Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo

We present a possible observing scenario for the Advanced LIGO and Advanced Virgo gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves. We determine the...

Full description

Saved in:
Bibliographic Details
Published inLiving reviews in relativity Vol. 19; no. 1; p. 1
Main Authors Abbott, B. P., Abbott, R., Abbott, T. D., Abernathy, M. R., Acernese, F., Ackley, K., Adams, C., Adams, T., Addesso, P., Adhikari, R. X., Camp, J. B., Gehrels, N., Singer, L. P.
Format Journal Article
LanguageEnglish
Published Goddard Space Flight Center Springer International Publishing 08.02.2016
Living Reviews
SpringerOpen
Subjects
Online AccessGet full text
ISSN2367-3613
1433-8351
1433-8351
DOI10.1007/lrr-2016-1

Cover

Abstract We present a possible observing scenario for the Advanced LIGO and Advanced Virgo gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves. We determine the expected sensitivity of the network to transient gravitational-wave signals, and study the capability of the network to determine the sky location of the source. We report our findings for gravitational-wave transients, with particular focus on gravitational-wave signals from the inspiral of binary neutron-star systems, which are considered the most promising for multi-messenger astronomy. The ability to localize the sources of the detected signals depends on the geographical distribution of the detectors and their relative sensitivity, and 90% credible regions can be as large as thousands of square degrees when only two sensitive detectors are operational. Determining the sky position of a significant fraction of detected signals to areas of 5 sq. deg to 20 sq. deg will require at least three detectors of sensitivity within a factor of approximately 2 of each other and with a broad frequency bandwidth. Should the third LIGO detector be relocated to India as expected, a significant fraction of gravitational-wave signals will be localized to a few square degrees by gravitational-wave observations alone.
AbstractList We present a possible observing scenario for the Advanced LIGO and Advanced Virgo gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves. We determine the expected sensitivity of the network to transient gravitational-wave signals, and study the capability of the network to determine the sky location of the source. We report our findings for gravitational-wave transients, with particular focus on gravitational-wave signals from the inspiral of binary neutron-star systems, which are considered the most promising for multi-messenger astronomy. The ability to localize the sources of the detected signals depends on the geographical distribution of the detectors and their relative sensitivity, and 90% credible regions can be as large as thousands of square degrees when only two sensitive detectors are operational. Determining the sky position of a significant fraction of detected signals to areas of 5 deg^2 to 20 deg^2 will require at least three detectors of sensitivity within a factor of ~2 of each other and with a broad frequency bandwidth. Should the third LIGO detector be relocated to India as expected, a significant fraction of gravitational-wave signals will be localized to a few square degrees by gravitational-wave observations alone.
We present a possible observing scenario for the Advanced LIGO and Advanced Virgo gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves. We determine the expected sensitivity of the network to transient gravitational-wave signals, and study the capability of the network to determine the sky location of the source. We report our findings for gravitational-wave transients, with particular focus on gravitational-wave signals from the inspiral of binary neutron-star systems, which are considered the most promising for multi-messenger astronomy. The ability to localize the sources of the detected signals depends on the geographical distribution of the detectors and their relative sensitivity, and 90% credible regions can be as large as thousands of square degrees when only two sensitive detectors are operational. Determining the sky position of a significant fraction of detected signals to areas of 5 deg2 to 20 deg2 will require at least three detectors of sensitivity within a factor of ∼ 2 of each other and with a broad frequency bandwidth. Should the third LIGO detector be relocated to India as expected, a significant fraction of gravitational-wave signals will be localized to a few square degrees by gravitational-wave observations alone.We present a possible observing scenario for the Advanced LIGO and Advanced Virgo gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves. We determine the expected sensitivity of the network to transient gravitational-wave signals, and study the capability of the network to determine the sky location of the source. We report our findings for gravitational-wave transients, with particular focus on gravitational-wave signals from the inspiral of binary neutron-star systems, which are considered the most promising for multi-messenger astronomy. The ability to localize the sources of the detected signals depends on the geographical distribution of the detectors and their relative sensitivity, and 90% credible regions can be as large as thousands of square degrees when only two sensitive detectors are operational. Determining the sky position of a significant fraction of detected signals to areas of 5 deg2 to 20 deg2 will require at least three detectors of sensitivity within a factor of ∼ 2 of each other and with a broad frequency bandwidth. Should the third LIGO detector be relocated to India as expected, a significant fraction of gravitational-wave signals will be localized to a few square degrees by gravitational-wave observations alone.
We present a possible observing scenario for the Advanced LIGO and Advanced Virgo gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves. We determine the expected sensitivity of the network to transient gravitational-wave signals, and study the capability of the network to determine the sky location of the source. We report our findings for gravitational-wave transients, with particular focus on gravitational-wave signals from the inspiral of binary neutron-star systems, which are considered the most promising for multi-messenger astronomy. The ability to localize the sources of the detected signals depends on the geographical distribution of the detectors and their relative sensitivity, and 90% credible regions can be as large as thousands of square degrees when only two sensitive detectors are operational. Determining the sky position of a significant fraction of detected signals to areas of 5 sq. deg to 20 sq. deg will require at least three detectors of sensitivity within a factor of approximately 2 of each other and with a broad frequency bandwidth. Should the third LIGO detector be relocated to India as expected, a significant fraction of gravitational-wave signals will be localized to a few square degrees by gravitational-wave observations alone.
We present a possible observing scenario for the Advanced LIGO and Advanced Virgo gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves. We determine the expected sensitivity of the network to transient gravitational-wave signals, and study the capability of the network to determine the sky location of the source. We report our findings for gravitational-wave transients, with particular focus on gravitational-wave signals from the inspiral of binary neutron-star systems, which are considered the most promising for multi-messenger astronomy. The ability to localize the sources of the detected signals depends on the geographical distribution of the detectors and their relative sensitivity, and 90% credible regions can be as large as thousands of square degrees when only two sensitive detectors are operational. Determining the sky position of a significant fraction of detected signals to areas of 5 deg2 to 20 deg2 will require at least three detectors of sensitivity within a factor of ∼ 2 of each other and with a broad frequency bandwidth. Should the third LIGO detector be relocated to India as expected, a significant fraction of gravitational-wave signals will be localized to a few square degrees by gravitational-wave observations alone.
We present a possible observing scenario for the Advanced LIGO and Advanced Virgo gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves. We determine the expected sensitivity of the network to transient gravitational-wave signals, and study the capability of the network to determine the sky location of the source. We report our findings for gravitational-wave transients, with particular focus on gravitational-wave signals from the inspiral of binary neutron-star systems, which are considered the most promising for multi-messenger astronomy. The ability to localize the sources of the detected signals depends on the geographical distribution of the detectors and their relative sensitivity, and 90% credible regions can be as large as thousands of square degrees when only two sensitive detectors are operational. Determining the sky position of a significant fraction of detected signals to areas of 5 deg to 20 deg will require at least three detectors of sensitivity within a factor of ∼ 2 of each other and with a broad frequency bandwidth. Should the third LIGO detector be relocated to India as expected, a significant fraction of gravitational-wave signals will be localized to a few square degrees by gravitational-wave observations alone.
We present a possible observing scenario for the Advanced LIGO and Advanced Virgo gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves. We determine the expected sensitivity of the network to transient gravitational-wave signals, and study the capability of the network to determine the sky location of the source. We report our findings for gravitational-wave transients, with particular focus on gravitational-wave signals from the inspiral of binary neutron-star systems, which are considered the most promising for multi-messenger astronomy. The ability to localize the sources of the detected signals depends on the geographical distribution of the detectors and their relative sensitivity, and 90% credible regions can be as large as thousands of square degrees when only two sensitive detectors are operational. Determining the sky position of a significant fraction of detected signals to areas of 5 deg 2 to 20 deg 2 will require at least three detectors of sensitivity within a factor of ∼ 2 of each other and with a broad frequency bandwidth. Should the third LIGO detector be relocated to India as expected, a significant fraction of gravitational-wave signals will be localized to a few square degrees by gravitational-wave observations alone.
ArticleNumber 1
Audience PUBLIC
Author Adhikari, R. X.
Acernese, F.
Abernathy, M. R.
Abbott, B. P.
Adams, T.
Singer, L. P.
Addesso, P.
Abbott, R.
Adams, C.
Camp, J. B.
Abbott, T. D.
Ackley, K.
Gehrels, N.
Author_xml – sequence: 1
  givenname: B. P.
  surname: Abbott
  fullname: Abbott, B. P.
  organization: California Inst. of Tech
– sequence: 2
  givenname: R.
  surname: Abbott
  fullname: Abbott, R.
  organization: California Inst. of Tech
– sequence: 3
  givenname: T. D.
  surname: Abbott
  fullname: Abbott, T. D.
  organization: Louisiana State Univ
– sequence: 4
  givenname: M. R.
  surname: Abernathy
  fullname: Abernathy, M. R.
  organization: California Inst. of Tech
– sequence: 5
  givenname: F.
  surname: Acernese
  fullname: Acernese, F.
  organization: Universita degli Studi di Salerno
– sequence: 6
  givenname: K.
  surname: Ackley
  fullname: Ackley, K.
  organization: Florida Univ
– sequence: 7
  givenname: C.
  surname: Adams
  fullname: Adams, C.
  organization: LIGO Livingston Observatory
– sequence: 8
  givenname: T.
  surname: Adams
  fullname: Adams, T.
  organization: Grenoble-1 Univ
– sequence: 9
  givenname: P.
  surname: Addesso
  fullname: Addesso, P.
  organization: Sannio Univ
– sequence: 10
  givenname: R. X.
  surname: Adhikari
  fullname: Adhikari, R. X.
  organization: California Inst. of Tech
– sequence: 11
  givenname: J. B.
  surname: Camp
  fullname: Camp, J. B.
  organization: NASA Goddard Space Flight Center
– sequence: 12
  givenname: N.
  surname: Gehrels
  fullname: Gehrels, N.
  organization: NASA Goddard Space Flight Center
– sequence: 13
  givenname: L. P.
  surname: Singer
  fullname: Singer, L. P.
  organization: NASA Goddard Space Flight Center
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28179853$$D View this record in MEDLINE/PubMed
https://in2p3.hal.science/in2p3-00807196$$DView record in HAL
BookMark eNp9ks1vEzEQxVeoiJbSC2eEckSgBX_be0GKKkgjRQqHCI7WrNebONrYwd5sVf56nCYEWlWcLNu_9zzzPC-LMx-8LYrXGH3ECMlPXYwlQViU-FlxgRmlpaIcnxUXhApZUoHpeXGVkqsRIxgjScWL4pwoLCvF6UWx_hZD2lrTp1Eb4mheJxsH55cj8M1oFgx07td-O4kwuB56Fzx05Q8Y7GgRwSdnfZbeun41GjcDeGOzbDqZ3-tPJ99dXIZXxfMWumSvjutlsfj6ZXF9U87mk-n1eFYaTjguWwQKCKGswsogzlTFFOJty1vU1lXFW4GJ5AQay7mQtZJVa7hUNWkaI01LL4vpwbYJsNbb6DYQ73QAp-8PQlxqiL0zndV1pYSsGG2QkoxVKG-BMiEk4wYDt9nrw8Fr57dwdwtddzLESO_z1zl_vc9f40x_PtDbXb2xjcnRROgelPDwxruVXoZB574FYvjvc6tHspvxTDtPtlQjpJDElRj29LvjczH83NnU641LxnYdeBt2SWMlhMjhMZXRt_9WdvL-MwcZQAfA5HFI0bbaHH87F-q6p7t9_0jy32iOnaUM-aWNeh12MY9Sepp-c6A9JNC5hLS_kQghSiShvwEU5Ooh
CitedBy_id crossref_primary_10_1103_PhysRevD_102_055004
crossref_primary_10_1103_PhysRevLett_122_111101
crossref_primary_10_3847_2041_8205_828_1_L4
crossref_primary_10_1088_1475_7516_2016_11_056
crossref_primary_10_1002_andp_201800365
crossref_primary_10_1093_ptep_pty012
crossref_primary_10_1103_PhysRevD_98_124014
crossref_primary_10_1007_s10714_018_2372_6
crossref_primary_10_1093_mnras_stab2716
crossref_primary_10_1103_PhysRevD_98_023542
crossref_primary_10_1088_1361_6382_aaff0d
crossref_primary_10_1103_PhysRevD_98_044028
crossref_primary_10_3847_2041_8213_aacdfd
crossref_primary_10_1103_PhysRevD_110_122006
crossref_primary_10_1088_0264_9381_33_17_174001
crossref_primary_10_1103_PhysRevD_95_122001
crossref_primary_10_1103_PhysRevLett_120_151101
crossref_primary_10_1098_rsta_2017_0286
crossref_primary_10_1103_PhysRevD_99_064045
crossref_primary_10_1007_s41114_020_00026_9
crossref_primary_10_1103_PhysRevD_96_084046
crossref_primary_10_3847_1538_4357_ab0e06
crossref_primary_10_1103_PhysRevLett_116_201301
crossref_primary_10_3847_2041_8213_abdab0
crossref_primary_10_1103_PhysRevD_94_102001
crossref_primary_10_1103_PhysRevD_94_021101
crossref_primary_10_3847_0004_637X_829_2_112
crossref_primary_10_1103_PhysRevLett_129_081102
crossref_primary_10_1103_PhysRevLett_116_131103
crossref_primary_10_1103_PhysRevResearch_1_033055
crossref_primary_10_1103_PhysRevD_101_103036
crossref_primary_10_1103_PhysRevLett_116_131102
crossref_primary_10_3847_1538_4357_aab34c
crossref_primary_10_1038_s41550_017_0112
crossref_primary_10_1103_PhysRevD_98_124030
crossref_primary_10_1103_PhysRevLett_119_181102
crossref_primary_10_1088_1742_6596_716_1_012031
crossref_primary_10_1103_PhysRevD_105_104019
crossref_primary_10_1017_S1743921318003678
crossref_primary_10_1098_rsta_2017_0279
crossref_primary_10_1017_S1743921318000169
crossref_primary_10_1088_1361_6382_aaab76
crossref_primary_10_3847_1538_4357_aa988a
crossref_primary_10_1002_asna_201913573
crossref_primary_10_1103_PhysRevD_95_064053
crossref_primary_10_1103_PhysRevD_95_064056
crossref_primary_10_1073_pnas_1612908114
crossref_primary_10_1142_S021773231730035X
crossref_primary_10_1093_mnras_stw2613
crossref_primary_10_1088_1742_6596_1030_1_012005
crossref_primary_10_1103_PhysRevD_95_064052
crossref_primary_10_1103_PhysRevD_96_084063
crossref_primary_10_1051_epjconf_201818202003
crossref_primary_10_1116_1_5122661
crossref_primary_10_3847_2041_8213_aa8edf
crossref_primary_10_1093_pasj_psx108
crossref_primary_10_1088_0264_9381_33_21_215004
crossref_primary_10_1093_mnras_sty1108
crossref_primary_10_3847_1538_4357_ab0108
crossref_primary_10_1103_PhysRevD_94_064062
crossref_primary_10_1103_PhysRevD_97_024052
crossref_primary_10_1103_PhysRevLett_116_221101
crossref_primary_10_1088_1742_6596_888_1_012001
crossref_primary_10_3847_1538_4357_aaf893
crossref_primary_10_1103_PhysRevD_99_043511
crossref_primary_10_1103_PhysRevD_110_123015
crossref_primary_10_1140_epjp_i2018_12048_4
crossref_primary_10_3847_1538_4357_aae30a
crossref_primary_10_1093_mnras_stw1746
crossref_primary_10_1088_1361_6382_aa9424
crossref_primary_10_1103_PhysRevLett_120_141103
crossref_primary_10_1007_s11018_021_01916_2
crossref_primary_10_1103_PhysRevD_94_124040
crossref_primary_10_1103_PhysRevLett_116_061102
crossref_primary_10_3847_1538_4357_aab6a9
crossref_primary_10_1103_PhysRevD_96_084004
crossref_primary_10_1103_PhysRevD_95_042003
crossref_primary_10_1103_PhysRevD_93_044071
crossref_primary_10_1103_PhysRevD_94_103012
crossref_primary_10_1103_PhysRevD_101_124054
crossref_primary_10_1103_PhysRevD_98_123021
crossref_primary_10_1088_1361_6382_aa68a9
crossref_primary_10_1063_1_5006336
crossref_primary_10_1093_mnrasl_slx189
crossref_primary_10_1088_1361_6633_ab12bc
crossref_primary_10_1093_mnras_stx1764
crossref_primary_10_1140_epjp_i2017_11283_5
crossref_primary_10_1103_PhysRevD_97_063516
crossref_primary_10_1093_mnras_stw1720
crossref_primary_10_3847_1538_4365_ac416c
crossref_primary_10_1093_mnras_stw1849
crossref_primary_10_1103_PhysRevD_95_124006
crossref_primary_10_1103_PhysRevD_93_104050
crossref_primary_10_3847_1538_4357_ad20eb
crossref_primary_10_3847_2041_8213_aa9aed
crossref_primary_10_1103_PhysRevD_93_124007
crossref_primary_10_1103_PhysRevD_96_024006
crossref_primary_10_1103_PhysRevD_96_082002
crossref_primary_10_3847_1538_4357_aab665
crossref_primary_10_1017_S1743921317001430
crossref_primary_10_1103_PhysRevD_95_084029
crossref_primary_10_1103_PhysRevD_99_044014
crossref_primary_10_1103_PhysRevD_99_084026
crossref_primary_10_1093_mnrasl_sly055
crossref_primary_10_1038_nature18322
crossref_primary_10_1103_PhysRevD_107_084017
crossref_primary_10_1088_1361_6633_aae6b5
crossref_primary_10_1093_mnras_sty814
crossref_primary_10_1016_j_jheap_2018_07_001
crossref_primary_10_1103_PhysRevLett_119_131101
crossref_primary_10_1103_Physics_9_17
crossref_primary_10_1088_1361_6382_aab675
crossref_primary_10_1103_PhysRevD_111_042001
crossref_primary_10_1103_PhysRevD_111_064015
crossref_primary_10_1103_PhysRevD_98_104017
crossref_primary_10_3847_1538_4357_ac34f4
crossref_primary_10_1103_PhysRevD_95_062003
crossref_primary_10_1142_S0218271817300166
crossref_primary_10_3847_1538_4357_aaad0e
crossref_primary_10_1088_1361_6382_ac1618
crossref_primary_10_1088_1361_6382_aa972e
crossref_primary_10_2139_ssrn_4610949
crossref_primary_10_1103_PhysRevD_111_063043
crossref_primary_10_1103_PhysRevD_93_112004
crossref_primary_10_1103_PhysRevD_99_124023
crossref_primary_10_1093_mnras_stw503
crossref_primary_10_1088_1361_6382_aa6354
crossref_primary_10_1103_PhysRevLett_121_231103
crossref_primary_10_1088_1361_6382_aa90e3
crossref_primary_10_1103_PhysRevD_98_104020
crossref_primary_10_1103_PhysRevLett_121_173601
crossref_primary_10_1093_mnras_stx2923
crossref_primary_10_1103_PhysRevD_97_044033
crossref_primary_10_1093_mnras_stx1959
crossref_primary_10_3847_1538_4357_aadad9
crossref_primary_10_3847_0004_637X_832_2_192
crossref_primary_10_1155_2016_6341974
crossref_primary_10_1103_PhysRevLett_118_121101
crossref_primary_10_1016_j_optcom_2021_127188
crossref_primary_10_1088_1361_6382_aab793
crossref_primary_10_3847_1538_4357_835_1_31
crossref_primary_10_1103_PhysRevD_104_104008
crossref_primary_10_3847_2041_8213_aa8f3d
crossref_primary_10_3847_2041_8213_ac2832
crossref_primary_10_1103_PhysRevD_97_055016
crossref_primary_10_3847_1538_4357_ad9c77
crossref_primary_10_3847_2041_8213_aa9f0c
crossref_primary_10_1103_PhysRevD_104_124060
crossref_primary_10_3847_1538_4357_aa677f
crossref_primary_10_1088_1361_6382_aa6d44
crossref_primary_10_1103_PhysRevLett_121_021303
crossref_primary_10_1093_mnras_staa950
crossref_primary_10_3390_galaxies8040080
crossref_primary_10_1103_PhysRevLett_117_101102
crossref_primary_10_1103_PhysRevX_6_041015
crossref_primary_10_1103_PhysRevD_93_124004
crossref_primary_10_1103_PhysRevD_99_124043
crossref_primary_10_3847_1538_4357_aa6c47
crossref_primary_10_1103_PhysRevLett_116_241102
crossref_primary_10_1088_0264_9381_33_24_244002
crossref_primary_10_1103_PhysRevD_98_043002
crossref_primary_10_1103_PhysRevD_111_043008
crossref_primary_10_3847_1538_3881_aae094
crossref_primary_10_1016_j_physletb_2017_02_054
crossref_primary_10_1103_PhysRevD_102_123508
crossref_primary_10_1103_PhysRevLett_122_041103
crossref_primary_10_1103_PhysRevD_106_042006
crossref_primary_10_3847_2041_8213_abbc10
crossref_primary_10_1088_1361_6382_aa7649
crossref_primary_10_1103_PhysRevD_97_023004
crossref_primary_10_3847_1538_4357_834_2_154
crossref_primary_10_3847_1538_4357_aa8f50
crossref_primary_10_1016_j_asr_2018_04_013
crossref_primary_10_1103_PhysRevD_109_024013
crossref_primary_10_1103_PhysRevD_93_124062
crossref_primary_10_3847_1538_4357_ad2704
crossref_primary_10_1007_s41114_018_0012_9
crossref_primary_10_1103_PhysRevD_97_044039
crossref_primary_10_1103_PhysRevLett_119_141101
crossref_primary_10_3847_1538_4357_835_1_82
crossref_primary_10_1093_mnras_sty840
crossref_primary_10_1103_PhysRevD_97_104037
crossref_primary_10_1103_PhysRevD_98_022008
crossref_primary_10_1103_PhysRevD_97_104036
crossref_primary_10_1088_0264_9381_33_17_175012
crossref_primary_10_1088_1742_6596_873_1_012013
crossref_primary_10_1093_mnras_stw3292
crossref_primary_10_1088_1742_6596_888_1_012099
crossref_primary_10_3847_1538_4357_aa850e
crossref_primary_10_3847_2041_8213_aa799d
crossref_primary_10_1103_PhysRevD_102_123524
crossref_primary_10_1103_PhysRevD_99_123029
crossref_primary_10_1103_PhysRevX_9_011001
crossref_primary_10_1103_PhysRevLett_120_161102
crossref_primary_10_1103_PhysRevD_93_064041
crossref_primary_10_1103_PhysRevD_97_104064
crossref_primary_10_1088_1361_6382_aca238
crossref_primary_10_3847_2041_8213_835_2_L22
crossref_primary_10_1103_PhysRevD_98_103024
crossref_primary_10_1103_PhysRevD_93_064047
crossref_primary_10_1103_PhysRevD_99_042001
crossref_primary_10_3847_1538_4357_ab733f
crossref_primary_10_1007_s10714_020_02754_3
crossref_primary_10_1093_mnras_staa3225
crossref_primary_10_1103_PhysRevD_97_104058
crossref_primary_10_1103_PhysRevD_97_104057
crossref_primary_10_3847_2041_8213_aa9bf6
crossref_primary_10_1093_mnras_stz2840
crossref_primary_10_1103_PhysRevD_109_064009
crossref_primary_10_1103_PhysRevD_96_044011
crossref_primary_10_1088_1361_6633_aaa4ab
crossref_primary_10_3847_2041_8205_826_1_L13
crossref_primary_10_1103_PhysRevD_97_064016
crossref_primary_10_1103_PhysRevD_95_082005
crossref_primary_10_1007_s11214_018_0466_9
crossref_primary_10_1016_j_physletb_2020_135330
crossref_primary_10_1051_0004_6361_202451612
crossref_primary_10_1093_mnras_sty411
crossref_primary_10_1093_mnras_stw233
crossref_primary_10_1093_mnras_sty1703
crossref_primary_10_1103_PhysRevX_7_041025
crossref_primary_10_1093_mnras_stx3077
crossref_primary_10_3847_2041_8213_aacf9f
crossref_primary_10_1093_pasj_psy076
crossref_primary_10_1093_mnras_stac715
crossref_primary_10_3847_2041_8213_aa8f94
crossref_primary_10_1103_PhysRevD_95_024010
crossref_primary_10_3847_1538_4357_835_1_7
crossref_primary_10_1103_PhysRevA_93_063817
crossref_primary_10_1103_PhysRevD_100_124003
crossref_primary_10_1103_PhysRevD_103_082002
crossref_primary_10_1103_PhysRevD_97_064031
crossref_primary_10_1088_1361_6382_aa552e
crossref_primary_10_1093_mnras_stx3087
crossref_primary_10_1051_0004_6361_201628993
crossref_primary_10_1088_1361_6382_aa82d9
crossref_primary_10_3847_0004_637X_820_1_7
crossref_primary_10_1103_PhysRevD_96_022001
crossref_primary_10_1103_PhysRevD_94_084002
crossref_primary_10_1103_PhysRevD_94_084003
crossref_primary_10_1051_0004_6361_202142628
crossref_primary_10_3847_2041_8213_aaa07d
crossref_primary_10_1088_1475_7516_2018_02_030
crossref_primary_10_3847_2041_8213_ab4ad5
crossref_primary_10_3847_2041_8213_ab86bc
crossref_primary_10_1126_science_aaq0049
crossref_primary_10_1103_PhysRevD_95_103012
crossref_primary_10_1103_PhysRevD_96_043019
crossref_primary_10_3847_1538_4365_aba2f3
crossref_primary_10_1142_S0217751X1744002X
crossref_primary_10_1103_PhysRevD_110_103018
crossref_primary_10_3847_1538_4357_aaa0cb
crossref_primary_10_1103_PhysRevD_95_103010
crossref_primary_10_3847_2041_8213_aa9478
crossref_primary_10_1093_pasj_psx085
crossref_primary_10_1016_j_physletb_2017_05_020
crossref_primary_10_3847_1538_4357_ab6611
crossref_primary_10_1103_PhysRevD_104_044003
crossref_primary_10_3847_1538_4357_aad6eb
crossref_primary_10_1002_asna_202113890
crossref_primary_10_1103_PhysRevD_98_024050
crossref_primary_10_1088_1361_6382_aa9cad
crossref_primary_10_1103_PhysRevD_94_084013
crossref_primary_10_1103_PhysRevD_111_044009
crossref_primary_10_1103_PhysRevD_93_064004
crossref_primary_10_1103_PhysRevD_98_084016
crossref_primary_10_1093_mnras_stz2925
crossref_primary_10_1103_PhysRevLett_129_032701
crossref_primary_10_1103_PhysRevD_100_043030
crossref_primary_10_1103_PhysRevD_111_044052
crossref_primary_10_3847_2041_8205_822_1_L8
crossref_primary_10_1088_1742_6596_1390_1_012086
crossref_primary_10_1103_PhysRevD_109_064048
crossref_primary_10_1103_PhysRevLett_119_161102
crossref_primary_10_1103_PhysRevLett_119_161101
crossref_primary_10_1088_1402_4896_aa93a8
crossref_primary_10_3847_1538_4357_aa6f0d
crossref_primary_10_1007_s41114_017_0004_1
crossref_primary_10_3847_2041_8205_823_2_L33
crossref_primary_10_3847_1538_4357_aa5d09
crossref_primary_10_1103_PhysRevLett_121_191102
crossref_primary_10_1103_PhysRevD_99_083008
crossref_primary_10_1051_0004_6361_201935443
crossref_primary_10_1088_1361_6471_ab2c6d
crossref_primary_10_1088_1361_6382_ab2142
crossref_primary_10_1007_s12648_019_01459_x
crossref_primary_10_1103_PhysRevD_98_063001
crossref_primary_10_1103_PhysRevLett_121_221102
crossref_primary_10_3847_2041_8213_aa9e08
crossref_primary_10_3847_1538_4357_acfcb1
crossref_primary_10_1134_S1063779617060181
crossref_primary_10_3847_1538_4357_aa9ce5
crossref_primary_10_1103_PhysRevD_98_024023
crossref_primary_10_1103_PhysRevD_103_044013
crossref_primary_10_1103_PhysRevD_98_024029
crossref_primary_10_1103_PhysRevD_93_084042
crossref_primary_10_1103_PhysRevD_93_122004
crossref_primary_10_1103_PhysRevD_96_122006
crossref_primary_10_1117_1_OE_57_5_054113
crossref_primary_10_1103_PhysRevD_96_023012
crossref_primary_10_1103_PhysRevD_107_024040
crossref_primary_10_1038_ncomms14906
crossref_primary_10_1103_PhysRevLett_126_071303
crossref_primary_10_1103_PhysRevD_93_122010
crossref_primary_10_1093_mnras_stw379
crossref_primary_10_1038_s41586_018_0606_0
crossref_primary_10_1103_PhysRevLett_122_061105
crossref_primary_10_1088_2632_2153_ad1200
crossref_primary_10_1103_PhysRevD_95_024038
crossref_primary_10_1103_PhysRevD_96_044047
crossref_primary_10_1103_PhysRevD_97_101501
crossref_primary_10_1051_0004_6361_201833025
crossref_primary_10_1088_1402_4896_aa85cc
crossref_primary_10_1017_S1743921316012515
crossref_primary_10_1038_s41467_017_00851_7
crossref_primary_10_1093_mnras_stac685
crossref_primary_10_3847_2041_8213_aa8fc7
crossref_primary_10_1088_1742_6596_1342_1_012010
crossref_primary_10_3847_2041_8213_aaacd4
crossref_primary_10_1007_s10686_019_09636_w
crossref_primary_10_1088_1361_6382_aa96c5
crossref_primary_10_3847_2041_8213_aa97d5
crossref_primary_10_1088_1361_6382_aaeb5c
crossref_primary_10_1103_PhysRevLett_119_251103
crossref_primary_10_1103_PhysRevD_106_023011
crossref_primary_10_3847_2041_8205_832_2_L21
crossref_primary_10_1103_PhysRevD_102_124077
crossref_primary_10_1088_1361_6382_aa6bb0
crossref_primary_10_1103_PhysRevD_106_023024
crossref_primary_10_1093_mnras_stz3190
crossref_primary_10_1103_PhysRevD_93_084019
crossref_primary_10_1103_PhysRevD_93_062002
crossref_primary_10_3847_1538_4357_ac82ae
crossref_primary_10_1093_mnras_stx3242
crossref_primary_10_1103_PhysRevD_105_084024
crossref_primary_10_1103_PhysRevD_105_084021
crossref_primary_10_1038_s41550_021_01428_7
crossref_primary_10_1103_PhysRevD_111_024024
crossref_primary_10_1103_PhysRevD_111_044073
crossref_primary_10_3847_2041_8213_aa905d
crossref_primary_10_1103_PhysRevD_100_024002
crossref_primary_10_3367_UFNe_2016_11_038088
crossref_primary_10_3847_2041_8213_aa905e
crossref_primary_10_1103_PhysRevD_101_044019
crossref_primary_10_1103_PhysRevD_98_063503
crossref_primary_10_3847_1538_4357_ab3e03
crossref_primary_10_1093_pasj_psx125
crossref_primary_10_1103_PhysRevD_104_063011
crossref_primary_10_1103_PhysRevD_101_024041
crossref_primary_10_3847_1538_4357_aae583
crossref_primary_10_1103_PhysRevD_100_024015
crossref_primary_10_1093_mnras_stad541
crossref_primary_10_3847_1538_4357_aaef7c
crossref_primary_10_3847_1538_4357_ab4ae0
crossref_primary_10_1088_1361_6382_aa5cea
crossref_primary_10_3847_2041_8205_824_2_L24
crossref_primary_10_1038_ncomms12898
crossref_primary_10_1088_1361_6382_abfd85
crossref_primary_10_1103_PhysRevD_95_124046
crossref_primary_10_1002_asna_201813473
crossref_primary_10_1093_mnras_stz675
crossref_primary_10_1063_5_0147888
crossref_primary_10_3847_2041_8205_829_1_L15
crossref_primary_10_3847_1538_4357_aab7f3
crossref_primary_10_1103_PhysRevD_111_L061305
crossref_primary_10_1016_j_astropartphys_2019_04_008
crossref_primary_10_1103_PhysRevD_95_124042
crossref_primary_10_1103_RevModPhys_90_025006
crossref_primary_10_1103_PhysRevD_93_083010
crossref_primary_10_1016_j_ascom_2022_100664
crossref_primary_10_1103_PhysRevD_96_084067
crossref_primary_10_1093_mnras_sty1066
crossref_primary_10_1093_mnras_stw1219
crossref_primary_10_1103_PhysRevD_97_123003
crossref_primary_10_1002_asna_201713415
crossref_primary_10_1103_PhysRevD_99_061501
crossref_primary_10_1103_PhysRevD_95_104046
crossref_primary_10_3847_0067_0049_227_2_14
crossref_primary_10_3847_2041_8205_825_1_L12
crossref_primary_10_3847_1538_4357_aa63ef
crossref_primary_10_1093_mnras_stx2345
crossref_primary_10_1088_1361_6382_acb3a7
crossref_primary_10_1103_PhysRevLett_121_061102
crossref_primary_10_3847_2041_8205_829_2_L28
crossref_primary_10_1093_mnrasl_slw239
crossref_primary_10_1103_PhysRevD_95_044045
crossref_primary_10_3847_2041_8213_aa910f
crossref_primary_10_1093_mnras_stw2550
crossref_primary_10_1103_PhysRevD_97_123014
crossref_primary_10_1103_PhysRevD_95_104038
crossref_primary_10_1088_1361_6382_aae593
crossref_primary_10_1103_PhysRevD_95_044039
crossref_primary_10_1103_PhysRevD_96_064050
crossref_primary_10_1103_PhysRevD_95_104036
crossref_primary_10_3847_2041_8205_827_1_L16
crossref_primary_10_32446_0368_1025it_2021_3_22_28
crossref_primary_10_1103_PhysRevLett_123_161102
crossref_primary_10_1103_PhysRevD_102_124053
crossref_primary_10_1007_s10509_017_3014_2
crossref_primary_10_3847_2041_8213_aa9a35
crossref_primary_10_1103_PhysRevD_96_124035
crossref_primary_10_1093_mnras_stz241
crossref_primary_10_3847_2041_8205_824_1_L8
crossref_primary_10_1093_mnras_sty031
crossref_primary_10_1103_PhysRevD_103_124015
crossref_primary_10_1103_PhysRevD_102_064063
crossref_primary_10_3847_2041_8213_ab3f33
crossref_primary_10_3847_1538_4357_abeb71
crossref_primary_10_3847_2041_8205_828_2_L16
crossref_primary_10_1103_PhysRevD_94_121501
crossref_primary_10_1016_j_physleta_2020_126601
crossref_primary_10_3847_2041_8213_ab50c0
crossref_primary_10_1103_PhysRevD_98_083007
crossref_primary_10_1103_PhysRevLett_125_261101
crossref_primary_10_3847_0004_637X_825_2_116
crossref_primary_10_3847_1538_4357_aa86f0
crossref_primary_10_1093_mnras_stae836
crossref_primary_10_1103_PhysRevD_94_024012
crossref_primary_10_1093_mnras_stw1446
crossref_primary_10_1103_PhysRevD_95_104013
crossref_primary_10_1103_PhysRevD_110_084003
crossref_primary_10_3847_1538_4357_aabfee
Cites_doi 10.1103/PhysRevD.84.104020
10.1103/PhysRevD.85.122007
10.1051/0004-6361/201218860
10.1088/0034-4885/72/7/076901
10.1088/0004-637X/795/2/105
10.1088/0004-637X/800/2/81
10.1088/0264-9381/27/17/173001
10.1088/0004-637X/748/2/136
10.1103/PhysRevD.83.083004
10.1103/PhysRevD.89.024003
10.1051/0004-6361/201118219
10.1088/0264-9381/26/6/063001
10.1088/0264-9381/28/12/125023
10.1103/PhysRevD.91.104021
10.1088/0004-637X/760/1/12
10.1088/0004-637X/806/2/263
10.1103/PhysRevLett.113.011102
10.1088/0004-637X/767/2/124
10.1088/0264-9381/29/15/155002
10.1088/0067-0049/203/2/28
10.1103/PhysRevD.93.024013
10.1088/1367-2630/12/5/053034
10.1103/PhysRevD.85.064034
10.1103/PhysRevD.80.102001
10.1103/PhysRevD.88.062006
10.1088/0264-9381/26/20/204004
10.1103/PhysRevD.89.122004
10.1103/PhysRevLett.106.161103
10.1103/PhysRevD.93.022002
10.1088/1367-2630/11/12/123006
10.1103/PhysRevD.88.044042
10.1103/PhysRevLett.114.071104
10.1088/0264-9381/32/13/135012
10.1103/PhysRevD.83.102001
10.1103/PhysRevD.80.084043
10.1088/0264-9381/27/19/194017
10.1088/0264-9381/32/2/024001
10.1088/0264-9381/29/12/124013
10.1088/0264-9381/31/19/195010
10.1103/PhysRevD.74.082005
10.1103/PhysRevD.91.042003
10.1088/0264-9381/32/11/115012
10.1093/mnras/stv2213
10.1103/PhysRevD.81.102001
10.1103/PhysRevD.72.122002
10.1103/PhysRevD.85.104045
10.1103/PhysRevD.88.043007
10.1088/0264-9381/27/8/084006
10.1103/PhysRevLett.115.051101
10.1103/PhysRevD.89.061502
10.1088/0264-9381/25/11/114029
10.1093/mnras/stu2729
10.1103/PhysRevD.87.124005
10.1103/PhysRevD.88.124039
10.1103/PhysRevD.89.024010
10.1103/PhysRevD.60.022002
10.1103/PhysRevD.91.062005
10.1088/0264-9381/27/19/194005
10.1103/PhysRevD.91.024043
10.1088/0004-637X/784/2/119
10.1103/PhysRevD.86.084017
10.1103/PhysRevD.78.064056
10.1103/PhysRevD.90.082004
10.1088/2041-8205/789/1/L5
10.1103/PhysRevD.71.062001
10.1103/PhysRevD.89.084006
10.1088/0004-637X/779/1/72
10.1103/PhysRevD.47.2198
10.1088/0004-637X/804/2/114
10.1103/PhysRevD.91.084034
10.1103/PhysRevD.93.044007
10.1103/PhysRevD.78.124020
10.1088/0264-9381/27/11/114007
10.1088/0264-9381/29/12/124007
10.1103/PhysRevD.89.084060
10.1103/PhysRevD.87.024033
10.1103/PhysRevD.88.062001
10.1088/0004-637X/814/1/58
10.1088/0004-637X/739/2/99
10.1103/PhysRevD.91.062010
10.1103/PhysRevD.49.2658
10.1103/PhysRevD.85.082002
10.1088/0067-0049/211/1/7
10.1088/0264-9381/28/10/105021
10.1103/PhysRevD.89.042004
10.1088/0067-0049/217/1/8
10.1103/PhysRevD.88.083010
ContentType Journal Article
Copyright The Author(s) 2016
Attribution
Copyright_xml – notice: The Author(s) 2016
– notice: Attribution
CorporateAuthor The LIGO Scientific Collaboration
Virgo Collaboration
LIGO Scientific Collaboration
CorporateAuthor_xml – name: The LIGO Scientific Collaboration
– name: Virgo Collaboration
– name: LIGO Scientific Collaboration
DBID CYE
CYI
C6C
AAYXX
CITATION
NPM
7X8
1XC
VOOES
5PM
ADTOC
UNPAY
DOA
DOI 10.1007/lrr-2016-1
DatabaseName NASA Scientific and Technical Information
NASA Technical Reports Server
Springer Nature OA Free Journals
CrossRef
PubMed
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic


PubMed


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1433-8351
ExternalDocumentID oai_doaj_org_article_b9867943d0874490986a3466745c1a5e
10.1007/lrr-2016-1
PMC5256041
oai_HAL_in2p3_00807196v1
28179853
10_1007_lrr_2016_1
20170003272
Genre Journal Article
Review
GroupedDBID -~9
0R~
29L
2WC
5GY
5VS
AAFWJ
AAKKN
ABDBF
ABEEZ
ACACY
ACGFO
ACGFS
ACUHS
ACULB
ADBBV
AEGXH
AENEX
AFGXO
AFPKN
AHSBF
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
B0M
BAPOH
BCNDV
BENPR
BHPHI
BKSAR
C24
C6C
CYE
CYI
E3Z
EAP
EBS
EJD
EMK
ESX
GROUPED_DOAJ
HCIFZ
I-F
IAO
ISR
ITC
J9A
KQ8
M~E
OK1
OVT
P2P
PIMPY
PROAC
REM
RNS
SOJ
TR2
TUS
XSB
~8M
AEUYN
AFKRA
ASPBG
AVWKF
C1A
CCPQU
IPNFZ
PCBAR
RIG
RSV
AAYXX
CITATION
PHGZM
PHGZT
PUEGO
NPM
7X8
1XC
VOOES
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c5251-f0a8a2234918c054894805ff5f0fb995f612752ade5567b879fc578b2ddc7cf3
IEDL.DBID DOA
ISSN 2367-3613
1433-8351
IngestDate Wed Aug 27 00:48:45 EDT 2025
Wed Oct 01 16:58:05 EDT 2025
Tue Sep 30 16:49:50 EDT 2025
Sun Sep 28 07:53:58 EDT 2025
Fri Jul 11 16:21:47 EDT 2025
Wed Feb 19 01:57:11 EST 2025
Wed Oct 01 04:29:23 EDT 2025
Thu Apr 24 22:50:36 EDT 2025
Fri Feb 21 02:33:02 EST 2025
Fri Sep 19 16:16:28 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Data Analysis
Gravitational Waves Gravitational-Wave Detectors Electromagnetic
Counterparts
Data analysis
Electromagnetic counterparts
Gravitational waves
Gravitational-wave detectors
Language English
License Attribution: http://creativecommons.org/licenses/by
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5251-f0a8a2234918c054894805ff5f0fb995f612752ade5567b879fc578b2ddc7cf3
Notes Report Number: VIR-0288A-12
GSFC-E-DAA-TN41341
GSFC
VIR-0288A-12
Report Number: LIGO P1200087
LIGO P1200087
Goddard Space Flight Center
E-ISSN: 1433-8351
Report Number: GSFC-E-DAA-TN41341
ISSN: 2367-3613
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
PMCID: PMC5256041
ORCID 0000-0002-4551-2902
0000-0001-9432-7108
0000-0002-5172-0783
0000-0002-8454-7497
0000-0002-1890-1128
0000-0003-3768-9908
0000-0001-6487-5197
0000-0003-4344-7227
0000-0001-7469-4250
0000-0003-1685-3545
0000-0002-3658-7240
0000-0002-2321-1017
0000-0003-0158-2826
0000-0003-0589-9687
0000-0002-1110-1152
0000-0002-0631-1198
0000-0002-2002-1701
0000-0002-1377-1272
0000-0001-9870-6850
0000-0002-4618-1674
0000-0002-1019-6911
0000-0002-4918-0247
OpenAccessLink https://doaj.org/article/b9867943d0874490986a3466745c1a5e
PMID 28179853
PQID 1866694848
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_b9867943d0874490986a3466745c1a5e
unpaywall_primary_10_1007_lrr_2016_1
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5256041
hal_primary_oai_HAL_in2p3_00807196v1
proquest_miscellaneous_1866694848
pubmed_primary_28179853
crossref_citationtrail_10_1007_lrr_2016_1
crossref_primary_10_1007_lrr_2016_1
springer_journals_10_1007_lrr_2016_1
nasa_ntrs_20170003272
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-02-08
PublicationDateYYYYMMDD 2016-02-08
PublicationDate_xml – month: 02
  year: 2016
  text: 2016-02-08
  day: 08
PublicationDecade 2010
PublicationPlace Goddard Space Flight Center
PublicationPlace_xml – name: Goddard Space Flight Center
– name: Cham
– name: Switzerland
PublicationTitle Living reviews in relativity
PublicationTitleAbbrev Living Rev Relativ
PublicationTitleAlternate Living Rev Relativ
PublicationYear 2016
Publisher Springer International Publishing
Living Reviews
SpringerOpen
Publisher_xml – name: Springer International Publishing
– name: Living Reviews
– name: SpringerOpen
References Adams, Meacher, Clark, Sutton, Jones, Minot (CR26) 2013; 88
Abbott (CR21) 2009; 72
CR38
Abbott (CR22) 2009; 80
Fairhurst (CR55) 2009; 11
CR33
Pan, Buonanno, Taracchini, Kidder, Mroué, Pfeiffer, Scheel, Szilágyi (CR85) 2014; 89
Rodriguez, Morscher, Pattabiraman, Chatterjee, Haster, Rasio (CR92) 2015; 115
Nissanke, Kasliwal, Georgieva (CR79) 2013; 767
Klimenko, Mohanty, Rakhmanov, Mitselmakher (CR70) 2005; 72
Berry (CR31) 2015; 804
Miller, Barsotti, Vitale, Fritschel, Evans, Sigg (CR78) 2015; 91
Aasi (CR10) 2015; 32
Sidery (CR97) 2014; 89
Aasi (CR7) 2014; 113
Harry (CR61) 2010; 27
Aasi (CR2) 2013
Canizares, Field, Gair, Raymond, Smith, Tiglio (CR36) 2015; 114
Iyer, Souradeep, Unnikrishnan, Dhurandhar, Raja, Sengupta (CR64) 2011
Lindblom, Owen, Brown (CR74) 2008; 78
Abadie (CR16) 2012; 539
Aasi (CR1) 2012; 29
Somiya (CR100) 2012; 29
Vitale, Del Pozzo, Li, Van Den Broeck, Mandel, Aylott, Veitch (CR111) 2012; 85
Dimmelmeier, Ott, Marek, Janka (CR48) 2008; 78
Kim, Perera, McLaughlin (CR69) 2015; 448
Ott (CR83) 2011; 106
CR42
Sutton (CR102) 2010; 12
Abadie (CR14) 2012; 85
Aasi (CR11) 2015
Aasi (CR6) 2014; 89
Thrane, Coughlin (CR104) 2013; 88
Mandel, O’Shaughnessy (CR77) 2010; 27
Dominik (CR50) 2015; 806
Khan, Husa, Hannam, Ohme, Pürrer, Forteza, Bohe (CR68) 2016; 93
Canizares, Field, Gair, Tiglio (CR37) 2013; 87
CR59
CR57
Kanner (CR66) 2016; 93
CR54
Allen (CR27) 2005; 71
Singer, Price (CR98) 2016; 93
Evans (CR52) 2016; 455
Thrane (CR106) 2011; 83
Nitz, Lundgren, Brown, Ochsner, Keppel, Harry (CR81) 2013; 88
Grover, Fairhurst, Farr, Mandel, Rodriguez, Sidery, Vecchio (CR60) 2014; 89
Fairhurst (CR56) 2011; 28
Blackburn, Briggs, Camp, Christensen, Connaughton, Jenke, Remillard, Veitch (CR32) 2015; 217
Finn, Chernoff (CR58) 1993; 47
Kasliwal, Nissanke (CR67) 2014; 789
Sathyaprakash (CR93) 2012; 29
de Mink, Belczynski (CR47) 2015; 814
CR65
Ott (CR82) 2009; 26
Abadie (CR19) 2012; 85
Accadia (CR23) 2012
Acernese (CR25) 2015; 32
Aasi (CR5) 2014; 211
Abadie (CR15) 2012; 541
Dal Canton, Lundgren, Nielsen (CR45) 2015; 91
Dominik, Belczynski, Fryer, Holz, Berti, Bulik, Mandel, O’Shaughnessy (CR49) 2013; 779
Cannon (CR39) 2012; 748
Aso, Michimura, Somiya, Ando, Miyakawa, Sekiguchi, Tatsumi, Yamamoto (CR28) 2013; 88
CR73
Privitera (CR88) 2014; 89
Chassande-Mottin, Miele, Mohapatra, Cadonati (CR40) 2010; 27
Babak (CR29) 2013; 87
Littenberg, Cornish (CR75) 2015; 91
Yakunin (CR113) 2002; 27
Essick, Vitale, Katsavounidis, Vedovato, Klimenko (CR51) 2015; 800
CR4
Cornish, Littenberg (CR43) 2015; 32
Read (CR90) 2013; 88
Vallisneri, Kanner, Williams, Weinstein, Stephens (CR108) 2015; 610
Klimenko, Yakushin, Mercer, Mitselmakher (CR71) 2008; 25
Acernese (CR24) 2009
Vitale, Zanolin (CR112) 2011; 84
CR87
Schutz (CR96) 2011; 28
Thrane, Mandic, Christensen (CR105) 2015; 91
Buonanno, Iyer, Ochsner, Pan, Sathyaprakash (CR35) 2009; 80
Aasi (CR8) 2014
Dal Canton (CR46) 2014; 90
Abadie (CR13) 2010; 27
Brown, Harry, Lundgren, Nitz (CR34) 2012; 86
Aasi (CR3) 2013; 88
Rodriguez, Farr, Raymond, Farr, Littenberg, Fazi, Kalogera (CR91) 2014; 784
Chatterji, Lazzarini, Stein, Sutton, Searle, Tinto (CR41) 2006; 74
Hild (CR63) 2012
Owen, Sathyaprakash (CR84) 1999; 60
Abadie (CR12) 2010; 81
Singer (CR99) 2014; 795
Pankow, Klimenko, Mitselmakher, Yakushin, Vedovato, Drago, Mercer, Ajith (CR86) 2009; 26
Aasi (CR9) 2015; 32
Abadie (CR18) 2012; 760
CR94
Schmidt, Ohme, Hannam (CR95) 2015; 91
Nissanke, Sievers, Dalal, Holz (CR80) 2011; 739
Barsotti, Fritschel (CR30) 2012
Veitch (CR110) 2015; 91
Cutler, Flanagan (CR44) 1994; 49
Evans (CR53) 2012; 203
Lück (CR76) 2010; 228
Harry, Nitz, Brown, Lundgren, Ochsner, Keppel (CR62) 2014; 89
Pürrer (CR89) 2014; 31
CR20
Klimenko (CR72) 2011; 83
CR101
Abadie (CR17) 2012
Taracchini (CR103) 2014; 89
Veitch (CR109) 2012; 85
CR107
I Mandel (9001_CR77) 2010; 27
LP Singer (9001_CR98) 2016; 93
9001_CR38
PA Evans (9001_CR53) 2012; 203
J Aasi (9001_CR7) 2014; 113
S Vitale (9001_CR111) 2012; 85
Y Pan (9001_CR85) 2014; 89
9001_CR33
JB Kanner (9001_CR66) 2016; 93
9001_CR101
J Abadie (9001_CR14) 2012; 85
CPL Berry (9001_CR31) 2015; 804
J Aasi (9001_CR2) 2013
C Pankow (9001_CR86) 2009; 26
9001_CR4
9001_CR42
J Veitch (9001_CR110) 2015; 91
R Essick (9001_CR51) 2015; 800
K Cannon (9001_CR39) 2012; 748
S Klimenko (9001_CR70) 2005; 72
L Barsotti (9001_CR30) 2012
9001_CR57
9001_CR59
S Klimenko (9001_CR72) 2011; 83
J Abadie (9001_CR16) 2012; 539
J Aasi (9001_CR10) 2015; 32
C Cutler (9001_CR44) 1994; 49
S Nissanke (9001_CR80) 2011; 739
J Aasi (9001_CR8) 2014
S Chatterji (9001_CR41) 2006; 74
H Lück (9001_CR76) 2010; 228
9001_CR54
A Taracchini (9001_CR103) 2014; 89
J Abadie (9001_CR17) 2012
BJ Owen (9001_CR84) 1999; 60
L Lindblom (9001_CR74) 2008; 78
S Fairhurst (9001_CR56) 2011; 28
BR Iyer (9001_CR64) 2011
M Vallisneri (9001_CR108) 2015; 610
J Aasi (9001_CR6) 2014; 89
J Miller (9001_CR78) 2015; 91
M Dominik (9001_CR49) 2013; 779
S Privitera (9001_CR88) 2014; 89
J Aasi (9001_CR1) 2012; 29
F Acernese (9001_CR25) 2015; 32
BP Abbott (9001_CR22) 2009; 80
CD Ott (9001_CR82) 2009; 26
9001_CR65
KN Yakunin (9001_CR113) 2002; 27
J Abadie (9001_CR18) 2012; 760
J Abadie (9001_CR15) 2012; 541
B Sathyaprakash (9001_CR93) 2012; 29
E Chassande-Mottin (9001_CR40) 2010; 27
C Kim (9001_CR69) 2015; 448
P Schmidt (9001_CR95) 2015; 91
J Aasi (9001_CR9) 2015; 32
J Abadie (9001_CR12) 2010; 81
LP Singer (9001_CR99) 2014; 795
L Blackburn (9001_CR32) 2015; 217
M Pürrer (9001_CR89) 2014; 31
CL Rodriguez (9001_CR91) 2014; 784
J Aasi (9001_CR11) 2015
B Allen (9001_CR27) 2005; 71
P Canizares (9001_CR37) 2013; 87
AH Nitz (9001_CR81) 2013; 88
9001_CR73
S Nissanke (9001_CR79) 2013; 767
E Thrane (9001_CR105) 2015; 91
S Hild (9001_CR63) 2012
BP Abbott (9001_CR21) 2009; 72
MM Kasliwal (9001_CR67) 2014; 789
E Thrane (9001_CR106) 2011; 83
M Dominik (9001_CR50) 2015; 806
S Vitale (9001_CR112) 2011; 84
NJ Cornish (9001_CR43) 2015; 32
JS Read (9001_CR90) 2013; 88
LS Finn (9001_CR58) 1993; 47
PJ Sutton (9001_CR102) 2010; 12
F Acernese (9001_CR24) 2009
SE Mink de (9001_CR47) 2015; 814
DA Brown (9001_CR34) 2012; 86
9001_CR87
J Abadie (9001_CR13) 2010; 27
S Fairhurst (9001_CR55) 2009; 11
CD Ott (9001_CR83) 2011; 106
E Thrane (9001_CR104) 2013; 88
T Accadia (9001_CR23) 2012
CL Rodriguez (9001_CR92) 2015; 115
TS Adams (9001_CR26) 2013; 88
P Canizares (9001_CR36) 2015; 114
9001_CR94
J Veitch (9001_CR109) 2012; 85
J Aasi (9001_CR3) 2013; 88
S Khan (9001_CR68) 2016; 93
T Canton Dal (9001_CR45) 2015; 91
PA Evans (9001_CR52) 2016; 455
J Aasi (9001_CR5) 2014; 211
H Dimmelmeier (9001_CR48) 2008; 78
S Klimenko (9001_CR71) 2008; 25
T Canton Dal (9001_CR46) 2014; 90
9001_CR107
9001_CR20
A Buonanno (9001_CR35) 2009; 80
T Sidery (9001_CR97) 2014; 89
GM Harry (9001_CR61) 2010; 27
IW Harry (9001_CR62) 2014; 89
K Grover (9001_CR60) 2014; 89
K Somiya (9001_CR100) 2012; 29
S Babak (9001_CR29) 2013; 87
Y Aso (9001_CR28) 2013; 88
BF Schutz (9001_CR96) 2011; 28
J Abadie (9001_CR19) 2012; 85
TB Littenberg (9001_CR75) 2015; 91
10015813 - Phys Rev D Part Fields. 1993 Mar 15;47(6):2198-2219
28179846 - Living Rev Relativ. 2014;17 (1):2
25763948 - Phys Rev Lett. 2015 Feb 20;114(7):071104
26274407 - Phys Rev Lett. 2015 Jul 31;115(5):051101
25032916 - Phys Rev Lett. 2014 Jul 4;113(1):011102
21599351 - Phys Rev Lett. 2011 Apr 22;106(16):161103
28163618 - Living Rev Relativ. 2011;14 (1):5
10017261 - Phys Rev D Part Fields. 1994 Mar 15;49(6):2658-2697
References_xml – volume: 84
  start-page: 104020
  year: 2011
  ident: CR112
  article-title: Application of asymptotic expansions for maximum likelihood estimators’ errors to gravitational waves from inspiraling binary systems: The network case
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.84.104020
– volume: 85
  start-page: 122007
  year: 2012
  ident: CR14
  article-title: All-sky search for gravitational-wave bursts in the second joint LIGO-Virgo run
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.85.122007
– volume: 541
  start-page: A155
  year: 2012
  ident: CR15
  article-title: First low-latency LIGO+Virgo search for binary inspirals and their electromagnetic counterparts
  publication-title: Astron. Astrophys.
  doi: 10.1051/0004-6361/201218860
– year: 2012
  ident: CR30
  publication-title: Early aLIGO Configurations: example scenarios toward design sensitivity
– volume: 72
  start-page: 076901
  year: 2009
  ident: CR21
  article-title: LIGO: The Laser interferometer gravitational-wave observatory
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/72/7/076901
– ident: CR54
– volume: 795
  start-page: 105
  year: 2014
  ident: CR99
  article-title: The First Two Years of Electromagnetic Follow-Up with Advanced LIGO and Virgo
  publication-title: Astrophys. J.
  doi: 10.1088/0004-637X/795/2/105
– volume: 800
  start-page: 81
  year: 2015
  ident: CR51
  article-title: Localization of short duration gravitational-wave transients with the early advanced LIGO and Virgo detectors
  publication-title: Astrophys. J.
  doi: 10.1088/0004-637X/800/2/81
– volume: 27
  start-page: 173001
  year: 2010
  ident: CR13
  article-title: Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors
  publication-title: Class. Quantum Grav.
  doi: 10.1088/0264-9381/27/17/173001
– volume: 748
  start-page: 136
  year: 2012
  ident: CR39
  article-title: Toward Early-Warning Detection of Gravitational Waves from Compact Binary Coalescence
  publication-title: Astrophys. J.
  doi: 10.1088/0004-637X/748/2/136
– ident: CR42
– volume: 83
  start-page: 083004
  year: 2011
  ident: CR106
  article-title: Long gravitational-wave transients and associated detection strategies for a network of terrestrial interferometers
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.83.083004
– volume: 89
  start-page: 024003
  year: 2014
  ident: CR88
  article-title: Improving the sensitivity of a search for coalescing binary black holes with nonprecessing spins in gravitational wave data
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.89.024003
– volume: 539
  start-page: A124
  year: 2012
  ident: CR16
  article-title: Implementation and testing of the first prompt search for gravitational wave transients with electromagnetic counterparts
  publication-title: Astron. Astrophys.
  doi: 10.1051/0004-6361/201118219
– ident: CR101
– volume: 26
  start-page: 063001
  year: 2009
  ident: CR82
  article-title: The gravitational-wave signature of core-collapse supernovae
  publication-title: Class. Quantum Grav.
  doi: 10.1088/0264-9381/26/6/063001
– volume: 28
  start-page: 125023
  year: 2011
  ident: CR96
  article-title: Networks of gravitational wave detectors and three figures of merit
  publication-title: Class. Quantum Grav.
  doi: 10.1088/0264-9381/28/12/125023
– volume: 91
  start-page: 104021
  year: 2015
  ident: CR105
  article-title: Detecting very long-lived gravitational-wave transients lasting hours to weeks
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.91.104021
– volume: 760
  start-page: 12
  year: 2012
  ident: CR18
  article-title: Search for Gravitational Waves Associated with Gamma-Ray Bursts during LIGO Science Run 6 and Virgo Science Runs 2 and 3
  publication-title: Astrophys. J.
  doi: 10.1088/0004-637X/760/1/12
– volume: 806
  start-page: 263
  year: 2015
  ident: CR50
  article-title: Double Compact Objects III: Gravitational Wave Detection Rates
  publication-title: Astrophys. J.
  doi: 10.1088/0004-637X/806/2/263
– volume: 113
  start-page: 011102
  year: 2014
  ident: CR7
  article-title: Search for gravitational waves associated with -ray bursts detected by the Interplanetary Network
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.113.011102
– volume: 767
  start-page: 124
  year: 2013
  ident: CR79
  article-title: Identifying Elusive Electromagnetic Counterparts to Gravitational Wave Mergers: An End-to-end Simulation
  publication-title: Astrophys. J.
  doi: 10.1088/0004-637X/767/2/124
– volume: 29
  start-page: 155002
  year: 2012
  ident: CR1
  article-title: The characterization of Virgo data and its impact on gravitational-wave searches
  publication-title: Class. Quantum Grav.
  doi: 10.1088/0264-9381/29/15/155002
– ident: CR57
– volume: 203
  start-page: 28
  year: 2012
  ident: CR53
  article-title: Swift Follow-up Observations of Candidate Gravitational-Wave Transient Events
  publication-title: Astrophys. J. Suppl. Ser.
  doi: 10.1088/0067-0049/203/2/28
– year: 2012
  ident: CR17
  publication-title: LSC and Virgo Policy on Releasing Gravitational Wave Triggers to the Public in the Advanced Detectors Era
– volume: 93
  start-page: 024013
  year: 2016
  ident: CR98
  article-title: Rapid Bayesian position reconstruction for gravitational-wave transients
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.93.024013
– volume: 12
  start-page: 053034
  year: 2010
  ident: CR102
  article-title: X-Pipeline: An Analysis package for autonomous gravitational-wave burst searches
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/12/5/053034
– volume: 85
  start-page: 064034
  year: 2012
  ident: CR111
  article-title: Effect of calibration errors on Bayesian parameter estimation for gravitational wave signals from inspiral binary systems in the advanced detectors era
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.85.064034
– volume: 80
  start-page: 102001
  year: 2009
  ident: CR22
  article-title: Search for gravitational-wave bursts in the first year of the fifth LIGO science run
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.80.102001
– volume: 88
  start-page: 062006
  year: 2013
  ident: CR26
  article-title: Gravitational-wave detection using multivariate analysis
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.88.062006
– volume: 26
  start-page: 204004
  year: 2009
  ident: CR86
  article-title: A Burst search for gravitational waves from binary black holes
  publication-title: Class. Quantum Grav.
  doi: 10.1088/0264-9381/26/20/204004
– volume: 89
  start-page: 122004
  year: 2014
  ident: CR6
  article-title: Methods and results of a search for gravitational waves associated with gamma-ray bursts using the GEO600, LIGO, and Virgo detectors
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.89.122004
– volume: 106
  start-page: 161103
  year: 2011
  ident: CR83
  article-title: Dynamics and gravitational wave signature of collapsar formation
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.106.161103
– volume: 93
  start-page: 022002
  year: 2016
  ident: CR66
  article-title: Leveraging waveform complexity for confident detection of gravitational waves
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.93.022002
– ident: CR33
– volume: 11
  start-page: 123006
  year: 2009
  ident: CR55
  article-title: Triangulation of gravitational wave sources with a network of detectors
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/11/12/123006
– volume: 88
  start-page: 044042
  year: 2013
  ident: CR90
  article-title: Matter effects on binary neutron star waveforms
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.88.044042
– volume: 114
  start-page: 071104
  year: 2015
  ident: CR36
  article-title: Accelerated gravitational-wave parameter estimation with reduced order modeling
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.114.071104
– volume: 32
  start-page: 135012
  year: 2015
  ident: CR43
  article-title: BayesWave: Bayesian Inference for Gravitational Wave Bursts and Instrument Glitches
  publication-title: Class. Quantum Grav.
  doi: 10.1088/0264-9381/32/13/135012
– volume: 83
  start-page: 102001
  year: 2011
  ident: CR72
  article-title: Localization of gravitational wave sources with networks of advanced detectors
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.83.102001
– ident: CR94
– volume: 80
  start-page: 084043
  year: 2009
  ident: CR35
  article-title: Comparison of post-Newtonian templates for compact binary inspiral signals in gravitational-wave detectors
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.80.084043
– volume: 27
  start-page: 194017
  year: 2010
  ident: CR40
  article-title: Detection of gravitational-wave bursts with chirplet-like template families
  publication-title: Class. Quantum Grav.
  doi: 10.1088/0264-9381/27/19/194017
– volume: 32
  start-page: 024001
  year: 2015
  ident: CR25
  article-title: Advanced Virgo: a second-generation interferometric gravitational wave detector
  publication-title: Class. Quantum Grav.
  doi: 10.1088/0264-9381/32/2/024001
– volume: 29
  start-page: 124013
  year: 2012
  ident: CR93
  article-title: Scientific Objectives of Einstein Telescope
  publication-title: Class. Quantum Grav.
  doi: 10.1088/0264-9381/29/12/124013
– volume: 31
  start-page: 195010
  year: 2014
  ident: CR89
  article-title: Frequency domain reduced order models for gravitational waves from aligned-spin compact binaries
  publication-title: Class. Quantum Grav.
  doi: 10.1088/0264-9381/31/19/195010
– ident: CR38
– volume: 74
  start-page: 082005
  year: 2006
  ident: CR41
  article-title: Coherent network analysis technique for discriminating gravitational-wave bursts from instrumental noise
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.74.082005
– volume: 91
  start-page: 042003
  year: 2015
  ident: CR110
  article-title: Parameter estimation for compact binaries with ground-based gravitational-wave observations using the LALInference software library
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.91.042003
– volume: 32
  start-page: 115012
  year: 2015
  ident: CR10
  article-title: Characterization of the LIGO detectors during their sixth science run
  publication-title: Class. Quantum Grav.
  doi: 10.1088/0264-9381/32/11/115012
– volume: 455
  start-page: 1522
  year: 2016
  end-page: 1537
  ident: CR52
  article-title: Optimisation of the Swift X-ray follow-up of Advanced LIGO and Virgo gravitational wave triggers in 2015–16
  publication-title: Mon. Not. R. Astron. Soc.
  doi: 10.1093/mnras/stv2213
– volume: 228
  start-page: 012012
  year: 2010
  ident: CR76
  article-title: The upgrade of GEO 600
  publication-title: J. Phys.: Conf. Ser.
– volume: 81
  start-page: 102001
  year: 2010
  ident: CR12
  article-title: All-sky search for gravitational-wave bursts in the first joint LIGO-GEO-Virgo run
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.81.102001
– volume: 72
  start-page: 122002
  year: 2005
  ident: CR70
  article-title: Constraint likelihood analysis for a network of gravitational wave detectors
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.72.122002
– volume: 85
  start-page: 104045
  year: 2012
  ident: CR109
  article-title: Estimating parameters of coalescing compact binaries with proposed advanced detector networks
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.85.104045
– volume: 88
  start-page: 043007
  year: 2013
  ident: CR28
  article-title: Interferometer design of the KAGRA gravitational wave detector
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.88.043007
– year: 2009
  ident: CR24
  publication-title: Advanced Virgo Baseline Design
– volume: 27
  start-page: 084006
  year: 2010
  ident: CR61
  article-title: Advanced LIGO: the next generation of gravitational wave detectors
  publication-title: Class. Quantum Grav.
  doi: 10.1088/0264-9381/27/8/084006
– ident: CR4
– ident: CR87
– volume: 115
  start-page: 051101
  year: 2015
  ident: CR92
  article-title: Binary Black Hole Mergers from Globular Clusters: Implications for Advanced LIGO
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.115.051101
– volume: 32
  start-page: 074001
  year: 2015
  ident: CR9
  article-title: Advanced LIGO
  publication-title: Class. Quantum Grav.
  doi: 10.1088/0264-9381/32/11/115012
– volume: 89
  start-page: 061502
  year: 2014
  ident: CR103
  article-title: Effective-one-body model for black-hole binaries with generic mass ratios and spins
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.89.061502
– volume: 25
  start-page: 114029
  year: 2008
  ident: CR71
  article-title: Coherent method for detection of gravitational wave bursts
  publication-title: Class. Quantum Grav.
  doi: 10.1088/0264-9381/25/11/114029
– volume: 448
  start-page: 928
  year: 2015
  end-page: 938
  ident: CR69
  article-title: Implications of PSR J0737-3039B for the Galactic NS-NS Binary Merger Rate
  publication-title: Mon. Not. R. Astron. Soc.
  doi: 10.1093/mnras/stu2729
– volume: 87
  start-page: 124005
  year: 2013
  ident: CR37
  article-title: Gravitational wave parameter estimation with compressed likelihood evaluations
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.87.124005
– volume: 88
  start-page: 124039
  year: 2013
  ident: CR81
  article-title: Accuracy of gravitational waveform models for observing neutron-star-black-hole binaries in Advanced LIGO
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.88.124039
– volume: 89
  start-page: 024010
  year: 2014
  ident: CR62
  article-title: Investigating the effect of precession on searches for neutron-star-black-hole binaries with Advanced LIGO
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.89.024010
– volume: 60
  start-page: 022002
  year: 1999
  ident: CR84
  article-title: Matched filtering of gravitational waves from inspiraling compact binaries: Computational cost and template placement
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.60.022002
– volume: 91
  start-page: 062005
  year: 2015
  ident: CR78
  article-title: Prospects for doubling the range of Advanced LIGO
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.91.062005
– volume: 27
  start-page: 194005
  year: 2002
  ident: CR113
  article-title: Gravitational waves from core collapse supernovae
  publication-title: Class. Quantum Grav.
  doi: 10.1088/0264-9381/27/19/194005
– volume: 91
  start-page: 024043
  year: 2015
  ident: CR95
  article-title: Towards models of gravitational waveforms from generic binaries II: Modelling precession effects with a single effective precession parameter
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.91.024043
– volume: 784
  start-page: 119
  year: 2014
  ident: CR91
  article-title: Basic Parameter Estimation of Binary Neutron Star Systems by the Advanced LIGO/Virgo Network
  publication-title: Astrophys. J.
  doi: 10.1088/0004-637X/784/2/119
– volume: 86
  start-page: 084017
  year: 2012
  ident: CR34
  article-title: Detecting binary neutron star systems with spin in advanced gravitational-wave detectors
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.86.084017
– volume: 78
  start-page: 064056
  year: 2008
  ident: CR48
  article-title: Gravitational wave burst signal from the core collapse of rotating stars
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.78.064056
– volume: 90
  start-page: 082004
  year: 2014
  ident: CR46
  article-title: Implementing a search for aligned-spin neutron star-black hole systems with advanced ground based gravitational wave detectors
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.90.082004
– volume: 789
  start-page: L5
  year: 2014
  ident: CR67
  article-title: On Discovering Electromagnetic Emission from Neutron Star Mergers: The Early Years of Two Gravitational Wave Detectors
  publication-title: Astrophys. J.
  doi: 10.1088/2041-8205/789/1/L5
– volume: 71
  start-page: 062001
  year: 2005
  ident: CR27
  article-title: time-frequency discriminator for gravitational wave detection
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.71.062001
– volume: 89
  start-page: 084006
  year: 2014
  ident: CR85
  article-title: Inspiral-merger-ringdown waveforms of spinning, precessing black-hole binaries in the effective-one-body formalism
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.89.084006
– volume: 779
  start-page: 72
  year: 2013
  ident: CR49
  article-title: Double Compact Objects II: Cosmological Merger Rates
  publication-title: Astrophys. J.
  doi: 10.1088/0004-637X/779/1/72
– volume: 47
  start-page: 2198
  year: 1993
  end-page: 2219
  ident: CR58
  article-title: Observing binary inspiral in gravitational radiation: One interferometer
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.47.2198
– volume: 804
  start-page: 114
  year: 2015
  ident: CR31
  article-title: Parameter estimation for binary neutron-star coalescences with realistic noise during the Advanced LIGO era
  publication-title: Astrophys. J.
  doi: 10.1088/0004-637X/804/2/114
– volume: 91
  start-page: 084034
  year: 2015
  ident: CR75
  article-title: Bayesian inference for spectral estimation of gravitational wave detector noise
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.91.084034
– volume: 610
  start-page: 012021
  year: 2015
  ident: CR108
  article-title: The LIGO Open Science Center
  publication-title: J. Phys.: Conf. Ser.
– volume: 93
  start-page: 044007
  year: 2016
  ident: CR68
  article-title: Frequency-domain gravitational waves from non-precessing black-hole binaries. II. A phenomenological model for the advanced detector era
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.93.044007
– volume: 78
  start-page: 124020
  year: 2008
  ident: CR74
  article-title: Model waveform accuracy standards for gravitational wave data analysis
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.78.124020
– volume: 27
  start-page: 114007
  year: 2010
  ident: CR77
  article-title: Compact Binary Coalescences in the Band of Ground-based Gravitational-Wave Detectors
  publication-title: Class. Quantum Grav.
  doi: 10.1088/0264-9381/27/11/114007
– year: 2012
  ident: CR63
  publication-title: LIGO 3 Strawman Design, T. Red
– volume: 29
  start-page: 124007
  year: 2012
  ident: CR100
  article-title: Detector configuration of KAGRA — the Japanese cryogenic gravitational-wave detector
  publication-title: Class. Quantum Grav.
  doi: 10.1088/0264-9381/29/12/124007
– volume: 89
  start-page: 084060
  year: 2014
  ident: CR97
  article-title: Reconstructing the sky location of gravitational-wave detected compact binary systems: methodology for testing and comparison
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.89.084060
– volume: 87
  start-page: 024033
  year: 2013
  ident: CR29
  article-title: Searching for gravitational waves from binary coalescence
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.87.024033
– year: 2015
  ident: CR11
  publication-title: Instrument Science White Paper
– volume: 88
  start-page: 062001
  year: 2013
  ident: CR3
  article-title: Parameter estimation for compact binary coalescence signals with the first generation gravitational-wave detector network
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.88.062001
– volume: 814
  start-page: 58
  year: 2015
  ident: CR47
  article-title: Merger rates of double neutron stars and stellar origin black holes: The Impact of Initial Conditions on Binary Evolution Predictions
  publication-title: Astrophys. J.
  doi: 10.1088/0004-637X/814/1/58
– year: 2011
  ident: CR64
  publication-title: LIGO-India
– year: 2013
  ident: CR2
  publication-title: Open call for partnership for the EM identification and follow-up of GW candidate events
– volume: 739
  start-page: 99
  year: 2011
  ident: CR80
  article-title: Localizing Compact Binary Inspirals on the Sky Using Ground-based Gravitational Wave Interferometers
  publication-title: Astrophys. J.
  doi: 10.1088/0004-637X/739/2/99
– volume: 91
  start-page: 062010
  year: 2015
  ident: CR45
  article-title: Impact of precession on aligned-spin searches for neutron-star-black-hole binaries
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.91.062010
– ident: CR73
– volume: 49
  start-page: 2658
  year: 1994
  end-page: 2697
  ident: CR44
  article-title: Gravitational waves from merging compact binaries: How accurately can one extract the binary’s parameters from the inspiral wave form?
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.49.2658
– ident: CR65
– volume: 85
  start-page: 082002
  year: 2012
  ident: CR19
  article-title: Search for gravitational waves from low mass compact binary coalescence in LIGO’s sixth science run and Virgo’s science runs 2 and 3
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.85.082002
– volume: 211
  start-page: 7
  year: 2014
  ident: CR5
  article-title: First Searches for Optical Counterparts to Gravitational-wave Candidate Events
  publication-title: Astrophys. J. Suppl. Ser.
  doi: 10.1088/0067-0049/211/1/7
– volume: 28
  start-page: 105021
  year: 2011
  ident: CR56
  article-title: Source localization with an advanced gravitational wave detector network
  publication-title: Class. Quantum Grav.
  doi: 10.1088/0264-9381/28/10/105021
– volume: 89
  start-page: 042004
  year: 2014
  ident: CR60
  article-title: Comparison of Gravitational Wave Detector Network Sky Localization Approximations
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.89.042004
– year: 2012
  ident: CR23
  publication-title: Advanced Virgo Technical Design Report
– volume: 217
  start-page: 8
  year: 2015
  ident: CR32
  article-title: High-energy electromagnetic offline follow-up of LIGO-Virgo gravitational-wave binary coalescence candidate events
  publication-title: Astrophys. J. Suppl. Ser.
  doi: 10.1088/0067-0049/217/1/8
– ident: CR59
– ident: CR107
– year: 2014
  ident: CR8
  publication-title: The LSC-Virgo White Paper on Gravitational Wave Searches and Astrophysics (2014–2015 edition)
– volume: 88
  start-page: 083010
  year: 2013
  ident: CR104
  article-title: Searching for gravitational-wave transients with a qualitative signal model: seedless clustering strategies
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.88.083010
– ident: CR20
– volume: 88
  start-page: 062006
  year: 2013
  ident: 9001_CR26
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.88.062006
– ident: 9001_CR57
– volume: 795
  start-page: 105
  year: 2014
  ident: 9001_CR99
  publication-title: Astrophys. J.
  doi: 10.1088/0004-637X/795/2/105
– volume: 81
  start-page: 102001
  year: 2010
  ident: 9001_CR12
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.81.102001
– volume: 28
  start-page: 125023
  year: 2011
  ident: 9001_CR96
  publication-title: Class. Quantum Grav.
  doi: 10.1088/0264-9381/28/12/125023
– volume: 83
  start-page: 083004
  year: 2011
  ident: 9001_CR106
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.83.083004
– volume: 217
  start-page: 8
  year: 2015
  ident: 9001_CR32
  publication-title: Astrophys. J. Suppl. Ser.
  doi: 10.1088/0067-0049/217/1/8
– volume: 767
  start-page: 124
  year: 2013
  ident: 9001_CR79
  publication-title: Astrophys. J.
  doi: 10.1088/0004-637X/767/2/124
– ident: 9001_CR54
– volume: 87
  start-page: 124005
  year: 2013
  ident: 9001_CR37
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.87.124005
– volume: 27
  start-page: 194005
  year: 2002
  ident: 9001_CR113
  publication-title: Class. Quantum Grav.
  doi: 10.1088/0264-9381/27/19/194005
– volume: 28
  start-page: 105021
  year: 2011
  ident: 9001_CR56
  publication-title: Class. Quantum Grav.
  doi: 10.1088/0264-9381/28/10/105021
– volume: 32
  start-page: 135012
  year: 2015
  ident: 9001_CR43
  publication-title: Class. Quantum Grav.
  doi: 10.1088/0264-9381/32/13/135012
– volume: 804
  start-page: 114
  year: 2015
  ident: 9001_CR31
  publication-title: Astrophys. J.
  doi: 10.1088/0004-637X/804/2/114
– volume: 26
  start-page: 204004
  year: 2009
  ident: 9001_CR86
  publication-title: Class. Quantum Grav.
  doi: 10.1088/0264-9381/26/20/204004
– volume: 85
  start-page: 064034
  year: 2012
  ident: 9001_CR111
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.85.064034
– volume: 71
  start-page: 062001
  year: 2005
  ident: 9001_CR27
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.71.062001
– volume: 74
  start-page: 082005
  year: 2006
  ident: 9001_CR41
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.74.082005
– volume: 12
  start-page: 053034
  year: 2010
  ident: 9001_CR102
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/12/5/053034
– volume-title: The LSC-Virgo White Paper on Gravitational Wave Searches and Astrophysics (2014–2015 edition)
  year: 2014
  ident: 9001_CR8
– volume: 203
  start-page: 28
  year: 2012
  ident: 9001_CR53
  publication-title: Astrophys. J. Suppl. Ser.
  doi: 10.1088/0067-0049/203/2/28
– volume: 85
  start-page: 122007
  year: 2012
  ident: 9001_CR14
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.85.122007
– volume: 228
  start-page: 012012
  year: 2010
  ident: 9001_CR76
  publication-title: J. Phys.: Conf. Ser.
– volume: 32
  start-page: 074001
  year: 2015
  ident: 9001_CR9
  publication-title: Class. Quantum Grav.
  doi: 10.1088/0264-9381/32/11/115012
– volume: 80
  start-page: 102001
  year: 2009
  ident: 9001_CR22
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.80.102001
– volume: 211
  start-page: 7
  year: 2014
  ident: 9001_CR5
  publication-title: Astrophys. J. Suppl. Ser.
  doi: 10.1088/0067-0049/211/1/7
– volume: 88
  start-page: 062001
  year: 2013
  ident: 9001_CR3
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.88.062001
– volume: 114
  start-page: 071104
  year: 2015
  ident: 9001_CR36
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.114.071104
– volume: 29
  start-page: 155002
  year: 2012
  ident: 9001_CR1
  publication-title: Class. Quantum Grav.
  doi: 10.1088/0264-9381/29/15/155002
– ident: 9001_CR94
– volume: 779
  start-page: 72
  year: 2013
  ident: 9001_CR49
  publication-title: Astrophys. J.
  doi: 10.1088/0004-637X/779/1/72
– volume-title: Advanced Virgo Technical Design Report
  year: 2012
  ident: 9001_CR23
– volume: 89
  start-page: 084006
  year: 2014
  ident: 9001_CR85
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.89.084006
– volume: 784
  start-page: 119
  year: 2014
  ident: 9001_CR91
  publication-title: Astrophys. J.
  doi: 10.1088/0004-637X/784/2/119
– volume: 806
  start-page: 263
  year: 2015
  ident: 9001_CR50
  publication-title: Astrophys. J.
  doi: 10.1088/0004-637X/806/2/263
– volume: 89
  start-page: 024003
  year: 2014
  ident: 9001_CR88
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.89.024003
– volume: 539
  start-page: A124
  year: 2012
  ident: 9001_CR16
  publication-title: Astron. Astrophys.
  doi: 10.1051/0004-6361/201118219
– volume: 60
  start-page: 022002
  year: 1999
  ident: 9001_CR84
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.60.022002
– volume: 800
  start-page: 81
  year: 2015
  ident: 9001_CR51
  publication-title: Astrophys. J.
  doi: 10.1088/0004-637X/800/2/81
– volume: 27
  start-page: 173001
  year: 2010
  ident: 9001_CR13
  publication-title: Class. Quantum Grav.
  doi: 10.1088/0264-9381/27/17/173001
– volume: 72
  start-page: 122002
  year: 2005
  ident: 9001_CR70
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.72.122002
– volume: 78
  start-page: 124020
  year: 2008
  ident: 9001_CR74
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.78.124020
– ident: 9001_CR33
– volume-title: LSC and Virgo Policy on Releasing Gravitational Wave Triggers to the Public in the Advanced Detectors Era
  year: 2012
  ident: 9001_CR17
– volume: 91
  start-page: 042003
  year: 2015
  ident: 9001_CR110
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.91.042003
– volume: 88
  start-page: 083010
  year: 2013
  ident: 9001_CR104
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.88.083010
– volume: 789
  start-page: L5
  year: 2014
  ident: 9001_CR67
  publication-title: Astrophys. J.
  doi: 10.1088/2041-8205/789/1/L5
– volume: 85
  start-page: 104045
  year: 2012
  ident: 9001_CR109
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.85.104045
– volume: 32
  start-page: 024001
  year: 2015
  ident: 9001_CR25
  publication-title: Class. Quantum Grav.
  doi: 10.1088/0264-9381/32/2/024001
– volume: 88
  start-page: 044042
  year: 2013
  ident: 9001_CR90
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.88.044042
– volume: 86
  start-page: 084017
  year: 2012
  ident: 9001_CR34
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.86.084017
– volume: 814
  start-page: 58
  year: 2015
  ident: 9001_CR47
  publication-title: Astrophys. J.
  doi: 10.1088/0004-637X/814/1/58
– volume-title: Early aLIGO Configurations: example scenarios toward design sensitivity
  year: 2012
  ident: 9001_CR30
– volume: 106
  start-page: 161103
  year: 2011
  ident: 9001_CR83
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.106.161103
– volume-title: Open call for partnership for the EM identification and follow-up of GW candidate events
  year: 2013
  ident: 9001_CR2
– volume: 84
  start-page: 104020
  year: 2011
  ident: 9001_CR112
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.84.104020
– volume: 91
  start-page: 062005
  year: 2015
  ident: 9001_CR78
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.91.062005
– ident: 9001_CR38
– volume: 25
  start-page: 114029
  year: 2008
  ident: 9001_CR71
  publication-title: Class. Quantum Grav.
  doi: 10.1088/0264-9381/25/11/114029
– volume-title: Instrument Science White Paper
  year: 2015
  ident: 9001_CR11
– volume-title: LIGO 3 Strawman Design, T. Red
  year: 2012
  ident: 9001_CR63
– volume: 115
  start-page: 051101
  year: 2015
  ident: 9001_CR92
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.115.051101
– volume: 27
  start-page: 194017
  year: 2010
  ident: 9001_CR40
  publication-title: Class. Quantum Grav.
  doi: 10.1088/0264-9381/27/19/194017
– volume: 448
  start-page: 928
  year: 2015
  ident: 9001_CR69
  publication-title: Mon. Not. R. Astron. Soc.
  doi: 10.1093/mnras/stu2729
– volume: 88
  start-page: 043007
  year: 2013
  ident: 9001_CR28
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.88.043007
– volume: 91
  start-page: 084034
  year: 2015
  ident: 9001_CR75
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.91.084034
– ident: 9001_CR73
– volume: 11
  start-page: 123006
  year: 2009
  ident: 9001_CR55
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/11/12/123006
– volume: 26
  start-page: 063001
  year: 2009
  ident: 9001_CR82
  publication-title: Class. Quantum Grav.
  doi: 10.1088/0264-9381/26/6/063001
– volume: 541
  start-page: A155
  year: 2012
  ident: 9001_CR15
  publication-title: Astron. Astrophys.
  doi: 10.1051/0004-6361/201218860
– volume: 80
  start-page: 084043
  year: 2009
  ident: 9001_CR35
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.80.084043
– volume: 90
  start-page: 082004
  year: 2014
  ident: 9001_CR46
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.90.082004
– ident: 9001_CR107
– volume: 739
  start-page: 99
  year: 2011
  ident: 9001_CR80
  publication-title: Astrophys. J.
  doi: 10.1088/0004-637X/739/2/99
– volume: 27
  start-page: 114007
  year: 2010
  ident: 9001_CR77
  publication-title: Class. Quantum Grav.
  doi: 10.1088/0264-9381/27/11/114007
– volume: 89
  start-page: 061502
  year: 2014
  ident: 9001_CR103
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.89.061502
– volume: 89
  start-page: 042004
  year: 2014
  ident: 9001_CR60
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.89.042004
– volume: 93
  start-page: 044007
  year: 2016
  ident: 9001_CR68
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.93.044007
– volume: 89
  start-page: 084060
  year: 2014
  ident: 9001_CR97
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.89.084060
– volume: 87
  start-page: 024033
  year: 2013
  ident: 9001_CR29
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.87.024033
– volume: 83
  start-page: 102001
  year: 2011
  ident: 9001_CR72
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.83.102001
– volume: 93
  start-page: 024013
  year: 2016
  ident: 9001_CR98
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.93.024013
– volume: 47
  start-page: 2198
  year: 1993
  ident: 9001_CR58
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.47.2198
– volume: 29
  start-page: 124013
  year: 2012
  ident: 9001_CR93
  publication-title: Class. Quantum Grav.
  doi: 10.1088/0264-9381/29/12/124013
– volume: 85
  start-page: 082002
  year: 2012
  ident: 9001_CR19
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.85.082002
– volume-title: Advanced Virgo Baseline Design
  year: 2009
  ident: 9001_CR24
– ident: 9001_CR65
– ident: 9001_CR42
– volume: 89
  start-page: 024010
  year: 2014
  ident: 9001_CR62
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.89.024010
– ident: 9001_CR101
– volume: 91
  start-page: 024043
  year: 2015
  ident: 9001_CR95
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.91.024043
– volume: 610
  start-page: 012021
  year: 2015
  ident: 9001_CR108
  publication-title: J. Phys.: Conf. Ser.
– ident: 9001_CR59
– volume: 49
  start-page: 2658
  year: 1994
  ident: 9001_CR44
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.49.2658
– volume: 89
  start-page: 122004
  year: 2014
  ident: 9001_CR6
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.89.122004
– volume: 78
  start-page: 064056
  year: 2008
  ident: 9001_CR48
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.78.064056
– volume: 32
  start-page: 115012
  year: 2015
  ident: 9001_CR10
  publication-title: Class. Quantum Grav.
  doi: 10.1088/0264-9381/32/11/115012
– volume: 91
  start-page: 062010
  year: 2015
  ident: 9001_CR45
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.91.062010
– volume: 113
  start-page: 011102
  year: 2014
  ident: 9001_CR7
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.113.011102
– volume: 455
  start-page: 1522
  year: 2016
  ident: 9001_CR52
  publication-title: Mon. Not. R. Astron. Soc.
  doi: 10.1093/mnras/stv2213
– ident: 9001_CR87
– volume: 72
  start-page: 076901
  year: 2009
  ident: 9001_CR21
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/72/7/076901
– volume: 27
  start-page: 084006
  year: 2010
  ident: 9001_CR61
  publication-title: Class. Quantum Grav.
  doi: 10.1088/0264-9381/27/8/084006
– ident: 9001_CR4
– volume: 760
  start-page: 12
  year: 2012
  ident: 9001_CR18
  publication-title: Astrophys. J.
  doi: 10.1088/0004-637X/760/1/12
– ident: 9001_CR20
– volume: 88
  start-page: 124039
  year: 2013
  ident: 9001_CR81
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.88.124039
– volume: 91
  start-page: 104021
  year: 2015
  ident: 9001_CR105
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.91.104021
– volume: 748
  start-page: 136
  year: 2012
  ident: 9001_CR39
  publication-title: Astrophys. J.
  doi: 10.1088/0004-637X/748/2/136
– volume: 31
  start-page: 195010
  year: 2014
  ident: 9001_CR89
  publication-title: Class. Quantum Grav.
  doi: 10.1088/0264-9381/31/19/195010
– volume-title: LIGO-India
  year: 2011
  ident: 9001_CR64
– volume: 93
  start-page: 022002
  year: 2016
  ident: 9001_CR66
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.93.022002
– volume: 29
  start-page: 124007
  year: 2012
  ident: 9001_CR100
  publication-title: Class. Quantum Grav.
  doi: 10.1088/0264-9381/29/12/124007
– reference: 28179846 - Living Rev Relativ. 2014;17 (1):2
– reference: 25032916 - Phys Rev Lett. 2014 Jul 4;113(1):011102
– reference: 10015813 - Phys Rev D Part Fields. 1993 Mar 15;47(6):2198-2219
– reference: 10017261 - Phys Rev D Part Fields. 1994 Mar 15;49(6):2658-2697
– reference: 21599351 - Phys Rev Lett. 2011 Apr 22;106(16):161103
– reference: 26274407 - Phys Rev Lett. 2015 Jul 31;115(5):051101
– reference: 25763948 - Phys Rev Lett. 2015 Feb 20;114(7):071104
– reference: 28163618 - Living Rev Relativ. 2011;14 (1):5
SSID ssib042110736
ssj0021401
Score 2.6255496
SecondaryResourceType review_article
Snippet We present a possible observing scenario for the Advanced LIGO and Advanced Virgo gravitational-wave detectors over the next decade, with the intention of...
SourceID doaj
unpaywall
pubmedcentral
hal
proquest
pubmed
crossref
springer
nasa
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Astrophysics
Astrophysics and Astroparticles
Classical and Quantum Gravitation
Cosmology
Data analysis
Earth Resources And Remote Sensing
Electromagnetic counterparts
General Relativity and Quantum Cosmology
Gravitational waves
Gravitational-wave detectors
High Energy Astrophysical Phenomena
Physics
Physics and Astronomy
Relativity Theory
Review
Review Article
Sciences of the Universe
SummonAdditionalLinks – databaseName: SpringerLink
  dbid: C24
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELaqIgQcEI8C4SUj9oJEpDz8ynGpaBe0UA4FerNsJ2kXRckq6S6CX8-MN0m7YoU4JnFsxzPj-SYefyZkogrJrUzjMFG2DJlMi1BxEEhkhIqFAxPLcHPyp89i9pV9PONne-TtsBfGZ7sPS5J-ph42u1VtCyKNRQixzg3AHQLPKzi84hpnPpTB07v7cAtDB3-0HEwFKXita-SkV3VtuSPP2g9O5gJzIvdr05lduPPv9MlxDfUOubWql-bXT1NV19zU0T1yt8eXdLpRiPtkr6gfkJs-z9N1D8mPL23jN1d2FNAqPbH4UxYqpabO6Rz92uI3Xh63Zt2zd5sq_G7WBfVeDXdPdhR_3tJpnz1A5x-OT_z7451vi_a8OSCnR-9PD2dhf9xC6DignLCMjDKAFlgWKwdITmVMRbwseRmVNst4KZAMPjF5wbmQVsmsdGDvNslzJ12ZPoIha-riCaFM5pJFzAqlYpYzZyPrJLwDWMc4rvKAvBkGXbv-Y_BEjEoPJMogII0C0nFAXo9llxsCjp2l3qHsxhJImu1vNO257m1Q2wzZBVmaR8j5n0VwaVImhGTcxYYXAZmA5LfqmE3nelEny1QjtJagdWto6wBVQ0OXO2xeYlyZyCQgrwZd0WCjuPBi6qJZdRpJBQWMJlMBebzRnbGVRCFlHE8DIre0aqsb20_qxYXnAecIVxn0ZzLon-4noG7nEE1G3fzHSD79v9qekdvegDB_XT0n-5ftqngB8OzSvvRW-QeGxjCQ
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbKVgg48CwQXgpiLxzS5uFXJC4Lol3Q0vbQQjkgy3bidmGVXSW7i-ivZyabhC5UCHFMYsf2eOz5kpn5TEhf5oIZkURBLI0LqEjyQDKYkFBzGXELSyzF5OQP-3x4TN-fsJMN8qrNhamj3VuX5CqnAVmaivnOLHOtV39nUpYwvREPYJ_J3BWyydG91CObx_uHg891QlGSBAAuoguMpL8qrdmgmqofLMsZBkL2Cl3py8DmnzGTneP0Brm2KGb6x3c9mVywTbu3yJd2VKuQlG_bi7nZtue_ET7-77Bvk5sNaPUHKy27Qzby4i65WgeP2uoe-XpYTuuMzcoHCOwfGPzTC234usj8ERrL8Tle7pV62VCC60nwSS9zvzaVmJJZ-fhH2B80IQn-6N3eQV2_u_NxXJ5Ot8jR7tujN8OgOcMhsAygU-BCLTVAEJpG0gI8lCmVIXOOudCZNGWOI8N8rLOcMS6MFKmzsImYOMussC65D1MyLfKHxKciEzSkhksZ0YxaExoroA4AKG2ZzDzysp1UZZvB4DEbE9UyM4P4FIpPRR550ZWdrVg9Li31GnWjK4FM3PWNaXmqmoWtTIqUhTTJQjxIIA3hUieUc0GZjTTLPdIHzVp7x3AwUuMiniUK8bqAPXAJbW2h6inocoXNC_xYjUXskeetLipY-OjN0UU-XVQKmQo5SJNKjzxY6WbXSiyRh44lHhFrWrvWjfUnxfisJhdniIEp9KffqqNqdrXqUhH1O93_iyQf_Vuxx-R6rd4YFC-fkN68XORPAfPNzbNmaf8EVg5Sog
  priority: 102
  providerName: Unpaywall
Title Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo
URI https://ntrs.nasa.gov/citations/20170003272
https://link.springer.com/article/10.1007/lrr-2016-1
https://www.ncbi.nlm.nih.gov/pubmed/28179853
https://www.proquest.com/docview/1866694848
https://in2p3.hal.science/in2p3-00807196
https://pubmed.ncbi.nlm.nih.gov/PMC5256041
https://link.springer.com/content/pdf/10.1007/lrr-2016-1.pdf
https://doaj.org/article/b9867943d0874490986a3466745c1a5e
UnpaywallVersion publishedVersion
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1433-8351
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0021401
  issn: 2367-3613
  databaseCode: KQ8
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1433-8351
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0021401
  issn: 2367-3613
  databaseCode: DOA
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1433-8351
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0021401
  issn: 2367-3613
  databaseCode: ABDBF
  dateStart: 20070801
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (selected full-text only)
  customDbUrl:
  eissn: 1433-8351
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0021401
  issn: 2367-3613
  databaseCode: M~E
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1433-8351
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0021401
  issn: 2367-3613
  databaseCode: C6C
  dateStart: 19981201
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink
  customDbUrl:
  eissn: 1433-8351
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0021401
  issn: 2367-3613
  databaseCode: C24
  dateStart: 19981201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Jj9MwFLZgEAIOiGWAsFRB9MIhIou3HEs1MwV1lsMMDCfLdhKmKEqrZFoEB34772VTIyq4cImUxImdt_h9dp4_EzKWqWBGRIEXSpN5VESpJxkoxNdcBtyCi8W4OPn4hM8u6MdLdrm11RfmhDX0wI3g3pkYKeFolPhI1B77cKojyrmgzAaapdj7QhjrBlPtUAuHDfW6oijyAGMEW8SkeVmCaQTcCwahqGbshwBzhfmQe4Wu9C7M-WfqZP__9B65sy5W-sd3nedbIerwAbnfYkt30nzTQ3IjLR6R23WOp60ek29n5bJeWFm5gFTdU4MTsvBSVxeJO8eYtviJp0el3rTM3Tr3PutN6tYRDVdOVi5O3LqTNnPAnX84Oq2f7698WpRfl_vk_PDgfDrz2q0WPMsA4XiZr6UGpEDjQFpAcTKm0mdZxjI_M3HMMo5E8KFOUsa4MFLEmQVfN2GSWGGz6AmIbFmkz4hLRSKoTw2XMqAJtcY3VsAzgHO0ZTJxyNtO6Mq2H4O7YeSqI1AGBSlUkAoc8qYvu2rIN3aWeo-660sgYXZ9AcxItWak_mVGDhmD5gfvmE3malGEq0ghrBbQVW2grn00DQVNrrB6gWPKUIQOed3ZigL_xJ8uukiX60ohoSAHaVLpkKeN7fS1hBLp4ljkEDGwqkEzhneKxVXNAc4QqlJoz7izP9V2PtVOEY172_yLJJ__D0m-IHdr98LMdvmS7F2X6_QVALdrMyI3pyHFI5-Oan-F4_GvgxG5dXFyNvnyGwYLPe8
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELaqIlQ4IB4FwjOIvSARKQ87do5LRbuFtOWwQG-W7STtoihZJd1F8OuZ8SZpI1aIYxLHdubhmYlnPhMyETlnmkeBFwpdeJRHuScYMMRXsQhiAyqWYHHyyWk8-0o_nbPzHfK-r4Wx2e79lqRdqftit7JpgKVB7EGscwv3LvG8goNrrHFqQxk8vbsLtzB0sEfLwVIQgdW6AU563dfIHFnUfjAyl5gTuVupVm3zO_9Onxz2UO-SvVW1VL9-qrK8YaYO75N7nX_pTjcC8YDs5NVDctvmeZr2EfnxpaltcWXrgrfqnmn8KQuduqrK3BTt2uI3Xh41at2hd6vS-67WuWutGlZPti7-vHWnXfaAmx4fndn3hzvfFs1FvU_mhx_nBzOvO27BMwy8HK_wlVDgLdAkEAY8OZFQ4bOiYIVf6CRhRYxg8KHKcsZirgVPCgP6rsMsM9wU0WMgWV3lT4lLecapT3UsREAzarSvDYd3wNdRhonMIe96okvTfQyeiFHKHkQZGCSRQTJwyNuh7XIDwLG11Qfk3dACQbPtjbq5kJ0OSp0guiCNMh8x_xMfLlVE45hTZgLFcodMgPOjPmbTVC6qcBlJdK05LFdrGGsfRUPClFscnmNcGfLQIW96WZGgo7jxoqq8XrUSQQVjoCYVDnmykZ1hlFAgZByLHMJHUjWaxvhJtbi0OOAM3VUK85n08ie7BajdSqLJIJv_oOSz_-vtNdmbzU9SmR6ffn5O7lhlwlx28YLsXjWr_CW4alf6ldXQP95hM3U
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELaqIl4HxKOF8AxiLxyi5mHHznF5bLewtD0U6M2ynaRdFCWrZHcR_HpmvEnaiBXimMSxnXl4xpmZz4SMRMaZ5lHghULnHuVR5gkGDPFVLILYgIolWJz85TiefqWfztn5DhFdLYzNdu9CkpuaBkRpKpcHizTvovoHRV0De4PYg33PDcTosmHaK9xxarc1eJJ3u_XCbYQ9Zg6WhQgs2DWg0qu-BqbJIviDwbnE_MjdUjVqmw_6dyplH0-9S26vyoX69VMVxTWTNblP7rW-pjveCMcDspOVD8lNm_Npmkfkx2ld2ULLxgXP1T3R-IMWOnVVmboztHHz33h5WKt1i-StCu-7WmeutXBYSdm4-CPXHbeZBO7s6PDEvt_f-TavL6o9cjb5ePZ-6rVHL3iGgcfj5b4SCjwHmgTCgFcnEip8lucs93OdJCyPERg-VGnGWMy14EluQPd1mKaGmzzaB5JVZfaEuJSnnPpUx0IENKVG-9pweAf8HmWYSB3ytiO6NO3H4OkYhewAlYFBEhkkA4e86dsuNmAcW1u9Q971LRBA296o6gvZ6qPUCSIN0ij1Ef8_8eFSRTSOOWUmUCxzyAg4P-hjOp7JeRkuIoluNoelaw1j7aFoSJhyg8Nz3GOGPHTI605WJOgrBmFUmVWrRiLAYAzUpMIhjzey048SCoSPY5FD-ECqBtMYPinnlxYTnKHrSmE-o07-ZLsYNVtJNOpl8x-UfPp_vb0it04_TOTs6PjzM3LH6hKmtYvnZHdZr7IX4LUt9UuroH8AK_g3ug
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbKVgg48CwQXgpiLxzS5uFXJC4Lol3Q0vbQQjkgy3bidmGVXSW7i-ivZyabhC5UCHFMYsf2eOz5kpn5TEhf5oIZkURBLI0LqEjyQDKYkFBzGXELSyzF5OQP-3x4TN-fsJMN8qrNhamj3VuX5CqnAVmaivnOLHOtV39nUpYwvREPYJ_J3BWyydG91CObx_uHg891QlGSBAAuoguMpL8qrdmgmqofLMsZBkL2Cl3py8DmnzGTneP0Brm2KGb6x3c9mVywTbu3yJd2VKuQlG_bi7nZtue_ET7-77Bvk5sNaPUHKy27Qzby4i65WgeP2uoe-XpYTuuMzcoHCOwfGPzTC234usj8ERrL8Tle7pV62VCC60nwSS9zvzaVmJJZ-fhH2B80IQn-6N3eQV2_u_NxXJ5Ot8jR7tujN8OgOcMhsAygU-BCLTVAEJpG0gI8lCmVIXOOudCZNGWOI8N8rLOcMS6MFKmzsImYOMussC65D1MyLfKHxKciEzSkhksZ0YxaExoroA4AKG2ZzDzysp1UZZvB4DEbE9UyM4P4FIpPRR550ZWdrVg9Li31GnWjK4FM3PWNaXmqmoWtTIqUhTTJQjxIIA3hUieUc0GZjTTLPdIHzVp7x3AwUuMiniUK8bqAPXAJbW2h6inocoXNC_xYjUXskeetLipY-OjN0UU-XVQKmQo5SJNKjzxY6WbXSiyRh44lHhFrWrvWjfUnxfisJhdniIEp9KffqqNqdrXqUhH1O93_iyQf_Vuxx-R6rd4YFC-fkN68XORPAfPNzbNmaf8EVg5Sog
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prospects+for+Observing+and+Localizing+Gravitational-Wave+Transients+with+Advanced+LIGO+and+Advanced+Virgo&rft.jtitle=Living+reviews+in+relativity&rft.au=Ballmer%2C+S+W&rft.au=Barayoga%2C+J+C&rft.au=Bartlett%2C+J&rft.au=Bartos%2C+I&rft.date=2016-02-08&rft.issn=1433-8351&rft.eissn=1433-8351&rft.volume=19&rft.issue=1&rft.spage=1&rft_id=info:doi/10.1007%2Flrr-2016-1&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2367-3613&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2367-3613&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2367-3613&client=summon