Assessment of response to medication in individuals with Parkinson’s disease

•Development of an algorithm to automatically detect medication ON and OFF states using wearable sensors.•Validation through experiments using data from subjects with Parkinson's disease (PD).•Development of an algorithm customized to each subject rather than a “one-size-fits-all” approach.•The...

Full description

Saved in:
Bibliographic Details
Published inMedical engineering & physics Vol. 67; pp. 33 - 43
Main Authors Hssayeni, Murtadha D., Burack, Michelle A., Jimenez-Shahed, Joohi, Ghoraani, Behnaz
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.05.2019
Subjects
Online AccessGet full text
ISSN1350-4533
1873-4030
1873-4030
DOI10.1016/j.medengphy.2019.03.002

Cover

Abstract •Development of an algorithm to automatically detect medication ON and OFF states using wearable sensors.•Validation through experiments using data from subjects with Parkinson's disease (PD).•Development of an algorithm customized to each subject rather than a “one-size-fits-all” approach.•The ability of the algorithm to continuously detect and report medication states during daily routine activities.•Development of novel signal features from wearable sensors data.•Integration of feature selection and support vector machine classification with a fuzzy labeling approach.•Achieved significant performance with an average accuracy of 90.5%, sensitivity of 94.2%, and specificity of 85.4%. Motor fluctuations between akinetic (medication OFF) and mobile phases (medication ON) states are one of the most prevalent complications of patients with Parkinson’s disease (PD). There is a need for a technology-based system to provide reliable information about the duration in different medication phases that can be used by the treating physician to successfully adjust therapy. Two KinetiSense motion sensors were mounted on the most affected wrist and ankle of 19 PD subjects (age: 42–77, 14 males) and collected movement signals as the participants performed seven daily living activities in their medication OFF and ON phases. A feature selection and a classification algorithm based on support vector machine with fuzzy labeling was developed to detect medication ON/OFF states using gyroscope signals. The algorithm was trained using approximately 15% of the data from four activities and tested on the remaining data. The algorithm was able to detect medication ON and OFF states with 90.5% accuracy, 94.2% sensitivity, and 85.4% specificity. It performed equally well for all the activities with an average accuracy of 91.3% for the activities that were used in the training phase and 88.4% for the new activities. The developed sensor-based algorithm could provide objective and accurate assessment of medication states that can lead to successful adjustment of the therapy resulting in considerably improved care delivery and quality of life of PD patients.
AbstractList •Development of an algorithm to automatically detect medication ON and OFF states using wearable sensors.•Validation through experiments using data from subjects with Parkinson's disease (PD).•Development of an algorithm customized to each subject rather than a “one-size-fits-all” approach.•The ability of the algorithm to continuously detect and report medication states during daily routine activities.•Development of novel signal features from wearable sensors data.•Integration of feature selection and support vector machine classification with a fuzzy labeling approach.•Achieved significant performance with an average accuracy of 90.5%, sensitivity of 94.2%, and specificity of 85.4%. Motor fluctuations between akinetic (medication OFF) and mobile phases (medication ON) states are one of the most prevalent complications of patients with Parkinson’s disease (PD). There is a need for a technology-based system to provide reliable information about the duration in different medication phases that can be used by the treating physician to successfully adjust therapy. Two KinetiSense motion sensors were mounted on the most affected wrist and ankle of 19 PD subjects (age: 42–77, 14 males) and collected movement signals as the participants performed seven daily living activities in their medication OFF and ON phases. A feature selection and a classification algorithm based on support vector machine with fuzzy labeling was developed to detect medication ON/OFF states using gyroscope signals. The algorithm was trained using approximately 15% of the data from four activities and tested on the remaining data. The algorithm was able to detect medication ON and OFF states with 90.5% accuracy, 94.2% sensitivity, and 85.4% specificity. It performed equally well for all the activities with an average accuracy of 91.3% for the activities that were used in the training phase and 88.4% for the new activities. The developed sensor-based algorithm could provide objective and accurate assessment of medication states that can lead to successful adjustment of the therapy resulting in considerably improved care delivery and quality of life of PD patients.
Motor fluctuations between akinetic (medication OFF) and mobile phases (medication ON) states are one of the most prevalent complications of patients with Parkinson's disease (PD). There is a need for a technology-based system to provide reliable information about the duration in different medication phases that can be used by the treating physician to successfully adjust therapy. Two KinetiSense motion sensors were mounted on the most affected wrist and ankle of 19 PD subjects (age: 42-77, 14 males) and collected movement signals as the participants performed seven daily living activities in their medication OFF and ON phases. A feature selection and a classification algorithm based on support vector machine with fuzzy labeling was developed to detect medication ON/OFF states using gyroscope signals. The algorithm was trained using approximately 15% of the data from four activities and tested on the remaining data. The algorithm was able to detect medication ON and OFF states with 90.5% accuracy, 94.2% sensitivity, and 85.4% specificity. It performed equally well for all the activities with an average accuracy of 91.3% for the activities that were used in the training phase and 88.4% for the new activities. The developed sensor-based algorithm could provide objective and accurate assessment of medication states that can lead to successful adjustment of the therapy resulting in considerably improved care delivery and quality of life of PD patients.
Motor fluctuations between akinetic (medication OFF) and mobile phases (medication ON) states are one of the most prevalent complications of patients with Parkinson's disease (PD). There is a need for a technology-based system to provide reliable information about the duration in different medication phases that can be used by the treating physician to successfully adjust therapy.BACKGROUND AND OBJECTIVEMotor fluctuations between akinetic (medication OFF) and mobile phases (medication ON) states are one of the most prevalent complications of patients with Parkinson's disease (PD). There is a need for a technology-based system to provide reliable information about the duration in different medication phases that can be used by the treating physician to successfully adjust therapy.Two KinetiSense motion sensors were mounted on the most affected wrist and ankle of 19 PD subjects (age: 42-77, 14 males) and collected movement signals as the participants performed seven daily living activities in their medication OFF and ON phases. A feature selection and a classification algorithm based on support vector machine with fuzzy labeling was developed to detect medication ON/OFF states using gyroscope signals. The algorithm was trained using approximately 15% of the data from four activities and tested on the remaining data.METHODSTwo KinetiSense motion sensors were mounted on the most affected wrist and ankle of 19 PD subjects (age: 42-77, 14 males) and collected movement signals as the participants performed seven daily living activities in their medication OFF and ON phases. A feature selection and a classification algorithm based on support vector machine with fuzzy labeling was developed to detect medication ON/OFF states using gyroscope signals. The algorithm was trained using approximately 15% of the data from four activities and tested on the remaining data.The algorithm was able to detect medication ON and OFF states with 90.5% accuracy, 94.2% sensitivity, and 85.4% specificity. It performed equally well for all the activities with an average accuracy of 91.3% for the activities that were used in the training phase and 88.4% for the new activities.RESULTSThe algorithm was able to detect medication ON and OFF states with 90.5% accuracy, 94.2% sensitivity, and 85.4% specificity. It performed equally well for all the activities with an average accuracy of 91.3% for the activities that were used in the training phase and 88.4% for the new activities.The developed sensor-based algorithm could provide objective and accurate assessment of medication states that can lead to successful adjustment of the therapy resulting in considerably improved care delivery and quality of life of PD patients.CONCLUSIONSThe developed sensor-based algorithm could provide objective and accurate assessment of medication states that can lead to successful adjustment of the therapy resulting in considerably improved care delivery and quality of life of PD patients.
Author Burack, Michelle A.
Ghoraani, Behnaz
Hssayeni, Murtadha D.
Jimenez-Shahed, Joohi
Author_xml – sequence: 1
  givenname: Murtadha D.
  orcidid: 0000-0002-8588-4639
  surname: Hssayeni
  fullname: Hssayeni, Murtadha D.
  organization: Department of Computer and Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
– sequence: 2
  givenname: Michelle A.
  surname: Burack
  fullname: Burack, Michelle A.
  organization: Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA
– sequence: 3
  givenname: Joohi
  surname: Jimenez-Shahed
  fullname: Jimenez-Shahed, Joohi
  organization: Department of Neurology, Baylor College of Medicine, Houston, TX, USA
– sequence: 4
  givenname: Behnaz
  orcidid: 0000-0003-0075-7663
  surname: Ghoraani
  fullname: Ghoraani, Behnaz
  email: bghoraani@ieee.org, bghoraani@fau.edu
  organization: Department of Computer and Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30876817$$D View this record in MEDLINE/PubMed
BookMark eNqNkctu1TAQhi1URC_wCpAlmwRfEidZIHRUFVqpAhawtnyZUJ_m2MGTtDo7XoPX40nw4ZQuujrSSJ7F__8z_uaUHIUYgJA3jFaMMvluXW3AQfgx3WwrTllfUVFRyp-RE9a1oqypoEe5Fw0t60aIY3KKuKaU1rUUL8ixoF0rO9aekM8rREDcQJiLOBQJcIoBoZhjkSd4q2cfQ-F35fydd4sesbj3803xVadbHzCGP79-Y-E8gkZ4SZ4PWQGvHt4z8v3jxbfzy_L6y6er89V1aRtez6URkve9GWpqh8HUfaeZ6V2vDZWdY9I6WRsmWylsIzQ3VBjeNrIbGifFwDiIM9Ltc5cw6e29Hkc1Jb_RaasYVTtEaq0eEakdIkWFyoiy9e3eOqX4cwGc1cajhXHUAeKCirNeMCk4b7P09YN0MTnsccR_fFnwfi-wKSImGJT18z9kc9J-PGCX9on_8F-s9k7IlO88JIXWQ7D5ZgnsrFz0B2R8eJJhRx_yzcdb2B6U8Bch3MsK
CitedBy_id crossref_primary_10_3390_pharmacy12030096
crossref_primary_10_3390_electronics13061002
crossref_primary_10_1007_s11910_021_01101_6
crossref_primary_10_3390_s21124188
crossref_primary_10_1007_s42979_021_00953_6
crossref_primary_10_1016_j_arr_2024_102410
crossref_primary_10_1155_2021_9624386
crossref_primary_10_1016_j_arr_2024_102651
crossref_primary_10_1371_journal_pone_0265438
crossref_primary_10_3390_healthcare10122536
crossref_primary_10_1093_jamiaopen_ooaa005
crossref_primary_10_1016_j_jns_2020_117077
crossref_primary_10_1109_JBHI_2024_3423708
crossref_primary_10_3389_fninf_2023_1135300
crossref_primary_10_5433_2236_2207_2024_v15_n1_48606
crossref_primary_10_1109_JBHI_2019_2943866
crossref_primary_10_1002_med_21764
crossref_primary_10_2196_37683
crossref_primary_10_1109_TNSRE_2024_3477003
crossref_primary_10_3390_diagnostics10060421
crossref_primary_10_3390_s22249903
crossref_primary_10_1109_ACCESS_2021_3103268
crossref_primary_10_3390_app11167354
crossref_primary_10_1186_s12938_021_00872_w
crossref_primary_10_3390_s21123974
crossref_primary_10_3390_s19194215
Cites_doi 10.1016/j.bspc.2016.08.022
10.3389/fnins.2017.00555
10.1002/mds.21475
10.1186/s12984-016-0154-5
10.1002/mds.26693
10.3233/JPD-120166
10.1136/jnnp.55.3.181
10.1016/j.parkreldis.2016.09.009
10.1002/mds.25391
10.2196/mhealth.3321
10.1093/bmb/ldn013
10.2307/2331554
10.1002/mds.20458
10.1016/j.jneumeth.2009.10.015
10.1109/TNSRE.2009.2033062
10.1007/978-3-319-19258-1_38
10.1089/tmj.2015.0026
10.1177/1545968311424869
10.1002/mds.20633
10.1002/mds.22341
10.1097/00002826-200403000-00002
10.1002/mds.26673
10.1109/TITB.2009.2033471
10.1016/j.patcog.2010.04.019
10.1212/WNL.62.6_suppl_4.S3
10.1109/TBME.2017.2697764
ContentType Journal Article
Copyright 2019 IPEM
Copyright © 2019 IPEM. Published by Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2019 IPEM
– notice: Copyright © 2019 IPEM. Published by Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
ADTOC
UNPAY
DOI 10.1016/j.medengphy.2019.03.002
DatabaseName CrossRef
PubMed
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Chemistry
EISSN 1873-4030
EndPage 43
ExternalDocumentID 10.1016/j.medengphy.2019.03.002
30876817
10_1016_j_medengphy_2019_03_002
S1350453319300438
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
9M8
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXUO
AAYWO
ABBQC
ABFNM
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEE
HMK
HMO
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M28
M31
M41
MO0
N9A
O-L
O9-
OAUVE
OI~
OU0
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SDF
SDG
SDP
SEL
SES
SET
SEW
SPC
SPCBC
SSH
SST
SSZ
T5K
TN5
WUQ
YNT
YQT
Z5R
ZGI
ZY4
~G-
~HD
AACTN
AAIAV
ABLVK
ABTAH
ABYKQ
AFCTW
AFKWA
AJBFU
AJOXV
AMFUW
LCYCR
RIG
AAYXX
CITATION
AAXKI
NPM
7X8
ADTOC
AGCQF
UNPAY
ID FETCH-LOGICAL-c524t-b36299bf40cffb498a1b9d9ab068d16cd64b16763c53a2b03b27568f5d63f12e3
IEDL.DBID UNPAY
ISSN 1350-4533
1873-4030
IngestDate Tue Aug 19 16:56:33 EDT 2025
Thu Oct 02 04:18:50 EDT 2025
Wed Feb 19 02:34:11 EST 2025
Thu Apr 24 22:54:18 EDT 2025
Wed Oct 29 21:20:52 EDT 2025
Fri Feb 23 02:33:55 EST 2024
Tue Oct 14 19:35:18 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Support vector machine
Wearable data analysis
Parkinson’s disease
Feature extraction and classification
Language English
License Copyright © 2019 IPEM. Published by Elsevier Ltd. All rights reserved.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c524t-b36299bf40cffb498a1b9d9ab068d16cd64b16763c53a2b03b27568f5d63f12e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8588-4639
0000-0003-0075-7663
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.medengphy.2019.03.002
PMID 30876817
PQID 2193163227
PQPubID 23479
PageCount 11
ParticipantIDs unpaywall_primary_10_1016_j_medengphy_2019_03_002
proquest_miscellaneous_2193163227
pubmed_primary_30876817
crossref_citationtrail_10_1016_j_medengphy_2019_03_002
crossref_primary_10_1016_j_medengphy_2019_03_002
elsevier_sciencedirect_doi_10_1016_j_medengphy_2019_03_002
elsevier_clinicalkey_doi_10_1016_j_medengphy_2019_03_002
PublicationCentury 2000
PublicationDate 2019-05-01
PublicationDateYYYYMMDD 2019-05-01
PublicationDate_xml – month: 05
  year: 2019
  text: 2019-05-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Medical engineering & physics
PublicationTitleAlternate Med Eng Phys
PublicationYear 2019
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Dewey (bib0002) 2004; 62
Salarian (bib0014) 2006
Platt (bib0031) 1999; 10
Tsipouras, Tzallas, Rigas, Tsouli, Fotiadis, Konitsiotis (bib0021) 2012; 55
Weston, Mukherjee, Chapelle, Pontil, Poggio, Vapnik (bib0030) 2001; 31
Fabbrini, Brotchie, Grandas, Nomoto, Goetz (bib0020) 2007; 22
Weiss, Sharifi, Plotnik, van Vugt, Giladi, Hausdorff (bib0024) 2011; 25
Fisher, Hammerla, Rochester, Andras, Walker (bib0015) 2016; 22
Hoff, Van Der Meer, Van Hilten (bib0013) 2004; 27
Mera, Burack, Giuffrida (bib0017) 2013; 3
Davie (bib0003) 2008; 86
Roy, Cole, Gilmore, Luca, Thomas, Saint-Hilaire (bib0026) 2013; 28
Pérez-López, Samà, Rodríguez-Martín, Català, Cabestany, de Mingo (bib0010) 2015
Pulliam, Heldman, Brokaw, Mera, Mari, Burack (bib0018) 2018; 65
Altun, Barshan, Tunçel (bib0025) 2010; 43
Wu, Krishnan (bib0007) 2010; 18
Patel, Lorincz, Hughes, Huggins, Growdon, Standaert (bib0022) 2009; 13
Rodríguez-Molinero, Samà, Pérez-Martínez, López, Romagosa, Bayés (bib0011) 2015; 3
National Institute of Neurological Disorders and Stroke (bib0001) 2018
Del Din, Godfrey, Galna, Lord, Rochester (bib0006) 2016; 13
Wu, Chen, Luo, Wu, Liao, Yang (bib0008) 2017; 31
Keijsers, Horstink, Gielen (bib0012) 2006; 21
Hughes, Daniel, Kilford, Lees (bib0023) 1992; 55
Hssayeni (bib0029) 2017
Fisher, Hammerla, Ploetz, Andras, Rochester, Walker (bib0032) 2016; 33
Goetz, Nutt, Stebbins (bib0019) 2008; 23
Jankovic (bib0004) 2005; 20
Kubota, Chen, Little (bib0016) 2016; 31
Student (bib0028) 1908
Rovini, Maremmani, Cavallo (bib0009) 2017; 11
Chelaru, Duval, Jog (bib0027) 2010; 186
Maetzler, Klucken, Malcolm (bib0005) 2016; 31
Maetzler (10.1016/j.medengphy.2019.03.002_bib0005) 2016; 31
Rovini (10.1016/j.medengphy.2019.03.002_bib0009) 2017; 11
Dewey (10.1016/j.medengphy.2019.03.002_bib0002) 2004; 62
Wu (10.1016/j.medengphy.2019.03.002_bib0008) 2017; 31
Patel (10.1016/j.medengphy.2019.03.002_bib0022) 2009; 13
Weiss (10.1016/j.medengphy.2019.03.002_bib0024) 2011; 25
Del Din (10.1016/j.medengphy.2019.03.002_bib0006) 2016; 13
Fabbrini (10.1016/j.medengphy.2019.03.002_bib0020) 2007; 22
Davie (10.1016/j.medengphy.2019.03.002_bib0003) 2008; 86
Pérez-López (10.1016/j.medengphy.2019.03.002_bib0010) 2015
Weston (10.1016/j.medengphy.2019.03.002_bib0030) 2001; 31
Kubota (10.1016/j.medengphy.2019.03.002_bib0016) 2016; 31
Student (10.1016/j.medengphy.2019.03.002_bib0028) 1908
Mera (10.1016/j.medengphy.2019.03.002_bib0017) 2013; 3
Altun (10.1016/j.medengphy.2019.03.002_bib0025) 2010; 43
Goetz (10.1016/j.medengphy.2019.03.002_bib0019) 2008; 23
Hoff (10.1016/j.medengphy.2019.03.002_bib0013) 2004; 27
Hssayeni (10.1016/j.medengphy.2019.03.002_bib0029) 2017
Jankovic (10.1016/j.medengphy.2019.03.002_bib0004) 2005; 20
Keijsers (10.1016/j.medengphy.2019.03.002_bib0012) 2006; 21
National Institute of Neurological Disorders and Stroke (10.1016/j.medengphy.2019.03.002_sbref0001) 2018
Rodríguez-Molinero (10.1016/j.medengphy.2019.03.002_bib0011) 2015; 3
Fisher (10.1016/j.medengphy.2019.03.002_bib0015) 2016; 22
Fisher (10.1016/j.medengphy.2019.03.002_bib0032) 2016; 33
Pulliam (10.1016/j.medengphy.2019.03.002_bib0018) 2018; 65
Platt (10.1016/j.medengphy.2019.03.002_bib0031) 1999; 10
Wu (10.1016/j.medengphy.2019.03.002_bib0007) 2010; 18
Salarian (10.1016/j.medengphy.2019.03.002_bib0014) 2006
Roy (10.1016/j.medengphy.2019.03.002_bib0026) 2013; 28
Tsipouras (10.1016/j.medengphy.2019.03.002_bib0021) 2012; 55
Chelaru (10.1016/j.medengphy.2019.03.002_bib0027) 2010; 186
Hughes (10.1016/j.medengphy.2019.03.002_bib0023) 1992; 55
References_xml – year: 2017
  ident: bib0029
  publication-title: Automatic assessment of medication states of patients with Parkinson’s disease using wearable sensors, Master’s thesis
– volume: 33
  start-page: 44
  year: 2016
  end-page: 50
  ident: bib0032
  article-title: Unsupervised home monitoring of Parkinson’s disease motor symptoms using body-worn accelerometers
  publication-title: Parkinson Relat Disord
– volume: 55
  start-page: 181
  year: 1992
  end-page: 184
  ident: bib0023
  article-title: Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases.
  publication-title: J Neurol Neurosurg Psychiat
– volume: 23
  start-page: 2398
  year: 2008
  end-page: 2403
  ident: bib0019
  article-title: The unified dyskinesia rating scale: presentation and clinimetric profile
  publication-title: Movem Disord
– volume: 28
  start-page: 1080
  year: 2013
  end-page: 1087
  ident: bib0026
  article-title: High-resolution tracking of motor disorders in Parkinson’s disease during unconstrained activity
  publication-title: Movem Disord
– volume: 86
  start-page: 109
  year: 2008
  end-page: 127
  ident: bib0003
  article-title: A review of Parkinson’s disease
  publication-title: Br Med Bul.
– volume: 31
  start-page: 265
  year: 2017
  end-page: 271
  ident: bib0008
  article-title: Measuring signal fluctuations in gait rhythm time series of patients with Parkinson’s disease using entropy parameters
  publication-title: Biomed Signal Process Control
– year: 2006
  ident: bib0014
  publication-title: Ambulatory monitoring of motor functions in patients with Parkinson’s disease using kinematic sensors, Ph.D. thesis
– volume: 13
  start-page: 46
  year: 2016
  ident: bib0006
  article-title: Free-living gait characteristics in ageing and Parkinson’s disease: impact of environment and ambulatory bout length
  publication-title: J. Neuroeng. Rehabil.
– year: 2018
  ident: bib0001
  article-title: Parkinson’s disease: Challenges, progress, and promise
– volume: 25
  start-page: 810
  year: 2011
  end-page: 818
  ident: bib0024
  article-title: Toward automated, at-home assessment of mobility among patients with Parkinson disease, using a body-worn accelerometer
  publication-title: Neurorehabil Neural Repair
– volume: 22
  start-page: 1379
  year: 2007
  end-page: 1389
  ident: bib0020
  article-title: Levodopa-induced dyskinesias
  publication-title: Movem Disord
– volume: 13
  start-page: 864
  year: 2009
  end-page: 873
  ident: bib0022
  article-title: Monitoring motor fluctuations in patients with Parkinson’s disease using wearable sensors
  publication-title: IEEE Trans Inf Technol Biomed
– start-page: 1
  year: 1908
  end-page: 25
  ident: bib0028
  article-title: The probable error of a mean
  publication-title: Biometrika
– volume: 3
  start-page: 399
  year: 2013
  ident: bib0017
  article-title: Objective motion sensor assessment highly correlated with scores of global Levodopa-induced dyskinesia in Parkinson’s disease
  publication-title: J Parkins Dis
– volume: 3
  start-page: e9
  year: 2015
  ident: bib0011
  article-title: Validation of a portable device for mapping motor and gait disturbances in Parkinson’s disease
  publication-title: JMIR mHealth uHealth
– volume: 31
  start-page: 1314
  year: 2016
  end-page: 1326
  ident: bib0016
  article-title: Machine learning for large-scale wearable sensor data in Parkinson’s disease: concepts, promises, pitfalls, and futures
  publication-title: Movem Disord
– volume: 43
  start-page: 3605
  year: 2010
  end-page: 3620
  ident: bib0025
  article-title: Comparative study on classifying human activities with miniature inertial and magnetic sensors
  publication-title: Patt Recogn
– volume: 21
  start-page: 34
  year: 2006
  end-page: 44
  ident: bib0012
  article-title: Ambulatory motor assessment in Parkinson’s disease
  publication-title: Movem Disord
– volume: 22
  start-page: 63
  year: 2016
  end-page: 69
  ident: bib0015
  article-title: Body-worn sensors in Parkinson’s disease: evaluating their acceptability to patients
  publication-title: Telemed e-Health
– start-page: 461
  year: 2015
  end-page: 474
  ident: bib0010
  article-title: Monitoring motor fluctuations in Parkinson’s disease using a waist-worn inertial sensor
  publication-title: Adv Comput Intell
– volume: 27
  start-page: 53
  year: 2004
  end-page: 57
  ident: bib0013
  article-title: Accuracy of objective ambulatory accelerometry in detecting motor complications in patients with Parkinson disease
  publication-title: Clin Neuropharmacol
– volume: 65
  start-page: 159
  year: 2018
  end-page: 164
  ident: bib0018
  article-title: Continuous assessment of Levodopa response in Parkinson’s disease using wearable motion sensors
  publication-title: IEEE Trans Biomed Eng
– volume: 31
  start-page: 668
  year: 2001
  end-page: 674
  ident: bib0030
  article-title: Feature selection for SVMs
  publication-title: Adv Neural Inf Process Syst
– volume: 10
  start-page: 61
  year: 1999
  end-page: 74
  ident: bib0031
  article-title: Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods
  publication-title: Adv Large Marg Classif
– volume: 20
  start-page: S11
  year: 2005
  end-page: S16
  ident: bib0004
  article-title: Motor fluctuations and dyskinesias in Parkinson’s disease: clinical manifestations
  publication-title: Movem Disord
– volume: 31
  start-page: 1263
  year: 2016
  end-page: 1271
  ident: bib0005
  article-title: A clinical view on the development of technology-based tools in managing Parkinson’s disease
  publication-title: Movem Disord
– volume: 18
  start-page: 150
  year: 2010
  end-page: 158
  ident: bib0007
  article-title: Statistical analysis of gait rhythm in patients with Parkinson’s disease
  publication-title: IEEE Trans Neural Syst Rehabil Eng
– volume: 11
  start-page: 1
  year: 2017
  end-page: 41
  ident: bib0009
  article-title: How wearable sensors can support Parkinson’s disease diagnosis and treatment: a systematic review
  publication-title: Front Neurosci
– volume: 62
  start-page: S3
  year: 2004
  end-page: S7
  ident: bib0002
  article-title: Management of motor complications in Parkinson’s disease
  publication-title: Neurology
– volume: 186
  start-page: 81
  year: 2010
  end-page: 89
  ident: bib0027
  article-title: Levodopa-induced Dyskinesias detection based on the complexity of involuntary movements
  publication-title: J Neurosci Methods
– volume: 55
  start-page: 127
  year: 2012
  end-page: 135
  ident: bib0021
  article-title: An automated methodology for Levodopa-induced dyskinesia: assessment based on gyroscope and accelerometer signals
  publication-title: AI Med
– volume: 31
  start-page: 265
  year: 2017
  ident: 10.1016/j.medengphy.2019.03.002_bib0008
  article-title: Measuring signal fluctuations in gait rhythm time series of patients with Parkinson’s disease using entropy parameters
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2016.08.022
– volume: 11
  start-page: 1
  year: 2017
  ident: 10.1016/j.medengphy.2019.03.002_bib0009
  article-title: How wearable sensors can support Parkinson’s disease diagnosis and treatment: a systematic review
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2017.00555
– volume: 22
  start-page: 1379
  issue: 10
  year: 2007
  ident: 10.1016/j.medengphy.2019.03.002_bib0020
  article-title: Levodopa-induced dyskinesias
  publication-title: Movem Disord
  doi: 10.1002/mds.21475
– volume: 13
  start-page: 46
  issue: 1
  year: 2016
  ident: 10.1016/j.medengphy.2019.03.002_bib0006
  article-title: Free-living gait characteristics in ageing and Parkinson’s disease: impact of environment and ambulatory bout length
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/s12984-016-0154-5
– volume: 31
  start-page: 1314
  issue: 9
  year: 2016
  ident: 10.1016/j.medengphy.2019.03.002_bib0016
  article-title: Machine learning for large-scale wearable sensor data in Parkinson’s disease: concepts, promises, pitfalls, and futures
  publication-title: Movem Disord
  doi: 10.1002/mds.26693
– volume: 3
  start-page: 399
  issue: 3
  year: 2013
  ident: 10.1016/j.medengphy.2019.03.002_bib0017
  article-title: Objective motion sensor assessment highly correlated with scores of global Levodopa-induced dyskinesia in Parkinson’s disease
  publication-title: J Parkins Dis
  doi: 10.3233/JPD-120166
– year: 2017
  ident: 10.1016/j.medengphy.2019.03.002_bib0029
– volume: 55
  start-page: 127
  issue: 2
  year: 2012
  ident: 10.1016/j.medengphy.2019.03.002_bib0021
  article-title: An automated methodology for Levodopa-induced dyskinesia: assessment based on gyroscope and accelerometer signals
  publication-title: AI Med
– volume: 55
  start-page: 181
  issue: 3
  year: 1992
  ident: 10.1016/j.medengphy.2019.03.002_bib0023
  article-title: Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases.
  publication-title: J Neurol Neurosurg Psychiat
  doi: 10.1136/jnnp.55.3.181
– volume: 33
  start-page: 44
  year: 2016
  ident: 10.1016/j.medengphy.2019.03.002_bib0032
  article-title: Unsupervised home monitoring of Parkinson’s disease motor symptoms using body-worn accelerometers
  publication-title: Parkinson Relat Disord
  doi: 10.1016/j.parkreldis.2016.09.009
– volume: 28
  start-page: 1080
  issue: 8
  year: 2013
  ident: 10.1016/j.medengphy.2019.03.002_bib0026
  article-title: High-resolution tracking of motor disorders in Parkinson’s disease during unconstrained activity
  publication-title: Movem Disord
  doi: 10.1002/mds.25391
– volume: 3
  start-page: e9
  issue: 1
  year: 2015
  ident: 10.1016/j.medengphy.2019.03.002_bib0011
  article-title: Validation of a portable device for mapping motor and gait disturbances in Parkinson’s disease
  publication-title: JMIR mHealth uHealth
  doi: 10.2196/mhealth.3321
– volume: 86
  start-page: 109
  issue: 1
  year: 2008
  ident: 10.1016/j.medengphy.2019.03.002_bib0003
  article-title: A review of Parkinson’s disease
  publication-title: Br Med Bul.
  doi: 10.1093/bmb/ldn013
– start-page: 1
  year: 1908
  ident: 10.1016/j.medengphy.2019.03.002_bib0028
  article-title: The probable error of a mean
  publication-title: Biometrika
  doi: 10.2307/2331554
– volume: 20
  start-page: S11
  issue: S11
  year: 2005
  ident: 10.1016/j.medengphy.2019.03.002_bib0004
  article-title: Motor fluctuations and dyskinesias in Parkinson’s disease: clinical manifestations
  publication-title: Movem Disord
  doi: 10.1002/mds.20458
– volume: 186
  start-page: 81
  year: 2010
  ident: 10.1016/j.medengphy.2019.03.002_bib0027
  article-title: Levodopa-induced Dyskinesias detection based on the complexity of involuntary movements
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2009.10.015
– volume: 18
  start-page: 150
  issue: 2
  year: 2010
  ident: 10.1016/j.medengphy.2019.03.002_bib0007
  article-title: Statistical analysis of gait rhythm in patients with Parkinson’s disease
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2009.2033062
– year: 2006
  ident: 10.1016/j.medengphy.2019.03.002_bib0014
– volume: 31
  start-page: 668
  issue: 9
  year: 2001
  ident: 10.1016/j.medengphy.2019.03.002_bib0030
  article-title: Feature selection for SVMs
  publication-title: Adv Neural Inf Process Syst
– start-page: 461
  year: 2015
  ident: 10.1016/j.medengphy.2019.03.002_bib0010
  article-title: Monitoring motor fluctuations in Parkinson’s disease using a waist-worn inertial sensor
  publication-title: Adv Comput Intell
  doi: 10.1007/978-3-319-19258-1_38
– year: 2018
  ident: 10.1016/j.medengphy.2019.03.002_sbref0001
– volume: 22
  start-page: 63
  issue: 1
  year: 2016
  ident: 10.1016/j.medengphy.2019.03.002_bib0015
  article-title: Body-worn sensors in Parkinson’s disease: evaluating their acceptability to patients
  publication-title: Telemed e-Health
  doi: 10.1089/tmj.2015.0026
– volume: 25
  start-page: 810
  issue: 9
  year: 2011
  ident: 10.1016/j.medengphy.2019.03.002_bib0024
  article-title: Toward automated, at-home assessment of mobility among patients with Parkinson disease, using a body-worn accelerometer
  publication-title: Neurorehabil Neural Repair
  doi: 10.1177/1545968311424869
– volume: 21
  start-page: 34
  issue: 1
  year: 2006
  ident: 10.1016/j.medengphy.2019.03.002_bib0012
  article-title: Ambulatory motor assessment in Parkinson’s disease
  publication-title: Movem Disord
  doi: 10.1002/mds.20633
– volume: 23
  start-page: 2398
  issue: 16
  year: 2008
  ident: 10.1016/j.medengphy.2019.03.002_bib0019
  article-title: The unified dyskinesia rating scale: presentation and clinimetric profile
  publication-title: Movem Disord
  doi: 10.1002/mds.22341
– volume: 27
  start-page: 53
  issue: 2
  year: 2004
  ident: 10.1016/j.medengphy.2019.03.002_bib0013
  article-title: Accuracy of objective ambulatory accelerometry in detecting motor complications in patients with Parkinson disease
  publication-title: Clin Neuropharmacol
  doi: 10.1097/00002826-200403000-00002
– volume: 31
  start-page: 1263
  issue: 9
  year: 2016
  ident: 10.1016/j.medengphy.2019.03.002_bib0005
  article-title: A clinical view on the development of technology-based tools in managing Parkinson’s disease
  publication-title: Movem Disord
  doi: 10.1002/mds.26673
– volume: 13
  start-page: 864
  issue: 6
  year: 2009
  ident: 10.1016/j.medengphy.2019.03.002_bib0022
  article-title: Monitoring motor fluctuations in patients with Parkinson’s disease using wearable sensors
  publication-title: IEEE Trans Inf Technol Biomed
  doi: 10.1109/TITB.2009.2033471
– volume: 43
  start-page: 3605
  issue: 10
  year: 2010
  ident: 10.1016/j.medengphy.2019.03.002_bib0025
  article-title: Comparative study on classifying human activities with miniature inertial and magnetic sensors
  publication-title: Patt Recogn
  doi: 10.1016/j.patcog.2010.04.019
– volume: 62
  start-page: S3
  year: 2004
  ident: 10.1016/j.medengphy.2019.03.002_bib0002
  article-title: Management of motor complications in Parkinson’s disease
  publication-title: Neurology
  doi: 10.1212/WNL.62.6_suppl_4.S3
– volume: 65
  start-page: 159
  issue: 1
  year: 2018
  ident: 10.1016/j.medengphy.2019.03.002_bib0018
  article-title: Continuous assessment of Levodopa response in Parkinson’s disease using wearable motion sensors
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2017.2697764
– volume: 10
  start-page: 61
  issue: 3
  year: 1999
  ident: 10.1016/j.medengphy.2019.03.002_bib0031
  article-title: Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods
  publication-title: Adv Large Marg Classif
SSID ssj0004463
Score 2.41367
Snippet •Development of an algorithm to automatically detect medication ON and OFF states using wearable sensors.•Validation through experiments using data from...
Motor fluctuations between akinetic (medication OFF) and mobile phases (medication ON) states are one of the most prevalent complications of patients with...
SourceID unpaywall
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 33
SubjectTerms Feature extraction and classification
Parkinson’s disease
Support vector machine
Wearable data analysis
SummonAdditionalLinks – databaseName: Elsevier SD Freedom Collection
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED_EBz8eROfX_CKCr3VtkmatbzIcQ9AXFXwLSdrKZHTDbYgv4r_hv-df4qVN60RkgtCXtjlocpe7S-_udwAnNrLDfBV6JjDC47zNPa1wP7ZpxkOa6UgXiDdX16J3xy_vw_sF6FS1MDat0un-UqcX2to9abnVbI36_dZNwEL0RxjKECviWbaCnbdtF4PT1680DzzuFEn2ONizo7_leKHBSfMHnI_N8XJop_Q3C_XTA12F5Wk-Ui_PajCYsUrddVhz7iQ5L794AxbSvAHLnaqLWwNWZwAHG7B05ULpm3B9XmNykmFGnspc2ZRMhqSItxccI317VSVbY2L_2hJbKF3UjH28vY-Ji_BswV334rbT81xzBc-ElE88jZYrjnXGfZNlmseRCnScxEr7IkoCYRLBdSBQ-5iQKap9pi1QfJSFiWBZQFO2DYv5ME93gVhIl5QlHH0xwznDM5iiYURjanDVE183QVQLKo1DHrcNMAaySjF7lDUnpOWE9JlETjTBrwlHJfjGfJKo4pisaktRG0o0EPNJz2rSbyL4N-LjSjwkcthGXVSeDqdjiSaBodNLabsJO6Xc1JOxcIwiCvBNUAvSX2e695_P3YcVe1dmbh7A4uRpmh6idzXRR8X2-QSIOiKm
  priority: 102
  providerName: Elsevier
Title Assessment of response to medication in individuals with Parkinson’s disease
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1350453319300438
https://dx.doi.org/10.1016/j.medengphy.2019.03.002
https://www.ncbi.nlm.nih.gov/pubmed/30876817
https://www.proquest.com/docview/2193163227
https://doi.org/10.1016/j.medengphy.2019.03.002
UnpaywallVersion publishedVersion
Volume 67
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-4030
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004463
  issn: 1350-4533
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-4030
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004463
  issn: 1350-4533
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1873-4030
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004463
  issn: 1350-4533
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1873-4030
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004463
  issn: 1350-4533
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-4030
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004463
  issn: 1350-4533
  databaseCode: AKRWK
  dateStart: 19940101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB6VRKL0wCM8Gh7RInF1WO8rNreoogqgRj0QqZxWu2sbAZFTNY4QPVT9G_w9fgmzttdqeagFyRfLGtu7M9751jPzDcALH9nh1MjIxU5FQkxEZA1-jxNWCMkKm9ia8eZgrmYL8fZIHm3By1ALcyl-X-dhoVPIy4_4TJ-H1TKS4prbVxLBdw_6i_nh9EO9rZI0ErJuHh8nE447I04vZXT98U5_80e_480d2N6Ux-bbV7NcXvBB-3fgMLx9k3ryZbyp7Nid_kLs-A_Duwu3WzxKpo0B3YOtvBzA9l5oAzeAnQuMhQO4edDG4u_DfNqRepJVQU6aZNucVCtSB-xrlZNP_gg1X2vif_sSX2ldF539OP--Jm2I6AEs9l-_35tFbXeGyEkmqsii60tTWwjqisKKNDGxTbPUWKqSLFYuU8LGCpcvJ7lhlnLrmeaTQmaKFzHL-UPolasy3wXiOWFyngkEc04Ijps4w2TCUuZQqRm1Q1BBR9q11OW-g8ZShxy1z7qbR-3nUVOucR6HQDvB44a942qRJBiBDsWpuJxq1NzVoq860Ra_NLjkesLPg8Vp1LAP25gyX23WGn0KR9TM2GQIjxpT7Abj-RxVEuOVuLPN64708X_IPIFb_qzJ-HwKvepkkz9DVFbZEdwYn8Uj6E_fvJvNR-13-RMZcTRF
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fT9swED91IK3wgFgZUDbAk3jNmtiOm-wNVVTlT_sykHizbCdBRVVa0VaIl2lfY19vn4Rz4gTQhECalKfYF9m-8905d_czwJGN7DBfhZ4JjPA473JPK9yPXZrxkGY60gXizXAkBlf87Dq8bkCvqoWxaZVO95c6vdDW7k3HrWZnNh53fgYsRH-EoQyxIp71AVbx8117Avv-6ynPA887RZY99vZs9xdJXmhx0vwGJ2STvBzcKX3NRP3rgq5Dc5nP1MO9mkyemaX-Jmw4f5Icl0P-BI00b0GzV13j1oL1Z4iDLfg4dLH0LRgd16CcZJqRuzJZNiWLKSkC7gXLyNg-Vc3WnNjftsRWShdFY39__5kTF-L5DFf9k8vewHO3K3gmpHzhaTRdcawz7pss0zyOVKDjJFbaF1ESCJMIrgOB6seETFHtM22R4qMsTATLApqybVjJp3m6C8RiuqQs4eiMGc4ZHsIUDSMaU4Ornvi6DaJaUGkc9Li9AWMiqxyzW1lzQlpOSJ9J5EQb_JpwVqJvvE0SVRyTVXEpqkOJFuJt0h816QsZfB_xt0o8JHLYhl1Unk6Xc4k2gaHXS2m3DTul3NSTsXiMIgqwJagF6b0z3fuf4R5Cc3A5vJAXp6PzL7BmW8o0zq-wsrhbpvvoai30QbGVHgEphSXJ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fS9xAEB_khKoPtr3a9lorW-hrdLP_LunbIYoUPHzwwD4tu5tEtEdOvBylPvk1-vX6SZxNskFrRS3kJYRJsjuTnd9mZn4D8MVHdjg1MnKxU5EQQxFZg9_jkBVCssImtma8ORyrg4n4diJPlmAn1MLcid_XeVjoFPLyFJ_p87BaRlJcc5eVRPDdg-XJ-Gj0vd5WSRoJWTePj5Mhx50Rp3cyuv55p4f80X28uQYri_LC_PppptNbPmj_JRyFt29ST35sLyq77a7-InZ8xvBewXqLR8moMaDXsJSXfVjZDW3g-rB2i7GwDy8O21j8GxiPOlJPMivIZZNsm5NqRuqAfa1ycuaPUPM1J_63L_GV1nXR2Z_r33PShog2YLK_d7x7ELXdGSInmagii64vTW0hqCsKK9LExDbNUmOpSrJYuUwJGytcvpzkhlnKrWeaTwqZKV7ELOdvoVfOyvw9EM8Jk_NMIJhzQnDcxBkmE5Yyh0rNqB2ACjrSrqUu9x00pjrkqJ3rbh61n0dNucZ5HADtBC8a9o7HRZJgBDoUp-JyqlFzj4t-7URb_NLgkqcJfw4Wp1HDPmxjyny2mGv0KRxRM2PDAbxrTLEbjOdzVEmMV-LONp860g__IfMRVv1Zk_G5Cb3qcpF_QlRW2a32S7wBVMkxuQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessment+of+response+to+medication+in+individuals+with+Parkinson%27s+disease&rft.jtitle=Medical+engineering+%26+physics&rft.au=Hssayeni%2C+Murtadha+D&rft.au=Burack%2C+Michelle+A&rft.au=Jimenez-Shahed%2C+Joohi&rft.au=Ghoraani%2C+Behnaz&rft.date=2019-05-01&rft.issn=1873-4030&rft.eissn=1873-4030&rft.volume=67&rft.spage=33&rft_id=info:doi/10.1016%2Fj.medengphy.2019.03.002&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1350-4533&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1350-4533&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1350-4533&client=summon