_ajmg_a_35581
crossref_primary_10_1089_gtmb_2011_0115
crossref_primary_10_1038_ejhg_2011_187
crossref_primary_10_3345_kjp_2011_54_2_55
crossref_primary_10_1002_ajmg_a_35909
crossref_primary_10_1093_molehr_gaq005
crossref_primary_10_1111_j_1365_277X_2012_01275_x
crossref_primary_10_1038_ijo_2008_255
crossref_primary_10_3892_br_2016_675
crossref_primary_10_1002_ajmg_c_30273
crossref_primary_10_1111_j_1469_1809_2010_00633_x
crossref_primary_10_1002_ajmg_a_38582
crossref_primary_10_1111_jir_12382
crossref_primary_10_20945_2359_3997000000248
crossref_primary_10_3109_10409238_2015_1064350
crossref_primary_10_3390_endocrines3020027
crossref_primary_10_1111_cge_13367
crossref_primary_10_3390_ijms20122914
crossref_primary_10_1007_s11427_009_0078_4
crossref_primary_10_1002_ajmg_a_62928
crossref_primary_10_1371_journal_pone_0076314
crossref_primary_10_3390_ijms24021220
crossref_primary_10_6065_apem_2016_21_3_126
crossref_primary_10_1002_ajmg_a_36405
crossref_primary_10_2478_rrlm_2014_0019
crossref_primary_10_1016_S0895_3988_10_60052_9
crossref_primary_10_3345_kjp_2012_55_7_224
crossref_primary_10_3390_ijms22041993
crossref_primary_10_1186_1755_8166_4_15
crossref_primary_10_3390_genes11020204
crossref_primary_10_1002_ajmg_a_36058
crossref_primary_10_1016_j_anpedi_2011_01_033
crossref_primary_10_1002_ajmg_a_38154
Cites_doi 10.1017/S1462399405009531
10.1097/00019616-200010041-00002
10.1038/ng2093
10.1073/pnas.0407979101
10.1136/jmg.39.3.202
10.1086/378816
10.1002/(SICI)1096-8628(19970211)68:4<433::AID-AJMG12>3.0.CO;2-T
10.1038/ng1921
10.1086/319506
10.1101/gr.5629106
10.1101/gr.5630906
10.1038/nature05329
10.1089/gte.2007.0061
10.1126/science.1138659
10.1126/science.1098918
10.1101/gr.155601
10.1101/gr.10.3.319
10.1073/pnas.0602318103
10.1542/peds.2006-0424
10.1093/hmg/8.6.1025
10.1038/ng1697
10.1542/peds.113.3.565
10.1126/science.1136678
10.1086/422854
10.1086/302510
10.1146/annurev.genom.2.1.153
10.1002/ajmg.a.31606
ContentType Journal Article
Copyright Copyright © 2008 Wiley‐Liss, Inc.
2008 INIST-CNRS
Copyright 2008 Wiley-Liss, Inc.
Copyright_xml – notice: Copyright © 2008 Wiley‐Liss, Inc.
– notice: 2008 INIST-CNRS
– notice: Copyright 2008 Wiley-Liss, Inc.
DBID BSCLL
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
P64
RC3
7X8
5PM
ADTOC
UNPAY
DOI 10.1002/ajmg.a.32249
DatabaseName Istex
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
Genetics Abstracts

MEDLINE - Academic
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1552-4833
EndPage 860
ExternalDocumentID oai:pubmedcentral.nih.gov:5438264
PMC5438264
18266248
20239410
10_1002_ajmg_a_32249
AJMG32249
ark_67375_WNG_RPKVGJJ6_S
Genre article
Comparative Study
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIH
  funderid: 1U54 RR019478
– fundername: NICHD RO1HD
  funderid: 41672
– fundername: NICHD PO1HD
  funderid: 30329
– fundername: Hall Foundation of Kansas City, and Physician Scientist Award (Children's Mercy Hospitals and Clinics)
– fundername: NICHD NIH HHS
  grantid: P01 HD030329
– fundername: NICHD NIH HHS
  grantid: P01HD30329
– fundername: NCRR NIH HHS
  grantid: U54 RR019478
– fundername: NCRR NIH HHS
  grantid: 1U54 RR019478
– fundername: NICHD NIH HHS
  grantid: R01 HD041672
– fundername: NICHD NIH HHS
  grantid: R01HD41672
GroupedDBID ---
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
23M
31~
33P
4.4
50Y
51W
51X
52M
52N
52O
52P
52S
52T
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-1
8-4
8-5
8UM
930
A03
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFO
ACGFS
ACPOU
ACPRK
ACRPL
ACXBN
ACXQS
ACYXJ
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AZBYB
AZFZN
BDRZF
BFHJK
BRXPI
BSCLL
BY8
C45
CO8
CS3
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
GNP
GODZA
HBH
HGLYW
HHY
HHZ
HVGLF
IX1
JPC
KD1
KQQ
L7B
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
OIG
OVD
P2W
P4D
QB0
QRW
ROL
RX1
RYL
SUPJJ
TEORI
UB1
V2E
WIH
WIK
WJL
WQJ
X7M
XG1
XV2
3O-
AAYXX
ABEML
ACSCC
AGHNM
CITATION
EBD
EMOBN
HF~
SV3
IQODW
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
P64
RC3
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c5259-524cde4bc28a35f7126c8a0e95c0b7970af0eb724c31e5c6e0070f8551d90b8d3
IEDL.DBID DR2
ISSN 1552-4825
1552-4833
IngestDate Wed Oct 29 12:14:10 EDT 2025
Tue Sep 30 16:57:03 EDT 2025
Thu Oct 02 07:16:21 EDT 2025
Thu Oct 02 16:21:31 EDT 2025
Thu Apr 03 06:58:48 EDT 2025
Mon Jul 21 09:15:32 EDT 2025
Wed Oct 01 02:33:20 EDT 2025
Thu Apr 24 23:08:36 EDT 2025
Sun Sep 21 06:23:20 EDT 2025
Sun Sep 21 06:21:41 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Chromosomal aberration
Endocrinopathy
Breakpoint
array comparative genomic hybridization (aCGH)
Copy number
Diseases of the osteoarticular system
Variations
Genetic disease
chromosomal breakpoint
Chromosome break
Comparative genomic hybridization
Deletion
copy number variation (CNV)
type I and II deletions
Complex syndrome
Prader Labhart Willi syndrome
Prader-Willi syndrome (PWS)
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
Copyright 2008 Wiley-Liss, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5259-524cde4bc28a35f7126c8a0e95c0b7970af0eb724c31e5c6e0070f8551d90b8d3
Notes Hall Foundation of Kansas City, and Physician Scientist Award (Children's Mercy Hospitals and Clinics)
ark:/67375/WNG-RPKVGJJ6-S
NICHD RO1HD - No. 41672
NICHD PO1HD - No. 30329
How to cite this article: Butler MG, Fischer W, Kibiryeva N, Bittel DC. 2008. Array comparative genomic hybridization (aCGH) analysis in Prader-Willi syndrome. Am J Med Genet Part A 146A:854-860.
NIH - No. 1U54 RR019478
istex:C90C35BAE9B6ACACB18F4EB8B913E57C307D7A9D
ArticleID:AJMG32249
How to cite this article: Butler MG, Fischer W, Kibiryeva N, Bittel DC. 2008. Array comparative genomic hybridization (aCGH) analysis in Prader–Willi syndrome. Am J Med Genet Part A 146A:854–860.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink https://proxy.k.utb.cz/login?url=http://doi.org/10.1002/ajmg.a.32249
PMID 18266248
PQID 20098520
PQPubID 23462
PageCount 7
ParticipantIDs unpaywall_primary_10_1002_ajmg_a_32249
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5438264
proquest_miscellaneous_70451536
proquest_miscellaneous_20098520
pubmed_primary_18266248
pascalfrancis_primary_20239410
crossref_citationtrail_10_1002_ajmg_a_32249
crossref_primary_10_1002_ajmg_a_32249
wiley_primary_10_1002_ajmg_a_32249_AJMG32249
istex_primary_ark_67375_WNG_RPKVGJJ6_S
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 1 April 2008
PublicationDateYYYYMMDD 2008-04-01
PublicationDate_xml – month: 04
  year: 2008
  text: 1 April 2008
  day: 01
PublicationDecade 2000
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: Hoboken, NJ
– name: United States
PublicationTitle American journal of medical genetics. Part A
PublicationTitleAlternate Am. J. Med. Genet
PublicationYear 2008
Publisher Wiley Subscription Services, Inc., A Wiley Company
Wiley-Liss
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
– name: Wiley-Liss
References Stranger BE, Forrest MS, Dunning M, Ingle CE, Beazley C, Thorne N, Redon R, Bird CP, de Grassi A, Lee C, Tyler-Smith C, Carter N, Scherer SW, Tavare S, Deloukas P, Hurles ME, Dermitzakis ET. 2007. Relative impact of nucleotide and copy number variation on gene expression phenotypes. Science 315: 848-853.
Conrad DF, Andrews TD, Carter NP, Hurles ME, Pritchard JK. 2006. A high-resolution survey of deletion polymorphism in the human genome. Nat Genet 38: 75-81.
Bittel DC, Kibiryeva N, Butler MG. 2007a. Methylation-specific multiplex ligation-dependent probe amplification (MLPA) analysis of subjects with chromosome 15 abnormalities. Genet Test 11: 467-476.
Bittel DC, Kibiryeva N, Butler MG. 2006. Expression of 4 genes between chromosome 15 breakpoints 1 and 2 and behavioral outcomes in Prader-Willi syndrome. Pediatrics 118: e1276-e1283.
Chai JH, Locke DP, Greally JM, Knoll JH, Ohta T, Dunai J, Yavor A, Eichler EE, Nicholls RD. 2003. Identification of four highly conserved genes between breakpoint hotspots BP1 and BP2 of the Prader-Willi/Angelman syndromes deletion region that have undergone evolutionary transposition mediated by flanking duplicons. Am J Hum Genet 73: 898-925.
Barrett MT, Scheffer A, Ben-Dor A, Sampas N, Lipson D, Kincaid R, Tsang P, Curry B, Baird K, Meltzer PS, Yakhini Z, Bruhn L, Laderman S. 2004. Comparative genomic hybridization using oligonucleotide microarrays and total genomic DNA. Proc Natl Acad Sci USA 101: 17765-17770.
Fiegler H, Redon R, Andrews D, Scott C, Andrews R, Carder C, Clark R, Dovey O, Ellis P, Feuk L, French L, Hunt P, Kalaitzopoulos D, Larkin J, Montgomery L, Perry GH, Plumb BW, Porter K, Rigby RE, Rigler D, Valsesia A, Langford C, Humphray SJ, Scherer SW, Lee C, Hurles ME, Carter NP. 2006. Accurate and reliable high-throughput detection of copy number variation in the human genome. Genome Res 16: 1566-1574.
Butler MG, Thompson T. 2000. Prader-Willi syndrome: Clinical and genetic findings. Endocrinology 10: 35-165.
Cassidy SB, Forsythe M, Heeger S, Nicholls RD, Schork N, Benn P, Schwartz S. 1997. Comparison of phenotype between patients with Prader-Willi syndrome due to deletion 15q and uniparental disomy 15. Am J Med Genet 68: 433-440.
Redon R, Ishikawa S, Fitch KR, Feuk L, Perry GH, Andrews TD, Fiegler H, Shapero MH, Carson AR, Chen W, Cho EK, Dallaire S, Freeman JL, Gonzalez JR, Gratacos M, Huang J, Kalaitzopoulos D, Komura D, MacDonald JR, Marshall CR, Mei R, Montgomery L, Nishimura K, Okamura K, Shen F, Somerville MJ, Tchinda J, Valsesia A, Woodwark C, Yang F, Zhang J, Zerjal T, Zhang J, Armengol L, Conrad DF, Estivill X, Tyler-Smith C, Carter NP, Aburatani H, Lee C, Jones KW, Scherer SW, Hurles ME. 2006. Global variation in copy number in the human genome. Nature 444: 444-454.
Bittel DC, Kibiryeva N, Sell SM, Strong TV, Butler MG. 2007b. Whole genome microarray analysis of gene expression in Prader-Willi syndrome. Am J Med Genet Part A 143A: 430-442.
Nicholls RD, Knepper JL. 2001. Genome organization, function, and imprinting in Prader-Willi and Angelman syndromes. Annu Rev Genomics Hum Genet 2: 153-175.
Christian SL, Fantes JA, Mewborn SK, Huang B, Ledbetter DH. 1999. Large genomic duplicons map to sites of instability in the Prader-Willi/Angelman syndrome chromosome region (15q11-q13). Hum Mol Genet 8: 1025-1037.
Scherer SW, Lee C, Birney E, Altshuler DA, Eichler EE, Carter NP, Hurles ME, Feuk L. 2007. Challenges and standards in integrating surveys of structural variation. Nat Genet Supp 39: S7-S15.
Butler MG, Bittel D, Talebizadeh Z. 2002. Prader-Willi syndrome and a deletion/duplication within the 15q11-q13 region. J Med Genet 39: 202-204.
Ji Y, Rebert NA, Joslin JM, Higgins MJ, Schultz RA, Nicholls RD. 2000. Structure of the highly conserved HERC2 gene and of multiple partially duplicated paralogs in human. Genome Res 10: 319-329.
Wang NJ, Liu D, Parokonny AS, Schanen NC. 2004. High-resolution molecular characterization of 15q11-q13 rearrangements by array comparative genomic hybridization (array CGH) with detection of gene dosage. Am J Hum Genet 75: 267-281.
Sebat J, Lakshmi B, Troge J, Alexander J, Young J, Lundin P, Maner S, Massa H, Walker M, Chi M, Navin N, Lucito R, Healy J, Hicks J, Ye K, Reiner A, Gilliam TC, Trask B, Patterson N, Zetterberg A, Wigler M. 2004. Large-scale copy number polymorphism in the human genome. Science 305: 525-528.
Giglio S, Broman KW, Matsumoto N, Calvari V, Gimelli G, Neumann T, Ohashi H, Voullaire L, Larizza D, Giorda R, Weber JL, Ledbetter DH, Zuffardi O. 2001. Olfactory receptor-gene clusters, genomic-inversion polymorphisms, and common chromosome rearrangements. Am J Hum Genet 68: 874-883.
Khaja R, Zhang J, MacDonald JR, He Y, Joseph-George AM, Wei J, Rafiq MA, Qian C, Shago M, Pantano L, Aburatani H, Jones K, Redon R, Hurles M, Armengol L, Estivill X, Mural RJ, Lee C, Scherer SW, Feuk L. 2006. Genome assembly comparison identifies structural variants in the human genome. Nat Genet 38: 1413-1418.
Amos-Landgraf JM, Ji Y, Gottlieb W, Depinet T, Wandstrat AE, Cassidy SB, Driscoll DJ, Rogan PK, Schwartz S, Nicholls RD. 1999. Chromosome breakage in the Prader-Willi and Angelman syndromes involves recombination between large, transcribed repeats at proximal and distal breakpoints. Am J Hum Genet 65: 370-386.
Perry GH, Tchinda J, McGrath SD, Zhang J, Picker SR, Caceres AM, Iafrate AJ, Tyler-Smith C, Scherer SW, Eichler EE, Stone AC, Lee C. 2006. Hotspots for copy number variation in chimpanzees and humans. Proc Natl Acad Sci USA 103: 8006-8011.
Sebat J, Lakshmi B, Malhotra D, Troge J, Lese-Martin C, Walsh T, Yamrom B, Yamrom B, Yoon S, Krasnitz A, Kendall J, Leotta A, Pai D, Zhang R, Lee YH, Hicks J, Spence SJ, Lee AT, Puura K, Lehtimaki T, Ledbetter D, Gregersen PK, Bregman J, Sutcliffe JS, Jobanputra V, Chung W, Warburton D, King MC, Skuse D, Geschwind DH, Gilliam TC, Ye K, Wigler M. 2007. Strong association of de novo copy number mutations with autism. Science 316: 445-449.
Komura D, Shen F, Ishikawa S, Fitch KR, Chen W, Zhang J, Liu G, Ihara S, Nakamura H, Hurles ME, Lee C, Scherer SW, Jones KW, Shapero MH, Huang J, Aburatani H. 2006. Genome-wide detection of human copy number variations using high-density DNA oligonucleotide arrays. Genome Res 16: 1575-1584.
Pujana MA, Nadal M, Gratacos M, Peral B, Csiszar K, Gonzalez-Sarmiento R, Sumoy L, Estivill X. 2001. Additional complexity on human chromosome 15q: Identification of a set of newly recognized duplicons (LCR15) on 15q11-q13, 15q24, and 15q26. Genome Res 11: 98-111.
Butler MG, Bittel DC, Kibiryeva N, Talebizadeh Z, Thompson T. 2004. Behavioral differences among subjects with Prader-Willi syndrome and type I or type II deletion and maternal disomy. Pediatrics 113: 565-573.
Bittel DC, Butler MG. 2005. Prader-Willi syndrome: Clinical genetics, cytogenetics and molecular biology. Expert Rev Mol Med 7: 1-20.
Knoll JH, Nicholls RD, Magenis RE, Glatt K, Graham JM Jr, Kaplan L, Lalande M. 1990. Angelman syndrome: Three molecular classes identified with chromosome 15q11q13-specific DNA markers. Am J Hum Genet 47: 149-155.
2004; 101
2007; 39
2002; 39
2007b; 143A
2006; 38
2006; 16
1997; 68
1999; 65
1999; 8
2006; 118
2003; 73
2001; 68
2004; 305
2004; 75
2007; 316
2004; 113
1990; 47
2007; 315
2007a; 11
2000; 10
2005; 7
2001; 2
2001; 11
2006; 103
2006; 444
e_1_2_6_10_1
Knoll JH (e_1_2_6_19_1) 1990; 47
e_1_2_6_13_1
e_1_2_6_14_1
e_1_2_6_11_1
e_1_2_6_12_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_15_1
e_1_2_6_16_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – reference: Ji Y, Rebert NA, Joslin JM, Higgins MJ, Schultz RA, Nicholls RD. 2000. Structure of the highly conserved HERC2 gene and of multiple partially duplicated paralogs in human. Genome Res 10: 319-329.
– reference: Pujana MA, Nadal M, Gratacos M, Peral B, Csiszar K, Gonzalez-Sarmiento R, Sumoy L, Estivill X. 2001. Additional complexity on human chromosome 15q: Identification of a set of newly recognized duplicons (LCR15) on 15q11-q13, 15q24, and 15q26. Genome Res 11: 98-111.
– reference: Bittel DC, Kibiryeva N, Butler MG. 2006. Expression of 4 genes between chromosome 15 breakpoints 1 and 2 and behavioral outcomes in Prader-Willi syndrome. Pediatrics 118: e1276-e1283.
– reference: Bittel DC, Kibiryeva N, Sell SM, Strong TV, Butler MG. 2007b. Whole genome microarray analysis of gene expression in Prader-Willi syndrome. Am J Med Genet Part A 143A: 430-442.
– reference: Bittel DC, Butler MG. 2005. Prader-Willi syndrome: Clinical genetics, cytogenetics and molecular biology. Expert Rev Mol Med 7: 1-20.
– reference: Cassidy SB, Forsythe M, Heeger S, Nicholls RD, Schork N, Benn P, Schwartz S. 1997. Comparison of phenotype between patients with Prader-Willi syndrome due to deletion 15q and uniparental disomy 15. Am J Med Genet 68: 433-440.
– reference: Chai JH, Locke DP, Greally JM, Knoll JH, Ohta T, Dunai J, Yavor A, Eichler EE, Nicholls RD. 2003. Identification of four highly conserved genes between breakpoint hotspots BP1 and BP2 of the Prader-Willi/Angelman syndromes deletion region that have undergone evolutionary transposition mediated by flanking duplicons. Am J Hum Genet 73: 898-925.
– reference: Perry GH, Tchinda J, McGrath SD, Zhang J, Picker SR, Caceres AM, Iafrate AJ, Tyler-Smith C, Scherer SW, Eichler EE, Stone AC, Lee C. 2006. Hotspots for copy number variation in chimpanzees and humans. Proc Natl Acad Sci USA 103: 8006-8011.
– reference: Sebat J, Lakshmi B, Malhotra D, Troge J, Lese-Martin C, Walsh T, Yamrom B, Yamrom B, Yoon S, Krasnitz A, Kendall J, Leotta A, Pai D, Zhang R, Lee YH, Hicks J, Spence SJ, Lee AT, Puura K, Lehtimaki T, Ledbetter D, Gregersen PK, Bregman J, Sutcliffe JS, Jobanputra V, Chung W, Warburton D, King MC, Skuse D, Geschwind DH, Gilliam TC, Ye K, Wigler M. 2007. Strong association of de novo copy number mutations with autism. Science 316: 445-449.
– reference: Knoll JH, Nicholls RD, Magenis RE, Glatt K, Graham JM Jr, Kaplan L, Lalande M. 1990. Angelman syndrome: Three molecular classes identified with chromosome 15q11q13-specific DNA markers. Am J Hum Genet 47: 149-155.
– reference: Stranger BE, Forrest MS, Dunning M, Ingle CE, Beazley C, Thorne N, Redon R, Bird CP, de Grassi A, Lee C, Tyler-Smith C, Carter N, Scherer SW, Tavare S, Deloukas P, Hurles ME, Dermitzakis ET. 2007. Relative impact of nucleotide and copy number variation on gene expression phenotypes. Science 315: 848-853.
– reference: Barrett MT, Scheffer A, Ben-Dor A, Sampas N, Lipson D, Kincaid R, Tsang P, Curry B, Baird K, Meltzer PS, Yakhini Z, Bruhn L, Laderman S. 2004. Comparative genomic hybridization using oligonucleotide microarrays and total genomic DNA. Proc Natl Acad Sci USA 101: 17765-17770.
– reference: Butler MG, Bittel DC, Kibiryeva N, Talebizadeh Z, Thompson T. 2004. Behavioral differences among subjects with Prader-Willi syndrome and type I or type II deletion and maternal disomy. Pediatrics 113: 565-573.
– reference: Komura D, Shen F, Ishikawa S, Fitch KR, Chen W, Zhang J, Liu G, Ihara S, Nakamura H, Hurles ME, Lee C, Scherer SW, Jones KW, Shapero MH, Huang J, Aburatani H. 2006. Genome-wide detection of human copy number variations using high-density DNA oligonucleotide arrays. Genome Res 16: 1575-1584.
– reference: Christian SL, Fantes JA, Mewborn SK, Huang B, Ledbetter DH. 1999. Large genomic duplicons map to sites of instability in the Prader-Willi/Angelman syndrome chromosome region (15q11-q13). Hum Mol Genet 8: 1025-1037.
– reference: Bittel DC, Kibiryeva N, Butler MG. 2007a. Methylation-specific multiplex ligation-dependent probe amplification (MLPA) analysis of subjects with chromosome 15 abnormalities. Genet Test 11: 467-476.
– reference: Conrad DF, Andrews TD, Carter NP, Hurles ME, Pritchard JK. 2006. A high-resolution survey of deletion polymorphism in the human genome. Nat Genet 38: 75-81.
– reference: Sebat J, Lakshmi B, Troge J, Alexander J, Young J, Lundin P, Maner S, Massa H, Walker M, Chi M, Navin N, Lucito R, Healy J, Hicks J, Ye K, Reiner A, Gilliam TC, Trask B, Patterson N, Zetterberg A, Wigler M. 2004. Large-scale copy number polymorphism in the human genome. Science 305: 525-528.
– reference: Khaja R, Zhang J, MacDonald JR, He Y, Joseph-George AM, Wei J, Rafiq MA, Qian C, Shago M, Pantano L, Aburatani H, Jones K, Redon R, Hurles M, Armengol L, Estivill X, Mural RJ, Lee C, Scherer SW, Feuk L. 2006. Genome assembly comparison identifies structural variants in the human genome. Nat Genet 38: 1413-1418.
– reference: Wang NJ, Liu D, Parokonny AS, Schanen NC. 2004. High-resolution molecular characterization of 15q11-q13 rearrangements by array comparative genomic hybridization (array CGH) with detection of gene dosage. Am J Hum Genet 75: 267-281.
– reference: Butler MG, Thompson T. 2000. Prader-Willi syndrome: Clinical and genetic findings. Endocrinology 10: 35-165.
– reference: Amos-Landgraf JM, Ji Y, Gottlieb W, Depinet T, Wandstrat AE, Cassidy SB, Driscoll DJ, Rogan PK, Schwartz S, Nicholls RD. 1999. Chromosome breakage in the Prader-Willi and Angelman syndromes involves recombination between large, transcribed repeats at proximal and distal breakpoints. Am J Hum Genet 65: 370-386.
– reference: Redon R, Ishikawa S, Fitch KR, Feuk L, Perry GH, Andrews TD, Fiegler H, Shapero MH, Carson AR, Chen W, Cho EK, Dallaire S, Freeman JL, Gonzalez JR, Gratacos M, Huang J, Kalaitzopoulos D, Komura D, MacDonald JR, Marshall CR, Mei R, Montgomery L, Nishimura K, Okamura K, Shen F, Somerville MJ, Tchinda J, Valsesia A, Woodwark C, Yang F, Zhang J, Zerjal T, Zhang J, Armengol L, Conrad DF, Estivill X, Tyler-Smith C, Carter NP, Aburatani H, Lee C, Jones KW, Scherer SW, Hurles ME. 2006. Global variation in copy number in the human genome. Nature 444: 444-454.
– reference: Giglio S, Broman KW, Matsumoto N, Calvari V, Gimelli G, Neumann T, Ohashi H, Voullaire L, Larizza D, Giorda R, Weber JL, Ledbetter DH, Zuffardi O. 2001. Olfactory receptor-gene clusters, genomic-inversion polymorphisms, and common chromosome rearrangements. Am J Hum Genet 68: 874-883.
– reference: Butler MG, Bittel D, Talebizadeh Z. 2002. Prader-Willi syndrome and a deletion/duplication within the 15q11-q13 region. J Med Genet 39: 202-204.
– reference: Fiegler H, Redon R, Andrews D, Scott C, Andrews R, Carder C, Clark R, Dovey O, Ellis P, Feuk L, French L, Hunt P, Kalaitzopoulos D, Larkin J, Montgomery L, Perry GH, Plumb BW, Porter K, Rigby RE, Rigler D, Valsesia A, Langford C, Humphray SJ, Scherer SW, Lee C, Hurles ME, Carter NP. 2006. Accurate and reliable high-throughput detection of copy number variation in the human genome. Genome Res 16: 1566-1574.
– reference: Scherer SW, Lee C, Birney E, Altshuler DA, Eichler EE, Carter NP, Hurles ME, Feuk L. 2007. Challenges and standards in integrating surveys of structural variation. Nat Genet Supp 39: S7-S15.
– reference: Nicholls RD, Knepper JL. 2001. Genome organization, function, and imprinting in Prader-Willi and Angelman syndromes. Annu Rev Genomics Hum Genet 2: 153-175.
– volume: 75
  start-page: 267
  year: 2004
  end-page: 281
  article-title: High‐resolution molecular characterization of 15q11‐q13 rearrangements by array comparative genomic hybridization (array CGH) with detection of gene dosage
  publication-title: Am J Hum Genet
– volume: 10
  start-page: 35
  year: 2000
  end-page: 165
  article-title: Prader‐Willi syndrome: Clinical and genetic findings
  publication-title: Endocrinology
– volume: 315
  start-page: 848
  year: 2007
  end-page: 853
  article-title: Relative impact of nucleotide and copy number variation on gene expression phenotypes
  publication-title: Science
– volume: 444
  start-page: 444
  year: 2006
  end-page: 454
  article-title: Global variation in copy number in the human genome
  publication-title: Nature
– volume: 73
  start-page: 898
  year: 2003
  end-page: 925
  article-title: Identification of four highly conserved genes between breakpoint hotspots BP1 and BP2 of the Prader‐Willi/Angelman syndromes deletion region that have undergone evolutionary transposition mediated by flanking duplicons
  publication-title: Am J Hum Genet
– volume: 65
  start-page: 370
  year: 1999
  end-page: 386
  article-title: Chromosome breakage in the Prader‐Willi and Angelman syndromes involves recombination between large, transcribed repeats at proximal and distal breakpoints
  publication-title: Am J Hum Genet
– volume: 10
  start-page: 319
  year: 2000
  end-page: 329
  article-title: Structure of the highly conserved HERC2 gene and of multiple partially duplicated paralogs in human
  publication-title: Genome Res
– volume: 8
  start-page: 1025
  year: 1999
  end-page: 1037
  article-title: Large genomic duplicons map to sites of instability in the Prader‐Willi/Angelman syndrome chromosome region (15q11‐q13)
  publication-title: Hum Mol Genet
– volume: 305
  start-page: 525
  year: 2004
  end-page: 528
  article-title: Large‐scale copy number polymorphism in the human genome
  publication-title: Science
– volume: 2
  start-page: 153
  year: 2001
  end-page: 175
  article-title: Genome organization, function, and imprinting in Prader‐Willi and Angelman syndromes
  publication-title: Annu Rev Genomics Hum Genet
– volume: 113
  start-page: 565
  year: 2004
  end-page: 573
  article-title: Behavioral differences among subjects with Prader‐Willi syndrome and type I or type II deletion and maternal disomy
  publication-title: Pediatrics
– volume: 7
  start-page: 1
  year: 2005
  end-page: 20
  article-title: Prader‐Willi syndrome: Clinical genetics, cytogenetics and molecular biology
  publication-title: Expert Rev Mol Med
– volume: 39
  start-page: S7
  year: 2007
  end-page: S15
  article-title: Challenges and standards in integrating surveys of structural variation
  publication-title: Nat Genet Supp
– volume: 118
  start-page: e1276
  year: 2006
  end-page: e1283
  article-title: Expression of 4 genes between chromosome 15 breakpoints 1 and 2 and behavioral outcomes in Prader‐Willi syndrome
  publication-title: Pediatrics
– volume: 38
  start-page: 1413
  year: 2006
  end-page: 1418
  article-title: Genome assembly comparison identifies structural variants in the human genome
  publication-title: Nat Genet
– volume: 47
  start-page: 149
  year: 1990
  end-page: 155
  article-title: Angelman syndrome: Three molecular classes identified with chromosome 15q11q13‐specific DNA markers
  publication-title: Am J Hum Genet
– volume: 39
  start-page: 202
  year: 2002
  end-page: 204
  article-title: Prader‐Willi syndrome and a deletion/duplication within the 15q11‐q13 region
  publication-title: J Med Genet
– volume: 103
  start-page: 8006
  year: 2006
  end-page: 8011
  article-title: Hotspots for copy number variation in chimpanzees and humans
  publication-title: Proc Natl Acad Sci USA
– volume: 16
  start-page: 1566
  year: 2006
  end-page: 1574
  article-title: Accurate and reliable high‐throughput detection of copy number variation in the human genome
  publication-title: Genome Res
– volume: 316
  start-page: 445
  year: 2007
  end-page: 449
  article-title: Strong association of de novo copy number mutations with autism
  publication-title: Science
– volume: 11
  start-page: 98
  year: 2001
  end-page: 111
  article-title: Additional complexity on human chromosome 15q: Identification of a set of newly recognized duplicons (LCR15) on 15q11‐q13, 15q24, and 15q26
  publication-title: Genome Res
– volume: 16
  start-page: 1575
  year: 2006
  end-page: 1584
  article-title: Genome‐wide detection of human copy number variations using high‐density DNA oligonucleotide arrays
  publication-title: Genome Res
– volume: 38
  start-page: 75
  year: 2006
  end-page: 81
  article-title: A high‐resolution survey of deletion polymorphism in the human genome
  publication-title: Nat Genet
– volume: 68
  start-page: 874
  year: 2001
  end-page: 883
  article-title: Olfactory receptor‐gene clusters, genomic‐inversion polymorphisms, and common chromosome rearrangements
  publication-title: Am J Hum Genet
– volume: 101
  start-page: 17765
  year: 2004
  end-page: 17770
  article-title: Comparative genomic hybridization using oligonucleotide microarrays and total genomic DNA
  publication-title: Proc Natl Acad Sci USA
– volume: 143A
  start-page: 430
  year: 2007b
  end-page: 442
  article-title: Whole genome microarray analysis of gene expression in Prader‐Willi syndrome
  publication-title: Am J Med Genet Part A
– volume: 11
  start-page: 467
  year: 2007a
  end-page: 476
  article-title: Methylation‐specific multiplex ligation‐dependent probe amplification (MLPA) analysis of subjects with chromosome 15 abnormalities
  publication-title: Genet Test
– volume: 68
  start-page: 433
  year: 1997
  end-page: 440
  article-title: Comparison of phenotype between patients with Prader‐Willi syndrome due to deletion 15q and uniparental disomy 15
  publication-title: Am J Med Genet
– ident: e_1_2_6_4_1
  doi: 10.1017/S1462399405009531
– ident: e_1_2_6_8_1
  doi: 10.1097/00019616-200010041-00002
– ident: e_1_2_6_25_1
  doi: 10.1038/ng2093
– ident: e_1_2_6_3_1
  doi: 10.1073/pnas.0407979101
– ident: e_1_2_6_9_1
  doi: 10.1136/jmg.39.3.202
– ident: e_1_2_6_12_1
  doi: 10.1086/378816
– ident: e_1_2_6_11_1
  doi: 10.1002/(SICI)1096-8628(19970211)68:4<433::AID-AJMG12>3.0.CO;2-T
– ident: e_1_2_6_18_1
  doi: 10.1038/ng1921
– ident: e_1_2_6_16_1
  doi: 10.1086/319506
– ident: e_1_2_6_20_1
  doi: 10.1101/gr.5629106
– ident: e_1_2_6_15_1
  doi: 10.1101/gr.5630906
– ident: e_1_2_6_24_1
  doi: 10.1038/nature05329
– ident: e_1_2_6_6_1
  doi: 10.1089/gte.2007.0061
– volume: 47
  start-page: 149
  year: 1990
  ident: e_1_2_6_19_1
  article-title: Angelman syndrome: Three molecular classes identified with chromosome 15q11q13‐specific DNA markers
  publication-title: Am J Hum Genet
– ident: e_1_2_6_27_1
  doi: 10.1126/science.1138659
– ident: e_1_2_6_26_1
  doi: 10.1126/science.1098918
– ident: e_1_2_6_23_1
  doi: 10.1101/gr.155601
– ident: e_1_2_6_17_1
  doi: 10.1101/gr.10.3.319
– ident: e_1_2_6_22_1
  doi: 10.1073/pnas.0602318103
– ident: e_1_2_6_5_1
  doi: 10.1542/peds.2006-0424
– ident: e_1_2_6_13_1
  doi: 10.1093/hmg/8.6.1025
– ident: e_1_2_6_14_1
  doi: 10.1038/ng1697
– ident: e_1_2_6_10_1
  doi: 10.1542/peds.113.3.565
– ident: e_1_2_6_28_1
  doi: 10.1126/science.1136678
– ident: e_1_2_6_29_1
  doi: 10.1086/422854
– ident: e_1_2_6_2_1
  doi: 10.1086/302510
– ident: e_1_2_6_21_1
  doi: 10.1146/annurev.genom.2.1.153
– ident: e_1_2_6_7_1
  doi: 10.1002/ajmg.a.31606
SSID ssj0030576
Score 2.1191993
Snippet Prader–Willi syndrome (PWS) is due to loss of paternally expressed genes in the 15q11–q13 region generally from a paternal 15q11–q13 deletion. The proximal...
Prader-Willi syndrome (PWS) is due to loss of paternally expressed genes in the 15q11-q13 region generally from a paternal 15q11-q13 deletion. The proximal...
SourceID unpaywall
pubmedcentral
proquest
pubmed
pascalfrancis
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 854
SubjectTerms Adolescent
Adult
array comparative genomic hybridization (aCGH)
Biological and medical sciences
chromosomal breakpoint
Chromosome aberrations
Chromosome Deletion
Chromosomes, Human, Pair 15
Complex syndromes
copy number variation (CNV)
Female
Humans
In Situ Hybridization, Fluorescence
Male
Medical genetics
Medical sciences
Metabolic diseases
Nucleic Acid Hybridization
Obesity
Prader-Willi syndrome (PWS)
Prader-Willi Syndrome - genetics
type I and II deletions
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFD4arbi8cBm3cBl-AASClCyJneSxGqxV0apq0DGeLNtxWFmXTVkrKE_8B_4hvwQfJ80UBoU3SzmJ4uMT-XP8-fsAHpspPqGSajcTzHNDoVI3Tnz0I87M4iHyULQI2RZD1h-Hg326vwZLw7vm9r3_Snw--tQRHVN1YXIB2owawN2C9ng46n60SqjUd8PYWqtW7SCo6O2_396YeNqYw69IhBSnJhdZaWLxJ5R5nix5eZ6fiMUXMZ02Aa2dkbavwevluZ6SiHLYmc9kR307L_O4qrPX4WqFSEm3LKEbsKbzdbhYelQu1uHSTrX7fhN2u0UhFkSdCYYTlHg9mihysMCTX9WZTvJMbPX6z4moBE_IJCejAinTP7__sD94yFIo4RaMt9-83-q7lSeDq6hZKZl1a6hSHUrlxyKgZjx9pmLh6YQqT0ZJ5InM0zIyUcGmpopp1BPKYoPL0sSTcRrchlZ-nOu7QAx2o1nMDGKTIkxTTxr0EeDBO2lAmGKpAy-WA8ZVJViOvhlTXkot-xwTxgW3CXPgSR19Ugp1_CXuqR37OkgUh0huiyj_MOzx3dHbvd5gwPg7BzYaxVHf4Fs7-U3PgUfLauHmm8SNFpHr4_kpWnsmMfVXREQo60MD5sCdsrrO3tms95gfxg5EjbqrA1APvHklnxxYXXCKm7osND2sK_QfqXhpy3dlEO8Odnq2de9_n3sfrpSsGuQ3PYDWrJjrhwa6zeRG9en-Auh6PiA
  priority: 102
  providerName: Unpaywall
Title Array comparative genomic hybridization (aCGH) analysis in Prader-Willi syndrome
URI https://api.istex.fr/ark:/67375/WNG-RPKVGJJ6-S/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fajmg.a.32249
https://www.ncbi.nlm.nih.gov/pubmed/18266248
https://www.proquest.com/docview/20098520
https://www.proquest.com/docview/70451536
https://pubmed.ncbi.nlm.nih.gov/PMC5438264
http://doi.org/10.1002/ajmg.a.32249
UnpaywallVersion submittedVersion
Volume 146A
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1552-4833
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1552-4833
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0030576
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbQJi4vXMZl4VL8AAgE6dIkdpLHamKtilZVhcJ4smzH2cq6bOpFUJ74D_xDfgnnOGlKuAzBW6QcS8nJ5_gc-zvfIeQRLPEJU8y4meSeG0qdunHiYz_iDJKHyEPRImRb9Hl3FPYO2EG54Ya1MIU-RLXhhjPD_q9xgks121mLhsoPJ4dN2QRAhli_1wq4zaiGlXoUINn2lkORMTeETKjkvcPwnR8H11akTXTuJ2RIyhk4KSu6W_wu_PyVRXl5kZ_J5Uc5mdQjXbtU7V0jYvWSBUPluLmYq6b-_JP-4_974Tq5WkaxtF3A7ga5YPItcrHoa7ncIpf2yxP7m2TYnk7lkuq1yDhFWdiTsaZHS6wWK-tA6VO52-k-o7IUSaHjnA6mSLP-9uWr3RSiK3GFW2S09_LNbtct-zi4mkF2BbluqFMTKu3HMmCAAZ_rWHomYdpTURJ5MvOMisAqaBmmuUENoiyGWC5NPBWnwW2ykZ_mZptQiPdYFnOI8pQM09RTELEEWKynIHDTPHXI89W3FLoUOcdeGxNRyDP7Ah0mpLAOc8jjyvqsEPf4g90TC4vKSE6PkRAXMfGu3xHDwau3nV6Pi9cOadRwUw3wbQv6lueQhysgCZjHeDgjc3O6mGE70CRm_jkWEUoBsYA75E4BvPUzQ47I_TB2SFSDZGWAGuL1O_n4yGqJMzwI5iG8YQXev7jihYXjuUai3dvv2Ku7_2Z-j1wp-DjIjLpPNubThXkAQd9cNezUbpDNUX_Qfv8dSmtUdA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bbtNAEB1BKygvXAoFc2n9AAhEnbr27tp-jCqakDZRFVro27Je2zQ0das0EYQn_oE_5EuYWTsO5lKEeIuUWSken82e2T17BuAxLvERj3nqZEq4DlM6ccLIo37EGRYPgUumRaS26In2Aesc8sOyzyndhSn8IaoNN5oZ5v-aJjhtSG_MXUPVh5P3DdVARLLoMiwygaUKsaJ-5R-FWDbd5chmzGFYC5XKdxy_8ePo2pq0SOn9RBpJdY5pyor-Fr8joL_qKJcm-ZmaflTDYZ3rmsVq-wa8mz1moVE5bkzGcUN__skB8j_ycBOul0TWbhbIuwWX0nwZrhStLafLcLVbHtrfhn5zNFJTW899xm1yhj0ZaPtoShfGyqug9jO11Wo_t1Xpk2IPcntvRErrb1--mn0he-avcAcOtl_ub7WdspWDozkWWFjuMp2kLNZeqHyOMPCEDpWbRly7cRAFrsrcNA4wyt9MuRYp2RBlIdK5JHLjMPFXYCE_zdN7YCPl41kokOjFiiWJGyNp8em-XozcTYvEghezlyl16XNO7TaGsnBo9iQlTCppEmbBkyr6rPD3-EPcU4OLKkiNjkkTF3D5tteS_b2dN61OR8jXFqzWgFMN8EwX-k3XgrUZkiROZTqfUXl6OjmnjqBRyL0LIgJyA-K-sOBugbz5b8YyUXgstCCoYbIKIBvx-jf54MjYiXM6CxYMn7BC719SsW7weGGQbHa6LfPp_r-Fr8FSe7-7K3df9XYewLVCnkNCqYewMB5N0kfIAcfxqpnn3wG3klbl
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bbtNAEB1BKwovXMrNXFo_AAJRp67t9eUxaklCSqMoUOjbdr1e09DUjdxEEJ74B_6QL2Fm7TiYSxHizZJnpXh8NjvjPXsOwCNc4iMWM2WlwrctT8jECiOH_IhTbB4Cm0SLiG3R8zv7XveAHZQ-p3QWptCHqD640czQ_9c0wdU4STcXqqHiw8n7hmggIr3oIix7LAqJ07czqPSjEMvaXY5kxiwPe6GS-Y7jN38cXVuTlim9n4gjKc4wTWnhb_G7AvRXHuXlaTYWs49iNKrXunqxal2Dw_ljFhyV48Z0Ejfk558UIP8jD9fhalnIms0CeTfggspW4VJhbTlbhZW9ctP-JgyaeS5mplzojJukDHsylObRjA6MlUdBzadiu915ZopSJ8UcZmY_J6b1ty9f9Xchc66vcAv2Wy_ebHes0srBkgwbLGx3PZkoL5ZOKFyGMHB8GQpbRUzacRAFtkhtFQcY5W4pJn1FMkRpiOVcEtlxmLi3YSk7zdRdMLHkY2noY6EXCy9J7BiLFpfO68VYu0k_MeD5_GVyWeqck93GiBcKzQ6nhHHBdcIMeFxFjwt9jz_EPdG4qIJEfkycuIDxd702H_R337a7XZ-_NmCtBpxqgKNd6LdsA9bnSOI4lWl_RmTqdHpGjqAIYeeciIDUgJjrG3CnQN7iN2Ob6DteaEBQw2QVQDLi9TvZ8EjLiTPaC_Y9fMIKvX9JxYbG47lBvNnda-ure_8Wvg4r_Z0Wf_Wyt3sfrhTsHOJJPYClST5VD7EEnMRrepp_B-z7Vmk
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFD4arbi8cBm3cBl-AASClCyJneSxGqxV0apq0DGeLNtxWFmXTVkrKE_8B_4hvwQfJ80UBoU3SzmJ4uMT-XP8-fsAHpspPqGSajcTzHNDoVI3Tnz0I87M4iHyULQI2RZD1h-Hg326vwZLw7vm9r3_Snw--tQRHVN1YXIB2owawN2C9ng46n60SqjUd8PYWqtW7SCo6O2_396YeNqYw69IhBSnJhdZaWLxJ5R5nix5eZ6fiMUXMZ02Aa2dkbavwevluZ6SiHLYmc9kR307L_O4qrPX4WqFSEm3LKEbsKbzdbhYelQu1uHSTrX7fhN2u0UhFkSdCYYTlHg9mihysMCTX9WZTvJMbPX6z4moBE_IJCejAinTP7__sD94yFIo4RaMt9-83-q7lSeDq6hZKZl1a6hSHUrlxyKgZjx9pmLh6YQqT0ZJ5InM0zIyUcGmpopp1BPKYoPL0sSTcRrchlZ-nOu7QAx2o1nMDGKTIkxTTxr0EeDBO2lAmGKpAy-WA8ZVJViOvhlTXkot-xwTxgW3CXPgSR19Ugp1_CXuqR37OkgUh0huiyj_MOzx3dHbvd5gwPg7BzYaxVHf4Fs7-U3PgUfLauHmm8SNFpHr4_kpWnsmMfVXREQo60MD5sCdsrrO3tms95gfxg5EjbqrA1APvHklnxxYXXCKm7osND2sK_QfqXhpy3dlEO8Odnq2de9_n3sfrpSsGuQ3PYDWrJjrhwa6zeRG9en-Auh6PiA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Array+comparative+genomic+hybridization+%28aCGH%29+analysis+in+Prader%E2%80%93Willi+syndrome&rft.jtitle=American+journal+of+medical+genetics.+Part+A&rft.au=Butler%2C+Merlin+G.&rft.au=Fischer%2C+William&rft.au=Kibiryeva%2C+Nataliya&rft.au=Bittel%2C+Douglas+C.&rft.date=2008-04-01&rft.issn=1552-4825&rft.eissn=1552-4833&rft.volume=146A&rft.issue=7&rft.spage=854&rft.epage=860&rft_id=info:doi/10.1002%2Fajmg.a.32249&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_ajmg_a_32249
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1552-4825&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1552-4825&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1552-4825&client=summon