Amyotrophic lateral sclerosis onset is influenced by the burden of rare variants in known amyotrophic lateral sclerosis genes
Objective To define the genetic landscape of amyotrophic lateral sclerosis (ALS) and assess the contribution of possible oligogenic inheritance, we aimed to comprehensively sequence 17 known ALS genes in 391 ALS patients from the United States. Methods Targeted pooled‐sample sequencing was used to i...
Saved in:
Published in | Annals of neurology Vol. 77; no. 1; pp. 100 - 113 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Blackwell Publishing Ltd
01.01.2015
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0364-5134 1531-8249 1531-8249 |
DOI | 10.1002/ana.24306 |
Cover
Abstract | Objective
To define the genetic landscape of amyotrophic lateral sclerosis (ALS) and assess the contribution of possible oligogenic inheritance, we aimed to comprehensively sequence 17 known ALS genes in 391 ALS patients from the United States.
Methods
Targeted pooled‐sample sequencing was used to identify variants in 17 ALS genes. Fragment size analysis was used to define ATXN2 and C9ORF72 expansion sizes. Genotype–phenotype correlations were made with individual variants and total burden of variants. Rare variant associations for risk of ALS were investigated at both the single variant and gene level.
Results
A total of 64.3% of familial and 27.8% of sporadic subjects carried potentially pathogenic novel or rare coding variants identified by sequencing or an expanded repeat in C9ORF72 or ATXN2; 3.8% of subjects had variants in >1 ALS gene, and these individuals had disease onset 10 years earlier (p = 0.0046) than subjects with variants in a single gene. The number of potentially pathogenic coding variants did not influence disease duration or site of onset.
Interpretation
Rare and potentially pathogenic variants in known ALS genes are present in >25% of apparently sporadic and 64% of familial patients, significantly higher than previous reports using less comprehensive sequencing approaches. A significant number of subjects carried variants in >1 gene, which influenced the age of symptom onset and supports oligogenic inheritance as relevant to disease pathogenesis. ANN NEUROL 2015;77:100–113 |
---|---|
AbstractList | To define the genetic landscape of amyotrophic lateral sclerosis (ALS) and assess the contribution of possible oligogenic inheritance, we aimed to comprehensively sequence 17 known ALS genes in 391 ALS patients from the United States.OBJECTIVETo define the genetic landscape of amyotrophic lateral sclerosis (ALS) and assess the contribution of possible oligogenic inheritance, we aimed to comprehensively sequence 17 known ALS genes in 391 ALS patients from the United States.Targeted pooled-sample sequencing was used to identify variants in 17 ALS genes. Fragment size analysis was used to define ATXN2 and C9ORF72 expansion sizes. Genotype-phenotype correlations were made with individual variants and total burden of variants. Rare variant associations for risk of ALS were investigated at both the single variant and gene level.METHODSTargeted pooled-sample sequencing was used to identify variants in 17 ALS genes. Fragment size analysis was used to define ATXN2 and C9ORF72 expansion sizes. Genotype-phenotype correlations were made with individual variants and total burden of variants. Rare variant associations for risk of ALS were investigated at both the single variant and gene level.A total of 64.3% of familial and 27.8% of sporadic subjects carried potentially pathogenic novel or rare coding variants identified by sequencing or an expanded repeat in C9ORF72 or ATXN2; 3.8% of subjects had variants in >1 ALS gene, and these individuals had disease onset 10 years earlier (p = 0.0046) than subjects with variants in a single gene. The number of potentially pathogenic coding variants did not influence disease duration or site of onset.RESULTSA total of 64.3% of familial and 27.8% of sporadic subjects carried potentially pathogenic novel or rare coding variants identified by sequencing or an expanded repeat in C9ORF72 or ATXN2; 3.8% of subjects had variants in >1 ALS gene, and these individuals had disease onset 10 years earlier (p = 0.0046) than subjects with variants in a single gene. The number of potentially pathogenic coding variants did not influence disease duration or site of onset.Rare and potentially pathogenic variants in known ALS genes are present in >25% of apparently sporadic and 64% of familial patients, significantly higher than previous reports using less comprehensive sequencing approaches. A significant number of subjects carried variants in >1 gene, which influenced the age of symptom onset and supports oligogenic inheritance as relevant to disease pathogenesis.INTERPRETATIONRare and potentially pathogenic variants in known ALS genes are present in >25% of apparently sporadic and 64% of familial patients, significantly higher than previous reports using less comprehensive sequencing approaches. A significant number of subjects carried variants in >1 gene, which influenced the age of symptom onset and supports oligogenic inheritance as relevant to disease pathogenesis. Objective To define the genetic landscape of amyotrophic lateral sclerosis (ALS) and assess the contribution of possible oligogenic inheritance, we aimed to comprehensively sequence 17 known ALS genes in 391 ALS patients from the United States. Methods Targeted pooled-sample sequencing was used to identify variants in 17 ALS genes. Fragment size analysis was used to define ATXN2 and C9ORF72 expansion sizes. Genotype-phenotype correlations were made with individual variants and total burden of variants. Rare variant associations for risk of ALS were investigated at both the single variant and gene level. Results A total of 64.3% of familial and 27.8% of sporadic subjects carried potentially pathogenic novel or rare coding variants identified by sequencing or an expanded repeat in C9ORF72 or ATXN2; 3.8% of subjects had variants in >1 ALS gene, and these individuals had disease onset 10 years earlier (p=0.0046) than subjects with variants in a single gene. The number of potentially pathogenic coding variants did not influence disease duration or site of onset. Interpretation Rare and potentially pathogenic variants in known ALS genes are present in >25% of apparently sporadic and 64% of familial patients, significantly higher than previous reports using less comprehensive sequencing approaches. A significant number of subjects carried variants in >1 gene, which influenced the age of symptom onset and supports oligogenic inheritance as relevant to disease pathogenesis. ANN NEUROL 2015; 77:100-113 To define the genetic landscape of amyotrophic lateral sclerosis (ALS) and assess the contribution of possible oligogenic inheritance, we aimed to comprehensively sequence 17 known ALS genes in 391 ALS patients from the United States. Targeted pooled-sample sequencing was used to identify variants in 17 ALS genes. Fragment size analysis was used to define ATXN2 and C9ORF72 expansion sizes. Genotype-phenotype correlations were made with individual variants and total burden of variants. Rare variant associations for risk of ALS were investigated at both the single variant and gene level. A total of 64.3% of familial and 27.8% of sporadic subjects carried potentially pathogenic novel or rare coding variants identified by sequencing or an expanded repeat in C9ORF72 or ATXN2; 3.8% of subjects had variants in >1 ALS gene, and these individuals had disease onset 10 years earlier (p = 0.0046) than subjects with variants in a single gene. The number of potentially pathogenic coding variants did not influence disease duration or site of onset. Rare and potentially pathogenic variants in known ALS genes are present in >25% of apparently sporadic and 64% of familial patients, significantly higher than previous reports using less comprehensive sequencing approaches. A significant number of subjects carried variants in >1 gene, which influenced the age of symptom onset and supports oligogenic inheritance as relevant to disease pathogenesis. Objective To define the genetic landscape of amyotrophic lateral sclerosis (ALS) and assess the contribution of possible oligogenic inheritance, we aimed to comprehensively sequence 17 known ALS genes in 391 ALS patients from the United States. Methods Targeted pooled‐sample sequencing was used to identify variants in 17 ALS genes. Fragment size analysis was used to define ATXN2 and C9ORF72 expansion sizes. Genotype–phenotype correlations were made with individual variants and total burden of variants. Rare variant associations for risk of ALS were investigated at both the single variant and gene level. Results A total of 64.3% of familial and 27.8% of sporadic subjects carried potentially pathogenic novel or rare coding variants identified by sequencing or an expanded repeat in C9ORF72 or ATXN2; 3.8% of subjects had variants in >1 ALS gene, and these individuals had disease onset 10 years earlier (p = 0.0046) than subjects with variants in a single gene. The number of potentially pathogenic coding variants did not influence disease duration or site of onset. Interpretation Rare and potentially pathogenic variants in known ALS genes are present in >25% of apparently sporadic and 64% of familial patients, significantly higher than previous reports using less comprehensive sequencing approaches. A significant number of subjects carried variants in >1 gene, which influenced the age of symptom onset and supports oligogenic inheritance as relevant to disease pathogenesis. ANN NEUROL 2015;77:100–113 |
Author | Miller, Timothy M. Harms, Matthew B. Goate, Alison Baloh, Robert H. Cady, Janet Ravits, John Bali, Taha Pestronk, Alan Allred, Peggy Mitra, Robi D. |
Author_xml | – sequence: 1 givenname: Janet surname: Cady fullname: Cady, Janet organization: Department of Neurology, Washington University, MO, St, Louis – sequence: 2 givenname: Peggy surname: Allred fullname: Allred, Peggy organization: Department of Neurology, Cedars Sinai Medical Center, CA, Los Angeles – sequence: 3 givenname: Taha surname: Bali fullname: Bali, Taha organization: Department of Neurology, Washington University, MO, St, Louis – sequence: 4 givenname: Alan surname: Pestronk fullname: Pestronk, Alan organization: Department of Neurology, Washington University, MO, St, Louis – sequence: 5 givenname: Alison surname: Goate fullname: Goate, Alison organization: Department of Neurology, Washington University, St, Louis, MO – sequence: 6 givenname: Timothy M. surname: Miller fullname: Miller, Timothy M. organization: Department of Neurology, Washington University, St, Louis, MO – sequence: 7 givenname: Robi D. surname: Mitra fullname: Mitra, Robi D. organization: Department of Genetics, Washington University, MO, St Louis – sequence: 8 givenname: John surname: Ravits fullname: Ravits, John organization: Department of Neurosciences, University of California, San Diego, CA, La Jolla – sequence: 9 givenname: Matthew B. surname: Harms fullname: Harms, Matthew B. email: harmsm@neuro.wustl.edu organization: Department of Neurology, Washington University, St, Louis, MO – sequence: 10 givenname: Robert H. surname: Baloh fullname: Baloh, Robert H. email: harmsm@neuro.wustl.edu organization: Department of Neurology, Cedars Sinai Medical Center, CA, Los Angeles |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25382069$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU9vEzEQxS1URP_AgS-ALHEBpG3H9tq7OUYVDYgqXEDhZtm7s9StY6f2LiEHvjsbkvZQQcXF48PvPc17c0wOQgxIyEsGpwyAn5lgTnkpQD0hR0wKVtS8nByQIxCqLCQT5SE5zvkaACaKwTNyyKWoOajJEfk1XW5in-LqyjXUmx6T8TQ3HlPMLtMYMvZ0_LjQ-QFDgy21G9pfIbVDajHQ2NFkEtIfJjkT-i1Jb0JcB2oedf6OAfNz8rQzPuOL_TwhXy_efzn_UFx-nn08n14WjeRSFay2UPKKW2kFsK6uVcWwQ95Y2QirGtu2DLgo0UgFbVW3HE3NtwltB2ClOCHvdr5DWJnN2nivV8ktTdpoBnrboR471H86HOE3O3iV4u2AuddLlxv03gSMQ9ZMSS4qWYH8D7SsgI8PG9HXD9DrOKQwpt5SJVMgoBqpV3tqsEts77e8O9gInO2AZqwxJ-x043rTuxj6ZJz_a5y3DxSPRd-7r53Hzb9BPZ1P7xTFTuFyjz_vFSbdaFWNLenFfKYXn2ZycTGv9DfxGwzs06U |
CitedBy_id | crossref_primary_10_1038_ejhg_2016_186 crossref_primary_10_1136_jnnp_2020_325014 crossref_primary_10_1136_jnnp_2017_317611 crossref_primary_10_3390_jpm10030058 crossref_primary_10_1038_s41418_018_0060_4 crossref_primary_10_1080_14737159_2020_1779060 crossref_primary_10_1186_s13073_021_00878_y crossref_primary_10_1212_NXG_0000000000000301 crossref_primary_10_1002_mgg3_1953 crossref_primary_10_1016_j_neurol_2015_03_004 crossref_primary_10_1172_JCI168554 crossref_primary_10_3389_fnins_2020_00679 crossref_primary_10_1016_j_neurobiolaging_2018_04_020 crossref_primary_10_1007_s10048_019_00584_3 crossref_primary_10_1186_s13023_019_1127_0 crossref_primary_10_1186_s40478_016_0358_8 crossref_primary_10_1016_j_xgen_2024_100679 crossref_primary_10_1007_s43657_022_00093_8 crossref_primary_10_1016_j_neurobiolaging_2016_04_021 crossref_primary_10_3233_JND_230236 crossref_primary_10_1136_jnnp_2018_319089 crossref_primary_10_1212_WNL_0000000000005996 crossref_primary_10_2217_nmt_2017_0026 crossref_primary_10_1007_s10974_016_9451_7 crossref_primary_10_1080_19490976_2020_1767464 crossref_primary_10_1080_21678707_2019_1625766 crossref_primary_10_15252_embj_201593350 crossref_primary_10_3389_fnmol_2024_1408159 crossref_primary_10_1016_j_nbd_2019_104639 crossref_primary_10_1186_s40035_017_0098_0 crossref_primary_10_1007_s10072_019_03943_y crossref_primary_10_1016_j_tig_2018_03_001 crossref_primary_10_1126_scitranslmed_aav5264 crossref_primary_10_1016_S0140_6736_22_01272_7 crossref_primary_10_1111_ene_14213 crossref_primary_10_1016_j_neurobiolaging_2015_12_012 crossref_primary_10_1007_s10072_023_07178_w crossref_primary_10_1016_j_expneurol_2022_114143 crossref_primary_10_3389_fnins_2020_00684 crossref_primary_10_3390_biomedicines12051017 crossref_primary_10_3389_fneur_2022_790082 crossref_primary_10_1007_s13311_015_0344_z crossref_primary_10_1007_s40142_020_00194_8 crossref_primary_10_3389_fneur_2018_00958 crossref_primary_10_1093_bmb_ldw026 crossref_primary_10_1007_s00415_021_10928_5 crossref_primary_10_1007_s11910_018_0901_z crossref_primary_10_1111_bpa_12354 crossref_primary_10_1136_jnnp_2018_319473 crossref_primary_10_1111_neup_12240 crossref_primary_10_1371_journal_pone_0182572 crossref_primary_10_1136_jnnp_2017_316864 crossref_primary_10_1136_jnnp_2018_318568 crossref_primary_10_1136_jnnp_2016_315018 crossref_primary_10_3389_fnmol_2022_954928 crossref_primary_10_1080_21678421_2019_1582670 crossref_primary_10_1111_ene_13257 crossref_primary_10_1080_21678421_2021_1891249 crossref_primary_10_1016_j_neubiorev_2016_03_033 crossref_primary_10_1038_s10038_022_01055_8 crossref_primary_10_1080_21678421_2020_1797091 crossref_primary_10_1016_j_neurol_2017_03_030 crossref_primary_10_1016_j_neurobiolaging_2015_11_030 crossref_primary_10_1093_braincomms_fcaa120 crossref_primary_10_1038_s41431_022_01093_y crossref_primary_10_1093_brain_awv358 crossref_primary_10_1016_j_mcn_2020_103524 crossref_primary_10_3389_fneur_2025_1438207 crossref_primary_10_3390_diagnostics11030509 crossref_primary_10_3389_fgene_2021_746060 crossref_primary_10_1002_brb3_1281 crossref_primary_10_1002_acn3_51934 crossref_primary_10_1080_21678421_2020_1747496 crossref_primary_10_1136_jnnp_2022_328931 crossref_primary_10_1080_07853890_2024_2399962 crossref_primary_10_1016_j_compbiomed_2021_104602 crossref_primary_10_1212_NXG_0000000000000335 crossref_primary_10_1038_nn_4345 crossref_primary_10_1073_pnas_1523810113 crossref_primary_10_1136_jnnp_2020_325064 crossref_primary_10_1016_j_neurobiolaging_2016_12_013 crossref_primary_10_1016_j_jns_2020_116932 crossref_primary_10_1016_j_tig_2015_03_005 crossref_primary_10_1016_j_parkreldis_2015_06_004 crossref_primary_10_1093_brain_awx082 crossref_primary_10_1136_practneurol_2021_002989 crossref_primary_10_1016_j_arr_2023_102126 crossref_primary_10_3390_jcm9020412 crossref_primary_10_1007_s00415_016_8109_0 crossref_primary_10_1007_s10048_020_00612_7 crossref_primary_10_1186_s40478_023_01665_z crossref_primary_10_1017_cjn_2022_336 crossref_primary_10_1080_14737175_2025_2470324 crossref_primary_10_1016_j_neurol_2015_10_004 crossref_primary_10_1172_JCI90607 crossref_primary_10_1007_s11011_019_00473_6 crossref_primary_10_1038_nn_4012 crossref_primary_10_1093_jnen_nlx049 crossref_primary_10_3390_ijms21093346 crossref_primary_10_1016_j_arr_2022_101648 crossref_primary_10_3389_fnins_2019_01310 crossref_primary_10_3390_genes11101123 crossref_primary_10_3390_antiox10040552 crossref_primary_10_3389_fneur_2022_931006 crossref_primary_10_1016_j_neurobiolaging_2018_01_013 crossref_primary_10_3389_fnins_2021_595775 crossref_primary_10_1212_WNL_0000000000004109 crossref_primary_10_1042_BCJ20160499 crossref_primary_10_1111_bpa_12680 crossref_primary_10_1093_brain_awad120 crossref_primary_10_1212_NXG_0000000000200109 crossref_primary_10_1016_j_neurobiolaging_2017_01_004 crossref_primary_10_1177_09727531231194399 crossref_primary_10_1126_science_aaa3650 crossref_primary_10_3390_ijms20010004 crossref_primary_10_1007_s00439_020_02131_9 crossref_primary_10_1016_j_neurol_2023_05_005 crossref_primary_10_3389_fnagi_2023_1114022 crossref_primary_10_3389_fncel_2015_00448 crossref_primary_10_1136_jnnp_2016_313337 crossref_primary_10_1136_jnnp_2015_311654 crossref_primary_10_1186_s40246_017_0126_2 crossref_primary_10_3390_biomedicines11123118 crossref_primary_10_1186_s12859_023_05338_5 crossref_primary_10_1007_s12035_022_02934_z crossref_primary_10_1016_j_jns_2017_02_033 crossref_primary_10_1002_ajmg_b_32606 crossref_primary_10_1136_jnnp_2017_317234 crossref_primary_10_1080_21678421_2017_1332079 crossref_primary_10_3390_genes15101344 crossref_primary_10_1186_s40478_020_00943_4 crossref_primary_10_1016_j_neurobiolaging_2016_09_023 crossref_primary_10_1016_S1634_7072_19_43053_5 crossref_primary_10_1016_j_mrfmmm_2018_11_002 crossref_primary_10_3892_br_2024_1808 crossref_primary_10_17925_USN_2020_16_2_110 crossref_primary_10_3988_jcn_2022_18_1_41 crossref_primary_10_4103_1673_5374_385283 crossref_primary_10_1136_jmedgenet_2016_104271 crossref_primary_10_3389_fgene_2019_00732 crossref_primary_10_1016_j_parkreldis_2017_06_004 crossref_primary_10_1186_s40035_021_00250_5 crossref_primary_10_3389_fnmol_2016_00092 crossref_primary_10_1016_j_brainres_2019_146459 crossref_primary_10_1016_j_pneurobio_2017_04_005 crossref_primary_10_1007_s00401_015_1436_x crossref_primary_10_1007_s00415_020_10042_y crossref_primary_10_1080_21678421_2018_1432659 crossref_primary_10_1093_brain_awx285 crossref_primary_10_1016_j_jocn_2020_03_032 crossref_primary_10_1111_jnc_13622 crossref_primary_10_1002_mdc3_13424 crossref_primary_10_3389_fnins_2020_577755 crossref_primary_10_3390_genes13081483 crossref_primary_10_3390_ijms23105694 crossref_primary_10_1136_jmg_2023_109569 crossref_primary_10_1016_j_neurobiolaging_2017_06_007 |
Cites_doi | 10.1001/jamaneurol.2014.1184 10.1212/WNL.0b013e3182735d36 10.1212/WNL.5.4.249 10.1038/nature09320 10.1136/jmedgenet-2013-101795 10.1016/j.bbadis.2006.01.004 10.3109/17482968.2011.643899 10.1093/bib/bbs017 10.1038/nrneurol.2011.150 10.1136/jnnp.2010.207464 10.1002/humu.21445 10.1016/j.ajhg.2012.10.015 10.1038/nature13127 10.1016/j.ncl.2013.05.003 10.1038/nature11280 10.1016/j.neurobiolaging.2013.03.006 10.1016/j.neuron.2011.09.011 10.1016/j.neurobiolaging.2011.12.003 10.1089/gtmb.2010.0036 10.1038/nmeth.1307 10.1093/hmg/ddt587 10.1212/WNL.0b013e31821f445b 10.1136/jnnp-2012-302897 10.1093/hmg/dds199 10.1038/nbt.1754 10.1093/bioinformatics/btp352 10.1038/nn.3584 10.1016/j.ajhg.2011.05.029 10.1212/WNL.0b013e31825dceca 10.1073/pnas.1109434108 10.1101/gr.109157.110 10.1159/000108917 10.1038/nature11632 10.3109/17482968.2010.545420 10.1016/j.ajhg.2013.01.011 10.1212/WNL.5.3.182 |
ContentType | Journal Article |
Copyright | 2014 American Neurological Association 2014 American Neurological Association. 2015 American Neurological Association |
Copyright_xml | – notice: 2014 American Neurological Association – notice: 2014 American Neurological Association. – notice: 2015 American Neurological Association |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TK 7U7 C1K K9. 8FD FR3 P64 RC3 7X8 ADTOC UNPAY |
DOI | 10.1002/ana.24306 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Neurosciences Abstracts Toxicology Abstracts Environmental Sciences and Pollution Management ProQuest Health & Medical Complete (Alumni) Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Toxicology Abstracts Neurosciences Abstracts Environmental Sciences and Pollution Management Genetics Abstracts Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Genetics Abstracts MEDLINE ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1531-8249 |
EndPage | 113 |
ExternalDocumentID | oai:pubmedcentral.nih.gov:4293318 3553055521 25382069 10_1002_ana_24306 ANA24306 ark_67375_WNG_WKG5WFN7_X |
Genre | article Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIH National Institute of Neurological Disorders and Stroke funderid: K08‐NS075094 – fundername: NIH funderid: R01‐NS069669 – fundername: NIH National Institute on Aging funderid: 5P50 AG005681‐29 ; 5P01 AG03991‐30 ; 5R01 AG035083‐04 – fundername: Genetics Epidemiology Training funderid: 5‐T32‐HL‐83822‐5 – fundername: NINDS NIH HHS grantid: R01 NS069669 – fundername: NIA NIH HHS grantid: P01 AG003991 – fundername: NCATS NIH HHS grantid: UL1 TR000448 – fundername: NHLBI NIH HHS grantid: T32 HL083822 – fundername: NIA NIH HHS grantid: 5R01 AG035083-04 – fundername: NIA NIH HHS grantid: P50 AG005681 – fundername: NIA NIH HHS grantid: 5P01 AG03991-30 – fundername: NINDS NIH HHS grantid: K08-NS075094 – fundername: NIA NIH HHS grantid: 5P50 AG005681-29 – fundername: NCI NIH HHS grantid: P30 CA091842 |
GroupedDBID | --- .3N .55 .GA .GJ .Y3 05W 0R~ 10A 1CY 1L6 1OB 1OC 1ZS 23M 2QL 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5VS 66C 6J9 6P2 6PF 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAEJM AAESR AAEVG AAHQN AAIPD AAMMB AAMNL AANHP AANLZ AAONW AAQQT AASGY AAWTL AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABIVO ABJNI ABLJU ABOCM ABPVW ABQWH ABXGK ACAHQ ACBMB ACBWZ ACCZN ACGFO ACGFS ACGOF ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYR AEYWJ AFAZI AFBPY AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHMBA AI. AIACR AIAGR AIDQK AIDYY AIQQE AITYG AIURR AJJEV ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRMAN DRSTM EBS EJD EMOBN F00 F01 F04 F5P F8P FEDTE FUBAC FYBCS G-S G.N GNP GODZA GOZPB GRPMH H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M J5H JPC KBYEO KD1 KQQ L7B LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LXL LXN LXY LYRES M6M MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N4W N9A NF~ NNB O66 O9- OHT OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.- Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 SAMSI SJN SUPJJ TEORI UB1 V2E V8K V9Y VH1 W8V W99 WBKPD WH7 WHWMO WIB WIH WIJ WIK WJL WOHZO WQJ WVDHM WXI WXSBR X7M XG1 XJT XPP XSW XV2 YOC YQJ ZGI ZRF ZRR ZXP ZZTAW ~IA ~WT ~X8 AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TK 7U7 C1K K9. 8FD FR3 P64 RC3 7X8 ADTOC UNPAY |
ID | FETCH-LOGICAL-c5256-18b04272b5b301f88671efe2cb5c3b6cbdd10234ea560d78d2ea828206bf00b53 |
IEDL.DBID | DR2 |
ISSN | 0364-5134 1531-8249 |
IngestDate | Tue Aug 19 23:53:51 EDT 2025 Thu Sep 04 19:32:29 EDT 2025 Sun Aug 24 04:06:13 EDT 2025 Fri Jul 25 10:16:50 EDT 2025 Mon Jul 21 06:06:25 EDT 2025 Wed Oct 01 03:03:24 EDT 2025 Thu Apr 24 22:50:24 EDT 2025 Sun Sep 21 06:16:21 EDT 2025 Sun Sep 21 06:17:51 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2014 American Neurological Association. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5256-18b04272b5b301f88671efe2cb5c3b6cbdd10234ea560d78d2ea828206bf00b53 |
Notes | Genetics Epidemiology Training - No. 5-T32-HL-83822-5 ArticleID:ANA24306 NIH - No. R01-NS069669 ark:/67375/WNG-WKG5WFN7-X istex:C44974017E6964F18DADDF8DB385CBC4BB6834A8 NIH National Institute of Neurological Disorders and Stroke - No. K08-NS075094 NIH National Institute on Aging - No. 5P50 AG005681-29; No. 5P01 AG03991-30; No. 5R01 AG035083-04 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/4293318 |
PMID | 25382069 |
PQID | 1644160307 |
PQPubID | 946345 |
PageCount | 14 |
ParticipantIDs | unpaywall_primary_10_1002_ana_24306 proquest_miscellaneous_1652375705 proquest_miscellaneous_1647026471 proquest_journals_1644160307 pubmed_primary_25382069 crossref_citationtrail_10_1002_ana_24306 crossref_primary_10_1002_ana_24306 wiley_primary_10_1002_ana_24306_ANA24306 istex_primary_ark_67375_WNG_WKG5WFN7_X |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2015 |
PublicationDateYYYYMMDD | 2015-01-01 |
PublicationDate_xml | – month: 01 year: 2015 text: January 2015 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Minneapolis |
PublicationTitle | Annals of neurology |
PublicationTitleAlternate | Ann Neurol |
PublicationYear | 2015 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | Andersen PM, Al-Chalabi A. Clinical genetics of amyotrophic lateral sclerosis: what do we really know? Nat Rev Neurol 2011;7:603-615. Kurland LT, Mulder DW. Epidemiologic investigations of amyotrophic lateral sclerosis. 2. Familial aggregations indicative of dominant inheritance. II. Neurology 1955;5:249-268. Keller MF, Ferrucci L, Singleton AB, et al. Genome-wide analysis of the heritability of amyotrophic lateral sclerosis. JAMA Neurol 2014;71:1123. Flanagan SE, Patch A-M, Ellard S. Using SIFT and PolyPhen to predict loss-of-function and gain-of-function mutations. Genet Test Mol Biomark 2010;14:533-537. Thusberg J, Olatubosun A, Vihinen M. Performance of mutation pathogenicity prediction methods on missense variants. Hum Mutat 2011;32:358-368. Xue Y, Chen Y, Ayub Q, et al. Deleterious- and disease-allele prevalence in healthy individuals: insights from current predictions, mutation databases, and population-scale resequencing. Am J Hum Genet 2012;91:1022-1032. MacArthur DG, Manolio TA, Dimmock DP, et al. Guidelines for investigating causality of sequence variants in human disease. Nature 2014;508:469-476. Thorvaldsdottir H, Robinson JT, Mesirov JP. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform 2012;14:178-192. Al-Chalabi A, Fang F, Hanby MF, et al. An estimate of amyotrophic lateral sclerosis heritability using twin data. J Neurol Neurosurg Psychiatry 2010;81:1324-1326. Chiò A, Calvo A, Mazzini L, et al. Extensive genetics of ALS: a population-based study in Italy. Neurology 2012;79:1983-1989. Kurland LT, Mulder DW. Epidemiologic investigations of amyotrophic lateral sclerosis. 2. Familial aggregations indicative of dominant inheritance. I. Neurology 1955;5:182-196. Harms MB, Baloh RH. Clinical neurogenetics: amyotrophic lateral sclerosis. Neurol Clin 2013;31:929-950. Wu C-H, Fallini C, Ticozzi N, et al. Mutations in the profilin 1 gene cause familial amyotrophic lateral sclerosis. Nature 2012;488:499-503. Vallania FLM, Druley TE, Ramos E, et al. High-throughput discovery of rare insertions and deletions in large cohorts. Genome Res 2010;20:1711-1718. Harms MB, Cady J, Zaidman C, et al. Lack of C9ORF72 coding mutations supports a gain of function for repeat expansions in amyotrophic lateral sclerosis. Neurobiol Aging 2013;34:2234.e13-2234.e19. Li H, Handsaker B, Wysoker A, et al. The Sequence Alignment/Map format and SAMtools. Bioinforma Oxf Engl 2009;25:2078-2079. Elden AC, Kim H-J, Hart MP, et al. Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS. Nature 2010;466:1069-1075. 1000 Genomes Project Consortium, Abecasis GR, Auton A, et al. An integrated map of genetic variation from 1,092 human genomes. Nature 2012;491:56-65. Kwon M-J, Baek W, Ki C-S, et al. Screening of the SOD1, FUS, TARDBP, ANG, and OPTN mutations in Korean patients with familial and sporadic ALS. Neurobiol Aging 2012;33:1017.e17-1017.e23. Van Blitterswijk M, van Es MA, Hennekam EAM, et al. Evidence for an oligogenic basis of amyotrophic lateral sclerosis. Hum Mol Genet 2012;21:3776-3784. Druley TE, Vallania FLM, Wegner DJ, et al. Quantification of rare allelic variants from pooled genomic DNA. Nat Methods 2009;6:263-265. Renton AE, Chiò A, Traynor BJ. State of play in amyotrophic lateral sclerosis genetics. Nat Neurosci 2014;17:17-23. Conte A, Lattante S, Luigetti M, et al. Classification of familial amyotrophic lateral sclerosis by family history: effects on frequency of genes mutation. J Neurol Neurosurg Psychiatry 2012;83:1201-1203. Brooks BR. El Escorial World Federation of Neurology criteria for the diagnosis of amyotrophic lateral sclerosis. Subcommittee on Motor Neuron Diseases/Amyotrophic Lateral Sclerosis of the World Federation of Neurology Research Group on Neuromuscular Diseases and the El Escorial "Clinical limits of amyotrophic lateral sclerosis" workshop contributors. J Neurol Sci 1994;124(suppl):96-107. DeJesus-Hernandez M, Mackenzie IR, Boeve BF, et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 2011;72:245-256. Abhinav K, Stanton B, Johnston C, et al. Amyotrophic lateral sclerosis in South-East England: a population-based study. The South-East England register for amyotrophic lateral sclerosis (SEALS Registry). Neuroepidemiology 2007;29:44-48. Robinson JT, Thorvaldsdóttir H, Winckler W, et al. Integrative genomics viewer. Nat Biotechnol 2011;29:24-26. Kenna KP, McLaughlin RL, Byrne S, et al. Delineating the genetic heterogeneity of ALS using targeted high-throughput sequencing. J Med Genet 2013;50:776-783. Gros-Louis F, Gaspar C, Rouleau GA. Genetics of familial and sporadic amyotrophic lateral sclerosis. Biochim Biophys Acta 2006;1762:956-972. Couthouis J, Hart MP, Shorter J, et al. A yeast functional screen predicts new candidate ALS disease genes. Proc Natl Acad Sci U S A 2011;108:20881-20890. Wu MC, Lee S, Cai T, et al. Rare-variant association testing for sequencing data with the sequence kernel association test. Am J Hum Genet 2011;89:82-93. Van Damme P, Veldink JH, van Blitterswijk M, et al. Expanded ATXN2 CAG repeat size in ALS identifies genetic overlap between ALS and SCA2. Neurology 2011;76:2066-2072. Lattante S, Conte A, Zollino M, et al. Contribution of major amyotrophic lateral sclerosis genes to the etiology of sporadic disease. Neurology 2012;79:66-72. Mehta P, Antao V, Kaye W, et al. Prevalence of amyotrophic lateral sclerosis - United States, 2010-2011. Morb Mortal Wkly Rep Surveill Summ 2014;63(suppl 7):1-14. Byrne S, Bede P, Elamin M, et al. Proposed criteria for familial amyotrophic lateral sclerosis. Amyotroph Lateral Scler 2011;12:157-159. Beck J, Poulter M, Hensman D, et al. Large C9orf72 hexanucleotide repeat expansions are seen in multiple neurodegenerative syndromes and are more frequent than expected in the UK population. Am J Hum Genet 2013;92:345-353. Brown JA, Min J, Staropoli JF, et al. SOD1, ANG, TARDBP and FUS mutations in amyotrophic lateral sclerosis: a United States clinical testing lab experience. Amyotroph Lateral Scler 2012;13:217-222. Fogh I, Ratti A, Gellera C, et al. A genome-wide association meta-analysis identifies a novel locus at 17q11.2 associated with sporadic amyotrophic lateral sclerosis. Hum Mol Genet 2014;23:2220-2231. 2012; 83 2009; 25 2010; 14 2010; 466 1955; 5 2011; 32 2011; 76 2013; 92 2011; 12 2006; 1762 2014; 63 2010; 81 2012; 488 2012; 14 2012; 79 2012; 13 2012; 33 2014; 23 2011; 7 2012; 491 2007; 29 1994; 124 2010; 20 2012; 91 2011; 108 2014; 508 2013; 34 2013; 50 2013; 31 2011; 72 2009; 6 2011; 89 2014; 17 2014; 71 2011; 29 2012; 21 Mehta P (e_1_2_8_3_1) 2014; 63 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_23_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 Brooks BR (e_1_2_8_22_1) 1994; 124 e_1_2_8_30_1 |
References_xml | – reference: Kwon M-J, Baek W, Ki C-S, et al. Screening of the SOD1, FUS, TARDBP, ANG, and OPTN mutations in Korean patients with familial and sporadic ALS. Neurobiol Aging 2012;33:1017.e17-1017.e23. – reference: Thorvaldsdottir H, Robinson JT, Mesirov JP. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform 2012;14:178-192. – reference: Druley TE, Vallania FLM, Wegner DJ, et al. Quantification of rare allelic variants from pooled genomic DNA. Nat Methods 2009;6:263-265. – reference: Renton AE, Chiò A, Traynor BJ. State of play in amyotrophic lateral sclerosis genetics. Nat Neurosci 2014;17:17-23. – reference: Gros-Louis F, Gaspar C, Rouleau GA. Genetics of familial and sporadic amyotrophic lateral sclerosis. Biochim Biophys Acta 2006;1762:956-972. – reference: Xue Y, Chen Y, Ayub Q, et al. Deleterious- and disease-allele prevalence in healthy individuals: insights from current predictions, mutation databases, and population-scale resequencing. Am J Hum Genet 2012;91:1022-1032. – reference: DeJesus-Hernandez M, Mackenzie IR, Boeve BF, et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 2011;72:245-256. – reference: Van Blitterswijk M, van Es MA, Hennekam EAM, et al. Evidence for an oligogenic basis of amyotrophic lateral sclerosis. Hum Mol Genet 2012;21:3776-3784. – reference: 1000 Genomes Project Consortium, Abecasis GR, Auton A, et al. An integrated map of genetic variation from 1,092 human genomes. Nature 2012;491:56-65. – reference: Kurland LT, Mulder DW. Epidemiologic investigations of amyotrophic lateral sclerosis. 2. Familial aggregations indicative of dominant inheritance. II. Neurology 1955;5:249-268. – reference: Li H, Handsaker B, Wysoker A, et al. The Sequence Alignment/Map format and SAMtools. Bioinforma Oxf Engl 2009;25:2078-2079. – reference: Harms MB, Baloh RH. Clinical neurogenetics: amyotrophic lateral sclerosis. Neurol Clin 2013;31:929-950. – reference: Van Damme P, Veldink JH, van Blitterswijk M, et al. Expanded ATXN2 CAG repeat size in ALS identifies genetic overlap between ALS and SCA2. Neurology 2011;76:2066-2072. – reference: Kurland LT, Mulder DW. Epidemiologic investigations of amyotrophic lateral sclerosis. 2. Familial aggregations indicative of dominant inheritance. I. Neurology 1955;5:182-196. – reference: Mehta P, Antao V, Kaye W, et al. Prevalence of amyotrophic lateral sclerosis - United States, 2010-2011. Morb Mortal Wkly Rep Surveill Summ 2014;63(suppl 7):1-14. – reference: Andersen PM, Al-Chalabi A. Clinical genetics of amyotrophic lateral sclerosis: what do we really know? Nat Rev Neurol 2011;7:603-615. – reference: Flanagan SE, Patch A-M, Ellard S. Using SIFT and PolyPhen to predict loss-of-function and gain-of-function mutations. Genet Test Mol Biomark 2010;14:533-537. – reference: Elden AC, Kim H-J, Hart MP, et al. Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS. Nature 2010;466:1069-1075. – reference: Brown JA, Min J, Staropoli JF, et al. SOD1, ANG, TARDBP and FUS mutations in amyotrophic lateral sclerosis: a United States clinical testing lab experience. Amyotroph Lateral Scler 2012;13:217-222. – reference: Wu C-H, Fallini C, Ticozzi N, et al. Mutations in the profilin 1 gene cause familial amyotrophic lateral sclerosis. Nature 2012;488:499-503. – reference: Fogh I, Ratti A, Gellera C, et al. A genome-wide association meta-analysis identifies a novel locus at 17q11.2 associated with sporadic amyotrophic lateral sclerosis. Hum Mol Genet 2014;23:2220-2231. – reference: Byrne S, Bede P, Elamin M, et al. Proposed criteria for familial amyotrophic lateral sclerosis. Amyotroph Lateral Scler 2011;12:157-159. – reference: Abhinav K, Stanton B, Johnston C, et al. Amyotrophic lateral sclerosis in South-East England: a population-based study. The South-East England register for amyotrophic lateral sclerosis (SEALS Registry). Neuroepidemiology 2007;29:44-48. – reference: Vallania FLM, Druley TE, Ramos E, et al. High-throughput discovery of rare insertions and deletions in large cohorts. Genome Res 2010;20:1711-1718. – reference: Robinson JT, Thorvaldsdóttir H, Winckler W, et al. Integrative genomics viewer. Nat Biotechnol 2011;29:24-26. – reference: Al-Chalabi A, Fang F, Hanby MF, et al. An estimate of amyotrophic lateral sclerosis heritability using twin data. J Neurol Neurosurg Psychiatry 2010;81:1324-1326. – reference: Brooks BR. El Escorial World Federation of Neurology criteria for the diagnosis of amyotrophic lateral sclerosis. Subcommittee on Motor Neuron Diseases/Amyotrophic Lateral Sclerosis of the World Federation of Neurology Research Group on Neuromuscular Diseases and the El Escorial "Clinical limits of amyotrophic lateral sclerosis" workshop contributors. J Neurol Sci 1994;124(suppl):96-107. – reference: Thusberg J, Olatubosun A, Vihinen M. Performance of mutation pathogenicity prediction methods on missense variants. Hum Mutat 2011;32:358-368. – reference: Kenna KP, McLaughlin RL, Byrne S, et al. Delineating the genetic heterogeneity of ALS using targeted high-throughput sequencing. J Med Genet 2013;50:776-783. – reference: Chiò A, Calvo A, Mazzini L, et al. Extensive genetics of ALS: a population-based study in Italy. Neurology 2012;79:1983-1989. – reference: Keller MF, Ferrucci L, Singleton AB, et al. Genome-wide analysis of the heritability of amyotrophic lateral sclerosis. JAMA Neurol 2014;71:1123. – reference: Harms MB, Cady J, Zaidman C, et al. Lack of C9ORF72 coding mutations supports a gain of function for repeat expansions in amyotrophic lateral sclerosis. Neurobiol Aging 2013;34:2234.e13-2234.e19. – reference: Lattante S, Conte A, Zollino M, et al. Contribution of major amyotrophic lateral sclerosis genes to the etiology of sporadic disease. Neurology 2012;79:66-72. – reference: Wu MC, Lee S, Cai T, et al. Rare-variant association testing for sequencing data with the sequence kernel association test. Am J Hum Genet 2011;89:82-93. – reference: Couthouis J, Hart MP, Shorter J, et al. A yeast functional screen predicts new candidate ALS disease genes. Proc Natl Acad Sci U S A 2011;108:20881-20890. – reference: Conte A, Lattante S, Luigetti M, et al. Classification of familial amyotrophic lateral sclerosis by family history: effects on frequency of genes mutation. J Neurol Neurosurg Psychiatry 2012;83:1201-1203. – reference: MacArthur DG, Manolio TA, Dimmock DP, et al. Guidelines for investigating causality of sequence variants in human disease. Nature 2014;508:469-476. – reference: Beck J, Poulter M, Hensman D, et al. Large C9orf72 hexanucleotide repeat expansions are seen in multiple neurodegenerative syndromes and are more frequent than expected in the UK population. Am J Hum Genet 2013;92:345-353. – volume: 31 start-page: 929 year: 2013 end-page: 950 article-title: Clinical neurogenetics: amyotrophic lateral sclerosis publication-title: Neurol Clin – volume: 89 start-page: 82 year: 2011 end-page: 93 article-title: Rare‐variant association testing for sequencing data with the sequence kernel association test publication-title: Am J Hum Genet – volume: 29 start-page: 24 year: 2011 end-page: 26 article-title: Integrative genomics viewer publication-title: Nat Biotechnol – volume: 466 start-page: 1069 year: 2010 end-page: 1075 article-title: Ataxin‐2 intermediate‐length polyglutamine expansions are associated with increased risk for ALS publication-title: Nature – volume: 108 start-page: 20881 year: 2011 end-page: 20890 article-title: A yeast functional screen predicts new candidate ALS disease genes publication-title: Proc Natl Acad Sci U S A – volume: 83 start-page: 1201 year: 2012 end-page: 1203 article-title: Classification of familial amyotrophic lateral sclerosis by family history: effects on frequency of genes mutation publication-title: J Neurol Neurosurg Psychiatry – volume: 20 start-page: 1711 year: 2010 end-page: 1718 article-title: High‐throughput discovery of rare insertions and deletions in large cohorts publication-title: Genome Res – volume: 491 start-page: 56 year: 2012 end-page: 65 article-title: An integrated map of genetic variation from 1,092 human genomes publication-title: Nature – volume: 17 start-page: 17 year: 2014 end-page: 23 article-title: State of play in amyotrophic lateral sclerosis genetics publication-title: Nat Neurosci – volume: 14 start-page: 178 year: 2012 end-page: 192 article-title: Integrative Genomics Viewer (IGV): high‐performance genomics data visualization and exploration publication-title: Brief Bioinform – volume: 32 start-page: 358 year: 2011 end-page: 368 article-title: Performance of mutation pathogenicity prediction methods on missense variants publication-title: Hum Mutat – volume: 6 start-page: 263 year: 2009 end-page: 265 article-title: Quantification of rare allelic variants from pooled genomic DNA publication-title: Nat Methods – volume: 23 start-page: 2220 year: 2014 end-page: 2231 article-title: A genome‐wide association meta‐analysis identifies a novel locus at 17q11.2 associated with sporadic amyotrophic lateral sclerosis publication-title: Hum Mol Genet – volume: 63 start-page: 1 issue: suppl 7 year: 2014 end-page: 14 article-title: Prevalence of amyotrophic lateral sclerosis ‐ United States, 2010–2011 publication-title: Morb Mortal Wkly Rep Surveill Summ – volume: 12 start-page: 157 year: 2011 end-page: 159 article-title: Proposed criteria for familial amyotrophic lateral sclerosis publication-title: Amyotroph Lateral Scler – volume: 25 start-page: 2078 year: 2009 end-page: 2079 article-title: The Sequence Alignment/Map format and SAMtools publication-title: Bioinforma Oxf Engl – volume: 50 start-page: 776 year: 2013 end-page: 783 article-title: Delineating the genetic heterogeneity of ALS using targeted high‐throughput sequencing publication-title: J Med Genet – volume: 71 start-page: 1123 year: 2014 article-title: Genome‐wide analysis of the heritability of amyotrophic lateral sclerosis publication-title: JAMA Neurol – volume: 72 start-page: 245 year: 2011 end-page: 256 article-title: Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p‐linked FTD and ALS publication-title: Neuron – volume: 13 start-page: 217 year: 2012 end-page: 222 article-title: SOD1, ANG, TARDBP and FUS mutations in amyotrophic lateral sclerosis: a United States clinical testing lab experience publication-title: Amyotroph Lateral Scler – volume: 76 start-page: 2066 year: 2011 end-page: 2072 article-title: Expanded ATXN2 CAG repeat size in ALS identifies genetic overlap between ALS and SCA2 publication-title: Neurology – volume: 33 start-page: 1017.e17 year: 2012 end-page: 1017.e23 article-title: Screening of the SOD1, FUS, TARDBP, ANG, and OPTN mutations in Korean patients with familial and sporadic ALS publication-title: Neurobiol Aging – volume: 91 start-page: 1022 year: 2012 end-page: 1032 article-title: Deleterious‐ and disease‐allele prevalence in healthy individuals: insights from current predictions, mutation databases, and population‐scale resequencing publication-title: Am J Hum Genet – volume: 488 start-page: 499 year: 2012 end-page: 503 article-title: Mutations in the profilin 1 gene cause familial amyotrophic lateral sclerosis publication-title: Nature – volume: 21 start-page: 3776 year: 2012 end-page: 3784 article-title: Evidence for an oligogenic basis of amyotrophic lateral sclerosis publication-title: Hum Mol Genet – volume: 5 start-page: 249 year: 1955 end-page: 268 article-title: Epidemiologic investigations of amyotrophic lateral sclerosis. 2. Familial aggregations indicative of dominant inheritance. II publication-title: Neurology – volume: 79 start-page: 66 year: 2012 end-page: 72 article-title: Contribution of major amyotrophic lateral sclerosis genes to the etiology of sporadic disease publication-title: Neurology – volume: 124 start-page: 96 issue: suppl year: 1994 end-page: 107 article-title: El Escorial World Federation of Neurology criteria for the diagnosis of amyotrophic lateral sclerosis. Subcommittee on Motor Neuron Diseases/Amyotrophic Lateral Sclerosis of the World Federation of Neurology Research Group on Neuromuscular Diseases and the El Escorial “Clinical limits of amyotrophic lateral sclerosis” workshop contributors publication-title: J Neurol Sci – volume: 81 start-page: 1324 year: 2010 end-page: 1326 article-title: An estimate of amyotrophic lateral sclerosis heritability using twin data publication-title: J Neurol Neurosurg Psychiatry – volume: 14 start-page: 533 year: 2010 end-page: 537 article-title: Using SIFT and PolyPhen to predict loss‐of‐function and gain‐of‐function mutations publication-title: Genet Test Mol Biomark – volume: 1762 start-page: 956 year: 2006 end-page: 972 article-title: Genetics of familial and sporadic amyotrophic lateral sclerosis publication-title: Biochim Biophys Acta – volume: 34 start-page: 2234.e13 year: 2013 end-page: 2234.e19 article-title: Lack of C9ORF72 coding mutations supports a gain of function for repeat expansions in amyotrophic lateral sclerosis publication-title: Neurobiol Aging – volume: 92 start-page: 345 year: 2013 end-page: 353 article-title: Large C9orf72 hexanucleotide repeat expansions are seen in multiple neurodegenerative syndromes and are more frequent than expected in the UK population publication-title: Am J Hum Genet – volume: 5 start-page: 182 year: 1955 end-page: 196 article-title: Epidemiologic investigations of amyotrophic lateral sclerosis. 2. Familial aggregations indicative of dominant inheritance. I publication-title: Neurology – volume: 29 start-page: 44 year: 2007 end-page: 48 article-title: Amyotrophic lateral sclerosis in South‐East England: a population‐based study. The South‐East England register for amyotrophic lateral sclerosis (SEALS Registry) publication-title: Neuroepidemiology – volume: 79 start-page: 1983 year: 2012 end-page: 1989 article-title: Extensive genetics of ALS: a population‐based study in Italy publication-title: Neurology – volume: 7 start-page: 603 year: 2011 end-page: 615 article-title: Clinical genetics of amyotrophic lateral sclerosis: what do we really know? publication-title: Nat Rev Neurol – volume: 508 start-page: 469 year: 2014 end-page: 476 article-title: Guidelines for investigating causality of sequence variants in human disease publication-title: Nature – ident: e_1_2_8_17_1 doi: 10.1001/jamaneurol.2014.1184 – ident: e_1_2_8_11_1 doi: 10.1212/WNL.0b013e3182735d36 – ident: e_1_2_8_6_1 doi: 10.1212/WNL.5.4.249 – ident: e_1_2_8_31_1 doi: 10.1038/nature09320 – ident: e_1_2_8_10_1 doi: 10.1136/jmedgenet-2013-101795 – volume: 63 start-page: 1 issue: 7 year: 2014 ident: e_1_2_8_3_1 article-title: Prevalence of amyotrophic lateral sclerosis ‐ United States, 2010–2011 publication-title: Morb Mortal Wkly Rep Surveill Summ – ident: e_1_2_8_4_1 doi: 10.1016/j.bbadis.2006.01.004 – ident: e_1_2_8_21_1 doi: 10.3109/17482968.2011.643899 – ident: e_1_2_8_26_1 doi: 10.1093/bib/bbs017 – ident: e_1_2_8_8_1 doi: 10.1038/nrneurol.2011.150 – ident: e_1_2_8_18_1 doi: 10.1136/jnnp.2010.207464 – ident: e_1_2_8_28_1 doi: 10.1002/humu.21445 – ident: e_1_2_8_36_1 doi: 10.1016/j.ajhg.2012.10.015 – ident: e_1_2_8_37_1 doi: 10.1038/nature13127 – ident: e_1_2_8_7_1 doi: 10.1016/j.ncl.2013.05.003 – ident: e_1_2_8_24_1 doi: 10.1038/nature11280 – ident: e_1_2_8_23_1 doi: 10.1016/j.neurobiolaging.2013.03.006 – ident: e_1_2_8_30_1 doi: 10.1016/j.neuron.2011.09.011 – ident: e_1_2_8_12_1 doi: 10.1016/j.neurobiolaging.2011.12.003 – ident: e_1_2_8_29_1 doi: 10.1089/gtmb.2010.0036 – ident: e_1_2_8_19_1 doi: 10.1038/nmeth.1307 – ident: e_1_2_8_16_1 doi: 10.1093/hmg/ddt587 – volume: 124 start-page: 96 year: 1994 ident: e_1_2_8_22_1 article-title: El Escorial World Federation of Neurology criteria for the diagnosis of amyotrophic lateral sclerosis. Subcommittee on Motor Neuron Diseases/Amyotrophic Lateral Sclerosis of the World Federation of Neurology Research Group on Neuromuscular Diseases and the El Escorial “Clinical limits of amyotrophic lateral sclerosis” workshop contributors publication-title: J Neurol Sci – ident: e_1_2_8_32_1 doi: 10.1212/WNL.0b013e31821f445b – ident: e_1_2_8_14_1 doi: 10.1136/jnnp-2012-302897 – ident: e_1_2_8_13_1 doi: 10.1093/hmg/dds199 – ident: e_1_2_8_25_1 doi: 10.1038/nbt.1754 – ident: e_1_2_8_27_1 doi: 10.1093/bioinformatics/btp352 – ident: e_1_2_8_15_1 doi: 10.1038/nn.3584 – ident: e_1_2_8_34_1 doi: 10.1016/j.ajhg.2011.05.029 – ident: e_1_2_8_9_1 doi: 10.1212/WNL.0b013e31825dceca – ident: e_1_2_8_35_1 doi: 10.1073/pnas.1109434108 – ident: e_1_2_8_20_1 doi: 10.1101/gr.109157.110 – ident: e_1_2_8_2_1 doi: 10.1159/000108917 – ident: e_1_2_8_33_1 doi: 10.1038/nature11632 – ident: e_1_2_8_39_1 doi: 10.3109/17482968.2010.545420 – ident: e_1_2_8_38_1 doi: 10.1016/j.ajhg.2013.01.011 – ident: e_1_2_8_5_1 doi: 10.1212/WNL.5.3.182 |
SSID | ssj0009610 |
Score | 2.5415204 |
Snippet | Objective
To define the genetic landscape of amyotrophic lateral sclerosis (ALS) and assess the contribution of possible oligogenic inheritance, we aimed to... To define the genetic landscape of amyotrophic lateral sclerosis (ALS) and assess the contribution of possible oligogenic inheritance, we aimed to... Objective To define the genetic landscape of amyotrophic lateral sclerosis (ALS) and assess the contribution of possible oligogenic inheritance, we aimed to... |
SourceID | unpaywall proquest pubmed crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 100 |
SubjectTerms | Adolescent Adult Age of Onset Aged Aged, 80 and over Amyotrophic lateral sclerosis Amyotrophic Lateral Sclerosis - genetics Ataxins C9orf72 Protein Computational Biology Female Genes Genetic Association Studies Genetic Variation - genetics Genotype Humans Longitudinal Studies Male Middle Aged Nerve Tissue Proteins - genetics Phenotype Proteins - genetics United States Young Adult |
SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB4trcTjwHOBwILMQ2gvSVMnTtJjhOiuQBshRNVyimzHYaNNk6pNgSLx3xnnJUBLBTdLHiVxPB5_4xl_A_ByTIX0XO2mcirQQUE7yH1fmc5E-QFzPTetqZTOIu905r5dsMUBjLu7MHXSvhSZVeRLq8jO69zK1VKOujyxERpQBxXxCgw9HVMawHAWvQ8_NTFJ12RtJBl1ywzQt-jYhGw64gW3qOvo4ka_7EFD_Tu_XQYwb8C1bbHiu688z3_HrvXmM70FH7rPbnJOLqxtJSz5_Q9Gx_8a12242UJREjZdd-BAFXfh6lkbbL8HP8LlrqzW5eo8kyTn-qpyTjYoioPKNkSnYVcEG1lX5yQhYkcQUBJR340gZUrQFVfkC_rjOt0GJYk-wysI3_vkz9r-HsJs-ubj61OzrdZgSkY1mWEgdN0OKphAo5EGmjhPpYpKwaQjPCmSRNNEuIojyEr8IKGKo7tHbU-kti2Ycx8GRVmoh0CEHaTMdVN9qdf1HDlhMkmpLomWMPSApAHH3fzFsqUy1xU18rghYaYxTnVcT7UBz3vRVcPfcZnQq1oJegm-vtAJbz6L59FJPH93wubTyI8XBhx1WhK3a30TjzWk9LSxNOBZ342rVIdeeKHKbS3jo7eLSGCfDKP4St9mBjxoNLD_IIr7Ev6piQEvepXcN57jWln_LhGHUVg3Hv3TAx_DdQSKrDl6OoJBtd6qJwjGKvG0XX4_AdnUMO8 priority: 102 providerName: Unpaywall |
Title | Amyotrophic lateral sclerosis onset is influenced by the burden of rare variants in known amyotrophic lateral sclerosis genes |
URI | https://api.istex.fr/ark:/67375/WNG-WKG5WFN7-X/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fana.24306 https://www.ncbi.nlm.nih.gov/pubmed/25382069 https://www.proquest.com/docview/1644160307 https://www.proquest.com/docview/1647026471 https://www.proquest.com/docview/1652375705 https://www.ncbi.nlm.nih.gov/pmc/articles/4293318 |
UnpaywallVersion | submittedVersion |
Volume | 77 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1531-8249 databaseCode: DR2 dateStart: 19990101 customDbUrl: isFulltext: true eissn: 1531-8249 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009610 providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFD6UFnZ52L2rt65oF0ZfkjqyZTvsKYylZaNmjIVkMBCSLG-hqRMSZ1sG--87R45dOrow9mbI50RSzjn6ji7fAXjR4dpEIaWpimtMUDAOqji2raBr40SEUZg7KaXTNDoZhG9HYrQFr-q7MJU-RLPgRp7h4jU5uNKLowvRUFWoNg8DJ7fdCYTbov1wIR3VjZwSAW2ztUQnCGtVIZ8fNW9emot2aFh_XEU0b8L1ZTFTq-9qMrnMYd0k1L8Nn-vmV2dPztrLUrfNzz-UHf-zf3fg1pqcsl5lTXdhyxb34Nrpevv9Pvzqna-m5Xw6-zo2bKLo8vKELRCK3RsvGB3MLhk-jOvKJxnTK4YUk2l3W4JNc4YtsuwbZuh0AAeRjFb1CqY2fvMXisgPYNB_8_H1SWtdv6FlBCd5w0RTJQ-uhcYwkickpWdzy40WJtCR0VlGwhGhVUi7sjjJuFWYAHI_0rnvaxHswnYxLeweMO0nuQjDnK75hlFgusJkOaciaZnAnMh4cFj_k9Ksxc2pxsZEVrLMXOJwSjecHjxroLNK0eMq0EtnDg1Czc_oCFws5DA9lsN3x2LYT2M58mC_the59v6F7BDJjCh8evC0-Rj9ljZjVGGnS4eJMf9FbrAJIzj-ZOwLDx5Wttg0iONMhSPV9eB5Y5yb-nPobO3vCNlLe-7h0b9DH8MN5I-iWpHah-1yvrRPkKOV-sA54wHsDNL3vU-_AdKXNzE |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9NAEB5VrUThgfswFFgOob4kddZe25F4iYA00CYPqFXygla76zVEDU6UAwgS_52Z9VEVlQjxZsmfY-9mZvabPb4BeNni2kQhpamKa0xQMA6qOLaNoG3jRIRRmDkppf4g6p2GH0ZitAWvq7MwhT5EPeFGnuHiNTk4TUgfnKuGqlw1eRiQ3vYOrc-RW779eC4e1Y6cFgEttDVEKwgrXSGfH9SPXhiNdqhjf1xGNa_B7iqfqfV3NZlcZLFuGOregE9VA4rdJ2fN1VI3zc8_tB3_t4U34XrJT1mnMKhbsGXz23ClX67A34Ffna_r6XI-nX0ZGzZRdH55whYIxfaNF4z2Zi8ZXoyr4icp02uGLJNpd2CCTTOGn2TZN0zSaQ8OIhlN7OVMbfzlzxSU78Jp993Jm16jLOHQMIKTwmGiqZgH10JjJMkSUtOzmeVGCxPoyOg0Je2I0CpkXmmcpNwqzAG5H-nM97UI7sF2Ps3tA2DaTzIRhhmd9A2jwLSFSTNOddJSgWmR8WC_-iulKfXNqczGRBbKzFxid0rXnR48r6GzQtTjMtArZw81Qs3PaBdcLORwcCiHR4di2B3EcuTBXmUwsgwAC9kinhlRBPXgWX0bXZfWY1RupyuHiTEFRnqwCSM4vjL2hQf3C2OsP4jjYIU91fbgRW2dm9qz74zt7wjZGXTcxcN_hz6F3d5J_1gevx8cPYKrSCdFMUG1B9vL-co-Rsq21E-cZ_4GW5g5nQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD6aNmnAA_dLYIC5CO2lXerYSSueKqAbjFUIMbUPkyzbcaBaSKtegCLx3znHaTINjQrxFqlfWts95_g7vnwH4HmLGxsLSlM1N5igYBzUSeIaUcclbSlikXkppaN-fHAs3g3lcANeVndhSn2IesGNPMPHa3LwSZrtnYmG6kI3uYhIbntLxJhdESP6eKYd1Ym9FAHtszVkKxKVrFDI9-pXz01GWzSuPy5imlfg0qKY6OV3nefnSayfhXrX4KRqf3n45LS5mJum_fmHtON_dvA6XF2xU9YtzekGbLjiJmwfrfbfb8Gv7tfleD4dT76MLMs13V7O2Qyh2L3RjNHJ7DnDh1FV-iRlZsmQYzLjr0uwccawRY59wxSdTuAgktGyXsH02m_-TCH5Nhz33nx6ddBYFXBoWMlJ37BtqJQHN9JgHMnapKXnMsetkTYysTVpSsoRwmnkXWnSTrnTmAHyMDZZGBoZ3YHNYly4e8BM2M6kEBnd8xVxZDvSphmnKmmpxKTIBrBb_ZPKrtTNqchGrkpdZq5wOJUfzgCe1tBJKelxEeiFN4caoaendAYukWrQ31eDw3056PUTNQxgp7IXtXL_mWoRy4wpfgbwpP4YHZd2Y3ThxguPSTABRnKwDiM5_mQSygDulrZYN4jjVIUj1QngWW2c6_qz623t7wjV7Xf9w_1_hz6G7Q-ve-r92_7hA7iMXFKWq1M7sDmfLtxD5Gtz88j75W-BqThM |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB4trcTjwHOBwILMQ2gvSVMnTtJjhOiuQBshRNVyimzHYaNNk6pNgSLx3xnnJUBLBTdLHiVxPB5_4xl_A_ByTIX0XO2mcirQQUE7yH1fmc5E-QFzPTetqZTOIu905r5dsMUBjLu7MHXSvhSZVeRLq8jO69zK1VKOujyxERpQBxXxCgw9HVMawHAWvQ8_NTFJ12RtJBl1ywzQt-jYhGw64gW3qOvo4ka_7EFD_Tu_XQYwb8C1bbHiu688z3_HrvXmM70FH7rPbnJOLqxtJSz5_Q9Gx_8a12242UJREjZdd-BAFXfh6lkbbL8HP8LlrqzW5eo8kyTn-qpyTjYoioPKNkSnYVcEG1lX5yQhYkcQUBJR340gZUrQFVfkC_rjOt0GJYk-wysI3_vkz9r-HsJs-ubj61OzrdZgSkY1mWEgdN0OKphAo5EGmjhPpYpKwaQjPCmSRNNEuIojyEr8IKGKo7tHbU-kti2Ycx8GRVmoh0CEHaTMdVN9qdf1HDlhMkmpLomWMPSApAHH3fzFsqUy1xU18rghYaYxTnVcT7UBz3vRVcPfcZnQq1oJegm-vtAJbz6L59FJPH93wubTyI8XBhx1WhK3a30TjzWk9LSxNOBZ342rVIdeeKHKbS3jo7eLSGCfDKP4St9mBjxoNLD_IIr7Ev6piQEvepXcN57jWln_LhGHUVg3Hv3TAx_DdQSKrDl6OoJBtd6qJwjGKvG0XX4_AdnUMO8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Amyotrophic+lateral+sclerosis+onset+is+influenced+by+the+burden+of+rare+variants+in+known+amyotrophic+lateral+sclerosis+genes&rft.jtitle=Annals+of+neurology&rft.au=Cady%2C+Janet&rft.au=Allred%2C+Peggy&rft.au=Bali%2C+Taha&rft.au=Pestronk%2C+Alan&rft.date=2015-01-01&rft.issn=0364-5134&rft.eissn=1531-8249&rft.volume=77&rft.issue=1&rft.spage=100&rft.epage=113&rft_id=info:doi/10.1002%2Fana.24306&rft.externalDBID=10.1002%252Fana.24306&rft.externalDocID=ANA24306 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0364-5134&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0364-5134&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0364-5134&client=summon |