Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo
We present a possible observing scenario for the Advanced LIGO and Advanced Virgo gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves. We determine the...
Saved in:
Published in | Living reviews in relativity Vol. 19; no. 1; p. 1 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Goddard Space Flight Center
Springer International Publishing
08.02.2016
Living Reviews SpringerOpen |
Subjects | |
Online Access | Get full text |
ISSN | 2367-3613 1433-8351 1433-8351 |
DOI | 10.1007/lrr-2016-1 |
Cover
Abstract | We present a possible observing scenario for the Advanced LIGO and Advanced Virgo gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves. We determine the expected sensitivity of the network to transient gravitational-wave signals, and study the capability of the network to determine the sky location of the source. We report our findings for gravitational-wave transients, with particular focus on gravitational-wave signals from the inspiral of binary neutron-star systems, which are considered the most promising for multi-messenger astronomy. The ability to localize the sources of the detected signals depends on the geographical distribution of the detectors and their relative sensitivity, and 90% credible regions can be as large as thousands of square degrees when only two sensitive detectors are operational. Determining the sky position of a significant fraction of detected signals to areas of 5 sq. deg to 20 sq. deg will require at least three detectors of sensitivity within a factor of approximately 2 of each other and with a broad frequency bandwidth. Should the third LIGO detector be relocated to India as expected, a significant fraction of gravitational-wave signals will be localized to a few square degrees by gravitational-wave observations alone. |
---|---|
AbstractList | We present a possible observing scenario for the Advanced LIGO and Advanced Virgo gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves. We determine the expected sensitivity of the network to transient gravitational-wave signals, and study the capability of the network to determine the sky location of the source. We report our findings for gravitational-wave transients, with particular focus on gravitational-wave signals from the inspiral of binary neutron-star systems, which are considered the most promising for multi-messenger astronomy. The ability to localize the sources of the detected signals depends on the geographical distribution of the detectors and their relative sensitivity, and 90% credible regions can be as large as thousands of square degrees when only two sensitive detectors are operational. Determining the sky position of a significant fraction of detected signals to areas of 5 deg^2 to 20 deg^2 will require at least three detectors of sensitivity within a factor of ~2 of each other and with a broad frequency bandwidth. Should the third LIGO detector be relocated to India as expected, a significant fraction of gravitational-wave signals will be localized to a few square degrees by gravitational-wave observations alone. We present a possible observing scenario for the Advanced LIGO and Advanced Virgo gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves. We determine the expected sensitivity of the network to transient gravitational-wave signals, and study the capability of the network to determine the sky location of the source. We report our findings for gravitational-wave transients, with particular focus on gravitational-wave signals from the inspiral of binary neutron-star systems, which are considered the most promising for multi-messenger astronomy. The ability to localize the sources of the detected signals depends on the geographical distribution of the detectors and their relative sensitivity, and 90% credible regions can be as large as thousands of square degrees when only two sensitive detectors are operational. Determining the sky position of a significant fraction of detected signals to areas of 5 deg2 to 20 deg2 will require at least three detectors of sensitivity within a factor of ∼ 2 of each other and with a broad frequency bandwidth. Should the third LIGO detector be relocated to India as expected, a significant fraction of gravitational-wave signals will be localized to a few square degrees by gravitational-wave observations alone.We present a possible observing scenario for the Advanced LIGO and Advanced Virgo gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves. We determine the expected sensitivity of the network to transient gravitational-wave signals, and study the capability of the network to determine the sky location of the source. We report our findings for gravitational-wave transients, with particular focus on gravitational-wave signals from the inspiral of binary neutron-star systems, which are considered the most promising for multi-messenger astronomy. The ability to localize the sources of the detected signals depends on the geographical distribution of the detectors and their relative sensitivity, and 90% credible regions can be as large as thousands of square degrees when only two sensitive detectors are operational. Determining the sky position of a significant fraction of detected signals to areas of 5 deg2 to 20 deg2 will require at least three detectors of sensitivity within a factor of ∼ 2 of each other and with a broad frequency bandwidth. Should the third LIGO detector be relocated to India as expected, a significant fraction of gravitational-wave signals will be localized to a few square degrees by gravitational-wave observations alone. We present a possible observing scenario for the Advanced LIGO and Advanced Virgo gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves. We determine the expected sensitivity of the network to transient gravitational-wave signals, and study the capability of the network to determine the sky location of the source. We report our findings for gravitational-wave transients, with particular focus on gravitational-wave signals from the inspiral of binary neutron-star systems, which are considered the most promising for multi-messenger astronomy. The ability to localize the sources of the detected signals depends on the geographical distribution of the detectors and their relative sensitivity, and 90% credible regions can be as large as thousands of square degrees when only two sensitive detectors are operational. Determining the sky position of a significant fraction of detected signals to areas of 5 sq. deg to 20 sq. deg will require at least three detectors of sensitivity within a factor of approximately 2 of each other and with a broad frequency bandwidth. Should the third LIGO detector be relocated to India as expected, a significant fraction of gravitational-wave signals will be localized to a few square degrees by gravitational-wave observations alone. We present a possible observing scenario for the Advanced LIGO and Advanced Virgo gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves. We determine the expected sensitivity of the network to transient gravitational-wave signals, and study the capability of the network to determine the sky location of the source. We report our findings for gravitational-wave transients, with particular focus on gravitational-wave signals from the inspiral of binary neutron-star systems, which are considered the most promising for multi-messenger astronomy. The ability to localize the sources of the detected signals depends on the geographical distribution of the detectors and their relative sensitivity, and 90% credible regions can be as large as thousands of square degrees when only two sensitive detectors are operational. Determining the sky position of a significant fraction of detected signals to areas of 5 deg2 to 20 deg2 will require at least three detectors of sensitivity within a factor of ∼ 2 of each other and with a broad frequency bandwidth. Should the third LIGO detector be relocated to India as expected, a significant fraction of gravitational-wave signals will be localized to a few square degrees by gravitational-wave observations alone. We present a possible observing scenario for the Advanced LIGO and Advanced Virgo gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves. We determine the expected sensitivity of the network to transient gravitational-wave signals, and study the capability of the network to determine the sky location of the source. We report our findings for gravitational-wave transients, with particular focus on gravitational-wave signals from the inspiral of binary neutron-star systems, which are considered the most promising for multi-messenger astronomy. The ability to localize the sources of the detected signals depends on the geographical distribution of the detectors and their relative sensitivity, and 90% credible regions can be as large as thousands of square degrees when only two sensitive detectors are operational. Determining the sky position of a significant fraction of detected signals to areas of 5 deg to 20 deg will require at least three detectors of sensitivity within a factor of ∼ 2 of each other and with a broad frequency bandwidth. Should the third LIGO detector be relocated to India as expected, a significant fraction of gravitational-wave signals will be localized to a few square degrees by gravitational-wave observations alone. We present a possible observing scenario for the Advanced LIGO and Advanced Virgo gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves. We determine the expected sensitivity of the network to transient gravitational-wave signals, and study the capability of the network to determine the sky location of the source. We report our findings for gravitational-wave transients, with particular focus on gravitational-wave signals from the inspiral of binary neutron-star systems, which are considered the most promising for multi-messenger astronomy. The ability to localize the sources of the detected signals depends on the geographical distribution of the detectors and their relative sensitivity, and 90% credible regions can be as large as thousands of square degrees when only two sensitive detectors are operational. Determining the sky position of a significant fraction of detected signals to areas of 5 deg 2 to 20 deg 2 will require at least three detectors of sensitivity within a factor of ∼ 2 of each other and with a broad frequency bandwidth. Should the third LIGO detector be relocated to India as expected, a significant fraction of gravitational-wave signals will be localized to a few square degrees by gravitational-wave observations alone. |
ArticleNumber | 1 |
Audience | PUBLIC |
Author | Adhikari, R. X. Acernese, F. Abernathy, M. R. Abbott, B. P. Adams, T. Singer, L. P. Addesso, P. Abbott, R. Adams, C. Camp, J. B. Abbott, T. D. Ackley, K. Gehrels, N. |
Author_xml | – sequence: 1 givenname: B. P. surname: Abbott fullname: Abbott, B. P. organization: California Inst. of Tech – sequence: 2 givenname: R. surname: Abbott fullname: Abbott, R. organization: California Inst. of Tech – sequence: 3 givenname: T. D. surname: Abbott fullname: Abbott, T. D. organization: Louisiana State Univ – sequence: 4 givenname: M. R. surname: Abernathy fullname: Abernathy, M. R. organization: California Inst. of Tech – sequence: 5 givenname: F. surname: Acernese fullname: Acernese, F. organization: Universita degli Studi di Salerno – sequence: 6 givenname: K. surname: Ackley fullname: Ackley, K. organization: Florida Univ – sequence: 7 givenname: C. surname: Adams fullname: Adams, C. organization: LIGO Livingston Observatory – sequence: 8 givenname: T. surname: Adams fullname: Adams, T. organization: Grenoble-1 Univ – sequence: 9 givenname: P. surname: Addesso fullname: Addesso, P. organization: Sannio Univ – sequence: 10 givenname: R. X. surname: Adhikari fullname: Adhikari, R. X. organization: California Inst. of Tech – sequence: 11 givenname: J. B. surname: Camp fullname: Camp, J. B. organization: NASA Goddard Space Flight Center – sequence: 12 givenname: N. surname: Gehrels fullname: Gehrels, N. organization: NASA Goddard Space Flight Center – sequence: 13 givenname: L. P. surname: Singer fullname: Singer, L. P. organization: NASA Goddard Space Flight Center |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28179853$$D View this record in MEDLINE/PubMed https://in2p3.hal.science/in2p3-00807196$$DView record in HAL |
BookMark | eNp9ks1vEzEQxVeoiJbSC2eEckSgBX_be0GKKkgjRQqHCI7WrNebONrYwd5sVf56nCYEWlWcLNu_9zzzPC-LMx-8LYrXGH3ECMlPXYwlQViU-FlxgRmlpaIcnxUXhApZUoHpeXGVkqsRIxgjScWL4pwoLCvF6UWx_hZD2lrTp1Eb4mheJxsH55cj8M1oFgx07td-O4kwuB56Fzx05Q8Y7GgRwSdnfZbeun41GjcDeGOzbDqZ3-tPJ99dXIZXxfMWumSvjutlsfj6ZXF9U87mk-n1eFYaTjguWwQKCKGswsogzlTFFOJty1vU1lXFW4GJ5AQay7mQtZJVa7hUNWkaI01LL4vpwbYJsNbb6DYQ73QAp-8PQlxqiL0zndV1pYSsGG2QkoxVKG-BMiEk4wYDt9nrw8Fr57dwdwtddzLESO_z1zl_vc9f40x_PtDbXb2xjcnRROgelPDwxruVXoZB574FYvjvc6tHspvxTDtPtlQjpJDElRj29LvjczH83NnU641LxnYdeBt2SWMlhMjhMZXRt_9WdvL-MwcZQAfA5HFI0bbaHH87F-q6p7t9_0jy32iOnaUM-aWNeh12MY9Sepp-c6A9JNC5hLS_kQghSiShvwEU5Ooh |
CitedBy_id | crossref_primary_10_1103_PhysRevD_102_055004 crossref_primary_10_1103_PhysRevLett_122_111101 crossref_primary_10_3847_2041_8205_828_1_L4 crossref_primary_10_1088_1475_7516_2016_11_056 crossref_primary_10_1002_andp_201800365 crossref_primary_10_1093_ptep_pty012 crossref_primary_10_1103_PhysRevD_98_124014 crossref_primary_10_1007_s10714_018_2372_6 crossref_primary_10_1093_mnras_stab2716 crossref_primary_10_1103_PhysRevD_98_023542 crossref_primary_10_1088_1361_6382_aaff0d crossref_primary_10_1103_PhysRevD_98_044028 crossref_primary_10_3847_2041_8213_aacdfd crossref_primary_10_1103_PhysRevD_110_122006 crossref_primary_10_1088_0264_9381_33_17_174001 crossref_primary_10_1103_PhysRevD_95_122001 crossref_primary_10_1103_PhysRevLett_120_151101 crossref_primary_10_1098_rsta_2017_0286 crossref_primary_10_1103_PhysRevD_99_064045 crossref_primary_10_1007_s41114_020_00026_9 crossref_primary_10_1103_PhysRevD_96_084046 crossref_primary_10_3847_1538_4357_ab0e06 crossref_primary_10_1103_PhysRevLett_116_201301 crossref_primary_10_3847_2041_8213_abdab0 crossref_primary_10_1103_PhysRevD_94_102001 crossref_primary_10_1103_PhysRevD_94_021101 crossref_primary_10_3847_0004_637X_829_2_112 crossref_primary_10_1103_PhysRevLett_129_081102 crossref_primary_10_1103_PhysRevLett_116_131103 crossref_primary_10_1103_PhysRevResearch_1_033055 crossref_primary_10_1103_PhysRevD_101_103036 crossref_primary_10_1103_PhysRevLett_116_131102 crossref_primary_10_3847_1538_4357_aab34c crossref_primary_10_1038_s41550_017_0112 crossref_primary_10_1103_PhysRevD_98_124030 crossref_primary_10_1103_PhysRevLett_119_181102 crossref_primary_10_1088_1742_6596_716_1_012031 crossref_primary_10_1103_PhysRevD_105_104019 crossref_primary_10_1017_S1743921318003678 crossref_primary_10_1098_rsta_2017_0279 crossref_primary_10_1017_S1743921318000169 crossref_primary_10_1088_1361_6382_aaab76 crossref_primary_10_3847_1538_4357_aa988a crossref_primary_10_1002_asna_201913573 crossref_primary_10_1103_PhysRevD_95_064053 crossref_primary_10_1103_PhysRevD_95_064056 crossref_primary_10_1073_pnas_1612908114 crossref_primary_10_1142_S021773231730035X crossref_primary_10_1093_mnras_stw2613 crossref_primary_10_1088_1742_6596_1030_1_012005 crossref_primary_10_1103_PhysRevD_95_064052 crossref_primary_10_1103_PhysRevD_96_084063 crossref_primary_10_1051_epjconf_201818202003 crossref_primary_10_1116_1_5122661 crossref_primary_10_3847_2041_8213_aa8edf crossref_primary_10_1093_pasj_psx108 crossref_primary_10_1088_0264_9381_33_21_215004 crossref_primary_10_1093_mnras_sty1108 crossref_primary_10_3847_1538_4357_ab0108 crossref_primary_10_1103_PhysRevD_94_064062 crossref_primary_10_1103_PhysRevD_97_024052 crossref_primary_10_1103_PhysRevLett_116_221101 crossref_primary_10_1088_1742_6596_888_1_012001 crossref_primary_10_3847_1538_4357_aaf893 crossref_primary_10_1103_PhysRevD_99_043511 crossref_primary_10_1103_PhysRevD_110_123015 crossref_primary_10_1140_epjp_i2018_12048_4 crossref_primary_10_3847_1538_4357_aae30a crossref_primary_10_1093_mnras_stw1746 crossref_primary_10_1088_1361_6382_aa9424 crossref_primary_10_1103_PhysRevLett_120_141103 crossref_primary_10_1007_s11018_021_01916_2 crossref_primary_10_1103_PhysRevD_94_124040 crossref_primary_10_1103_PhysRevLett_116_061102 crossref_primary_10_3847_1538_4357_aab6a9 crossref_primary_10_1103_PhysRevD_96_084004 crossref_primary_10_1103_PhysRevD_95_042003 crossref_primary_10_1103_PhysRevD_93_044071 crossref_primary_10_1103_PhysRevD_94_103012 crossref_primary_10_1103_PhysRevD_101_124054 crossref_primary_10_1103_PhysRevD_98_123021 crossref_primary_10_1088_1361_6382_aa68a9 crossref_primary_10_1063_1_5006336 crossref_primary_10_1093_mnrasl_slx189 crossref_primary_10_1088_1361_6633_ab12bc crossref_primary_10_1093_mnras_stx1764 crossref_primary_10_1140_epjp_i2017_11283_5 crossref_primary_10_1103_PhysRevD_97_063516 crossref_primary_10_1093_mnras_stw1720 crossref_primary_10_3847_1538_4365_ac416c crossref_primary_10_1093_mnras_stw1849 crossref_primary_10_1103_PhysRevD_95_124006 crossref_primary_10_1103_PhysRevD_93_104050 crossref_primary_10_3847_1538_4357_ad20eb crossref_primary_10_3847_2041_8213_aa9aed crossref_primary_10_1103_PhysRevD_93_124007 crossref_primary_10_1103_PhysRevD_96_024006 crossref_primary_10_1103_PhysRevD_96_082002 crossref_primary_10_3847_1538_4357_aab665 crossref_primary_10_1017_S1743921317001430 crossref_primary_10_1103_PhysRevD_95_084029 crossref_primary_10_1103_PhysRevD_99_044014 crossref_primary_10_1103_PhysRevD_99_084026 crossref_primary_10_1093_mnrasl_sly055 crossref_primary_10_1038_nature18322 crossref_primary_10_1103_PhysRevD_107_084017 crossref_primary_10_1088_1361_6633_aae6b5 crossref_primary_10_1093_mnras_sty814 crossref_primary_10_1016_j_jheap_2018_07_001 crossref_primary_10_1103_PhysRevLett_119_131101 crossref_primary_10_1103_Physics_9_17 crossref_primary_10_1088_1361_6382_aab675 crossref_primary_10_1103_PhysRevD_111_042001 crossref_primary_10_1103_PhysRevD_111_064015 crossref_primary_10_1103_PhysRevD_98_104017 crossref_primary_10_3847_1538_4357_ac34f4 crossref_primary_10_1103_PhysRevD_95_062003 crossref_primary_10_1142_S0218271817300166 crossref_primary_10_3847_1538_4357_aaad0e crossref_primary_10_1088_1361_6382_ac1618 crossref_primary_10_1088_1361_6382_aa972e crossref_primary_10_2139_ssrn_4610949 crossref_primary_10_1103_PhysRevD_111_063043 crossref_primary_10_1103_PhysRevD_93_112004 crossref_primary_10_1103_PhysRevD_99_124023 crossref_primary_10_1093_mnras_stw503 crossref_primary_10_1088_1361_6382_aa6354 crossref_primary_10_1103_PhysRevLett_121_231103 crossref_primary_10_1088_1361_6382_aa90e3 crossref_primary_10_1103_PhysRevD_98_104020 crossref_primary_10_1103_PhysRevLett_121_173601 crossref_primary_10_1093_mnras_stx2923 crossref_primary_10_1103_PhysRevD_97_044033 crossref_primary_10_1093_mnras_stx1959 crossref_primary_10_3847_1538_4357_aadad9 crossref_primary_10_3847_0004_637X_832_2_192 crossref_primary_10_1155_2016_6341974 crossref_primary_10_1103_PhysRevLett_118_121101 crossref_primary_10_1016_j_optcom_2021_127188 crossref_primary_10_1088_1361_6382_aab793 crossref_primary_10_3847_1538_4357_835_1_31 crossref_primary_10_1103_PhysRevD_104_104008 crossref_primary_10_3847_2041_8213_aa8f3d crossref_primary_10_3847_2041_8213_ac2832 crossref_primary_10_1103_PhysRevD_97_055016 crossref_primary_10_3847_1538_4357_ad9c77 crossref_primary_10_3847_2041_8213_aa9f0c crossref_primary_10_1103_PhysRevD_104_124060 crossref_primary_10_3847_1538_4357_aa677f crossref_primary_10_1088_1361_6382_aa6d44 crossref_primary_10_1103_PhysRevLett_121_021303 crossref_primary_10_1093_mnras_staa950 crossref_primary_10_3390_galaxies8040080 crossref_primary_10_1103_PhysRevLett_117_101102 crossref_primary_10_1103_PhysRevX_6_041015 crossref_primary_10_1103_PhysRevD_93_124004 crossref_primary_10_1103_PhysRevD_99_124043 crossref_primary_10_3847_1538_4357_aa6c47 crossref_primary_10_1103_PhysRevLett_116_241102 crossref_primary_10_1088_0264_9381_33_24_244002 crossref_primary_10_1103_PhysRevD_98_043002 crossref_primary_10_1103_PhysRevD_111_043008 crossref_primary_10_3847_1538_3881_aae094 crossref_primary_10_1016_j_physletb_2017_02_054 crossref_primary_10_1103_PhysRevD_102_123508 crossref_primary_10_1103_PhysRevLett_122_041103 crossref_primary_10_1103_PhysRevD_106_042006 crossref_primary_10_3847_2041_8213_abbc10 crossref_primary_10_1088_1361_6382_aa7649 crossref_primary_10_1103_PhysRevD_97_023004 crossref_primary_10_3847_1538_4357_834_2_154 crossref_primary_10_3847_1538_4357_aa8f50 crossref_primary_10_1016_j_asr_2018_04_013 crossref_primary_10_1103_PhysRevD_109_024013 crossref_primary_10_1103_PhysRevD_93_124062 crossref_primary_10_3847_1538_4357_ad2704 crossref_primary_10_1007_s41114_018_0012_9 crossref_primary_10_1103_PhysRevD_97_044039 crossref_primary_10_1103_PhysRevLett_119_141101 crossref_primary_10_3847_1538_4357_835_1_82 crossref_primary_10_1093_mnras_sty840 crossref_primary_10_1103_PhysRevD_97_104037 crossref_primary_10_1103_PhysRevD_98_022008 crossref_primary_10_1103_PhysRevD_97_104036 crossref_primary_10_1088_0264_9381_33_17_175012 crossref_primary_10_1088_1742_6596_873_1_012013 crossref_primary_10_1093_mnras_stw3292 crossref_primary_10_1088_1742_6596_888_1_012099 crossref_primary_10_3847_1538_4357_aa850e crossref_primary_10_3847_2041_8213_aa799d crossref_primary_10_1103_PhysRevD_102_123524 crossref_primary_10_1103_PhysRevD_99_123029 crossref_primary_10_1103_PhysRevX_9_011001 crossref_primary_10_1103_PhysRevLett_120_161102 crossref_primary_10_1103_PhysRevD_93_064041 crossref_primary_10_1103_PhysRevD_97_104064 crossref_primary_10_1088_1361_6382_aca238 crossref_primary_10_3847_2041_8213_835_2_L22 crossref_primary_10_1103_PhysRevD_98_103024 crossref_primary_10_1103_PhysRevD_93_064047 crossref_primary_10_1103_PhysRevD_99_042001 crossref_primary_10_3847_1538_4357_ab733f crossref_primary_10_1007_s10714_020_02754_3 crossref_primary_10_1093_mnras_staa3225 crossref_primary_10_1103_PhysRevD_97_104058 crossref_primary_10_1103_PhysRevD_97_104057 crossref_primary_10_3847_2041_8213_aa9bf6 crossref_primary_10_1093_mnras_stz2840 crossref_primary_10_1103_PhysRevD_109_064009 crossref_primary_10_1103_PhysRevD_96_044011 crossref_primary_10_1088_1361_6633_aaa4ab crossref_primary_10_3847_2041_8205_826_1_L13 crossref_primary_10_1103_PhysRevD_97_064016 crossref_primary_10_1103_PhysRevD_95_082005 crossref_primary_10_1007_s11214_018_0466_9 crossref_primary_10_1016_j_physletb_2020_135330 crossref_primary_10_1051_0004_6361_202451612 crossref_primary_10_1093_mnras_sty411 crossref_primary_10_1093_mnras_stw233 crossref_primary_10_1093_mnras_sty1703 crossref_primary_10_1103_PhysRevX_7_041025 crossref_primary_10_1093_mnras_stx3077 crossref_primary_10_3847_2041_8213_aacf9f crossref_primary_10_1093_pasj_psy076 crossref_primary_10_1093_mnras_stac715 crossref_primary_10_3847_2041_8213_aa8f94 crossref_primary_10_1103_PhysRevD_95_024010 crossref_primary_10_3847_1538_4357_835_1_7 crossref_primary_10_1103_PhysRevA_93_063817 crossref_primary_10_1103_PhysRevD_100_124003 crossref_primary_10_1103_PhysRevD_103_082002 crossref_primary_10_1103_PhysRevD_97_064031 crossref_primary_10_1088_1361_6382_aa552e crossref_primary_10_1093_mnras_stx3087 crossref_primary_10_1051_0004_6361_201628993 crossref_primary_10_1088_1361_6382_aa82d9 crossref_primary_10_3847_0004_637X_820_1_7 crossref_primary_10_1103_PhysRevD_96_022001 crossref_primary_10_1103_PhysRevD_94_084002 crossref_primary_10_1103_PhysRevD_94_084003 crossref_primary_10_1051_0004_6361_202142628 crossref_primary_10_3847_2041_8213_aaa07d crossref_primary_10_1088_1475_7516_2018_02_030 crossref_primary_10_3847_2041_8213_ab4ad5 crossref_primary_10_3847_2041_8213_ab86bc crossref_primary_10_1126_science_aaq0049 crossref_primary_10_1103_PhysRevD_95_103012 crossref_primary_10_1103_PhysRevD_96_043019 crossref_primary_10_3847_1538_4365_aba2f3 crossref_primary_10_1142_S0217751X1744002X crossref_primary_10_1103_PhysRevD_110_103018 crossref_primary_10_3847_1538_4357_aaa0cb crossref_primary_10_1103_PhysRevD_95_103010 crossref_primary_10_3847_2041_8213_aa9478 crossref_primary_10_1093_pasj_psx085 crossref_primary_10_1016_j_physletb_2017_05_020 crossref_primary_10_3847_1538_4357_ab6611 crossref_primary_10_1103_PhysRevD_104_044003 crossref_primary_10_3847_1538_4357_aad6eb crossref_primary_10_1002_asna_202113890 crossref_primary_10_1103_PhysRevD_98_024050 crossref_primary_10_1088_1361_6382_aa9cad crossref_primary_10_1103_PhysRevD_94_084013 crossref_primary_10_1103_PhysRevD_111_044009 crossref_primary_10_1103_PhysRevD_93_064004 crossref_primary_10_1103_PhysRevD_98_084016 crossref_primary_10_1093_mnras_stz2925 crossref_primary_10_1103_PhysRevLett_129_032701 crossref_primary_10_1103_PhysRevD_100_043030 crossref_primary_10_1103_PhysRevD_111_044052 crossref_primary_10_3847_2041_8205_822_1_L8 crossref_primary_10_1088_1742_6596_1390_1_012086 crossref_primary_10_1103_PhysRevD_109_064048 crossref_primary_10_1103_PhysRevLett_119_161102 crossref_primary_10_1103_PhysRevLett_119_161101 crossref_primary_10_1088_1402_4896_aa93a8 crossref_primary_10_3847_1538_4357_aa6f0d crossref_primary_10_1007_s41114_017_0004_1 crossref_primary_10_3847_2041_8205_823_2_L33 crossref_primary_10_3847_1538_4357_aa5d09 crossref_primary_10_1103_PhysRevLett_121_191102 crossref_primary_10_1103_PhysRevD_99_083008 crossref_primary_10_1051_0004_6361_201935443 crossref_primary_10_1088_1361_6471_ab2c6d crossref_primary_10_1088_1361_6382_ab2142 crossref_primary_10_1007_s12648_019_01459_x crossref_primary_10_1103_PhysRevD_98_063001 crossref_primary_10_1103_PhysRevLett_121_221102 crossref_primary_10_3847_2041_8213_aa9e08 crossref_primary_10_3847_1538_4357_acfcb1 crossref_primary_10_1134_S1063779617060181 crossref_primary_10_3847_1538_4357_aa9ce5 crossref_primary_10_1103_PhysRevD_98_024023 crossref_primary_10_1103_PhysRevD_103_044013 crossref_primary_10_1103_PhysRevD_98_024029 crossref_primary_10_1103_PhysRevD_93_084042 crossref_primary_10_1103_PhysRevD_93_122004 crossref_primary_10_1103_PhysRevD_96_122006 crossref_primary_10_1117_1_OE_57_5_054113 crossref_primary_10_1103_PhysRevD_96_023012 crossref_primary_10_1103_PhysRevD_107_024040 crossref_primary_10_1038_ncomms14906 crossref_primary_10_1103_PhysRevLett_126_071303 crossref_primary_10_1103_PhysRevD_93_122010 crossref_primary_10_1093_mnras_stw379 crossref_primary_10_1038_s41586_018_0606_0 crossref_primary_10_1103_PhysRevLett_122_061105 crossref_primary_10_1088_2632_2153_ad1200 crossref_primary_10_1103_PhysRevD_95_024038 crossref_primary_10_1103_PhysRevD_96_044047 crossref_primary_10_1103_PhysRevD_97_101501 crossref_primary_10_1051_0004_6361_201833025 crossref_primary_10_1088_1402_4896_aa85cc crossref_primary_10_1017_S1743921316012515 crossref_primary_10_1038_s41467_017_00851_7 crossref_primary_10_1093_mnras_stac685 crossref_primary_10_3847_2041_8213_aa8fc7 crossref_primary_10_1088_1742_6596_1342_1_012010 crossref_primary_10_3847_2041_8213_aaacd4 crossref_primary_10_1007_s10686_019_09636_w crossref_primary_10_1088_1361_6382_aa96c5 crossref_primary_10_3847_2041_8213_aa97d5 crossref_primary_10_1088_1361_6382_aaeb5c crossref_primary_10_1103_PhysRevLett_119_251103 crossref_primary_10_1103_PhysRevD_106_023011 crossref_primary_10_3847_2041_8205_832_2_L21 crossref_primary_10_1103_PhysRevD_102_124077 crossref_primary_10_1088_1361_6382_aa6bb0 crossref_primary_10_1103_PhysRevD_106_023024 crossref_primary_10_1093_mnras_stz3190 crossref_primary_10_1103_PhysRevD_93_084019 crossref_primary_10_1103_PhysRevD_93_062002 crossref_primary_10_3847_1538_4357_ac82ae crossref_primary_10_1093_mnras_stx3242 crossref_primary_10_1103_PhysRevD_105_084024 crossref_primary_10_1103_PhysRevD_105_084021 crossref_primary_10_1038_s41550_021_01428_7 crossref_primary_10_1103_PhysRevD_111_024024 crossref_primary_10_1103_PhysRevD_111_044073 crossref_primary_10_3847_2041_8213_aa905d crossref_primary_10_1103_PhysRevD_100_024002 crossref_primary_10_3367_UFNe_2016_11_038088 crossref_primary_10_3847_2041_8213_aa905e crossref_primary_10_1103_PhysRevD_101_044019 crossref_primary_10_1103_PhysRevD_98_063503 crossref_primary_10_3847_1538_4357_ab3e03 crossref_primary_10_1093_pasj_psx125 crossref_primary_10_1103_PhysRevD_104_063011 crossref_primary_10_1103_PhysRevD_101_024041 crossref_primary_10_3847_1538_4357_aae583 crossref_primary_10_1103_PhysRevD_100_024015 crossref_primary_10_1093_mnras_stad541 crossref_primary_10_3847_1538_4357_aaef7c crossref_primary_10_3847_1538_4357_ab4ae0 crossref_primary_10_1088_1361_6382_aa5cea crossref_primary_10_3847_2041_8205_824_2_L24 crossref_primary_10_1038_ncomms12898 crossref_primary_10_1088_1361_6382_abfd85 crossref_primary_10_1103_PhysRevD_95_124046 crossref_primary_10_1002_asna_201813473 crossref_primary_10_1093_mnras_stz675 crossref_primary_10_1063_5_0147888 crossref_primary_10_3847_2041_8205_829_1_L15 crossref_primary_10_3847_1538_4357_aab7f3 crossref_primary_10_1103_PhysRevD_111_L061305 crossref_primary_10_1016_j_astropartphys_2019_04_008 crossref_primary_10_1103_PhysRevD_95_124042 crossref_primary_10_1103_RevModPhys_90_025006 crossref_primary_10_1103_PhysRevD_93_083010 crossref_primary_10_1016_j_ascom_2022_100664 crossref_primary_10_1103_PhysRevD_96_084067 crossref_primary_10_1093_mnras_sty1066 crossref_primary_10_1093_mnras_stw1219 crossref_primary_10_1103_PhysRevD_97_123003 crossref_primary_10_1002_asna_201713415 crossref_primary_10_1103_PhysRevD_99_061501 crossref_primary_10_1103_PhysRevD_95_104046 crossref_primary_10_3847_0067_0049_227_2_14 crossref_primary_10_3847_2041_8205_825_1_L12 crossref_primary_10_3847_1538_4357_aa63ef crossref_primary_10_1093_mnras_stx2345 crossref_primary_10_1088_1361_6382_acb3a7 crossref_primary_10_1103_PhysRevLett_121_061102 crossref_primary_10_3847_2041_8205_829_2_L28 crossref_primary_10_1093_mnrasl_slw239 crossref_primary_10_1103_PhysRevD_95_044045 crossref_primary_10_3847_2041_8213_aa910f crossref_primary_10_1093_mnras_stw2550 crossref_primary_10_1103_PhysRevD_97_123014 crossref_primary_10_1103_PhysRevD_95_104038 crossref_primary_10_1088_1361_6382_aae593 crossref_primary_10_1103_PhysRevD_95_044039 crossref_primary_10_1103_PhysRevD_96_064050 crossref_primary_10_1103_PhysRevD_95_104036 crossref_primary_10_3847_2041_8205_827_1_L16 crossref_primary_10_32446_0368_1025it_2021_3_22_28 crossref_primary_10_1103_PhysRevLett_123_161102 crossref_primary_10_1103_PhysRevD_102_124053 crossref_primary_10_1007_s10509_017_3014_2 crossref_primary_10_3847_2041_8213_aa9a35 crossref_primary_10_1103_PhysRevD_96_124035 crossref_primary_10_1093_mnras_stz241 crossref_primary_10_3847_2041_8205_824_1_L8 crossref_primary_10_1093_mnras_sty031 crossref_primary_10_1103_PhysRevD_103_124015 crossref_primary_10_1103_PhysRevD_102_064063 crossref_primary_10_3847_2041_8213_ab3f33 crossref_primary_10_3847_1538_4357_abeb71 crossref_primary_10_3847_2041_8205_828_2_L16 crossref_primary_10_1103_PhysRevD_94_121501 crossref_primary_10_1016_j_physleta_2020_126601 crossref_primary_10_3847_2041_8213_ab50c0 crossref_primary_10_1103_PhysRevD_98_083007 crossref_primary_10_1103_PhysRevLett_125_261101 crossref_primary_10_3847_0004_637X_825_2_116 crossref_primary_10_3847_1538_4357_aa86f0 crossref_primary_10_1093_mnras_stae836 crossref_primary_10_1103_PhysRevD_94_024012 crossref_primary_10_1093_mnras_stw1446 crossref_primary_10_1103_PhysRevD_95_104013 crossref_primary_10_1103_PhysRevD_110_084003 crossref_primary_10_3847_1538_4357_aabfee |
Cites_doi | 10.1103/PhysRevD.84.104020 10.1103/PhysRevD.85.122007 10.1051/0004-6361/201218860 10.1088/0034-4885/72/7/076901 10.1088/0004-637X/795/2/105 10.1088/0004-637X/800/2/81 10.1088/0264-9381/27/17/173001 10.1088/0004-637X/748/2/136 10.1103/PhysRevD.83.083004 10.1103/PhysRevD.89.024003 10.1051/0004-6361/201118219 10.1088/0264-9381/26/6/063001 10.1088/0264-9381/28/12/125023 10.1103/PhysRevD.91.104021 10.1088/0004-637X/760/1/12 10.1088/0004-637X/806/2/263 10.1103/PhysRevLett.113.011102 10.1088/0004-637X/767/2/124 10.1088/0264-9381/29/15/155002 10.1088/0067-0049/203/2/28 10.1103/PhysRevD.93.024013 10.1088/1367-2630/12/5/053034 10.1103/PhysRevD.85.064034 10.1103/PhysRevD.80.102001 10.1103/PhysRevD.88.062006 10.1088/0264-9381/26/20/204004 10.1103/PhysRevD.89.122004 10.1103/PhysRevLett.106.161103 10.1103/PhysRevD.93.022002 10.1088/1367-2630/11/12/123006 10.1103/PhysRevD.88.044042 10.1103/PhysRevLett.114.071104 10.1088/0264-9381/32/13/135012 10.1103/PhysRevD.83.102001 10.1103/PhysRevD.80.084043 10.1088/0264-9381/27/19/194017 10.1088/0264-9381/32/2/024001 10.1088/0264-9381/29/12/124013 10.1088/0264-9381/31/19/195010 10.1103/PhysRevD.74.082005 10.1103/PhysRevD.91.042003 10.1088/0264-9381/32/11/115012 10.1093/mnras/stv2213 10.1103/PhysRevD.81.102001 10.1103/PhysRevD.72.122002 10.1103/PhysRevD.85.104045 10.1103/PhysRevD.88.043007 10.1088/0264-9381/27/8/084006 10.1103/PhysRevLett.115.051101 10.1103/PhysRevD.89.061502 10.1088/0264-9381/25/11/114029 10.1093/mnras/stu2729 10.1103/PhysRevD.87.124005 10.1103/PhysRevD.88.124039 10.1103/PhysRevD.89.024010 10.1103/PhysRevD.60.022002 10.1103/PhysRevD.91.062005 10.1088/0264-9381/27/19/194005 10.1103/PhysRevD.91.024043 10.1088/0004-637X/784/2/119 10.1103/PhysRevD.86.084017 10.1103/PhysRevD.78.064056 10.1103/PhysRevD.90.082004 10.1088/2041-8205/789/1/L5 10.1103/PhysRevD.71.062001 10.1103/PhysRevD.89.084006 10.1088/0004-637X/779/1/72 10.1103/PhysRevD.47.2198 10.1088/0004-637X/804/2/114 10.1103/PhysRevD.91.084034 10.1103/PhysRevD.93.044007 10.1103/PhysRevD.78.124020 10.1088/0264-9381/27/11/114007 10.1088/0264-9381/29/12/124007 10.1103/PhysRevD.89.084060 10.1103/PhysRevD.87.024033 10.1103/PhysRevD.88.062001 10.1088/0004-637X/814/1/58 10.1088/0004-637X/739/2/99 10.1103/PhysRevD.91.062010 10.1103/PhysRevD.49.2658 10.1103/PhysRevD.85.082002 10.1088/0067-0049/211/1/7 10.1088/0264-9381/28/10/105021 10.1103/PhysRevD.89.042004 10.1088/0067-0049/217/1/8 10.1103/PhysRevD.88.083010 |
ContentType | Journal Article |
Copyright | The Author(s) 2016 Attribution |
Copyright_xml | – notice: The Author(s) 2016 – notice: Attribution |
CorporateAuthor | The LIGO Scientific Collaboration Virgo Collaboration LIGO Scientific Collaboration |
CorporateAuthor_xml | – name: The LIGO Scientific Collaboration – name: Virgo Collaboration – name: LIGO Scientific Collaboration |
DBID | CYE CYI C6C AAYXX CITATION NPM 7X8 1XC VOOES 5PM ADTOC UNPAY DOA |
DOI | 10.1007/lrr-2016-1 |
DatabaseName | NASA Scientific and Technical Information NASA Technical Reports Server Springer Nature OA Free Journals CrossRef PubMed MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1433-8351 |
ExternalDocumentID | oai_doaj_org_article_b9867943d0874490986a3466745c1a5e 10.1007/lrr-2016-1 PMC5256041 oai_HAL_in2p3_00807196v1 28179853 10_1007_lrr_2016_1 20170003272 |
Genre | Journal Article Review |
GroupedDBID | -~9 0R~ 29L 2WC 5GY 5VS AAFWJ AAKKN ABDBF ABEEZ ACACY ACGFO ACGFS ACUHS ACULB ADBBV AEGXH AENEX AFGXO AFPKN AHSBF AIAGR ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH B0M BAPOH BCNDV BENPR BHPHI BKSAR C24 C6C CYE CYI E3Z EAP EBS EJD EMK ESX GROUPED_DOAJ HCIFZ I-F IAO ISR ITC J9A KQ8 M~E OK1 OVT P2P PIMPY PROAC REM RNS SOJ TR2 TUS XSB ~8M AEUYN AFKRA ASPBG AVWKF C1A CCPQU IPNFZ PCBAR RIG RSV AAYXX CITATION PHGZM PHGZT PUEGO NPM 7X8 1XC VOOES 5PM ADTOC UNPAY |
ID | FETCH-LOGICAL-c5251-f0a8a2234918c054894805ff5f0fb995f612752ade5567b879fc578b2ddc7cf3 |
IEDL.DBID | DOA |
ISSN | 2367-3613 1433-8351 |
IngestDate | Wed Aug 27 00:48:45 EDT 2025 Wed Oct 01 16:58:05 EDT 2025 Tue Sep 30 16:49:50 EDT 2025 Sun Sep 28 07:53:58 EDT 2025 Fri Jul 11 16:21:47 EDT 2025 Wed Feb 19 01:57:11 EST 2025 Wed Oct 01 04:29:23 EDT 2025 Thu Apr 24 22:50:36 EDT 2025 Fri Feb 21 02:33:02 EST 2025 Fri Sep 19 16:16:28 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Data Analysis Gravitational Waves Gravitational-Wave Detectors Electromagnetic Counterparts Data analysis Electromagnetic counterparts Gravitational waves Gravitational-wave detectors |
Language | English |
License | Attribution: http://creativecommons.org/licenses/by Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. cc-by |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5251-f0a8a2234918c054894805ff5f0fb995f612752ade5567b879fc578b2ddc7cf3 |
Notes | Report Number: VIR-0288A-12 GSFC-E-DAA-TN41341 GSFC VIR-0288A-12 Report Number: LIGO P1200087 LIGO P1200087 Goddard Space Flight Center E-ISSN: 1433-8351 Report Number: GSFC-E-DAA-TN41341 ISSN: 2367-3613 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 PMCID: PMC5256041 |
ORCID | 0000-0002-4551-2902 0000-0001-9432-7108 0000-0002-5172-0783 0000-0002-8454-7497 0000-0002-1890-1128 0000-0003-3768-9908 0000-0001-6487-5197 0000-0003-4344-7227 0000-0001-7469-4250 0000-0003-1685-3545 0000-0002-3658-7240 0000-0002-2321-1017 0000-0003-0158-2826 0000-0003-0589-9687 0000-0002-1110-1152 0000-0002-0631-1198 0000-0002-2002-1701 0000-0002-1377-1272 0000-0001-9870-6850 0000-0002-4618-1674 0000-0002-1019-6911 0000-0002-4918-0247 |
OpenAccessLink | https://doaj.org/article/b9867943d0874490986a3466745c1a5e |
PMID | 28179853 |
PQID | 1866694848 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b9867943d0874490986a3466745c1a5e unpaywall_primary_10_1007_lrr_2016_1 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5256041 hal_primary_oai_HAL_in2p3_00807196v1 proquest_miscellaneous_1866694848 pubmed_primary_28179853 crossref_citationtrail_10_1007_lrr_2016_1 crossref_primary_10_1007_lrr_2016_1 springer_journals_10_1007_lrr_2016_1 nasa_ntrs_20170003272 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-02-08 |
PublicationDateYYYYMMDD | 2016-02-08 |
PublicationDate_xml | – month: 02 year: 2016 text: 2016-02-08 day: 08 |
PublicationDecade | 2010 |
PublicationPlace | Goddard Space Flight Center |
PublicationPlace_xml | – name: Goddard Space Flight Center – name: Cham – name: Switzerland |
PublicationTitle | Living reviews in relativity |
PublicationTitleAbbrev | Living Rev Relativ |
PublicationTitleAlternate | Living Rev Relativ |
PublicationYear | 2016 |
Publisher | Springer International Publishing Living Reviews SpringerOpen |
Publisher_xml | – name: Springer International Publishing – name: Living Reviews – name: SpringerOpen |
References | Adams, Meacher, Clark, Sutton, Jones, Minot (CR26) 2013; 88 Abbott (CR21) 2009; 72 CR38 Abbott (CR22) 2009; 80 Fairhurst (CR55) 2009; 11 CR33 Pan, Buonanno, Taracchini, Kidder, Mroué, Pfeiffer, Scheel, Szilágyi (CR85) 2014; 89 Rodriguez, Morscher, Pattabiraman, Chatterjee, Haster, Rasio (CR92) 2015; 115 Nissanke, Kasliwal, Georgieva (CR79) 2013; 767 Klimenko, Mohanty, Rakhmanov, Mitselmakher (CR70) 2005; 72 Berry (CR31) 2015; 804 Miller, Barsotti, Vitale, Fritschel, Evans, Sigg (CR78) 2015; 91 Aasi (CR10) 2015; 32 Sidery (CR97) 2014; 89 Aasi (CR7) 2014; 113 Harry (CR61) 2010; 27 Aasi (CR2) 2013 Canizares, Field, Gair, Raymond, Smith, Tiglio (CR36) 2015; 114 Iyer, Souradeep, Unnikrishnan, Dhurandhar, Raja, Sengupta (CR64) 2011 Lindblom, Owen, Brown (CR74) 2008; 78 Abadie (CR16) 2012; 539 Aasi (CR1) 2012; 29 Somiya (CR100) 2012; 29 Vitale, Del Pozzo, Li, Van Den Broeck, Mandel, Aylott, Veitch (CR111) 2012; 85 Dimmelmeier, Ott, Marek, Janka (CR48) 2008; 78 Kim, Perera, McLaughlin (CR69) 2015; 448 Ott (CR83) 2011; 106 CR42 Sutton (CR102) 2010; 12 Abadie (CR14) 2012; 85 Aasi (CR11) 2015 Aasi (CR6) 2014; 89 Thrane, Coughlin (CR104) 2013; 88 Mandel, O’Shaughnessy (CR77) 2010; 27 Dominik (CR50) 2015; 806 Khan, Husa, Hannam, Ohme, Pürrer, Forteza, Bohe (CR68) 2016; 93 Canizares, Field, Gair, Tiglio (CR37) 2013; 87 CR59 CR57 Kanner (CR66) 2016; 93 CR54 Allen (CR27) 2005; 71 Singer, Price (CR98) 2016; 93 Evans (CR52) 2016; 455 Thrane (CR106) 2011; 83 Nitz, Lundgren, Brown, Ochsner, Keppel, Harry (CR81) 2013; 88 Grover, Fairhurst, Farr, Mandel, Rodriguez, Sidery, Vecchio (CR60) 2014; 89 Fairhurst (CR56) 2011; 28 Blackburn, Briggs, Camp, Christensen, Connaughton, Jenke, Remillard, Veitch (CR32) 2015; 217 Finn, Chernoff (CR58) 1993; 47 Kasliwal, Nissanke (CR67) 2014; 789 Sathyaprakash (CR93) 2012; 29 de Mink, Belczynski (CR47) 2015; 814 CR65 Ott (CR82) 2009; 26 Abadie (CR19) 2012; 85 Accadia (CR23) 2012 Acernese (CR25) 2015; 32 Aasi (CR5) 2014; 211 Abadie (CR15) 2012; 541 Dal Canton, Lundgren, Nielsen (CR45) 2015; 91 Dominik, Belczynski, Fryer, Holz, Berti, Bulik, Mandel, O’Shaughnessy (CR49) 2013; 779 Cannon (CR39) 2012; 748 Aso, Michimura, Somiya, Ando, Miyakawa, Sekiguchi, Tatsumi, Yamamoto (CR28) 2013; 88 CR73 Privitera (CR88) 2014; 89 Chassande-Mottin, Miele, Mohapatra, Cadonati (CR40) 2010; 27 Babak (CR29) 2013; 87 Littenberg, Cornish (CR75) 2015; 91 Yakunin (CR113) 2002; 27 Essick, Vitale, Katsavounidis, Vedovato, Klimenko (CR51) 2015; 800 CR4 Cornish, Littenberg (CR43) 2015; 32 Read (CR90) 2013; 88 Vallisneri, Kanner, Williams, Weinstein, Stephens (CR108) 2015; 610 Klimenko, Yakushin, Mercer, Mitselmakher (CR71) 2008; 25 Acernese (CR24) 2009 Vitale, Zanolin (CR112) 2011; 84 CR87 Schutz (CR96) 2011; 28 Thrane, Mandic, Christensen (CR105) 2015; 91 Buonanno, Iyer, Ochsner, Pan, Sathyaprakash (CR35) 2009; 80 Aasi (CR8) 2014 Dal Canton (CR46) 2014; 90 Abadie (CR13) 2010; 27 Brown, Harry, Lundgren, Nitz (CR34) 2012; 86 Aasi (CR3) 2013; 88 Rodriguez, Farr, Raymond, Farr, Littenberg, Fazi, Kalogera (CR91) 2014; 784 Chatterji, Lazzarini, Stein, Sutton, Searle, Tinto (CR41) 2006; 74 Hild (CR63) 2012 Owen, Sathyaprakash (CR84) 1999; 60 Abadie (CR12) 2010; 81 Singer (CR99) 2014; 795 Pankow, Klimenko, Mitselmakher, Yakushin, Vedovato, Drago, Mercer, Ajith (CR86) 2009; 26 Aasi (CR9) 2015; 32 Abadie (CR18) 2012; 760 CR94 Schmidt, Ohme, Hannam (CR95) 2015; 91 Nissanke, Sievers, Dalal, Holz (CR80) 2011; 739 Barsotti, Fritschel (CR30) 2012 Veitch (CR110) 2015; 91 Cutler, Flanagan (CR44) 1994; 49 Evans (CR53) 2012; 203 Lück (CR76) 2010; 228 Harry, Nitz, Brown, Lundgren, Ochsner, Keppel (CR62) 2014; 89 Pürrer (CR89) 2014; 31 CR20 Klimenko (CR72) 2011; 83 CR101 Abadie (CR17) 2012 Taracchini (CR103) 2014; 89 Veitch (CR109) 2012; 85 CR107 I Mandel (9001_CR77) 2010; 27 LP Singer (9001_CR98) 2016; 93 9001_CR38 PA Evans (9001_CR53) 2012; 203 J Aasi (9001_CR7) 2014; 113 S Vitale (9001_CR111) 2012; 85 Y Pan (9001_CR85) 2014; 89 9001_CR33 JB Kanner (9001_CR66) 2016; 93 9001_CR101 J Abadie (9001_CR14) 2012; 85 CPL Berry (9001_CR31) 2015; 804 J Aasi (9001_CR2) 2013 C Pankow (9001_CR86) 2009; 26 9001_CR4 9001_CR42 J Veitch (9001_CR110) 2015; 91 R Essick (9001_CR51) 2015; 800 K Cannon (9001_CR39) 2012; 748 S Klimenko (9001_CR70) 2005; 72 L Barsotti (9001_CR30) 2012 9001_CR57 9001_CR59 S Klimenko (9001_CR72) 2011; 83 J Abadie (9001_CR16) 2012; 539 J Aasi (9001_CR10) 2015; 32 C Cutler (9001_CR44) 1994; 49 S Nissanke (9001_CR80) 2011; 739 J Aasi (9001_CR8) 2014 S Chatterji (9001_CR41) 2006; 74 H Lück (9001_CR76) 2010; 228 9001_CR54 A Taracchini (9001_CR103) 2014; 89 J Abadie (9001_CR17) 2012 BJ Owen (9001_CR84) 1999; 60 L Lindblom (9001_CR74) 2008; 78 S Fairhurst (9001_CR56) 2011; 28 BR Iyer (9001_CR64) 2011 M Vallisneri (9001_CR108) 2015; 610 J Aasi (9001_CR6) 2014; 89 J Miller (9001_CR78) 2015; 91 M Dominik (9001_CR49) 2013; 779 S Privitera (9001_CR88) 2014; 89 J Aasi (9001_CR1) 2012; 29 F Acernese (9001_CR25) 2015; 32 BP Abbott (9001_CR22) 2009; 80 CD Ott (9001_CR82) 2009; 26 9001_CR65 KN Yakunin (9001_CR113) 2002; 27 J Abadie (9001_CR18) 2012; 760 J Abadie (9001_CR15) 2012; 541 B Sathyaprakash (9001_CR93) 2012; 29 E Chassande-Mottin (9001_CR40) 2010; 27 C Kim (9001_CR69) 2015; 448 P Schmidt (9001_CR95) 2015; 91 J Aasi (9001_CR9) 2015; 32 J Abadie (9001_CR12) 2010; 81 LP Singer (9001_CR99) 2014; 795 L Blackburn (9001_CR32) 2015; 217 M Pürrer (9001_CR89) 2014; 31 CL Rodriguez (9001_CR91) 2014; 784 J Aasi (9001_CR11) 2015 B Allen (9001_CR27) 2005; 71 P Canizares (9001_CR37) 2013; 87 AH Nitz (9001_CR81) 2013; 88 9001_CR73 S Nissanke (9001_CR79) 2013; 767 E Thrane (9001_CR105) 2015; 91 S Hild (9001_CR63) 2012 BP Abbott (9001_CR21) 2009; 72 MM Kasliwal (9001_CR67) 2014; 789 E Thrane (9001_CR106) 2011; 83 M Dominik (9001_CR50) 2015; 806 S Vitale (9001_CR112) 2011; 84 NJ Cornish (9001_CR43) 2015; 32 JS Read (9001_CR90) 2013; 88 LS Finn (9001_CR58) 1993; 47 PJ Sutton (9001_CR102) 2010; 12 F Acernese (9001_CR24) 2009 SE Mink de (9001_CR47) 2015; 814 DA Brown (9001_CR34) 2012; 86 9001_CR87 J Abadie (9001_CR13) 2010; 27 S Fairhurst (9001_CR55) 2009; 11 CD Ott (9001_CR83) 2011; 106 E Thrane (9001_CR104) 2013; 88 T Accadia (9001_CR23) 2012 CL Rodriguez (9001_CR92) 2015; 115 TS Adams (9001_CR26) 2013; 88 P Canizares (9001_CR36) 2015; 114 9001_CR94 J Veitch (9001_CR109) 2012; 85 J Aasi (9001_CR3) 2013; 88 S Khan (9001_CR68) 2016; 93 T Canton Dal (9001_CR45) 2015; 91 PA Evans (9001_CR52) 2016; 455 J Aasi (9001_CR5) 2014; 211 H Dimmelmeier (9001_CR48) 2008; 78 S Klimenko (9001_CR71) 2008; 25 T Canton Dal (9001_CR46) 2014; 90 9001_CR107 9001_CR20 A Buonanno (9001_CR35) 2009; 80 T Sidery (9001_CR97) 2014; 89 GM Harry (9001_CR61) 2010; 27 IW Harry (9001_CR62) 2014; 89 K Grover (9001_CR60) 2014; 89 K Somiya (9001_CR100) 2012; 29 S Babak (9001_CR29) 2013; 87 Y Aso (9001_CR28) 2013; 88 BF Schutz (9001_CR96) 2011; 28 J Abadie (9001_CR19) 2012; 85 TB Littenberg (9001_CR75) 2015; 91 10015813 - Phys Rev D Part Fields. 1993 Mar 15;47(6):2198-2219 28179846 - Living Rev Relativ. 2014;17 (1):2 25763948 - Phys Rev Lett. 2015 Feb 20;114(7):071104 26274407 - Phys Rev Lett. 2015 Jul 31;115(5):051101 25032916 - Phys Rev Lett. 2014 Jul 4;113(1):011102 21599351 - Phys Rev Lett. 2011 Apr 22;106(16):161103 28163618 - Living Rev Relativ. 2011;14 (1):5 10017261 - Phys Rev D Part Fields. 1994 Mar 15;49(6):2658-2697 |
References_xml | – volume: 84 start-page: 104020 year: 2011 ident: CR112 article-title: Application of asymptotic expansions for maximum likelihood estimators’ errors to gravitational waves from inspiraling binary systems: The network case publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.84.104020 – volume: 85 start-page: 122007 year: 2012 ident: CR14 article-title: All-sky search for gravitational-wave bursts in the second joint LIGO-Virgo run publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.85.122007 – volume: 541 start-page: A155 year: 2012 ident: CR15 article-title: First low-latency LIGO+Virgo search for binary inspirals and their electromagnetic counterparts publication-title: Astron. Astrophys. doi: 10.1051/0004-6361/201218860 – year: 2012 ident: CR30 publication-title: Early aLIGO Configurations: example scenarios toward design sensitivity – volume: 72 start-page: 076901 year: 2009 ident: CR21 article-title: LIGO: The Laser interferometer gravitational-wave observatory publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/72/7/076901 – ident: CR54 – volume: 795 start-page: 105 year: 2014 ident: CR99 article-title: The First Two Years of Electromagnetic Follow-Up with Advanced LIGO and Virgo publication-title: Astrophys. J. doi: 10.1088/0004-637X/795/2/105 – volume: 800 start-page: 81 year: 2015 ident: CR51 article-title: Localization of short duration gravitational-wave transients with the early advanced LIGO and Virgo detectors publication-title: Astrophys. J. doi: 10.1088/0004-637X/800/2/81 – volume: 27 start-page: 173001 year: 2010 ident: CR13 article-title: Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors publication-title: Class. Quantum Grav. doi: 10.1088/0264-9381/27/17/173001 – volume: 748 start-page: 136 year: 2012 ident: CR39 article-title: Toward Early-Warning Detection of Gravitational Waves from Compact Binary Coalescence publication-title: Astrophys. J. doi: 10.1088/0004-637X/748/2/136 – ident: CR42 – volume: 83 start-page: 083004 year: 2011 ident: CR106 article-title: Long gravitational-wave transients and associated detection strategies for a network of terrestrial interferometers publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.83.083004 – volume: 89 start-page: 024003 year: 2014 ident: CR88 article-title: Improving the sensitivity of a search for coalescing binary black holes with nonprecessing spins in gravitational wave data publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.89.024003 – volume: 539 start-page: A124 year: 2012 ident: CR16 article-title: Implementation and testing of the first prompt search for gravitational wave transients with electromagnetic counterparts publication-title: Astron. Astrophys. doi: 10.1051/0004-6361/201118219 – ident: CR101 – volume: 26 start-page: 063001 year: 2009 ident: CR82 article-title: The gravitational-wave signature of core-collapse supernovae publication-title: Class. Quantum Grav. doi: 10.1088/0264-9381/26/6/063001 – volume: 28 start-page: 125023 year: 2011 ident: CR96 article-title: Networks of gravitational wave detectors and three figures of merit publication-title: Class. Quantum Grav. doi: 10.1088/0264-9381/28/12/125023 – volume: 91 start-page: 104021 year: 2015 ident: CR105 article-title: Detecting very long-lived gravitational-wave transients lasting hours to weeks publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.91.104021 – volume: 760 start-page: 12 year: 2012 ident: CR18 article-title: Search for Gravitational Waves Associated with Gamma-Ray Bursts during LIGO Science Run 6 and Virgo Science Runs 2 and 3 publication-title: Astrophys. J. doi: 10.1088/0004-637X/760/1/12 – volume: 806 start-page: 263 year: 2015 ident: CR50 article-title: Double Compact Objects III: Gravitational Wave Detection Rates publication-title: Astrophys. J. doi: 10.1088/0004-637X/806/2/263 – volume: 113 start-page: 011102 year: 2014 ident: CR7 article-title: Search for gravitational waves associated with -ray bursts detected by the Interplanetary Network publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.113.011102 – volume: 767 start-page: 124 year: 2013 ident: CR79 article-title: Identifying Elusive Electromagnetic Counterparts to Gravitational Wave Mergers: An End-to-end Simulation publication-title: Astrophys. J. doi: 10.1088/0004-637X/767/2/124 – volume: 29 start-page: 155002 year: 2012 ident: CR1 article-title: The characterization of Virgo data and its impact on gravitational-wave searches publication-title: Class. Quantum Grav. doi: 10.1088/0264-9381/29/15/155002 – ident: CR57 – volume: 203 start-page: 28 year: 2012 ident: CR53 article-title: Swift Follow-up Observations of Candidate Gravitational-Wave Transient Events publication-title: Astrophys. J. Suppl. Ser. doi: 10.1088/0067-0049/203/2/28 – year: 2012 ident: CR17 publication-title: LSC and Virgo Policy on Releasing Gravitational Wave Triggers to the Public in the Advanced Detectors Era – volume: 93 start-page: 024013 year: 2016 ident: CR98 article-title: Rapid Bayesian position reconstruction for gravitational-wave transients publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.93.024013 – volume: 12 start-page: 053034 year: 2010 ident: CR102 article-title: X-Pipeline: An Analysis package for autonomous gravitational-wave burst searches publication-title: New J. Phys. doi: 10.1088/1367-2630/12/5/053034 – volume: 85 start-page: 064034 year: 2012 ident: CR111 article-title: Effect of calibration errors on Bayesian parameter estimation for gravitational wave signals from inspiral binary systems in the advanced detectors era publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.85.064034 – volume: 80 start-page: 102001 year: 2009 ident: CR22 article-title: Search for gravitational-wave bursts in the first year of the fifth LIGO science run publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.80.102001 – volume: 88 start-page: 062006 year: 2013 ident: CR26 article-title: Gravitational-wave detection using multivariate analysis publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.88.062006 – volume: 26 start-page: 204004 year: 2009 ident: CR86 article-title: A Burst search for gravitational waves from binary black holes publication-title: Class. Quantum Grav. doi: 10.1088/0264-9381/26/20/204004 – volume: 89 start-page: 122004 year: 2014 ident: CR6 article-title: Methods and results of a search for gravitational waves associated with gamma-ray bursts using the GEO600, LIGO, and Virgo detectors publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.89.122004 – volume: 106 start-page: 161103 year: 2011 ident: CR83 article-title: Dynamics and gravitational wave signature of collapsar formation publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.106.161103 – volume: 93 start-page: 022002 year: 2016 ident: CR66 article-title: Leveraging waveform complexity for confident detection of gravitational waves publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.93.022002 – ident: CR33 – volume: 11 start-page: 123006 year: 2009 ident: CR55 article-title: Triangulation of gravitational wave sources with a network of detectors publication-title: New J. Phys. doi: 10.1088/1367-2630/11/12/123006 – volume: 88 start-page: 044042 year: 2013 ident: CR90 article-title: Matter effects on binary neutron star waveforms publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.88.044042 – volume: 114 start-page: 071104 year: 2015 ident: CR36 article-title: Accelerated gravitational-wave parameter estimation with reduced order modeling publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.114.071104 – volume: 32 start-page: 135012 year: 2015 ident: CR43 article-title: BayesWave: Bayesian Inference for Gravitational Wave Bursts and Instrument Glitches publication-title: Class. Quantum Grav. doi: 10.1088/0264-9381/32/13/135012 – volume: 83 start-page: 102001 year: 2011 ident: CR72 article-title: Localization of gravitational wave sources with networks of advanced detectors publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.83.102001 – ident: CR94 – volume: 80 start-page: 084043 year: 2009 ident: CR35 article-title: Comparison of post-Newtonian templates for compact binary inspiral signals in gravitational-wave detectors publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.80.084043 – volume: 27 start-page: 194017 year: 2010 ident: CR40 article-title: Detection of gravitational-wave bursts with chirplet-like template families publication-title: Class. Quantum Grav. doi: 10.1088/0264-9381/27/19/194017 – volume: 32 start-page: 024001 year: 2015 ident: CR25 article-title: Advanced Virgo: a second-generation interferometric gravitational wave detector publication-title: Class. Quantum Grav. doi: 10.1088/0264-9381/32/2/024001 – volume: 29 start-page: 124013 year: 2012 ident: CR93 article-title: Scientific Objectives of Einstein Telescope publication-title: Class. Quantum Grav. doi: 10.1088/0264-9381/29/12/124013 – volume: 31 start-page: 195010 year: 2014 ident: CR89 article-title: Frequency domain reduced order models for gravitational waves from aligned-spin compact binaries publication-title: Class. Quantum Grav. doi: 10.1088/0264-9381/31/19/195010 – ident: CR38 – volume: 74 start-page: 082005 year: 2006 ident: CR41 article-title: Coherent network analysis technique for discriminating gravitational-wave bursts from instrumental noise publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.74.082005 – volume: 91 start-page: 042003 year: 2015 ident: CR110 article-title: Parameter estimation for compact binaries with ground-based gravitational-wave observations using the LALInference software library publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.91.042003 – volume: 32 start-page: 115012 year: 2015 ident: CR10 article-title: Characterization of the LIGO detectors during their sixth science run publication-title: Class. Quantum Grav. doi: 10.1088/0264-9381/32/11/115012 – volume: 455 start-page: 1522 year: 2016 end-page: 1537 ident: CR52 article-title: Optimisation of the Swift X-ray follow-up of Advanced LIGO and Virgo gravitational wave triggers in 2015–16 publication-title: Mon. Not. R. Astron. Soc. doi: 10.1093/mnras/stv2213 – volume: 228 start-page: 012012 year: 2010 ident: CR76 article-title: The upgrade of GEO 600 publication-title: J. Phys.: Conf. Ser. – volume: 81 start-page: 102001 year: 2010 ident: CR12 article-title: All-sky search for gravitational-wave bursts in the first joint LIGO-GEO-Virgo run publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.81.102001 – volume: 72 start-page: 122002 year: 2005 ident: CR70 article-title: Constraint likelihood analysis for a network of gravitational wave detectors publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.72.122002 – volume: 85 start-page: 104045 year: 2012 ident: CR109 article-title: Estimating parameters of coalescing compact binaries with proposed advanced detector networks publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.85.104045 – volume: 88 start-page: 043007 year: 2013 ident: CR28 article-title: Interferometer design of the KAGRA gravitational wave detector publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.88.043007 – year: 2009 ident: CR24 publication-title: Advanced Virgo Baseline Design – volume: 27 start-page: 084006 year: 2010 ident: CR61 article-title: Advanced LIGO: the next generation of gravitational wave detectors publication-title: Class. Quantum Grav. doi: 10.1088/0264-9381/27/8/084006 – ident: CR4 – ident: CR87 – volume: 115 start-page: 051101 year: 2015 ident: CR92 article-title: Binary Black Hole Mergers from Globular Clusters: Implications for Advanced LIGO publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.115.051101 – volume: 32 start-page: 074001 year: 2015 ident: CR9 article-title: Advanced LIGO publication-title: Class. Quantum Grav. doi: 10.1088/0264-9381/32/11/115012 – volume: 89 start-page: 061502 year: 2014 ident: CR103 article-title: Effective-one-body model for black-hole binaries with generic mass ratios and spins publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.89.061502 – volume: 25 start-page: 114029 year: 2008 ident: CR71 article-title: Coherent method for detection of gravitational wave bursts publication-title: Class. Quantum Grav. doi: 10.1088/0264-9381/25/11/114029 – volume: 448 start-page: 928 year: 2015 end-page: 938 ident: CR69 article-title: Implications of PSR J0737-3039B for the Galactic NS-NS Binary Merger Rate publication-title: Mon. Not. R. Astron. Soc. doi: 10.1093/mnras/stu2729 – volume: 87 start-page: 124005 year: 2013 ident: CR37 article-title: Gravitational wave parameter estimation with compressed likelihood evaluations publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.87.124005 – volume: 88 start-page: 124039 year: 2013 ident: CR81 article-title: Accuracy of gravitational waveform models for observing neutron-star-black-hole binaries in Advanced LIGO publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.88.124039 – volume: 89 start-page: 024010 year: 2014 ident: CR62 article-title: Investigating the effect of precession on searches for neutron-star-black-hole binaries with Advanced LIGO publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.89.024010 – volume: 60 start-page: 022002 year: 1999 ident: CR84 article-title: Matched filtering of gravitational waves from inspiraling compact binaries: Computational cost and template placement publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.60.022002 – volume: 91 start-page: 062005 year: 2015 ident: CR78 article-title: Prospects for doubling the range of Advanced LIGO publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.91.062005 – volume: 27 start-page: 194005 year: 2002 ident: CR113 article-title: Gravitational waves from core collapse supernovae publication-title: Class. Quantum Grav. doi: 10.1088/0264-9381/27/19/194005 – volume: 91 start-page: 024043 year: 2015 ident: CR95 article-title: Towards models of gravitational waveforms from generic binaries II: Modelling precession effects with a single effective precession parameter publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.91.024043 – volume: 784 start-page: 119 year: 2014 ident: CR91 article-title: Basic Parameter Estimation of Binary Neutron Star Systems by the Advanced LIGO/Virgo Network publication-title: Astrophys. J. doi: 10.1088/0004-637X/784/2/119 – volume: 86 start-page: 084017 year: 2012 ident: CR34 article-title: Detecting binary neutron star systems with spin in advanced gravitational-wave detectors publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.86.084017 – volume: 78 start-page: 064056 year: 2008 ident: CR48 article-title: Gravitational wave burst signal from the core collapse of rotating stars publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.78.064056 – volume: 90 start-page: 082004 year: 2014 ident: CR46 article-title: Implementing a search for aligned-spin neutron star-black hole systems with advanced ground based gravitational wave detectors publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.90.082004 – volume: 789 start-page: L5 year: 2014 ident: CR67 article-title: On Discovering Electromagnetic Emission from Neutron Star Mergers: The Early Years of Two Gravitational Wave Detectors publication-title: Astrophys. J. doi: 10.1088/2041-8205/789/1/L5 – volume: 71 start-page: 062001 year: 2005 ident: CR27 article-title: time-frequency discriminator for gravitational wave detection publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.71.062001 – volume: 89 start-page: 084006 year: 2014 ident: CR85 article-title: Inspiral-merger-ringdown waveforms of spinning, precessing black-hole binaries in the effective-one-body formalism publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.89.084006 – volume: 779 start-page: 72 year: 2013 ident: CR49 article-title: Double Compact Objects II: Cosmological Merger Rates publication-title: Astrophys. J. doi: 10.1088/0004-637X/779/1/72 – volume: 47 start-page: 2198 year: 1993 end-page: 2219 ident: CR58 article-title: Observing binary inspiral in gravitational radiation: One interferometer publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.47.2198 – volume: 804 start-page: 114 year: 2015 ident: CR31 article-title: Parameter estimation for binary neutron-star coalescences with realistic noise during the Advanced LIGO era publication-title: Astrophys. J. doi: 10.1088/0004-637X/804/2/114 – volume: 91 start-page: 084034 year: 2015 ident: CR75 article-title: Bayesian inference for spectral estimation of gravitational wave detector noise publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.91.084034 – volume: 610 start-page: 012021 year: 2015 ident: CR108 article-title: The LIGO Open Science Center publication-title: J. Phys.: Conf. Ser. – volume: 93 start-page: 044007 year: 2016 ident: CR68 article-title: Frequency-domain gravitational waves from non-precessing black-hole binaries. II. A phenomenological model for the advanced detector era publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.93.044007 – volume: 78 start-page: 124020 year: 2008 ident: CR74 article-title: Model waveform accuracy standards for gravitational wave data analysis publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.78.124020 – volume: 27 start-page: 114007 year: 2010 ident: CR77 article-title: Compact Binary Coalescences in the Band of Ground-based Gravitational-Wave Detectors publication-title: Class. Quantum Grav. doi: 10.1088/0264-9381/27/11/114007 – year: 2012 ident: CR63 publication-title: LIGO 3 Strawman Design, T. Red – volume: 29 start-page: 124007 year: 2012 ident: CR100 article-title: Detector configuration of KAGRA — the Japanese cryogenic gravitational-wave detector publication-title: Class. Quantum Grav. doi: 10.1088/0264-9381/29/12/124007 – volume: 89 start-page: 084060 year: 2014 ident: CR97 article-title: Reconstructing the sky location of gravitational-wave detected compact binary systems: methodology for testing and comparison publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.89.084060 – volume: 87 start-page: 024033 year: 2013 ident: CR29 article-title: Searching for gravitational waves from binary coalescence publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.87.024033 – year: 2015 ident: CR11 publication-title: Instrument Science White Paper – volume: 88 start-page: 062001 year: 2013 ident: CR3 article-title: Parameter estimation for compact binary coalescence signals with the first generation gravitational-wave detector network publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.88.062001 – volume: 814 start-page: 58 year: 2015 ident: CR47 article-title: Merger rates of double neutron stars and stellar origin black holes: The Impact of Initial Conditions on Binary Evolution Predictions publication-title: Astrophys. J. doi: 10.1088/0004-637X/814/1/58 – year: 2011 ident: CR64 publication-title: LIGO-India – year: 2013 ident: CR2 publication-title: Open call for partnership for the EM identification and follow-up of GW candidate events – volume: 739 start-page: 99 year: 2011 ident: CR80 article-title: Localizing Compact Binary Inspirals on the Sky Using Ground-based Gravitational Wave Interferometers publication-title: Astrophys. J. doi: 10.1088/0004-637X/739/2/99 – volume: 91 start-page: 062010 year: 2015 ident: CR45 article-title: Impact of precession on aligned-spin searches for neutron-star-black-hole binaries publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.91.062010 – ident: CR73 – volume: 49 start-page: 2658 year: 1994 end-page: 2697 ident: CR44 article-title: Gravitational waves from merging compact binaries: How accurately can one extract the binary’s parameters from the inspiral wave form? publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.49.2658 – ident: CR65 – volume: 85 start-page: 082002 year: 2012 ident: CR19 article-title: Search for gravitational waves from low mass compact binary coalescence in LIGO’s sixth science run and Virgo’s science runs 2 and 3 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.85.082002 – volume: 211 start-page: 7 year: 2014 ident: CR5 article-title: First Searches for Optical Counterparts to Gravitational-wave Candidate Events publication-title: Astrophys. J. Suppl. Ser. doi: 10.1088/0067-0049/211/1/7 – volume: 28 start-page: 105021 year: 2011 ident: CR56 article-title: Source localization with an advanced gravitational wave detector network publication-title: Class. Quantum Grav. doi: 10.1088/0264-9381/28/10/105021 – volume: 89 start-page: 042004 year: 2014 ident: CR60 article-title: Comparison of Gravitational Wave Detector Network Sky Localization Approximations publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.89.042004 – year: 2012 ident: CR23 publication-title: Advanced Virgo Technical Design Report – volume: 217 start-page: 8 year: 2015 ident: CR32 article-title: High-energy electromagnetic offline follow-up of LIGO-Virgo gravitational-wave binary coalescence candidate events publication-title: Astrophys. J. Suppl. Ser. doi: 10.1088/0067-0049/217/1/8 – ident: CR59 – ident: CR107 – year: 2014 ident: CR8 publication-title: The LSC-Virgo White Paper on Gravitational Wave Searches and Astrophysics (2014–2015 edition) – volume: 88 start-page: 083010 year: 2013 ident: CR104 article-title: Searching for gravitational-wave transients with a qualitative signal model: seedless clustering strategies publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.88.083010 – ident: CR20 – volume: 88 start-page: 062006 year: 2013 ident: 9001_CR26 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.88.062006 – ident: 9001_CR57 – volume: 795 start-page: 105 year: 2014 ident: 9001_CR99 publication-title: Astrophys. J. doi: 10.1088/0004-637X/795/2/105 – volume: 81 start-page: 102001 year: 2010 ident: 9001_CR12 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.81.102001 – volume: 28 start-page: 125023 year: 2011 ident: 9001_CR96 publication-title: Class. Quantum Grav. doi: 10.1088/0264-9381/28/12/125023 – volume: 83 start-page: 083004 year: 2011 ident: 9001_CR106 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.83.083004 – volume: 217 start-page: 8 year: 2015 ident: 9001_CR32 publication-title: Astrophys. J. Suppl. Ser. doi: 10.1088/0067-0049/217/1/8 – volume: 767 start-page: 124 year: 2013 ident: 9001_CR79 publication-title: Astrophys. J. doi: 10.1088/0004-637X/767/2/124 – ident: 9001_CR54 – volume: 87 start-page: 124005 year: 2013 ident: 9001_CR37 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.87.124005 – volume: 27 start-page: 194005 year: 2002 ident: 9001_CR113 publication-title: Class. Quantum Grav. doi: 10.1088/0264-9381/27/19/194005 – volume: 28 start-page: 105021 year: 2011 ident: 9001_CR56 publication-title: Class. Quantum Grav. doi: 10.1088/0264-9381/28/10/105021 – volume: 32 start-page: 135012 year: 2015 ident: 9001_CR43 publication-title: Class. Quantum Grav. doi: 10.1088/0264-9381/32/13/135012 – volume: 804 start-page: 114 year: 2015 ident: 9001_CR31 publication-title: Astrophys. J. doi: 10.1088/0004-637X/804/2/114 – volume: 26 start-page: 204004 year: 2009 ident: 9001_CR86 publication-title: Class. Quantum Grav. doi: 10.1088/0264-9381/26/20/204004 – volume: 85 start-page: 064034 year: 2012 ident: 9001_CR111 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.85.064034 – volume: 71 start-page: 062001 year: 2005 ident: 9001_CR27 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.71.062001 – volume: 74 start-page: 082005 year: 2006 ident: 9001_CR41 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.74.082005 – volume: 12 start-page: 053034 year: 2010 ident: 9001_CR102 publication-title: New J. Phys. doi: 10.1088/1367-2630/12/5/053034 – volume-title: The LSC-Virgo White Paper on Gravitational Wave Searches and Astrophysics (2014–2015 edition) year: 2014 ident: 9001_CR8 – volume: 203 start-page: 28 year: 2012 ident: 9001_CR53 publication-title: Astrophys. J. Suppl. Ser. doi: 10.1088/0067-0049/203/2/28 – volume: 85 start-page: 122007 year: 2012 ident: 9001_CR14 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.85.122007 – volume: 228 start-page: 012012 year: 2010 ident: 9001_CR76 publication-title: J. Phys.: Conf. Ser. – volume: 32 start-page: 074001 year: 2015 ident: 9001_CR9 publication-title: Class. Quantum Grav. doi: 10.1088/0264-9381/32/11/115012 – volume: 80 start-page: 102001 year: 2009 ident: 9001_CR22 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.80.102001 – volume: 211 start-page: 7 year: 2014 ident: 9001_CR5 publication-title: Astrophys. J. Suppl. Ser. doi: 10.1088/0067-0049/211/1/7 – volume: 88 start-page: 062001 year: 2013 ident: 9001_CR3 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.88.062001 – volume: 114 start-page: 071104 year: 2015 ident: 9001_CR36 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.114.071104 – volume: 29 start-page: 155002 year: 2012 ident: 9001_CR1 publication-title: Class. Quantum Grav. doi: 10.1088/0264-9381/29/15/155002 – ident: 9001_CR94 – volume: 779 start-page: 72 year: 2013 ident: 9001_CR49 publication-title: Astrophys. J. doi: 10.1088/0004-637X/779/1/72 – volume-title: Advanced Virgo Technical Design Report year: 2012 ident: 9001_CR23 – volume: 89 start-page: 084006 year: 2014 ident: 9001_CR85 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.89.084006 – volume: 784 start-page: 119 year: 2014 ident: 9001_CR91 publication-title: Astrophys. J. doi: 10.1088/0004-637X/784/2/119 – volume: 806 start-page: 263 year: 2015 ident: 9001_CR50 publication-title: Astrophys. J. doi: 10.1088/0004-637X/806/2/263 – volume: 89 start-page: 024003 year: 2014 ident: 9001_CR88 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.89.024003 – volume: 539 start-page: A124 year: 2012 ident: 9001_CR16 publication-title: Astron. Astrophys. doi: 10.1051/0004-6361/201118219 – volume: 60 start-page: 022002 year: 1999 ident: 9001_CR84 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.60.022002 – volume: 800 start-page: 81 year: 2015 ident: 9001_CR51 publication-title: Astrophys. J. doi: 10.1088/0004-637X/800/2/81 – volume: 27 start-page: 173001 year: 2010 ident: 9001_CR13 publication-title: Class. Quantum Grav. doi: 10.1088/0264-9381/27/17/173001 – volume: 72 start-page: 122002 year: 2005 ident: 9001_CR70 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.72.122002 – volume: 78 start-page: 124020 year: 2008 ident: 9001_CR74 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.78.124020 – ident: 9001_CR33 – volume-title: LSC and Virgo Policy on Releasing Gravitational Wave Triggers to the Public in the Advanced Detectors Era year: 2012 ident: 9001_CR17 – volume: 91 start-page: 042003 year: 2015 ident: 9001_CR110 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.91.042003 – volume: 88 start-page: 083010 year: 2013 ident: 9001_CR104 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.88.083010 – volume: 789 start-page: L5 year: 2014 ident: 9001_CR67 publication-title: Astrophys. J. doi: 10.1088/2041-8205/789/1/L5 – volume: 85 start-page: 104045 year: 2012 ident: 9001_CR109 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.85.104045 – volume: 32 start-page: 024001 year: 2015 ident: 9001_CR25 publication-title: Class. Quantum Grav. doi: 10.1088/0264-9381/32/2/024001 – volume: 88 start-page: 044042 year: 2013 ident: 9001_CR90 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.88.044042 – volume: 86 start-page: 084017 year: 2012 ident: 9001_CR34 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.86.084017 – volume: 814 start-page: 58 year: 2015 ident: 9001_CR47 publication-title: Astrophys. J. doi: 10.1088/0004-637X/814/1/58 – volume-title: Early aLIGO Configurations: example scenarios toward design sensitivity year: 2012 ident: 9001_CR30 – volume: 106 start-page: 161103 year: 2011 ident: 9001_CR83 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.106.161103 – volume-title: Open call for partnership for the EM identification and follow-up of GW candidate events year: 2013 ident: 9001_CR2 – volume: 84 start-page: 104020 year: 2011 ident: 9001_CR112 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.84.104020 – volume: 91 start-page: 062005 year: 2015 ident: 9001_CR78 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.91.062005 – ident: 9001_CR38 – volume: 25 start-page: 114029 year: 2008 ident: 9001_CR71 publication-title: Class. Quantum Grav. doi: 10.1088/0264-9381/25/11/114029 – volume-title: Instrument Science White Paper year: 2015 ident: 9001_CR11 – volume-title: LIGO 3 Strawman Design, T. Red year: 2012 ident: 9001_CR63 – volume: 115 start-page: 051101 year: 2015 ident: 9001_CR92 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.115.051101 – volume: 27 start-page: 194017 year: 2010 ident: 9001_CR40 publication-title: Class. Quantum Grav. doi: 10.1088/0264-9381/27/19/194017 – volume: 448 start-page: 928 year: 2015 ident: 9001_CR69 publication-title: Mon. Not. R. Astron. Soc. doi: 10.1093/mnras/stu2729 – volume: 88 start-page: 043007 year: 2013 ident: 9001_CR28 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.88.043007 – volume: 91 start-page: 084034 year: 2015 ident: 9001_CR75 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.91.084034 – ident: 9001_CR73 – volume: 11 start-page: 123006 year: 2009 ident: 9001_CR55 publication-title: New J. Phys. doi: 10.1088/1367-2630/11/12/123006 – volume: 26 start-page: 063001 year: 2009 ident: 9001_CR82 publication-title: Class. Quantum Grav. doi: 10.1088/0264-9381/26/6/063001 – volume: 541 start-page: A155 year: 2012 ident: 9001_CR15 publication-title: Astron. Astrophys. doi: 10.1051/0004-6361/201218860 – volume: 80 start-page: 084043 year: 2009 ident: 9001_CR35 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.80.084043 – volume: 90 start-page: 082004 year: 2014 ident: 9001_CR46 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.90.082004 – ident: 9001_CR107 – volume: 739 start-page: 99 year: 2011 ident: 9001_CR80 publication-title: Astrophys. J. doi: 10.1088/0004-637X/739/2/99 – volume: 27 start-page: 114007 year: 2010 ident: 9001_CR77 publication-title: Class. Quantum Grav. doi: 10.1088/0264-9381/27/11/114007 – volume: 89 start-page: 061502 year: 2014 ident: 9001_CR103 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.89.061502 – volume: 89 start-page: 042004 year: 2014 ident: 9001_CR60 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.89.042004 – volume: 93 start-page: 044007 year: 2016 ident: 9001_CR68 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.93.044007 – volume: 89 start-page: 084060 year: 2014 ident: 9001_CR97 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.89.084060 – volume: 87 start-page: 024033 year: 2013 ident: 9001_CR29 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.87.024033 – volume: 83 start-page: 102001 year: 2011 ident: 9001_CR72 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.83.102001 – volume: 93 start-page: 024013 year: 2016 ident: 9001_CR98 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.93.024013 – volume: 47 start-page: 2198 year: 1993 ident: 9001_CR58 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.47.2198 – volume: 29 start-page: 124013 year: 2012 ident: 9001_CR93 publication-title: Class. Quantum Grav. doi: 10.1088/0264-9381/29/12/124013 – volume: 85 start-page: 082002 year: 2012 ident: 9001_CR19 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.85.082002 – volume-title: Advanced Virgo Baseline Design year: 2009 ident: 9001_CR24 – ident: 9001_CR65 – ident: 9001_CR42 – volume: 89 start-page: 024010 year: 2014 ident: 9001_CR62 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.89.024010 – ident: 9001_CR101 – volume: 91 start-page: 024043 year: 2015 ident: 9001_CR95 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.91.024043 – volume: 610 start-page: 012021 year: 2015 ident: 9001_CR108 publication-title: J. Phys.: Conf. Ser. – ident: 9001_CR59 – volume: 49 start-page: 2658 year: 1994 ident: 9001_CR44 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.49.2658 – volume: 89 start-page: 122004 year: 2014 ident: 9001_CR6 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.89.122004 – volume: 78 start-page: 064056 year: 2008 ident: 9001_CR48 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.78.064056 – volume: 32 start-page: 115012 year: 2015 ident: 9001_CR10 publication-title: Class. Quantum Grav. doi: 10.1088/0264-9381/32/11/115012 – volume: 91 start-page: 062010 year: 2015 ident: 9001_CR45 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.91.062010 – volume: 113 start-page: 011102 year: 2014 ident: 9001_CR7 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.113.011102 – volume: 455 start-page: 1522 year: 2016 ident: 9001_CR52 publication-title: Mon. Not. R. Astron. Soc. doi: 10.1093/mnras/stv2213 – ident: 9001_CR87 – volume: 72 start-page: 076901 year: 2009 ident: 9001_CR21 publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/72/7/076901 – volume: 27 start-page: 084006 year: 2010 ident: 9001_CR61 publication-title: Class. Quantum Grav. doi: 10.1088/0264-9381/27/8/084006 – ident: 9001_CR4 – volume: 760 start-page: 12 year: 2012 ident: 9001_CR18 publication-title: Astrophys. J. doi: 10.1088/0004-637X/760/1/12 – ident: 9001_CR20 – volume: 88 start-page: 124039 year: 2013 ident: 9001_CR81 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.88.124039 – volume: 91 start-page: 104021 year: 2015 ident: 9001_CR105 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.91.104021 – volume: 748 start-page: 136 year: 2012 ident: 9001_CR39 publication-title: Astrophys. J. doi: 10.1088/0004-637X/748/2/136 – volume: 31 start-page: 195010 year: 2014 ident: 9001_CR89 publication-title: Class. Quantum Grav. doi: 10.1088/0264-9381/31/19/195010 – volume-title: LIGO-India year: 2011 ident: 9001_CR64 – volume: 93 start-page: 022002 year: 2016 ident: 9001_CR66 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.93.022002 – volume: 29 start-page: 124007 year: 2012 ident: 9001_CR100 publication-title: Class. Quantum Grav. doi: 10.1088/0264-9381/29/12/124007 – reference: 28179846 - Living Rev Relativ. 2014;17 (1):2 – reference: 25032916 - Phys Rev Lett. 2014 Jul 4;113(1):011102 – reference: 10015813 - Phys Rev D Part Fields. 1993 Mar 15;47(6):2198-2219 – reference: 10017261 - Phys Rev D Part Fields. 1994 Mar 15;49(6):2658-2697 – reference: 21599351 - Phys Rev Lett. 2011 Apr 22;106(16):161103 – reference: 26274407 - Phys Rev Lett. 2015 Jul 31;115(5):051101 – reference: 25763948 - Phys Rev Lett. 2015 Feb 20;114(7):071104 – reference: 28163618 - Living Rev Relativ. 2011;14 (1):5 |
SSID | ssib042110736 ssj0021401 |
Score | 2.6255496 |
SecondaryResourceType | review_article |
Snippet | We present a possible observing scenario for the Advanced LIGO and Advanced Virgo gravitational-wave detectors over the next decade, with the intention of... |
SourceID | doaj unpaywall pubmedcentral hal proquest pubmed crossref springer nasa |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1 |
SubjectTerms | Astrophysics Astrophysics and Astroparticles Classical and Quantum Gravitation Cosmology Data analysis Earth Resources And Remote Sensing Electromagnetic counterparts General Relativity and Quantum Cosmology Gravitational waves Gravitational-wave detectors High Energy Astrophysical Phenomena Physics Physics and Astronomy Relativity Theory Review Review Article Sciences of the Universe |
SummonAdditionalLinks | – databaseName: SpringerLink dbid: C24 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELaqIgQcEI8C4SUj9oJEpDz8ynGpaBe0UA4FerNsJ2kXRckq6S6CX8-MN0m7YoU4JnFsxzPj-SYefyZkogrJrUzjMFG2DJlMi1BxEEhkhIqFAxPLcHPyp89i9pV9PONne-TtsBfGZ7sPS5J-ph42u1VtCyKNRQixzg3AHQLPKzi84hpnPpTB07v7cAtDB3-0HEwFKXita-SkV3VtuSPP2g9O5gJzIvdr05lduPPv9MlxDfUOubWql-bXT1NV19zU0T1yt8eXdLpRiPtkr6gfkJs-z9N1D8mPL23jN1d2FNAqPbH4UxYqpabO6Rz92uI3Xh63Zt2zd5sq_G7WBfVeDXdPdhR_3tJpnz1A5x-OT_z7451vi_a8OSCnR-9PD2dhf9xC6DignLCMjDKAFlgWKwdITmVMRbwseRmVNst4KZAMPjF5wbmQVsmsdGDvNslzJ12ZPoIha-riCaFM5pJFzAqlYpYzZyPrJLwDWMc4rvKAvBkGXbv-Y_BEjEoPJMogII0C0nFAXo9llxsCjp2l3qHsxhJImu1vNO257m1Q2wzZBVmaR8j5n0VwaVImhGTcxYYXAZmA5LfqmE3nelEny1QjtJagdWto6wBVQ0OXO2xeYlyZyCQgrwZd0WCjuPBi6qJZdRpJBQWMJlMBebzRnbGVRCFlHE8DIre0aqsb20_qxYXnAecIVxn0ZzLon-4noG7nEE1G3fzHSD79v9qekdvegDB_XT0n-5ftqngB8OzSvvRW-QeGxjCQ priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbKVgg48CwQXgpiLxzS5uFXJC4Lol3Q0vbQQjkgy3bidmGVXSW7i-ivZyabhC5UCHFMYsf2eOz5kpn5TEhf5oIZkURBLI0LqEjyQDKYkFBzGXELSyzF5OQP-3x4TN-fsJMN8qrNhamj3VuX5CqnAVmaivnOLHOtV39nUpYwvREPYJ_J3BWyydG91CObx_uHg891QlGSBAAuoguMpL8qrdmgmqofLMsZBkL2Cl3py8DmnzGTneP0Brm2KGb6x3c9mVywTbu3yJd2VKuQlG_bi7nZtue_ET7-77Bvk5sNaPUHKy27Qzby4i65WgeP2uoe-XpYTuuMzcoHCOwfGPzTC234usj8ERrL8Tle7pV62VCC60nwSS9zvzaVmJJZ-fhH2B80IQn-6N3eQV2_u_NxXJ5Ot8jR7tujN8OgOcMhsAygU-BCLTVAEJpG0gI8lCmVIXOOudCZNGWOI8N8rLOcMS6MFKmzsImYOMussC65D1MyLfKHxKciEzSkhksZ0YxaExoroA4AKG2ZzDzysp1UZZvB4DEbE9UyM4P4FIpPRR550ZWdrVg9Li31GnWjK4FM3PWNaXmqmoWtTIqUhTTJQjxIIA3hUieUc0GZjTTLPdIHzVp7x3AwUuMiniUK8bqAPXAJbW2h6inocoXNC_xYjUXskeetLipY-OjN0UU-XVQKmQo5SJNKjzxY6WbXSiyRh44lHhFrWrvWjfUnxfisJhdniIEp9KffqqNqdrXqUhH1O93_iyQf_Vuxx-R6rd4YFC-fkN68XORPAfPNzbNmaf8EVg5Sog priority: 102 providerName: Unpaywall |
Title | Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo |
URI | https://ntrs.nasa.gov/citations/20170003272 https://link.springer.com/article/10.1007/lrr-2016-1 https://www.ncbi.nlm.nih.gov/pubmed/28179853 https://www.proquest.com/docview/1866694848 https://in2p3.hal.science/in2p3-00807196 https://pubmed.ncbi.nlm.nih.gov/PMC5256041 https://link.springer.com/content/pdf/10.1007/lrr-2016-1.pdf https://doaj.org/article/b9867943d0874490986a3466745c1a5e |
UnpaywallVersion | publishedVersion |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1433-8351 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0021401 issn: 2367-3613 databaseCode: KQ8 dateStart: 19980101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1433-8351 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0021401 issn: 2367-3613 databaseCode: DOA dateStart: 19980101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1433-8351 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0021401 issn: 2367-3613 databaseCode: ABDBF dateStart: 20070801 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources (selected full-text only) customDbUrl: eissn: 1433-8351 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0021401 issn: 2367-3613 databaseCode: M~E dateStart: 19980101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 1433-8351 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0021401 issn: 2367-3613 databaseCode: C6C dateStart: 19981201 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink customDbUrl: eissn: 1433-8351 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0021401 issn: 2367-3613 databaseCode: C24 dateStart: 19981201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Jj9MwFLZgEAIOiGWAsFRB9MIhIou3HEs1MwV1lsMMDCfLdhKmKEqrZFoEB34772VTIyq4cImUxImdt_h9dp4_EzKWqWBGRIEXSpN5VESpJxkoxNdcBtyCi8W4OPn4hM8u6MdLdrm11RfmhDX0wI3g3pkYKeFolPhI1B77cKojyrmgzAaapdj7QhjrBlPtUAuHDfW6oijyAGMEW8SkeVmCaQTcCwahqGbshwBzhfmQe4Wu9C7M-WfqZP__9B65sy5W-sd3nedbIerwAbnfYkt30nzTQ3IjLR6R23WOp60ek29n5bJeWFm5gFTdU4MTsvBSVxeJO8eYtviJp0el3rTM3Tr3PutN6tYRDVdOVi5O3LqTNnPAnX84Oq2f7698WpRfl_vk_PDgfDrz2q0WPMsA4XiZr6UGpEDjQFpAcTKm0mdZxjI_M3HMMo5E8KFOUsa4MFLEmQVfN2GSWGGz6AmIbFmkz4hLRSKoTw2XMqAJtcY3VsAzgHO0ZTJxyNtO6Mq2H4O7YeSqI1AGBSlUkAoc8qYvu2rIN3aWeo-660sgYXZ9AcxItWak_mVGDhmD5gfvmE3malGEq0ghrBbQVW2grn00DQVNrrB6gWPKUIQOed3ZigL_xJ8uukiX60ohoSAHaVLpkKeN7fS1hBLp4ljkEDGwqkEzhneKxVXNAc4QqlJoz7izP9V2PtVOEY172_yLJJ__D0m-IHdr98LMdvmS7F2X6_QVALdrMyI3pyHFI5-Oan-F4_GvgxG5dXFyNvnyGwYLPe8 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELaqIlQ4IB4FwjOIvSARKQ87do5LRbuFtOWwQG-W7STtoihZJd1F8OuZ8SZpI1aIYxLHdubhmYlnPhMyETlnmkeBFwpdeJRHuScYMMRXsQhiAyqWYHHyyWk8-0o_nbPzHfK-r4Wx2e79lqRdqftit7JpgKVB7EGscwv3LvG8goNrrHFqQxk8vbsLtzB0sEfLwVIQgdW6AU563dfIHFnUfjAyl5gTuVupVm3zO_9Onxz2UO-SvVW1VL9-qrK8YaYO75N7nX_pTjcC8YDs5NVDctvmeZr2EfnxpaltcWXrgrfqnmn8KQuduqrK3BTt2uI3Xh41at2hd6vS-67WuWutGlZPti7-vHWnXfaAmx4fndn3hzvfFs1FvU_mhx_nBzOvO27BMwy8HK_wlVDgLdAkEAY8OZFQ4bOiYIVf6CRhRYxg8KHKcsZirgVPCgP6rsMsM9wU0WMgWV3lT4lLecapT3UsREAzarSvDYd3wNdRhonMIe96okvTfQyeiFHKHkQZGCSRQTJwyNuh7XIDwLG11Qfk3dACQbPtjbq5kJ0OSp0guiCNMh8x_xMfLlVE45hTZgLFcodMgPOjPmbTVC6qcBlJdK05LFdrGGsfRUPClFscnmNcGfLQIW96WZGgo7jxoqq8XrUSQQVjoCYVDnmykZ1hlFAgZByLHMJHUjWaxvhJtbi0OOAM3VUK85n08ie7BajdSqLJIJv_oOSz_-vtNdmbzU9SmR6ffn5O7lhlwlx28YLsXjWr_CW4alf6ldXQP95hM3U |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELaqIl4HxKOF8AxiLxyi5mHHznF5bLewtD0U6M2ynaRdFCWrZHcR_HpmvEnaiBXimMSxnXl4xpmZz4SMRMaZ5lHghULnHuVR5gkGDPFVLILYgIolWJz85TiefqWfztn5DhFdLYzNdu9CkpuaBkRpKpcHizTvovoHRV0De4PYg33PDcTosmHaK9xxarc1eJJ3u_XCbYQ9Zg6WhQgs2DWg0qu-BqbJIviDwbnE_MjdUjVqmw_6dyplH0-9S26vyoX69VMVxTWTNblP7rW-pjveCMcDspOVD8lNm_Npmkfkx2ld2ULLxgXP1T3R-IMWOnVVmboztHHz33h5WKt1i-StCu-7WmeutXBYSdm4-CPXHbeZBO7s6PDEvt_f-TavL6o9cjb5ePZ-6rVHL3iGgcfj5b4SCjwHmgTCgFcnEip8lucs93OdJCyPERg-VGnGWMy14EluQPd1mKaGmzzaB5JVZfaEuJSnnPpUx0IENKVG-9pweAf8HmWYSB3ytiO6NO3H4OkYhewAlYFBEhkkA4e86dsuNmAcW1u9Q971LRBA296o6gvZ6qPUCSIN0ij1Ef8_8eFSRTSOOWUmUCxzyAg4P-hjOp7JeRkuIoluNoelaw1j7aFoSJhyg8Nz3GOGPHTI605WJOgrBmFUmVWrRiLAYAzUpMIhjzey048SCoSPY5FD-ECqBtMYPinnlxYTnKHrSmE-o07-ZLsYNVtJNOpl8x-UfPp_vb0it04_TOTs6PjzM3LH6hKmtYvnZHdZr7IX4LUt9UuroH8AK_g3ug |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbKVgg48CwQXgpiLxzS5uFXJC4Lol3Q0vbQQjkgy3bidmGVXSW7i-ivZyabhC5UCHFMYsf2eOz5kpn5TEhf5oIZkURBLI0LqEjyQDKYkFBzGXELSyzF5OQP-3x4TN-fsJMN8qrNhamj3VuX5CqnAVmaivnOLHOtV39nUpYwvREPYJ_J3BWyydG91CObx_uHg891QlGSBAAuoguMpL8qrdmgmqofLMsZBkL2Cl3py8DmnzGTneP0Brm2KGb6x3c9mVywTbu3yJd2VKuQlG_bi7nZtue_ET7-77Bvk5sNaPUHKy27Qzby4i65WgeP2uoe-XpYTuuMzcoHCOwfGPzTC234usj8ERrL8Tle7pV62VCC60nwSS9zvzaVmJJZ-fhH2B80IQn-6N3eQV2_u_NxXJ5Ot8jR7tujN8OgOcMhsAygU-BCLTVAEJpG0gI8lCmVIXOOudCZNGWOI8N8rLOcMS6MFKmzsImYOMussC65D1MyLfKHxKciEzSkhksZ0YxaExoroA4AKG2ZzDzysp1UZZvB4DEbE9UyM4P4FIpPRR550ZWdrVg9Li31GnWjK4FM3PWNaXmqmoWtTIqUhTTJQjxIIA3hUieUc0GZjTTLPdIHzVp7x3AwUuMiniUK8bqAPXAJbW2h6inocoXNC_xYjUXskeetLipY-OjN0UU-XVQKmQo5SJNKjzxY6WbXSiyRh44lHhFrWrvWjfUnxfisJhdniIEp9KffqqNqdrXqUhH1O93_iyQf_Vuxx-R6rd4YFC-fkN68XORPAfPNzbNmaf8EVg5Sog |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prospects+for+Observing+and+Localizing+Gravitational-Wave+Transients+with+Advanced+LIGO+and+Advanced+Virgo&rft.jtitle=Living+reviews+in+relativity&rft.au=Ballmer%2C+S+W&rft.au=Barayoga%2C+J+C&rft.au=Bartlett%2C+J&rft.au=Bartos%2C+I&rft.date=2016-02-08&rft.issn=1433-8351&rft.eissn=1433-8351&rft.volume=19&rft.issue=1&rft.spage=1&rft_id=info:doi/10.1007%2Flrr-2016-1&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2367-3613&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2367-3613&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2367-3613&client=summon |