Array comparative genomic hybridization (aCGH) analysis in Prader-Willi syndrome
Prader–Willi syndrome (PWS) is due to loss of paternally expressed genes in the 15q11–q13 region generally from a paternal 15q11–q13 deletion. The proximal deletion breakpoint in the 15q11–q13 region occurs at one of two sites located within either of two large duplicons allowing for identification...
Saved in:
| Published in | American journal of medical genetics. Part A Vol. 146A; no. 7; pp. 854 - 860 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.04.2008
Wiley-Liss |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1552-4825 1552-4833 1552-4833 |
| DOI | 10.1002/ajmg.a.32249 |
Cover
| Abstract | Prader–Willi syndrome (PWS) is due to loss of paternally expressed genes in the 15q11–q13 region generally from a paternal 15q11–q13 deletion. The proximal deletion breakpoint in the 15q11–q13 region occurs at one of two sites located within either of two large duplicons allowing for identification of two typical deletion subgroups. The larger type I (TI) deletion involving breakpoint 1 (BP1) is nearer to the centromere and located proximal to the microsatellite marker D15S1035, while the smaller type II (TII) deletion involves breakpoint 2 (BP2) and distal to D15S1035. Breakpoint 3 (BP3) is located at the distal end of the 15q11–q13 region and common to both typical deletion subgroups. Using high resolution aCGH, BP1 spanned a region from 18.683 to 20.220 Mb, BP2 from 20.812 to 21.357 Mb and BP3 from 25.941 to 27.286 Mb. The TI deletion ranged in size from 5.721 to 8.147 Mb (mean 6.583) and the type II deletion from 4.770 to 6.435 Mb (mean 5.330). A subset of the TI subjects showed larger deletions including the loss of at least three genes/transcripts (i.e., LOC283755, POTE5, OR4N4) in addition to the four genes between BP1 and BP2 (i.e., GCP5, CYFIP1, NIPA1, NIPA2). Interestingly, four PWS subjects had duplications of the 15q11 region in addition to the typical deletion. Furthermore, most PWS subjects had copy number variation (CNV) of 50 kb or larger in other chromosome regions; most common were deletions and duplications of 8p and 3q, previously recognized sites of CNV in the human genome. © 2008 Wiley‐Liss, Inc. |
|---|---|
| AbstractList | Prader-Willi syndrome (PWS) is due to loss of paternally expressed genes in the 15q11-q13 region generally from a paternal 15q11-q13 deletion. The proximal deletion breakpoint in the 15q11-q13 region occurs at one of two sites located within either of two large duplicons allowing for identification of two typical deletion subgroups. The larger type I (TI) deletion involving breakpoint 1 (BP1) is nearer to the centromere and located proximal to the microsatellite marker D15S1035, while the smaller type II (TII) deletion involves breakpoint 2 (BP2) and distal to D15S1035. Breakpoint 3 (BP3) is located at the distal end of the 15q11-q13 region and common to both typical deletion subgroups. Using high resolution aCGH, BP1 spanned a region from 18.683 to 20.220 Mb, BP2 from 20.812 to 21.357 Mb and BP3 from 25.941 to 27.286 Mb. The TI deletion ranged in size from 5.721 to 8.147 Mb (mean 6.583) and the type II deletion from 4.770 to 6.435 Mb (mean 5.330). A subset of the TI subjects showed larger deletions including the loss of at least three genes/transcripts (i.e., LOC283755, POTE5, OR4N4) in addition to the four genes between BP1 and BP2 (i.e., GCP5, CYFIP1, NIPA1, NIPA2). Interestingly, four PWS subjects had duplications of the 15q11 region in addition to the typical deletion. Furthermore, most PWS subjects had copy number variation (CNV) of 50 kb or larger in other chromosome regions; most common were deletions and duplications of 8p and 3q, previously recognized sites of CNV in the human genome. Prader–Willi syndrome (PWS) is due to loss of paternally expressed genes in the 15q11–q13 region generally from a paternal 15q11–q13 deletion. The proximal deletion breakpoint in the 15q11–q13 region occurs at one of two sites located within either of two large duplicons allowing for identification of two typical deletion subgroups. The larger type I (TI) deletion involving breakpoint 1 (BP1) is nearer to the centromere and located proximal to the microsatellite marker D15S1035, while the smaller type II (TII) deletion involves breakpoint 2 (BP2) and distal to D15S1035. Breakpoint 3 (BP3) is located at the distal end of the 15q11–q13 region and common to both typical deletion subgroups. Using high resolution aCGH, BP1 spanned a region from 18.683 to 20.220 Mb, BP2 from 20.812 to 21.357 Mb and BP3 from 25.941 to 27.286 Mb. The TI deletion ranged in size from 5.721 to 8.147 Mb (mean 6.583) and the type II deletion from 4.770 to 6.435 Mb (mean 5.330). A subset of the TI subjects showed larger deletions including the loss of at least three genes/transcripts (i.e., LOC283755, POTE5, OR4N4) in addition to the four genes between BP1 and BP2 (i.e., GCP5, CYFIP1, NIPA1, NIPA2). Interestingly, four PWS subjects had duplications of the 15q11 region in addition to the typical deletion. Furthermore, most PWS subjects had copy number variation (CNV) of 50 kb or larger in other chromosome regions; most common were deletions and duplications of 8p and 3q, previously recognized sites of CNV in the human genome. © 2008 Wiley‐Liss, Inc. Prader-Willi syndrome (PWS) is due to loss of paternally expressed genes in the 15q11-q13 region generally from a paternal 15q11-q13 deletion. The proximal deletion breakpoint in the 15q11-q13 region occurs at one of two sites located within either of two large duplicons allowing for identification of two typical deletion subgroups. The larger type I (TI) deletion involving breakpoint 1 (BP1) is nearer to the centromere and located proximal to the microsatellite marker D15S1035, while the smaller type II (TII) deletion involves breakpoint 2 (BP2) and distal to D15S1035. Breakpoint 3 (BP3) is located at the distal end of the 15q11-q13 region and common to both typical deletion subgroups. Using high resolution aCGH, BP1 spanned a region from 18.683 to 20.220 Mb, BP2 from 20.812 to 21.357 Mb and BP3 from 25.941 to 27.286 Mb. The TI deletion ranged in size from 5.721 to 8.147 Mb (mean 6.583) and the type II deletion from 4.770 to 6.435 Mb (mean 5.330). A subset of the TI subjects showed larger deletions including the loss of at least three genes/transcripts (i.e., LOC283755, POTE5, OR4N4) in addition to the four genes between BP1 and BP2 (i.e., GCP5, CYFIP1, NIPA1, NIPA2). Interestingly, four PWS subjects had duplications of the 15q11 region in addition to the typical deletion. Furthermore, most PWS subjects had copy number variation (CNV) of 50 kb or larger in other chromosome regions; most common were deletions and duplications of 8p and 3q, previously recognized sites of CNV in the human genome.Prader-Willi syndrome (PWS) is due to loss of paternally expressed genes in the 15q11-q13 region generally from a paternal 15q11-q13 deletion. The proximal deletion breakpoint in the 15q11-q13 region occurs at one of two sites located within either of two large duplicons allowing for identification of two typical deletion subgroups. The larger type I (TI) deletion involving breakpoint 1 (BP1) is nearer to the centromere and located proximal to the microsatellite marker D15S1035, while the smaller type II (TII) deletion involves breakpoint 2 (BP2) and distal to D15S1035. Breakpoint 3 (BP3) is located at the distal end of the 15q11-q13 region and common to both typical deletion subgroups. Using high resolution aCGH, BP1 spanned a region from 18.683 to 20.220 Mb, BP2 from 20.812 to 21.357 Mb and BP3 from 25.941 to 27.286 Mb. The TI deletion ranged in size from 5.721 to 8.147 Mb (mean 6.583) and the type II deletion from 4.770 to 6.435 Mb (mean 5.330). A subset of the TI subjects showed larger deletions including the loss of at least three genes/transcripts (i.e., LOC283755, POTE5, OR4N4) in addition to the four genes between BP1 and BP2 (i.e., GCP5, CYFIP1, NIPA1, NIPA2). Interestingly, four PWS subjects had duplications of the 15q11 region in addition to the typical deletion. Furthermore, most PWS subjects had copy number variation (CNV) of 50 kb or larger in other chromosome regions; most common were deletions and duplications of 8p and 3q, previously recognized sites of CNV in the human genome. Prader–Willi syndrome (PWS) is due to loss of paternally expressed genes in the 15q11–q13 region generally from a paternal 15q11–q13 deletion. The proximal deletion breakpoint in the 15q11–q13 region occurs at one of two sites located within either of two large duplicons allowing for identification of two typical deletion subgroups. The larger type I (TI) deletion involving breakpoint 1 (BP1) is nearer to the centromere and located proximal to the microsatellite marker D15S1035, while the smaller type II (TII) deletion involves breakpoint 2 (BP2) and distal to D15S1035. Breakpoint 3 (BP3) is located at the distal end of the 15q11–q13 region and common to both typical deletion subgroups. Using high resolution aCGH, BP1 spanned a region from 18.683 to 20.220 Mb, BP2 from 20.812 to 21.357 Mb and BP3 from 25.941 to 27.286 Mb. The TI deletion ranged in size from 5.721 to 8.147 Mb (mean 6.583) and the type II deletion from 4.770 to 6.435 Mb (mean 5.330). A subset of the TI subjects showed larger deletions including the loss of at least three genes/transcripts (i.e., LOC283755 , POTE5 , OR4N4 ) in addition to the four genes between BP1 and BP2 (i.e., GCP5 , CYFIP1 , NIPA1 , NIPA2 ). Interestingly, four PWS subjects had duplications of the 15q11 region in addition to the typical deletion. Furthermore, most PWS subjects had copy number variation (CNV) of 50 kb or larger in other chromosome regions; most common were deletions and duplications of 8p and 3q, previously recognized sites of CNV in the human genome. © 2008 Wiley‐Liss, Inc. |
| Author | Butler, Merlin G. Kibiryeva, Nataliya Fischer, William Bittel, Douglas C. |
| Author_xml | – sequence: 1 givenname: Merlin G. surname: Butler fullname: Butler, Merlin G. email: mgbutler@cmh.edu organization: Children's Mercy Hospitals and Clinics and University of Missouri-Kansas City School of Medicine, Kansas City, Missouri – sequence: 2 givenname: William surname: Fischer fullname: Fischer, William organization: Children's Mercy Hospitals and Clinics and University of Missouri-Kansas City School of Medicine, Kansas City, Missouri – sequence: 3 givenname: Nataliya surname: Kibiryeva fullname: Kibiryeva, Nataliya organization: Children's Mercy Hospitals and Clinics and University of Missouri-Kansas City School of Medicine, Kansas City, Missouri – sequence: 4 givenname: Douglas C. surname: Bittel fullname: Bittel, Douglas C. organization: Children's Mercy Hospitals and Clinics and University of Missouri-Kansas City School of Medicine, Kansas City, Missouri |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20239410$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/18266248$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkUtv1DAUhS1URB-wY42yAYFEBj_iPDZIoxGkDAVGvLq0bhxn6taxBzvTEn49mU6YAhJ0Zcv-ztG95xyiPeusQughwROCMX0B5-1yAhNGaVLcQQeEcxonOWN7uzvl--gwhHOMGeZZeg_tk5ymKU3yA7SYeg99JF27Ag-dvlTRUlnXahmd9ZXXtf4xvDobPYVZefwsAgumDzpE2kYLD7Xy8ak2Rkeht7V3rbqP7jZggnownkfoy-tXn2fH8cmH8s1sehJLTnkRc5rIWiWVpDkw3mSEpjIHrAoucZUVGYYGqyobKEYUl6nCOMNNzjmpC1zlNTtC8dZ3bVfQX4ExYuV1C74XBItNMmKTjABxnczAv9zyq3XVqloq23m40TjQ4s8fq8_E0l0KnrAhrWQweDIaePdtrUInWh2kMgascusgMpxwwll6K0gxLnJO8QA--n2km_nHdgbg8QhAkGAaD1bqsOMopqxIyMaIbjnpXQheNULq7rq2YRNt_hXI879Et-THtviVNqr_Lyum83flL9XYkg6d-r5Tgb8QacYyLk7fl-Lj4u3Xcj5PxSf2Ex0_34Q |
| CitedBy_id | crossref_primary_10_1016_j_mehy_2011_12_020 crossref_primary_10_1038_mp_2009_2 crossref_primary_10_1038_nature07239 crossref_primary_10_1038_oby_2010_323 crossref_primary_10_1002_ajmg_a_32459 crossref_primary_10_1515_jpem_2016_0435 crossref_primary_10_3928_00904481_20130924_10 crossref_primary_10_1176_foc_8_3_foc307 crossref_primary_10_1186_s13023_022_02302_z crossref_primary_10_1002_ajmg_a_33197 crossref_primary_10_1186_1755_8166_5_11 crossref_primary_10_1002_ajmg_a_36307 crossref_primary_10_1007_s10815_009_9353_3 crossref_primary_10_1002_ajmg_a_36306 crossref_primary_10_1097_01_MXE_0000484369_78928_9e crossref_primary_10_1007_s40618_015_0312_9 crossref_primary_10_3390_ijms252413562 crossref_primary_10_1146_annurev_genom_091212_153431 crossref_primary_10_2174_1573396315666190716120925 crossref_primary_10_1002_ajmg_b_32022 crossref_primary_10_1002_ajmg_a_35980 crossref_primary_10_3390_ijms16024068 crossref_primary_10_6000_2292_2598_2014_02_03_2 crossref_primary_10_1002_ajmg_a_35581 crossref_primary_10_1089_gtmb_2011_0115 crossref_primary_10_1038_ejhg_2011_187 crossref_primary_10_3345_kjp_2011_54_2_55 crossref_primary_10_1002_ajmg_a_35909 crossref_primary_10_1093_molehr_gaq005 crossref_primary_10_1111_j_1365_277X_2012_01275_x crossref_primary_10_1038_ijo_2008_255 crossref_primary_10_3892_br_2016_675 crossref_primary_10_1002_ajmg_c_30273 crossref_primary_10_1111_j_1469_1809_2010_00633_x crossref_primary_10_1002_ajmg_a_38582 crossref_primary_10_1111_jir_12382 crossref_primary_10_20945_2359_3997000000248 crossref_primary_10_3109_10409238_2015_1064350 crossref_primary_10_3390_endocrines3020027 crossref_primary_10_1111_cge_13367 crossref_primary_10_3390_ijms20122914 crossref_primary_10_1007_s11427_009_0078_4 crossref_primary_10_1002_ajmg_a_62928 crossref_primary_10_1371_journal_pone_0076314 crossref_primary_10_3390_ijms24021220 crossref_primary_10_6065_apem_2016_21_3_126 crossref_primary_10_1002_ajmg_a_36405 crossref_primary_10_2478_rrlm_2014_0019 crossref_primary_10_1016_S0895_3988_10_60052_9 crossref_primary_10_3345_kjp_2012_55_7_224 crossref_primary_10_3390_ijms22041993 crossref_primary_10_1186_1755_8166_4_15 crossref_primary_10_3390_genes11020204 crossref_primary_10_1002_ajmg_a_36058 crossref_primary_10_1016_j_anpedi_2011_01_033 crossref_primary_10_1002_ajmg_a_38154 |
| Cites_doi | 10.1017/S1462399405009531 10.1097/00019616-200010041-00002 10.1038/ng2093 10.1073/pnas.0407979101 10.1136/jmg.39.3.202 10.1086/378816 10.1002/(SICI)1096-8628(19970211)68:4<433::AID-AJMG12>3.0.CO;2-T 10.1038/ng1921 10.1086/319506 10.1101/gr.5629106 10.1101/gr.5630906 10.1038/nature05329 10.1089/gte.2007.0061 10.1126/science.1138659 10.1126/science.1098918 10.1101/gr.155601 10.1101/gr.10.3.319 10.1073/pnas.0602318103 10.1542/peds.2006-0424 10.1093/hmg/8.6.1025 10.1038/ng1697 10.1542/peds.113.3.565 10.1126/science.1136678 10.1086/422854 10.1086/302510 10.1146/annurev.genom.2.1.153 10.1002/ajmg.a.31606 |
| ContentType | Journal Article |
| Copyright | Copyright © 2008 Wiley‐Liss, Inc. 2008 INIST-CNRS Copyright 2008 Wiley-Liss, Inc. |
| Copyright_xml | – notice: Copyright © 2008 Wiley‐Liss, Inc. – notice: 2008 INIST-CNRS – notice: Copyright 2008 Wiley-Liss, Inc. |
| DBID | BSCLL AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 8FD FR3 P64 RC3 7X8 5PM ADTOC UNPAY |
| DOI | 10.1002/ajmg.a.32249 |
| DatabaseName | Istex CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE Genetics Abstracts MEDLINE - Academic CrossRef |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Biology |
| EISSN | 1552-4833 |
| EndPage | 860 |
| ExternalDocumentID | oai:pubmedcentral.nih.gov:5438264 PMC5438264 18266248 20239410 10_1002_ajmg_a_32249 AJMG32249 ark_67375_WNG_RPKVGJJ6_S |
| Genre | article Comparative Study Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NIH funderid: 1U54 RR019478 – fundername: NICHD RO1HD funderid: 41672 – fundername: NICHD PO1HD funderid: 30329 – fundername: Hall Foundation of Kansas City, and Physician Scientist Award (Children's Mercy Hospitals and Clinics) – fundername: NICHD NIH HHS grantid: P01 HD030329 – fundername: NICHD NIH HHS grantid: P01HD30329 – fundername: NCRR NIH HHS grantid: U54 RR019478 – fundername: NCRR NIH HHS grantid: 1U54 RR019478 – fundername: NICHD NIH HHS grantid: R01 HD041672 – fundername: NICHD NIH HHS grantid: R01HD41672 |
| GroupedDBID | --- .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 23M 31~ 33P 4.4 50Y 51W 51X 52M 52N 52O 52P 52S 52T 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-1 8-4 8-5 8UM 930 A03 AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ACAHQ ACBWZ ACCZN ACFBH ACGFO ACGFS ACPOU ACPRK ACRPL ACXBN ACXQS ACYXJ ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AZBYB AZFZN BDRZF BFHJK BRXPI BSCLL BY8 C45 CO8 CS3 D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P FEDTE G-S GNP GODZA HBH HGLYW HHY HHZ HVGLF IX1 JPC KD1 KQQ L7B LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM OIG OVD P2W P4D QB0 QRW ROL RX1 RYL SUPJJ TEORI UB1 V2E WIH WIK WJL WQJ X7M XG1 XV2 3O- AAYXX ABEML ACSCC AGHNM CITATION EBD EMOBN HF~ SV3 IQODW AAHHS ACCFJ ADZOD AEEZP AEQDE AIWBW AJBDE CGR CUY CVF ECM EIF NPM 8FD FR3 P64 RC3 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c5259-524cde4bc28a35f7126c8a0e95c0b7970af0eb724c31e5c6e0070f8551d90b8d3 |
| IEDL.DBID | DR2 |
| ISSN | 1552-4825 1552-4833 |
| IngestDate | Wed Oct 29 12:14:10 EDT 2025 Tue Sep 30 16:57:03 EDT 2025 Thu Oct 02 07:16:21 EDT 2025 Thu Oct 02 16:21:31 EDT 2025 Thu Apr 03 06:58:48 EDT 2025 Mon Jul 21 09:15:32 EDT 2025 Wed Oct 01 02:33:20 EDT 2025 Thu Apr 24 23:08:36 EDT 2025 Sun Sep 21 06:23:20 EDT 2025 Sun Sep 21 06:21:41 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Keywords | Chromosomal aberration Endocrinopathy Breakpoint array comparative genomic hybridization (aCGH) Copy number Diseases of the osteoarticular system Variations Genetic disease chromosomal breakpoint Chromosome break Comparative genomic hybridization Deletion copy number variation (CNV) type I and II deletions Complex syndrome Prader Labhart Willi syndrome Prader-Willi syndrome (PWS) |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 Copyright 2008 Wiley-Liss, Inc. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5259-524cde4bc28a35f7126c8a0e95c0b7970af0eb724c31e5c6e0070f8551d90b8d3 |
| Notes | Hall Foundation of Kansas City, and Physician Scientist Award (Children's Mercy Hospitals and Clinics) ark:/67375/WNG-RPKVGJJ6-S NICHD RO1HD - No. 41672 NICHD PO1HD - No. 30329 How to cite this article: Butler MG, Fischer W, Kibiryeva N, Bittel DC. 2008. Array comparative genomic hybridization (aCGH) analysis in Prader-Willi syndrome. Am J Med Genet Part A 146A:854-860. NIH - No. 1U54 RR019478 istex:C90C35BAE9B6ACACB18F4EB8B913E57C307D7A9D ArticleID:AJMG32249 How to cite this article: Butler MG, Fischer W, Kibiryeva N, Bittel DC. 2008. Array comparative genomic hybridization (aCGH) analysis in Prader–Willi syndrome. Am J Med Genet Part A 146A:854–860. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=http://doi.org/10.1002/ajmg.a.32249 |
| PMID | 18266248 |
| PQID | 20098520 |
| PQPubID | 23462 |
| PageCount | 7 |
| ParticipantIDs | unpaywall_primary_10_1002_ajmg_a_32249 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5438264 proquest_miscellaneous_70451536 proquest_miscellaneous_20098520 pubmed_primary_18266248 pascalfrancis_primary_20239410 crossref_citationtrail_10_1002_ajmg_a_32249 crossref_primary_10_1002_ajmg_a_32249 wiley_primary_10_1002_ajmg_a_32249_AJMG32249 istex_primary_ark_67375_WNG_RPKVGJJ6_S |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 1 April 2008 |
| PublicationDateYYYYMMDD | 2008-04-01 |
| PublicationDate_xml | – month: 04 year: 2008 text: 1 April 2008 day: 01 |
| PublicationDecade | 2000 |
| PublicationPlace | Hoboken |
| PublicationPlace_xml | – name: Hoboken – name: Hoboken, NJ – name: United States |
| PublicationTitle | American journal of medical genetics. Part A |
| PublicationTitleAlternate | Am. J. Med. Genet |
| PublicationYear | 2008 |
| Publisher | Wiley Subscription Services, Inc., A Wiley Company Wiley-Liss |
| Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company – name: Wiley-Liss |
| References | Stranger BE, Forrest MS, Dunning M, Ingle CE, Beazley C, Thorne N, Redon R, Bird CP, de Grassi A, Lee C, Tyler-Smith C, Carter N, Scherer SW, Tavare S, Deloukas P, Hurles ME, Dermitzakis ET. 2007. Relative impact of nucleotide and copy number variation on gene expression phenotypes. Science 315: 848-853. Conrad DF, Andrews TD, Carter NP, Hurles ME, Pritchard JK. 2006. A high-resolution survey of deletion polymorphism in the human genome. Nat Genet 38: 75-81. Bittel DC, Kibiryeva N, Butler MG. 2007a. Methylation-specific multiplex ligation-dependent probe amplification (MLPA) analysis of subjects with chromosome 15 abnormalities. Genet Test 11: 467-476. Bittel DC, Kibiryeva N, Butler MG. 2006. Expression of 4 genes between chromosome 15 breakpoints 1 and 2 and behavioral outcomes in Prader-Willi syndrome. Pediatrics 118: e1276-e1283. Chai JH, Locke DP, Greally JM, Knoll JH, Ohta T, Dunai J, Yavor A, Eichler EE, Nicholls RD. 2003. Identification of four highly conserved genes between breakpoint hotspots BP1 and BP2 of the Prader-Willi/Angelman syndromes deletion region that have undergone evolutionary transposition mediated by flanking duplicons. Am J Hum Genet 73: 898-925. Barrett MT, Scheffer A, Ben-Dor A, Sampas N, Lipson D, Kincaid R, Tsang P, Curry B, Baird K, Meltzer PS, Yakhini Z, Bruhn L, Laderman S. 2004. Comparative genomic hybridization using oligonucleotide microarrays and total genomic DNA. Proc Natl Acad Sci USA 101: 17765-17770. Fiegler H, Redon R, Andrews D, Scott C, Andrews R, Carder C, Clark R, Dovey O, Ellis P, Feuk L, French L, Hunt P, Kalaitzopoulos D, Larkin J, Montgomery L, Perry GH, Plumb BW, Porter K, Rigby RE, Rigler D, Valsesia A, Langford C, Humphray SJ, Scherer SW, Lee C, Hurles ME, Carter NP. 2006. Accurate and reliable high-throughput detection of copy number variation in the human genome. Genome Res 16: 1566-1574. Butler MG, Thompson T. 2000. Prader-Willi syndrome: Clinical and genetic findings. Endocrinology 10: 35-165. Cassidy SB, Forsythe M, Heeger S, Nicholls RD, Schork N, Benn P, Schwartz S. 1997. Comparison of phenotype between patients with Prader-Willi syndrome due to deletion 15q and uniparental disomy 15. Am J Med Genet 68: 433-440. Redon R, Ishikawa S, Fitch KR, Feuk L, Perry GH, Andrews TD, Fiegler H, Shapero MH, Carson AR, Chen W, Cho EK, Dallaire S, Freeman JL, Gonzalez JR, Gratacos M, Huang J, Kalaitzopoulos D, Komura D, MacDonald JR, Marshall CR, Mei R, Montgomery L, Nishimura K, Okamura K, Shen F, Somerville MJ, Tchinda J, Valsesia A, Woodwark C, Yang F, Zhang J, Zerjal T, Zhang J, Armengol L, Conrad DF, Estivill X, Tyler-Smith C, Carter NP, Aburatani H, Lee C, Jones KW, Scherer SW, Hurles ME. 2006. Global variation in copy number in the human genome. Nature 444: 444-454. Bittel DC, Kibiryeva N, Sell SM, Strong TV, Butler MG. 2007b. Whole genome microarray analysis of gene expression in Prader-Willi syndrome. Am J Med Genet Part A 143A: 430-442. Nicholls RD, Knepper JL. 2001. Genome organization, function, and imprinting in Prader-Willi and Angelman syndromes. Annu Rev Genomics Hum Genet 2: 153-175. Christian SL, Fantes JA, Mewborn SK, Huang B, Ledbetter DH. 1999. Large genomic duplicons map to sites of instability in the Prader-Willi/Angelman syndrome chromosome region (15q11-q13). Hum Mol Genet 8: 1025-1037. Scherer SW, Lee C, Birney E, Altshuler DA, Eichler EE, Carter NP, Hurles ME, Feuk L. 2007. Challenges and standards in integrating surveys of structural variation. Nat Genet Supp 39: S7-S15. Butler MG, Bittel D, Talebizadeh Z. 2002. Prader-Willi syndrome and a deletion/duplication within the 15q11-q13 region. J Med Genet 39: 202-204. Ji Y, Rebert NA, Joslin JM, Higgins MJ, Schultz RA, Nicholls RD. 2000. Structure of the highly conserved HERC2 gene and of multiple partially duplicated paralogs in human. Genome Res 10: 319-329. Wang NJ, Liu D, Parokonny AS, Schanen NC. 2004. High-resolution molecular characterization of 15q11-q13 rearrangements by array comparative genomic hybridization (array CGH) with detection of gene dosage. Am J Hum Genet 75: 267-281. Sebat J, Lakshmi B, Troge J, Alexander J, Young J, Lundin P, Maner S, Massa H, Walker M, Chi M, Navin N, Lucito R, Healy J, Hicks J, Ye K, Reiner A, Gilliam TC, Trask B, Patterson N, Zetterberg A, Wigler M. 2004. Large-scale copy number polymorphism in the human genome. Science 305: 525-528. Giglio S, Broman KW, Matsumoto N, Calvari V, Gimelli G, Neumann T, Ohashi H, Voullaire L, Larizza D, Giorda R, Weber JL, Ledbetter DH, Zuffardi O. 2001. Olfactory receptor-gene clusters, genomic-inversion polymorphisms, and common chromosome rearrangements. Am J Hum Genet 68: 874-883. Khaja R, Zhang J, MacDonald JR, He Y, Joseph-George AM, Wei J, Rafiq MA, Qian C, Shago M, Pantano L, Aburatani H, Jones K, Redon R, Hurles M, Armengol L, Estivill X, Mural RJ, Lee C, Scherer SW, Feuk L. 2006. Genome assembly comparison identifies structural variants in the human genome. Nat Genet 38: 1413-1418. Amos-Landgraf JM, Ji Y, Gottlieb W, Depinet T, Wandstrat AE, Cassidy SB, Driscoll DJ, Rogan PK, Schwartz S, Nicholls RD. 1999. Chromosome breakage in the Prader-Willi and Angelman syndromes involves recombination between large, transcribed repeats at proximal and distal breakpoints. Am J Hum Genet 65: 370-386. Perry GH, Tchinda J, McGrath SD, Zhang J, Picker SR, Caceres AM, Iafrate AJ, Tyler-Smith C, Scherer SW, Eichler EE, Stone AC, Lee C. 2006. Hotspots for copy number variation in chimpanzees and humans. Proc Natl Acad Sci USA 103: 8006-8011. Sebat J, Lakshmi B, Malhotra D, Troge J, Lese-Martin C, Walsh T, Yamrom B, Yamrom B, Yoon S, Krasnitz A, Kendall J, Leotta A, Pai D, Zhang R, Lee YH, Hicks J, Spence SJ, Lee AT, Puura K, Lehtimaki T, Ledbetter D, Gregersen PK, Bregman J, Sutcliffe JS, Jobanputra V, Chung W, Warburton D, King MC, Skuse D, Geschwind DH, Gilliam TC, Ye K, Wigler M. 2007. Strong association of de novo copy number mutations with autism. Science 316: 445-449. Komura D, Shen F, Ishikawa S, Fitch KR, Chen W, Zhang J, Liu G, Ihara S, Nakamura H, Hurles ME, Lee C, Scherer SW, Jones KW, Shapero MH, Huang J, Aburatani H. 2006. Genome-wide detection of human copy number variations using high-density DNA oligonucleotide arrays. Genome Res 16: 1575-1584. Pujana MA, Nadal M, Gratacos M, Peral B, Csiszar K, Gonzalez-Sarmiento R, Sumoy L, Estivill X. 2001. Additional complexity on human chromosome 15q: Identification of a set of newly recognized duplicons (LCR15) on 15q11-q13, 15q24, and 15q26. Genome Res 11: 98-111. Butler MG, Bittel DC, Kibiryeva N, Talebizadeh Z, Thompson T. 2004. Behavioral differences among subjects with Prader-Willi syndrome and type I or type II deletion and maternal disomy. Pediatrics 113: 565-573. Bittel DC, Butler MG. 2005. Prader-Willi syndrome: Clinical genetics, cytogenetics and molecular biology. Expert Rev Mol Med 7: 1-20. Knoll JH, Nicholls RD, Magenis RE, Glatt K, Graham JM Jr, Kaplan L, Lalande M. 1990. Angelman syndrome: Three molecular classes identified with chromosome 15q11q13-specific DNA markers. Am J Hum Genet 47: 149-155. 2004; 101 2007; 39 2002; 39 2007b; 143A 2006; 38 2006; 16 1997; 68 1999; 65 1999; 8 2006; 118 2003; 73 2001; 68 2004; 305 2004; 75 2007; 316 2004; 113 1990; 47 2007; 315 2007a; 11 2000; 10 2005; 7 2001; 2 2001; 11 2006; 103 2006; 444 e_1_2_6_10_1 Knoll JH (e_1_2_6_19_1) 1990; 47 e_1_2_6_13_1 e_1_2_6_14_1 e_1_2_6_11_1 e_1_2_6_12_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_15_1 e_1_2_6_16_1 e_1_2_6_21_1 e_1_2_6_20_1 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_29_1 e_1_2_6_28_1 e_1_2_6_27_1 e_1_2_6_26_1 |
| References_xml | – reference: Ji Y, Rebert NA, Joslin JM, Higgins MJ, Schultz RA, Nicholls RD. 2000. Structure of the highly conserved HERC2 gene and of multiple partially duplicated paralogs in human. Genome Res 10: 319-329. – reference: Pujana MA, Nadal M, Gratacos M, Peral B, Csiszar K, Gonzalez-Sarmiento R, Sumoy L, Estivill X. 2001. Additional complexity on human chromosome 15q: Identification of a set of newly recognized duplicons (LCR15) on 15q11-q13, 15q24, and 15q26. Genome Res 11: 98-111. – reference: Bittel DC, Kibiryeva N, Butler MG. 2006. Expression of 4 genes between chromosome 15 breakpoints 1 and 2 and behavioral outcomes in Prader-Willi syndrome. Pediatrics 118: e1276-e1283. – reference: Bittel DC, Kibiryeva N, Sell SM, Strong TV, Butler MG. 2007b. Whole genome microarray analysis of gene expression in Prader-Willi syndrome. Am J Med Genet Part A 143A: 430-442. – reference: Bittel DC, Butler MG. 2005. Prader-Willi syndrome: Clinical genetics, cytogenetics and molecular biology. Expert Rev Mol Med 7: 1-20. – reference: Cassidy SB, Forsythe M, Heeger S, Nicholls RD, Schork N, Benn P, Schwartz S. 1997. Comparison of phenotype between patients with Prader-Willi syndrome due to deletion 15q and uniparental disomy 15. Am J Med Genet 68: 433-440. – reference: Chai JH, Locke DP, Greally JM, Knoll JH, Ohta T, Dunai J, Yavor A, Eichler EE, Nicholls RD. 2003. Identification of four highly conserved genes between breakpoint hotspots BP1 and BP2 of the Prader-Willi/Angelman syndromes deletion region that have undergone evolutionary transposition mediated by flanking duplicons. Am J Hum Genet 73: 898-925. – reference: Perry GH, Tchinda J, McGrath SD, Zhang J, Picker SR, Caceres AM, Iafrate AJ, Tyler-Smith C, Scherer SW, Eichler EE, Stone AC, Lee C. 2006. Hotspots for copy number variation in chimpanzees and humans. Proc Natl Acad Sci USA 103: 8006-8011. – reference: Sebat J, Lakshmi B, Malhotra D, Troge J, Lese-Martin C, Walsh T, Yamrom B, Yamrom B, Yoon S, Krasnitz A, Kendall J, Leotta A, Pai D, Zhang R, Lee YH, Hicks J, Spence SJ, Lee AT, Puura K, Lehtimaki T, Ledbetter D, Gregersen PK, Bregman J, Sutcliffe JS, Jobanputra V, Chung W, Warburton D, King MC, Skuse D, Geschwind DH, Gilliam TC, Ye K, Wigler M. 2007. Strong association of de novo copy number mutations with autism. Science 316: 445-449. – reference: Knoll JH, Nicholls RD, Magenis RE, Glatt K, Graham JM Jr, Kaplan L, Lalande M. 1990. Angelman syndrome: Three molecular classes identified with chromosome 15q11q13-specific DNA markers. Am J Hum Genet 47: 149-155. – reference: Stranger BE, Forrest MS, Dunning M, Ingle CE, Beazley C, Thorne N, Redon R, Bird CP, de Grassi A, Lee C, Tyler-Smith C, Carter N, Scherer SW, Tavare S, Deloukas P, Hurles ME, Dermitzakis ET. 2007. Relative impact of nucleotide and copy number variation on gene expression phenotypes. Science 315: 848-853. – reference: Barrett MT, Scheffer A, Ben-Dor A, Sampas N, Lipson D, Kincaid R, Tsang P, Curry B, Baird K, Meltzer PS, Yakhini Z, Bruhn L, Laderman S. 2004. Comparative genomic hybridization using oligonucleotide microarrays and total genomic DNA. Proc Natl Acad Sci USA 101: 17765-17770. – reference: Butler MG, Bittel DC, Kibiryeva N, Talebizadeh Z, Thompson T. 2004. Behavioral differences among subjects with Prader-Willi syndrome and type I or type II deletion and maternal disomy. Pediatrics 113: 565-573. – reference: Komura D, Shen F, Ishikawa S, Fitch KR, Chen W, Zhang J, Liu G, Ihara S, Nakamura H, Hurles ME, Lee C, Scherer SW, Jones KW, Shapero MH, Huang J, Aburatani H. 2006. Genome-wide detection of human copy number variations using high-density DNA oligonucleotide arrays. Genome Res 16: 1575-1584. – reference: Christian SL, Fantes JA, Mewborn SK, Huang B, Ledbetter DH. 1999. Large genomic duplicons map to sites of instability in the Prader-Willi/Angelman syndrome chromosome region (15q11-q13). Hum Mol Genet 8: 1025-1037. – reference: Bittel DC, Kibiryeva N, Butler MG. 2007a. Methylation-specific multiplex ligation-dependent probe amplification (MLPA) analysis of subjects with chromosome 15 abnormalities. Genet Test 11: 467-476. – reference: Conrad DF, Andrews TD, Carter NP, Hurles ME, Pritchard JK. 2006. A high-resolution survey of deletion polymorphism in the human genome. Nat Genet 38: 75-81. – reference: Sebat J, Lakshmi B, Troge J, Alexander J, Young J, Lundin P, Maner S, Massa H, Walker M, Chi M, Navin N, Lucito R, Healy J, Hicks J, Ye K, Reiner A, Gilliam TC, Trask B, Patterson N, Zetterberg A, Wigler M. 2004. Large-scale copy number polymorphism in the human genome. Science 305: 525-528. – reference: Khaja R, Zhang J, MacDonald JR, He Y, Joseph-George AM, Wei J, Rafiq MA, Qian C, Shago M, Pantano L, Aburatani H, Jones K, Redon R, Hurles M, Armengol L, Estivill X, Mural RJ, Lee C, Scherer SW, Feuk L. 2006. Genome assembly comparison identifies structural variants in the human genome. Nat Genet 38: 1413-1418. – reference: Wang NJ, Liu D, Parokonny AS, Schanen NC. 2004. High-resolution molecular characterization of 15q11-q13 rearrangements by array comparative genomic hybridization (array CGH) with detection of gene dosage. Am J Hum Genet 75: 267-281. – reference: Butler MG, Thompson T. 2000. Prader-Willi syndrome: Clinical and genetic findings. Endocrinology 10: 35-165. – reference: Amos-Landgraf JM, Ji Y, Gottlieb W, Depinet T, Wandstrat AE, Cassidy SB, Driscoll DJ, Rogan PK, Schwartz S, Nicholls RD. 1999. Chromosome breakage in the Prader-Willi and Angelman syndromes involves recombination between large, transcribed repeats at proximal and distal breakpoints. Am J Hum Genet 65: 370-386. – reference: Redon R, Ishikawa S, Fitch KR, Feuk L, Perry GH, Andrews TD, Fiegler H, Shapero MH, Carson AR, Chen W, Cho EK, Dallaire S, Freeman JL, Gonzalez JR, Gratacos M, Huang J, Kalaitzopoulos D, Komura D, MacDonald JR, Marshall CR, Mei R, Montgomery L, Nishimura K, Okamura K, Shen F, Somerville MJ, Tchinda J, Valsesia A, Woodwark C, Yang F, Zhang J, Zerjal T, Zhang J, Armengol L, Conrad DF, Estivill X, Tyler-Smith C, Carter NP, Aburatani H, Lee C, Jones KW, Scherer SW, Hurles ME. 2006. Global variation in copy number in the human genome. Nature 444: 444-454. – reference: Giglio S, Broman KW, Matsumoto N, Calvari V, Gimelli G, Neumann T, Ohashi H, Voullaire L, Larizza D, Giorda R, Weber JL, Ledbetter DH, Zuffardi O. 2001. Olfactory receptor-gene clusters, genomic-inversion polymorphisms, and common chromosome rearrangements. Am J Hum Genet 68: 874-883. – reference: Butler MG, Bittel D, Talebizadeh Z. 2002. Prader-Willi syndrome and a deletion/duplication within the 15q11-q13 region. J Med Genet 39: 202-204. – reference: Fiegler H, Redon R, Andrews D, Scott C, Andrews R, Carder C, Clark R, Dovey O, Ellis P, Feuk L, French L, Hunt P, Kalaitzopoulos D, Larkin J, Montgomery L, Perry GH, Plumb BW, Porter K, Rigby RE, Rigler D, Valsesia A, Langford C, Humphray SJ, Scherer SW, Lee C, Hurles ME, Carter NP. 2006. Accurate and reliable high-throughput detection of copy number variation in the human genome. Genome Res 16: 1566-1574. – reference: Scherer SW, Lee C, Birney E, Altshuler DA, Eichler EE, Carter NP, Hurles ME, Feuk L. 2007. Challenges and standards in integrating surveys of structural variation. Nat Genet Supp 39: S7-S15. – reference: Nicholls RD, Knepper JL. 2001. Genome organization, function, and imprinting in Prader-Willi and Angelman syndromes. Annu Rev Genomics Hum Genet 2: 153-175. – volume: 75 start-page: 267 year: 2004 end-page: 281 article-title: High‐resolution molecular characterization of 15q11‐q13 rearrangements by array comparative genomic hybridization (array CGH) with detection of gene dosage publication-title: Am J Hum Genet – volume: 10 start-page: 35 year: 2000 end-page: 165 article-title: Prader‐Willi syndrome: Clinical and genetic findings publication-title: Endocrinology – volume: 315 start-page: 848 year: 2007 end-page: 853 article-title: Relative impact of nucleotide and copy number variation on gene expression phenotypes publication-title: Science – volume: 444 start-page: 444 year: 2006 end-page: 454 article-title: Global variation in copy number in the human genome publication-title: Nature – volume: 73 start-page: 898 year: 2003 end-page: 925 article-title: Identification of four highly conserved genes between breakpoint hotspots BP1 and BP2 of the Prader‐Willi/Angelman syndromes deletion region that have undergone evolutionary transposition mediated by flanking duplicons publication-title: Am J Hum Genet – volume: 65 start-page: 370 year: 1999 end-page: 386 article-title: Chromosome breakage in the Prader‐Willi and Angelman syndromes involves recombination between large, transcribed repeats at proximal and distal breakpoints publication-title: Am J Hum Genet – volume: 10 start-page: 319 year: 2000 end-page: 329 article-title: Structure of the highly conserved HERC2 gene and of multiple partially duplicated paralogs in human publication-title: Genome Res – volume: 8 start-page: 1025 year: 1999 end-page: 1037 article-title: Large genomic duplicons map to sites of instability in the Prader‐Willi/Angelman syndrome chromosome region (15q11‐q13) publication-title: Hum Mol Genet – volume: 305 start-page: 525 year: 2004 end-page: 528 article-title: Large‐scale copy number polymorphism in the human genome publication-title: Science – volume: 2 start-page: 153 year: 2001 end-page: 175 article-title: Genome organization, function, and imprinting in Prader‐Willi and Angelman syndromes publication-title: Annu Rev Genomics Hum Genet – volume: 113 start-page: 565 year: 2004 end-page: 573 article-title: Behavioral differences among subjects with Prader‐Willi syndrome and type I or type II deletion and maternal disomy publication-title: Pediatrics – volume: 7 start-page: 1 year: 2005 end-page: 20 article-title: Prader‐Willi syndrome: Clinical genetics, cytogenetics and molecular biology publication-title: Expert Rev Mol Med – volume: 39 start-page: S7 year: 2007 end-page: S15 article-title: Challenges and standards in integrating surveys of structural variation publication-title: Nat Genet Supp – volume: 118 start-page: e1276 year: 2006 end-page: e1283 article-title: Expression of 4 genes between chromosome 15 breakpoints 1 and 2 and behavioral outcomes in Prader‐Willi syndrome publication-title: Pediatrics – volume: 38 start-page: 1413 year: 2006 end-page: 1418 article-title: Genome assembly comparison identifies structural variants in the human genome publication-title: Nat Genet – volume: 47 start-page: 149 year: 1990 end-page: 155 article-title: Angelman syndrome: Three molecular classes identified with chromosome 15q11q13‐specific DNA markers publication-title: Am J Hum Genet – volume: 39 start-page: 202 year: 2002 end-page: 204 article-title: Prader‐Willi syndrome and a deletion/duplication within the 15q11‐q13 region publication-title: J Med Genet – volume: 103 start-page: 8006 year: 2006 end-page: 8011 article-title: Hotspots for copy number variation in chimpanzees and humans publication-title: Proc Natl Acad Sci USA – volume: 16 start-page: 1566 year: 2006 end-page: 1574 article-title: Accurate and reliable high‐throughput detection of copy number variation in the human genome publication-title: Genome Res – volume: 316 start-page: 445 year: 2007 end-page: 449 article-title: Strong association of de novo copy number mutations with autism publication-title: Science – volume: 11 start-page: 98 year: 2001 end-page: 111 article-title: Additional complexity on human chromosome 15q: Identification of a set of newly recognized duplicons (LCR15) on 15q11‐q13, 15q24, and 15q26 publication-title: Genome Res – volume: 16 start-page: 1575 year: 2006 end-page: 1584 article-title: Genome‐wide detection of human copy number variations using high‐density DNA oligonucleotide arrays publication-title: Genome Res – volume: 38 start-page: 75 year: 2006 end-page: 81 article-title: A high‐resolution survey of deletion polymorphism in the human genome publication-title: Nat Genet – volume: 68 start-page: 874 year: 2001 end-page: 883 article-title: Olfactory receptor‐gene clusters, genomic‐inversion polymorphisms, and common chromosome rearrangements publication-title: Am J Hum Genet – volume: 101 start-page: 17765 year: 2004 end-page: 17770 article-title: Comparative genomic hybridization using oligonucleotide microarrays and total genomic DNA publication-title: Proc Natl Acad Sci USA – volume: 143A start-page: 430 year: 2007b end-page: 442 article-title: Whole genome microarray analysis of gene expression in Prader‐Willi syndrome publication-title: Am J Med Genet Part A – volume: 11 start-page: 467 year: 2007a end-page: 476 article-title: Methylation‐specific multiplex ligation‐dependent probe amplification (MLPA) analysis of subjects with chromosome 15 abnormalities publication-title: Genet Test – volume: 68 start-page: 433 year: 1997 end-page: 440 article-title: Comparison of phenotype between patients with Prader‐Willi syndrome due to deletion 15q and uniparental disomy 15 publication-title: Am J Med Genet – ident: e_1_2_6_4_1 doi: 10.1017/S1462399405009531 – ident: e_1_2_6_8_1 doi: 10.1097/00019616-200010041-00002 – ident: e_1_2_6_25_1 doi: 10.1038/ng2093 – ident: e_1_2_6_3_1 doi: 10.1073/pnas.0407979101 – ident: e_1_2_6_9_1 doi: 10.1136/jmg.39.3.202 – ident: e_1_2_6_12_1 doi: 10.1086/378816 – ident: e_1_2_6_11_1 doi: 10.1002/(SICI)1096-8628(19970211)68:4<433::AID-AJMG12>3.0.CO;2-T – ident: e_1_2_6_18_1 doi: 10.1038/ng1921 – ident: e_1_2_6_16_1 doi: 10.1086/319506 – ident: e_1_2_6_20_1 doi: 10.1101/gr.5629106 – ident: e_1_2_6_15_1 doi: 10.1101/gr.5630906 – ident: e_1_2_6_24_1 doi: 10.1038/nature05329 – ident: e_1_2_6_6_1 doi: 10.1089/gte.2007.0061 – volume: 47 start-page: 149 year: 1990 ident: e_1_2_6_19_1 article-title: Angelman syndrome: Three molecular classes identified with chromosome 15q11q13‐specific DNA markers publication-title: Am J Hum Genet – ident: e_1_2_6_27_1 doi: 10.1126/science.1138659 – ident: e_1_2_6_26_1 doi: 10.1126/science.1098918 – ident: e_1_2_6_23_1 doi: 10.1101/gr.155601 – ident: e_1_2_6_17_1 doi: 10.1101/gr.10.3.319 – ident: e_1_2_6_22_1 doi: 10.1073/pnas.0602318103 – ident: e_1_2_6_5_1 doi: 10.1542/peds.2006-0424 – ident: e_1_2_6_13_1 doi: 10.1093/hmg/8.6.1025 – ident: e_1_2_6_14_1 doi: 10.1038/ng1697 – ident: e_1_2_6_10_1 doi: 10.1542/peds.113.3.565 – ident: e_1_2_6_28_1 doi: 10.1126/science.1136678 – ident: e_1_2_6_29_1 doi: 10.1086/422854 – ident: e_1_2_6_2_1 doi: 10.1086/302510 – ident: e_1_2_6_21_1 doi: 10.1146/annurev.genom.2.1.153 – ident: e_1_2_6_7_1 doi: 10.1002/ajmg.a.31606 |
| SSID | ssj0030576 |
| Score | 2.1191993 |
| Snippet | Prader–Willi syndrome (PWS) is due to loss of paternally expressed genes in the 15q11–q13 region generally from a paternal 15q11–q13 deletion. The proximal... Prader-Willi syndrome (PWS) is due to loss of paternally expressed genes in the 15q11-q13 region generally from a paternal 15q11-q13 deletion. The proximal... |
| SourceID | unpaywall pubmedcentral proquest pubmed pascalfrancis crossref wiley istex |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 854 |
| SubjectTerms | Adolescent Adult array comparative genomic hybridization (aCGH) Biological and medical sciences chromosomal breakpoint Chromosome aberrations Chromosome Deletion Chromosomes, Human, Pair 15 Complex syndromes copy number variation (CNV) Female Humans In Situ Hybridization, Fluorescence Male Medical genetics Medical sciences Metabolic diseases Nucleic Acid Hybridization Obesity Prader-Willi syndrome (PWS) Prader-Willi Syndrome - genetics type I and II deletions |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFD4arbi8cBm3cBl-AASClCyJneSxGqxV0apq0DGeLNtxWFmXTVkrKE_8B_4hvwQfJ80UBoU3SzmJ4uMT-XP8-fsAHpspPqGSajcTzHNDoVI3Tnz0I87M4iHyULQI2RZD1h-Hg326vwZLw7vm9r3_Snw--tQRHVN1YXIB2owawN2C9ng46n60SqjUd8PYWqtW7SCo6O2_396YeNqYw69IhBSnJhdZaWLxJ5R5nix5eZ6fiMUXMZ02Aa2dkbavwevluZ6SiHLYmc9kR307L_O4qrPX4WqFSEm3LKEbsKbzdbhYelQu1uHSTrX7fhN2u0UhFkSdCYYTlHg9mihysMCTX9WZTvJMbPX6z4moBE_IJCejAinTP7__sD94yFIo4RaMt9-83-q7lSeDq6hZKZl1a6hSHUrlxyKgZjx9pmLh6YQqT0ZJ5InM0zIyUcGmpopp1BPKYoPL0sSTcRrchlZ-nOu7QAx2o1nMDGKTIkxTTxr0EeDBO2lAmGKpAy-WA8ZVJViOvhlTXkot-xwTxgW3CXPgSR19Ugp1_CXuqR37OkgUh0huiyj_MOzx3dHbvd5gwPg7BzYaxVHf4Fs7-U3PgUfLauHmm8SNFpHr4_kpWnsmMfVXREQo60MD5sCdsrrO3tms95gfxg5EjbqrA1APvHklnxxYXXCKm7osND2sK_QfqXhpy3dlEO8Odnq2de9_n3sfrpSsGuQ3PYDWrJjrhwa6zeRG9en-Auh6PiA priority: 102 providerName: Unpaywall |
| Title | Array comparative genomic hybridization (aCGH) analysis in Prader-Willi syndrome |
| URI | https://api.istex.fr/ark:/67375/WNG-RPKVGJJ6-S/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fajmg.a.32249 https://www.ncbi.nlm.nih.gov/pubmed/18266248 https://www.proquest.com/docview/20098520 https://www.proquest.com/docview/70451536 https://pubmed.ncbi.nlm.nih.gov/PMC5438264 http://doi.org/10.1002/ajmg.a.32249 |
| UnpaywallVersion | submittedVersion |
| Volume | 146A |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1552-4833 databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1552-4833 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0030576 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbQJi4vXMZl4VL8AAgE6dIkdpLHamKtilZVhcJ4smzH2cq6bOpFUJ74D_xDfgnnOGlKuAzBW6QcS8nJ5_gc-zvfIeQRLPEJU8y4meSeG0qdunHiYz_iDJKHyEPRImRb9Hl3FPYO2EG54Ya1MIU-RLXhhjPD_q9xgks121mLhsoPJ4dN2QRAhli_1wq4zaiGlXoUINn2lkORMTeETKjkvcPwnR8H11akTXTuJ2RIyhk4KSu6W_wu_PyVRXl5kZ_J5Uc5mdQjXbtU7V0jYvWSBUPluLmYq6b-_JP-4_974Tq5WkaxtF3A7ga5YPItcrHoa7ncIpf2yxP7m2TYnk7lkuq1yDhFWdiTsaZHS6wWK-tA6VO52-k-o7IUSaHjnA6mSLP-9uWr3RSiK3GFW2S09_LNbtct-zi4mkF2BbluqFMTKu3HMmCAAZ_rWHomYdpTURJ5MvOMisAqaBmmuUENoiyGWC5NPBWnwW2ykZ_mZptQiPdYFnOI8pQM09RTELEEWKynIHDTPHXI89W3FLoUOcdeGxNRyDP7Ah0mpLAOc8jjyvqsEPf4g90TC4vKSE6PkRAXMfGu3xHDwau3nV6Pi9cOadRwUw3wbQv6lueQhysgCZjHeDgjc3O6mGE70CRm_jkWEUoBsYA75E4BvPUzQ47I_TB2SFSDZGWAGuL1O_n4yGqJMzwI5iG8YQXev7jihYXjuUai3dvv2Ku7_2Z-j1wp-DjIjLpPNubThXkAQd9cNezUbpDNUX_Qfv8dSmtUdA |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bbtNAEB1BKygvXAoFc2n9AAhEnbr27tp-jCqakDZRFVro27Je2zQ0das0EYQn_oE_5EuYWTsO5lKEeIuUWSken82e2T17BuAxLvERj3nqZEq4DlM6ccLIo37EGRYPgUumRaS26In2Aesc8sOyzyndhSn8IaoNN5oZ5v-aJjhtSG_MXUPVh5P3DdVARLLoMiwygaUKsaJ-5R-FWDbd5chmzGFYC5XKdxy_8ePo2pq0SOn9RBpJdY5pyor-Fr8joL_qKJcm-ZmaflTDYZ3rmsVq-wa8mz1moVE5bkzGcUN__skB8j_ycBOul0TWbhbIuwWX0nwZrhStLafLcLVbHtrfhn5zNFJTW899xm1yhj0ZaPtoShfGyqug9jO11Wo_t1Xpk2IPcntvRErrb1--mn0he-avcAcOtl_ub7WdspWDozkWWFjuMp2kLNZeqHyOMPCEDpWbRly7cRAFrsrcNA4wyt9MuRYp2RBlIdK5JHLjMPFXYCE_zdN7YCPl41kokOjFiiWJGyNp8em-XozcTYvEghezlyl16XNO7TaGsnBo9iQlTCppEmbBkyr6rPD3-EPcU4OLKkiNjkkTF3D5tteS_b2dN61OR8jXFqzWgFMN8EwX-k3XgrUZkiROZTqfUXl6OjmnjqBRyL0LIgJyA-K-sOBugbz5b8YyUXgstCCoYbIKIBvx-jf54MjYiXM6CxYMn7BC719SsW7weGGQbHa6LfPp_r-Fr8FSe7-7K3df9XYewLVCnkNCqYewMB5N0kfIAcfxqpnn3wG3klbl |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bbtNAEB1BKwovXMrNXFo_AAJRp67t9eUxaklCSqMoUOjbdr1e09DUjdxEEJ74B_6QL2Fm7TiYSxHizZJnpXh8NjvjPXsOwCNc4iMWM2WlwrctT8jECiOH_IhTbB4Cm0SLiG3R8zv7XveAHZQ-p3QWptCHqD640czQ_9c0wdU4STcXqqHiw8n7hmggIr3oIix7LAqJ07czqPSjEMvaXY5kxiwPe6GS-Y7jN38cXVuTlim9n4gjKc4wTWnhb_G7AvRXHuXlaTYWs49iNKrXunqxal2Dw_ljFhyV48Z0Ejfk558UIP8jD9fhalnIms0CeTfggspW4VJhbTlbhZW9ctP-JgyaeS5mplzojJukDHsylObRjA6MlUdBzadiu915ZopSJ8UcZmY_J6b1ty9f9Xchc66vcAv2Wy_ebHes0srBkgwbLGx3PZkoL5ZOKFyGMHB8GQpbRUzacRAFtkhtFQcY5W4pJn1FMkRpiOVcEtlxmLi3YSk7zdRdMLHkY2noY6EXCy9J7BiLFpfO68VYu0k_MeD5_GVyWeqck93GiBcKzQ6nhHHBdcIMeFxFjwt9jz_EPdG4qIJEfkycuIDxd702H_R337a7XZ-_NmCtBpxqgKNd6LdsA9bnSOI4lWl_RmTqdHpGjqAIYeeciIDUgJjrG3CnQN7iN2Ob6DteaEBQw2QVQDLi9TvZ8EjLiTPaC_Y9fMIKvX9JxYbG47lBvNnda-ure_8Wvg4r_Z0Wf_Wyt3sfrhTsHOJJPYClST5VD7EEnMRrepp_B-z7Vmk |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFD4arbi8cBm3cBl-AASClCyJneSxGqxV0apq0DGeLNtxWFmXTVkrKE_8B_4hvwQfJ80UBoU3SzmJ4uMT-XP8-fsAHpspPqGSajcTzHNDoVI3Tnz0I87M4iHyULQI2RZD1h-Hg326vwZLw7vm9r3_Snw--tQRHVN1YXIB2owawN2C9ng46n60SqjUd8PYWqtW7SCo6O2_396YeNqYw69IhBSnJhdZaWLxJ5R5nix5eZ6fiMUXMZ02Aa2dkbavwevluZ6SiHLYmc9kR307L_O4qrPX4WqFSEm3LKEbsKbzdbhYelQu1uHSTrX7fhN2u0UhFkSdCYYTlHg9mihysMCTX9WZTvJMbPX6z4moBE_IJCejAinTP7__sD94yFIo4RaMt9-83-q7lSeDq6hZKZl1a6hSHUrlxyKgZjx9pmLh6YQqT0ZJ5InM0zIyUcGmpopp1BPKYoPL0sSTcRrchlZ-nOu7QAx2o1nMDGKTIkxTTxr0EeDBO2lAmGKpAy-WA8ZVJViOvhlTXkot-xwTxgW3CXPgSR19Ugp1_CXuqR37OkgUh0huiyj_MOzx3dHbvd5gwPg7BzYaxVHf4Fs7-U3PgUfLauHmm8SNFpHr4_kpWnsmMfVXREQo60MD5sCdsrrO3tms95gfxg5EjbqrA1APvHklnxxYXXCKm7osND2sK_QfqXhpy3dlEO8Odnq2de9_n3sfrpSsGuQ3PYDWrJjrhwa6zeRG9en-Auh6PiA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Array+comparative+genomic+hybridization+%28aCGH%29+analysis+in+Prader%E2%80%93Willi+syndrome&rft.jtitle=American+journal+of+medical+genetics.+Part+A&rft.au=Butler%2C+Merlin+G.&rft.au=Fischer%2C+William&rft.au=Kibiryeva%2C+Nataliya&rft.au=Bittel%2C+Douglas+C.&rft.date=2008-04-01&rft.issn=1552-4825&rft.eissn=1552-4833&rft.volume=146A&rft.issue=7&rft.spage=854&rft.epage=860&rft_id=info:doi/10.1002%2Fajmg.a.32249&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_ajmg_a_32249 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1552-4825&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1552-4825&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1552-4825&client=summon |