Amyotrophic lateral sclerosis onset is influenced by the burden of rare variants in known amyotrophic lateral sclerosis genes

Objective To define the genetic landscape of amyotrophic lateral sclerosis (ALS) and assess the contribution of possible oligogenic inheritance, we aimed to comprehensively sequence 17 known ALS genes in 391 ALS patients from the United States. Methods Targeted pooled‐sample sequencing was used to i...

Full description

Saved in:
Bibliographic Details
Published inAnnals of neurology Vol. 77; no. 1; pp. 100 - 113
Main Authors Cady, Janet, Allred, Peggy, Bali, Taha, Pestronk, Alan, Goate, Alison, Miller, Timothy M., Mitra, Robi D., Ravits, John, Harms, Matthew B., Baloh, Robert H.
Format Journal Article
LanguageEnglish
Published United States Blackwell Publishing Ltd 01.01.2015
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0364-5134
1531-8249
1531-8249
DOI10.1002/ana.24306

Cover

Abstract Objective To define the genetic landscape of amyotrophic lateral sclerosis (ALS) and assess the contribution of possible oligogenic inheritance, we aimed to comprehensively sequence 17 known ALS genes in 391 ALS patients from the United States. Methods Targeted pooled‐sample sequencing was used to identify variants in 17 ALS genes. Fragment size analysis was used to define ATXN2 and C9ORF72 expansion sizes. Genotype–phenotype correlations were made with individual variants and total burden of variants. Rare variant associations for risk of ALS were investigated at both the single variant and gene level. Results A total of 64.3% of familial and 27.8% of sporadic subjects carried potentially pathogenic novel or rare coding variants identified by sequencing or an expanded repeat in C9ORF72 or ATXN2; 3.8% of subjects had variants in >1 ALS gene, and these individuals had disease onset 10 years earlier (p = 0.0046) than subjects with variants in a single gene. The number of potentially pathogenic coding variants did not influence disease duration or site of onset. Interpretation Rare and potentially pathogenic variants in known ALS genes are present in >25% of apparently sporadic and 64% of familial patients, significantly higher than previous reports using less comprehensive sequencing approaches. A significant number of subjects carried variants in >1 gene, which influenced the age of symptom onset and supports oligogenic inheritance as relevant to disease pathogenesis. ANN NEUROL 2015;77:100–113
AbstractList To define the genetic landscape of amyotrophic lateral sclerosis (ALS) and assess the contribution of possible oligogenic inheritance, we aimed to comprehensively sequence 17 known ALS genes in 391 ALS patients from the United States.OBJECTIVETo define the genetic landscape of amyotrophic lateral sclerosis (ALS) and assess the contribution of possible oligogenic inheritance, we aimed to comprehensively sequence 17 known ALS genes in 391 ALS patients from the United States.Targeted pooled-sample sequencing was used to identify variants in 17 ALS genes. Fragment size analysis was used to define ATXN2 and C9ORF72 expansion sizes. Genotype-phenotype correlations were made with individual variants and total burden of variants. Rare variant associations for risk of ALS were investigated at both the single variant and gene level.METHODSTargeted pooled-sample sequencing was used to identify variants in 17 ALS genes. Fragment size analysis was used to define ATXN2 and C9ORF72 expansion sizes. Genotype-phenotype correlations were made with individual variants and total burden of variants. Rare variant associations for risk of ALS were investigated at both the single variant and gene level.A total of 64.3% of familial and 27.8% of sporadic subjects carried potentially pathogenic novel or rare coding variants identified by sequencing or an expanded repeat in C9ORF72 or ATXN2; 3.8% of subjects had variants in >1 ALS gene, and these individuals had disease onset 10 years earlier (p = 0.0046) than subjects with variants in a single gene. The number of potentially pathogenic coding variants did not influence disease duration or site of onset.RESULTSA total of 64.3% of familial and 27.8% of sporadic subjects carried potentially pathogenic novel or rare coding variants identified by sequencing or an expanded repeat in C9ORF72 or ATXN2; 3.8% of subjects had variants in >1 ALS gene, and these individuals had disease onset 10 years earlier (p = 0.0046) than subjects with variants in a single gene. The number of potentially pathogenic coding variants did not influence disease duration or site of onset.Rare and potentially pathogenic variants in known ALS genes are present in >25% of apparently sporadic and 64% of familial patients, significantly higher than previous reports using less comprehensive sequencing approaches. A significant number of subjects carried variants in >1 gene, which influenced the age of symptom onset and supports oligogenic inheritance as relevant to disease pathogenesis.INTERPRETATIONRare and potentially pathogenic variants in known ALS genes are present in >25% of apparently sporadic and 64% of familial patients, significantly higher than previous reports using less comprehensive sequencing approaches. A significant number of subjects carried variants in >1 gene, which influenced the age of symptom onset and supports oligogenic inheritance as relevant to disease pathogenesis.
Objective To define the genetic landscape of amyotrophic lateral sclerosis (ALS) and assess the contribution of possible oligogenic inheritance, we aimed to comprehensively sequence 17 known ALS genes in 391 ALS patients from the United States. Methods Targeted pooled-sample sequencing was used to identify variants in 17 ALS genes. Fragment size analysis was used to define ATXN2 and C9ORF72 expansion sizes. Genotype-phenotype correlations were made with individual variants and total burden of variants. Rare variant associations for risk of ALS were investigated at both the single variant and gene level. Results A total of 64.3% of familial and 27.8% of sporadic subjects carried potentially pathogenic novel or rare coding variants identified by sequencing or an expanded repeat in C9ORF72 or ATXN2; 3.8% of subjects had variants in >1 ALS gene, and these individuals had disease onset 10 years earlier (p=0.0046) than subjects with variants in a single gene. The number of potentially pathogenic coding variants did not influence disease duration or site of onset. Interpretation Rare and potentially pathogenic variants in known ALS genes are present in >25% of apparently sporadic and 64% of familial patients, significantly higher than previous reports using less comprehensive sequencing approaches. A significant number of subjects carried variants in >1 gene, which influenced the age of symptom onset and supports oligogenic inheritance as relevant to disease pathogenesis. ANN NEUROL 2015; 77:100-113
To define the genetic landscape of amyotrophic lateral sclerosis (ALS) and assess the contribution of possible oligogenic inheritance, we aimed to comprehensively sequence 17 known ALS genes in 391 ALS patients from the United States. Targeted pooled-sample sequencing was used to identify variants in 17 ALS genes. Fragment size analysis was used to define ATXN2 and C9ORF72 expansion sizes. Genotype-phenotype correlations were made with individual variants and total burden of variants. Rare variant associations for risk of ALS were investigated at both the single variant and gene level. A total of 64.3% of familial and 27.8% of sporadic subjects carried potentially pathogenic novel or rare coding variants identified by sequencing or an expanded repeat in C9ORF72 or ATXN2; 3.8% of subjects had variants in >1 ALS gene, and these individuals had disease onset 10 years earlier (p = 0.0046) than subjects with variants in a single gene. The number of potentially pathogenic coding variants did not influence disease duration or site of onset. Rare and potentially pathogenic variants in known ALS genes are present in >25% of apparently sporadic and 64% of familial patients, significantly higher than previous reports using less comprehensive sequencing approaches. A significant number of subjects carried variants in >1 gene, which influenced the age of symptom onset and supports oligogenic inheritance as relevant to disease pathogenesis.
Objective To define the genetic landscape of amyotrophic lateral sclerosis (ALS) and assess the contribution of possible oligogenic inheritance, we aimed to comprehensively sequence 17 known ALS genes in 391 ALS patients from the United States. Methods Targeted pooled‐sample sequencing was used to identify variants in 17 ALS genes. Fragment size analysis was used to define ATXN2 and C9ORF72 expansion sizes. Genotype–phenotype correlations were made with individual variants and total burden of variants. Rare variant associations for risk of ALS were investigated at both the single variant and gene level. Results A total of 64.3% of familial and 27.8% of sporadic subjects carried potentially pathogenic novel or rare coding variants identified by sequencing or an expanded repeat in C9ORF72 or ATXN2; 3.8% of subjects had variants in >1 ALS gene, and these individuals had disease onset 10 years earlier (p = 0.0046) than subjects with variants in a single gene. The number of potentially pathogenic coding variants did not influence disease duration or site of onset. Interpretation Rare and potentially pathogenic variants in known ALS genes are present in >25% of apparently sporadic and 64% of familial patients, significantly higher than previous reports using less comprehensive sequencing approaches. A significant number of subjects carried variants in >1 gene, which influenced the age of symptom onset and supports oligogenic inheritance as relevant to disease pathogenesis. ANN NEUROL 2015;77:100–113
Author Miller, Timothy M.
Harms, Matthew B.
Goate, Alison
Baloh, Robert H.
Cady, Janet
Ravits, John
Bali, Taha
Pestronk, Alan
Allred, Peggy
Mitra, Robi D.
Author_xml – sequence: 1
  givenname: Janet
  surname: Cady
  fullname: Cady, Janet
  organization: Department of Neurology, Washington University, MO, St, Louis
– sequence: 2
  givenname: Peggy
  surname: Allred
  fullname: Allred, Peggy
  organization: Department of Neurology, Cedars Sinai Medical Center, CA, Los Angeles
– sequence: 3
  givenname: Taha
  surname: Bali
  fullname: Bali, Taha
  organization: Department of Neurology, Washington University, MO, St, Louis
– sequence: 4
  givenname: Alan
  surname: Pestronk
  fullname: Pestronk, Alan
  organization: Department of Neurology, Washington University, MO, St, Louis
– sequence: 5
  givenname: Alison
  surname: Goate
  fullname: Goate, Alison
  organization: Department of Neurology, Washington University, St, Louis, MO
– sequence: 6
  givenname: Timothy M.
  surname: Miller
  fullname: Miller, Timothy M.
  organization: Department of Neurology, Washington University, St, Louis, MO
– sequence: 7
  givenname: Robi D.
  surname: Mitra
  fullname: Mitra, Robi D.
  organization: Department of Genetics, Washington University, MO, St Louis
– sequence: 8
  givenname: John
  surname: Ravits
  fullname: Ravits, John
  organization: Department of Neurosciences, University of California, San Diego, CA, La Jolla
– sequence: 9
  givenname: Matthew B.
  surname: Harms
  fullname: Harms, Matthew B.
  email: harmsm@neuro.wustl.edu
  organization: Department of Neurology, Washington University, St, Louis, MO
– sequence: 10
  givenname: Robert H.
  surname: Baloh
  fullname: Baloh, Robert H.
  email: harmsm@neuro.wustl.edu
  organization: Department of Neurology, Cedars Sinai Medical Center, CA, Los Angeles
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25382069$$D View this record in MEDLINE/PubMed
BookMark eNqNkU9vEzEQxS1URP_AgS-ALHEBpG3H9tq7OUYVDYgqXEDhZtm7s9StY6f2LiEHvjsbkvZQQcXF48PvPc17c0wOQgxIyEsGpwyAn5lgTnkpQD0hR0wKVtS8nByQIxCqLCQT5SE5zvkaACaKwTNyyKWoOajJEfk1XW5in-LqyjXUmx6T8TQ3HlPMLtMYMvZ0_LjQ-QFDgy21G9pfIbVDajHQ2NFkEtIfJjkT-i1Jb0JcB2oedf6OAfNz8rQzPuOL_TwhXy_efzn_UFx-nn08n14WjeRSFay2UPKKW2kFsK6uVcWwQ95Y2QirGtu2DLgo0UgFbVW3HE3NtwltB2ClOCHvdr5DWJnN2nivV8ktTdpoBnrboR471H86HOE3O3iV4u2AuddLlxv03gSMQ9ZMSS4qWYH8D7SsgI8PG9HXD9DrOKQwpt5SJVMgoBqpV3tqsEts77e8O9gInO2AZqwxJ-x043rTuxj6ZJz_a5y3DxSPRd-7r53Hzb9BPZ1P7xTFTuFyjz_vFSbdaFWNLenFfKYXn2ZycTGv9DfxGwzs06U
CitedBy_id crossref_primary_10_1038_ejhg_2016_186
crossref_primary_10_1136_jnnp_2020_325014
crossref_primary_10_1136_jnnp_2017_317611
crossref_primary_10_3390_jpm10030058
crossref_primary_10_1038_s41418_018_0060_4
crossref_primary_10_1080_14737159_2020_1779060
crossref_primary_10_1186_s13073_021_00878_y
crossref_primary_10_1212_NXG_0000000000000301
crossref_primary_10_1002_mgg3_1953
crossref_primary_10_1016_j_neurol_2015_03_004
crossref_primary_10_1172_JCI168554
crossref_primary_10_3389_fnins_2020_00679
crossref_primary_10_1016_j_neurobiolaging_2018_04_020
crossref_primary_10_1007_s10048_019_00584_3
crossref_primary_10_1186_s13023_019_1127_0
crossref_primary_10_1186_s40478_016_0358_8
crossref_primary_10_1016_j_xgen_2024_100679
crossref_primary_10_1007_s43657_022_00093_8
crossref_primary_10_1016_j_neurobiolaging_2016_04_021
crossref_primary_10_3233_JND_230236
crossref_primary_10_1136_jnnp_2018_319089
crossref_primary_10_1212_WNL_0000000000005996
crossref_primary_10_2217_nmt_2017_0026
crossref_primary_10_1007_s10974_016_9451_7
crossref_primary_10_1080_19490976_2020_1767464
crossref_primary_10_1080_21678707_2019_1625766
crossref_primary_10_15252_embj_201593350
crossref_primary_10_3389_fnmol_2024_1408159
crossref_primary_10_1016_j_nbd_2019_104639
crossref_primary_10_1186_s40035_017_0098_0
crossref_primary_10_1007_s10072_019_03943_y
crossref_primary_10_1016_j_tig_2018_03_001
crossref_primary_10_1126_scitranslmed_aav5264
crossref_primary_10_1016_S0140_6736_22_01272_7
crossref_primary_10_1111_ene_14213
crossref_primary_10_1016_j_neurobiolaging_2015_12_012
crossref_primary_10_1007_s10072_023_07178_w
crossref_primary_10_1016_j_expneurol_2022_114143
crossref_primary_10_3389_fnins_2020_00684
crossref_primary_10_3390_biomedicines12051017
crossref_primary_10_3389_fneur_2022_790082
crossref_primary_10_1007_s13311_015_0344_z
crossref_primary_10_1007_s40142_020_00194_8
crossref_primary_10_3389_fneur_2018_00958
crossref_primary_10_1093_bmb_ldw026
crossref_primary_10_1007_s00415_021_10928_5
crossref_primary_10_1007_s11910_018_0901_z
crossref_primary_10_1111_bpa_12354
crossref_primary_10_1136_jnnp_2018_319473
crossref_primary_10_1111_neup_12240
crossref_primary_10_1371_journal_pone_0182572
crossref_primary_10_1136_jnnp_2017_316864
crossref_primary_10_1136_jnnp_2018_318568
crossref_primary_10_1136_jnnp_2016_315018
crossref_primary_10_3389_fnmol_2022_954928
crossref_primary_10_1080_21678421_2019_1582670
crossref_primary_10_1111_ene_13257
crossref_primary_10_1080_21678421_2021_1891249
crossref_primary_10_1016_j_neubiorev_2016_03_033
crossref_primary_10_1038_s10038_022_01055_8
crossref_primary_10_1080_21678421_2020_1797091
crossref_primary_10_1016_j_neurol_2017_03_030
crossref_primary_10_1016_j_neurobiolaging_2015_11_030
crossref_primary_10_1093_braincomms_fcaa120
crossref_primary_10_1038_s41431_022_01093_y
crossref_primary_10_1093_brain_awv358
crossref_primary_10_1016_j_mcn_2020_103524
crossref_primary_10_3389_fneur_2025_1438207
crossref_primary_10_3390_diagnostics11030509
crossref_primary_10_3389_fgene_2021_746060
crossref_primary_10_1002_brb3_1281
crossref_primary_10_1002_acn3_51934
crossref_primary_10_1080_21678421_2020_1747496
crossref_primary_10_1136_jnnp_2022_328931
crossref_primary_10_1080_07853890_2024_2399962
crossref_primary_10_1016_j_compbiomed_2021_104602
crossref_primary_10_1212_NXG_0000000000000335
crossref_primary_10_1038_nn_4345
crossref_primary_10_1073_pnas_1523810113
crossref_primary_10_1136_jnnp_2020_325064
crossref_primary_10_1016_j_neurobiolaging_2016_12_013
crossref_primary_10_1016_j_jns_2020_116932
crossref_primary_10_1016_j_tig_2015_03_005
crossref_primary_10_1016_j_parkreldis_2015_06_004
crossref_primary_10_1093_brain_awx082
crossref_primary_10_1136_practneurol_2021_002989
crossref_primary_10_1016_j_arr_2023_102126
crossref_primary_10_3390_jcm9020412
crossref_primary_10_1007_s00415_016_8109_0
crossref_primary_10_1007_s10048_020_00612_7
crossref_primary_10_1186_s40478_023_01665_z
crossref_primary_10_1017_cjn_2022_336
crossref_primary_10_1080_14737175_2025_2470324
crossref_primary_10_1016_j_neurol_2015_10_004
crossref_primary_10_1172_JCI90607
crossref_primary_10_1007_s11011_019_00473_6
crossref_primary_10_1038_nn_4012
crossref_primary_10_1093_jnen_nlx049
crossref_primary_10_3390_ijms21093346
crossref_primary_10_1016_j_arr_2022_101648
crossref_primary_10_3389_fnins_2019_01310
crossref_primary_10_3390_genes11101123
crossref_primary_10_3390_antiox10040552
crossref_primary_10_3389_fneur_2022_931006
crossref_primary_10_1016_j_neurobiolaging_2018_01_013
crossref_primary_10_3389_fnins_2021_595775
crossref_primary_10_1212_WNL_0000000000004109
crossref_primary_10_1042_BCJ20160499
crossref_primary_10_1111_bpa_12680
crossref_primary_10_1093_brain_awad120
crossref_primary_10_1212_NXG_0000000000200109
crossref_primary_10_1016_j_neurobiolaging_2017_01_004
crossref_primary_10_1177_09727531231194399
crossref_primary_10_1126_science_aaa3650
crossref_primary_10_3390_ijms20010004
crossref_primary_10_1007_s00439_020_02131_9
crossref_primary_10_1016_j_neurol_2023_05_005
crossref_primary_10_3389_fnagi_2023_1114022
crossref_primary_10_3389_fncel_2015_00448
crossref_primary_10_1136_jnnp_2016_313337
crossref_primary_10_1136_jnnp_2015_311654
crossref_primary_10_1186_s40246_017_0126_2
crossref_primary_10_3390_biomedicines11123118
crossref_primary_10_1186_s12859_023_05338_5
crossref_primary_10_1007_s12035_022_02934_z
crossref_primary_10_1016_j_jns_2017_02_033
crossref_primary_10_1002_ajmg_b_32606
crossref_primary_10_1136_jnnp_2017_317234
crossref_primary_10_1080_21678421_2017_1332079
crossref_primary_10_3390_genes15101344
crossref_primary_10_1186_s40478_020_00943_4
crossref_primary_10_1016_j_neurobiolaging_2016_09_023
crossref_primary_10_1016_S1634_7072_19_43053_5
crossref_primary_10_1016_j_mrfmmm_2018_11_002
crossref_primary_10_3892_br_2024_1808
crossref_primary_10_17925_USN_2020_16_2_110
crossref_primary_10_3988_jcn_2022_18_1_41
crossref_primary_10_4103_1673_5374_385283
crossref_primary_10_1136_jmedgenet_2016_104271
crossref_primary_10_3389_fgene_2019_00732
crossref_primary_10_1016_j_parkreldis_2017_06_004
crossref_primary_10_1186_s40035_021_00250_5
crossref_primary_10_3389_fnmol_2016_00092
crossref_primary_10_1016_j_brainres_2019_146459
crossref_primary_10_1016_j_pneurobio_2017_04_005
crossref_primary_10_1007_s00401_015_1436_x
crossref_primary_10_1007_s00415_020_10042_y
crossref_primary_10_1080_21678421_2018_1432659
crossref_primary_10_1093_brain_awx285
crossref_primary_10_1016_j_jocn_2020_03_032
crossref_primary_10_1111_jnc_13622
crossref_primary_10_1002_mdc3_13424
crossref_primary_10_3389_fnins_2020_577755
crossref_primary_10_3390_genes13081483
crossref_primary_10_3390_ijms23105694
crossref_primary_10_1136_jmg_2023_109569
crossref_primary_10_1016_j_neurobiolaging_2017_06_007
Cites_doi 10.1001/jamaneurol.2014.1184
10.1212/WNL.0b013e3182735d36
10.1212/WNL.5.4.249
10.1038/nature09320
10.1136/jmedgenet-2013-101795
10.1016/j.bbadis.2006.01.004
10.3109/17482968.2011.643899
10.1093/bib/bbs017
10.1038/nrneurol.2011.150
10.1136/jnnp.2010.207464
10.1002/humu.21445
10.1016/j.ajhg.2012.10.015
10.1038/nature13127
10.1016/j.ncl.2013.05.003
10.1038/nature11280
10.1016/j.neurobiolaging.2013.03.006
10.1016/j.neuron.2011.09.011
10.1016/j.neurobiolaging.2011.12.003
10.1089/gtmb.2010.0036
10.1038/nmeth.1307
10.1093/hmg/ddt587
10.1212/WNL.0b013e31821f445b
10.1136/jnnp-2012-302897
10.1093/hmg/dds199
10.1038/nbt.1754
10.1093/bioinformatics/btp352
10.1038/nn.3584
10.1016/j.ajhg.2011.05.029
10.1212/WNL.0b013e31825dceca
10.1073/pnas.1109434108
10.1101/gr.109157.110
10.1159/000108917
10.1038/nature11632
10.3109/17482968.2010.545420
10.1016/j.ajhg.2013.01.011
10.1212/WNL.5.3.182
ContentType Journal Article
Copyright 2014 American Neurological Association
2014 American Neurological Association.
2015 American Neurological Association
Copyright_xml – notice: 2014 American Neurological Association
– notice: 2014 American Neurological Association.
– notice: 2015 American Neurological Association
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7U7
C1K
K9.
8FD
FR3
P64
RC3
7X8
ADTOC
UNPAY
DOI 10.1002/ana.24306
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
Toxicology Abstracts
Environmental Sciences and Pollution Management
ProQuest Health & Medical Complete (Alumni)
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Toxicology Abstracts
Neurosciences Abstracts
Environmental Sciences and Pollution Management
Genetics Abstracts
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Genetics Abstracts
MEDLINE

ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1531-8249
EndPage 113
ExternalDocumentID oai:pubmedcentral.nih.gov:4293318
3553055521
25382069
10_1002_ana_24306
ANA24306
ark_67375_WNG_WKG5WFN7_X
Genre article
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIH National Institute of Neurological Disorders and Stroke
  funderid: K08‐NS075094
– fundername: NIH
  funderid: R01‐NS069669
– fundername: NIH National Institute on Aging
  funderid: 5P50 AG005681‐29 ; 5P01 AG03991‐30 ; 5R01 AG035083‐04
– fundername: Genetics Epidemiology Training
  funderid: 5‐T32‐HL‐83822‐5
– fundername: NINDS NIH HHS
  grantid: R01 NS069669
– fundername: NIA NIH HHS
  grantid: P01 AG003991
– fundername: NCATS NIH HHS
  grantid: UL1 TR000448
– fundername: NHLBI NIH HHS
  grantid: T32 HL083822
– fundername: NIA NIH HHS
  grantid: 5R01 AG035083-04
– fundername: NIA NIH HHS
  grantid: P50 AG005681
– fundername: NIA NIH HHS
  grantid: 5P01 AG03991-30
– fundername: NINDS NIH HHS
  grantid: K08-NS075094
– fundername: NIA NIH HHS
  grantid: 5P50 AG005681-29
– fundername: NCI NIH HHS
  grantid: P30 CA091842
GroupedDBID ---
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1CY
1L6
1OB
1OC
1ZS
23M
2QL
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5VS
66C
6J9
6P2
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAEJM
AAESR
AAEVG
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AAQQT
AASGY
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABIVO
ABJNI
ABLJU
ABOCM
ABPVW
ABQWH
ABXGK
ACAHQ
ACBMB
ACBWZ
ACCZN
ACGFO
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFAZI
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AI.
AIACR
AIAGR
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJJEV
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRMAN
DRSTM
EBS
EJD
EMOBN
F00
F01
F04
F5P
F8P
FEDTE
FUBAC
FYBCS
G-S
G.N
GNP
GODZA
GOZPB
GRPMH
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
J5H
JPC
KBYEO
KD1
KQQ
L7B
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LXL
LXN
LXY
LYRES
M6M
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N4W
N9A
NF~
NNB
O66
O9-
OHT
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.-
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SJN
SUPJJ
TEORI
UB1
V2E
V8K
V9Y
VH1
W8V
W99
WBKPD
WH7
WHWMO
WIB
WIH
WIJ
WIK
WJL
WOHZO
WQJ
WVDHM
WXI
WXSBR
X7M
XG1
XJT
XPP
XSW
XV2
YOC
YQJ
ZGI
ZRF
ZRR
ZXP
ZZTAW
~IA
~WT
~X8
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7U7
C1K
K9.
8FD
FR3
P64
RC3
7X8
ADTOC
UNPAY
ID FETCH-LOGICAL-c5256-18b04272b5b301f88671efe2cb5c3b6cbdd10234ea560d78d2ea828206bf00b53
IEDL.DBID DR2
ISSN 0364-5134
1531-8249
IngestDate Tue Aug 19 23:53:51 EDT 2025
Thu Sep 04 19:32:29 EDT 2025
Sun Aug 24 04:06:13 EDT 2025
Fri Jul 25 10:16:50 EDT 2025
Mon Jul 21 06:06:25 EDT 2025
Wed Oct 01 03:03:24 EDT 2025
Thu Apr 24 22:50:24 EDT 2025
Sun Sep 21 06:16:21 EDT 2025
Sun Sep 21 06:17:51 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2014 American Neurological Association.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5256-18b04272b5b301f88671efe2cb5c3b6cbdd10234ea560d78d2ea828206bf00b53
Notes Genetics Epidemiology Training - No. 5-T32-HL-83822-5
ArticleID:ANA24306
NIH - No. R01-NS069669
ark:/67375/WNG-WKG5WFN7-X
istex:C44974017E6964F18DADDF8DB385CBC4BB6834A8
NIH National Institute of Neurological Disorders and Stroke - No. K08-NS075094
NIH National Institute on Aging - No. 5P50 AG005681-29; No. 5P01 AG03991-30; No. 5R01 AG035083-04
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/4293318
PMID 25382069
PQID 1644160307
PQPubID 946345
PageCount 14
ParticipantIDs unpaywall_primary_10_1002_ana_24306
proquest_miscellaneous_1652375705
proquest_miscellaneous_1647026471
proquest_journals_1644160307
pubmed_primary_25382069
crossref_citationtrail_10_1002_ana_24306
crossref_primary_10_1002_ana_24306
wiley_primary_10_1002_ana_24306_ANA24306
istex_primary_ark_67375_WNG_WKG5WFN7_X
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2015
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – month: 01
  year: 2015
  text: January 2015
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Minneapolis
PublicationTitle Annals of neurology
PublicationTitleAlternate Ann Neurol
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Andersen PM, Al-Chalabi A. Clinical genetics of amyotrophic lateral sclerosis: what do we really know? Nat Rev Neurol 2011;7:603-615.
Kurland LT, Mulder DW. Epidemiologic investigations of amyotrophic lateral sclerosis. 2. Familial aggregations indicative of dominant inheritance. II. Neurology 1955;5:249-268.
Keller MF, Ferrucci L, Singleton AB, et al. Genome-wide analysis of the heritability of amyotrophic lateral sclerosis. JAMA Neurol 2014;71:1123.
Flanagan SE, Patch A-M, Ellard S. Using SIFT and PolyPhen to predict loss-of-function and gain-of-function mutations. Genet Test Mol Biomark 2010;14:533-537.
Thusberg J, Olatubosun A, Vihinen M. Performance of mutation pathogenicity prediction methods on missense variants. Hum Mutat 2011;32:358-368.
Xue Y, Chen Y, Ayub Q, et al. Deleterious- and disease-allele prevalence in healthy individuals: insights from current predictions, mutation databases, and population-scale resequencing. Am J Hum Genet 2012;91:1022-1032.
MacArthur DG, Manolio TA, Dimmock DP, et al. Guidelines for investigating causality of sequence variants in human disease. Nature 2014;508:469-476.
Thorvaldsdottir H, Robinson JT, Mesirov JP. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform 2012;14:178-192.
Al-Chalabi A, Fang F, Hanby MF, et al. An estimate of amyotrophic lateral sclerosis heritability using twin data. J Neurol Neurosurg Psychiatry 2010;81:1324-1326.
Chiò A, Calvo A, Mazzini L, et al. Extensive genetics of ALS: a population-based study in Italy. Neurology 2012;79:1983-1989.
Kurland LT, Mulder DW. Epidemiologic investigations of amyotrophic lateral sclerosis. 2. Familial aggregations indicative of dominant inheritance. I. Neurology 1955;5:182-196.
Harms MB, Baloh RH. Clinical neurogenetics: amyotrophic lateral sclerosis. Neurol Clin 2013;31:929-950.
Wu C-H, Fallini C, Ticozzi N, et al. Mutations in the profilin 1 gene cause familial amyotrophic lateral sclerosis. Nature 2012;488:499-503.
Vallania FLM, Druley TE, Ramos E, et al. High-throughput discovery of rare insertions and deletions in large cohorts. Genome Res 2010;20:1711-1718.
Harms MB, Cady J, Zaidman C, et al. Lack of C9ORF72 coding mutations supports a gain of function for repeat expansions in amyotrophic lateral sclerosis. Neurobiol Aging 2013;34:2234.e13-2234.e19.
Li H, Handsaker B, Wysoker A, et al. The Sequence Alignment/Map format and SAMtools. Bioinforma Oxf Engl 2009;25:2078-2079.
Elden AC, Kim H-J, Hart MP, et al. Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS. Nature 2010;466:1069-1075.
1000 Genomes Project Consortium, Abecasis GR, Auton A, et al. An integrated map of genetic variation from 1,092 human genomes. Nature 2012;491:56-65.
Kwon M-J, Baek W, Ki C-S, et al. Screening of the SOD1, FUS, TARDBP, ANG, and OPTN mutations in Korean patients with familial and sporadic ALS. Neurobiol Aging 2012;33:1017.e17-1017.e23.
Van Blitterswijk M, van Es MA, Hennekam EAM, et al. Evidence for an oligogenic basis of amyotrophic lateral sclerosis. Hum Mol Genet 2012;21:3776-3784.
Druley TE, Vallania FLM, Wegner DJ, et al. Quantification of rare allelic variants from pooled genomic DNA. Nat Methods 2009;6:263-265.
Renton AE, Chiò A, Traynor BJ. State of play in amyotrophic lateral sclerosis genetics. Nat Neurosci 2014;17:17-23.
Conte A, Lattante S, Luigetti M, et al. Classification of familial amyotrophic lateral sclerosis by family history: effects on frequency of genes mutation. J Neurol Neurosurg Psychiatry 2012;83:1201-1203.
Brooks BR. El Escorial World Federation of Neurology criteria for the diagnosis of amyotrophic lateral sclerosis. Subcommittee on Motor Neuron Diseases/Amyotrophic Lateral Sclerosis of the World Federation of Neurology Research Group on Neuromuscular Diseases and the El Escorial "Clinical limits of amyotrophic lateral sclerosis" workshop contributors. J Neurol Sci 1994;124(suppl):96-107.
DeJesus-Hernandez M, Mackenzie IR, Boeve BF, et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 2011;72:245-256.
Abhinav K, Stanton B, Johnston C, et al. Amyotrophic lateral sclerosis in South-East England: a population-based study. The South-East England register for amyotrophic lateral sclerosis (SEALS Registry). Neuroepidemiology 2007;29:44-48.
Robinson JT, Thorvaldsdóttir H, Winckler W, et al. Integrative genomics viewer. Nat Biotechnol 2011;29:24-26.
Kenna KP, McLaughlin RL, Byrne S, et al. Delineating the genetic heterogeneity of ALS using targeted high-throughput sequencing. J Med Genet 2013;50:776-783.
Gros-Louis F, Gaspar C, Rouleau GA. Genetics of familial and sporadic amyotrophic lateral sclerosis. Biochim Biophys Acta 2006;1762:956-972.
Couthouis J, Hart MP, Shorter J, et al. A yeast functional screen predicts new candidate ALS disease genes. Proc Natl Acad Sci U S A 2011;108:20881-20890.
Wu MC, Lee S, Cai T, et al. Rare-variant association testing for sequencing data with the sequence kernel association test. Am J Hum Genet 2011;89:82-93.
Van Damme P, Veldink JH, van Blitterswijk M, et al. Expanded ATXN2 CAG repeat size in ALS identifies genetic overlap between ALS and SCA2. Neurology 2011;76:2066-2072.
Lattante S, Conte A, Zollino M, et al. Contribution of major amyotrophic lateral sclerosis genes to the etiology of sporadic disease. Neurology 2012;79:66-72.
Mehta P, Antao V, Kaye W, et al. Prevalence of amyotrophic lateral sclerosis - United States, 2010-2011. Morb Mortal Wkly Rep Surveill Summ 2014;63(suppl 7):1-14.
Byrne S, Bede P, Elamin M, et al. Proposed criteria for familial amyotrophic lateral sclerosis. Amyotroph Lateral Scler 2011;12:157-159.
Beck J, Poulter M, Hensman D, et al. Large C9orf72 hexanucleotide repeat expansions are seen in multiple neurodegenerative syndromes and are more frequent than expected in the UK population. Am J Hum Genet 2013;92:345-353.
Brown JA, Min J, Staropoli JF, et al. SOD1, ANG, TARDBP and FUS mutations in amyotrophic lateral sclerosis: a United States clinical testing lab experience. Amyotroph Lateral Scler 2012;13:217-222.
Fogh I, Ratti A, Gellera C, et al. A genome-wide association meta-analysis identifies a novel locus at 17q11.2 associated with sporadic amyotrophic lateral sclerosis. Hum Mol Genet 2014;23:2220-2231.
2012; 83
2009; 25
2010; 14
2010; 466
1955; 5
2011; 32
2011; 76
2013; 92
2011; 12
2006; 1762
2014; 63
2010; 81
2012; 488
2012; 14
2012; 79
2012; 13
2012; 33
2014; 23
2011; 7
2012; 491
2007; 29
1994; 124
2010; 20
2012; 91
2011; 108
2014; 508
2013; 34
2013; 50
2013; 31
2011; 72
2009; 6
2011; 89
2014; 17
2014; 71
2011; 29
2012; 21
Mehta P (e_1_2_8_3_1) 2014; 63
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_23_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
Brooks BR (e_1_2_8_22_1) 1994; 124
e_1_2_8_30_1
References_xml – reference: Kwon M-J, Baek W, Ki C-S, et al. Screening of the SOD1, FUS, TARDBP, ANG, and OPTN mutations in Korean patients with familial and sporadic ALS. Neurobiol Aging 2012;33:1017.e17-1017.e23.
– reference: Thorvaldsdottir H, Robinson JT, Mesirov JP. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform 2012;14:178-192.
– reference: Druley TE, Vallania FLM, Wegner DJ, et al. Quantification of rare allelic variants from pooled genomic DNA. Nat Methods 2009;6:263-265.
– reference: Renton AE, Chiò A, Traynor BJ. State of play in amyotrophic lateral sclerosis genetics. Nat Neurosci 2014;17:17-23.
– reference: Gros-Louis F, Gaspar C, Rouleau GA. Genetics of familial and sporadic amyotrophic lateral sclerosis. Biochim Biophys Acta 2006;1762:956-972.
– reference: Xue Y, Chen Y, Ayub Q, et al. Deleterious- and disease-allele prevalence in healthy individuals: insights from current predictions, mutation databases, and population-scale resequencing. Am J Hum Genet 2012;91:1022-1032.
– reference: DeJesus-Hernandez M, Mackenzie IR, Boeve BF, et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 2011;72:245-256.
– reference: Van Blitterswijk M, van Es MA, Hennekam EAM, et al. Evidence for an oligogenic basis of amyotrophic lateral sclerosis. Hum Mol Genet 2012;21:3776-3784.
– reference: 1000 Genomes Project Consortium, Abecasis GR, Auton A, et al. An integrated map of genetic variation from 1,092 human genomes. Nature 2012;491:56-65.
– reference: Kurland LT, Mulder DW. Epidemiologic investigations of amyotrophic lateral sclerosis. 2. Familial aggregations indicative of dominant inheritance. II. Neurology 1955;5:249-268.
– reference: Li H, Handsaker B, Wysoker A, et al. The Sequence Alignment/Map format and SAMtools. Bioinforma Oxf Engl 2009;25:2078-2079.
– reference: Harms MB, Baloh RH. Clinical neurogenetics: amyotrophic lateral sclerosis. Neurol Clin 2013;31:929-950.
– reference: Van Damme P, Veldink JH, van Blitterswijk M, et al. Expanded ATXN2 CAG repeat size in ALS identifies genetic overlap between ALS and SCA2. Neurology 2011;76:2066-2072.
– reference: Kurland LT, Mulder DW. Epidemiologic investigations of amyotrophic lateral sclerosis. 2. Familial aggregations indicative of dominant inheritance. I. Neurology 1955;5:182-196.
– reference: Mehta P, Antao V, Kaye W, et al. Prevalence of amyotrophic lateral sclerosis - United States, 2010-2011. Morb Mortal Wkly Rep Surveill Summ 2014;63(suppl 7):1-14.
– reference: Andersen PM, Al-Chalabi A. Clinical genetics of amyotrophic lateral sclerosis: what do we really know? Nat Rev Neurol 2011;7:603-615.
– reference: Flanagan SE, Patch A-M, Ellard S. Using SIFT and PolyPhen to predict loss-of-function and gain-of-function mutations. Genet Test Mol Biomark 2010;14:533-537.
– reference: Elden AC, Kim H-J, Hart MP, et al. Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS. Nature 2010;466:1069-1075.
– reference: Brown JA, Min J, Staropoli JF, et al. SOD1, ANG, TARDBP and FUS mutations in amyotrophic lateral sclerosis: a United States clinical testing lab experience. Amyotroph Lateral Scler 2012;13:217-222.
– reference: Wu C-H, Fallini C, Ticozzi N, et al. Mutations in the profilin 1 gene cause familial amyotrophic lateral sclerosis. Nature 2012;488:499-503.
– reference: Fogh I, Ratti A, Gellera C, et al. A genome-wide association meta-analysis identifies a novel locus at 17q11.2 associated with sporadic amyotrophic lateral sclerosis. Hum Mol Genet 2014;23:2220-2231.
– reference: Byrne S, Bede P, Elamin M, et al. Proposed criteria for familial amyotrophic lateral sclerosis. Amyotroph Lateral Scler 2011;12:157-159.
– reference: Abhinav K, Stanton B, Johnston C, et al. Amyotrophic lateral sclerosis in South-East England: a population-based study. The South-East England register for amyotrophic lateral sclerosis (SEALS Registry). Neuroepidemiology 2007;29:44-48.
– reference: Vallania FLM, Druley TE, Ramos E, et al. High-throughput discovery of rare insertions and deletions in large cohorts. Genome Res 2010;20:1711-1718.
– reference: Robinson JT, Thorvaldsdóttir H, Winckler W, et al. Integrative genomics viewer. Nat Biotechnol 2011;29:24-26.
– reference: Al-Chalabi A, Fang F, Hanby MF, et al. An estimate of amyotrophic lateral sclerosis heritability using twin data. J Neurol Neurosurg Psychiatry 2010;81:1324-1326.
– reference: Brooks BR. El Escorial World Federation of Neurology criteria for the diagnosis of amyotrophic lateral sclerosis. Subcommittee on Motor Neuron Diseases/Amyotrophic Lateral Sclerosis of the World Federation of Neurology Research Group on Neuromuscular Diseases and the El Escorial "Clinical limits of amyotrophic lateral sclerosis" workshop contributors. J Neurol Sci 1994;124(suppl):96-107.
– reference: Thusberg J, Olatubosun A, Vihinen M. Performance of mutation pathogenicity prediction methods on missense variants. Hum Mutat 2011;32:358-368.
– reference: Kenna KP, McLaughlin RL, Byrne S, et al. Delineating the genetic heterogeneity of ALS using targeted high-throughput sequencing. J Med Genet 2013;50:776-783.
– reference: Chiò A, Calvo A, Mazzini L, et al. Extensive genetics of ALS: a population-based study in Italy. Neurology 2012;79:1983-1989.
– reference: Keller MF, Ferrucci L, Singleton AB, et al. Genome-wide analysis of the heritability of amyotrophic lateral sclerosis. JAMA Neurol 2014;71:1123.
– reference: Harms MB, Cady J, Zaidman C, et al. Lack of C9ORF72 coding mutations supports a gain of function for repeat expansions in amyotrophic lateral sclerosis. Neurobiol Aging 2013;34:2234.e13-2234.e19.
– reference: Lattante S, Conte A, Zollino M, et al. Contribution of major amyotrophic lateral sclerosis genes to the etiology of sporadic disease. Neurology 2012;79:66-72.
– reference: Wu MC, Lee S, Cai T, et al. Rare-variant association testing for sequencing data with the sequence kernel association test. Am J Hum Genet 2011;89:82-93.
– reference: Couthouis J, Hart MP, Shorter J, et al. A yeast functional screen predicts new candidate ALS disease genes. Proc Natl Acad Sci U S A 2011;108:20881-20890.
– reference: Conte A, Lattante S, Luigetti M, et al. Classification of familial amyotrophic lateral sclerosis by family history: effects on frequency of genes mutation. J Neurol Neurosurg Psychiatry 2012;83:1201-1203.
– reference: MacArthur DG, Manolio TA, Dimmock DP, et al. Guidelines for investigating causality of sequence variants in human disease. Nature 2014;508:469-476.
– reference: Beck J, Poulter M, Hensman D, et al. Large C9orf72 hexanucleotide repeat expansions are seen in multiple neurodegenerative syndromes and are more frequent than expected in the UK population. Am J Hum Genet 2013;92:345-353.
– volume: 31
  start-page: 929
  year: 2013
  end-page: 950
  article-title: Clinical neurogenetics: amyotrophic lateral sclerosis
  publication-title: Neurol Clin
– volume: 89
  start-page: 82
  year: 2011
  end-page: 93
  article-title: Rare‐variant association testing for sequencing data with the sequence kernel association test
  publication-title: Am J Hum Genet
– volume: 29
  start-page: 24
  year: 2011
  end-page: 26
  article-title: Integrative genomics viewer
  publication-title: Nat Biotechnol
– volume: 466
  start-page: 1069
  year: 2010
  end-page: 1075
  article-title: Ataxin‐2 intermediate‐length polyglutamine expansions are associated with increased risk for ALS
  publication-title: Nature
– volume: 108
  start-page: 20881
  year: 2011
  end-page: 20890
  article-title: A yeast functional screen predicts new candidate ALS disease genes
  publication-title: Proc Natl Acad Sci U S A
– volume: 83
  start-page: 1201
  year: 2012
  end-page: 1203
  article-title: Classification of familial amyotrophic lateral sclerosis by family history: effects on frequency of genes mutation
  publication-title: J Neurol Neurosurg Psychiatry
– volume: 20
  start-page: 1711
  year: 2010
  end-page: 1718
  article-title: High‐throughput discovery of rare insertions and deletions in large cohorts
  publication-title: Genome Res
– volume: 491
  start-page: 56
  year: 2012
  end-page: 65
  article-title: An integrated map of genetic variation from 1,092 human genomes
  publication-title: Nature
– volume: 17
  start-page: 17
  year: 2014
  end-page: 23
  article-title: State of play in amyotrophic lateral sclerosis genetics
  publication-title: Nat Neurosci
– volume: 14
  start-page: 178
  year: 2012
  end-page: 192
  article-title: Integrative Genomics Viewer (IGV): high‐performance genomics data visualization and exploration
  publication-title: Brief Bioinform
– volume: 32
  start-page: 358
  year: 2011
  end-page: 368
  article-title: Performance of mutation pathogenicity prediction methods on missense variants
  publication-title: Hum Mutat
– volume: 6
  start-page: 263
  year: 2009
  end-page: 265
  article-title: Quantification of rare allelic variants from pooled genomic DNA
  publication-title: Nat Methods
– volume: 23
  start-page: 2220
  year: 2014
  end-page: 2231
  article-title: A genome‐wide association meta‐analysis identifies a novel locus at 17q11.2 associated with sporadic amyotrophic lateral sclerosis
  publication-title: Hum Mol Genet
– volume: 63
  start-page: 1
  issue: suppl 7
  year: 2014
  end-page: 14
  article-title: Prevalence of amyotrophic lateral sclerosis ‐ United States, 2010–2011
  publication-title: Morb Mortal Wkly Rep Surveill Summ
– volume: 12
  start-page: 157
  year: 2011
  end-page: 159
  article-title: Proposed criteria for familial amyotrophic lateral sclerosis
  publication-title: Amyotroph Lateral Scler
– volume: 25
  start-page: 2078
  year: 2009
  end-page: 2079
  article-title: The Sequence Alignment/Map format and SAMtools
  publication-title: Bioinforma Oxf Engl
– volume: 50
  start-page: 776
  year: 2013
  end-page: 783
  article-title: Delineating the genetic heterogeneity of ALS using targeted high‐throughput sequencing
  publication-title: J Med Genet
– volume: 71
  start-page: 1123
  year: 2014
  article-title: Genome‐wide analysis of the heritability of amyotrophic lateral sclerosis
  publication-title: JAMA Neurol
– volume: 72
  start-page: 245
  year: 2011
  end-page: 256
  article-title: Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p‐linked FTD and ALS
  publication-title: Neuron
– volume: 13
  start-page: 217
  year: 2012
  end-page: 222
  article-title: SOD1, ANG, TARDBP and FUS mutations in amyotrophic lateral sclerosis: a United States clinical testing lab experience
  publication-title: Amyotroph Lateral Scler
– volume: 76
  start-page: 2066
  year: 2011
  end-page: 2072
  article-title: Expanded ATXN2 CAG repeat size in ALS identifies genetic overlap between ALS and SCA2
  publication-title: Neurology
– volume: 33
  start-page: 1017.e17
  year: 2012
  end-page: 1017.e23
  article-title: Screening of the SOD1, FUS, TARDBP, ANG, and OPTN mutations in Korean patients with familial and sporadic ALS
  publication-title: Neurobiol Aging
– volume: 91
  start-page: 1022
  year: 2012
  end-page: 1032
  article-title: Deleterious‐ and disease‐allele prevalence in healthy individuals: insights from current predictions, mutation databases, and population‐scale resequencing
  publication-title: Am J Hum Genet
– volume: 488
  start-page: 499
  year: 2012
  end-page: 503
  article-title: Mutations in the profilin 1 gene cause familial amyotrophic lateral sclerosis
  publication-title: Nature
– volume: 21
  start-page: 3776
  year: 2012
  end-page: 3784
  article-title: Evidence for an oligogenic basis of amyotrophic lateral sclerosis
  publication-title: Hum Mol Genet
– volume: 5
  start-page: 249
  year: 1955
  end-page: 268
  article-title: Epidemiologic investigations of amyotrophic lateral sclerosis. 2. Familial aggregations indicative of dominant inheritance. II
  publication-title: Neurology
– volume: 79
  start-page: 66
  year: 2012
  end-page: 72
  article-title: Contribution of major amyotrophic lateral sclerosis genes to the etiology of sporadic disease
  publication-title: Neurology
– volume: 124
  start-page: 96
  issue: suppl
  year: 1994
  end-page: 107
  article-title: El Escorial World Federation of Neurology criteria for the diagnosis of amyotrophic lateral sclerosis. Subcommittee on Motor Neuron Diseases/Amyotrophic Lateral Sclerosis of the World Federation of Neurology Research Group on Neuromuscular Diseases and the El Escorial “Clinical limits of amyotrophic lateral sclerosis” workshop contributors
  publication-title: J Neurol Sci
– volume: 81
  start-page: 1324
  year: 2010
  end-page: 1326
  article-title: An estimate of amyotrophic lateral sclerosis heritability using twin data
  publication-title: J Neurol Neurosurg Psychiatry
– volume: 14
  start-page: 533
  year: 2010
  end-page: 537
  article-title: Using SIFT and PolyPhen to predict loss‐of‐function and gain‐of‐function mutations
  publication-title: Genet Test Mol Biomark
– volume: 1762
  start-page: 956
  year: 2006
  end-page: 972
  article-title: Genetics of familial and sporadic amyotrophic lateral sclerosis
  publication-title: Biochim Biophys Acta
– volume: 34
  start-page: 2234.e13
  year: 2013
  end-page: 2234.e19
  article-title: Lack of C9ORF72 coding mutations supports a gain of function for repeat expansions in amyotrophic lateral sclerosis
  publication-title: Neurobiol Aging
– volume: 92
  start-page: 345
  year: 2013
  end-page: 353
  article-title: Large C9orf72 hexanucleotide repeat expansions are seen in multiple neurodegenerative syndromes and are more frequent than expected in the UK population
  publication-title: Am J Hum Genet
– volume: 5
  start-page: 182
  year: 1955
  end-page: 196
  article-title: Epidemiologic investigations of amyotrophic lateral sclerosis. 2. Familial aggregations indicative of dominant inheritance. I
  publication-title: Neurology
– volume: 29
  start-page: 44
  year: 2007
  end-page: 48
  article-title: Amyotrophic lateral sclerosis in South‐East England: a population‐based study. The South‐East England register for amyotrophic lateral sclerosis (SEALS Registry)
  publication-title: Neuroepidemiology
– volume: 79
  start-page: 1983
  year: 2012
  end-page: 1989
  article-title: Extensive genetics of ALS: a population‐based study in Italy
  publication-title: Neurology
– volume: 7
  start-page: 603
  year: 2011
  end-page: 615
  article-title: Clinical genetics of amyotrophic lateral sclerosis: what do we really know?
  publication-title: Nat Rev Neurol
– volume: 508
  start-page: 469
  year: 2014
  end-page: 476
  article-title: Guidelines for investigating causality of sequence variants in human disease
  publication-title: Nature
– ident: e_1_2_8_17_1
  doi: 10.1001/jamaneurol.2014.1184
– ident: e_1_2_8_11_1
  doi: 10.1212/WNL.0b013e3182735d36
– ident: e_1_2_8_6_1
  doi: 10.1212/WNL.5.4.249
– ident: e_1_2_8_31_1
  doi: 10.1038/nature09320
– ident: e_1_2_8_10_1
  doi: 10.1136/jmedgenet-2013-101795
– volume: 63
  start-page: 1
  issue: 7
  year: 2014
  ident: e_1_2_8_3_1
  article-title: Prevalence of amyotrophic lateral sclerosis ‐ United States, 2010–2011
  publication-title: Morb Mortal Wkly Rep Surveill Summ
– ident: e_1_2_8_4_1
  doi: 10.1016/j.bbadis.2006.01.004
– ident: e_1_2_8_21_1
  doi: 10.3109/17482968.2011.643899
– ident: e_1_2_8_26_1
  doi: 10.1093/bib/bbs017
– ident: e_1_2_8_8_1
  doi: 10.1038/nrneurol.2011.150
– ident: e_1_2_8_18_1
  doi: 10.1136/jnnp.2010.207464
– ident: e_1_2_8_28_1
  doi: 10.1002/humu.21445
– ident: e_1_2_8_36_1
  doi: 10.1016/j.ajhg.2012.10.015
– ident: e_1_2_8_37_1
  doi: 10.1038/nature13127
– ident: e_1_2_8_7_1
  doi: 10.1016/j.ncl.2013.05.003
– ident: e_1_2_8_24_1
  doi: 10.1038/nature11280
– ident: e_1_2_8_23_1
  doi: 10.1016/j.neurobiolaging.2013.03.006
– ident: e_1_2_8_30_1
  doi: 10.1016/j.neuron.2011.09.011
– ident: e_1_2_8_12_1
  doi: 10.1016/j.neurobiolaging.2011.12.003
– ident: e_1_2_8_29_1
  doi: 10.1089/gtmb.2010.0036
– ident: e_1_2_8_19_1
  doi: 10.1038/nmeth.1307
– ident: e_1_2_8_16_1
  doi: 10.1093/hmg/ddt587
– volume: 124
  start-page: 96
  year: 1994
  ident: e_1_2_8_22_1
  article-title: El Escorial World Federation of Neurology criteria for the diagnosis of amyotrophic lateral sclerosis. Subcommittee on Motor Neuron Diseases/Amyotrophic Lateral Sclerosis of the World Federation of Neurology Research Group on Neuromuscular Diseases and the El Escorial “Clinical limits of amyotrophic lateral sclerosis” workshop contributors
  publication-title: J Neurol Sci
– ident: e_1_2_8_32_1
  doi: 10.1212/WNL.0b013e31821f445b
– ident: e_1_2_8_14_1
  doi: 10.1136/jnnp-2012-302897
– ident: e_1_2_8_13_1
  doi: 10.1093/hmg/dds199
– ident: e_1_2_8_25_1
  doi: 10.1038/nbt.1754
– ident: e_1_2_8_27_1
  doi: 10.1093/bioinformatics/btp352
– ident: e_1_2_8_15_1
  doi: 10.1038/nn.3584
– ident: e_1_2_8_34_1
  doi: 10.1016/j.ajhg.2011.05.029
– ident: e_1_2_8_9_1
  doi: 10.1212/WNL.0b013e31825dceca
– ident: e_1_2_8_35_1
  doi: 10.1073/pnas.1109434108
– ident: e_1_2_8_20_1
  doi: 10.1101/gr.109157.110
– ident: e_1_2_8_2_1
  doi: 10.1159/000108917
– ident: e_1_2_8_33_1
  doi: 10.1038/nature11632
– ident: e_1_2_8_39_1
  doi: 10.3109/17482968.2010.545420
– ident: e_1_2_8_38_1
  doi: 10.1016/j.ajhg.2013.01.011
– ident: e_1_2_8_5_1
  doi: 10.1212/WNL.5.3.182
SSID ssj0009610
Score 2.5415204
Snippet Objective To define the genetic landscape of amyotrophic lateral sclerosis (ALS) and assess the contribution of possible oligogenic inheritance, we aimed to...
To define the genetic landscape of amyotrophic lateral sclerosis (ALS) and assess the contribution of possible oligogenic inheritance, we aimed to...
Objective To define the genetic landscape of amyotrophic lateral sclerosis (ALS) and assess the contribution of possible oligogenic inheritance, we aimed to...
SourceID unpaywall
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 100
SubjectTerms Adolescent
Adult
Age of Onset
Aged
Aged, 80 and over
Amyotrophic lateral sclerosis
Amyotrophic Lateral Sclerosis - genetics
Ataxins
C9orf72 Protein
Computational Biology
Female
Genes
Genetic Association Studies
Genetic Variation - genetics
Genotype
Humans
Longitudinal Studies
Male
Middle Aged
Nerve Tissue Proteins - genetics
Phenotype
Proteins - genetics
United States
Young Adult
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB4trcTjwHOBwILMQ2gvSVMnTtJjhOiuQBshRNVyimzHYaNNk6pNgSLx3xnnJUBLBTdLHiVxPB5_4xl_A_ByTIX0XO2mcirQQUE7yH1fmc5E-QFzPTetqZTOIu905r5dsMUBjLu7MHXSvhSZVeRLq8jO69zK1VKOujyxERpQBxXxCgw9HVMawHAWvQ8_NTFJ12RtJBl1ywzQt-jYhGw64gW3qOvo4ka_7EFD_Tu_XQYwb8C1bbHiu688z3_HrvXmM70FH7rPbnJOLqxtJSz5_Q9Gx_8a12242UJREjZdd-BAFXfh6lkbbL8HP8LlrqzW5eo8kyTn-qpyTjYoioPKNkSnYVcEG1lX5yQhYkcQUBJR340gZUrQFVfkC_rjOt0GJYk-wysI3_vkz9r-HsJs-ubj61OzrdZgSkY1mWEgdN0OKphAo5EGmjhPpYpKwaQjPCmSRNNEuIojyEr8IKGKo7tHbU-kti2Ycx8GRVmoh0CEHaTMdVN9qdf1HDlhMkmpLomWMPSApAHH3fzFsqUy1xU18rghYaYxTnVcT7UBz3vRVcPfcZnQq1oJegm-vtAJbz6L59FJPH93wubTyI8XBhx1WhK3a30TjzWk9LSxNOBZ342rVIdeeKHKbS3jo7eLSGCfDKP4St9mBjxoNLD_IIr7Ev6piQEvepXcN57jWln_LhGHUVg3Hv3TAx_DdQSKrDl6OoJBtd6qJwjGKvG0XX4_AdnUMO8
  priority: 102
  providerName: Unpaywall
Title Amyotrophic lateral sclerosis onset is influenced by the burden of rare variants in known amyotrophic lateral sclerosis genes
URI https://api.istex.fr/ark:/67375/WNG-WKG5WFN7-X/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fana.24306
https://www.ncbi.nlm.nih.gov/pubmed/25382069
https://www.proquest.com/docview/1644160307
https://www.proquest.com/docview/1647026471
https://www.proquest.com/docview/1652375705
https://www.ncbi.nlm.nih.gov/pmc/articles/4293318
UnpaywallVersion submittedVersion
Volume 77
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1531-8249
  databaseCode: DR2
  dateStart: 19990101
  customDbUrl:
  isFulltext: true
  eissn: 1531-8249
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009610
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFD6UFnZ52L2rt65oF0ZfkjqyZTvsKYylZaNmjIVkMBCSLG-hqRMSZ1sG--87R45dOrow9mbI50RSzjn6ji7fAXjR4dpEIaWpimtMUDAOqji2raBr40SEUZg7KaXTNDoZhG9HYrQFr-q7MJU-RLPgRp7h4jU5uNKLowvRUFWoNg8DJ7fdCYTbov1wIR3VjZwSAW2ztUQnCGtVIZ8fNW9emot2aFh_XEU0b8L1ZTFTq-9qMrnMYd0k1L8Nn-vmV2dPztrLUrfNzz-UHf-zf3fg1pqcsl5lTXdhyxb34Nrpevv9Pvzqna-m5Xw6-zo2bKLo8vKELRCK3RsvGB3MLhk-jOvKJxnTK4YUk2l3W4JNc4YtsuwbZuh0AAeRjFb1CqY2fvMXisgPYNB_8_H1SWtdv6FlBCd5w0RTJQ-uhcYwkickpWdzy40WJtCR0VlGwhGhVUi7sjjJuFWYAHI_0rnvaxHswnYxLeweMO0nuQjDnK75hlFgusJkOaciaZnAnMh4cFj_k9Ksxc2pxsZEVrLMXOJwSjecHjxroLNK0eMq0EtnDg1Czc_oCFws5DA9lsN3x2LYT2M58mC_the59v6F7BDJjCh8evC0-Rj9ljZjVGGnS4eJMf9FbrAJIzj-ZOwLDx5Wttg0iONMhSPV9eB5Y5yb-nPobO3vCNlLe-7h0b9DH8MN5I-iWpHah-1yvrRPkKOV-sA54wHsDNL3vU-_AdKXNzE
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9NAEB5VrUThgfswFFgOob4kddZe25F4iYA00CYPqFXygla76zVEDU6UAwgS_52Z9VEVlQjxZsmfY-9mZvabPb4BeNni2kQhpamKa0xQMA6qOLaNoG3jRIRRmDkppf4g6p2GH0ZitAWvq7MwhT5EPeFGnuHiNTk4TUgfnKuGqlw1eRiQ3vYOrc-RW779eC4e1Y6cFgEttDVEKwgrXSGfH9SPXhiNdqhjf1xGNa_B7iqfqfV3NZlcZLFuGOregE9VA4rdJ2fN1VI3zc8_tB3_t4U34XrJT1mnMKhbsGXz23ClX67A34Ffna_r6XI-nX0ZGzZRdH55whYIxfaNF4z2Zi8ZXoyr4icp02uGLJNpd2CCTTOGn2TZN0zSaQ8OIhlN7OVMbfzlzxSU78Jp993Jm16jLOHQMIKTwmGiqZgH10JjJMkSUtOzmeVGCxPoyOg0Je2I0CpkXmmcpNwqzAG5H-nM97UI7sF2Ps3tA2DaTzIRhhmd9A2jwLSFSTNOddJSgWmR8WC_-iulKfXNqczGRBbKzFxid0rXnR48r6GzQtTjMtArZw81Qs3PaBdcLORwcCiHR4di2B3EcuTBXmUwsgwAC9kinhlRBPXgWX0bXZfWY1RupyuHiTEFRnqwCSM4vjL2hQf3C2OsP4jjYIU91fbgRW2dm9qz74zt7wjZGXTcxcN_hz6F3d5J_1gevx8cPYKrSCdFMUG1B9vL-co-Rsq21E-cZ_4GW5g5nQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD6aNmnAA_dLYIC5CO2lXerYSSueKqAbjFUIMbUPkyzbcaBaSKtegCLx3znHaTINjQrxFqlfWts95_g7vnwH4HmLGxsLSlM1N5igYBzUSeIaUcclbSlikXkppaN-fHAs3g3lcANeVndhSn2IesGNPMPHa3LwSZrtnYmG6kI3uYhIbntLxJhdESP6eKYd1Ym9FAHtszVkKxKVrFDI9-pXz01GWzSuPy5imlfg0qKY6OV3nefnSayfhXrX4KRqf3n45LS5mJum_fmHtON_dvA6XF2xU9YtzekGbLjiJmwfrfbfb8Gv7tfleD4dT76MLMs13V7O2Qyh2L3RjNHJ7DnDh1FV-iRlZsmQYzLjr0uwccawRY59wxSdTuAgktGyXsH02m_-TCH5Nhz33nx6ddBYFXBoWMlJ37BtqJQHN9JgHMnapKXnMsetkTYysTVpSsoRwmnkXWnSTrnTmAHyMDZZGBoZ3YHNYly4e8BM2M6kEBnd8xVxZDvSphmnKmmpxKTIBrBb_ZPKrtTNqchGrkpdZq5wOJUfzgCe1tBJKelxEeiFN4caoaendAYukWrQ31eDw3056PUTNQxgp7IXtXL_mWoRy4wpfgbwpP4YHZd2Y3ThxguPSTABRnKwDiM5_mQSygDulrZYN4jjVIUj1QngWW2c6_qz623t7wjV7Xf9w_1_hz6G7Q-ve-r92_7hA7iMXFKWq1M7sDmfLtxD5Gtz88j75W-BqThM
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB4trcTjwHOBwILMQ2gvSVMnTtJjhOiuQBshRNVyimzHYaNNk6pNgSLx3xnnJUBLBTdLHiVxPB5_4xl_A_ByTIX0XO2mcirQQUE7yH1fmc5E-QFzPTetqZTOIu905r5dsMUBjLu7MHXSvhSZVeRLq8jO69zK1VKOujyxERpQBxXxCgw9HVMawHAWvQ8_NTFJ12RtJBl1ywzQt-jYhGw64gW3qOvo4ka_7EFD_Tu_XQYwb8C1bbHiu688z3_HrvXmM70FH7rPbnJOLqxtJSz5_Q9Gx_8a12242UJREjZdd-BAFXfh6lkbbL8HP8LlrqzW5eo8kyTn-qpyTjYoioPKNkSnYVcEG1lX5yQhYkcQUBJR340gZUrQFVfkC_rjOt0GJYk-wysI3_vkz9r-HsJs-ubj61OzrdZgSkY1mWEgdN0OKphAo5EGmjhPpYpKwaQjPCmSRNNEuIojyEr8IKGKo7tHbU-kti2Ycx8GRVmoh0CEHaTMdVN9qdf1HDlhMkmpLomWMPSApAHH3fzFsqUy1xU18rghYaYxTnVcT7UBz3vRVcPfcZnQq1oJegm-vtAJbz6L59FJPH93wubTyI8XBhx1WhK3a30TjzWk9LSxNOBZ342rVIdeeKHKbS3jo7eLSGCfDKP4St9mBjxoNLD_IIr7Ev6piQEvepXcN57jWln_LhGHUVg3Hv3TAx_DdQSKrDl6OoJBtd6qJwjGKvG0XX4_AdnUMO8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Amyotrophic+lateral+sclerosis+onset+is+influenced+by+the+burden+of+rare+variants+in+known+amyotrophic+lateral+sclerosis+genes&rft.jtitle=Annals+of+neurology&rft.au=Cady%2C+Janet&rft.au=Allred%2C+Peggy&rft.au=Bali%2C+Taha&rft.au=Pestronk%2C+Alan&rft.date=2015-01-01&rft.issn=0364-5134&rft.eissn=1531-8249&rft.volume=77&rft.issue=1&rft.spage=100&rft.epage=113&rft_id=info:doi/10.1002%2Fana.24306&rft.externalDBID=10.1002%252Fana.24306&rft.externalDocID=ANA24306
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0364-5134&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0364-5134&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0364-5134&client=summon