Latest biotechnology tools and targets for improving abiotic stress tolerance in protein legumes
Protein legumes are among the most important crops for sustainable agriculture and global food security for decades to come. Unfortunately, they are subject to several abiotic stresses that severely limit their productivity, and this phenomenon is increasing with climate change. New Plant Breeding T...
        Saved in:
      
    
          | Published in | Environmental and experimental botany Vol. 197; p. 104824 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier B.V
    
        01.05.2022
     Elsevier  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0098-8472 1873-7307 1873-7307  | 
| DOI | 10.1016/j.envexpbot.2022.104824 | 
Cover
| Abstract | Protein legumes are among the most important crops for sustainable agriculture and global food security for decades to come. Unfortunately, they are subject to several abiotic stresses that severely limit their productivity, and this phenomenon is increasing with climate change. New Plant Breeding Technologies (NPBTs) offer novel alternatives to improve the plant performance of crops against such environmental constraints. However, the recalcitrance to transgenesis and in vitro regeneration has delayed such advances for protein legumes. This article reviews recent advances in legume crop biotechnological approaches to improve their tolerance to abiotic stresses including drought, high salinity, heat and cold, and heavy metal stress. In addition to these improvements, obtained mainly through transgenesis, we surveyed the application of tools such as CRISPR/Cas and RNA interference in legumes in a context of abiotic stress tolerance, and suggested a path to follow for gene control by these tools in legume plants, organs, or cells. Furthermore, we also discussed promising molecular targets, perspectives, and the way ahead for enhancing abiotic stress tolerance.
•NPBT gave new protein legume genotypes to better cope with changing global climate.•Tolerance to drought, salinity, extreme temperatures and heavy metals were improved.•We surveyed recent advances in transgenesis, RNAi and genome editing technology.•Candidate genes modulating protein legume responses to abiotic stress are evoked.•A comprehensive survey of biotechnology-induced abiotic stress tolerance in legumes. | 
    
|---|---|
| AbstractList | Protein legumes are among the most important crops for sustainable agriculture and global food security for decades to come. Unfortunately, they are subject to several abiotic stresses that severely limit their productivity, and this phenomenon is increasing with climate change. New Plant Breeding Technologies (NPBTs) offer novel alternatives to improve the plant performance of crops against such environmental constraints. However, the recalcitrance to transgenesis and in vitro regeneration has delayed such advances for protein legumes. This article reviews recent advances in legume crop biotechnological approaches to improve their tolerance to abiotic stresses including drought, high salinity, heat and cold, and heavy metal stress. In addition to these improvements, obtained mainly through transgenesis, we surveyed the application of tools such as CRISPR/Cas and RNA interference in legumes in a context of abiotic stress tolerance, and suggested a path to follow for gene control by these tools in legume plants, organs, or cells. Furthermore, we also discussed promising molecular targets, perspectives, and the way ahead for enhancing abiotic stress tolerance. Protein legumes are among the most important crops for sustainable agriculture and global food security for decades to come. Unfortunately, they are subject to several abiotic stresses that severely limit their productivity, and this phenomenon is increasing with climate change. New Plant Breeding Technologies (NPBTs) offer novel alternatives to improve the plant performance of crops against such environmental constraints. However, the recalcitrance to transgenesis and in vitro regeneration has delayed such advances for protein legumes. This article reviews recent advances in legume crop biotechnological approaches to improve their tolerance to abiotic stresses including drought, high salinity, heat and cold, and heavy metal stress. In addition to these improvements, obtained mainly through transgenesis, we surveyed the application of tools such as CRISPR/Cas and RNA interference in legumes in a context of abiotic stress tolerance, and suggested a path to follow for gene control by these tools in legume plants, organs, or cells. Furthermore, we also discussed promising molecular targets, perspectives, and the way ahead for enhancing abiotic stress tolerance. •NPBT gave new protein legume genotypes to better cope with changing global climate.•Tolerance to drought, salinity, extreme temperatures and heavy metals were improved.•We surveyed recent advances in transgenesis, RNAi and genome editing technology.•Candidate genes modulating protein legume responses to abiotic stress are evoked.•A comprehensive survey of biotechnology-induced abiotic stress tolerance in legumes.  | 
    
| ArticleNumber | 104824 | 
    
| Author | Détain, Alexandre Leborgne-Castel, Nathalie Ochatt, Sergio Bhowmik, Pankaj  | 
    
| Author_xml | – sequence: 1 givenname: Alexandre surname: Détain fullname: Détain, Alexandre organization: Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France – sequence: 2 givenname: Pankaj surname: Bhowmik fullname: Bhowmik, Pankaj organization: National Research Council of Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada – sequence: 3 givenname: Nathalie surname: Leborgne-Castel fullname: Leborgne-Castel, Nathalie organization: Agroécologie, CNRS, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France – sequence: 4 givenname: Sergio surname: Ochatt fullname: Ochatt, Sergio email: sergio.ochatt@inrae.fr organization: Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France  | 
    
| BackLink | https://hal.inrae.fr/hal-03693602$$DView record in HAL | 
    
| BookMark | eNqNkkGPFCEQhTtmTZxd_Q32UQ89Ak0DffAw2ahrMokXPWNBV88y6YERmHHn30vbRqMX90KFyveg3oPr6soHj1X1kpI1JVS82a_Rn_HhaEJeM8JY6XLF-JNqRZVsG9kSeVWtCOlVo7hkz6rrlPaEENlKsaq-biFjyrVxIaO992EKu0udQ5hSDX6oM8Qd5lSPIdbucIzh7Pyuhhl3tk45YkoFnzCCt1g7XxcmY6kT7k4HTM-rpyNMCV_8qjfVl_fvPt_eNdtPHz7ebraN7RjPjehoNyogqjVKddAPgnDCOjVwxcEaIrqhxQGkUGMHagCuKFLTC66kkhJ4e1Op5dyTP8LlO0yTPkZ3gHjRlOg5Kb3Xv5PSc1J6SapIXy_Se_gjCuD03War5x5pRd8Kws60sK8Wttj8dirJ6YNLFqcJPIZT0kwIOk-uVEHfLqiNIaWIo7YuQ3bB5whuesRY8h_94w0Ni9JHa8HDAH_Zsi5lp91cdCG0_bnA0i_plR0BAVQyo03LQXNmuAYcuO5NZ3o7GsHEbHCzXIPlXc8Oo07WYfkGg4tosx6C---oPwBBWeEj | 
    
| CitedBy_id | crossref_primary_10_1016_j_envexpbot_2023_105329 crossref_primary_10_1007_s11240_024_02780_y crossref_primary_10_1016_j_agee_2023_108767 crossref_primary_10_1007_s11240_022_02388_0 crossref_primary_10_1007_s11240_023_02550_2 crossref_primary_10_1007_s11240_023_02552_0 crossref_primary_10_1186_s12870_023_04053_w crossref_primary_10_1007_s44346_024_00004_x crossref_primary_10_1007_s11240_023_02633_0 crossref_primary_10_1007_s11240_024_02868_5 crossref_primary_10_1016_j_stress_2024_100578 crossref_primary_10_1007_s11240_023_02607_2 crossref_primary_10_3390_plants12051060 crossref_primary_10_1007_s11032_025_01538_4  | 
    
| Cites_doi | 10.1016/j.envexpbot.2019.103805 10.19071/jpsp.2017.v3.3148 10.1016/B978-0-12-813066-7.00006-1 10.1007/s10529-009-0178-z 10.1111/tpj.12746 10.1016/j.plantsci.2017.05.001 10.1016/j.tibtech.2014.12.003 10.1111/j.1467-7652.2008.00336.x 10.3389/fpls.2017.02125 10.1007/s11248-016-0002-1 10.1016/j.jplph.2020.153327 10.1016/j.scitotenv.2017.12.083 10.1038/nature17946 10.1016/j.jgg.2015.10.002 10.1007/s10535-009-0012-4 10.1007/s11032-013-9952-7 10.1104/pp.18.00200 10.1186/1471-2229-12-107 10.1111/pce.12929 10.1155/2017/7315351 10.1007/s11738-017-2361-5 10.1016/j.jbiotec.2015.11.005 10.1371/journal.pone.0111152 10.1016/j.bbrc.2012.09.128 10.1038/nbt.2491 10.22207/JPAM.11.1.79 10.1038/d41586-021-02265-4 10.1007/s11240-020-01944-w 10.1111/j.1365-3040.2010.02232.x 10.1104/pp.122.4.1427 10.1016/j.copbio.2019.02.015 10.1007/s00299-014-1699-z 10.1590/S1415-47572013000400015 10.1111/nph.13013 10.1111/jipb.13061 10.3389/fpls.2016.01137 10.1007/s00425-018-2866-1 10.1038/nbt.3811 10.1016/j.plantsci.2013.05.002 10.1155/2015/756120 10.1007/s00299-015-1907-5 10.1371/journal.pone.0131567 10.1007/s11816-016-0392-9 10.1371/journal.pone.0177966 10.1007/s00299-016-2089-5 10.1093/gbe/evy248 10.3389/fpls.2018.01324 10.1371/journal.pone.0106070 10.1534/g3.117.300396 10.3389/fpls.2018.00559 10.1093/aob/mcw191 10.3390/ijms22010396 10.1007/s00425-012-1781-0 10.1111/ppl.12754 10.1038/srep44304 10.1016/j.plantsci.2017.01.018 10.1111/nph.14529 10.1016/j.cell.2016.08.029 10.1016/j.jgg.2013.12.001 10.1038/nbt0118-6b 10.1016/S2095-3119(17)61863-X 10.3389/fpls.2016.00303 10.1007/s13593-014-0276-8 10.1016/j.plaphy.2018.03.007 10.1007/s10265-015-0773-0 10.1360/yc-006-1411 10.1038/s41588-019-0480-1 10.1007/s00018-016-2380-1 10.1007/s00299-018-2252-2 10.1016/j.jhazmat.2011.02.042 10.1111/j.1365-313X.2011.04859.x 10.1007/s10725-015-0113-3 10.1104/pp.103.4.1155 10.1104/pp.114.247577 10.1111/pbi.12659 10.3389/fpls.2018.01724 10.1007/s11240-017-1320-6 10.3389/fpls.2019.00678 10.3390/ijms20102541 10.1105/tpc.15.00920 10.3389/fpls.2016.01904 10.1126/science.1225829 10.1186/1471-2229-11-127 10.2135/cropsci2008.09.0573 10.1111/mpp.12375 10.3390/ijms20102471 10.1111/pbi.12066 10.1007/s11105-012-0541-4 10.3389/fpls.2015.00773 10.1111/jipb.12513 10.1016/j.envexpbot.2018.06.025 10.1038/s41586-021-03819-2 10.1371/journal.pone.0136064 10.3389/fpls.2016.01045 10.1016/j.envexpbot.2021.104521 10.1016/j.envexpbot.2018.10.017 10.1007/s11240-014-0516-2 10.1016/j.jbiotec.2016.11.017 10.1007/s00299-019-02392-3 10.1007/s10725-009-9434-4 10.1038/s41598-020-63664-7 10.3390/agronomy9010013 10.3390/antiox9080681 10.3389/fpls.2016.00004 10.3390/cells10071674 10.1104/pp.15.01661 10.1111/mpp.12160 10.1007/s11240-018-1486-6 10.1016/j.plgene.2019.100210 10.1111/ppl.12787 10.1071/FP19260 10.1007/s11627-017-9807-8 10.1016/j.bbrc.2016.02.067 10.1016/j.plantsci.2019.04.016 10.1080/21645698.2017.1289305 10.3389/fpls.2018.01291 10.1093/pcp/pcx060 10.1111/pce.12707 10.1134/S1021443718040155 10.1038/s41588-019-0402-2 10.3389/fpls.2018.00985 10.1080/07352689.2017.1402989 10.1016/j.sajb.2009.10.007 10.1016/j.biotechadv.2014.12.006 10.1093/mp/ssr013 10.1007/978-3-642-30967-0_2 10.1007/s00299-018-2355-9 10.1038/nature02874 10.1007/s11032-016-0451-5 10.1111/nph.13519 10.1104/pp.15.00783 10.1007/s00299-016-2062-3 10.1038/nbt.2969 10.1016/j.tplants.2015.10.012 10.1111/ppl.12731 10.1038/s41598-021-03268-x 10.1007/s00299-020-02534-y 10.1038/ng.3008 10.3389/fpls.2019.01446 10.1111/pbi.12758 10.1038/nbt.2654 10.3390/ijms21082695 10.3389/fpls.2016.00703 10.1016/j.plaphy.2017.12.012 10.1007/s11056-017-9621-5 10.1016/j.plaphy.2014.10.010 10.1007/s11248-013-9723-6 10.3389/fpls.2014.00086 10.1016/j.ecoenv.2020.111887 10.1111/pbi.12857 10.1111/ppl.12540 10.3389/fpls.2016.01029 10.1007/s10535-015-0515-0 10.3389/fpls.2015.00084 10.1038/s41588-018-0174-0 10.1007/s10722-020-00966-9 10.1007/s00425-011-1382-3 10.3389/fpls.2017.02135 10.1016/j.plaphy.2015.07.002 10.3389/fgene.2021.632685 10.1186/s12870-018-1467-2 10.1080/15226514.2018.1501333 10.1111/ppl.12019 10.3390/ijms22147687 10.1111/tpj.14349 10.1111/ppl.12032 10.1104/pp.102.017681 10.3389/fpls.2020.01276 10.1093/mp/ssn058 10.1016/j.tibtech.2017.04.009 10.1007/s10142-017-0572-x 10.3389/fpls.2020.00294 10.2174/1389202918666170705153045 10.1038/s41587-019-0138-7 10.3390/ijms22020949 10.1007/s00299-016-2069-9 10.1016/j.ecoenv.2020.111361 10.1016/j.plaphy.2018.03.012 10.15252/embr.202050680 10.2135/cropsci2017.09.0581 10.1073/pnas.0402251101 10.1016/j.plaphy.2013.06.024 10.3390/ijms14059643  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2022 Elsevier B.V. Attribution - NonCommercial  | 
    
| Copyright_xml | – notice: 2022 Elsevier B.V. – notice: Attribution - NonCommercial  | 
    
| DBID | -LJ GXV AAYXX CITATION 7S9 L.6 1XC VOOES ADTOC UNPAY  | 
    
| DOI | 10.1016/j.envexpbot.2022.104824 | 
    
| DatabaseName | National Research Council Canada Archive CISTI Source CrossRef AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitleList | AGRICOLA  | 
    
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Botany Environmental Sciences Sciences  | 
    
| EISSN | 1873-7307 | 
    
| ExternalDocumentID | 10.1016/j.envexpbot.2022.104824 oai:HAL:hal-03693602v1 10_1016_j_envexpbot_2022_104824 oai_cisti_icist_nrc_cnrc_ca_cistinparc_0a6a172b_b34a_42b4_aed4_9b5b9cfb6268 S0098847222000466  | 
    
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29G 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAHBH AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AATTM AAXKI AAXUO ABEFU ABFNM ABFRF ABGRD ABJNI ABMAC ABPPZ ABWVN ABXDB ACDAQ ACGFO ACGFS ACIUM ACNCT ACRLP ACRPL ADBBV ADEZE ADMUD ADNMO ADQTV AEBSH AEFWE AEGFY AEIPS AEKER AENEX AEQOU AFFNX AFJKZ AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMC HVGLF HZ~ IHE J1W KOM LW9 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SDF SDG SDP SEN SES SEW SPCBC SSA SSH SSZ T5K TN5 TWZ WH7 WUQ XOL ~G- ~KM -LJ AAYWO ACLOT ACVFH ADCNI AEUPX AFPUW AIGII AIIUN AKBMS AKYEP EFKBS EFLBG GXV ~HD AAYXX AGQPQ APXCP CITATION GROUPED_DOAJ 7S9 L.6 1XC VOOES ADTOC AGCQF UNPAY  | 
    
| ID | FETCH-LOGICAL-c524t-6515f8a083b885a9d6040258d484acb065d3eda768f5a8da481e1b96487877a43 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 0098-8472 1873-7307  | 
    
| IngestDate | Tue Aug 26 13:33:39 EDT 2025 Tue Oct 14 20:47:24 EDT 2025 Sat Sep 27 19:30:33 EDT 2025 Thu Apr 24 23:10:00 EDT 2025 Thu Oct 02 04:25:21 EDT 2025 Fri Oct 24 21:09:05 EDT 2025 Sun Apr 06 06:54:51 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Extreme temperatures RNA interference Gene transfer Legume crops Drought CRISPR/Cas Heavy metals Salinity salinity gene transfer heavy metals drought legume crops extreme temperatures  | 
    
| Language | English | 
    
| License | Attribution - NonCommercial: http://creativecommons.org/licenses/by-nc | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c524t-6515f8a083b885a9d6040258d484acb065d3eda768f5a8da481e1b96487877a43 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
    
| ORCID | 0000-0002-2887-4389 | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://linkinghub.elsevier.com/retrieve/pii/S0098847222000466 | 
    
| PQID | 2661040288 | 
    
| PQPubID | 24069 | 
    
| ParticipantIDs | unpaywall_primary_10_1016_j_envexpbot_2022_104824 hal_primary_oai_HAL_hal_03693602v1 proquest_miscellaneous_2661040288 crossref_citationtrail_10_1016_j_envexpbot_2022_104824 crossref_primary_10_1016_j_envexpbot_2022_104824 nrccanada_primary_oai_cisti_icist_nrc_cnrc_ca_cistinparc_0a6a172b_b34a_42b4_aed4_9b5b9cfb6268 elsevier_sciencedirect_doi_10_1016_j_envexpbot_2022_104824  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2022-05-01 | 
    
| PublicationDateYYYYMMDD | 2022-05-01 | 
    
| PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | Environmental and experimental botany | 
    
| PublicationYear | 2022 | 
    
| Publisher | Elsevier B.V Elsevier  | 
    
| Publisher_xml | – name: Elsevier B.V – name: Elsevier  | 
    
| References | Elmaghrabi, Rogers, Francis, Ochatt (bib57) 2018; vol 1822 Cai, Chen, Liu, Guo, Sun, Wu, Jiang, Han, Hou (bib37) 2018; 16 Kim, Cho, Pak, Kwon, Lee, Kim, Lee, Kim, Chung (bib99) 2018; 41 Zdziarski, Todeschini, Milioli, Woyann, Madureira, Stoco, Benin (bib194) 2018; 58 Kim, Alptekin, Budak (bib98) 2018; 18 McKersie, Murnaghan, Jones, Bowley (bib127) 2000; 122 Bhowmik, Konkin, Polowick, Hodgins, Subedi, Xiang, Yu, Patterson, Rajagopalan, Babic, Ro, Tar'an, Bandara, Smyth, Cui, Kagale (bib28) 2021 Suárez, Calderón, Iturriaga (bib166) 2009; 49 Fancy, Bahlmann, Loake (bib62) 2017; 40 Li, Chen, Nan, Li, Lu, Zhao, Liu, Guo, Kong, Cao (bib113) 2017; 12 Tan, Zhuo, Guo (bib167) 2013; 149 Munns, Gilliham (bib133) 2015; 3 Anbazhagan, Bhatnagar-Mathur, Vadez, Dumbala, Kishor, Sharma (bib7) 2015; 34 Großkinsky, van der Graaff, Roitsch (bib69) 2016 Curtin, Xiong, Michno, Campbell, Stec, Čermák, Starker, Voytas, Eamens, Stupar (bib50) 2018; 16 Wang, Chen, Xin, Qi, Zhang, Li, Jin, Li, Mei, Su (bib183) 2018; 17 Bulle, Yarra, Abbagani (bib33) 2016; 36 Ochatt (bib141) 2015; 35 Bechtold (bib22) 2018; 9 Zhuo, Liang, Zhao, Guo, Lu (bib209) 2018; 41 Stephens, Barakate (bib165) 2017 Thanananta, Vuttipongchaikij, Apisitwanich (bib171) 2018; 49 Yang, Liu, Gao, Sun, Ma, Yu, Ha (bib191) 2017; 1 Li, Jia, Yobi, Ge, Sato, Zhang, Angelovici, Clemente, Holding (bib106) 2018; 177 . Jiang, Tian, Li, Yu, Hou, Ren (bib89) 2019; 10 Pan, Tao, Cheng, Shen, Ma, Zhang, Lin, Ma, Chen, Zhang (bib144) 2017; 58 Haut Conseil des Biotechnologies, 2018. Avis du Comité scientifique sur les Nouvelles techniques d’obtention de plantes [New plant breeding techniques–NPBT], accessible at Wang, Wang, Tan, Fan, Zhu, Hong, Zhang, Duanmu (bib182) 2016; 7 Zhou, Tian, Zou, Xie, Lei, Huang, Wang, Wang, Zhang, Chen (bib205) 2008; 6 Han, Guo, Guo, Zhang, Wang, Qiu (bib74) 2019; 10 Huang, Xuan, Yang, Guo, Wang, Zhao, Xing (bib80) 2019; 285 Hasanuzzaman, Borhannuddin Bhuyan, Zulfiqar, Raza, Mohsin, Al Mahmud, Fujita, Fotopoulos (bib76) 2020; 9 John, Vaseem, Mubashir, Nelofer, Umer, Sujat, Umer, Tanushri (bib91) 2017; Volume 2 Rout, Bansal, Swain, Jadhao, Shelke, Panda (bib150) 2020; 143 Wang, Wang, Guo, Wang, Li, Chen, Dong, Chen, Wang, Li (bib180) 2016; 15 Jha, Nayyar, Mantri, Siddique (bib85) 2021; 10 Osakabe, Osakabe, Shinozaki, Tran (bib142) 2014; 5 Tiwari, Chaturvedi, Mishra, Jha (bib174) 2015; 10 Yang, Chen, Zhou, Yin, Li, Xin, Hong, Zhu, Gong (bib190) 2009; 2 Yadav (bib189) 2010; 76 Faillace, Caruso, Timmers, Favero, Guzman, Rechenmacher, de Oliveira-Busatto, de Souza, Bredemeier, Bodanese-Zanettini (bib61) 2021; 12 Jaganathan, Ramasamy, Sellamuthu, Jayabalan, Venkataraman (bib82) 2018; 9 Berni, Luyckx, Xu, Legay, Sergeant, Hausman, Lutts, Cai, Guerriero (bib23) 2019; 161 Joshi, Wani, Singh, Bohra, Dar, Lone, Pareek, Singla-Pareek (bib92) 2016; 7 Yu, Liu, Wang, Tao, Wang, Shu, Peng, Mijiti, Wang, Zhang, Ma (bib192) 2016; 35 Bhat, Mondal, Gaikwad, Kole, Chandel, Mohapatra (bib26) 2020; 21 Zhang, Duan, Zhang, Zhang, Di, Wu, Wang (bib198) 2016; 472 Song, Sun, Yang, Sun (bib162) 2018; 18 Tang, Cao, Gao, Ou, Wang, Qiu, Zheng (bib170) 2014; 9 Najera, Twyman, Christou, Zhu (bib135) 2019; 59 Jacob, Hirt, Bendahmane (bib81) 2017; 15 Kumar, Kushwaha, Panjabi-Sabharwal, Kumari, Joshi, Karan, Mittal, Pareek, Pareek (bib103) 2012; 12 Ji, Zhang, Sun, Wang, Duanmu, Fan (bib86) 2019; 20 Keeran, Ganesan, Parida (bib96) 2017; 26 Bertier, Ron, Huo, Bradford, Britt, Michelmore (bib24) 2018; 8 Feng, Yuan, Wang, Liu, Birchler, Han (bib65) 2016; 43 Nakanishi-Masuno, Shitan, Sugiyama, Takanashi, Inaba, Kaneko, Yazaki (bib137) 2018; 20 Shui, Chen, Li (bib158) 2013; 210 Baulcombe (bib21) 2004; 431 Biswas, Li, Yuan, Zhang, Zhao, Shi (bib29) 2019; 38 Lim, Jeong, Jung, Harn (bib117) 2016; 10 Shah, Iqbal, Khan, Khan, Durrani, Ahmad (bib155) 2020; 67 Chandrasekaran, Brumin, Wolf, Leibman, Klap, Pearlsman, Sherman, Arazi, Gal-On (bib40) 2016; 17 Hahn, Nekrasov (bib72) 2019; 38 Zhang, Zhang, Lang, Botella, Zhu (bib196) 2017; 36 Butler, Baltes, Voytas, Douches (bib34) 2016; 7 Schmidt, Belisle, Frommer (bib153) 2020; 21 Kamburova, Nikitina, Shermatov, Buriev, Kumpatla, Emani, Abdurakhmonov (bib94) 2017 Lonardi, Muñoz‐Amatriaín, Liang, Shu, Wanamaker, Lo, Tanskanen, Schulman, Zhu, Luo, Alhakami, Ounit, Hasan, Verdier, Roberts, Santos, Ndeve, Doležel, Vrána, Hokin, Farmer, Cannon, Close (bib118) 2019; 98 Cabello, Giacomelli, Gómez, Chan (bib35) 2017; 257 Abogadallah, Nada, Malinowski, Quick (bib3) 2011; 233 Hong, Zhang, Huang, Li, Song (bib79) 2016; 7 Nakajima, Ban, Azuma, Onoue, Moriguchi, Yamamoto, Toki, Endo (bib136) 2017; 12 AlQuraishi (bib4) 2021; 596 Gu, Chen, Yu, Cui, Pan, Zhao, Xu, Wang, Shen (bib70) 2017; 261 Roychowdhury, Khan, Choudhury (bib151) 2018 Shi, He, Zhao, Lu, Guo (bib157) 2020; 39 Zhu (bib206) 2016; 167 Erpen, Devi, Grosser, Dutt (bib60) 2018; 132 Barbosa, Leite, Marin, Marinho, Carvalho, Fuganti-Pagliarini, Bouças Farias, Neumaier, Corrêa Marcelino-Guimarães, Neves de Oliveira, Yamaguchi-Shinozaki, Nakashima, Maruyama, Kanamori, Fujita, Yoshida, Nepomuceno (bib19) 2013; 31 Nadeem, Li, Yahya, Sher, Ma, Wang, Qiu (bib134) 2019; 20 Bortesi, Fischer (bib31) 2015; 33 Mamta, Rajam (bib120) 2018; vol 2 Jiang, Ma, Ye, Jiang, Cao, Zhang (bib88) 2017; 59 Cai, Chen, Liu, Sun, Wu, Jiang, Han, Hou (bib36) 2015; 10 Chen, Liu, Wang, Wang, Cheng (bib41) 2016; 129 Gao, Feyissa, Croft, Hannoufa (bib67) 2018; 247 Anumalla, Roychowdhury, Geda, Bharathkumar, Goutam, Mohandev (bib10) 2016; 7 Fang, Qi (bib63) 2016; 28 Muhammad, Feyissa, Amyot, Aung, Hannoufa (bib132) 2017; 258 Bhatnagar-Mathur, Rao, Vadez, Dumbala, Rathore, Yamaguchi-Shinozaki, Sharma (bib27) 2014; 33 De Zélicourt, Diet, Marion, Laffont, Ariel, Moison, Zahaf, Crespi, Gruber, Frugier (bib52) 2012; 70 Atif, Patat-Ochatt, Svabova, Ondrej, Klenoticova, Jacas, Griga, Ochatt (bib14) 2013; 74 Chen, Ding, Yang, Song, Wang, Yang, Guo, Gong (bib46) 2021; 63 Li, Song, Gao, Jiang, Chen, Fang (bib110) 2015; 95 Liang, Zhang, Chen, Gao (bib116) 2014; 41 Manan, Zhao (bib121) 2021; 8 Li, Li, Li, Guo, Chen (bib107) 2018; 65 Mao, Botella, Zhu (bib122) 2017; 74 Zhan, Ke, Zhang, Zhou, Fu, Zhang, Zhong, Chen, Xie (bib195) 2018; 135 Sripriya, Parameswari, Veluthambi (bib164) 2017; 53 Détain, Redecker, Leborgne-Castel, Ochatt (bib53) 2021; 11 Zhao, Wang, Hou, Zhang, Wang, Yan, Huang, Li, Tan, Hu, Gao, Zhang, Li, Zhou, Zhang, Li (bib203) 2014; 9 Wan, Hongbo, Zhaolong, Jia, Dayong, Yihong (bib179) 2017; 18 Badhan, Ball, Mantri (bib15) 2021; 22 Kaur, Verma, Petla, Rao, Saxena, Majee (bib95) 2013; 237 Anwar, Kim (bib11) 2020; 21 Li, Wang, Ke, Ji, Jeong, Lee, Lim, Xu, Deng, Kwak (bib108) 2014; 85 Mosa, Saadoun, Kumar, Helmy, Dhankher (bib131) 2016; 7 He, Li, Ma, Zhang, Polle, Rennenberg, Cheng, Luo (bib78) 2015; 205 Jumper, Evans, Pritzel, Green, Figurnov, Ronneberger, Tunyasuvunakool, Bates, Žídek, Potapenko, Bridgland, Meyer, Kohl, Ballard, Cowie, Romera-Paredes, Nikolov, Jain, Adler, Back, Petersen, Reiman, Clancy, Michal, Steinegger, Pacholska, Berghammer, Bodenstein, Silver, Vinyals, Senior, Kavukcuoglu, Kohli, Hassabis (bib93) 2021; 596 Malnoy, Viola, Jung, Koo, Kim, Kim, Velasco, Kanchiswamy (bib119) 2016; 7 Bahmani, Modareszadeh, Kim, Hwang (bib16) 2019; 166 Li, Norville, Aach, McCormack, Zhang, Bush, Church, Sheen (bib109) 2013; 31 Somers, Samac, Olhoft (bib161) 2003; 131 An, Cheng, Hu, Chen, Cai, Yu (bib6) 2018; 155 Wolny, Skalska, Braszewska, Mur, Hasterok (bib186) 2021; 22 Peng, Ding, Meng, Yi, Gong (bib147) 2017; 40 Li, Wang, Chen, Tian, Fu, Zhu, Luo, Zhu (bib111) 2018; 9 Zhuang, Chen, Yang, Wang, Pandey, Zhang, Chang, Zhang, Zhang, Tang, Garg, Wang, Tang, Chow, Wang, Deng, Wang, Khan, Yang, Cai, Bajaj, Wu, Guo, Zhang, Li, Liang, Hu, Liao, Liu, Chitikineni, Yan, Zheng, Shan, Liu, Xie, Wang, Khan, Ali, Zhao, Li, Luo, Zhang, Zhuang, Peng, Wang, Mamadou, Zhuang, Zhao, Yu, Xiong, Quan, Yuan, Li, Zou, Xia, Zha, Fan, Yu, Xie, Yuan, Chen, Zhao, Chu, Chen, Sun, Meng, Zhuo, Zhao, Li, He, Zhao, Wang, Kavikishor, Pan, Paterson, Wang, Ming, Varshney (bib207) 2021; 51 Miki, Zinta, Zhang, Peng, Feng, Zhu (bib129) 2021; vol. 2200 Negrão, Schmöckel, Tester (bib138) 2017; 119 Noman, Aysha, Ketehouli, Yang, Du, Wang, Li (bib140) 2021; 256 Abdellatef, Kamal, Tsujimoto (bib1) 2021; 22 Sosa-Valencia, Palomar, Covarrubias, Reyes (bib163) 2017; 68 Goodwin, Sutter (bib68) 2009; 53 Jia, Xu, Orbovic, Zhang, Wang (bib87) 2017; 8 Singh, Mehta, Kumar, Tiwari, Kushwaha (bib160) 2017; 11 Xiao, Karikari, Wang, Chang, Zhao (bib187) 2021; 188 Casacuberta, Devos, du Jardin, Ramon, Vaucheret, Nogue (bib39) 2015; 33 Jang, Kim, Jang, Sukweenadhi, Kwon, Yang (bib83) 2014; 119 Li, Xu, He, Yang, Chen, Li, Ma (bib115) 2012; 427 Morphew, Arndt, Lauter, Tesfaye, Samac, Temple (bib130) 2004; 227 Zandalinas, Mittler, Balfagón, Arbona, Gómez-Cadenas (bib193) 2018; 162 Artur, Zhao, Ligterink, Schranz, Hilhorst (bib13) 2018; 11 Zhang, Zhao, Dong, Zhang, Wang, Li, Xing, Li, Dong (bib201) 2015; 6 Carrillo-Perdomo, Vidal, Kreplak (bib38) 2020; 10 Kurowska (bib104) 2020 Chen, Lu, Shu, Wang, Wang, Wang, Guo, Ye (bib45) 2017; 7 Zhang, Liu (bib202) 2011; 189 Barrera-Figueroa, Gao, Diop, Wu, Ehlers, Roberts, Close, Zhu, Liu (bib20) 2011; 11 Arshad, Feyissa, Amyot, Aung, Hannoufa (bib12) 2017; 258 Martin-Laffon, Kuntz, Ricroch (bib124) 2019; 37 Chen, Murata (bib44) 2011; 34 Ning, Zhang, Yao, Yu (bib139) 2010; 32 Marco, Bitrián, Carrasco, Rajam, Alcázar, Tiburcio (bib123) 2015; Volume II Todaka, Shinozaki, Yamaguchi-Shinozaki (bib175) 2015; 6 Ding, Li, Chen, Xie (bib54) 2016; 7 Choi, Mun, Kim, Zhu, Baek, Mudge, Roe, Ellis, Doyle, Kiss, Young, Cook (bib49) 2004; 101 Tian, Jiang, Gao, Zhang, Zong, Zhang, Ren, Guo, Gong, Liu, Xu (bib172) 2017; 36 Waltz (bib178) 2018; 36 Haider, Liqun, Coulter, Cheema, Wu, Zhang, Wenjun, Farooq (bib73) 2021; 211 Alsajri, Singh, Wijewardana, Irby, Gao, Reddy (bib5) 2019; 9 Matthews, Arshad, Hannoufa (bib125) 2019; 165 Zhuo, Wang, Lu, Zhao, Li, Guo (bib208) 2013; 149 Du, Zeng, Zhao, Cui, Wang, Yang, Cheng, Yu (bib55) 2016; 217 Jansson (bib84) 2018; 164 Sadiq, M., Akram, N.A., 2018. Field performance of transgenic drought-tolerant crop plan Anumalla (10.1016/j.envexpbot.2022.104824_bib10) 2016; 7 Bechtold (10.1016/j.envexpbot.2022.104824_bib22) 2018; 9 Bhat (10.1016/j.envexpbot.2022.104824_bib26) 2020; 21 Bhatnagar-Mathur (10.1016/j.envexpbot.2022.104824_bib27) 2014; 33 Todaka (10.1016/j.envexpbot.2022.104824_bib175) 2015; 6 Shi (10.1016/j.envexpbot.2022.104824_bib157) 2020; 39 Kamburova (10.1016/j.envexpbot.2022.104824_bib94) 2017 Li (10.1016/j.envexpbot.2022.104824_bib115) 2012; 427 Xue (10.1016/j.envexpbot.2022.104824_bib188) 2011; 4 Wang (10.1016/j.envexpbot.2022.104824_bib181) 2016; 7 Joshi (10.1016/j.envexpbot.2022.104824_bib92) 2016; 7 Abdelrahman (10.1016/j.envexpbot.2022.104824_bib2) 2018; 131 An (10.1016/j.envexpbot.2022.104824_bib6) 2018; 155 Engels (10.1016/j.envexpbot.2022.104824_bib59) 2013; 36 AlQuraishi (10.1016/j.envexpbot.2022.104824_bib4) 2021; 596 Manan (10.1016/j.envexpbot.2022.104824_bib121) 2021; 8 De Zélicourt (10.1016/j.envexpbot.2022.104824_bib52) 2012; 70 Pruthvi (10.1016/j.envexpbot.2022.104824_bib148) 2014; 9 Klimek-Chodacka (10.1016/j.envexpbot.2022.104824_bib100) 2018; 37 Zhuo (10.1016/j.envexpbot.2022.104824_bib209) 2018; 41 Curtin (10.1016/j.envexpbot.2022.104824_bib50) 2018; 16 Munns (10.1016/j.envexpbot.2022.104824_bib133) 2015; 3 Sripriya (10.1016/j.envexpbot.2022.104824_bib164) 2017; 53 Chen (10.1016/j.envexpbot.2022.104824_bib48) 2018; 127 Waltz (10.1016/j.envexpbot.2022.104824_bib178) 2018; 36 Butler (10.1016/j.envexpbot.2022.104824_bib34) 2016; 7 Berni (10.1016/j.envexpbot.2022.104824_bib23) 2019; 161 Tang (10.1016/j.envexpbot.2022.104824_bib168) 2016; 170 Ning (10.1016/j.envexpbot.2022.104824_bib139) 2010; 32 10.1016/j.envexpbot.2022.104824_bib145 Jumper (10.1016/j.envexpbot.2022.104824_bib93) 2021; 596 Anbazhagan (10.1016/j.envexpbot.2022.104824_bib7) 2015; 34 Lim (10.1016/j.envexpbot.2022.104824_bib117) 2016; 10 Zandalinas (10.1016/j.envexpbot.2022.104824_bib193) 2018; 162 Tian (10.1016/j.envexpbot.2022.104824_bib172) 2017; 36 Détain (10.1016/j.envexpbot.2022.104824_bib53) 2021; 11 Abdellatef (10.1016/j.envexpbot.2022.104824_bib1) 2021; 22 Andersson (10.1016/j.envexpbot.2022.104824_bib8) 2017; 36 Chen (10.1016/j.envexpbot.2022.104824_bib41) 2016; 129 Chen (10.1016/j.envexpbot.2022.104824_bib42) 2010; 60 Kreplak (10.1016/j.envexpbot.2022.104824_bib102) 2019; 51 Barbosa (10.1016/j.envexpbot.2022.104824_bib19) 2013; 31 Du (10.1016/j.envexpbot.2022.104824_bib55) 2016; 217 Li (10.1016/j.envexpbot.2022.104824_bib110) 2015; 95 Song (10.1016/j.envexpbot.2022.104824_bib162) 2018; 18 Baulcombe (10.1016/j.envexpbot.2022.104824_bib21) 2004; 431 Li (10.1016/j.envexpbot.2022.104824_bib112) 2013; 11 Haider (10.1016/j.envexpbot.2022.104824_bib73) 2021; 211 Hong (10.1016/j.envexpbot.2022.104824_bib79) 2016; 7 Mosa (10.1016/j.envexpbot.2022.104824_bib131) 2016; 7 Atif (10.1016/j.envexpbot.2022.104824_bib14) 2013; 74 Zhang (10.1016/j.envexpbot.2022.104824_bib200) 2015; 16 Zong (10.1016/j.envexpbot.2022.104824_bib210) 2017; 35 Bahmani (10.1016/j.envexpbot.2022.104824_bib16) 2019; 166 Brooks (10.1016/j.envexpbot.2022.104824_bib32) 2014; 166 Hahn (10.1016/j.envexpbot.2022.104824_bib72) 2019; 38 Gürel (10.1016/j.envexpbot.2022.104824_bib71) 2016; 7 Cabello (10.1016/j.envexpbot.2022.104824_bib35) 2017; 257 He (10.1016/j.envexpbot.2022.104824_bib78) 2015; 205 Somers (10.1016/j.envexpbot.2022.104824_bib161) 2003; 131 Gu (10.1016/j.envexpbot.2022.104824_bib70) 2017; 261 Stephens (10.1016/j.envexpbot.2022.104824_bib165) 2017 Bulle (10.1016/j.envexpbot.2022.104824_bib33) 2016; 36 Ji (10.1016/j.envexpbot.2022.104824_bib86) 2019; 20 Marco (10.1016/j.envexpbot.2022.104824_bib123) 2015; Volume II Barrera-Figueroa (10.1016/j.envexpbot.2022.104824_bib20) 2011; 11 Jang (10.1016/j.envexpbot.2022.104824_bib83) 2014; 119 Negrão (10.1016/j.envexpbot.2022.104824_bib138) 2017; 119 Chen (10.1016/j.envexpbot.2022.104824_bib47) 2006; 28 Bortesi (10.1016/j.envexpbot.2022.104824_bib31) 2015; 33 Huang (10.1016/j.envexpbot.2022.104824_bib80) 2019; 285 Thanananta (10.1016/j.envexpbot.2022.104824_bib171) 2018; 49 Zhang (10.1016/j.envexpbot.2022.104824_bib197) 2020; 11 Zhang (10.1016/j.envexpbot.2022.104824_bib201) 2015; 6 Erpen (10.1016/j.envexpbot.2022.104824_bib60) 2018; 132 Li (10.1016/j.envexpbot.2022.104824_bib114) 2015; 169 Kidokoro (10.1016/j.envexpbot.2022.104824_bib97) 2015; 81 Artur (10.1016/j.envexpbot.2022.104824_bib13) 2018; 11 Hasanuzzaman (10.1016/j.envexpbot.2022.104824_bib75) 2013; 14 Kumar (10.1016/j.envexpbot.2022.104824_bib103) 2012; 12 Abogadallah (10.1016/j.envexpbot.2022.104824_bib3) 2011; 233 Bertier (10.1016/j.envexpbot.2022.104824_bib24) 2018; 8 Jiang (10.1016/j.envexpbot.2022.104824_bib89) 2019; 10 Schmutz (10.1016/j.envexpbot.2022.104824_bib154) 2014; 46 Xiao (10.1016/j.envexpbot.2022.104824_bib187) 2021; 188 Meng (10.1016/j.envexpbot.2022.104824_bib128) 2017; 36 Wang (10.1016/j.envexpbot.2022.104824_bib183) 2018; 17 Zhuo (10.1016/j.envexpbot.2022.104824_bib208) 2013; 149 Tang (10.1016/j.envexpbot.2022.104824_bib170) 2014; 9 Andersson (10.1016/j.envexpbot.2022.104824_bib9) 2018; 164 Biswas (10.1016/j.envexpbot.2022.104824_bib29) 2019; 38 Matthews (10.1016/j.envexpbot.2022.104824_bib125) 2019; 165 Jia (10.1016/j.envexpbot.2022.104824_bib87) 2017; 8 Varshney (10.1016/j.envexpbot.2022.104824_bib177) 2013; 31 Gao (10.1016/j.envexpbot.2022.104824_bib67) 2018; 247 Wolny (10.1016/j.envexpbot.2022.104824_bib186) 2021; 22 Kurowska (10.1016/j.envexpbot.2022.104824_bib104) 2020 Carrillo-Perdomo (10.1016/j.envexpbot.2022.104824_bib38) 2020; 10 Großkinsky (10.1016/j.envexpbot.2022.104824_bib69) 2016 Martin-Laffon (10.1016/j.envexpbot.2022.104824_bib124) 2019; 37 Miki (10.1016/j.envexpbot.2022.104824_bib129) 2021; vol. 2200 Yadav (10.1016/j.envexpbot.2022.104824_bib189) 2010; 76 Chen (10.1016/j.envexpbot.2022.104824_bib44) 2011; 34 Chen (10.1016/j.envexpbot.2022.104824_bib46) 2021; 63 Zhu (10.1016/j.envexpbot.2022.104824_bib206) 2016; 167 Baloda (10.1016/j.envexpbot.2022.104824_bib17) 2017; 3 Davison (10.1016/j.envexpbot.2022.104824_bib51) 2017; 8 Li (10.1016/j.envexpbot.2022.104824_bib111) 2018; 9 Singh (10.1016/j.envexpbot.2022.104824_bib160) 2017; 11 Jiang (10.1016/j.envexpbot.2022.104824_bib88) 2017; 59 Faillace (10.1016/j.envexpbot.2022.104824_bib61) 2021; 12 John (10.1016/j.envexpbot.2022.104824_bib91) 2017; Volume 2 Yu (10.1016/j.envexpbot.2022.104824_bib192) 2016; 35 Rout (10.1016/j.envexpbot.2022.104824_bib150) 2020; 143 Chandrasekaran (10.1016/j.envexpbot.2022.104824_bib40) 2016; 17 Osakabe (10.1016/j.envexpbot.2022.104824_bib142) 2014; 5 Bhowmik (10.1016/j.envexpbot.2022.104824_bib28) 2021 Fang (10.1016/j.envexpbot.2022.104824_bib63) 2016; 28 10.1016/j.envexpbot.2022.104824_bib77 Bless (10.1016/j.envexpbot.2022.104824_bib30) 2018; 625 Li (10.1016/j.envexpbot.2022.104824_bib107) 2018; 65 Kim (10.1016/j.envexpbot.2022.104824_bib98) 2018; 18 Ochatt (10.1016/j.envexpbot.2022.104824_bib141) 2015; 35 Dwivedi (10.1016/j.envexpbot.2022.104824_bib56) 2016; 21 Chen (10.1016/j.envexpbot.2022.104824_bib45) 2017; 7 Emamverdian (10.1016/j.envexpbot.2022.104824_bib58) 2015 Liang (10.1016/j.envexpbot.2022.104824_bib116) 2014; 41 Wani (10.1016/j.envexpbot.2022.104824_bib185) 2016 Zhang (10.1016/j.envexpbot.2022.104824_bib199) 2017; 35 Zhang (10.1016/j.envexpbot.2022.104824_bib198) 2016; 472 Fancy (10.1016/j.envexpbot.2022.104824_bib62) 2017; 40 Sosa-Valencia (10.1016/j.envexpbot.2022.104824_bib163) 2017; 68 Mamta (10.1016/j.envexpbot.2022.104824_bib120) 2018; vol 2 Li (10.1016/j.envexpbot.2022.104824_bib109) 2013; 31 Zhao (10.1016/j.envexpbot.2022.104824_bib203) 2014; 9 Han (10.1016/j.envexpbot.2022.104824_bib74) 2019; 10 Tang (10.1016/j.envexpbot.2022.104824_bib169) 2013; 71 Wang (10.1016/j.envexpbot.2022.104824_bib180) 2016; 15 Mao (10.1016/j.envexpbot.2022.104824_bib122) 2017; 74 Zhang (10.1016/j.envexpbot.2022.104824_bib196) 2017; 36 Li (10.1016/j.envexpbot.2022.104824_bib113) 2017; 12 Zheng (10.1016/j.envexpbot.2022.104824_bib204) 2017; 8 Yang (10.1016/j.envexpbot.2022.104824_bib190) 2009; 2 Tan (10.1016/j.envexpbot.2022.104824_bib167) 2013; 149 Yang (10.1016/j.envexpbot.2022.104824_bib191) 2017; 1 Zdziarski (10.1016/j.envexpbot.2022.104824_bib194) 2018; 58 Schmidt (10.1016/j.envexpbot.2022.104824_bib153) 2020; 21 Shui (10.1016/j.envexpbot.2022.104824_bib158) 2013; 210 Wang (10.1016/j.envexpbot.2022.104824_bib182) 2016; 7 Jansson (10.1016/j.envexpbot.2022.104824_bib84) 2018; 164 Tiwari (10.1016/j.envexpbot.2022.104824_bib173) 2020; 206 McKersie (10.1016/j.envexpbot.2022.104824_bib127) 2000; 122 de Paiva Rolla (10.1016/j.envexpbot.2022.104824_bib143) 2014; 23 Ferment (10.1016/j.envexpbot.2022.104824_bib66) 2017 Li (10.1016/j.envexpbot.2022.104824_bib106) 2018; 177 Jaganathan (10.1016/j.envexpbot.2022.104824_bib82) 2018; 9 Ding (10.1016/j.envexpbot.2022.104824_bib54) 2016; 7 Casacuberta (10.1016/j.envexpbot.2022.104824_bib39) 2015; 33 Roychowdhury (10.1016/j.envexpbot.2022.104824_bib151) 2018 Fasani (10.1016/j.envexpbot.2022.104824_bib64) 2017; 214 Feng (10.1016/j.envexpbot.2022.104824_bib65) 2016; 43 Pan (10.1016/j.envexpbot.2022.104824_bib144) 2017; 58 Lassoued (10.1016/j.envexpbot.2022.104824_bib105) 2018; 9 Parmar (10.1016/j.envexpbot.2022.104824_bib146) 2017; 7 Hasanuzzaman (10.1016/j.envexpbot.2022.104824_bib76) 2020; 9 Jinek (10.1016/j.envexpbot.2022.104824_bib90) 2012; 337 Kaur (10.1016/j.envexpbot.2022.104824_bib95) 2013; 237 Bhandari (10.1016/j.envexpbot.2022.104824_bib25) 2017; 39 Wan (10.1016/j.envexpbot.2022.104824_bib179) 2017; 18 Jacob (10.1016/j.envexpbot.2022.104824_bib81) 2017; 15 Tiwari (10.1016/j.envexpbot.2022.104824_bib174) 2015; 10 Anwar (10.1016/j.envexpbot.2022.104824_bib11) 2020; 21 Goodwin (10.1016/j.envexpbot.2022.104824_bib68) 2009; 53 Wang (10.1016/j.envexpbot.2022.104824_bib184) 2014; 32 Jha (10.1016/j.envexpbot.2022.104824_bib85) 2021; 10 Zhou (10.1016/j.envexpbot.2022.104824_bib205) 2008; 6 Cai (10.1016/j.envexpbot.2022.104824_bib37) 2018; 16 Singh (10.1016/j.envexpbot.2022.104824_bib159) 2015; 59 Nakanishi-Masuno (10.1016/j.envexpbot.2022.104824_bib137) 2018; 20 Peng (10.1016/j.envexpbot.2022.104824_bib147) 2017; 40 Kim (10.1016/j.envexpbot.2022.104824_bib99) 2018; 41 10.1016/j.envexpbo  | 
    
| References_xml | – volume: 10 year: 2015 ident: bib174 article-title: Introgression of the SbASR-1 gene cloned from a halophyte publication-title: PLoS One – volume: 205 start-page: 240 year: 2015 end-page: 254 ident: bib78 article-title: Overexpression of bacterial γ-glutamylcysteine synthetase mediates changes in cadmium influx, allocation and detoxification in poplar publication-title: New Phytol. – volume: 39 start-page: 851 year: 2020 end-page: 860 ident: bib157 article-title: Constitutive expression of a group 3 LEA protein from publication-title: Plant Cell Rep. – volume: 10 start-page: 678 year: 2019 ident: bib89 article-title: H publication-title: Front. Plant Sci. – volume: 5 start-page: 86 year: 2014 ident: bib142 article-title: Response of plants to water stress publication-title: Front. Plant Sci. – volume: 122 start-page: 1427 year: 2000 end-page: 1438 ident: bib127 article-title: Iron Superoxide Dismutase expression in transgenic alfalfa increases winter survival without a detectable increase in photosynthetic oxidative stress tolerance publication-title: Plant Physiol. – volume: 155 start-page: 45 year: 2018 end-page: 55 ident: bib6 article-title: The publication-title: Environ. Exp. Bot. – year: 2017 ident: bib94 article-title: Genome editing in plants: an overview of tools and applications publication-title: Int. J. Agron. – volume: 164 start-page: 378 year: 2018 end-page: 384 ident: bib9 article-title: Genome editing in potato via CRISPR-Cas9 ribonucleoprotein delivery publication-title: Physiol. Plant – volume: 11 start-page: 459 year: 2018 end-page: 471 ident: bib13 article-title: Dissecting the genomic diversification of LATE EMBRYOGENESIS ABUNDANT (LEA) protein gene families in plants publication-title: Genome Biol. Evol. – volume: 11 start-page: 605 year: 2017 end-page: 614 ident: bib160 article-title: Role of miRNAs in Legume crops in response to biotic and abiotic stress publication-title: J. Pure Appl. Microbiol. – volume: 49 start-page: 1791 year: 2009 ident: bib166 article-title: Enhanced tolerance to multiple abiotic stresses in transgenic alfalfa accumulating trehalose publication-title: Crop Sci. – volume: 258 start-page: 122 year: 2017 end-page: 136 ident: bib12 article-title: MicroRNA156 improves drought stress tolerance in alfalfa ( publication-title: Plant Sci. – reference: Parisi, C., Rodriguez-Cerezo, E., 2021. Current and future market applications of new genomic techniques, EUR 30589 EN, Publications Office of the European Union, Luxembourg, ISBN 978–92-76–30206-3, https://doi.org/10.2760/02472, JRC123830. Op. cit. p.5 – volume: 35 start-page: 871 year: 2017 end-page: 882 ident: bib199 article-title: Next-generation insect-resistant plants: RNAi- mediated crop protection publication-title: Trends Biotechnol. – volume: 7 start-page: 1045 year: 2016 ident: bib34 article-title: Geminivirus-mediated genome editing in potato ( publication-title: Front. Plant Sci. – volume: 10 start-page: 1674 year: 2021 ident: bib85 article-title: Non-Coding RNAs in legumes: their emerging roles in regulating biotic/abiotic stress responses and plant growth and development publication-title: Cells – volume: 79 start-page: 1 year: 2016 end-page: 17 ident: bib18 article-title: Group II late embryogenesis abundant (LEA) proteins: structural and functional aspects in plant abiotic stress publication-title: Plant Growth Regul. – volume: 63 start-page: 53 year: 2021 end-page: 78 ident: bib46 article-title: Protein kinases in plant responses to drought, salt, and cold stress publication-title: J. Int. Plant Biol. – volume: 7 start-page: 1333 year: 2016 ident: bib182 article-title: . Efficient inactivation of symbiotic nitrogen fixation related genes in publication-title: Front. Plant Sci. – volume: 59 start-page: 86 year: 2017 end-page: 101 ident: bib88 article-title: WRKY transcription factors in plant responses to stresses publication-title: J. Integr. Plant Biol. – volume: 74 start-page: 1075 year: 2017 end-page: 1093 ident: bib122 article-title: Heritability of targeted gene modifications induced by plant- optimized CRISPR systems publication-title: Cell. Mol. Life Sci. – volume: 472 start-page: 75 year: 2016 end-page: 82 ident: bib198 article-title: Co-transforming publication-title: Biochem. Biophys. Res. Commun. – volume: 7 start-page: 1904 year: 2016 ident: bib119 article-title: DNA Free genetically edited grapevine and apple protoplast using CRISPR/Cas9 ribonucleoproteins publication-title: Front. Plant Sci. – volume: 22 start-page: 7687 year: 2021 ident: bib1 article-title: Tuning beforehand: A foresight on RNA interference (RNAi) and in vitro-derived dsRNAs to enhance crop resilience to biotic and abiotic stresses publication-title: Int. J. Mol. Sci. – volume: 35 start-page: 613 year: 2016 end-page: 627 ident: bib192 article-title: CarNAC4, a NAC-type chickpea transcription factor conferring enhanced drought and salt stress tolerances in publication-title: Plant Cell Rep. – volume: 15 start-page: 405 year: 2017 end-page: 414 ident: bib81 article-title: The heat-shock protein/chaperone network and multiple stress resistance publication-title: Plant Biotechnol. J. – volume: 103 start-page: 1155 year: 1993 end-page: 1163 ident: bib126 article-title: Superoxide Dismutase enhances tolerance of freezing stress in transgenic Alfalfa ( publication-title: Plant Physiol. – volume: 22 start-page: 396 year: 2021 ident: bib15 article-title: First report of CRISPR/Cas9 mediated DNA-free editing of 4CL and RVE7 genes in chickpea protoplasts publication-title: Int. J. Mol. Sci. – volume: 596 start-page: 583 year: 2021 end-page: 589 ident: bib93 article-title: Highly accurate protein structure prediction with AlphaFold publication-title: Nature – volume: 2 start-page: 22 year: 2009 end-page: 31 ident: bib190 article-title: Overexpression of SOS (Salt Overly Sensitive) genes increases salt tolerance in transgenic Arabidopsis publication-title: Mol. Plant – volume: 101 start-page: 15289 year: 2004 end-page: 15294 ident: bib49 article-title: Estimating genome conservation between crop and model legume species publication-title: PNAS – volume: 188 year: 2021 ident: bib187 article-title: Structure characterization and potential role of soybean phospholipases A multigene family in response to multiple abiotic stress uncovered by CRISPR/Cas9 technology publication-title: Environ. Exp. Bot. – volume: 41 start-page: 413 year: 2018 end-page: 422 ident: bib99 article-title: Confirmation of drought tolerance of ectopically expressed publication-title: Mol. Cells – volume: 12 start-page: 107 year: 2012 ident: bib103 article-title: Clustered metallothionein genes are co-regulated in rice and ectopic expression of publication-title: BMC Plant Biol. – volume: 31 start-page: 688 year: 2013 end-page: 691 ident: bib109 article-title: Multiplex and homologous recombination-mediated genome editing in Arabidopsis and publication-title: Nat. Biotechnol. – volume: 189 start-page: 357 year: 2011 end-page: 362 ident: bib202 article-title: Transgenic alfalfa plants co-expressing glutathione S-transferase (GST) and human CYP2E1 show enhanced resistance to mixed contaminates of heavy metals and organic pollutants publication-title: J. Hazard. Mater. – volume: 431 start-page: 356 year: 2004 end-page: 363 ident: bib21 article-title: RNA silencing in plants publication-title: Nature – volume: 10 start-page: 6790 year: 2020 ident: bib38 article-title: Development of new genetic resources for faba bean ( publication-title: Sci. Rep. – volume: 28 start-page: 1411 year: 2006 end-page: 1420 ident: bib47 article-title: Cloning of GmHSFA1 gene and its overexpression leading to enhancement of heat tolerance in transgenic soybean publication-title: Yi Chuan Hered. – volume: 119 start-page: 95 year: 2014 end-page: 106 ident: bib83 article-title: Ectopic overexpression of the aluminium-induced protein gene from publication-title: Plant Cell Tissue Organ Cult. – volume: 7 start-page: 4 year: 2016 ident: bib79 article-title: Overexpression of a stress-responsive NAC transcription factor gene ONAC022 improves drought and salt tolerance in rice publication-title: Front. Plant Sci. – volume: vol 2 start-page: 41 year: 2018 end-page: 65 ident: bib120 article-title: RNA interference: a promising approach for crop improvement publication-title: Biotechnologies of Crop Improvement – volume: 9 start-page: 681 year: 2020 ident: bib76 article-title: Reactive oxygen species and antioxidant defense in plants under abiotic stress: revisiting the crucial role of a universal defense regulator publication-title: Antioxidants – volume: 427 start-page: 731 year: 2012 end-page: 736 ident: bib115 article-title: Overexpression of soybean GmCBL1 enhances abiotic stress tolerance and promotes hypocotyl elongation in Arabidopsis publication-title: Biochem. Biophys. Res. Commun. – volume: 217 start-page: 90 year: 2016 end-page: 97 ident: bib55 article-title: Efficient targeted mutagenesis in soybean by TALENs and CRISPR/Cas9 publication-title: J. Biotechnol. – volume: 74 start-page: 37 year: 2013 end-page: 100 ident: bib14 article-title: Gene transfer in legumes publication-title: Prog. Bot. – volume: 16 start-page: 176 year: 2018 end-page: 185 ident: bib37 article-title: CRISPR/Cas9-mediated targeted mutagenesis of GmFT2a delays flowering time in soybean publication-title: Plant Biotechnol. J. – volume: 70 start-page: 220 year: 2012 end-page: 230 ident: bib52 article-title: Dual involvement of a publication-title: Plant J. – volume: 40 start-page: 1368 year: 2017 end-page: 1378 ident: bib147 article-title: Enhanced metal tolerance correlates with het-erotypic variation in SpMTL, a metallothionein-like protein from the hyperaccumulator publication-title: Plant Cell Environ. – volume: 67 start-page: 2119 year: 2020 end-page: 2127 ident: bib155 article-title: Genetic manipulation of pea ( publication-title: Genet. Res. Crop Evol. – volume: 15 year: 2016 ident: bib180 article-title: Cloning and characterization of a novel betaine aldehyde dehydrogenase gene from publication-title: Genet. Mol. Res. – year: 2017 ident: bib66 article-title: Transgenic crops – hazards and uncertainties: More than 750 studies disregarded by the GMOs regulatory bodies publication-title: Bras.: Minist. Agrar. Dev. – volume: 14 start-page: 9643 year: 2013 end-page: 9684 ident: bib75 article-title: Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants publication-title: Int. J. Mol. Sci. – volume: 34 start-page: 199 year: 2015 end-page: 210 ident: bib7 article-title: DREB1A overexpression in transgenic chickpea alters key traits influencing plant water budget across water regimes publication-title: Plant Cell Rep. – volume: 166 year: 2019 ident: bib16 article-title: Overexpression of tobacco UBQ2 increases Cd tolerance by decreasing Cd accumulation and oxidative stress in tobacco and Arabidopsis publication-title: Environ. Exp. Bot. – volume: 533 start-page: 420 year: 2016 end-page: 424 ident: bib101 article-title: Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage publication-title: Nature – start-page: 345 year: 2016 end-page: 396 ident: bib185 article-title: Transgenic approaches for abiotic stress tolerance in crop plants publication-title: Advances in Plant Breeding Strategies: Agronomic, Abiotic and Biotic Stress Traits – volume: 51 start-page: 865 year: 2021 end-page: 876 ident: bib207 article-title: The genome of cultivated peanut provides insight into legume karyotypes, polyploid evolution and crop domestication publication-title: Nat. Genet. – volume: 36 start-page: 556 year: 2013 end-page: 565 ident: bib59 article-title: Introduction of the rd29A: AtDREB2A CA gene into soybean ( publication-title: Genet. Mol. Biol. – volume: 8 start-page: 13 year: 2017 end-page: 34 ident: bib51 article-title: New GMO regulations for old: determining a new future for EU crop biotechnology publication-title: GM Crop. Food – volume: 166 start-page: 1292 year: 2014 end-page: 1297 ident: bib32 article-title: Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR- associated9 system publication-title: Plant Physiol. – volume: 22 start-page: 949 year: 2021 ident: bib186 article-title: Defining the Cell Wall, Cell Cycle and Chromatin Landmarks in the Responses of publication-title: Int. J. Mol. Sci. – volume: 7 start-page: 1137 year: 2016 ident: bib71 article-title: Barley genes as tools to confer abiotic stress tolerance in crops publication-title: Front. Plant Sci. – volume: 35 start-page: 535 year: 2015 end-page: 552 ident: bib141 article-title: Agroecological impact of an in vitro biotechnology approach of embryo development and seed filling in legumes publication-title: Agron. Sustain. Dev. – volume: 46 start-page: 707 year: 2014 end-page: 713 ident: bib154 article-title: A reference genome for common bean and genome-wide analysis of dual domestications publication-title: Nat. Genet. – volume: 36 start-page: 399 year: 2017 end-page: 406 ident: bib172 article-title: Efficient CRISPR/Cas9-based gene knockout in watermelon publication-title: Plant Cell Rep. – volume: 10 start-page: 105 year: 2016 end-page: 116 ident: bib117 article-title: Transgenic tomato plants expressing strawberry D-galacturonic acid reductase gene display enhanced tolerance to abiotic stresses publication-title: Plant Biotechnol. Rep. – volume: 23 start-page: 75 year: 2014 end-page: 87 ident: bib143 article-title: Phenotyping soybean plants transformed with rd29A:AtDREB1A for drought tolerance in the greenhouse and field publication-title: Transgenic Res. – volume: 3 start-page: 5 year: 2017 ident: bib17 article-title: Transformation of mungbean plants for salt and drought tolerance by introducing a gene for an osmoprotectant glycine betaine publication-title: J. Plant Stress Physiol. – volume: 18 start-page: 243 year: 2018 ident: bib162 article-title: WRKY transcription factors in legumes publication-title: BMC Plant Biol. – volume: 149 start-page: 67 year: 2013 end-page: 78 ident: bib208 article-title: A cold responsive galactinol synthase gene from publication-title: Physiol. Plant – volume: 131 start-page: 892 year: 2003 end-page: 899 ident: bib161 article-title: Recent advances in legume transformation publication-title: Plant Physiol. – volume: 135 start-page: 545 year: 2018 end-page: 558 ident: bib195 article-title: Overexpression of two cold-responsive ATAF-like NAC transcription factors from fine-stem stylo ( publication-title: Plant Cell Tissue Organ Cult. – volume: 162 start-page: 2 year: 2018 end-page: 12 ident: bib193 article-title: Plant adaptations to the combination of drought and high temperatures publication-title: Physiol. Plant – volume: 11 year: 2021 ident: bib53 article-title: Structural conservation of WEE1 and its role in cell cycle regulation in plants publication-title: Sci. Rep. – reference: Sadiq, M., Akram, N.A., 2018. Field performance of transgenic drought-tolerant crop plants. In: Wani, S.H., (Ed.) Biochemical, physiological and molecular avenues for combating abiotic stress tolerance in plants, pp. 83–102. https://doi.org/10.1016/B978–0-12–813066-7.00006–1. – volume: 32 start-page: 557 year: 2010 end-page: 564 ident: bib139 article-title: Overexpression of a soybean O-acetylserine (thiol) lyase-encoding gene GmOASTL4 in tobacco increases cysteine levels and enhances tolerance to cadmium stress publication-title: Biotechnol. Lett. – volume: 12 year: 2021 ident: bib61 article-title: Molecular characterisation of soybean osmotins and their involvement in drought stress response publication-title: Front. Genet. – volume: 16 start-page: 48 year: 2015 end-page: 60 ident: bib200 article-title: A publication-title: Mol. Plant Pathol. – volume: 119 start-page: 1 year: 2017 end-page: 11 ident: bib138 article-title: Evaluating physiological responses of plants to salinity stress publication-title: Ann. Bot. – volume: 3 start-page: 668 year: 2015 end-page: 673 ident: bib133 article-title: Salinity tolerance of crops–what is the cost? publication-title: New Phytol. – volume: 26 start-page: 247 year: 2017 end-page: 261 ident: bib96 article-title: A novel heavy metal ATPase peptide from publication-title: Transgenic Res. – volume: 247 start-page: 1043 year: 2018 end-page: 1050 ident: bib67 article-title: Gene editing by CRISPR/Cas9 in the obligatory outcrossing publication-title: Planta – volume: Volume 2 start-page: 261 year: 2017 end-page: 275 ident: bib91 article-title: Trehalose: metabolism and role in stress signaling in plants publication-title: Stress Signaling in Plants: Genomics and Proteomics Perspective – volume: 7 start-page: 12754 year: 2016 end-page: 12771 ident: bib10 article-title: Mechanism of stress signal transduction and involvement of stress inducible transcription factors and genes in response to abiotic stresses in plant publication-title: Int. J. Recent Sci. Res. – volume: 6 start-page: 486 year: 2008 end-page: 503 ident: bib205 article-title: Soybean WRKY-type transcription factor genes, GmWRKY13, GmWRKY21 and GmWRKY54, confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants publication-title: Plant Biotechnol. J. – volume: 38 start-page: 437 year: 2019 end-page: 441 ident: bib72 article-title: CRISPR/Cas precision: do we need to worry about off-targeting in plants? publication-title: Plant Cell Rep. – volume: 37 start-page: 613 year: 2019 end-page: 620 ident: bib124 article-title: Worldwide CRISPR patent landscape shows strong geographical biases publication-title: Nat. Biotechnol. – volume: 11 start-page: 747 year: 2013 end-page: 758 ident: bib112 article-title: Expression of an Arabidopsis molybdenum cofactor sulphurase gene in soybean enhances drought tolerance and increases yield under field conditions publication-title: Plant Biotechnol. J. – volume: 21 year: 2020 ident: bib153 article-title: The evolving landscape around genome editing in agriculture publication-title: EMBO Rep. – volume: 9 start-page: 559 year: 2018 ident: bib111 article-title: Lycopene is enriched in tomato fruit by CRISPR/Cas9-mediated multiplex genome editing publication-title: Front. Plant Sci. – reference: . – start-page: 157 year: 2017 end-page: 161 ident: bib165 article-title: Gene editing technologies- ZFNs, TALENs, and CRISPR/Cas9 publication-title: Encyclopedia of applied plant sciences – volume: 6 start-page: 773 year: 2015 ident: bib201 article-title: Genome-wide analysis and expression profiling under heat and drought treatments of HSP70 gene family in soybean ( publication-title: Front. Plant Sci. – volume: 43 start-page: 37 year: 2016 end-page: 43 ident: bib65 article-title: Efficient targeted genome modification in maize using CRISPR/Cas9 system publication-title: J. Genet. Genom. – volume: 7 start-page: 44304 year: 2017 ident: bib45 article-title: Targeted mutagenesis in cotton ( publication-title: Sci. Rep. – volume: 214 start-page: 1614 year: 2017 end-page: 1630 ident: bib64 article-title: The MTP 1 promoters from publication-title: New Phytol. – volume: 36 start-page: 6 year: 2018 end-page: 7 ident: bib178 article-title: With a free pass, CRISPR-edited plants reach market in record time publication-title: Nat. Biotechnol. – volume: 41 start-page: 2021 year: 2018 end-page: 2032 ident: bib209 article-title: A cold responsive ethylene responsive factor from publication-title: Plant Cell Environ. – volume: 256 year: 2021 ident: bib140 article-title: Calmodulin binding transcription activators: an interplay between calcium signalling and plant stress tolerance publication-title: J. Plant Physiol. – volume: 18 start-page: 553 year: 2017 end-page: 556 ident: bib179 article-title: Salinity tolerance mechanism of osmotin and osmotin-like proteins: a promising candidate for enhancing plant salt tolerance publication-title: Curr. Genom. – volume: 625 start-page: 647 year: 2018 end-page: 656 ident: bib30 article-title: Landscape evolution and agricultural land salinization in coastal area: a conceptual model publication-title: Sci. Total Environ. – volume: 123 start-page: 149 year: 2018 end-page: 159 ident: bib176 article-title: Osmotin: a plant defense tool against biotic and abiotic stresses publication-title: Plant Physiol. Biochem. – volume: 65 start-page: 541 year: 2018 end-page: 552 ident: bib107 article-title: The soybean publication-title: Russ. J. Plant Physiol. – volume: 95 start-page: 26 year: 2015 end-page: 34 ident: bib110 article-title: The overexpression of a chrysanthemum WRKY transcription factor enhances aphid resistance publication-title: Plant Physiol. Biochem. – volume: 21 start-page: 2695 year: 2020 ident: bib11 article-title: Transgenic breeding approaches for improving abiotic stress tolerance: Recent progress and future perspectives publication-title: Int. J. Mol. Sci. – volume: 206 year: 2020 ident: bib173 article-title: Over-expression of rice R1-type MYB transcription factor confers different abiotic stress tolerance in transgenic Arabidopsis publication-title: Ecotoxicol. Environ. Saf. – volume: 11 start-page: 294 year: 2020 ident: bib197 article-title: Efficient generation of CRISPR/Cas9-mediated homozygous/biallelic publication-title: Front. Plant Sci. – volume: Volume II start-page: 579 year: 2015 end-page: 609 ident: bib123 article-title: Genetic engineering strategies for abiotic stress tolerance in plants publication-title: Plant Biology and Biotechnology – volume: 49 start-page: 311 year: 2018 end-page: 327 ident: bib171 article-title: Agrobacterium-mediated transformation of a publication-title: New – volume: 33 start-page: 327 year: 2014 end-page: 340 ident: bib27 article-title: Transgenic peanut overexpressing the DREB1A transcription factor has higher yields under drought stress publication-title: Mol. Breed. – volume: 68 start-page: 2013 year: 2017 end-page: 2026 ident: bib163 article-title: The legume miR1514a modulates a NAC transcription factor transcript to trigger phasiRNA formation in response to drought publication-title: J. Exp. Bot. – volume: 35 start-page: 438 year: 2017 end-page: 440 ident: bib210 article-title: Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion publication-title: Nat. Biotechnol. – volume: 33 start-page: 41 year: 2015 end-page: 52 ident: bib31 article-title: The CRISPR/Cas9 system for plant genome editing and beyond publication-title: Biotechnol. Adv. – volume: 7 start-page: 303 year: 2016 ident: bib131 article-title: Potential biotechnological strategies for the cleanup of heavy metals and metalloids publication-title: Front. Plant Sci. – volume: 36 start-page: 371 year: 2017 end-page: 374 ident: bib128 article-title: Targeted mutagenesis by CRISPR/Cas9 system in the model legume publication-title: Plant Cell Rep. – volume: 16 start-page: 1125 year: 2018 end-page: 1137 ident: bib50 article-title: CRISPR/cas9 and TALENS generate heritable mutations for genes involved in small RNA processing of publication-title: Plant Biotechnol. J. – volume: 59 start-page: 93 year: 2019 end-page: 102 ident: bib135 article-title: Applications of multiplex genome editing in higher plants publication-title: Curr. Opin. Biotechnol. – volume: 161 start-page: 98 year: 2019 end-page: 106 ident: bib23 article-title: Reactive oxygen species and heavy metal stress in plants: impact on the cell wall and secondary metabolism publication-title: Environ. Exp. Bot. – volume: 7 start-page: 703 year: 2016 ident: bib54 article-title: Recent advances in genome editing using CRISPR/Cas9 publication-title: Front. Plant Sci. – volume: 9 start-page: 13 year: 2019 ident: bib5 article-title: Evaluating soybean cultivars for low- and high-temperature tolerance during the seedling growth stage publication-title: Agronomy – volume: vol 1822 start-page: 291 year: 2018 end-page: 314 ident: bib57 article-title: Toward unravelling the genetic determinism of the acquisition of salt and osmotic stress tolerance through in vitro selection in publication-title: Functional Genomics in Medicago truncatula. Methods in Molecular Biology – volume: 9 year: 2014 ident: bib170 article-title: Expression of a vacuole-localized BURP-domain protein from soybean (SALI3-2) enhances tolerance to cadmium and copper stresses publication-title: PLoS One – volume: 149 start-page: 310 year: 2013 end-page: 320 ident: bib167 article-title: Nitric oxide mediates cold- and dehydration-induced expression of a novel publication-title: Physiol. Plant – volume: 170 start-page: 26 year: 2016 end-page: 32 ident: bib168 article-title: Rj4, a gene controlling nodulation specificity in soybeans, encodes a thaumatin-like protein but not the one previously reported publication-title: Plant Physiol. – volume: 9 start-page: 1324 year: 2018 ident: bib156 article-title: New plant breeding techniques under food security pressure and lobbying publication-title: Front. Plant Sci. – volume: 9 year: 2014 ident: bib203 article-title: Transcriptional regulation of cell cycle genes in response to abiotic stresses correlates with dynamic changes in histone modifications in maize publication-title: PLoS One – volume: 9 start-page: 1724 year: 2018 ident: bib22 article-title: Beyond risk considerations: where and how can a debate about non-safety related issues of genome editing in agriculture take place? publication-title: Front. Plant Sci. – volume: 53 start-page: 85 year: 2009 end-page: 99 ident: bib68 article-title: Microarray analysis of Arabidopsis genome response to aluminum stress publication-title: Biol. Plant – volume: 20 start-page: 2471 year: 2019 ident: bib86 article-title: Genome editing in cowpea publication-title: Int. J. Mol. Sci. – volume: 8 start-page: 2135 year: 2017 ident: bib87 article-title: Editing citrus genome via SaCas9/sgRNA system publication-title: Front. Plant Sci. – volume: 233 start-page: 1265 year: 2011 end-page: 1276 ident: bib3 article-title: Overexpression of HARDY, an AP2/ERF gene from publication-title: Planta – volume: 17 start-page: 1140 year: 2016 end-page: 1153 ident: bib40 article-title: Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology publication-title: Mol. Plant Pathol. – volume: 7 start-page: 1029 year: 2016 ident: bib92 article-title: Transcription factors and plants response to drought stress: current understanding and future directions publication-title: Front. Plant Sci. – volume: 71 start-page: 22 year: 2013 end-page: 30 ident: bib169 article-title: Overexpression of GsZFP1 enhances salt and drought tolerance in transgenic alfalfa ( publication-title: Plant Physiol. Biochem. – volume: 9 start-page: 985 year: 2018 ident: bib82 article-title: CRISPR for Crop improvement: an updated review publication-title: Front. Plant Sci. – volume: 81 start-page: 505 year: 2015 end-page: 518 ident: bib97 article-title: Soybean DREB 1/CBF-type transcription factors function in heat and drought as well as cold stress-responsive gene expression publication-title: Plant J. – start-page: 401 year: 2018 end-page: 415 ident: bib151 article-title: Arsenic in rice: an overview on stress implications, tolerance and mitigation strategies publication-title: Plants Under Metal and Metalloid Stress – volume: 4 start-page: 697 year: 2011 end-page: 712 ident: bib188 article-title: Overexpression of TaNAC69 leads to enhanced transcript levels of stress up-regulated genes and dehydration tolerance in bread wheat publication-title: Mol. Plant – volume: 18 start-page: 31 year: 2018 end-page: 41 ident: bib98 article-title: CRISPR/Cas9 genome editing in wheat publication-title: Funct. Integr. Genom. – volume: 596 start-page: 487 year: 2021 end-page: 488 ident: bib4 article-title: Protein-structure prediction revolutionized publication-title: Nature – volume: 7 start-page: 239 year: 2017 ident: bib146 article-title: Genetic engineering strategies for biotic and abiotic stress tolerance and quality enhancement in horticultural crops: a comprehensive review publication-title: 3Biotech – volume: 258 start-page: 122 year: 2017 end-page: 136 ident: bib132 article-title: MicroRNA156 improves drought stress tolerance in alfalfa ( publication-title: Plant Sci. – volume: 58 start-page: 1268 year: 2017 end-page: 1278 ident: bib144 article-title: Soybean NIMA-Related Kinase1 promotes plant growth and improves salt and cold tolerance publication-title: Plant Cell Physiol. – start-page: 1 year: 2021 end-page: 16 ident: bib28 article-title: CRISPR/Cas9 gene editing in legume crops: opportunities and challenges publication-title: Legume Sci. – volume: 31 start-page: 240 year: 2013 end-page: 246 ident: bib177 article-title: Draft genome sequence of chickpea ( publication-title: Nat. Biotechnol. – volume: 31 start-page: 719 year: 2013 end-page: 730 ident: bib19 article-title: Overexpression of the ABA-dependent AREB1 transcription factor from publication-title: Plant Mol. Biol. Rep. – volume: 1 start-page: 6 year: 2017 ident: bib191 article-title: The application of CRISPR/Cas9 system in Gene Knock-out of publication-title: Mol. Plant Breed. – volume: 10 start-page: 1446 year: 2019 ident: bib74 article-title: Creation of early flowering germplasm of soybean by CRISPR/Cas9 technology publication-title: Front. Plant Sci. – volume: 50 start-page: 1132 year: 2018 end-page: 1139 ident: bib149 article-title: CRISPR-Cas9 genome editing in human cells occurs via the Fanconi anemia pathway publication-title: Nat. Genet. – volume: 337 start-page: 816 year: 2012 end-page: 821 ident: bib90 article-title: A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity publication-title: Science – volume: 143 start-page: 593 year: 2020 end-page: 608 ident: bib150 article-title: Overexpression of publication-title: Plant Cell Tissue Organ Cult. – volume: 164 start-page: 396 year: 2018 end-page: 405 ident: bib84 article-title: Gene-edited plants on the plate: the “CRISPR cabbage story” publication-title: Physiol. Plant – volume: 21 year: 2020 ident: bib26 article-title: Genome-wide identification of drought-responsive miRNAs in grass pea ( publication-title: Plant Gene – start-page: 131 year: 2016 end-page: 154 ident: bib69 article-title: Regulation of abiotic and biotic stress responses by plant hormones publication-title: Plant Pathogen Resistance Biotechnology – volume: 9 year: 2014 ident: bib148 article-title: Simultaneous expression of abiotic stress responsive transcription factors, AtDREB2A, AtHB7 and AtABF3 improves salinity and drought tolerance in peanut ( publication-title: PLoS One – volume: 39 start-page: 68 year: 2017 ident: bib25 article-title: Temperature sensitivity of food legumes: a physiological insight publication-title: Acta Physiol. Plant – volume: 98 start-page: 767 year: 2019 end-page: 782 ident: bib118 article-title: The genome of cowpea ( publication-title: Plant J. – volume: 12 year: 2017 ident: bib136 article-title: CRISPR/Cas9-mediated targeted mutagenesis in grape publication-title: PLoS One – volume: 60 start-page: 199 year: 2010 end-page: 211 ident: bib42 article-title: DREB1C from publication-title: Plant Growth Regul. – volume: 40 start-page: 462 year: 2017 end-page: 472 ident: bib62 article-title: Nitric oxide function in plant abiotic stress publication-title: Plant Cell Environ. – volume: 6 start-page: 84 year: 2015 ident: bib175 article-title: Recent advances in the dissection of drought-stress regulatory networks and strategies for development of drought-tolerant transgenic rice plants publication-title: Front. Plant Sci. – volume: 41 start-page: 63 year: 2014 end-page: 68 ident: bib116 article-title: Targeted mutagenesis in publication-title: J. Genet. Genom. – volume: 257 start-page: 35 year: 2017 end-page: 46 ident: bib35 article-title: The sunflower transcription factor HaHB11 confers tolerance to water deficit and salinity to transgenic Arabidopsis and alfalfa plants publication-title: J. Biotechnol. – volume: 36 start-page: 291 year: 2017 end-page: 309 ident: bib196 article-title: Genome editing-principles and applications for functional genomics research and crop improvement publication-title: Crit. Rev. Plant Sci. – volume: 8 start-page: 2125 year: 2017 ident: bib204 article-title: Over-expression of Arabidopsis publication-title: Front. Plant Sci. – volume: 127 start-page: 25 year: 2018 end-page: 31 ident: bib48 article-title: , an SKP1 homologue in soybean, is involved in the tolerance to salt and drought publication-title: Plant Physiol. Biochem. – volume: 8 start-page: 1513 year: 2018 end-page: 1521 ident: bib24 article-title: High-resolution analysis of the efficiency, heritability, and editing outcomes of CRISPR-Cas9 -induced modifications of NCED4 in lettuce ( publication-title: G3 – volume: 21 start-page: 31 year: 2016 end-page: 42 ident: bib56 article-title: Landrace germplasm for improving yield and abiotic stress adaptation publication-title: Trends Plant Sci. – volume: 169 start-page: 960 year: 2015 end-page: 970 ident: bib114 article-title: Cas9-Guide RNA directed genome editing in soybean publication-title: Plant Physiol. – volume: 20 start-page: 1427 year: 2018 end-page: 1437 ident: bib137 article-title: The publication-title: Int. J. Phytoremediat. – volume: 167 start-page: 313 year: 2016 end-page: 324 ident: bib206 article-title: Abiotic stress signaling and responses in plants publication-title: Cell – volume: 12 year: 2017 ident: bib113 article-title: Overexpression of publication-title: PLoS One – volume: 261 start-page: 28 year: 2017 end-page: 37 ident: bib70 article-title: Melatonin confers plant tolerance against cadmium stress via the decrease of cadmium accumulation and reestablishment of microRNA-mediated redox homeostasis publication-title: Plant Sci. – volume: vol. 2200 start-page: 121 year: 2021 end-page: 146 ident: bib129 article-title: CRISPR/Cas9-based genome editing toolbox for publication-title: Arabidopsis Protocols, Methods in Molecular Biology – volume: 7 start-page: 67 year: 2016 ident: bib181 article-title: Recent advances in utilizing transcription factors to improve plant abiotic stress tolerance by transgenic technology publication-title: Front. Plant Sci. – volume: 211 year: 2021 ident: bib73 article-title: Cadmium toxicity in plants: Impacts and remediation strategies publication-title: Ecotoxicol. Environ. Saf. – volume: 210 start-page: 25 year: 2013 end-page: 35 ident: bib158 article-title: MicroRNA prediction and its function in regulating drought-related genes in cowpea publication-title: Plant Sci. – volume: 165 start-page: 830 year: 2019 end-page: 842 ident: bib125 article-title: Alfalfa response to heat stress is modulated by microRNA156 publication-title: Physiol. Plant – volume: 37 start-page: 575 year: 2018 end-page: 586 ident: bib100 article-title: Efficient CRISPR/Cas9-based genome editing in carrot cells publication-title: Plant Cell Rep. – volume: 10 year: 2015 ident: bib36 article-title: CRISPR/Cas9-mediated genome editing in soybean hairy roots publication-title: PLoS One – volume: 51 start-page: 1411 year: 2019 end-page: 1422 ident: bib102 article-title: A reference genome for pea provides insight into legume genome evolution publication-title: Nat. Genet. – volume: 38 start-page: 503 year: 2019 end-page: 510 ident: bib29 article-title: Development of methods for effective identification of CRISPR/Cas9-induced indels in rice publication-title: Plant Cell Rep. – volume: 227 start-page: 148 year: 2004 ident: bib130 article-title: Characterization of altered metabolism in transgenic alfalfa overexpressing malate dehydrogenase to confer aluminum tolerance publication-title: Am. Chem. Soc. – volume: 76 start-page: 167 year: 2010 end-page: 179 ident: bib189 article-title: Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants publication-title: S. Afr. J. Bot. – volume: 36 start-page: 117 year: 2017 end-page: 128 ident: bib8 article-title: Efficient targeted multiallelic mutagenesis intetraploid potato ( publication-title: Plant Cell Rep. – volume: 36 start-page: 36 year: 2016 ident: bib33 article-title: Enhanced salinity stress tolerance in transgenic chilli pepper ( publication-title: Mol. Breed. – volume: 8 start-page: 171 year: 2021 end-page: 179 ident: bib121 article-title: Role of Glycine max ABSCISIC ACID INSENSITIVE 3 (GmABI3) in lipid biosynthesis and stress tolerance in soybean publication-title: Funct. Plant Biol. – volume: 53 start-page: 12 year: 2017 end-page: 21 ident: bib164 article-title: Enhancement of sheath blight tolerance in transgenic rice by combined expression of tobacco osmotin (ap24) and rice chitinase (chi11) genes publication-title: Vitr. Cell. Dev. Biol. Plant – volume: 59 start-page: 413 year: 2015 end-page: 428 ident: bib159 article-title: Embracing new-generation ‘omics’ tools to improve drought tolerance in cereal and food-legume crops publication-title: Biol. Plant – volume: 132 start-page: 1 year: 2018 end-page: 25 ident: bib60 article-title: Potential use of the DREB/ERF, MYB, NAC and WRKY transcription factors to improve abiotic and biotic stress in transgenic plants publication-title: Plant Cell Tissue Organ Cult. – volume: 28 start-page: 272 year: 2016 end-page: 285 ident: bib63 article-title: RNAi in plants: an Argonaute-centered view publication-title: Plant Cell – volume: 285 start-page: 26 year: 2019 end-page: 33 ident: bib80 article-title: GmHsp90A2 is involved in soybean heat stress as a positive regulator publication-title: Plant Sci. – volume: 34 start-page: 1 year: 2011 end-page: 20 ident: bib44 article-title: Glycinebetaine protects plants against abiotic stress: Mechanisms and biotechnological applications publication-title: Plant Cell Environ. – volume: 17 start-page: 1959 year: 2018 end-page: 1971 ident: bib183 article-title: Overexpression of GmBIN2, a soybean glycogen synthase kinase 3 gene, enhances tolerance to salt and drought in transgenic Arabidopsis and soybean hairy roots publication-title: J. Integr. Agric. – volume: 131 start-page: 31 year: 2018 end-page: 36 ident: bib2 article-title: Genome editing using CRISPR/Cas9-targeted mutagenesis: an opportunity for yield improvements of crop plants grown under environmental stresses publication-title: Plant. Physiol. Biochem. – volume: 33 start-page: 145 year: 2015 end-page: 147 ident: bib39 article-title: Biotechnological uses of RNAi in plants: risk assessment considerations publication-title: Trends Biotechnol. – volume: 85 start-page: 31 year: 2014 end-page: 40 ident: bib108 article-title: Overexpression of publication-title: Plant Physiol. Biochem. – volume: 129 start-page: 263 year: 2016 end-page: 273 ident: bib41 article-title: VrDREB2A, a DREB-binding transcription factor from publication-title: J. Plant Res. – year: 2020 ident: bib104 article-title: TIP aquaporins in plants: role in abiotic stress tolerance publication-title: biotic Stress in Plants – volume: 32 start-page: 947 year: 2014 end-page: 951 ident: bib184 article-title: Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew publication-title: Nat. Biotechnol. – volume: 19 start-page: 1276 year: 2020 ident: bib43 article-title: SgRVE6, a LHY-CCA1-Like transcription factor from Fine-Stem tylo, upregulates NB-LRR gene expression and enhances cold tolerance in tobacco publication-title: Front. Plant Sci. – volume: 9 start-page: 1291 year: 2018 ident: bib105 article-title: Regulatory uncertainty around new breeding techniques publication-title: Front. Plant Sci. – reference: Haut Conseil des Biotechnologies, 2018. Avis du Comité scientifique sur les Nouvelles techniques d’obtention de plantes [New plant breeding techniques–NPBT], accessible at – volume: 11 start-page: 127 year: 2011 ident: bib20 article-title: Identification and comparative analysis of drought-associated microRNAs in two cowpea genotypes publication-title: BMC Plant Biol. – volume: 177 start-page: 1425 year: 2018 end-page: 1438 ident: bib106 article-title: Editing of an alpha-kafirin gene family increases, digestibility and protein quality in sorghum publication-title: Plant Physiol. – volume: 58 start-page: 1155 year: 2018 end-page: 1165 ident: bib194 article-title: Key soybean maturity groups to increase grain yield in Brazil publication-title: Crop Sci. – year: 2015 ident: bib58 article-title: Heavy metal stress and some mechanisms of plant defense response publication-title: Sci. World J. – volume: 237 start-page: 321 year: 2013 end-page: 335 ident: bib95 article-title: Ectopic expression of the ABA-inducible dehydration-responsive chickpea L-myo-inositol 1-phosphate synthase 2 (CaMIPS2) in Arabidopsis enhances tolerance to salinity and dehydration stress publication-title: Planta – volume: 20 start-page: 2541 year: 2019 ident: bib134 article-title: Research progress and perspective on drought stress in legumes: a review publication-title: Int. J. Mol. Sci. – volume: 166 year: 2019 ident: 10.1016/j.envexpbot.2022.104824_bib16 article-title: Overexpression of tobacco UBQ2 increases Cd tolerance by decreasing Cd accumulation and oxidative stress in tobacco and Arabidopsis publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2019.103805 – volume: 3 start-page: 5 year: 2017 ident: 10.1016/j.envexpbot.2022.104824_bib17 article-title: Transformation of mungbean plants for salt and drought tolerance by introducing a gene for an osmoprotectant glycine betaine publication-title: J. Plant Stress Physiol. doi: 10.19071/jpsp.2017.v3.3148 – ident: 10.1016/j.envexpbot.2022.104824_bib152 doi: 10.1016/B978-0-12-813066-7.00006-1 – ident: 10.1016/j.envexpbot.2022.104824_bib77 – volume: 32 start-page: 557 year: 2010 ident: 10.1016/j.envexpbot.2022.104824_bib139 article-title: Overexpression of a soybean O-acetylserine (thiol) lyase-encoding gene GmOASTL4 in tobacco increases cysteine levels and enhances tolerance to cadmium stress publication-title: Biotechnol. Lett. doi: 10.1007/s10529-009-0178-z – volume: 81 start-page: 505 year: 2015 ident: 10.1016/j.envexpbot.2022.104824_bib97 article-title: Soybean DREB 1/CBF-type transcription factors function in heat and drought as well as cold stress-responsive gene expression publication-title: Plant J. doi: 10.1111/tpj.12746 – volume: 261 start-page: 28 year: 2017 ident: 10.1016/j.envexpbot.2022.104824_bib70 article-title: Melatonin confers plant tolerance against cadmium stress via the decrease of cadmium accumulation and reestablishment of microRNA-mediated redox homeostasis publication-title: Plant Sci. doi: 10.1016/j.plantsci.2017.05.001 – volume: 33 start-page: 145 year: 2015 ident: 10.1016/j.envexpbot.2022.104824_bib39 article-title: Biotechnological uses of RNAi in plants: risk assessment considerations publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2014.12.003 – volume: 6 start-page: 486 issue: 5 year: 2008 ident: 10.1016/j.envexpbot.2022.104824_bib205 article-title: Soybean WRKY-type transcription factor genes, GmWRKY13, GmWRKY21 and GmWRKY54, confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants publication-title: Plant Biotechnol. J. doi: 10.1111/j.1467-7652.2008.00336.x – volume: 8 start-page: 2125 year: 2017 ident: 10.1016/j.envexpbot.2022.104824_bib204 article-title: Over-expression of Arabidopsis EDT1 gene confers drought tolerance in alfalfa (Medicago sativa L.) publication-title: Front. Plant Sci. doi: 10.3389/fpls.2017.02125 – volume: 26 start-page: 247 year: 2017 ident: 10.1016/j.envexpbot.2022.104824_bib96 article-title: A novel heavy metal ATPase peptide from Prosopis juliflora is involved in metal uptake in yeast and tobacco publication-title: Transgenic Res. doi: 10.1007/s11248-016-0002-1 – volume: 256 year: 2021 ident: 10.1016/j.envexpbot.2022.104824_bib140 article-title: Calmodulin binding transcription activators: an interplay between calcium signalling and plant stress tolerance publication-title: J. Plant Physiol. doi: 10.1016/j.jplph.2020.153327 – volume: 625 start-page: 647 year: 2018 ident: 10.1016/j.envexpbot.2022.104824_bib30 article-title: Landscape evolution and agricultural land salinization in coastal area: a conceptual model publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.12.083 – volume: 533 start-page: 420 year: 2016 ident: 10.1016/j.envexpbot.2022.104824_bib101 article-title: Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage publication-title: Nature doi: 10.1038/nature17946 – volume: 43 start-page: 37 year: 2016 ident: 10.1016/j.envexpbot.2022.104824_bib65 article-title: Efficient targeted genome modification in maize using CRISPR/Cas9 system publication-title: J. Genet. Genom. doi: 10.1016/j.jgg.2015.10.002 – volume: 53 start-page: 85 issue: 1 year: 2009 ident: 10.1016/j.envexpbot.2022.104824_bib68 article-title: Microarray analysis of Arabidopsis genome response to aluminum stress publication-title: Biol. Plant doi: 10.1007/s10535-009-0012-4 – start-page: 1 year: 2021 ident: 10.1016/j.envexpbot.2022.104824_bib28 article-title: CRISPR/Cas9 gene editing in legume crops: opportunities and challenges publication-title: Legume Sci. – volume: 33 start-page: 327 year: 2014 ident: 10.1016/j.envexpbot.2022.104824_bib27 article-title: Transgenic peanut overexpressing the DREB1A transcription factor has higher yields under drought stress publication-title: Mol. Breed. doi: 10.1007/s11032-013-9952-7 – start-page: 131 year: 2016 ident: 10.1016/j.envexpbot.2022.104824_bib69 article-title: Regulation of abiotic and biotic stress responses by plant hormones – volume: 177 start-page: 1425 year: 2018 ident: 10.1016/j.envexpbot.2022.104824_bib106 article-title: Editing of an alpha-kafirin gene family increases, digestibility and protein quality in sorghum publication-title: Plant Physiol. doi: 10.1104/pp.18.00200 – volume: 12 start-page: 107 year: 2012 ident: 10.1016/j.envexpbot.2022.104824_bib103 article-title: Clustered metallothionein genes are co-regulated in rice and ectopic expression of OsMT1e-Pconfers multiple abiotic stress tolerance in tobacco via ROS scavenging publication-title: BMC Plant Biol. doi: 10.1186/1471-2229-12-107 – volume: 40 start-page: 1368 year: 2017 ident: 10.1016/j.envexpbot.2022.104824_bib147 article-title: Enhanced metal tolerance correlates with het-erotypic variation in SpMTL, a metallothionein-like protein from the hyperaccumulator Sedum plumbizincicola publication-title: Plant Cell Environ. doi: 10.1111/pce.12929 – year: 2017 ident: 10.1016/j.envexpbot.2022.104824_bib94 article-title: Genome editing in plants: an overview of tools and applications publication-title: Int. J. Agron. doi: 10.1155/2017/7315351 – volume: 39 start-page: 68 year: 2017 ident: 10.1016/j.envexpbot.2022.104824_bib25 article-title: Temperature sensitivity of food legumes: a physiological insight publication-title: Acta Physiol. Plant doi: 10.1007/s11738-017-2361-5 – volume: 217 start-page: 90 year: 2016 ident: 10.1016/j.envexpbot.2022.104824_bib55 article-title: Efficient targeted mutagenesis in soybean by TALENs and CRISPR/Cas9 publication-title: J. Biotechnol. doi: 10.1016/j.jbiotec.2015.11.005 – volume: 9 issue: 12 year: 2014 ident: 10.1016/j.envexpbot.2022.104824_bib148 article-title: Simultaneous expression of abiotic stress responsive transcription factors, AtDREB2A, AtHB7 and AtABF3 improves salinity and drought tolerance in peanut (Arachis hypogaea L.) publication-title: PLoS One doi: 10.1371/journal.pone.0111152 – volume: 427 start-page: 731 year: 2012 ident: 10.1016/j.envexpbot.2022.104824_bib115 article-title: Overexpression of soybean GmCBL1 enhances abiotic stress tolerance and promotes hypocotyl elongation in Arabidopsis publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2012.09.128 – volume: 31 start-page: 240 year: 2013 ident: 10.1016/j.envexpbot.2022.104824_bib177 article-title: Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2491 – volume: 11 start-page: 605 year: 2017 ident: 10.1016/j.envexpbot.2022.104824_bib160 article-title: Role of miRNAs in Legume crops in response to biotic and abiotic stress publication-title: J. Pure Appl. Microbiol. doi: 10.22207/JPAM.11.1.79 – volume: 596 start-page: 487 year: 2021 ident: 10.1016/j.envexpbot.2022.104824_bib4 article-title: Protein-structure prediction revolutionized publication-title: Nature doi: 10.1038/d41586-021-02265-4 – volume: 143 start-page: 593 year: 2020 ident: 10.1016/j.envexpbot.2022.104824_bib150 article-title: Overexpression of ICE1 gene in mungbean (Vigna radiata L.) for cold tolerance. Plant Cell Tiss publication-title: Plant Cell Tissue Organ Cult. doi: 10.1007/s11240-020-01944-w – volume: 34 start-page: 1 year: 2011 ident: 10.1016/j.envexpbot.2022.104824_bib44 article-title: Glycinebetaine protects plants against abiotic stress: Mechanisms and biotechnological applications publication-title: Plant Cell Environ. doi: 10.1111/j.1365-3040.2010.02232.x – volume: 122 start-page: 1427 year: 2000 ident: 10.1016/j.envexpbot.2022.104824_bib127 article-title: Iron Superoxide Dismutase expression in transgenic alfalfa increases winter survival without a detectable increase in photosynthetic oxidative stress tolerance publication-title: Plant Physiol. doi: 10.1104/pp.122.4.1427 – volume: 59 start-page: 93 year: 2019 ident: 10.1016/j.envexpbot.2022.104824_bib135 article-title: Applications of multiplex genome editing in higher plants publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2019.02.015 – volume: 34 start-page: 199 year: 2015 ident: 10.1016/j.envexpbot.2022.104824_bib7 article-title: DREB1A overexpression in transgenic chickpea alters key traits influencing plant water budget across water regimes publication-title: Plant Cell Rep. doi: 10.1007/s00299-014-1699-z – volume: 36 start-page: 556 year: 2013 ident: 10.1016/j.envexpbot.2022.104824_bib59 article-title: Introduction of the rd29A: AtDREB2A CA gene into soybean (Glycine max L. Merril) and its molecular characterization in leaves and roots during dehydration publication-title: Genet. Mol. Biol. doi: 10.1590/S1415-47572013000400015 – volume: 205 start-page: 240 issue: 1 year: 2015 ident: 10.1016/j.envexpbot.2022.104824_bib78 article-title: Overexpression of bacterial γ-glutamylcysteine synthetase mediates changes in cadmium influx, allocation and detoxification in poplar publication-title: New Phytol. doi: 10.1111/nph.13013 – volume: 63 start-page: 53 year: 2021 ident: 10.1016/j.envexpbot.2022.104824_bib46 article-title: Protein kinases in plant responses to drought, salt, and cold stress publication-title: J. Int. Plant Biol. doi: 10.1111/jipb.13061 – volume: 7 start-page: 1137 year: 2016 ident: 10.1016/j.envexpbot.2022.104824_bib71 article-title: Barley genes as tools to confer abiotic stress tolerance in crops publication-title: Front. Plant Sci. doi: 10.3389/fpls.2016.01137 – volume: 247 start-page: 1043 year: 2018 ident: 10.1016/j.envexpbot.2022.104824_bib67 article-title: Gene editing by CRISPR/Cas9 in the obligatory outcrossing Medicago sativa publication-title: Planta doi: 10.1007/s00425-018-2866-1 – start-page: 345 year: 2016 ident: 10.1016/j.envexpbot.2022.104824_bib185 article-title: Transgenic approaches for abiotic stress tolerance in crop plants – volume: 35 start-page: 438 year: 2017 ident: 10.1016/j.envexpbot.2022.104824_bib210 article-title: Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3811 – volume: 210 start-page: 25 year: 2013 ident: 10.1016/j.envexpbot.2022.104824_bib158 article-title: MicroRNA prediction and its function in regulating drought-related genes in cowpea publication-title: Plant Sci. doi: 10.1016/j.plantsci.2013.05.002 – year: 2015 ident: 10.1016/j.envexpbot.2022.104824_bib58 article-title: Heavy metal stress and some mechanisms of plant defense response publication-title: Sci. World J. doi: 10.1155/2015/756120 – volume: 35 start-page: 613 year: 2016 ident: 10.1016/j.envexpbot.2022.104824_bib192 article-title: CarNAC4, a NAC-type chickpea transcription factor conferring enhanced drought and salt stress tolerances in Arabidopsis publication-title: Plant Cell Rep. doi: 10.1007/s00299-015-1907-5 – volume: 10 year: 2015 ident: 10.1016/j.envexpbot.2022.104824_bib174 article-title: Introgression of the SbASR-1 gene cloned from a halophyte Salicornia brachiata enhances salinity and drought endurance in transgenic groundnut (Arachis hypogaea) and acts as a transcription factor publication-title: PLoS One doi: 10.1371/journal.pone.0131567 – volume: 10 start-page: 105 year: 2016 ident: 10.1016/j.envexpbot.2022.104824_bib117 article-title: Transgenic tomato plants expressing strawberry D-galacturonic acid reductase gene display enhanced tolerance to abiotic stresses publication-title: Plant Biotechnol. Rep. doi: 10.1007/s11816-016-0392-9 – volume: 12 year: 2017 ident: 10.1016/j.envexpbot.2022.104824_bib136 article-title: CRISPR/Cas9-mediated targeted mutagenesis in grape publication-title: PLoS One doi: 10.1371/journal.pone.0177966 – volume: 36 start-page: 399 year: 2017 ident: 10.1016/j.envexpbot.2022.104824_bib172 article-title: Efficient CRISPR/Cas9-based gene knockout in watermelon publication-title: Plant Cell Rep. doi: 10.1007/s00299-016-2089-5 – volume: 7 start-page: 12754 issue: 8 year: 2016 ident: 10.1016/j.envexpbot.2022.104824_bib10 article-title: Mechanism of stress signal transduction and involvement of stress inducible transcription factors and genes in response to abiotic stresses in plant publication-title: Int. J. Recent Sci. Res. – volume: 11 start-page: 459 issue: 2 year: 2018 ident: 10.1016/j.envexpbot.2022.104824_bib13 article-title: Dissecting the genomic diversification of LATE EMBRYOGENESIS ABUNDANT (LEA) protein gene families in plants publication-title: Genome Biol. Evol. doi: 10.1093/gbe/evy248 – volume: 9 start-page: 1324 year: 2018 ident: 10.1016/j.envexpbot.2022.104824_bib156 article-title: New plant breeding techniques under food security pressure and lobbying publication-title: Front. Plant Sci. doi: 10.3389/fpls.2018.01324 – volume: 9 issue: 8 year: 2014 ident: 10.1016/j.envexpbot.2022.104824_bib203 article-title: Transcriptional regulation of cell cycle genes in response to abiotic stresses correlates with dynamic changes in histone modifications in maize publication-title: PLoS One doi: 10.1371/journal.pone.0106070 – volume: 8 start-page: 1513 year: 2018 ident: 10.1016/j.envexpbot.2022.104824_bib24 article-title: High-resolution analysis of the efficiency, heritability, and editing outcomes of CRISPR-Cas9 -induced modifications of NCED4 in lettuce (Lactuca sativa) publication-title: G3 doi: 10.1534/g3.117.300396 – volume: 9 start-page: 559 year: 2018 ident: 10.1016/j.envexpbot.2022.104824_bib111 article-title: Lycopene is enriched in tomato fruit by CRISPR/Cas9-mediated multiplex genome editing publication-title: Front. Plant Sci. doi: 10.3389/fpls.2018.00559 – volume: 119 start-page: 1 year: 2017 ident: 10.1016/j.envexpbot.2022.104824_bib138 article-title: Evaluating physiological responses of plants to salinity stress publication-title: Ann. Bot. doi: 10.1093/aob/mcw191 – volume: 7 start-page: 1333 year: 2016 ident: 10.1016/j.envexpbot.2022.104824_bib182 article-title: . Efficient inactivation of symbiotic nitrogen fixation related genes in Lotus japonicus using CRISPR-Cas9 publication-title: Front. Plant Sci. – volume: 22 start-page: 396 year: 2021 ident: 10.1016/j.envexpbot.2022.104824_bib15 article-title: First report of CRISPR/Cas9 mediated DNA-free editing of 4CL and RVE7 genes in chickpea protoplasts publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms22010396 – volume: 7 start-page: 239 year: 2017 ident: 10.1016/j.envexpbot.2022.104824_bib146 article-title: Genetic engineering strategies for biotic and abiotic stress tolerance and quality enhancement in horticultural crops: a comprehensive review publication-title: 3Biotech – volume: 237 start-page: 321 year: 2013 ident: 10.1016/j.envexpbot.2022.104824_bib95 article-title: Ectopic expression of the ABA-inducible dehydration-responsive chickpea L-myo-inositol 1-phosphate synthase 2 (CaMIPS2) in Arabidopsis enhances tolerance to salinity and dehydration stress publication-title: Planta doi: 10.1007/s00425-012-1781-0 – volume: 7 start-page: 67 year: 2016 ident: 10.1016/j.envexpbot.2022.104824_bib181 article-title: Recent advances in utilizing transcription factors to improve plant abiotic stress tolerance by transgenic technology publication-title: Front. Plant Sci. – volume: 164 start-page: 396 year: 2018 ident: 10.1016/j.envexpbot.2022.104824_bib84 article-title: Gene-edited plants on the plate: the “CRISPR cabbage story” publication-title: Physiol. Plant doi: 10.1111/ppl.12754 – volume: 7 start-page: 44304 year: 2017 ident: 10.1016/j.envexpbot.2022.104824_bib45 article-title: Targeted mutagenesis in cotton (Gossypium hirsutum L.) using the CRISPR/Cas9 system publication-title: Sci. Rep. doi: 10.1038/srep44304 – volume: 258 start-page: 122 year: 2017 ident: 10.1016/j.envexpbot.2022.104824_bib12 article-title: MicroRNA156 improves drought stress tolerance in alfalfa (Medicago sativa L.) silencing SPL13 publication-title: Plant Sci. doi: 10.1016/j.plantsci.2017.01.018 – volume: 214 start-page: 1614 year: 2017 ident: 10.1016/j.envexpbot.2022.104824_bib64 article-title: The MTP 1 promoters from Arabidopsis halleri reveal cis-regulating elements for the evolution of metal tolerance publication-title: New Phytol. doi: 10.1111/nph.14529 – volume: 167 start-page: 313 year: 2016 ident: 10.1016/j.envexpbot.2022.104824_bib206 article-title: Abiotic stress signaling and responses in plants publication-title: Cell doi: 10.1016/j.cell.2016.08.029 – volume: 41 start-page: 63 year: 2014 ident: 10.1016/j.envexpbot.2022.104824_bib116 article-title: Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system publication-title: J. Genet. Genom. doi: 10.1016/j.jgg.2013.12.001 – volume: 36 start-page: 6 year: 2018 ident: 10.1016/j.envexpbot.2022.104824_bib178 article-title: With a free pass, CRISPR-edited plants reach market in record time publication-title: Nat. Biotechnol. doi: 10.1038/nbt0118-6b – volume: 17 start-page: 1959 year: 2018 ident: 10.1016/j.envexpbot.2022.104824_bib183 article-title: Overexpression of GmBIN2, a soybean glycogen synthase kinase 3 gene, enhances tolerance to salt and drought in transgenic Arabidopsis and soybean hairy roots publication-title: J. Integr. Agric. doi: 10.1016/S2095-3119(17)61863-X – ident: 10.1016/j.envexpbot.2022.104824_bib145 – volume: 7 start-page: 303 year: 2016 ident: 10.1016/j.envexpbot.2022.104824_bib131 article-title: Potential biotechnological strategies for the cleanup of heavy metals and metalloids publication-title: Front. Plant Sci. doi: 10.3389/fpls.2016.00303 – volume: 35 start-page: 535 year: 2015 ident: 10.1016/j.envexpbot.2022.104824_bib141 article-title: Agroecological impact of an in vitro biotechnology approach of embryo development and seed filling in legumes publication-title: Agron. Sustain. Dev. doi: 10.1007/s13593-014-0276-8 – volume: 127 start-page: 25 year: 2018 ident: 10.1016/j.envexpbot.2022.104824_bib48 article-title: GmSK1, an SKP1 homologue in soybean, is involved in the tolerance to salt and drought publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2018.03.007 – volume: 129 start-page: 263 year: 2016 ident: 10.1016/j.envexpbot.2022.104824_bib41 article-title: VrDREB2A, a DREB-binding transcription factor from Vigna radiata, increased drought and high-salt tolerance in transgenic Arabidopsis thaliana publication-title: J. Plant Res. doi: 10.1007/s10265-015-0773-0 – volume: 28 start-page: 1411 year: 2006 ident: 10.1016/j.envexpbot.2022.104824_bib47 article-title: Cloning of GmHSFA1 gene and its overexpression leading to enhancement of heat tolerance in transgenic soybean publication-title: Yi Chuan Hered. doi: 10.1360/yc-006-1411 – volume: 51 start-page: 1411 year: 2019 ident: 10.1016/j.envexpbot.2022.104824_bib102 article-title: A reference genome for pea provides insight into legume genome evolution publication-title: Nat. Genet. doi: 10.1038/s41588-019-0480-1 – volume: 74 start-page: 1075 year: 2017 ident: 10.1016/j.envexpbot.2022.104824_bib122 article-title: Heritability of targeted gene modifications induced by plant- optimized CRISPR systems publication-title: Cell. Mol. Life Sci. doi: 10.1007/s00018-016-2380-1 – volume: 37 start-page: 575 year: 2018 ident: 10.1016/j.envexpbot.2022.104824_bib100 article-title: Efficient CRISPR/Cas9-based genome editing in carrot cells publication-title: Plant Cell Rep. doi: 10.1007/s00299-018-2252-2 – volume: 189 start-page: 357 year: 2011 ident: 10.1016/j.envexpbot.2022.104824_bib202 article-title: Transgenic alfalfa plants co-expressing glutathione S-transferase (GST) and human CYP2E1 show enhanced resistance to mixed contaminates of heavy metals and organic pollutants publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2011.02.042 – volume: 70 start-page: 220 year: 2012 ident: 10.1016/j.envexpbot.2022.104824_bib52 article-title: Dual involvement of a Medicago truncatula NAC transcription factor in root abiotic stress response and symbiotic nodule senescence publication-title: Plant J. doi: 10.1111/j.1365-313X.2011.04859.x – volume: 79 start-page: 1 year: 2016 ident: 10.1016/j.envexpbot.2022.104824_bib18 article-title: Group II late embryogenesis abundant (LEA) proteins: structural and functional aspects in plant abiotic stress publication-title: Plant Growth Regul. doi: 10.1007/s10725-015-0113-3 – volume: 103 start-page: 1155 year: 1993 ident: 10.1016/j.envexpbot.2022.104824_bib126 article-title: Superoxide Dismutase enhances tolerance of freezing stress in transgenic Alfalfa (Medicago sativa L.) publication-title: Plant Physiol. doi: 10.1104/pp.103.4.1155 – volume: 166 start-page: 1292 year: 2014 ident: 10.1016/j.envexpbot.2022.104824_bib32 article-title: Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR- associated9 system publication-title: Plant Physiol. doi: 10.1104/pp.114.247577 – volume: 15 start-page: 405 issue: 4 year: 2017 ident: 10.1016/j.envexpbot.2022.104824_bib81 article-title: The heat-shock protein/chaperone network and multiple stress resistance publication-title: Plant Biotechnol. J. doi: 10.1111/pbi.12659 – volume: 41 start-page: 2021 issue: 9 year: 2018 ident: 10.1016/j.envexpbot.2022.104824_bib209 article-title: A cold responsive ethylene responsive factor from Medicago falcata confers cold tolerance by up-regulation of polyamine turnover, antioxidant protection, and proline accumulation publication-title: Plant Cell Environ. – volume: 9 start-page: 1724 year: 2018 ident: 10.1016/j.envexpbot.2022.104824_bib22 article-title: Beyond risk considerations: where and how can a debate about non-safety related issues of genome editing in agriculture take place? publication-title: Front. Plant Sci. doi: 10.3389/fpls.2018.01724 – volume: 132 start-page: 1 year: 2018 ident: 10.1016/j.envexpbot.2022.104824_bib60 article-title: Potential use of the DREB/ERF, MYB, NAC and WRKY transcription factors to improve abiotic and biotic stress in transgenic plants publication-title: Plant Cell Tissue Organ Cult. doi: 10.1007/s11240-017-1320-6 – start-page: 401 year: 2018 ident: 10.1016/j.envexpbot.2022.104824_bib151 article-title: Arsenic in rice: an overview on stress implications, tolerance and mitigation strategies – volume: 10 start-page: 678 year: 2019 ident: 10.1016/j.envexpbot.2022.104824_bib89 article-title: H2S alleviates salinity stress in cucumber by maintaining the Na+/K+ balance and regulating H2S metabolism and oxidative stress response publication-title: Front. Plant Sci. doi: 10.3389/fpls.2019.00678 – volume: 20 start-page: 2541 year: 2019 ident: 10.1016/j.envexpbot.2022.104824_bib134 article-title: Research progress and perspective on drought stress in legumes: a review publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms20102541 – volume: vol. 2200 start-page: 121 year: 2021 ident: 10.1016/j.envexpbot.2022.104824_bib129 article-title: CRISPR/Cas9-based genome editing toolbox for Arabidopsis thaliana – volume: 28 start-page: 272 year: 2016 ident: 10.1016/j.envexpbot.2022.104824_bib63 article-title: RNAi in plants: an Argonaute-centered view publication-title: Plant Cell doi: 10.1105/tpc.15.00920 – volume: 7 start-page: 1904 year: 2016 ident: 10.1016/j.envexpbot.2022.104824_bib119 article-title: DNA Free genetically edited grapevine and apple protoplast using CRISPR/Cas9 ribonucleoproteins publication-title: Front. Plant Sci. doi: 10.3389/fpls.2016.01904 – volume: 337 start-page: 816 year: 2012 ident: 10.1016/j.envexpbot.2022.104824_bib90 article-title: A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity publication-title: Science doi: 10.1126/science.1225829 – volume: 11 start-page: 127 year: 2011 ident: 10.1016/j.envexpbot.2022.104824_bib20 article-title: Identification and comparative analysis of drought-associated microRNAs in two cowpea genotypes publication-title: BMC Plant Biol. doi: 10.1186/1471-2229-11-127 – volume: vol 1822 start-page: 291 year: 2018 ident: 10.1016/j.envexpbot.2022.104824_bib57 article-title: Toward unravelling the genetic determinism of the acquisition of salt and osmotic stress tolerance through in vitro selection in Medicago truncatula – volume: 49 start-page: 1791 year: 2009 ident: 10.1016/j.envexpbot.2022.104824_bib166 article-title: Enhanced tolerance to multiple abiotic stresses in transgenic alfalfa accumulating trehalose publication-title: Crop Sci. doi: 10.2135/cropsci2008.09.0573 – volume: 17 start-page: 1140 year: 2016 ident: 10.1016/j.envexpbot.2022.104824_bib40 article-title: Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology publication-title: Mol. Plant Pathol. doi: 10.1111/mpp.12375 – volume: 20 start-page: 2471 year: 2019 ident: 10.1016/j.envexpbot.2022.104824_bib86 article-title: Genome editing in cowpea Vigna unguiculata using CRISPR-Cas9 publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms20102471 – volume: 11 start-page: 747 year: 2013 ident: 10.1016/j.envexpbot.2022.104824_bib112 article-title: Expression of an Arabidopsis molybdenum cofactor sulphurase gene in soybean enhances drought tolerance and increases yield under field conditions publication-title: Plant Biotechnol. J. doi: 10.1111/pbi.12066 – volume: 31 start-page: 719 year: 2013 ident: 10.1016/j.envexpbot.2022.104824_bib19 article-title: Overexpression of the ABA-dependent AREB1 transcription factor from Arabidopsis thaliana improves soybean tolerance to water deficit publication-title: Plant Mol. Biol. Rep. doi: 10.1007/s11105-012-0541-4 – volume: 6 start-page: 773 year: 2015 ident: 10.1016/j.envexpbot.2022.104824_bib201 article-title: Genome-wide analysis and expression profiling under heat and drought treatments of HSP70 gene family in soybean (Glycine max L.) publication-title: Front. Plant Sci. doi: 10.3389/fpls.2015.00773 – volume: 1 start-page: 6 year: 2017 ident: 10.1016/j.envexpbot.2022.104824_bib191 article-title: The application of CRISPR/Cas9 system in Gene Knock-out of Nicotiana benthamiana publication-title: Mol. Plant Breed. – volume: 59 start-page: 86 year: 2017 ident: 10.1016/j.envexpbot.2022.104824_bib88 article-title: WRKY transcription factors in plant responses to stresses publication-title: J. Integr. Plant Biol. doi: 10.1111/jipb.12513 – volume: 155 start-page: 45 year: 2018 ident: 10.1016/j.envexpbot.2022.104824_bib6 article-title: The Panax ginseng PgTIP1 gene confers enhanced salt and drought tolerance to transgenic soybean plants by maintaining homeostasis of water, salt ions and ROS publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2018.06.025 – volume: 596 start-page: 583 year: 2021 ident: 10.1016/j.envexpbot.2022.104824_bib93 article-title: Highly accurate protein structure prediction with AlphaFold publication-title: Nature doi: 10.1038/s41586-021-03819-2 – volume: 10 year: 2015 ident: 10.1016/j.envexpbot.2022.104824_bib36 article-title: CRISPR/Cas9-mediated genome editing in soybean hairy roots publication-title: PLoS One doi: 10.1371/journal.pone.0136064 – volume: 7 start-page: 1045 year: 2016 ident: 10.1016/j.envexpbot.2022.104824_bib34 article-title: Geminivirus-mediated genome editing in potato (Solanum tuberosum L.) using sequence-specific nucleases publication-title: Front. Plant Sci. doi: 10.3389/fpls.2016.01045 – volume: 188 year: 2021 ident: 10.1016/j.envexpbot.2022.104824_bib187 article-title: Structure characterization and potential role of soybean phospholipases A multigene family in response to multiple abiotic stress uncovered by CRISPR/Cas9 technology publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2021.104521 – volume: 161 start-page: 98 year: 2019 ident: 10.1016/j.envexpbot.2022.104824_bib23 article-title: Reactive oxygen species and heavy metal stress in plants: impact on the cell wall and secondary metabolism publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2018.10.017 – volume: 119 start-page: 95 year: 2014 ident: 10.1016/j.envexpbot.2022.104824_bib83 article-title: Ectopic overexpression of the aluminium-induced protein gene from Panax ginseng enhances heavy metal tolerance in transgenic Arabidopsis publication-title: Plant Cell Tissue Organ Cult. doi: 10.1007/s11240-014-0516-2 – volume: 257 start-page: 35 year: 2017 ident: 10.1016/j.envexpbot.2022.104824_bib35 article-title: The sunflower transcription factor HaHB11 confers tolerance to water deficit and salinity to transgenic Arabidopsis and alfalfa plants publication-title: J. Biotechnol. doi: 10.1016/j.jbiotec.2016.11.017 – volume: 38 start-page: 503 year: 2019 ident: 10.1016/j.envexpbot.2022.104824_bib29 article-title: Development of methods for effective identification of CRISPR/Cas9-induced indels in rice publication-title: Plant Cell Rep. doi: 10.1007/s00299-019-02392-3 – volume: 60 start-page: 199 year: 2010 ident: 10.1016/j.envexpbot.2022.104824_bib42 article-title: DREB1C from Medicago truncatula enhances freezing tolerance in transgenic M. truncatula and China rose (Rosa chinensis Jacq.) publication-title: Plant Growth Regul. doi: 10.1007/s10725-009-9434-4 – volume: 10 start-page: 6790 year: 2020 ident: 10.1016/j.envexpbot.2022.104824_bib38 article-title: Development of new genetic resources for faba bean (Vicia faba L.) breeding through the discovery of gene-based SNP markers and the construction of a high-density consensus map publication-title: Sci. Rep. doi: 10.1038/s41598-020-63664-7 – volume: 9 start-page: 13 year: 2019 ident: 10.1016/j.envexpbot.2022.104824_bib5 article-title: Evaluating soybean cultivars for low- and high-temperature tolerance during the seedling growth stage publication-title: Agronomy doi: 10.3390/agronomy9010013 – volume: 9 start-page: 681 year: 2020 ident: 10.1016/j.envexpbot.2022.104824_bib76 article-title: Reactive oxygen species and antioxidant defense in plants under abiotic stress: revisiting the crucial role of a universal defense regulator publication-title: Antioxidants doi: 10.3390/antiox9080681 – volume: 7 start-page: 4 year: 2016 ident: 10.1016/j.envexpbot.2022.104824_bib79 article-title: Overexpression of a stress-responsive NAC transcription factor gene ONAC022 improves drought and salt tolerance in rice publication-title: Front. Plant Sci. doi: 10.3389/fpls.2016.00004 – volume: 10 start-page: 1674 issue: 7 year: 2021 ident: 10.1016/j.envexpbot.2022.104824_bib85 article-title: Non-Coding RNAs in legumes: their emerging roles in regulating biotic/abiotic stress responses and plant growth and development publication-title: Cells doi: 10.3390/cells10071674 – volume: 170 start-page: 26 year: 2016 ident: 10.1016/j.envexpbot.2022.104824_bib168 article-title: Rj4, a gene controlling nodulation specificity in soybeans, encodes a thaumatin-like protein but not the one previously reported publication-title: Plant Physiol. doi: 10.1104/pp.15.01661 – volume: 16 start-page: 48 year: 2015 ident: 10.1016/j.envexpbot.2022.104824_bib200 article-title: A Meloidogyne incognita effector is imported into the nucleus and exhibits transcriptional activation activity in planta publication-title: Mol. Plant Pathol. doi: 10.1111/mpp.12160 – year: 2020 ident: 10.1016/j.envexpbot.2022.104824_bib104 article-title: TIP aquaporins in plants: role in abiotic stress tolerance – volume: 135 start-page: 545 year: 2018 ident: 10.1016/j.envexpbot.2022.104824_bib195 article-title: Overexpression of two cold-responsive ATAF-like NAC transcription factors from fine-stem stylo (Stylosanthes guianensis var. intermedia) enhances cold tolerance in tobacco plants publication-title: Plant Cell Tissue Organ Cult. doi: 10.1007/s11240-018-1486-6 – volume: 21 year: 2020 ident: 10.1016/j.envexpbot.2022.104824_bib26 article-title: Genome-wide identification of drought-responsive miRNAs in grass pea (Lathyrus sativus L.) publication-title: Plant Gene doi: 10.1016/j.plgene.2019.100210 – volume: 165 start-page: 830 year: 2019 ident: 10.1016/j.envexpbot.2022.104824_bib125 article-title: Alfalfa response to heat stress is modulated by microRNA156 publication-title: Physiol. Plant doi: 10.1111/ppl.12787 – volume: 8 start-page: 171 issue: 2 year: 2021 ident: 10.1016/j.envexpbot.2022.104824_bib121 article-title: Role of Glycine max ABSCISIC ACID INSENSITIVE 3 (GmABI3) in lipid biosynthesis and stress tolerance in soybean publication-title: Funct. Plant Biol. doi: 10.1071/FP19260 – volume: 53 start-page: 12 issue: 1 year: 2017 ident: 10.1016/j.envexpbot.2022.104824_bib164 article-title: Enhancement of sheath blight tolerance in transgenic rice by combined expression of tobacco osmotin (ap24) and rice chitinase (chi11) genes publication-title: Vitr. Cell. Dev. Biol. Plant doi: 10.1007/s11627-017-9807-8 – volume: 472 start-page: 75 year: 2016 ident: 10.1016/j.envexpbot.2022.104824_bib198 article-title: Co-transforming bar and CsLEA enhanced tolerance to drought and salt stress in transgenic alfalfa (Medicago sativa L.) publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2016.02.067 – volume: 285 start-page: 26 year: 2019 ident: 10.1016/j.envexpbot.2022.104824_bib80 article-title: GmHsp90A2 is involved in soybean heat stress as a positive regulator publication-title: Plant Sci. doi: 10.1016/j.plantsci.2019.04.016 – volume: 8 start-page: 13 issue: 1 year: 2017 ident: 10.1016/j.envexpbot.2022.104824_bib51 article-title: New GMO regulations for old: determining a new future for EU crop biotechnology publication-title: GM Crop. Food doi: 10.1080/21645698.2017.1289305 – volume: Volume 2 start-page: 261 year: 2017 ident: 10.1016/j.envexpbot.2022.104824_bib91 article-title: Trehalose: metabolism and role in stress signaling in plants – volume: 41 start-page: 413 year: 2018 ident: 10.1016/j.envexpbot.2022.104824_bib99 article-title: Confirmation of drought tolerance of ectopically expressed AtABF3 gene in soybean publication-title: Mol. Cells – volume: 9 start-page: 1291 year: 2018 ident: 10.1016/j.envexpbot.2022.104824_bib105 article-title: Regulatory uncertainty around new breeding techniques publication-title: Front. Plant Sci. doi: 10.3389/fpls.2018.01291 – year: 2017 ident: 10.1016/j.envexpbot.2022.104824_bib66 article-title: Transgenic crops – hazards and uncertainties: More than 750 studies disregarded by the GMOs regulatory bodies publication-title: Bras.: Minist. Agrar. Dev. – volume: 58 start-page: 1268 issue: 7 year: 2017 ident: 10.1016/j.envexpbot.2022.104824_bib144 article-title: Soybean NIMA-Related Kinase1 promotes plant growth and improves salt and cold tolerance publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcx060 – volume: 40 start-page: 462 year: 2017 ident: 10.1016/j.envexpbot.2022.104824_bib62 article-title: Nitric oxide function in plant abiotic stress publication-title: Plant Cell Environ. doi: 10.1111/pce.12707 – volume: 65 start-page: 541 year: 2018 ident: 10.1016/j.envexpbot.2022.104824_bib107 article-title: The soybean GmRACK1 gene plays a role in drought tolerance at vegetative stages publication-title: Russ. J. Plant Physiol. doi: 10.1134/S1021443718040155 – volume: 51 start-page: 865 year: 2021 ident: 10.1016/j.envexpbot.2022.104824_bib207 article-title: The genome of cultivated peanut provides insight into legume karyotypes, polyploid evolution and crop domestication publication-title: Nat. Genet. doi: 10.1038/s41588-019-0402-2 – volume: 9 start-page: 985 year: 2018 ident: 10.1016/j.envexpbot.2022.104824_bib82 article-title: CRISPR for Crop improvement: an updated review publication-title: Front. Plant Sci. doi: 10.3389/fpls.2018.00985 – volume: 36 start-page: 291 year: 2017 ident: 10.1016/j.envexpbot.2022.104824_bib196 article-title: Genome editing-principles and applications for functional genomics research and crop improvement publication-title: Crit. Rev. Plant Sci. doi: 10.1080/07352689.2017.1402989 – volume: 76 start-page: 167 year: 2010 ident: 10.1016/j.envexpbot.2022.104824_bib189 article-title: Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants publication-title: S. Afr. J. Bot. doi: 10.1016/j.sajb.2009.10.007 – volume: 33 start-page: 41 year: 2015 ident: 10.1016/j.envexpbot.2022.104824_bib31 article-title: The CRISPR/Cas9 system for plant genome editing and beyond publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2014.12.006 – volume: 4 start-page: 697 year: 2011 ident: 10.1016/j.envexpbot.2022.104824_bib188 article-title: Overexpression of TaNAC69 leads to enhanced transcript levels of stress up-regulated genes and dehydration tolerance in bread wheat publication-title: Mol. Plant doi: 10.1093/mp/ssr013 – volume: 74 start-page: 37 year: 2013 ident: 10.1016/j.envexpbot.2022.104824_bib14 article-title: Gene transfer in legumes publication-title: Prog. Bot. doi: 10.1007/978-3-642-30967-0_2 – volume: 9 year: 2014 ident: 10.1016/j.envexpbot.2022.104824_bib170 article-title: Expression of a vacuole-localized BURP-domain protein from soybean (SALI3-2) enhances tolerance to cadmium and copper stresses publication-title: PLoS One – volume: 38 start-page: 437 year: 2019 ident: 10.1016/j.envexpbot.2022.104824_bib72 article-title: CRISPR/Cas precision: do we need to worry about off-targeting in plants? publication-title: Plant Cell Rep. doi: 10.1007/s00299-018-2355-9 – volume: 258 start-page: 122 year: 2017 ident: 10.1016/j.envexpbot.2022.104824_bib132 article-title: MicroRNA156 improves drought stress tolerance in alfalfa (Medicago sativa) by silencing SPL13 publication-title: Plant Sci. doi: 10.1016/j.plantsci.2017.01.018 – volume: 431 start-page: 356 year: 2004 ident: 10.1016/j.envexpbot.2022.104824_bib21 article-title: RNA silencing in plants publication-title: Nature doi: 10.1038/nature02874 – volume: 36 start-page: 36 year: 2016 ident: 10.1016/j.envexpbot.2022.104824_bib33 article-title: Enhanced salinity stress tolerance in transgenic chilli pepper (Capsicum annuum L.) plants overexpressing the wheat antiporter (TaNHX2) gene publication-title: Mol. Breed. doi: 10.1007/s11032-016-0451-5 – volume: 3 start-page: 668 year: 2015 ident: 10.1016/j.envexpbot.2022.104824_bib133 article-title: Salinity tolerance of crops–what is the cost? publication-title: New Phytol. doi: 10.1111/nph.13519 – volume: 169 start-page: 960 year: 2015 ident: 10.1016/j.envexpbot.2022.104824_bib114 article-title: Cas9-Guide RNA directed genome editing in soybean publication-title: Plant Physiol. doi: 10.1104/pp.15.00783 – volume: 36 start-page: 117 year: 2017 ident: 10.1016/j.envexpbot.2022.104824_bib8 article-title: Efficient targeted multiallelic mutagenesis intetraploid potato (Solanum tuberosum) by transient CRISPR-Cas9 expression in protoplasts publication-title: Plant Cell Rep. doi: 10.1007/s00299-016-2062-3 – volume: 32 start-page: 947 year: 2014 ident: 10.1016/j.envexpbot.2022.104824_bib184 article-title: Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2969 – volume: 21 start-page: 31 year: 2016 ident: 10.1016/j.envexpbot.2022.104824_bib56 article-title: Landrace germplasm for improving yield and abiotic stress adaptation publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2015.10.012 – volume: 164 start-page: 378 year: 2018 ident: 10.1016/j.envexpbot.2022.104824_bib9 article-title: Genome editing in potato via CRISPR-Cas9 ribonucleoprotein delivery publication-title: Physiol. Plant doi: 10.1111/ppl.12731 – volume: 11 year: 2021 ident: 10.1016/j.envexpbot.2022.104824_bib53 article-title: Structural conservation of WEE1 and its role in cell cycle regulation in plants publication-title: Sci. Rep. doi: 10.1038/s41598-021-03268-x – volume: 39 start-page: 851 year: 2020 ident: 10.1016/j.envexpbot.2022.104824_bib157 article-title: Constitutive expression of a group 3 LEA protein from Medicago falcata (MfLEA3) increases cold and drought tolerance in transgenic tobacco publication-title: Plant Cell Rep. doi: 10.1007/s00299-020-02534-y – volume: 46 start-page: 707 year: 2014 ident: 10.1016/j.envexpbot.2022.104824_bib154 article-title: A reference genome for common bean and genome-wide analysis of dual domestications publication-title: Nat. Genet. doi: 10.1038/ng.3008 – volume: 10 start-page: 1446 year: 2019 ident: 10.1016/j.envexpbot.2022.104824_bib74 article-title: Creation of early flowering germplasm of soybean by CRISPR/Cas9 technology publication-title: Front. Plant Sci. doi: 10.3389/fpls.2019.01446 – volume: 16 start-page: 176 year: 2018 ident: 10.1016/j.envexpbot.2022.104824_bib37 article-title: CRISPR/Cas9-mediated targeted mutagenesis of GmFT2a delays flowering time in soybean publication-title: Plant Biotechnol. J. doi: 10.1111/pbi.12758 – volume: 31 start-page: 688 year: 2013 ident: 10.1016/j.envexpbot.2022.104824_bib109 article-title: Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2654 – volume: 15 year: 2016 ident: 10.1016/j.envexpbot.2022.104824_bib180 article-title: Cloning and characterization of a novel betaine aldehyde dehydrogenase gene from Suaeda corniculata publication-title: Genet. Mol. Res. – volume: 21 start-page: 2695 year: 2020 ident: 10.1016/j.envexpbot.2022.104824_bib11 article-title: Transgenic breeding approaches for improving abiotic stress tolerance: Recent progress and future perspectives publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms21082695 – volume: 7 start-page: 703 year: 2016 ident: 10.1016/j.envexpbot.2022.104824_bib54 article-title: Recent advances in genome editing using CRISPR/Cas9 publication-title: Front. Plant Sci. doi: 10.3389/fpls.2016.00703 – volume: 123 start-page: 149 year: 2018 ident: 10.1016/j.envexpbot.2022.104824_bib176 article-title: Osmotin: a plant defense tool against biotic and abiotic stresses publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2017.12.012 – volume: 49 start-page: 311 year: 2018 ident: 10.1016/j.envexpbot.2022.104824_bib171 article-title: Agrobacterium-mediated transformation of a Eucalyptus camaldulensis × E. tereticornis hybrid using peeled nodal-stem segments with yeast HAL2 for improving salt tolerance publication-title: New doi: 10.1007/s11056-017-9621-5 – volume: Volume II start-page: 579 year: 2015 ident: 10.1016/j.envexpbot.2022.104824_bib123 article-title: Genetic engineering strategies for abiotic stress tolerance in plants – volume: 85 start-page: 31 year: 2014 ident: 10.1016/j.envexpbot.2022.104824_bib108 article-title: Overexpression of codA gene confers enhanced tolerance to abiotic stresses in alfalfa publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2014.10.010 – volume: 23 start-page: 75 year: 2014 ident: 10.1016/j.envexpbot.2022.104824_bib143 article-title: Phenotyping soybean plants transformed with rd29A:AtDREB1A for drought tolerance in the greenhouse and field publication-title: Transgenic Res. doi: 10.1007/s11248-013-9723-6 – volume: 5 start-page: 86 year: 2014 ident: 10.1016/j.envexpbot.2022.104824_bib142 article-title: Response of plants to water stress publication-title: Front. Plant Sci. doi: 10.3389/fpls.2014.00086 – volume: 211 year: 2021 ident: 10.1016/j.envexpbot.2022.104824_bib73 article-title: Cadmium toxicity in plants: Impacts and remediation strategies publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2020.111887 – volume: 16 start-page: 1125 year: 2018 ident: 10.1016/j.envexpbot.2022.104824_bib50 article-title: CRISPR/cas9 and TALENS generate heritable mutations for genes involved in small RNA processing of Glycine max and Medicago truncatula publication-title: Plant Biotechnol. J. doi: 10.1111/pbi.12857 – volume: 162 start-page: 2 issue: 1 year: 2018 ident: 10.1016/j.envexpbot.2022.104824_bib193 article-title: Plant adaptations to the combination of drought and high temperatures publication-title: Physiol. Plant doi: 10.1111/ppl.12540 – volume: 7 start-page: 1029 year: 2016 ident: 10.1016/j.envexpbot.2022.104824_bib92 article-title: Transcription factors and plants response to drought stress: current understanding and future directions publication-title: Front. Plant Sci. doi: 10.3389/fpls.2016.01029 – volume: 59 start-page: 413 year: 2015 ident: 10.1016/j.envexpbot.2022.104824_bib159 article-title: Embracing new-generation ‘omics’ tools to improve drought tolerance in cereal and food-legume crops publication-title: Biol. Plant doi: 10.1007/s10535-015-0515-0 – volume: 6 start-page: 84 year: 2015 ident: 10.1016/j.envexpbot.2022.104824_bib175 article-title: Recent advances in the dissection of drought-stress regulatory networks and strategies for development of drought-tolerant transgenic rice plants publication-title: Front. Plant Sci. doi: 10.3389/fpls.2015.00084 – volume: 50 start-page: 1132 year: 2018 ident: 10.1016/j.envexpbot.2022.104824_bib149 article-title: CRISPR-Cas9 genome editing in human cells occurs via the Fanconi anemia pathway publication-title: Nat. Genet. doi: 10.1038/s41588-018-0174-0 – volume: 67 start-page: 2119 year: 2020 ident: 10.1016/j.envexpbot.2022.104824_bib155 article-title: Genetic manipulation of pea (Pisum sativum L.) with Arabidopsis"s heat shock factor HsfA1d improves ROS scavenging system to confront thermal stress publication-title: Genet. Res. Crop Evol. doi: 10.1007/s10722-020-00966-9 – volume: 233 start-page: 1265 year: 2011 ident: 10.1016/j.envexpbot.2022.104824_bib3 article-title: Overexpression of HARDY, an AP2/ERF gene from Arabidopsis, improves drought and salt tolerance by reducing transpiration and sodium uptake in transgenic Trifolium alexandrinum L publication-title: Planta doi: 10.1007/s00425-011-1382-3 – volume: 8 start-page: 2135 year: 2017 ident: 10.1016/j.envexpbot.2022.104824_bib87 article-title: Editing citrus genome via SaCas9/sgRNA system publication-title: Front. Plant Sci. doi: 10.3389/fpls.2017.02135 – volume: 95 start-page: 26 year: 2015 ident: 10.1016/j.envexpbot.2022.104824_bib110 article-title: The overexpression of a chrysanthemum WRKY transcription factor enhances aphid resistance publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2015.07.002 – volume: 12 year: 2021 ident: 10.1016/j.envexpbot.2022.104824_bib61 article-title: Molecular characterisation of soybean osmotins and their involvement in drought stress response publication-title: Front. Genet. doi: 10.3389/fgene.2021.632685 – volume: 18 start-page: 243 year: 2018 ident: 10.1016/j.envexpbot.2022.104824_bib162 article-title: WRKY transcription factors in legumes publication-title: BMC Plant Biol. doi: 10.1186/s12870-018-1467-2 – volume: 227 start-page: 148 year: 2004 ident: 10.1016/j.envexpbot.2022.104824_bib130 article-title: Characterization of altered metabolism in transgenic alfalfa overexpressing malate dehydrogenase to confer aluminum tolerance publication-title: Am. Chem. Soc. – volume: 20 start-page: 1427 issue: 14 year: 2018 ident: 10.1016/j.envexpbot.2022.104824_bib137 article-title: The Crotalaria juncea metal transporter CjNRAMP1 has a high Fe uptake activity, even in an environment with high Cd contamination publication-title: Int. J. Phytoremediat. doi: 10.1080/15226514.2018.1501333 – volume: 149 start-page: 67 year: 2013 ident: 10.1016/j.envexpbot.2022.104824_bib208 article-title: A cold responsive galactinol synthase gene from Medicago falcata (MfGolS1) is induced by -inositol and confers multiple tolerances to abiotic stresses publication-title: Physiol. Plant doi: 10.1111/ppl.12019 – volume: 22 start-page: 7687 issue: 14 year: 2021 ident: 10.1016/j.envexpbot.2022.104824_bib1 article-title: Tuning beforehand: A foresight on RNA interference (RNAi) and in vitro-derived dsRNAs to enhance crop resilience to biotic and abiotic stresses publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms22147687 – volume: 98 start-page: 767 issue: 5 year: 2019 ident: 10.1016/j.envexpbot.2022.104824_bib118 article-title: The genome of cowpea (Vigna unguiculata [L.] Walp.) publication-title: Plant J. doi: 10.1111/tpj.14349 – volume: 149 start-page: 310 year: 2013 ident: 10.1016/j.envexpbot.2022.104824_bib167 article-title: Nitric oxide mediates cold- and dehydration-induced expression of a novel MfHyPRP that confers tolerance to abiotic stress publication-title: Physiol. Plant doi: 10.1111/ppl.12032 – volume: 131 start-page: 892 year: 2003 ident: 10.1016/j.envexpbot.2022.104824_bib161 article-title: Recent advances in legume transformation publication-title: Plant Physiol. doi: 10.1104/pp.102.017681 – volume: 19 start-page: 1276 year: 2020 ident: 10.1016/j.envexpbot.2022.104824_bib43 article-title: SgRVE6, a LHY-CCA1-Like transcription factor from Fine-Stem tylo, upregulates NB-LRR gene expression and enhances cold tolerance in tobacco publication-title: Front. Plant Sci. doi: 10.3389/fpls.2020.01276 – volume: 2 start-page: 22 issue: 1 year: 2009 ident: 10.1016/j.envexpbot.2022.104824_bib190 article-title: Overexpression of SOS (Salt Overly Sensitive) genes increases salt tolerance in transgenic Arabidopsis publication-title: Mol. Plant doi: 10.1093/mp/ssn058 – volume: 35 start-page: 871 year: 2017 ident: 10.1016/j.envexpbot.2022.104824_bib199 article-title: Next-generation insect-resistant plants: RNAi- mediated crop protection publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2017.04.009 – volume: 18 start-page: 31 year: 2018 ident: 10.1016/j.envexpbot.2022.104824_bib98 article-title: CRISPR/Cas9 genome editing in wheat publication-title: Funct. Integr. Genom. doi: 10.1007/s10142-017-0572-x – volume: 11 start-page: 294 year: 2020 ident: 10.1016/j.envexpbot.2022.104824_bib197 article-title: Efficient generation of CRISPR/Cas9-mediated homozygous/biallelic Medicago truncatula mutants using a hairy root system publication-title: Front. Plant Sci. doi: 10.3389/fpls.2020.00294 – volume: 18 start-page: 553 issue: 6 year: 2017 ident: 10.1016/j.envexpbot.2022.104824_bib179 article-title: Salinity tolerance mechanism of osmotin and osmotin-like proteins: a promising candidate for enhancing plant salt tolerance publication-title: Curr. Genom. doi: 10.2174/1389202918666170705153045 – volume: 37 start-page: 613 year: 2019 ident: 10.1016/j.envexpbot.2022.104824_bib124 article-title: Worldwide CRISPR patent landscape shows strong geographical biases publication-title: Nat. Biotechnol. doi: 10.1038/s41587-019-0138-7 – volume: 22 start-page: 949 year: 2021 ident: 10.1016/j.envexpbot.2022.104824_bib186 article-title: Defining the Cell Wall, Cell Cycle and Chromatin Landmarks in the Responses of Brachypodium distachyon to Salinity publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms22020949 – volume: vol 2 start-page: 41 year: 2018 ident: 10.1016/j.envexpbot.2022.104824_bib120 article-title: RNA interference: a promising approach for crop improvement – volume: 36 start-page: 371 year: 2017 ident: 10.1016/j.envexpbot.2022.104824_bib128 article-title: Targeted mutagenesis by CRISPR/Cas9 system in the model legume Medicago truncatula publication-title: Plant Cell Rep. doi: 10.1007/s00299-016-2069-9 – volume: 206 year: 2020 ident: 10.1016/j.envexpbot.2022.104824_bib173 article-title: Over-expression of rice R1-type MYB transcription factor confers different abiotic stress tolerance in transgenic Arabidopsis publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2020.111361 – volume: 131 start-page: 31 year: 2018 ident: 10.1016/j.envexpbot.2022.104824_bib2 article-title: Genome editing using CRISPR/Cas9-targeted mutagenesis: an opportunity for yield improvements of crop plants grown under environmental stresses publication-title: Plant. Physiol. Biochem. doi: 10.1016/j.plaphy.2018.03.012 – volume: 21 year: 2020 ident: 10.1016/j.envexpbot.2022.104824_bib153 article-title: The evolving landscape around genome editing in agriculture publication-title: EMBO Rep. doi: 10.15252/embr.202050680 – volume: 58 start-page: 1155 issue: 3 year: 2018 ident: 10.1016/j.envexpbot.2022.104824_bib194 article-title: Key soybean maturity groups to increase grain yield in Brazil publication-title: Crop Sci. doi: 10.2135/cropsci2017.09.0581 – volume: 101 start-page: 15289 issue: 43 year: 2004 ident: 10.1016/j.envexpbot.2022.104824_bib49 article-title: Estimating genome conservation between crop and model legume species publication-title: PNAS doi: 10.1073/pnas.0402251101 – start-page: 157 year: 2017 ident: 10.1016/j.envexpbot.2022.104824_bib165 article-title: Gene editing technologies- ZFNs, TALENs, and CRISPR/Cas9 – volume: 12 year: 2017 ident: 10.1016/j.envexpbot.2022.104824_bib113 article-title: Overexpression of GmFDL19 enhances tolerance to drought and salt stresses in soybean publication-title: PLoS One – volume: 71 start-page: 22 year: 2013 ident: 10.1016/j.envexpbot.2022.104824_bib169 article-title: Overexpression of GsZFP1 enhances salt and drought tolerance in transgenic alfalfa (Medicago sativa L.) publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2013.06.024 – volume: 14 start-page: 9643 year: 2013 ident: 10.1016/j.envexpbot.2022.104824_bib75 article-title: Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms14059643 – volume: 68 start-page: 2013 year: 2017 ident: 10.1016/j.envexpbot.2022.104824_bib163 article-title: The legume miR1514a modulates a NAC transcription factor transcript to trigger phasiRNA formation in response to drought publication-title: J. Exp. Bot.  | 
    
| SSID | ssj0007376 | 
    
| Score | 2.4688995 | 
    
| SecondaryResourceType | review_article | 
    
| Snippet | Protein legumes are among the most important crops for sustainable agriculture and global food security for decades to come. Unfortunately, they are subject to... | 
    
| SourceID | unpaywall hal proquest crossref nrccanada elsevier  | 
    
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 104824 | 
    
| SubjectTerms | abiotic stress biotechnology botany climate change cold CRISPR/Cas Drought Extreme temperatures food security Gene transfer genes heat Heavy metals Legume crops legumes Life Sciences RNA interference Salinity stress tolerance sustainable agriculture transgenesis  | 
    
| SummonAdditionalLinks | – databaseName: Elsevier ScienceDirect dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKhVQuCAoVy0sGcQ1NHDvrcCtVqxUqnKjUCzLjRyBVlKy62dJe-tuZyavsARWJSyJbYyWaGY8_2_Ng7J3AJdEXQkYhLSCiHFIRCCsin6RzB8rrxFE08ucv2eJUfjpTZ1vscIyFIbfKwfb3Nr2z1kPP_sDN_WVZUoxvrjXlOhRdCCSl3ZbYRJ1-f3Pr5jFPuwJzXd5Mot7w8Qr1Zbha2oacKoWg-04t5N9WqHs_yVVyp75wnT8WbGDSnXW9hOtfUFV_LE_Hj9jDAVfyg_7XH7OtUO-y-x8bxH7Xu2zv6DaeDamGCb16wr6fENZsuS2bdjpk523TVCsOtee9o_iKI7Tl5Xj-wIHIS8f7QBMkrwLV5wi8rHmX-AHfVfiBZm_1lJ0eH309XERD0YXIKSHbiEqjFxoQmVmtFeQ-w2kulPZSS3AWEYtPgwfcpRQKtAepk5DYPMONj57PQaZ7bLtu6vCM8WCLVMfglMqczOMM2a88YT6bWpuqfMaykdHGDRnJqTBGZUbXs3MzSciQhEwvoRmLp4HLPinH3UM-jJI0G_plcOm4e_BblP30KcrIvTg4MdSHACBPs1hcJjP2bVKNDVJHxtqU9DJIYVz3gL4ftQZbMWSASNIam0owUlhpIHhpcqts7gqLu049Y29GdTNoAuheB-rQrFeGMBYJSSNNMunhv3Lm-f9w5gV7QK3eA_Ql224v1uEVorTWvu6m4W_KNz3a priority: 102 providerName: Elsevier  | 
    
| Title | Latest biotechnology tools and targets for improving abiotic stress tolerance in protein legumes | 
    
| URI | https://dx.doi.org/10.1016/j.envexpbot.2022.104824 https://nrc-publications.canada.ca/eng/view/object/?id=0a6a172b-b34a-42b4-aed4-9b5b9cfb6268 https://www.proquest.com/docview/2661040288 https://hal.inrae.fr/hal-03693602 https://linkinghub.elsevier.com/retrieve/pii/S0098847222000466  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 197 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-7307 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007376 issn: 0098-8472 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1873-7307 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007376 issn: 0098-8472 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection customDbUrl: eissn: 1873-7307 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007376 issn: 0098-8472 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1873-7307 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007376 issn: 0098-8472 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-7307 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007376 issn: 0098-8472 databaseCode: AKRWK dateStart: 19760101 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbYFmm58FhYUR6VQVxTGsdOHW4F7arAUnGg0nJAxnac3UCVVE1aWA78dmbygiKhRXtplGisKvGXmc_ONzOEPGMQEuOEcc8FifawhpSnmWFe7AcTq0UsfYvZyO_m4WzB35yK02bDrWjU7uCzzzdm1MaGyl-vq_5SW_d8laaY3htJiWUOWZX9GO6RfiiAi_dIfzF_P_3YFspEG1xxyUngAZQnOwIvl23d95XJUVHJGH7slIz_KzztnaNOcj9b20qMpXcI6f4mW-mLb3q5_CM2Hd8iqr2rWpLydbQpzcj--Kvg49Vv-za52dBWOq1xdodcc9kBuf4yB2p5cUAOj36ny4FV4y-Ku-TzCVLZkpo0L7s9fFrm-bKgOotprUMvKDBnmrbbG1SjeWppnccC5kuH7T8cTTNa1ZWA49KdgVct7pHF8dGHVzOv6engWcF46WHn9URqIH5GSqGjOAQvwoSMueTaGiBEceBiDYugRGgZay5955sohHWVnEw0Dw5JL8szd59QZ5JAjrUVIrQ8GofwZESMlNIExgQiGpCwnUplm4Ln2HdjqVpl2xfVYUAhBlSNgQEZdwNXdc2Py4e8aOdNNdSlpiQKItPlg58Curq_woLfs-mJwmvAL6IgHLOtPyCfOvDtmFqMBSrFgwILZasfXV8HXMLZWIcaiKpRJuBacWa40i7mKjLCRDYxsKiVA_KkBbQCD4OfjXTm8k2hkMLhJEmw8Tuk_--TeXCFMQ_JDTyrdaWPSK9cb9xj4H6lGZK90U9_SPrT129n82Hzuv8Cxi5dTQ | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELe2gVReEAwmOr4M4jWscezU4W1Mmwp0e9qkvSBzdpwRFCXVmm7shb-du3yNPqAh8dKo7lmp7s7nn5Pf3TH2TuCWmGZCBj7KIKAaUgEIK4I0jKYOVKpDR9nIxyfx7Ex-PlfnG-ygz4UhWmUX-9uY3kTrbmSv0-beIs8pxzfRmmodiiYFMt5k96QSUzqBvf91y_OYRk2HuaZwJomvkbx8eeV_LmxFrEoh6IWnFvJvW9Tmd-JKjspL1xCyYA2UjlblAm6uoSj-2J-OHrGHHbDk--1_f8w2fLnN7n-sEPzdbLOdw9uENpTqVvTyCfs2J7BZc5tX9fCUnddVVSw5lClvmeJLjtiW5_0DCA4knjveZpqgeOGpQYfnecmbyg94LfwFxr3lU3Z2dHh6MAu6rguBU0LWAfVGzzQgNLNaK0jSGNe5UDqVWoKzCFnSyKeAx5RMgU5B6tCHNonx5KOnU5DRDtsqq9I_Y9zbLNITcErFTiaTGNWvUgJ9NrI2UsmYxb2ijetKklNnjML03LMfZrCQIQuZ1kJjNhkmLtqqHHdP-dBb0qw5mMG94-7Jb9H2w62oJPdsf25oDBFAEsUTcRWO2dfBNdZEHUVrk9PFoIRxzQe04-g1-G0CMSCUtMZGEowUVhrwqTSJVTZxmcVjpx6zN727GYwB9GIHSl-tloZAFhlJo0w4-OG_amb3fzTzmo1mp8dzM_908uU5e0C_tHTQF2yrvlz5lwjZavuqWZK_AcMHQP0 | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF7RFKlceBQqwksL4uoSr3edNbeAWkWoVByIVA5o2Zdbg2VHsRMov54ZvyBIqKiXWLZmFdn7eebb9TczhLxkEBJdynjgo1QHWEMq0MywwIXR1GrhZGgxG_n9aTxf8Hdn4qzbcKs6tTv47Iu1OexjQ-OvV01_qY1_tcwyTO9NpMQyh6zJfox3yG4sgIuPyO7i9MPsU18oE21wxSWnUQBQnm4JvHyx8T-WpkRFJWP4sVMy_q_wtHOBOsm9YmUbMZbeIqR762KpL7_rPP8jNh3fIaq_q1aS8u1wXZtD-_Ovgo_Xv-275HZHW-msxdk9csMX--TmmxKo5eU-OTj6nS4HVp2_qO6TLydIZWtqsrIe9vBpXZZ5RXXhaKtDrygwZ5r12xtUo3lmaZvHAua5x_YfnmYFbepKwDH35-BVqwdkcXz08e086Ho6BFYwXgfYeT2VGoifkVLoxMXgRZiQjkuurQFC5CLvNCyCUqGl01yGPjRJDOsqOZ1qHh2QUVEW_iGh3qSRnGgrRGx5MonhyQiHlNJExkQiGZO4n0plu4Ln2HcjV72y7asaMKAQA6rFwJhMhoHLtubH1UNe9_OmOurSUhIFkenqwS8AXcNfYcHv-exE4TXgF0kUT9gmHJPPA_i2TC3GApXhQYGFss2Pbq8DLuFsomMNRNUoE3GtODNcae-4SowwiU0NLGrlmDzvAa3Aw-BnI134cl0ppHA4SRJswgHp__tkHl1jzGNyC89aXekTMqpXa_8UuF9tnnUv-C_C-FrB | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Latest+biotechnology+tools+and+targets+for+improving+abiotic+stress+tolerance+in+protein+legumes&rft.jtitle=Environmental+and+experimental+botany&rft.au=D%C3%A9tain%2C+Alexandre&rft.au=Bhowmik%2C+Pankaj&rft.au=Leborgne-Castel%2C+Nathalie&rft.au=Ochatt%2C+Sergio&rft.date=2022-05-01&rft.pub=Elsevier+B.V&rft.issn=0098-8472&rft.volume=197&rft_id=info:doi/10.1016%2Fj.envexpbot.2022.104824&rft.externalDocID=S0098847222000466 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-8472&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-8472&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-8472&client=summon |