Latest biotechnology tools and targets for improving abiotic stress tolerance in protein legumes

Protein legumes are among the most important crops for sustainable agriculture and global food security for decades to come. Unfortunately, they are subject to several abiotic stresses that severely limit their productivity, and this phenomenon is increasing with climate change. New Plant Breeding T...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental and experimental botany Vol. 197; p. 104824
Main Authors Détain, Alexandre, Bhowmik, Pankaj, Leborgne-Castel, Nathalie, Ochatt, Sergio
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.05.2022
Elsevier
Subjects
Online AccessGet full text
ISSN0098-8472
1873-7307
1873-7307
DOI10.1016/j.envexpbot.2022.104824

Cover

Abstract Protein legumes are among the most important crops for sustainable agriculture and global food security for decades to come. Unfortunately, they are subject to several abiotic stresses that severely limit their productivity, and this phenomenon is increasing with climate change. New Plant Breeding Technologies (NPBTs) offer novel alternatives to improve the plant performance of crops against such environmental constraints. However, the recalcitrance to transgenesis and in vitro regeneration has delayed such advances for protein legumes. This article reviews recent advances in legume crop biotechnological approaches to improve their tolerance to abiotic stresses including drought, high salinity, heat and cold, and heavy metal stress. In addition to these improvements, obtained mainly through transgenesis, we surveyed the application of tools such as CRISPR/Cas and RNA interference in legumes in a context of abiotic stress tolerance, and suggested a path to follow for gene control by these tools in legume plants, organs, or cells. Furthermore, we also discussed promising molecular targets, perspectives, and the way ahead for enhancing abiotic stress tolerance. •NPBT gave new protein legume genotypes to better cope with changing global climate.•Tolerance to drought, salinity, extreme temperatures and heavy metals were improved.•We surveyed recent advances in transgenesis, RNAi and genome editing technology.•Candidate genes modulating protein legume responses to abiotic stress are evoked.•A comprehensive survey of biotechnology-induced abiotic stress tolerance in legumes.
AbstractList Protein legumes are among the most important crops for sustainable agriculture and global food security for decades to come. Unfortunately, they are subject to several abiotic stresses that severely limit their productivity, and this phenomenon is increasing with climate change. New Plant Breeding Technologies (NPBTs) offer novel alternatives to improve the plant performance of crops against such environmental constraints. However, the recalcitrance to transgenesis and in vitro regeneration has delayed such advances for protein legumes. This article reviews recent advances in legume crop biotechnological approaches to improve their tolerance to abiotic stresses including drought, high salinity, heat and cold, and heavy metal stress. In addition to these improvements, obtained mainly through transgenesis, we surveyed the application of tools such as CRISPR/Cas and RNA interference in legumes in a context of abiotic stress tolerance, and suggested a path to follow for gene control by these tools in legume plants, organs, or cells. Furthermore, we also discussed promising molecular targets, perspectives, and the way ahead for enhancing abiotic stress tolerance.
Protein legumes are among the most important crops for sustainable agriculture and global food security for decades to come. Unfortunately, they are subject to several abiotic stresses that severely limit their productivity, and this phenomenon is increasing with climate change. New Plant Breeding Technologies (NPBTs) offer novel alternatives to improve the plant performance of crops against such environmental constraints. However, the recalcitrance to transgenesis and in vitro regeneration has delayed such advances for protein legumes. This article reviews recent advances in legume crop biotechnological approaches to improve their tolerance to abiotic stresses including drought, high salinity, heat and cold, and heavy metal stress. In addition to these improvements, obtained mainly through transgenesis, we surveyed the application of tools such as CRISPR/Cas and RNA interference in legumes in a context of abiotic stress tolerance, and suggested a path to follow for gene control by these tools in legume plants, organs, or cells. Furthermore, we also discussed promising molecular targets, perspectives, and the way ahead for enhancing abiotic stress tolerance. •NPBT gave new protein legume genotypes to better cope with changing global climate.•Tolerance to drought, salinity, extreme temperatures and heavy metals were improved.•We surveyed recent advances in transgenesis, RNAi and genome editing technology.•Candidate genes modulating protein legume responses to abiotic stress are evoked.•A comprehensive survey of biotechnology-induced abiotic stress tolerance in legumes.
ArticleNumber 104824
Author Détain, Alexandre
Leborgne-Castel, Nathalie
Ochatt, Sergio
Bhowmik, Pankaj
Author_xml – sequence: 1
  givenname: Alexandre
  surname: Détain
  fullname: Détain, Alexandre
  organization: Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France
– sequence: 2
  givenname: Pankaj
  surname: Bhowmik
  fullname: Bhowmik, Pankaj
  organization: National Research Council of Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada
– sequence: 3
  givenname: Nathalie
  surname: Leborgne-Castel
  fullname: Leborgne-Castel, Nathalie
  organization: Agroécologie, CNRS, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France
– sequence: 4
  givenname: Sergio
  surname: Ochatt
  fullname: Ochatt, Sergio
  email: sergio.ochatt@inrae.fr
  organization: Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France
BackLink https://hal.inrae.fr/hal-03693602$$DView record in HAL
BookMark eNqNkkGPFCEQhTtmTZxd_Q32UQ89Ak0DffAw2ahrMokXPWNBV88y6YERmHHn30vbRqMX90KFyveg3oPr6soHj1X1kpI1JVS82a_Rn_HhaEJeM8JY6XLF-JNqRZVsG9kSeVWtCOlVo7hkz6rrlPaEENlKsaq-biFjyrVxIaO992EKu0udQ5hSDX6oM8Qd5lSPIdbucIzh7Pyuhhl3tk45YkoFnzCCt1g7XxcmY6kT7k4HTM-rpyNMCV_8qjfVl_fvPt_eNdtPHz7ebraN7RjPjehoNyogqjVKddAPgnDCOjVwxcEaIrqhxQGkUGMHagCuKFLTC66kkhJ4e1Op5dyTP8LlO0yTPkZ3gHjRlOg5Kb3Xv5PSc1J6SapIXy_Se_gjCuD03War5x5pRd8Kws60sK8Wttj8dirJ6YNLFqcJPIZT0kwIOk-uVEHfLqiNIaWIo7YuQ3bB5whuesRY8h_94w0Ni9JHa8HDAH_Zsi5lp91cdCG0_bnA0i_plR0BAVQyo03LQXNmuAYcuO5NZ3o7GsHEbHCzXIPlXc8Oo07WYfkGg4tosx6C---oPwBBWeEj
CitedBy_id crossref_primary_10_1016_j_envexpbot_2023_105329
crossref_primary_10_1007_s11240_024_02780_y
crossref_primary_10_1016_j_agee_2023_108767
crossref_primary_10_1007_s11240_022_02388_0
crossref_primary_10_1007_s11240_023_02550_2
crossref_primary_10_1007_s11240_023_02552_0
crossref_primary_10_1186_s12870_023_04053_w
crossref_primary_10_1007_s44346_024_00004_x
crossref_primary_10_1007_s11240_023_02633_0
crossref_primary_10_1007_s11240_024_02868_5
crossref_primary_10_1016_j_stress_2024_100578
crossref_primary_10_1007_s11240_023_02607_2
crossref_primary_10_3390_plants12051060
crossref_primary_10_1007_s11032_025_01538_4
Cites_doi 10.1016/j.envexpbot.2019.103805
10.19071/jpsp.2017.v3.3148
10.1016/B978-0-12-813066-7.00006-1
10.1007/s10529-009-0178-z
10.1111/tpj.12746
10.1016/j.plantsci.2017.05.001
10.1016/j.tibtech.2014.12.003
10.1111/j.1467-7652.2008.00336.x
10.3389/fpls.2017.02125
10.1007/s11248-016-0002-1
10.1016/j.jplph.2020.153327
10.1016/j.scitotenv.2017.12.083
10.1038/nature17946
10.1016/j.jgg.2015.10.002
10.1007/s10535-009-0012-4
10.1007/s11032-013-9952-7
10.1104/pp.18.00200
10.1186/1471-2229-12-107
10.1111/pce.12929
10.1155/2017/7315351
10.1007/s11738-017-2361-5
10.1016/j.jbiotec.2015.11.005
10.1371/journal.pone.0111152
10.1016/j.bbrc.2012.09.128
10.1038/nbt.2491
10.22207/JPAM.11.1.79
10.1038/d41586-021-02265-4
10.1007/s11240-020-01944-w
10.1111/j.1365-3040.2010.02232.x
10.1104/pp.122.4.1427
10.1016/j.copbio.2019.02.015
10.1007/s00299-014-1699-z
10.1590/S1415-47572013000400015
10.1111/nph.13013
10.1111/jipb.13061
10.3389/fpls.2016.01137
10.1007/s00425-018-2866-1
10.1038/nbt.3811
10.1016/j.plantsci.2013.05.002
10.1155/2015/756120
10.1007/s00299-015-1907-5
10.1371/journal.pone.0131567
10.1007/s11816-016-0392-9
10.1371/journal.pone.0177966
10.1007/s00299-016-2089-5
10.1093/gbe/evy248
10.3389/fpls.2018.01324
10.1371/journal.pone.0106070
10.1534/g3.117.300396
10.3389/fpls.2018.00559
10.1093/aob/mcw191
10.3390/ijms22010396
10.1007/s00425-012-1781-0
10.1111/ppl.12754
10.1038/srep44304
10.1016/j.plantsci.2017.01.018
10.1111/nph.14529
10.1016/j.cell.2016.08.029
10.1016/j.jgg.2013.12.001
10.1038/nbt0118-6b
10.1016/S2095-3119(17)61863-X
10.3389/fpls.2016.00303
10.1007/s13593-014-0276-8
10.1016/j.plaphy.2018.03.007
10.1007/s10265-015-0773-0
10.1360/yc-006-1411
10.1038/s41588-019-0480-1
10.1007/s00018-016-2380-1
10.1007/s00299-018-2252-2
10.1016/j.jhazmat.2011.02.042
10.1111/j.1365-313X.2011.04859.x
10.1007/s10725-015-0113-3
10.1104/pp.103.4.1155
10.1104/pp.114.247577
10.1111/pbi.12659
10.3389/fpls.2018.01724
10.1007/s11240-017-1320-6
10.3389/fpls.2019.00678
10.3390/ijms20102541
10.1105/tpc.15.00920
10.3389/fpls.2016.01904
10.1126/science.1225829
10.1186/1471-2229-11-127
10.2135/cropsci2008.09.0573
10.1111/mpp.12375
10.3390/ijms20102471
10.1111/pbi.12066
10.1007/s11105-012-0541-4
10.3389/fpls.2015.00773
10.1111/jipb.12513
10.1016/j.envexpbot.2018.06.025
10.1038/s41586-021-03819-2
10.1371/journal.pone.0136064
10.3389/fpls.2016.01045
10.1016/j.envexpbot.2021.104521
10.1016/j.envexpbot.2018.10.017
10.1007/s11240-014-0516-2
10.1016/j.jbiotec.2016.11.017
10.1007/s00299-019-02392-3
10.1007/s10725-009-9434-4
10.1038/s41598-020-63664-7
10.3390/agronomy9010013
10.3390/antiox9080681
10.3389/fpls.2016.00004
10.3390/cells10071674
10.1104/pp.15.01661
10.1111/mpp.12160
10.1007/s11240-018-1486-6
10.1016/j.plgene.2019.100210
10.1111/ppl.12787
10.1071/FP19260
10.1007/s11627-017-9807-8
10.1016/j.bbrc.2016.02.067
10.1016/j.plantsci.2019.04.016
10.1080/21645698.2017.1289305
10.3389/fpls.2018.01291
10.1093/pcp/pcx060
10.1111/pce.12707
10.1134/S1021443718040155
10.1038/s41588-019-0402-2
10.3389/fpls.2018.00985
10.1080/07352689.2017.1402989
10.1016/j.sajb.2009.10.007
10.1016/j.biotechadv.2014.12.006
10.1093/mp/ssr013
10.1007/978-3-642-30967-0_2
10.1007/s00299-018-2355-9
10.1038/nature02874
10.1007/s11032-016-0451-5
10.1111/nph.13519
10.1104/pp.15.00783
10.1007/s00299-016-2062-3
10.1038/nbt.2969
10.1016/j.tplants.2015.10.012
10.1111/ppl.12731
10.1038/s41598-021-03268-x
10.1007/s00299-020-02534-y
10.1038/ng.3008
10.3389/fpls.2019.01446
10.1111/pbi.12758
10.1038/nbt.2654
10.3390/ijms21082695
10.3389/fpls.2016.00703
10.1016/j.plaphy.2017.12.012
10.1007/s11056-017-9621-5
10.1016/j.plaphy.2014.10.010
10.1007/s11248-013-9723-6
10.3389/fpls.2014.00086
10.1016/j.ecoenv.2020.111887
10.1111/pbi.12857
10.1111/ppl.12540
10.3389/fpls.2016.01029
10.1007/s10535-015-0515-0
10.3389/fpls.2015.00084
10.1038/s41588-018-0174-0
10.1007/s10722-020-00966-9
10.1007/s00425-011-1382-3
10.3389/fpls.2017.02135
10.1016/j.plaphy.2015.07.002
10.3389/fgene.2021.632685
10.1186/s12870-018-1467-2
10.1080/15226514.2018.1501333
10.1111/ppl.12019
10.3390/ijms22147687
10.1111/tpj.14349
10.1111/ppl.12032
10.1104/pp.102.017681
10.3389/fpls.2020.01276
10.1093/mp/ssn058
10.1016/j.tibtech.2017.04.009
10.1007/s10142-017-0572-x
10.3389/fpls.2020.00294
10.2174/1389202918666170705153045
10.1038/s41587-019-0138-7
10.3390/ijms22020949
10.1007/s00299-016-2069-9
10.1016/j.ecoenv.2020.111361
10.1016/j.plaphy.2018.03.012
10.15252/embr.202050680
10.2135/cropsci2017.09.0581
10.1073/pnas.0402251101
10.1016/j.plaphy.2013.06.024
10.3390/ijms14059643
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Attribution - NonCommercial
Copyright_xml – notice: 2022 Elsevier B.V.
– notice: Attribution - NonCommercial
DBID -LJ
GXV
AAYXX
CITATION
7S9
L.6
1XC
VOOES
ADTOC
UNPAY
DOI 10.1016/j.envexpbot.2022.104824
DatabaseName National Research Council Canada Archive
CISTI Source
CrossRef
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA


Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Botany
Environmental Sciences
Sciences
EISSN 1873-7307
ExternalDocumentID 10.1016/j.envexpbot.2022.104824
oai:HAL:hal-03693602v1
10_1016_j_envexpbot_2022_104824
oai_cisti_icist_nrc_cnrc_ca_cistinparc_0a6a172b_b34a_42b4_aed4_9b5b9cfb6268
S0098847222000466
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29G
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
AACTN
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AATTM
AAXKI
AAXUO
ABEFU
ABFNM
ABFRF
ABGRD
ABJNI
ABMAC
ABPPZ
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIUM
ACNCT
ACRLP
ACRPL
ADBBV
ADEZE
ADMUD
ADNMO
ADQTV
AEBSH
AEFWE
AEGFY
AEIPS
AEKER
AENEX
AEQOU
AFFNX
AFJKZ
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMC
HVGLF
HZ~
IHE
J1W
KOM
LW9
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SDF
SDG
SDP
SEN
SES
SEW
SPCBC
SSA
SSH
SSZ
T5K
TN5
TWZ
WH7
WUQ
XOL
~G-
~KM
-LJ
AAYWO
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AIIUN
AKBMS
AKYEP
EFKBS
EFLBG
GXV
~HD
AAYXX
AGQPQ
APXCP
CITATION
GROUPED_DOAJ
7S9
L.6
1XC
VOOES
ADTOC
AGCQF
UNPAY
ID FETCH-LOGICAL-c524t-6515f8a083b885a9d6040258d484acb065d3eda768f5a8da481e1b96487877a43
IEDL.DBID UNPAY
ISSN 0098-8472
1873-7307
IngestDate Tue Aug 26 13:33:39 EDT 2025
Tue Oct 14 20:47:24 EDT 2025
Sat Sep 27 19:30:33 EDT 2025
Thu Apr 24 23:10:00 EDT 2025
Thu Oct 02 04:25:21 EDT 2025
Fri Oct 24 21:09:05 EDT 2025
Sun Apr 06 06:54:51 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Extreme temperatures
RNA interference
Gene transfer
Legume crops
Drought
CRISPR/Cas
Heavy metals
Salinity
salinity
gene transfer
heavy metals
drought
legume crops
extreme temperatures
Language English
License Attribution - NonCommercial: http://creativecommons.org/licenses/by-nc
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c524t-6515f8a083b885a9d6040258d484acb065d3eda768f5a8da481e1b96487877a43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-2887-4389
OpenAccessLink https://proxy.k.utb.cz/login?url=https://linkinghub.elsevier.com/retrieve/pii/S0098847222000466
PQID 2661040288
PQPubID 24069
ParticipantIDs unpaywall_primary_10_1016_j_envexpbot_2022_104824
hal_primary_oai_HAL_hal_03693602v1
proquest_miscellaneous_2661040288
crossref_citationtrail_10_1016_j_envexpbot_2022_104824
crossref_primary_10_1016_j_envexpbot_2022_104824
nrccanada_primary_oai_cisti_icist_nrc_cnrc_ca_cistinparc_0a6a172b_b34a_42b4_aed4_9b5b9cfb6268
elsevier_sciencedirect_doi_10_1016_j_envexpbot_2022_104824
PublicationCentury 2000
PublicationDate 2022-05-01
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-01
  day: 01
PublicationDecade 2020
PublicationTitle Environmental and experimental botany
PublicationYear 2022
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Elmaghrabi, Rogers, Francis, Ochatt (bib57) 2018; vol 1822
Cai, Chen, Liu, Guo, Sun, Wu, Jiang, Han, Hou (bib37) 2018; 16
Kim, Cho, Pak, Kwon, Lee, Kim, Lee, Kim, Chung (bib99) 2018; 41
Zdziarski, Todeschini, Milioli, Woyann, Madureira, Stoco, Benin (bib194) 2018; 58
Kim, Alptekin, Budak (bib98) 2018; 18
McKersie, Murnaghan, Jones, Bowley (bib127) 2000; 122
Bhowmik, Konkin, Polowick, Hodgins, Subedi, Xiang, Yu, Patterson, Rajagopalan, Babic, Ro, Tar'an, Bandara, Smyth, Cui, Kagale (bib28) 2021
Suárez, Calderón, Iturriaga (bib166) 2009; 49
Fancy, Bahlmann, Loake (bib62) 2017; 40
Li, Chen, Nan, Li, Lu, Zhao, Liu, Guo, Kong, Cao (bib113) 2017; 12
Tan, Zhuo, Guo (bib167) 2013; 149
Munns, Gilliham (bib133) 2015; 3
Anbazhagan, Bhatnagar-Mathur, Vadez, Dumbala, Kishor, Sharma (bib7) 2015; 34
Großkinsky, van der Graaff, Roitsch (bib69) 2016
Curtin, Xiong, Michno, Campbell, Stec, Čermák, Starker, Voytas, Eamens, Stupar (bib50) 2018; 16
Wang, Chen, Xin, Qi, Zhang, Li, Jin, Li, Mei, Su (bib183) 2018; 17
Bulle, Yarra, Abbagani (bib33) 2016; 36
Ochatt (bib141) 2015; 35
Bechtold (bib22) 2018; 9
Zhuo, Liang, Zhao, Guo, Lu (bib209) 2018; 41
Stephens, Barakate (bib165) 2017
Thanananta, Vuttipongchaikij, Apisitwanich (bib171) 2018; 49
Yang, Liu, Gao, Sun, Ma, Yu, Ha (bib191) 2017; 1
Li, Jia, Yobi, Ge, Sato, Zhang, Angelovici, Clemente, Holding (bib106) 2018; 177
.
Jiang, Tian, Li, Yu, Hou, Ren (bib89) 2019; 10
Pan, Tao, Cheng, Shen, Ma, Zhang, Lin, Ma, Chen, Zhang (bib144) 2017; 58
Haut Conseil des Biotechnologies, 2018. Avis du Comité scientifique sur les Nouvelles techniques d’obtention de plantes [New plant breeding techniques–NPBT], accessible at
Wang, Wang, Tan, Fan, Zhu, Hong, Zhang, Duanmu (bib182) 2016; 7
Zhou, Tian, Zou, Xie, Lei, Huang, Wang, Wang, Zhang, Chen (bib205) 2008; 6
Han, Guo, Guo, Zhang, Wang, Qiu (bib74) 2019; 10
Huang, Xuan, Yang, Guo, Wang, Zhao, Xing (bib80) 2019; 285
Hasanuzzaman, Borhannuddin Bhuyan, Zulfiqar, Raza, Mohsin, Al Mahmud, Fujita, Fotopoulos (bib76) 2020; 9
John, Vaseem, Mubashir, Nelofer, Umer, Sujat, Umer, Tanushri (bib91) 2017; Volume 2
Rout, Bansal, Swain, Jadhao, Shelke, Panda (bib150) 2020; 143
Wang, Wang, Guo, Wang, Li, Chen, Dong, Chen, Wang, Li (bib180) 2016; 15
Jha, Nayyar, Mantri, Siddique (bib85) 2021; 10
Osakabe, Osakabe, Shinozaki, Tran (bib142) 2014; 5
Tiwari, Chaturvedi, Mishra, Jha (bib174) 2015; 10
Yang, Chen, Zhou, Yin, Li, Xin, Hong, Zhu, Gong (bib190) 2009; 2
Yadav (bib189) 2010; 76
Faillace, Caruso, Timmers, Favero, Guzman, Rechenmacher, de Oliveira-Busatto, de Souza, Bredemeier, Bodanese-Zanettini (bib61) 2021; 12
Jaganathan, Ramasamy, Sellamuthu, Jayabalan, Venkataraman (bib82) 2018; 9
Berni, Luyckx, Xu, Legay, Sergeant, Hausman, Lutts, Cai, Guerriero (bib23) 2019; 161
Joshi, Wani, Singh, Bohra, Dar, Lone, Pareek, Singla-Pareek (bib92) 2016; 7
Yu, Liu, Wang, Tao, Wang, Shu, Peng, Mijiti, Wang, Zhang, Ma (bib192) 2016; 35
Bhat, Mondal, Gaikwad, Kole, Chandel, Mohapatra (bib26) 2020; 21
Zhang, Duan, Zhang, Zhang, Di, Wu, Wang (bib198) 2016; 472
Song, Sun, Yang, Sun (bib162) 2018; 18
Tang, Cao, Gao, Ou, Wang, Qiu, Zheng (bib170) 2014; 9
Najera, Twyman, Christou, Zhu (bib135) 2019; 59
Jacob, Hirt, Bendahmane (bib81) 2017; 15
Kumar, Kushwaha, Panjabi-Sabharwal, Kumari, Joshi, Karan, Mittal, Pareek, Pareek (bib103) 2012; 12
Ji, Zhang, Sun, Wang, Duanmu, Fan (bib86) 2019; 20
Keeran, Ganesan, Parida (bib96) 2017; 26
Bertier, Ron, Huo, Bradford, Britt, Michelmore (bib24) 2018; 8
Feng, Yuan, Wang, Liu, Birchler, Han (bib65) 2016; 43
Nakanishi-Masuno, Shitan, Sugiyama, Takanashi, Inaba, Kaneko, Yazaki (bib137) 2018; 20
Shui, Chen, Li (bib158) 2013; 210
Baulcombe (bib21) 2004; 431
Biswas, Li, Yuan, Zhang, Zhao, Shi (bib29) 2019; 38
Lim, Jeong, Jung, Harn (bib117) 2016; 10
Shah, Iqbal, Khan, Khan, Durrani, Ahmad (bib155) 2020; 67
Chandrasekaran, Brumin, Wolf, Leibman, Klap, Pearlsman, Sherman, Arazi, Gal-On (bib40) 2016; 17
Hahn, Nekrasov (bib72) 2019; 38
Zhang, Zhang, Lang, Botella, Zhu (bib196) 2017; 36
Butler, Baltes, Voytas, Douches (bib34) 2016; 7
Schmidt, Belisle, Frommer (bib153) 2020; 21
Kamburova, Nikitina, Shermatov, Buriev, Kumpatla, Emani, Abdurakhmonov (bib94) 2017
Lonardi, Muñoz‐Amatriaín, Liang, Shu, Wanamaker, Lo, Tanskanen, Schulman, Zhu, Luo, Alhakami, Ounit, Hasan, Verdier, Roberts, Santos, Ndeve, Doležel, Vrána, Hokin, Farmer, Cannon, Close (bib118) 2019; 98
Cabello, Giacomelli, Gómez, Chan (bib35) 2017; 257
Abogadallah, Nada, Malinowski, Quick (bib3) 2011; 233
Hong, Zhang, Huang, Li, Song (bib79) 2016; 7
Nakajima, Ban, Azuma, Onoue, Moriguchi, Yamamoto, Toki, Endo (bib136) 2017; 12
AlQuraishi (bib4) 2021; 596
Gu, Chen, Yu, Cui, Pan, Zhao, Xu, Wang, Shen (bib70) 2017; 261
Roychowdhury, Khan, Choudhury (bib151) 2018
Shi, He, Zhao, Lu, Guo (bib157) 2020; 39
Zhu (bib206) 2016; 167
Erpen, Devi, Grosser, Dutt (bib60) 2018; 132
Barbosa, Leite, Marin, Marinho, Carvalho, Fuganti-Pagliarini, Bouças Farias, Neumaier, Corrêa Marcelino-Guimarães, Neves de Oliveira, Yamaguchi-Shinozaki, Nakashima, Maruyama, Kanamori, Fujita, Yoshida, Nepomuceno (bib19) 2013; 31
Nadeem, Li, Yahya, Sher, Ma, Wang, Qiu (bib134) 2019; 20
Bortesi, Fischer (bib31) 2015; 33
Mamta, Rajam (bib120) 2018; vol 2
Jiang, Ma, Ye, Jiang, Cao, Zhang (bib88) 2017; 59
Cai, Chen, Liu, Sun, Wu, Jiang, Han, Hou (bib36) 2015; 10
Chen, Liu, Wang, Wang, Cheng (bib41) 2016; 129
Gao, Feyissa, Croft, Hannoufa (bib67) 2018; 247
Anumalla, Roychowdhury, Geda, Bharathkumar, Goutam, Mohandev (bib10) 2016; 7
Fang, Qi (bib63) 2016; 28
Muhammad, Feyissa, Amyot, Aung, Hannoufa (bib132) 2017; 258
Bhatnagar-Mathur, Rao, Vadez, Dumbala, Rathore, Yamaguchi-Shinozaki, Sharma (bib27) 2014; 33
De Zélicourt, Diet, Marion, Laffont, Ariel, Moison, Zahaf, Crespi, Gruber, Frugier (bib52) 2012; 70
Atif, Patat-Ochatt, Svabova, Ondrej, Klenoticova, Jacas, Griga, Ochatt (bib14) 2013; 74
Chen, Ding, Yang, Song, Wang, Yang, Guo, Gong (bib46) 2021; 63
Li, Song, Gao, Jiang, Chen, Fang (bib110) 2015; 95
Liang, Zhang, Chen, Gao (bib116) 2014; 41
Manan, Zhao (bib121) 2021; 8
Li, Li, Li, Guo, Chen (bib107) 2018; 65
Mao, Botella, Zhu (bib122) 2017; 74
Zhan, Ke, Zhang, Zhou, Fu, Zhang, Zhong, Chen, Xie (bib195) 2018; 135
Sripriya, Parameswari, Veluthambi (bib164) 2017; 53
Détain, Redecker, Leborgne-Castel, Ochatt (bib53) 2021; 11
Zhao, Wang, Hou, Zhang, Wang, Yan, Huang, Li, Tan, Hu, Gao, Zhang, Li, Zhou, Zhang, Li (bib203) 2014; 9
Wan, Hongbo, Zhaolong, Jia, Dayong, Yihong (bib179) 2017; 18
Badhan, Ball, Mantri (bib15) 2021; 22
Kaur, Verma, Petla, Rao, Saxena, Majee (bib95) 2013; 237
Anwar, Kim (bib11) 2020; 21
Li, Wang, Ke, Ji, Jeong, Lee, Lim, Xu, Deng, Kwak (bib108) 2014; 85
Mosa, Saadoun, Kumar, Helmy, Dhankher (bib131) 2016; 7
He, Li, Ma, Zhang, Polle, Rennenberg, Cheng, Luo (bib78) 2015; 205
Jumper, Evans, Pritzel, Green, Figurnov, Ronneberger, Tunyasuvunakool, Bates, Žídek, Potapenko, Bridgland, Meyer, Kohl, Ballard, Cowie, Romera-Paredes, Nikolov, Jain, Adler, Back, Petersen, Reiman, Clancy, Michal, Steinegger, Pacholska, Berghammer, Bodenstein, Silver, Vinyals, Senior, Kavukcuoglu, Kohli, Hassabis (bib93) 2021; 596
Malnoy, Viola, Jung, Koo, Kim, Kim, Velasco, Kanchiswamy (bib119) 2016; 7
Bahmani, Modareszadeh, Kim, Hwang (bib16) 2019; 166
Li, Norville, Aach, McCormack, Zhang, Bush, Church, Sheen (bib109) 2013; 31
Somers, Samac, Olhoft (bib161) 2003; 131
An, Cheng, Hu, Chen, Cai, Yu (bib6) 2018; 155
Wolny, Skalska, Braszewska, Mur, Hasterok (bib186) 2021; 22
Peng, Ding, Meng, Yi, Gong (bib147) 2017; 40
Li, Wang, Chen, Tian, Fu, Zhu, Luo, Zhu (bib111) 2018; 9
Zhuang, Chen, Yang, Wang, Pandey, Zhang, Chang, Zhang, Zhang, Tang, Garg, Wang, Tang, Chow, Wang, Deng, Wang, Khan, Yang, Cai, Bajaj, Wu, Guo, Zhang, Li, Liang, Hu, Liao, Liu, Chitikineni, Yan, Zheng, Shan, Liu, Xie, Wang, Khan, Ali, Zhao, Li, Luo, Zhang, Zhuang, Peng, Wang, Mamadou, Zhuang, Zhao, Yu, Xiong, Quan, Yuan, Li, Zou, Xia, Zha, Fan, Yu, Xie, Yuan, Chen, Zhao, Chu, Chen, Sun, Meng, Zhuo, Zhao, Li, He, Zhao, Wang, Kavikishor, Pan, Paterson, Wang, Ming, Varshney (bib207) 2021; 51
Miki, Zinta, Zhang, Peng, Feng, Zhu (bib129) 2021; vol. 2200
Negrão, Schmöckel, Tester (bib138) 2017; 119
Noman, Aysha, Ketehouli, Yang, Du, Wang, Li (bib140) 2021; 256
Abdellatef, Kamal, Tsujimoto (bib1) 2021; 22
Sosa-Valencia, Palomar, Covarrubias, Reyes (bib163) 2017; 68
Goodwin, Sutter (bib68) 2009; 53
Jia, Xu, Orbovic, Zhang, Wang (bib87) 2017; 8
Singh, Mehta, Kumar, Tiwari, Kushwaha (bib160) 2017; 11
Xiao, Karikari, Wang, Chang, Zhao (bib187) 2021; 188
Casacuberta, Devos, du Jardin, Ramon, Vaucheret, Nogue (bib39) 2015; 33
Jang, Kim, Jang, Sukweenadhi, Kwon, Yang (bib83) 2014; 119
Li, Xu, He, Yang, Chen, Li, Ma (bib115) 2012; 427
Morphew, Arndt, Lauter, Tesfaye, Samac, Temple (bib130) 2004; 227
Zandalinas, Mittler, Balfagón, Arbona, Gómez-Cadenas (bib193) 2018; 162
Artur, Zhao, Ligterink, Schranz, Hilhorst (bib13) 2018; 11
Zhang, Zhao, Dong, Zhang, Wang, Li, Xing, Li, Dong (bib201) 2015; 6
Carrillo-Perdomo, Vidal, Kreplak (bib38) 2020; 10
Kurowska (bib104) 2020
Chen, Lu, Shu, Wang, Wang, Wang, Guo, Ye (bib45) 2017; 7
Zhang, Liu (bib202) 2011; 189
Barrera-Figueroa, Gao, Diop, Wu, Ehlers, Roberts, Close, Zhu, Liu (bib20) 2011; 11
Arshad, Feyissa, Amyot, Aung, Hannoufa (bib12) 2017; 258
Martin-Laffon, Kuntz, Ricroch (bib124) 2019; 37
Chen, Murata (bib44) 2011; 34
Ning, Zhang, Yao, Yu (bib139) 2010; 32
Marco, Bitrián, Carrasco, Rajam, Alcázar, Tiburcio (bib123) 2015; Volume II
Todaka, Shinozaki, Yamaguchi-Shinozaki (bib175) 2015; 6
Ding, Li, Chen, Xie (bib54) 2016; 7
Choi, Mun, Kim, Zhu, Baek, Mudge, Roe, Ellis, Doyle, Kiss, Young, Cook (bib49) 2004; 101
Tian, Jiang, Gao, Zhang, Zong, Zhang, Ren, Guo, Gong, Liu, Xu (bib172) 2017; 36
Waltz (bib178) 2018; 36
Haider, Liqun, Coulter, Cheema, Wu, Zhang, Wenjun, Farooq (bib73) 2021; 211
Alsajri, Singh, Wijewardana, Irby, Gao, Reddy (bib5) 2019; 9
Matthews, Arshad, Hannoufa (bib125) 2019; 165
Zhuo, Wang, Lu, Zhao, Li, Guo (bib208) 2013; 149
Du, Zeng, Zhao, Cui, Wang, Yang, Cheng, Yu (bib55) 2016; 217
Jansson (bib84) 2018; 164
Sadiq, M., Akram, N.A., 2018. Field performance of transgenic drought-tolerant crop plan
Anumalla (10.1016/j.envexpbot.2022.104824_bib10) 2016; 7
Bechtold (10.1016/j.envexpbot.2022.104824_bib22) 2018; 9
Bhat (10.1016/j.envexpbot.2022.104824_bib26) 2020; 21
Bhatnagar-Mathur (10.1016/j.envexpbot.2022.104824_bib27) 2014; 33
Todaka (10.1016/j.envexpbot.2022.104824_bib175) 2015; 6
Shi (10.1016/j.envexpbot.2022.104824_bib157) 2020; 39
Kamburova (10.1016/j.envexpbot.2022.104824_bib94) 2017
Li (10.1016/j.envexpbot.2022.104824_bib115) 2012; 427
Xue (10.1016/j.envexpbot.2022.104824_bib188) 2011; 4
Wang (10.1016/j.envexpbot.2022.104824_bib181) 2016; 7
Joshi (10.1016/j.envexpbot.2022.104824_bib92) 2016; 7
Abdelrahman (10.1016/j.envexpbot.2022.104824_bib2) 2018; 131
An (10.1016/j.envexpbot.2022.104824_bib6) 2018; 155
Engels (10.1016/j.envexpbot.2022.104824_bib59) 2013; 36
AlQuraishi (10.1016/j.envexpbot.2022.104824_bib4) 2021; 596
Manan (10.1016/j.envexpbot.2022.104824_bib121) 2021; 8
De Zélicourt (10.1016/j.envexpbot.2022.104824_bib52) 2012; 70
Pruthvi (10.1016/j.envexpbot.2022.104824_bib148) 2014; 9
Klimek-Chodacka (10.1016/j.envexpbot.2022.104824_bib100) 2018; 37
Zhuo (10.1016/j.envexpbot.2022.104824_bib209) 2018; 41
Curtin (10.1016/j.envexpbot.2022.104824_bib50) 2018; 16
Munns (10.1016/j.envexpbot.2022.104824_bib133) 2015; 3
Sripriya (10.1016/j.envexpbot.2022.104824_bib164) 2017; 53
Chen (10.1016/j.envexpbot.2022.104824_bib48) 2018; 127
Waltz (10.1016/j.envexpbot.2022.104824_bib178) 2018; 36
Butler (10.1016/j.envexpbot.2022.104824_bib34) 2016; 7
Berni (10.1016/j.envexpbot.2022.104824_bib23) 2019; 161
Tang (10.1016/j.envexpbot.2022.104824_bib168) 2016; 170
Ning (10.1016/j.envexpbot.2022.104824_bib139) 2010; 32
10.1016/j.envexpbot.2022.104824_bib145
Jumper (10.1016/j.envexpbot.2022.104824_bib93) 2021; 596
Anbazhagan (10.1016/j.envexpbot.2022.104824_bib7) 2015; 34
Lim (10.1016/j.envexpbot.2022.104824_bib117) 2016; 10
Zandalinas (10.1016/j.envexpbot.2022.104824_bib193) 2018; 162
Tian (10.1016/j.envexpbot.2022.104824_bib172) 2017; 36
Détain (10.1016/j.envexpbot.2022.104824_bib53) 2021; 11
Abdellatef (10.1016/j.envexpbot.2022.104824_bib1) 2021; 22
Andersson (10.1016/j.envexpbot.2022.104824_bib8) 2017; 36
Chen (10.1016/j.envexpbot.2022.104824_bib41) 2016; 129
Chen (10.1016/j.envexpbot.2022.104824_bib42) 2010; 60
Kreplak (10.1016/j.envexpbot.2022.104824_bib102) 2019; 51
Barbosa (10.1016/j.envexpbot.2022.104824_bib19) 2013; 31
Du (10.1016/j.envexpbot.2022.104824_bib55) 2016; 217
Li (10.1016/j.envexpbot.2022.104824_bib110) 2015; 95
Song (10.1016/j.envexpbot.2022.104824_bib162) 2018; 18
Baulcombe (10.1016/j.envexpbot.2022.104824_bib21) 2004; 431
Li (10.1016/j.envexpbot.2022.104824_bib112) 2013; 11
Haider (10.1016/j.envexpbot.2022.104824_bib73) 2021; 211
Hong (10.1016/j.envexpbot.2022.104824_bib79) 2016; 7
Mosa (10.1016/j.envexpbot.2022.104824_bib131) 2016; 7
Atif (10.1016/j.envexpbot.2022.104824_bib14) 2013; 74
Zhang (10.1016/j.envexpbot.2022.104824_bib200) 2015; 16
Zong (10.1016/j.envexpbot.2022.104824_bib210) 2017; 35
Bahmani (10.1016/j.envexpbot.2022.104824_bib16) 2019; 166
Brooks (10.1016/j.envexpbot.2022.104824_bib32) 2014; 166
Hahn (10.1016/j.envexpbot.2022.104824_bib72) 2019; 38
Gürel (10.1016/j.envexpbot.2022.104824_bib71) 2016; 7
Cabello (10.1016/j.envexpbot.2022.104824_bib35) 2017; 257
He (10.1016/j.envexpbot.2022.104824_bib78) 2015; 205
Somers (10.1016/j.envexpbot.2022.104824_bib161) 2003; 131
Gu (10.1016/j.envexpbot.2022.104824_bib70) 2017; 261
Stephens (10.1016/j.envexpbot.2022.104824_bib165) 2017
Bulle (10.1016/j.envexpbot.2022.104824_bib33) 2016; 36
Ji (10.1016/j.envexpbot.2022.104824_bib86) 2019; 20
Marco (10.1016/j.envexpbot.2022.104824_bib123) 2015; Volume II
Barrera-Figueroa (10.1016/j.envexpbot.2022.104824_bib20) 2011; 11
Jang (10.1016/j.envexpbot.2022.104824_bib83) 2014; 119
Negrão (10.1016/j.envexpbot.2022.104824_bib138) 2017; 119
Chen (10.1016/j.envexpbot.2022.104824_bib47) 2006; 28
Bortesi (10.1016/j.envexpbot.2022.104824_bib31) 2015; 33
Huang (10.1016/j.envexpbot.2022.104824_bib80) 2019; 285
Thanananta (10.1016/j.envexpbot.2022.104824_bib171) 2018; 49
Zhang (10.1016/j.envexpbot.2022.104824_bib197) 2020; 11
Zhang (10.1016/j.envexpbot.2022.104824_bib201) 2015; 6
Erpen (10.1016/j.envexpbot.2022.104824_bib60) 2018; 132
Li (10.1016/j.envexpbot.2022.104824_bib114) 2015; 169
Kidokoro (10.1016/j.envexpbot.2022.104824_bib97) 2015; 81
Artur (10.1016/j.envexpbot.2022.104824_bib13) 2018; 11
Hasanuzzaman (10.1016/j.envexpbot.2022.104824_bib75) 2013; 14
Kumar (10.1016/j.envexpbot.2022.104824_bib103) 2012; 12
Abogadallah (10.1016/j.envexpbot.2022.104824_bib3) 2011; 233
Bertier (10.1016/j.envexpbot.2022.104824_bib24) 2018; 8
Jiang (10.1016/j.envexpbot.2022.104824_bib89) 2019; 10
Schmutz (10.1016/j.envexpbot.2022.104824_bib154) 2014; 46
Xiao (10.1016/j.envexpbot.2022.104824_bib187) 2021; 188
Meng (10.1016/j.envexpbot.2022.104824_bib128) 2017; 36
Wang (10.1016/j.envexpbot.2022.104824_bib183) 2018; 17
Zhuo (10.1016/j.envexpbot.2022.104824_bib208) 2013; 149
Tang (10.1016/j.envexpbot.2022.104824_bib170) 2014; 9
Andersson (10.1016/j.envexpbot.2022.104824_bib9) 2018; 164
Biswas (10.1016/j.envexpbot.2022.104824_bib29) 2019; 38
Matthews (10.1016/j.envexpbot.2022.104824_bib125) 2019; 165
Jia (10.1016/j.envexpbot.2022.104824_bib87) 2017; 8
Varshney (10.1016/j.envexpbot.2022.104824_bib177) 2013; 31
Gao (10.1016/j.envexpbot.2022.104824_bib67) 2018; 247
Wolny (10.1016/j.envexpbot.2022.104824_bib186) 2021; 22
Kurowska (10.1016/j.envexpbot.2022.104824_bib104) 2020
Carrillo-Perdomo (10.1016/j.envexpbot.2022.104824_bib38) 2020; 10
Großkinsky (10.1016/j.envexpbot.2022.104824_bib69) 2016
Martin-Laffon (10.1016/j.envexpbot.2022.104824_bib124) 2019; 37
Miki (10.1016/j.envexpbot.2022.104824_bib129) 2021; vol. 2200
Yadav (10.1016/j.envexpbot.2022.104824_bib189) 2010; 76
Chen (10.1016/j.envexpbot.2022.104824_bib44) 2011; 34
Chen (10.1016/j.envexpbot.2022.104824_bib46) 2021; 63
Zhu (10.1016/j.envexpbot.2022.104824_bib206) 2016; 167
Baloda (10.1016/j.envexpbot.2022.104824_bib17) 2017; 3
Davison (10.1016/j.envexpbot.2022.104824_bib51) 2017; 8
Li (10.1016/j.envexpbot.2022.104824_bib111) 2018; 9
Singh (10.1016/j.envexpbot.2022.104824_bib160) 2017; 11
Jiang (10.1016/j.envexpbot.2022.104824_bib88) 2017; 59
Faillace (10.1016/j.envexpbot.2022.104824_bib61) 2021; 12
John (10.1016/j.envexpbot.2022.104824_bib91) 2017; Volume 2
Yu (10.1016/j.envexpbot.2022.104824_bib192) 2016; 35
Rout (10.1016/j.envexpbot.2022.104824_bib150) 2020; 143
Chandrasekaran (10.1016/j.envexpbot.2022.104824_bib40) 2016; 17
Osakabe (10.1016/j.envexpbot.2022.104824_bib142) 2014; 5
Bhowmik (10.1016/j.envexpbot.2022.104824_bib28) 2021
Fang (10.1016/j.envexpbot.2022.104824_bib63) 2016; 28
10.1016/j.envexpbot.2022.104824_bib77
Bless (10.1016/j.envexpbot.2022.104824_bib30) 2018; 625
Li (10.1016/j.envexpbot.2022.104824_bib107) 2018; 65
Kim (10.1016/j.envexpbot.2022.104824_bib98) 2018; 18
Ochatt (10.1016/j.envexpbot.2022.104824_bib141) 2015; 35
Dwivedi (10.1016/j.envexpbot.2022.104824_bib56) 2016; 21
Chen (10.1016/j.envexpbot.2022.104824_bib45) 2017; 7
Emamverdian (10.1016/j.envexpbot.2022.104824_bib58) 2015
Liang (10.1016/j.envexpbot.2022.104824_bib116) 2014; 41
Wani (10.1016/j.envexpbot.2022.104824_bib185) 2016
Zhang (10.1016/j.envexpbot.2022.104824_bib199) 2017; 35
Zhang (10.1016/j.envexpbot.2022.104824_bib198) 2016; 472
Fancy (10.1016/j.envexpbot.2022.104824_bib62) 2017; 40
Sosa-Valencia (10.1016/j.envexpbot.2022.104824_bib163) 2017; 68
Mamta (10.1016/j.envexpbot.2022.104824_bib120) 2018; vol 2
Li (10.1016/j.envexpbot.2022.104824_bib109) 2013; 31
Zhao (10.1016/j.envexpbot.2022.104824_bib203) 2014; 9
Han (10.1016/j.envexpbot.2022.104824_bib74) 2019; 10
Tang (10.1016/j.envexpbot.2022.104824_bib169) 2013; 71
Wang (10.1016/j.envexpbot.2022.104824_bib180) 2016; 15
Mao (10.1016/j.envexpbot.2022.104824_bib122) 2017; 74
Zhang (10.1016/j.envexpbot.2022.104824_bib196) 2017; 36
Li (10.1016/j.envexpbot.2022.104824_bib113) 2017; 12
Zheng (10.1016/j.envexpbot.2022.104824_bib204) 2017; 8
Yang (10.1016/j.envexpbot.2022.104824_bib190) 2009; 2
Tan (10.1016/j.envexpbot.2022.104824_bib167) 2013; 149
Yang (10.1016/j.envexpbot.2022.104824_bib191) 2017; 1
Zdziarski (10.1016/j.envexpbot.2022.104824_bib194) 2018; 58
Schmidt (10.1016/j.envexpbot.2022.104824_bib153) 2020; 21
Shui (10.1016/j.envexpbot.2022.104824_bib158) 2013; 210
Wang (10.1016/j.envexpbot.2022.104824_bib182) 2016; 7
Jansson (10.1016/j.envexpbot.2022.104824_bib84) 2018; 164
Tiwari (10.1016/j.envexpbot.2022.104824_bib173) 2020; 206
McKersie (10.1016/j.envexpbot.2022.104824_bib127) 2000; 122
de Paiva Rolla (10.1016/j.envexpbot.2022.104824_bib143) 2014; 23
Ferment (10.1016/j.envexpbot.2022.104824_bib66) 2017
Li (10.1016/j.envexpbot.2022.104824_bib106) 2018; 177
Jaganathan (10.1016/j.envexpbot.2022.104824_bib82) 2018; 9
Ding (10.1016/j.envexpbot.2022.104824_bib54) 2016; 7
Casacuberta (10.1016/j.envexpbot.2022.104824_bib39) 2015; 33
Roychowdhury (10.1016/j.envexpbot.2022.104824_bib151) 2018
Fasani (10.1016/j.envexpbot.2022.104824_bib64) 2017; 214
Feng (10.1016/j.envexpbot.2022.104824_bib65) 2016; 43
Pan (10.1016/j.envexpbot.2022.104824_bib144) 2017; 58
Lassoued (10.1016/j.envexpbot.2022.104824_bib105) 2018; 9
Parmar (10.1016/j.envexpbot.2022.104824_bib146) 2017; 7
Hasanuzzaman (10.1016/j.envexpbot.2022.104824_bib76) 2020; 9
Jinek (10.1016/j.envexpbot.2022.104824_bib90) 2012; 337
Kaur (10.1016/j.envexpbot.2022.104824_bib95) 2013; 237
Bhandari (10.1016/j.envexpbot.2022.104824_bib25) 2017; 39
Wan (10.1016/j.envexpbot.2022.104824_bib179) 2017; 18
Jacob (10.1016/j.envexpbot.2022.104824_bib81) 2017; 15
Tiwari (10.1016/j.envexpbot.2022.104824_bib174) 2015; 10
Anwar (10.1016/j.envexpbot.2022.104824_bib11) 2020; 21
Goodwin (10.1016/j.envexpbot.2022.104824_bib68) 2009; 53
Wang (10.1016/j.envexpbot.2022.104824_bib184) 2014; 32
Jha (10.1016/j.envexpbot.2022.104824_bib85) 2021; 10
Zhou (10.1016/j.envexpbot.2022.104824_bib205) 2008; 6
Cai (10.1016/j.envexpbot.2022.104824_bib37) 2018; 16
Singh (10.1016/j.envexpbot.2022.104824_bib159) 2015; 59
Nakanishi-Masuno (10.1016/j.envexpbot.2022.104824_bib137) 2018; 20
Peng (10.1016/j.envexpbot.2022.104824_bib147) 2017; 40
Kim (10.1016/j.envexpbot.2022.104824_bib99) 2018; 41
10.1016/j.envexpbo
References_xml – volume: 10
  year: 2015
  ident: bib174
  article-title: Introgression of the SbASR-1 gene cloned from a halophyte
  publication-title: PLoS One
– volume: 205
  start-page: 240
  year: 2015
  end-page: 254
  ident: bib78
  article-title: Overexpression of bacterial γ-glutamylcysteine synthetase mediates changes in cadmium influx, allocation and detoxification in poplar
  publication-title: New Phytol.
– volume: 39
  start-page: 851
  year: 2020
  end-page: 860
  ident: bib157
  article-title: Constitutive expression of a group 3 LEA protein from
  publication-title: Plant Cell Rep.
– volume: 10
  start-page: 678
  year: 2019
  ident: bib89
  article-title: H
  publication-title: Front. Plant Sci.
– volume: 5
  start-page: 86
  year: 2014
  ident: bib142
  article-title: Response of plants to water stress
  publication-title: Front. Plant Sci.
– volume: 122
  start-page: 1427
  year: 2000
  end-page: 1438
  ident: bib127
  article-title: Iron Superoxide Dismutase expression in transgenic alfalfa increases winter survival without a detectable increase in photosynthetic oxidative stress tolerance
  publication-title: Plant Physiol.
– volume: 155
  start-page: 45
  year: 2018
  end-page: 55
  ident: bib6
  article-title: The
  publication-title: Environ. Exp. Bot.
– year: 2017
  ident: bib94
  article-title: Genome editing in plants: an overview of tools and applications
  publication-title: Int. J. Agron.
– volume: 164
  start-page: 378
  year: 2018
  end-page: 384
  ident: bib9
  article-title: Genome editing in potato via CRISPR-Cas9 ribonucleoprotein delivery
  publication-title: Physiol. Plant
– volume: 11
  start-page: 459
  year: 2018
  end-page: 471
  ident: bib13
  article-title: Dissecting the genomic diversification of LATE EMBRYOGENESIS ABUNDANT (LEA) protein gene families in plants
  publication-title: Genome Biol. Evol.
– volume: 11
  start-page: 605
  year: 2017
  end-page: 614
  ident: bib160
  article-title: Role of miRNAs in Legume crops in response to biotic and abiotic stress
  publication-title: J. Pure Appl. Microbiol.
– volume: 49
  start-page: 1791
  year: 2009
  ident: bib166
  article-title: Enhanced tolerance to multiple abiotic stresses in transgenic alfalfa accumulating trehalose
  publication-title: Crop Sci.
– volume: 258
  start-page: 122
  year: 2017
  end-page: 136
  ident: bib12
  article-title: MicroRNA156 improves drought stress tolerance in alfalfa (
  publication-title: Plant Sci.
– reference: Parisi, C., Rodriguez-Cerezo, E., 2021. Current and future market applications of new genomic techniques, EUR 30589 EN, Publications Office of the European Union, Luxembourg, ISBN 978–92-76–30206-3, https://doi.org/10.2760/02472, JRC123830. Op. cit. p.5
– volume: 35
  start-page: 871
  year: 2017
  end-page: 882
  ident: bib199
  article-title: Next-generation insect-resistant plants: RNAi- mediated crop protection
  publication-title: Trends Biotechnol.
– volume: 7
  start-page: 1045
  year: 2016
  ident: bib34
  article-title: Geminivirus-mediated genome editing in potato (
  publication-title: Front. Plant Sci.
– volume: 10
  start-page: 1674
  year: 2021
  ident: bib85
  article-title: Non-Coding RNAs in legumes: their emerging roles in regulating biotic/abiotic stress responses and plant growth and development
  publication-title: Cells
– volume: 79
  start-page: 1
  year: 2016
  end-page: 17
  ident: bib18
  article-title: Group II late embryogenesis abundant (LEA) proteins: structural and functional aspects in plant abiotic stress
  publication-title: Plant Growth Regul.
– volume: 63
  start-page: 53
  year: 2021
  end-page: 78
  ident: bib46
  article-title: Protein kinases in plant responses to drought, salt, and cold stress
  publication-title: J. Int. Plant Biol.
– volume: 7
  start-page: 1333
  year: 2016
  ident: bib182
  article-title: . Efficient inactivation of symbiotic nitrogen fixation related genes in
  publication-title: Front. Plant Sci.
– volume: 59
  start-page: 86
  year: 2017
  end-page: 101
  ident: bib88
  article-title: WRKY transcription factors in plant responses to stresses
  publication-title: J. Integr. Plant Biol.
– volume: 74
  start-page: 1075
  year: 2017
  end-page: 1093
  ident: bib122
  article-title: Heritability of targeted gene modifications induced by plant- optimized CRISPR systems
  publication-title: Cell. Mol. Life Sci.
– volume: 472
  start-page: 75
  year: 2016
  end-page: 82
  ident: bib198
  article-title: Co-transforming
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 7
  start-page: 1904
  year: 2016
  ident: bib119
  article-title: DNA Free genetically edited grapevine and apple protoplast using CRISPR/Cas9 ribonucleoproteins
  publication-title: Front. Plant Sci.
– volume: 22
  start-page: 7687
  year: 2021
  ident: bib1
  article-title: Tuning beforehand: A foresight on RNA interference (RNAi) and in vitro-derived dsRNAs to enhance crop resilience to biotic and abiotic stresses
  publication-title: Int. J. Mol. Sci.
– volume: 35
  start-page: 613
  year: 2016
  end-page: 627
  ident: bib192
  article-title: CarNAC4, a NAC-type chickpea transcription factor conferring enhanced drought and salt stress tolerances in
  publication-title: Plant Cell Rep.
– volume: 15
  start-page: 405
  year: 2017
  end-page: 414
  ident: bib81
  article-title: The heat-shock protein/chaperone network and multiple stress resistance
  publication-title: Plant Biotechnol. J.
– volume: 103
  start-page: 1155
  year: 1993
  end-page: 1163
  ident: bib126
  article-title: Superoxide Dismutase enhances tolerance of freezing stress in transgenic Alfalfa (
  publication-title: Plant Physiol.
– volume: 22
  start-page: 396
  year: 2021
  ident: bib15
  article-title: First report of CRISPR/Cas9 mediated DNA-free editing of 4CL and RVE7 genes in chickpea protoplasts
  publication-title: Int. J. Mol. Sci.
– volume: 596
  start-page: 583
  year: 2021
  end-page: 589
  ident: bib93
  article-title: Highly accurate protein structure prediction with AlphaFold
  publication-title: Nature
– volume: 2
  start-page: 22
  year: 2009
  end-page: 31
  ident: bib190
  article-title: Overexpression of SOS (Salt Overly Sensitive) genes increases salt tolerance in transgenic Arabidopsis
  publication-title: Mol. Plant
– volume: 101
  start-page: 15289
  year: 2004
  end-page: 15294
  ident: bib49
  article-title: Estimating genome conservation between crop and model legume species
  publication-title: PNAS
– volume: 188
  year: 2021
  ident: bib187
  article-title: Structure characterization and potential role of soybean phospholipases A multigene family in response to multiple abiotic stress uncovered by CRISPR/Cas9 technology
  publication-title: Environ. Exp. Bot.
– volume: 41
  start-page: 413
  year: 2018
  end-page: 422
  ident: bib99
  article-title: Confirmation of drought tolerance of ectopically expressed
  publication-title: Mol. Cells
– volume: 12
  start-page: 107
  year: 2012
  ident: bib103
  article-title: Clustered metallothionein genes are co-regulated in rice and ectopic expression of
  publication-title: BMC Plant Biol.
– volume: 31
  start-page: 688
  year: 2013
  end-page: 691
  ident: bib109
  article-title: Multiplex and homologous recombination-mediated genome editing in Arabidopsis and
  publication-title: Nat. Biotechnol.
– volume: 189
  start-page: 357
  year: 2011
  end-page: 362
  ident: bib202
  article-title: Transgenic alfalfa plants co-expressing glutathione S-transferase (GST) and human CYP2E1 show enhanced resistance to mixed contaminates of heavy metals and organic pollutants
  publication-title: J. Hazard. Mater.
– volume: 431
  start-page: 356
  year: 2004
  end-page: 363
  ident: bib21
  article-title: RNA silencing in plants
  publication-title: Nature
– volume: 10
  start-page: 6790
  year: 2020
  ident: bib38
  article-title: Development of new genetic resources for faba bean (
  publication-title: Sci. Rep.
– volume: 28
  start-page: 1411
  year: 2006
  end-page: 1420
  ident: bib47
  article-title: Cloning of GmHSFA1 gene and its overexpression leading to enhancement of heat tolerance in transgenic soybean
  publication-title: Yi Chuan Hered.
– volume: 119
  start-page: 95
  year: 2014
  end-page: 106
  ident: bib83
  article-title: Ectopic overexpression of the aluminium-induced protein gene from
  publication-title: Plant Cell Tissue Organ Cult.
– volume: 7
  start-page: 4
  year: 2016
  ident: bib79
  article-title: Overexpression of a stress-responsive NAC transcription factor gene ONAC022 improves drought and salt tolerance in rice
  publication-title: Front. Plant Sci.
– volume: vol 2
  start-page: 41
  year: 2018
  end-page: 65
  ident: bib120
  article-title: RNA interference: a promising approach for crop improvement
  publication-title: Biotechnologies of Crop Improvement
– volume: 9
  start-page: 681
  year: 2020
  ident: bib76
  article-title: Reactive oxygen species and antioxidant defense in plants under abiotic stress: revisiting the crucial role of a universal defense regulator
  publication-title: Antioxidants
– volume: 427
  start-page: 731
  year: 2012
  end-page: 736
  ident: bib115
  article-title: Overexpression of soybean GmCBL1 enhances abiotic stress tolerance and promotes hypocotyl elongation in Arabidopsis
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 217
  start-page: 90
  year: 2016
  end-page: 97
  ident: bib55
  article-title: Efficient targeted mutagenesis in soybean by TALENs and CRISPR/Cas9
  publication-title: J. Biotechnol.
– volume: 74
  start-page: 37
  year: 2013
  end-page: 100
  ident: bib14
  article-title: Gene transfer in legumes
  publication-title: Prog. Bot.
– volume: 16
  start-page: 176
  year: 2018
  end-page: 185
  ident: bib37
  article-title: CRISPR/Cas9-mediated targeted mutagenesis of GmFT2a delays flowering time in soybean
  publication-title: Plant Biotechnol. J.
– volume: 70
  start-page: 220
  year: 2012
  end-page: 230
  ident: bib52
  article-title: Dual involvement of a
  publication-title: Plant J.
– volume: 40
  start-page: 1368
  year: 2017
  end-page: 1378
  ident: bib147
  article-title: Enhanced metal tolerance correlates with het-erotypic variation in SpMTL, a metallothionein-like protein from the hyperaccumulator
  publication-title: Plant Cell Environ.
– volume: 67
  start-page: 2119
  year: 2020
  end-page: 2127
  ident: bib155
  article-title: Genetic manipulation of pea (
  publication-title: Genet. Res. Crop Evol.
– volume: 15
  year: 2016
  ident: bib180
  article-title: Cloning and characterization of a novel betaine aldehyde dehydrogenase gene from
  publication-title: Genet. Mol. Res.
– year: 2017
  ident: bib66
  article-title: Transgenic crops – hazards and uncertainties: More than 750 studies disregarded by the GMOs regulatory bodies
  publication-title: Bras.: Minist. Agrar. Dev.
– volume: 14
  start-page: 9643
  year: 2013
  end-page: 9684
  ident: bib75
  article-title: Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants
  publication-title: Int. J. Mol. Sci.
– volume: 34
  start-page: 199
  year: 2015
  end-page: 210
  ident: bib7
  article-title: DREB1A overexpression in transgenic chickpea alters key traits influencing plant water budget across water regimes
  publication-title: Plant Cell Rep.
– volume: 166
  year: 2019
  ident: bib16
  article-title: Overexpression of tobacco UBQ2 increases Cd tolerance by decreasing Cd accumulation and oxidative stress in tobacco and Arabidopsis
  publication-title: Environ. Exp. Bot.
– volume: 533
  start-page: 420
  year: 2016
  end-page: 424
  ident: bib101
  article-title: Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage
  publication-title: Nature
– start-page: 345
  year: 2016
  end-page: 396
  ident: bib185
  article-title: Transgenic approaches for abiotic stress tolerance in crop plants
  publication-title: Advances in Plant Breeding Strategies: Agronomic, Abiotic and Biotic Stress Traits
– volume: 51
  start-page: 865
  year: 2021
  end-page: 876
  ident: bib207
  article-title: The genome of cultivated peanut provides insight into legume karyotypes, polyploid evolution and crop domestication
  publication-title: Nat. Genet.
– volume: 36
  start-page: 556
  year: 2013
  end-page: 565
  ident: bib59
  article-title: Introduction of the rd29A: AtDREB2A CA gene into soybean (
  publication-title: Genet. Mol. Biol.
– volume: 8
  start-page: 13
  year: 2017
  end-page: 34
  ident: bib51
  article-title: New GMO regulations for old: determining a new future for EU crop biotechnology
  publication-title: GM Crop. Food
– volume: 166
  start-page: 1292
  year: 2014
  end-page: 1297
  ident: bib32
  article-title: Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR- associated9 system
  publication-title: Plant Physiol.
– volume: 22
  start-page: 949
  year: 2021
  ident: bib186
  article-title: Defining the Cell Wall, Cell Cycle and Chromatin Landmarks in the Responses of
  publication-title: Int. J. Mol. Sci.
– volume: 7
  start-page: 1137
  year: 2016
  ident: bib71
  article-title: Barley genes as tools to confer abiotic stress tolerance in crops
  publication-title: Front. Plant Sci.
– volume: 35
  start-page: 535
  year: 2015
  end-page: 552
  ident: bib141
  article-title: Agroecological impact of an in vitro biotechnology approach of embryo development and seed filling in legumes
  publication-title: Agron. Sustain. Dev.
– volume: 46
  start-page: 707
  year: 2014
  end-page: 713
  ident: bib154
  article-title: A reference genome for common bean and genome-wide analysis of dual domestications
  publication-title: Nat. Genet.
– volume: 36
  start-page: 399
  year: 2017
  end-page: 406
  ident: bib172
  article-title: Efficient CRISPR/Cas9-based gene knockout in watermelon
  publication-title: Plant Cell Rep.
– volume: 10
  start-page: 105
  year: 2016
  end-page: 116
  ident: bib117
  article-title: Transgenic tomato plants expressing strawberry D-galacturonic acid reductase gene display enhanced tolerance to abiotic stresses
  publication-title: Plant Biotechnol. Rep.
– volume: 23
  start-page: 75
  year: 2014
  end-page: 87
  ident: bib143
  article-title: Phenotyping soybean plants transformed with rd29A:AtDREB1A for drought tolerance in the greenhouse and field
  publication-title: Transgenic Res.
– volume: 3
  start-page: 5
  year: 2017
  ident: bib17
  article-title: Transformation of mungbean plants for salt and drought tolerance by introducing a gene for an osmoprotectant glycine betaine
  publication-title: J. Plant Stress Physiol.
– volume: 18
  start-page: 243
  year: 2018
  ident: bib162
  article-title: WRKY transcription factors in legumes
  publication-title: BMC Plant Biol.
– volume: 149
  start-page: 67
  year: 2013
  end-page: 78
  ident: bib208
  article-title: A cold responsive galactinol synthase gene from
  publication-title: Physiol. Plant
– volume: 131
  start-page: 892
  year: 2003
  end-page: 899
  ident: bib161
  article-title: Recent advances in legume transformation
  publication-title: Plant Physiol.
– volume: 135
  start-page: 545
  year: 2018
  end-page: 558
  ident: bib195
  article-title: Overexpression of two cold-responsive ATAF-like NAC transcription factors from fine-stem stylo (
  publication-title: Plant Cell Tissue Organ Cult.
– volume: 162
  start-page: 2
  year: 2018
  end-page: 12
  ident: bib193
  article-title: Plant adaptations to the combination of drought and high temperatures
  publication-title: Physiol. Plant
– volume: 11
  year: 2021
  ident: bib53
  article-title: Structural conservation of WEE1 and its role in cell cycle regulation in plants
  publication-title: Sci. Rep.
– reference: Sadiq, M., Akram, N.A., 2018. Field performance of transgenic drought-tolerant crop plants. In: Wani, S.H., (Ed.) Biochemical, physiological and molecular avenues for combating abiotic stress tolerance in plants, pp. 83–102. https://doi.org/10.1016/B978–0-12–813066-7.00006–1.
– volume: 32
  start-page: 557
  year: 2010
  end-page: 564
  ident: bib139
  article-title: Overexpression of a soybean O-acetylserine (thiol) lyase-encoding gene GmOASTL4 in tobacco increases cysteine levels and enhances tolerance to cadmium stress
  publication-title: Biotechnol. Lett.
– volume: 12
  year: 2021
  ident: bib61
  article-title: Molecular characterisation of soybean osmotins and their involvement in drought stress response
  publication-title: Front. Genet.
– volume: 16
  start-page: 48
  year: 2015
  end-page: 60
  ident: bib200
  article-title: A
  publication-title: Mol. Plant Pathol.
– volume: 119
  start-page: 1
  year: 2017
  end-page: 11
  ident: bib138
  article-title: Evaluating physiological responses of plants to salinity stress
  publication-title: Ann. Bot.
– volume: 3
  start-page: 668
  year: 2015
  end-page: 673
  ident: bib133
  article-title: Salinity tolerance of crops–what is the cost?
  publication-title: New Phytol.
– volume: 26
  start-page: 247
  year: 2017
  end-page: 261
  ident: bib96
  article-title: A novel heavy metal ATPase peptide from
  publication-title: Transgenic Res.
– volume: 247
  start-page: 1043
  year: 2018
  end-page: 1050
  ident: bib67
  article-title: Gene editing by CRISPR/Cas9 in the obligatory outcrossing
  publication-title: Planta
– volume: Volume 2
  start-page: 261
  year: 2017
  end-page: 275
  ident: bib91
  article-title: Trehalose: metabolism and role in stress signaling in plants
  publication-title: Stress Signaling in Plants: Genomics and Proteomics Perspective
– volume: 7
  start-page: 12754
  year: 2016
  end-page: 12771
  ident: bib10
  article-title: Mechanism of stress signal transduction and involvement of stress inducible transcription factors and genes in response to abiotic stresses in plant
  publication-title: Int. J. Recent Sci. Res.
– volume: 6
  start-page: 486
  year: 2008
  end-page: 503
  ident: bib205
  article-title: Soybean WRKY-type transcription factor genes, GmWRKY13, GmWRKY21 and GmWRKY54, confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants
  publication-title: Plant Biotechnol. J.
– volume: 38
  start-page: 437
  year: 2019
  end-page: 441
  ident: bib72
  article-title: CRISPR/Cas precision: do we need to worry about off-targeting in plants?
  publication-title: Plant Cell Rep.
– volume: 37
  start-page: 613
  year: 2019
  end-page: 620
  ident: bib124
  article-title: Worldwide CRISPR patent landscape shows strong geographical biases
  publication-title: Nat. Biotechnol.
– volume: 11
  start-page: 747
  year: 2013
  end-page: 758
  ident: bib112
  article-title: Expression of an Arabidopsis molybdenum cofactor sulphurase gene in soybean enhances drought tolerance and increases yield under field conditions
  publication-title: Plant Biotechnol. J.
– volume: 21
  year: 2020
  ident: bib153
  article-title: The evolving landscape around genome editing in agriculture
  publication-title: EMBO Rep.
– volume: 9
  start-page: 559
  year: 2018
  ident: bib111
  article-title: Lycopene is enriched in tomato fruit by CRISPR/Cas9-mediated multiplex genome editing
  publication-title: Front. Plant Sci.
– reference: .
– start-page: 157
  year: 2017
  end-page: 161
  ident: bib165
  article-title: Gene editing technologies- ZFNs, TALENs, and CRISPR/Cas9
  publication-title: Encyclopedia of applied plant sciences
– volume: 6
  start-page: 773
  year: 2015
  ident: bib201
  article-title: Genome-wide analysis and expression profiling under heat and drought treatments of HSP70 gene family in soybean (
  publication-title: Front. Plant Sci.
– volume: 43
  start-page: 37
  year: 2016
  end-page: 43
  ident: bib65
  article-title: Efficient targeted genome modification in maize using CRISPR/Cas9 system
  publication-title: J. Genet. Genom.
– volume: 7
  start-page: 44304
  year: 2017
  ident: bib45
  article-title: Targeted mutagenesis in cotton (
  publication-title: Sci. Rep.
– volume: 214
  start-page: 1614
  year: 2017
  end-page: 1630
  ident: bib64
  article-title: The MTP 1 promoters from
  publication-title: New Phytol.
– volume: 36
  start-page: 6
  year: 2018
  end-page: 7
  ident: bib178
  article-title: With a free pass, CRISPR-edited plants reach market in record time
  publication-title: Nat. Biotechnol.
– volume: 41
  start-page: 2021
  year: 2018
  end-page: 2032
  ident: bib209
  article-title: A cold responsive ethylene responsive factor from
  publication-title: Plant Cell Environ.
– volume: 256
  year: 2021
  ident: bib140
  article-title: Calmodulin binding transcription activators: an interplay between calcium signalling and plant stress tolerance
  publication-title: J. Plant Physiol.
– volume: 18
  start-page: 553
  year: 2017
  end-page: 556
  ident: bib179
  article-title: Salinity tolerance mechanism of osmotin and osmotin-like proteins: a promising candidate for enhancing plant salt tolerance
  publication-title: Curr. Genom.
– volume: 625
  start-page: 647
  year: 2018
  end-page: 656
  ident: bib30
  article-title: Landscape evolution and agricultural land salinization in coastal area: a conceptual model
  publication-title: Sci. Total Environ.
– volume: 123
  start-page: 149
  year: 2018
  end-page: 159
  ident: bib176
  article-title: Osmotin: a plant defense tool against biotic and abiotic stresses
  publication-title: Plant Physiol. Biochem.
– volume: 65
  start-page: 541
  year: 2018
  end-page: 552
  ident: bib107
  article-title: The soybean
  publication-title: Russ. J. Plant Physiol.
– volume: 95
  start-page: 26
  year: 2015
  end-page: 34
  ident: bib110
  article-title: The overexpression of a chrysanthemum WRKY transcription factor enhances aphid resistance
  publication-title: Plant Physiol. Biochem.
– volume: 21
  start-page: 2695
  year: 2020
  ident: bib11
  article-title: Transgenic breeding approaches for improving abiotic stress tolerance: Recent progress and future perspectives
  publication-title: Int. J. Mol. Sci.
– volume: 206
  year: 2020
  ident: bib173
  article-title: Over-expression of rice R1-type MYB transcription factor confers different abiotic stress tolerance in transgenic Arabidopsis
  publication-title: Ecotoxicol. Environ. Saf.
– volume: 11
  start-page: 294
  year: 2020
  ident: bib197
  article-title: Efficient generation of CRISPR/Cas9-mediated homozygous/biallelic
  publication-title: Front. Plant Sci.
– volume: Volume II
  start-page: 579
  year: 2015
  end-page: 609
  ident: bib123
  article-title: Genetic engineering strategies for abiotic stress tolerance in plants
  publication-title: Plant Biology and Biotechnology
– volume: 49
  start-page: 311
  year: 2018
  end-page: 327
  ident: bib171
  article-title: Agrobacterium-mediated transformation of a
  publication-title: New
– volume: 33
  start-page: 327
  year: 2014
  end-page: 340
  ident: bib27
  article-title: Transgenic peanut overexpressing the DREB1A transcription factor has higher yields under drought stress
  publication-title: Mol. Breed.
– volume: 68
  start-page: 2013
  year: 2017
  end-page: 2026
  ident: bib163
  article-title: The legume miR1514a modulates a NAC transcription factor transcript to trigger phasiRNA formation in response to drought
  publication-title: J. Exp. Bot.
– volume: 35
  start-page: 438
  year: 2017
  end-page: 440
  ident: bib210
  article-title: Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion
  publication-title: Nat. Biotechnol.
– volume: 33
  start-page: 41
  year: 2015
  end-page: 52
  ident: bib31
  article-title: The CRISPR/Cas9 system for plant genome editing and beyond
  publication-title: Biotechnol. Adv.
– volume: 7
  start-page: 303
  year: 2016
  ident: bib131
  article-title: Potential biotechnological strategies for the cleanup of heavy metals and metalloids
  publication-title: Front. Plant Sci.
– volume: 36
  start-page: 371
  year: 2017
  end-page: 374
  ident: bib128
  article-title: Targeted mutagenesis by CRISPR/Cas9 system in the model legume
  publication-title: Plant Cell Rep.
– volume: 16
  start-page: 1125
  year: 2018
  end-page: 1137
  ident: bib50
  article-title: CRISPR/cas9 and TALENS generate heritable mutations for genes involved in small RNA processing of
  publication-title: Plant Biotechnol. J.
– volume: 59
  start-page: 93
  year: 2019
  end-page: 102
  ident: bib135
  article-title: Applications of multiplex genome editing in higher plants
  publication-title: Curr. Opin. Biotechnol.
– volume: 161
  start-page: 98
  year: 2019
  end-page: 106
  ident: bib23
  article-title: Reactive oxygen species and heavy metal stress in plants: impact on the cell wall and secondary metabolism
  publication-title: Environ. Exp. Bot.
– volume: 7
  start-page: 703
  year: 2016
  ident: bib54
  article-title: Recent advances in genome editing using CRISPR/Cas9
  publication-title: Front. Plant Sci.
– volume: 9
  start-page: 13
  year: 2019
  ident: bib5
  article-title: Evaluating soybean cultivars for low- and high-temperature tolerance during the seedling growth stage
  publication-title: Agronomy
– volume: vol 1822
  start-page: 291
  year: 2018
  end-page: 314
  ident: bib57
  article-title: Toward unravelling the genetic determinism of the acquisition of salt and osmotic stress tolerance through in vitro selection in
  publication-title: Functional Genomics in Medicago truncatula. Methods in Molecular Biology
– volume: 9
  year: 2014
  ident: bib170
  article-title: Expression of a vacuole-localized BURP-domain protein from soybean (SALI3-2) enhances tolerance to cadmium and copper stresses
  publication-title: PLoS One
– volume: 149
  start-page: 310
  year: 2013
  end-page: 320
  ident: bib167
  article-title: Nitric oxide mediates cold- and dehydration-induced expression of a novel
  publication-title: Physiol. Plant
– volume: 170
  start-page: 26
  year: 2016
  end-page: 32
  ident: bib168
  article-title: Rj4, a gene controlling nodulation specificity in soybeans, encodes a thaumatin-like protein but not the one previously reported
  publication-title: Plant Physiol.
– volume: 9
  start-page: 1324
  year: 2018
  ident: bib156
  article-title: New plant breeding techniques under food security pressure and lobbying
  publication-title: Front. Plant Sci.
– volume: 9
  year: 2014
  ident: bib203
  article-title: Transcriptional regulation of cell cycle genes in response to abiotic stresses correlates with dynamic changes in histone modifications in maize
  publication-title: PLoS One
– volume: 9
  start-page: 1724
  year: 2018
  ident: bib22
  article-title: Beyond risk considerations: where and how can a debate about non-safety related issues of genome editing in agriculture take place?
  publication-title: Front. Plant Sci.
– volume: 53
  start-page: 85
  year: 2009
  end-page: 99
  ident: bib68
  article-title: Microarray analysis of Arabidopsis genome response to aluminum stress
  publication-title: Biol. Plant
– volume: 20
  start-page: 2471
  year: 2019
  ident: bib86
  article-title: Genome editing in cowpea
  publication-title: Int. J. Mol. Sci.
– volume: 8
  start-page: 2135
  year: 2017
  ident: bib87
  article-title: Editing citrus genome via SaCas9/sgRNA system
  publication-title: Front. Plant Sci.
– volume: 233
  start-page: 1265
  year: 2011
  end-page: 1276
  ident: bib3
  article-title: Overexpression of HARDY, an AP2/ERF gene from
  publication-title: Planta
– volume: 17
  start-page: 1140
  year: 2016
  end-page: 1153
  ident: bib40
  article-title: Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology
  publication-title: Mol. Plant Pathol.
– volume: 7
  start-page: 1029
  year: 2016
  ident: bib92
  article-title: Transcription factors and plants response to drought stress: current understanding and future directions
  publication-title: Front. Plant Sci.
– volume: 71
  start-page: 22
  year: 2013
  end-page: 30
  ident: bib169
  article-title: Overexpression of GsZFP1 enhances salt and drought tolerance in transgenic alfalfa (
  publication-title: Plant Physiol. Biochem.
– volume: 9
  start-page: 985
  year: 2018
  ident: bib82
  article-title: CRISPR for Crop improvement: an updated review
  publication-title: Front. Plant Sci.
– volume: 81
  start-page: 505
  year: 2015
  end-page: 518
  ident: bib97
  article-title: Soybean DREB 1/CBF-type transcription factors function in heat and drought as well as cold stress-responsive gene expression
  publication-title: Plant J.
– start-page: 401
  year: 2018
  end-page: 415
  ident: bib151
  article-title: Arsenic in rice: an overview on stress implications, tolerance and mitigation strategies
  publication-title: Plants Under Metal and Metalloid Stress
– volume: 4
  start-page: 697
  year: 2011
  end-page: 712
  ident: bib188
  article-title: Overexpression of TaNAC69 leads to enhanced transcript levels of stress up-regulated genes and dehydration tolerance in bread wheat
  publication-title: Mol. Plant
– volume: 18
  start-page: 31
  year: 2018
  end-page: 41
  ident: bib98
  article-title: CRISPR/Cas9 genome editing in wheat
  publication-title: Funct. Integr. Genom.
– volume: 596
  start-page: 487
  year: 2021
  end-page: 488
  ident: bib4
  article-title: Protein-structure prediction revolutionized
  publication-title: Nature
– volume: 7
  start-page: 239
  year: 2017
  ident: bib146
  article-title: Genetic engineering strategies for biotic and abiotic stress tolerance and quality enhancement in horticultural crops: a comprehensive review
  publication-title: 3Biotech
– volume: 258
  start-page: 122
  year: 2017
  end-page: 136
  ident: bib132
  article-title: MicroRNA156 improves drought stress tolerance in alfalfa (
  publication-title: Plant Sci.
– volume: 58
  start-page: 1268
  year: 2017
  end-page: 1278
  ident: bib144
  article-title: Soybean NIMA-Related Kinase1 promotes plant growth and improves salt and cold tolerance
  publication-title: Plant Cell Physiol.
– start-page: 1
  year: 2021
  end-page: 16
  ident: bib28
  article-title: CRISPR/Cas9 gene editing in legume crops: opportunities and challenges
  publication-title: Legume Sci.
– volume: 31
  start-page: 240
  year: 2013
  end-page: 246
  ident: bib177
  article-title: Draft genome sequence of chickpea (
  publication-title: Nat. Biotechnol.
– volume: 31
  start-page: 719
  year: 2013
  end-page: 730
  ident: bib19
  article-title: Overexpression of the ABA-dependent AREB1 transcription factor from
  publication-title: Plant Mol. Biol. Rep.
– volume: 1
  start-page: 6
  year: 2017
  ident: bib191
  article-title: The application of CRISPR/Cas9 system in Gene Knock-out of
  publication-title: Mol. Plant Breed.
– volume: 10
  start-page: 1446
  year: 2019
  ident: bib74
  article-title: Creation of early flowering germplasm of soybean by CRISPR/Cas9 technology
  publication-title: Front. Plant Sci.
– volume: 50
  start-page: 1132
  year: 2018
  end-page: 1139
  ident: bib149
  article-title: CRISPR-Cas9 genome editing in human cells occurs via the Fanconi anemia pathway
  publication-title: Nat. Genet.
– volume: 337
  start-page: 816
  year: 2012
  end-page: 821
  ident: bib90
  article-title: A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity
  publication-title: Science
– volume: 143
  start-page: 593
  year: 2020
  end-page: 608
  ident: bib150
  article-title: Overexpression of
  publication-title: Plant Cell Tissue Organ Cult.
– volume: 164
  start-page: 396
  year: 2018
  end-page: 405
  ident: bib84
  article-title: Gene-edited plants on the plate: the “CRISPR cabbage story”
  publication-title: Physiol. Plant
– volume: 21
  year: 2020
  ident: bib26
  article-title: Genome-wide identification of drought-responsive miRNAs in grass pea (
  publication-title: Plant Gene
– start-page: 131
  year: 2016
  end-page: 154
  ident: bib69
  article-title: Regulation of abiotic and biotic stress responses by plant hormones
  publication-title: Plant Pathogen Resistance Biotechnology
– volume: 9
  year: 2014
  ident: bib148
  article-title: Simultaneous expression of abiotic stress responsive transcription factors, AtDREB2A, AtHB7 and AtABF3 improves salinity and drought tolerance in peanut (
  publication-title: PLoS One
– volume: 39
  start-page: 68
  year: 2017
  ident: bib25
  article-title: Temperature sensitivity of food legumes: a physiological insight
  publication-title: Acta Physiol. Plant
– volume: 98
  start-page: 767
  year: 2019
  end-page: 782
  ident: bib118
  article-title: The genome of cowpea (
  publication-title: Plant J.
– volume: 12
  year: 2017
  ident: bib136
  article-title: CRISPR/Cas9-mediated targeted mutagenesis in grape
  publication-title: PLoS One
– volume: 60
  start-page: 199
  year: 2010
  end-page: 211
  ident: bib42
  article-title: DREB1C from
  publication-title: Plant Growth Regul.
– volume: 40
  start-page: 462
  year: 2017
  end-page: 472
  ident: bib62
  article-title: Nitric oxide function in plant abiotic stress
  publication-title: Plant Cell Environ.
– volume: 6
  start-page: 84
  year: 2015
  ident: bib175
  article-title: Recent advances in the dissection of drought-stress regulatory networks and strategies for development of drought-tolerant transgenic rice plants
  publication-title: Front. Plant Sci.
– volume: 41
  start-page: 63
  year: 2014
  end-page: 68
  ident: bib116
  article-title: Targeted mutagenesis in
  publication-title: J. Genet. Genom.
– volume: 257
  start-page: 35
  year: 2017
  end-page: 46
  ident: bib35
  article-title: The sunflower transcription factor HaHB11 confers tolerance to water deficit and salinity to transgenic Arabidopsis and alfalfa plants
  publication-title: J. Biotechnol.
– volume: 36
  start-page: 291
  year: 2017
  end-page: 309
  ident: bib196
  article-title: Genome editing-principles and applications for functional genomics research and crop improvement
  publication-title: Crit. Rev. Plant Sci.
– volume: 8
  start-page: 2125
  year: 2017
  ident: bib204
  article-title: Over-expression of Arabidopsis
  publication-title: Front. Plant Sci.
– volume: 127
  start-page: 25
  year: 2018
  end-page: 31
  ident: bib48
  article-title: , an SKP1 homologue in soybean, is involved in the tolerance to salt and drought
  publication-title: Plant Physiol. Biochem.
– volume: 8
  start-page: 1513
  year: 2018
  end-page: 1521
  ident: bib24
  article-title: High-resolution analysis of the efficiency, heritability, and editing outcomes of CRISPR-Cas9 -induced modifications of NCED4 in lettuce (
  publication-title: G3
– volume: 21
  start-page: 31
  year: 2016
  end-page: 42
  ident: bib56
  article-title: Landrace germplasm for improving yield and abiotic stress adaptation
  publication-title: Trends Plant Sci.
– volume: 169
  start-page: 960
  year: 2015
  end-page: 970
  ident: bib114
  article-title: Cas9-Guide RNA directed genome editing in soybean
  publication-title: Plant Physiol.
– volume: 20
  start-page: 1427
  year: 2018
  end-page: 1437
  ident: bib137
  article-title: The
  publication-title: Int. J. Phytoremediat.
– volume: 167
  start-page: 313
  year: 2016
  end-page: 324
  ident: bib206
  article-title: Abiotic stress signaling and responses in plants
  publication-title: Cell
– volume: 12
  year: 2017
  ident: bib113
  article-title: Overexpression of
  publication-title: PLoS One
– volume: 261
  start-page: 28
  year: 2017
  end-page: 37
  ident: bib70
  article-title: Melatonin confers plant tolerance against cadmium stress via the decrease of cadmium accumulation and reestablishment of microRNA-mediated redox homeostasis
  publication-title: Plant Sci.
– volume: vol. 2200
  start-page: 121
  year: 2021
  end-page: 146
  ident: bib129
  article-title: CRISPR/Cas9-based genome editing toolbox for
  publication-title: Arabidopsis Protocols, Methods in Molecular Biology
– volume: 7
  start-page: 67
  year: 2016
  ident: bib181
  article-title: Recent advances in utilizing transcription factors to improve plant abiotic stress tolerance by transgenic technology
  publication-title: Front. Plant Sci.
– volume: 211
  year: 2021
  ident: bib73
  article-title: Cadmium toxicity in plants: Impacts and remediation strategies
  publication-title: Ecotoxicol. Environ. Saf.
– volume: 210
  start-page: 25
  year: 2013
  end-page: 35
  ident: bib158
  article-title: MicroRNA prediction and its function in regulating drought-related genes in cowpea
  publication-title: Plant Sci.
– volume: 165
  start-page: 830
  year: 2019
  end-page: 842
  ident: bib125
  article-title: Alfalfa response to heat stress is modulated by microRNA156
  publication-title: Physiol. Plant
– volume: 37
  start-page: 575
  year: 2018
  end-page: 586
  ident: bib100
  article-title: Efficient CRISPR/Cas9-based genome editing in carrot cells
  publication-title: Plant Cell Rep.
– volume: 10
  year: 2015
  ident: bib36
  article-title: CRISPR/Cas9-mediated genome editing in soybean hairy roots
  publication-title: PLoS One
– volume: 51
  start-page: 1411
  year: 2019
  end-page: 1422
  ident: bib102
  article-title: A reference genome for pea provides insight into legume genome evolution
  publication-title: Nat. Genet.
– volume: 38
  start-page: 503
  year: 2019
  end-page: 510
  ident: bib29
  article-title: Development of methods for effective identification of CRISPR/Cas9-induced indels in rice
  publication-title: Plant Cell Rep.
– volume: 227
  start-page: 148
  year: 2004
  ident: bib130
  article-title: Characterization of altered metabolism in transgenic alfalfa overexpressing malate dehydrogenase to confer aluminum tolerance
  publication-title: Am. Chem. Soc.
– volume: 76
  start-page: 167
  year: 2010
  end-page: 179
  ident: bib189
  article-title: Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants
  publication-title: S. Afr. J. Bot.
– volume: 36
  start-page: 117
  year: 2017
  end-page: 128
  ident: bib8
  article-title: Efficient targeted multiallelic mutagenesis intetraploid potato (
  publication-title: Plant Cell Rep.
– volume: 36
  start-page: 36
  year: 2016
  ident: bib33
  article-title: Enhanced salinity stress tolerance in transgenic chilli pepper (
  publication-title: Mol. Breed.
– volume: 8
  start-page: 171
  year: 2021
  end-page: 179
  ident: bib121
  article-title: Role of Glycine max ABSCISIC ACID INSENSITIVE 3 (GmABI3) in lipid biosynthesis and stress tolerance in soybean
  publication-title: Funct. Plant Biol.
– volume: 53
  start-page: 12
  year: 2017
  end-page: 21
  ident: bib164
  article-title: Enhancement of sheath blight tolerance in transgenic rice by combined expression of tobacco osmotin (ap24) and rice chitinase (chi11) genes
  publication-title: Vitr. Cell. Dev. Biol. Plant
– volume: 59
  start-page: 413
  year: 2015
  end-page: 428
  ident: bib159
  article-title: Embracing new-generation ‘omics’ tools to improve drought tolerance in cereal and food-legume crops
  publication-title: Biol. Plant
– volume: 132
  start-page: 1
  year: 2018
  end-page: 25
  ident: bib60
  article-title: Potential use of the DREB/ERF, MYB, NAC and WRKY transcription factors to improve abiotic and biotic stress in transgenic plants
  publication-title: Plant Cell Tissue Organ Cult.
– volume: 28
  start-page: 272
  year: 2016
  end-page: 285
  ident: bib63
  article-title: RNAi in plants: an Argonaute-centered view
  publication-title: Plant Cell
– volume: 285
  start-page: 26
  year: 2019
  end-page: 33
  ident: bib80
  article-title: GmHsp90A2 is involved in soybean heat stress as a positive regulator
  publication-title: Plant Sci.
– volume: 34
  start-page: 1
  year: 2011
  end-page: 20
  ident: bib44
  article-title: Glycinebetaine protects plants against abiotic stress: Mechanisms and biotechnological applications
  publication-title: Plant Cell Environ.
– volume: 17
  start-page: 1959
  year: 2018
  end-page: 1971
  ident: bib183
  article-title: Overexpression of GmBIN2, a soybean glycogen synthase kinase 3 gene, enhances tolerance to salt and drought in transgenic Arabidopsis and soybean hairy roots
  publication-title: J. Integr. Agric.
– volume: 131
  start-page: 31
  year: 2018
  end-page: 36
  ident: bib2
  article-title: Genome editing using CRISPR/Cas9-targeted mutagenesis: an opportunity for yield improvements of crop plants grown under environmental stresses
  publication-title: Plant. Physiol. Biochem.
– volume: 33
  start-page: 145
  year: 2015
  end-page: 147
  ident: bib39
  article-title: Biotechnological uses of RNAi in plants: risk assessment considerations
  publication-title: Trends Biotechnol.
– volume: 85
  start-page: 31
  year: 2014
  end-page: 40
  ident: bib108
  article-title: Overexpression of
  publication-title: Plant Physiol. Biochem.
– volume: 129
  start-page: 263
  year: 2016
  end-page: 273
  ident: bib41
  article-title: VrDREB2A, a DREB-binding transcription factor from
  publication-title: J. Plant Res.
– year: 2020
  ident: bib104
  article-title: TIP aquaporins in plants: role in abiotic stress tolerance
  publication-title: biotic Stress in Plants
– volume: 32
  start-page: 947
  year: 2014
  end-page: 951
  ident: bib184
  article-title: Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew
  publication-title: Nat. Biotechnol.
– volume: 19
  start-page: 1276
  year: 2020
  ident: bib43
  article-title: SgRVE6, a LHY-CCA1-Like transcription factor from Fine-Stem tylo, upregulates NB-LRR gene expression and enhances cold tolerance in tobacco
  publication-title: Front. Plant Sci.
– volume: 9
  start-page: 1291
  year: 2018
  ident: bib105
  article-title: Regulatory uncertainty around new breeding techniques
  publication-title: Front. Plant Sci.
– reference: Haut Conseil des Biotechnologies, 2018. Avis du Comité scientifique sur les Nouvelles techniques d’obtention de plantes [New plant breeding techniques–NPBT], accessible at
– volume: 11
  start-page: 127
  year: 2011
  ident: bib20
  article-title: Identification and comparative analysis of drought-associated microRNAs in two cowpea genotypes
  publication-title: BMC Plant Biol.
– volume: 177
  start-page: 1425
  year: 2018
  end-page: 1438
  ident: bib106
  article-title: Editing of an alpha-kafirin gene family increases, digestibility and protein quality in sorghum
  publication-title: Plant Physiol.
– volume: 58
  start-page: 1155
  year: 2018
  end-page: 1165
  ident: bib194
  article-title: Key soybean maturity groups to increase grain yield in Brazil
  publication-title: Crop Sci.
– year: 2015
  ident: bib58
  article-title: Heavy metal stress and some mechanisms of plant defense response
  publication-title: Sci. World J.
– volume: 237
  start-page: 321
  year: 2013
  end-page: 335
  ident: bib95
  article-title: Ectopic expression of the ABA-inducible dehydration-responsive chickpea L-myo-inositol 1-phosphate synthase 2 (CaMIPS2) in Arabidopsis enhances tolerance to salinity and dehydration stress
  publication-title: Planta
– volume: 20
  start-page: 2541
  year: 2019
  ident: bib134
  article-title: Research progress and perspective on drought stress in legumes: a review
  publication-title: Int. J. Mol. Sci.
– volume: 166
  year: 2019
  ident: 10.1016/j.envexpbot.2022.104824_bib16
  article-title: Overexpression of tobacco UBQ2 increases Cd tolerance by decreasing Cd accumulation and oxidative stress in tobacco and Arabidopsis
  publication-title: Environ. Exp. Bot.
  doi: 10.1016/j.envexpbot.2019.103805
– volume: 3
  start-page: 5
  year: 2017
  ident: 10.1016/j.envexpbot.2022.104824_bib17
  article-title: Transformation of mungbean plants for salt and drought tolerance by introducing a gene for an osmoprotectant glycine betaine
  publication-title: J. Plant Stress Physiol.
  doi: 10.19071/jpsp.2017.v3.3148
– ident: 10.1016/j.envexpbot.2022.104824_bib152
  doi: 10.1016/B978-0-12-813066-7.00006-1
– ident: 10.1016/j.envexpbot.2022.104824_bib77
– volume: 32
  start-page: 557
  year: 2010
  ident: 10.1016/j.envexpbot.2022.104824_bib139
  article-title: Overexpression of a soybean O-acetylserine (thiol) lyase-encoding gene GmOASTL4 in tobacco increases cysteine levels and enhances tolerance to cadmium stress
  publication-title: Biotechnol. Lett.
  doi: 10.1007/s10529-009-0178-z
– volume: 81
  start-page: 505
  year: 2015
  ident: 10.1016/j.envexpbot.2022.104824_bib97
  article-title: Soybean DREB 1/CBF-type transcription factors function in heat and drought as well as cold stress-responsive gene expression
  publication-title: Plant J.
  doi: 10.1111/tpj.12746
– volume: 261
  start-page: 28
  year: 2017
  ident: 10.1016/j.envexpbot.2022.104824_bib70
  article-title: Melatonin confers plant tolerance against cadmium stress via the decrease of cadmium accumulation and reestablishment of microRNA-mediated redox homeostasis
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2017.05.001
– volume: 33
  start-page: 145
  year: 2015
  ident: 10.1016/j.envexpbot.2022.104824_bib39
  article-title: Biotechnological uses of RNAi in plants: risk assessment considerations
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2014.12.003
– volume: 6
  start-page: 486
  issue: 5
  year: 2008
  ident: 10.1016/j.envexpbot.2022.104824_bib205
  article-title: Soybean WRKY-type transcription factor genes, GmWRKY13, GmWRKY21 and GmWRKY54, confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants
  publication-title: Plant Biotechnol. J.
  doi: 10.1111/j.1467-7652.2008.00336.x
– volume: 8
  start-page: 2125
  year: 2017
  ident: 10.1016/j.envexpbot.2022.104824_bib204
  article-title: Over-expression of Arabidopsis EDT1 gene confers drought tolerance in alfalfa (Medicago sativa L.)
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2017.02125
– volume: 26
  start-page: 247
  year: 2017
  ident: 10.1016/j.envexpbot.2022.104824_bib96
  article-title: A novel heavy metal ATPase peptide from Prosopis juliflora is involved in metal uptake in yeast and tobacco
  publication-title: Transgenic Res.
  doi: 10.1007/s11248-016-0002-1
– volume: 256
  year: 2021
  ident: 10.1016/j.envexpbot.2022.104824_bib140
  article-title: Calmodulin binding transcription activators: an interplay between calcium signalling and plant stress tolerance
  publication-title: J. Plant Physiol.
  doi: 10.1016/j.jplph.2020.153327
– volume: 625
  start-page: 647
  year: 2018
  ident: 10.1016/j.envexpbot.2022.104824_bib30
  article-title: Landscape evolution and agricultural land salinization in coastal area: a conceptual model
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.12.083
– volume: 533
  start-page: 420
  year: 2016
  ident: 10.1016/j.envexpbot.2022.104824_bib101
  article-title: Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage
  publication-title: Nature
  doi: 10.1038/nature17946
– volume: 43
  start-page: 37
  year: 2016
  ident: 10.1016/j.envexpbot.2022.104824_bib65
  article-title: Efficient targeted genome modification in maize using CRISPR/Cas9 system
  publication-title: J. Genet. Genom.
  doi: 10.1016/j.jgg.2015.10.002
– volume: 53
  start-page: 85
  issue: 1
  year: 2009
  ident: 10.1016/j.envexpbot.2022.104824_bib68
  article-title: Microarray analysis of Arabidopsis genome response to aluminum stress
  publication-title: Biol. Plant
  doi: 10.1007/s10535-009-0012-4
– start-page: 1
  year: 2021
  ident: 10.1016/j.envexpbot.2022.104824_bib28
  article-title: CRISPR/Cas9 gene editing in legume crops: opportunities and challenges
  publication-title: Legume Sci.
– volume: 33
  start-page: 327
  year: 2014
  ident: 10.1016/j.envexpbot.2022.104824_bib27
  article-title: Transgenic peanut overexpressing the DREB1A transcription factor has higher yields under drought stress
  publication-title: Mol. Breed.
  doi: 10.1007/s11032-013-9952-7
– start-page: 131
  year: 2016
  ident: 10.1016/j.envexpbot.2022.104824_bib69
  article-title: Regulation of abiotic and biotic stress responses by plant hormones
– volume: 177
  start-page: 1425
  year: 2018
  ident: 10.1016/j.envexpbot.2022.104824_bib106
  article-title: Editing of an alpha-kafirin gene family increases, digestibility and protein quality in sorghum
  publication-title: Plant Physiol.
  doi: 10.1104/pp.18.00200
– volume: 12
  start-page: 107
  year: 2012
  ident: 10.1016/j.envexpbot.2022.104824_bib103
  article-title: Clustered metallothionein genes are co-regulated in rice and ectopic expression of OsMT1e-Pconfers multiple abiotic stress tolerance in tobacco via ROS scavenging
  publication-title: BMC Plant Biol.
  doi: 10.1186/1471-2229-12-107
– volume: 40
  start-page: 1368
  year: 2017
  ident: 10.1016/j.envexpbot.2022.104824_bib147
  article-title: Enhanced metal tolerance correlates with het-erotypic variation in SpMTL, a metallothionein-like protein from the hyperaccumulator Sedum plumbizincicola
  publication-title: Plant Cell Environ.
  doi: 10.1111/pce.12929
– year: 2017
  ident: 10.1016/j.envexpbot.2022.104824_bib94
  article-title: Genome editing in plants: an overview of tools and applications
  publication-title: Int. J. Agron.
  doi: 10.1155/2017/7315351
– volume: 39
  start-page: 68
  year: 2017
  ident: 10.1016/j.envexpbot.2022.104824_bib25
  article-title: Temperature sensitivity of food legumes: a physiological insight
  publication-title: Acta Physiol. Plant
  doi: 10.1007/s11738-017-2361-5
– volume: 217
  start-page: 90
  year: 2016
  ident: 10.1016/j.envexpbot.2022.104824_bib55
  article-title: Efficient targeted mutagenesis in soybean by TALENs and CRISPR/Cas9
  publication-title: J. Biotechnol.
  doi: 10.1016/j.jbiotec.2015.11.005
– volume: 9
  issue: 12
  year: 2014
  ident: 10.1016/j.envexpbot.2022.104824_bib148
  article-title: Simultaneous expression of abiotic stress responsive transcription factors, AtDREB2A, AtHB7 and AtABF3 improves salinity and drought tolerance in peanut (Arachis hypogaea L.)
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0111152
– volume: 427
  start-page: 731
  year: 2012
  ident: 10.1016/j.envexpbot.2022.104824_bib115
  article-title: Overexpression of soybean GmCBL1 enhances abiotic stress tolerance and promotes hypocotyl elongation in Arabidopsis
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2012.09.128
– volume: 31
  start-page: 240
  year: 2013
  ident: 10.1016/j.envexpbot.2022.104824_bib177
  article-title: Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2491
– volume: 11
  start-page: 605
  year: 2017
  ident: 10.1016/j.envexpbot.2022.104824_bib160
  article-title: Role of miRNAs in Legume crops in response to biotic and abiotic stress
  publication-title: J. Pure Appl. Microbiol.
  doi: 10.22207/JPAM.11.1.79
– volume: 596
  start-page: 487
  year: 2021
  ident: 10.1016/j.envexpbot.2022.104824_bib4
  article-title: Protein-structure prediction revolutionized
  publication-title: Nature
  doi: 10.1038/d41586-021-02265-4
– volume: 143
  start-page: 593
  year: 2020
  ident: 10.1016/j.envexpbot.2022.104824_bib150
  article-title: Overexpression of ICE1 gene in mungbean (Vigna radiata L.) for cold tolerance. Plant Cell Tiss
  publication-title: Plant Cell Tissue Organ Cult.
  doi: 10.1007/s11240-020-01944-w
– volume: 34
  start-page: 1
  year: 2011
  ident: 10.1016/j.envexpbot.2022.104824_bib44
  article-title: Glycinebetaine protects plants against abiotic stress: Mechanisms and biotechnological applications
  publication-title: Plant Cell Environ.
  doi: 10.1111/j.1365-3040.2010.02232.x
– volume: 122
  start-page: 1427
  year: 2000
  ident: 10.1016/j.envexpbot.2022.104824_bib127
  article-title: Iron Superoxide Dismutase expression in transgenic alfalfa increases winter survival without a detectable increase in photosynthetic oxidative stress tolerance
  publication-title: Plant Physiol.
  doi: 10.1104/pp.122.4.1427
– volume: 59
  start-page: 93
  year: 2019
  ident: 10.1016/j.envexpbot.2022.104824_bib135
  article-title: Applications of multiplex genome editing in higher plants
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2019.02.015
– volume: 34
  start-page: 199
  year: 2015
  ident: 10.1016/j.envexpbot.2022.104824_bib7
  article-title: DREB1A overexpression in transgenic chickpea alters key traits influencing plant water budget across water regimes
  publication-title: Plant Cell Rep.
  doi: 10.1007/s00299-014-1699-z
– volume: 36
  start-page: 556
  year: 2013
  ident: 10.1016/j.envexpbot.2022.104824_bib59
  article-title: Introduction of the rd29A: AtDREB2A CA gene into soybean (Glycine max L. Merril) and its molecular characterization in leaves and roots during dehydration
  publication-title: Genet. Mol. Biol.
  doi: 10.1590/S1415-47572013000400015
– volume: 205
  start-page: 240
  issue: 1
  year: 2015
  ident: 10.1016/j.envexpbot.2022.104824_bib78
  article-title: Overexpression of bacterial γ-glutamylcysteine synthetase mediates changes in cadmium influx, allocation and detoxification in poplar
  publication-title: New Phytol.
  doi: 10.1111/nph.13013
– volume: 63
  start-page: 53
  year: 2021
  ident: 10.1016/j.envexpbot.2022.104824_bib46
  article-title: Protein kinases in plant responses to drought, salt, and cold stress
  publication-title: J. Int. Plant Biol.
  doi: 10.1111/jipb.13061
– volume: 7
  start-page: 1137
  year: 2016
  ident: 10.1016/j.envexpbot.2022.104824_bib71
  article-title: Barley genes as tools to confer abiotic stress tolerance in crops
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2016.01137
– volume: 247
  start-page: 1043
  year: 2018
  ident: 10.1016/j.envexpbot.2022.104824_bib67
  article-title: Gene editing by CRISPR/Cas9 in the obligatory outcrossing Medicago sativa
  publication-title: Planta
  doi: 10.1007/s00425-018-2866-1
– start-page: 345
  year: 2016
  ident: 10.1016/j.envexpbot.2022.104824_bib185
  article-title: Transgenic approaches for abiotic stress tolerance in crop plants
– volume: 35
  start-page: 438
  year: 2017
  ident: 10.1016/j.envexpbot.2022.104824_bib210
  article-title: Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3811
– volume: 210
  start-page: 25
  year: 2013
  ident: 10.1016/j.envexpbot.2022.104824_bib158
  article-title: MicroRNA prediction and its function in regulating drought-related genes in cowpea
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2013.05.002
– year: 2015
  ident: 10.1016/j.envexpbot.2022.104824_bib58
  article-title: Heavy metal stress and some mechanisms of plant defense response
  publication-title: Sci. World J.
  doi: 10.1155/2015/756120
– volume: 35
  start-page: 613
  year: 2016
  ident: 10.1016/j.envexpbot.2022.104824_bib192
  article-title: CarNAC4, a NAC-type chickpea transcription factor conferring enhanced drought and salt stress tolerances in Arabidopsis
  publication-title: Plant Cell Rep.
  doi: 10.1007/s00299-015-1907-5
– volume: 10
  year: 2015
  ident: 10.1016/j.envexpbot.2022.104824_bib174
  article-title: Introgression of the SbASR-1 gene cloned from a halophyte Salicornia brachiata enhances salinity and drought endurance in transgenic groundnut (Arachis hypogaea) and acts as a transcription factor
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0131567
– volume: 10
  start-page: 105
  year: 2016
  ident: 10.1016/j.envexpbot.2022.104824_bib117
  article-title: Transgenic tomato plants expressing strawberry D-galacturonic acid reductase gene display enhanced tolerance to abiotic stresses
  publication-title: Plant Biotechnol. Rep.
  doi: 10.1007/s11816-016-0392-9
– volume: 12
  year: 2017
  ident: 10.1016/j.envexpbot.2022.104824_bib136
  article-title: CRISPR/Cas9-mediated targeted mutagenesis in grape
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0177966
– volume: 36
  start-page: 399
  year: 2017
  ident: 10.1016/j.envexpbot.2022.104824_bib172
  article-title: Efficient CRISPR/Cas9-based gene knockout in watermelon
  publication-title: Plant Cell Rep.
  doi: 10.1007/s00299-016-2089-5
– volume: 7
  start-page: 12754
  issue: 8
  year: 2016
  ident: 10.1016/j.envexpbot.2022.104824_bib10
  article-title: Mechanism of stress signal transduction and involvement of stress inducible transcription factors and genes in response to abiotic stresses in plant
  publication-title: Int. J. Recent Sci. Res.
– volume: 11
  start-page: 459
  issue: 2
  year: 2018
  ident: 10.1016/j.envexpbot.2022.104824_bib13
  article-title: Dissecting the genomic diversification of LATE EMBRYOGENESIS ABUNDANT (LEA) protein gene families in plants
  publication-title: Genome Biol. Evol.
  doi: 10.1093/gbe/evy248
– volume: 9
  start-page: 1324
  year: 2018
  ident: 10.1016/j.envexpbot.2022.104824_bib156
  article-title: New plant breeding techniques under food security pressure and lobbying
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2018.01324
– volume: 9
  issue: 8
  year: 2014
  ident: 10.1016/j.envexpbot.2022.104824_bib203
  article-title: Transcriptional regulation of cell cycle genes in response to abiotic stresses correlates with dynamic changes in histone modifications in maize
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0106070
– volume: 8
  start-page: 1513
  year: 2018
  ident: 10.1016/j.envexpbot.2022.104824_bib24
  article-title: High-resolution analysis of the efficiency, heritability, and editing outcomes of CRISPR-Cas9 -induced modifications of NCED4 in lettuce (Lactuca sativa)
  publication-title: G3
  doi: 10.1534/g3.117.300396
– volume: 9
  start-page: 559
  year: 2018
  ident: 10.1016/j.envexpbot.2022.104824_bib111
  article-title: Lycopene is enriched in tomato fruit by CRISPR/Cas9-mediated multiplex genome editing
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2018.00559
– volume: 119
  start-page: 1
  year: 2017
  ident: 10.1016/j.envexpbot.2022.104824_bib138
  article-title: Evaluating physiological responses of plants to salinity stress
  publication-title: Ann. Bot.
  doi: 10.1093/aob/mcw191
– volume: 7
  start-page: 1333
  year: 2016
  ident: 10.1016/j.envexpbot.2022.104824_bib182
  article-title: . Efficient inactivation of symbiotic nitrogen fixation related genes in Lotus japonicus using CRISPR-Cas9
  publication-title: Front. Plant Sci.
– volume: 22
  start-page: 396
  year: 2021
  ident: 10.1016/j.envexpbot.2022.104824_bib15
  article-title: First report of CRISPR/Cas9 mediated DNA-free editing of 4CL and RVE7 genes in chickpea protoplasts
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms22010396
– volume: 7
  start-page: 239
  year: 2017
  ident: 10.1016/j.envexpbot.2022.104824_bib146
  article-title: Genetic engineering strategies for biotic and abiotic stress tolerance and quality enhancement in horticultural crops: a comprehensive review
  publication-title: 3Biotech
– volume: 237
  start-page: 321
  year: 2013
  ident: 10.1016/j.envexpbot.2022.104824_bib95
  article-title: Ectopic expression of the ABA-inducible dehydration-responsive chickpea L-myo-inositol 1-phosphate synthase 2 (CaMIPS2) in Arabidopsis enhances tolerance to salinity and dehydration stress
  publication-title: Planta
  doi: 10.1007/s00425-012-1781-0
– volume: 7
  start-page: 67
  year: 2016
  ident: 10.1016/j.envexpbot.2022.104824_bib181
  article-title: Recent advances in utilizing transcription factors to improve plant abiotic stress tolerance by transgenic technology
  publication-title: Front. Plant Sci.
– volume: 164
  start-page: 396
  year: 2018
  ident: 10.1016/j.envexpbot.2022.104824_bib84
  article-title: Gene-edited plants on the plate: the “CRISPR cabbage story”
  publication-title: Physiol. Plant
  doi: 10.1111/ppl.12754
– volume: 7
  start-page: 44304
  year: 2017
  ident: 10.1016/j.envexpbot.2022.104824_bib45
  article-title: Targeted mutagenesis in cotton (Gossypium hirsutum L.) using the CRISPR/Cas9 system
  publication-title: Sci. Rep.
  doi: 10.1038/srep44304
– volume: 258
  start-page: 122
  year: 2017
  ident: 10.1016/j.envexpbot.2022.104824_bib12
  article-title: MicroRNA156 improves drought stress tolerance in alfalfa (Medicago sativa L.) silencing SPL13
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2017.01.018
– volume: 214
  start-page: 1614
  year: 2017
  ident: 10.1016/j.envexpbot.2022.104824_bib64
  article-title: The MTP 1 promoters from Arabidopsis halleri reveal cis-regulating elements for the evolution of metal tolerance
  publication-title: New Phytol.
  doi: 10.1111/nph.14529
– volume: 167
  start-page: 313
  year: 2016
  ident: 10.1016/j.envexpbot.2022.104824_bib206
  article-title: Abiotic stress signaling and responses in plants
  publication-title: Cell
  doi: 10.1016/j.cell.2016.08.029
– volume: 41
  start-page: 63
  year: 2014
  ident: 10.1016/j.envexpbot.2022.104824_bib116
  article-title: Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system
  publication-title: J. Genet. Genom.
  doi: 10.1016/j.jgg.2013.12.001
– volume: 36
  start-page: 6
  year: 2018
  ident: 10.1016/j.envexpbot.2022.104824_bib178
  article-title: With a free pass, CRISPR-edited plants reach market in record time
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt0118-6b
– volume: 17
  start-page: 1959
  year: 2018
  ident: 10.1016/j.envexpbot.2022.104824_bib183
  article-title: Overexpression of GmBIN2, a soybean glycogen synthase kinase 3 gene, enhances tolerance to salt and drought in transgenic Arabidopsis and soybean hairy roots
  publication-title: J. Integr. Agric.
  doi: 10.1016/S2095-3119(17)61863-X
– ident: 10.1016/j.envexpbot.2022.104824_bib145
– volume: 7
  start-page: 303
  year: 2016
  ident: 10.1016/j.envexpbot.2022.104824_bib131
  article-title: Potential biotechnological strategies for the cleanup of heavy metals and metalloids
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2016.00303
– volume: 35
  start-page: 535
  year: 2015
  ident: 10.1016/j.envexpbot.2022.104824_bib141
  article-title: Agroecological impact of an in vitro biotechnology approach of embryo development and seed filling in legumes
  publication-title: Agron. Sustain. Dev.
  doi: 10.1007/s13593-014-0276-8
– volume: 127
  start-page: 25
  year: 2018
  ident: 10.1016/j.envexpbot.2022.104824_bib48
  article-title: GmSK1, an SKP1 homologue in soybean, is involved in the tolerance to salt and drought
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2018.03.007
– volume: 129
  start-page: 263
  year: 2016
  ident: 10.1016/j.envexpbot.2022.104824_bib41
  article-title: VrDREB2A, a DREB-binding transcription factor from Vigna radiata, increased drought and high-salt tolerance in transgenic Arabidopsis thaliana
  publication-title: J. Plant Res.
  doi: 10.1007/s10265-015-0773-0
– volume: 28
  start-page: 1411
  year: 2006
  ident: 10.1016/j.envexpbot.2022.104824_bib47
  article-title: Cloning of GmHSFA1 gene and its overexpression leading to enhancement of heat tolerance in transgenic soybean
  publication-title: Yi Chuan Hered.
  doi: 10.1360/yc-006-1411
– volume: 51
  start-page: 1411
  year: 2019
  ident: 10.1016/j.envexpbot.2022.104824_bib102
  article-title: A reference genome for pea provides insight into legume genome evolution
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-019-0480-1
– volume: 74
  start-page: 1075
  year: 2017
  ident: 10.1016/j.envexpbot.2022.104824_bib122
  article-title: Heritability of targeted gene modifications induced by plant- optimized CRISPR systems
  publication-title: Cell. Mol. Life Sci.
  doi: 10.1007/s00018-016-2380-1
– volume: 37
  start-page: 575
  year: 2018
  ident: 10.1016/j.envexpbot.2022.104824_bib100
  article-title: Efficient CRISPR/Cas9-based genome editing in carrot cells
  publication-title: Plant Cell Rep.
  doi: 10.1007/s00299-018-2252-2
– volume: 189
  start-page: 357
  year: 2011
  ident: 10.1016/j.envexpbot.2022.104824_bib202
  article-title: Transgenic alfalfa plants co-expressing glutathione S-transferase (GST) and human CYP2E1 show enhanced resistance to mixed contaminates of heavy metals and organic pollutants
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2011.02.042
– volume: 70
  start-page: 220
  year: 2012
  ident: 10.1016/j.envexpbot.2022.104824_bib52
  article-title: Dual involvement of a Medicago truncatula NAC transcription factor in root abiotic stress response and symbiotic nodule senescence
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2011.04859.x
– volume: 79
  start-page: 1
  year: 2016
  ident: 10.1016/j.envexpbot.2022.104824_bib18
  article-title: Group II late embryogenesis abundant (LEA) proteins: structural and functional aspects in plant abiotic stress
  publication-title: Plant Growth Regul.
  doi: 10.1007/s10725-015-0113-3
– volume: 103
  start-page: 1155
  year: 1993
  ident: 10.1016/j.envexpbot.2022.104824_bib126
  article-title: Superoxide Dismutase enhances tolerance of freezing stress in transgenic Alfalfa (Medicago sativa L.)
  publication-title: Plant Physiol.
  doi: 10.1104/pp.103.4.1155
– volume: 166
  start-page: 1292
  year: 2014
  ident: 10.1016/j.envexpbot.2022.104824_bib32
  article-title: Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR- associated9 system
  publication-title: Plant Physiol.
  doi: 10.1104/pp.114.247577
– volume: 15
  start-page: 405
  issue: 4
  year: 2017
  ident: 10.1016/j.envexpbot.2022.104824_bib81
  article-title: The heat-shock protein/chaperone network and multiple stress resistance
  publication-title: Plant Biotechnol. J.
  doi: 10.1111/pbi.12659
– volume: 41
  start-page: 2021
  issue: 9
  year: 2018
  ident: 10.1016/j.envexpbot.2022.104824_bib209
  article-title: A cold responsive ethylene responsive factor from Medicago falcata confers cold tolerance by up-regulation of polyamine turnover, antioxidant protection, and proline accumulation
  publication-title: Plant Cell Environ.
– volume: 9
  start-page: 1724
  year: 2018
  ident: 10.1016/j.envexpbot.2022.104824_bib22
  article-title: Beyond risk considerations: where and how can a debate about non-safety related issues of genome editing in agriculture take place?
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2018.01724
– volume: 132
  start-page: 1
  year: 2018
  ident: 10.1016/j.envexpbot.2022.104824_bib60
  article-title: Potential use of the DREB/ERF, MYB, NAC and WRKY transcription factors to improve abiotic and biotic stress in transgenic plants
  publication-title: Plant Cell Tissue Organ Cult.
  doi: 10.1007/s11240-017-1320-6
– start-page: 401
  year: 2018
  ident: 10.1016/j.envexpbot.2022.104824_bib151
  article-title: Arsenic in rice: an overview on stress implications, tolerance and mitigation strategies
– volume: 10
  start-page: 678
  year: 2019
  ident: 10.1016/j.envexpbot.2022.104824_bib89
  article-title: H2S alleviates salinity stress in cucumber by maintaining the Na+/K+ balance and regulating H2S metabolism and oxidative stress response
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2019.00678
– volume: 20
  start-page: 2541
  year: 2019
  ident: 10.1016/j.envexpbot.2022.104824_bib134
  article-title: Research progress and perspective on drought stress in legumes: a review
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms20102541
– volume: vol. 2200
  start-page: 121
  year: 2021
  ident: 10.1016/j.envexpbot.2022.104824_bib129
  article-title: CRISPR/Cas9-based genome editing toolbox for Arabidopsis thaliana
– volume: 28
  start-page: 272
  year: 2016
  ident: 10.1016/j.envexpbot.2022.104824_bib63
  article-title: RNAi in plants: an Argonaute-centered view
  publication-title: Plant Cell
  doi: 10.1105/tpc.15.00920
– volume: 7
  start-page: 1904
  year: 2016
  ident: 10.1016/j.envexpbot.2022.104824_bib119
  article-title: DNA Free genetically edited grapevine and apple protoplast using CRISPR/Cas9 ribonucleoproteins
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2016.01904
– volume: 337
  start-page: 816
  year: 2012
  ident: 10.1016/j.envexpbot.2022.104824_bib90
  article-title: A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity
  publication-title: Science
  doi: 10.1126/science.1225829
– volume: 11
  start-page: 127
  year: 2011
  ident: 10.1016/j.envexpbot.2022.104824_bib20
  article-title: Identification and comparative analysis of drought-associated microRNAs in two cowpea genotypes
  publication-title: BMC Plant Biol.
  doi: 10.1186/1471-2229-11-127
– volume: vol 1822
  start-page: 291
  year: 2018
  ident: 10.1016/j.envexpbot.2022.104824_bib57
  article-title: Toward unravelling the genetic determinism of the acquisition of salt and osmotic stress tolerance through in vitro selection in Medicago truncatula
– volume: 49
  start-page: 1791
  year: 2009
  ident: 10.1016/j.envexpbot.2022.104824_bib166
  article-title: Enhanced tolerance to multiple abiotic stresses in transgenic alfalfa accumulating trehalose
  publication-title: Crop Sci.
  doi: 10.2135/cropsci2008.09.0573
– volume: 17
  start-page: 1140
  year: 2016
  ident: 10.1016/j.envexpbot.2022.104824_bib40
  article-title: Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology
  publication-title: Mol. Plant Pathol.
  doi: 10.1111/mpp.12375
– volume: 20
  start-page: 2471
  year: 2019
  ident: 10.1016/j.envexpbot.2022.104824_bib86
  article-title: Genome editing in cowpea Vigna unguiculata using CRISPR-Cas9
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms20102471
– volume: 11
  start-page: 747
  year: 2013
  ident: 10.1016/j.envexpbot.2022.104824_bib112
  article-title: Expression of an Arabidopsis molybdenum cofactor sulphurase gene in soybean enhances drought tolerance and increases yield under field conditions
  publication-title: Plant Biotechnol. J.
  doi: 10.1111/pbi.12066
– volume: 31
  start-page: 719
  year: 2013
  ident: 10.1016/j.envexpbot.2022.104824_bib19
  article-title: Overexpression of the ABA-dependent AREB1 transcription factor from Arabidopsis thaliana improves soybean tolerance to water deficit
  publication-title: Plant Mol. Biol. Rep.
  doi: 10.1007/s11105-012-0541-4
– volume: 6
  start-page: 773
  year: 2015
  ident: 10.1016/j.envexpbot.2022.104824_bib201
  article-title: Genome-wide analysis and expression profiling under heat and drought treatments of HSP70 gene family in soybean (Glycine max L.)
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2015.00773
– volume: 1
  start-page: 6
  year: 2017
  ident: 10.1016/j.envexpbot.2022.104824_bib191
  article-title: The application of CRISPR/Cas9 system in Gene Knock-out of Nicotiana benthamiana
  publication-title: Mol. Plant Breed.
– volume: 59
  start-page: 86
  year: 2017
  ident: 10.1016/j.envexpbot.2022.104824_bib88
  article-title: WRKY transcription factors in plant responses to stresses
  publication-title: J. Integr. Plant Biol.
  doi: 10.1111/jipb.12513
– volume: 155
  start-page: 45
  year: 2018
  ident: 10.1016/j.envexpbot.2022.104824_bib6
  article-title: The Panax ginseng PgTIP1 gene confers enhanced salt and drought tolerance to transgenic soybean plants by maintaining homeostasis of water, salt ions and ROS
  publication-title: Environ. Exp. Bot.
  doi: 10.1016/j.envexpbot.2018.06.025
– volume: 596
  start-page: 583
  year: 2021
  ident: 10.1016/j.envexpbot.2022.104824_bib93
  article-title: Highly accurate protein structure prediction with AlphaFold
  publication-title: Nature
  doi: 10.1038/s41586-021-03819-2
– volume: 10
  year: 2015
  ident: 10.1016/j.envexpbot.2022.104824_bib36
  article-title: CRISPR/Cas9-mediated genome editing in soybean hairy roots
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0136064
– volume: 7
  start-page: 1045
  year: 2016
  ident: 10.1016/j.envexpbot.2022.104824_bib34
  article-title: Geminivirus-mediated genome editing in potato (Solanum tuberosum L.) using sequence-specific nucleases
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2016.01045
– volume: 188
  year: 2021
  ident: 10.1016/j.envexpbot.2022.104824_bib187
  article-title: Structure characterization and potential role of soybean phospholipases A multigene family in response to multiple abiotic stress uncovered by CRISPR/Cas9 technology
  publication-title: Environ. Exp. Bot.
  doi: 10.1016/j.envexpbot.2021.104521
– volume: 161
  start-page: 98
  year: 2019
  ident: 10.1016/j.envexpbot.2022.104824_bib23
  article-title: Reactive oxygen species and heavy metal stress in plants: impact on the cell wall and secondary metabolism
  publication-title: Environ. Exp. Bot.
  doi: 10.1016/j.envexpbot.2018.10.017
– volume: 119
  start-page: 95
  year: 2014
  ident: 10.1016/j.envexpbot.2022.104824_bib83
  article-title: Ectopic overexpression of the aluminium-induced protein gene from Panax ginseng enhances heavy metal tolerance in transgenic Arabidopsis
  publication-title: Plant Cell Tissue Organ Cult.
  doi: 10.1007/s11240-014-0516-2
– volume: 257
  start-page: 35
  year: 2017
  ident: 10.1016/j.envexpbot.2022.104824_bib35
  article-title: The sunflower transcription factor HaHB11 confers tolerance to water deficit and salinity to transgenic Arabidopsis and alfalfa plants
  publication-title: J. Biotechnol.
  doi: 10.1016/j.jbiotec.2016.11.017
– volume: 38
  start-page: 503
  year: 2019
  ident: 10.1016/j.envexpbot.2022.104824_bib29
  article-title: Development of methods for effective identification of CRISPR/Cas9-induced indels in rice
  publication-title: Plant Cell Rep.
  doi: 10.1007/s00299-019-02392-3
– volume: 60
  start-page: 199
  year: 2010
  ident: 10.1016/j.envexpbot.2022.104824_bib42
  article-title: DREB1C from Medicago truncatula enhances freezing tolerance in transgenic M. truncatula and China rose (Rosa chinensis Jacq.)
  publication-title: Plant Growth Regul.
  doi: 10.1007/s10725-009-9434-4
– volume: 10
  start-page: 6790
  year: 2020
  ident: 10.1016/j.envexpbot.2022.104824_bib38
  article-title: Development of new genetic resources for faba bean (Vicia faba L.) breeding through the discovery of gene-based SNP markers and the construction of a high-density consensus map
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-63664-7
– volume: 9
  start-page: 13
  year: 2019
  ident: 10.1016/j.envexpbot.2022.104824_bib5
  article-title: Evaluating soybean cultivars for low- and high-temperature tolerance during the seedling growth stage
  publication-title: Agronomy
  doi: 10.3390/agronomy9010013
– volume: 9
  start-page: 681
  year: 2020
  ident: 10.1016/j.envexpbot.2022.104824_bib76
  article-title: Reactive oxygen species and antioxidant defense in plants under abiotic stress: revisiting the crucial role of a universal defense regulator
  publication-title: Antioxidants
  doi: 10.3390/antiox9080681
– volume: 7
  start-page: 4
  year: 2016
  ident: 10.1016/j.envexpbot.2022.104824_bib79
  article-title: Overexpression of a stress-responsive NAC transcription factor gene ONAC022 improves drought and salt tolerance in rice
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2016.00004
– volume: 10
  start-page: 1674
  issue: 7
  year: 2021
  ident: 10.1016/j.envexpbot.2022.104824_bib85
  article-title: Non-Coding RNAs in legumes: their emerging roles in regulating biotic/abiotic stress responses and plant growth and development
  publication-title: Cells
  doi: 10.3390/cells10071674
– volume: 170
  start-page: 26
  year: 2016
  ident: 10.1016/j.envexpbot.2022.104824_bib168
  article-title: Rj4, a gene controlling nodulation specificity in soybeans, encodes a thaumatin-like protein but not the one previously reported
  publication-title: Plant Physiol.
  doi: 10.1104/pp.15.01661
– volume: 16
  start-page: 48
  year: 2015
  ident: 10.1016/j.envexpbot.2022.104824_bib200
  article-title: A Meloidogyne incognita effector is imported into the nucleus and exhibits transcriptional activation activity in planta
  publication-title: Mol. Plant Pathol.
  doi: 10.1111/mpp.12160
– year: 2020
  ident: 10.1016/j.envexpbot.2022.104824_bib104
  article-title: TIP aquaporins in plants: role in abiotic stress tolerance
– volume: 135
  start-page: 545
  year: 2018
  ident: 10.1016/j.envexpbot.2022.104824_bib195
  article-title: Overexpression of two cold-responsive ATAF-like NAC transcription factors from fine-stem stylo (Stylosanthes guianensis var. intermedia) enhances cold tolerance in tobacco plants
  publication-title: Plant Cell Tissue Organ Cult.
  doi: 10.1007/s11240-018-1486-6
– volume: 21
  year: 2020
  ident: 10.1016/j.envexpbot.2022.104824_bib26
  article-title: Genome-wide identification of drought-responsive miRNAs in grass pea (Lathyrus sativus L.)
  publication-title: Plant Gene
  doi: 10.1016/j.plgene.2019.100210
– volume: 165
  start-page: 830
  year: 2019
  ident: 10.1016/j.envexpbot.2022.104824_bib125
  article-title: Alfalfa response to heat stress is modulated by microRNA156
  publication-title: Physiol. Plant
  doi: 10.1111/ppl.12787
– volume: 8
  start-page: 171
  issue: 2
  year: 2021
  ident: 10.1016/j.envexpbot.2022.104824_bib121
  article-title: Role of Glycine max ABSCISIC ACID INSENSITIVE 3 (GmABI3) in lipid biosynthesis and stress tolerance in soybean
  publication-title: Funct. Plant Biol.
  doi: 10.1071/FP19260
– volume: 53
  start-page: 12
  issue: 1
  year: 2017
  ident: 10.1016/j.envexpbot.2022.104824_bib164
  article-title: Enhancement of sheath blight tolerance in transgenic rice by combined expression of tobacco osmotin (ap24) and rice chitinase (chi11) genes
  publication-title: Vitr. Cell. Dev. Biol. Plant
  doi: 10.1007/s11627-017-9807-8
– volume: 472
  start-page: 75
  year: 2016
  ident: 10.1016/j.envexpbot.2022.104824_bib198
  article-title: Co-transforming bar and CsLEA enhanced tolerance to drought and salt stress in transgenic alfalfa (Medicago sativa L.)
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2016.02.067
– volume: 285
  start-page: 26
  year: 2019
  ident: 10.1016/j.envexpbot.2022.104824_bib80
  article-title: GmHsp90A2 is involved in soybean heat stress as a positive regulator
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2019.04.016
– volume: 8
  start-page: 13
  issue: 1
  year: 2017
  ident: 10.1016/j.envexpbot.2022.104824_bib51
  article-title: New GMO regulations for old: determining a new future for EU crop biotechnology
  publication-title: GM Crop. Food
  doi: 10.1080/21645698.2017.1289305
– volume: Volume 2
  start-page: 261
  year: 2017
  ident: 10.1016/j.envexpbot.2022.104824_bib91
  article-title: Trehalose: metabolism and role in stress signaling in plants
– volume: 41
  start-page: 413
  year: 2018
  ident: 10.1016/j.envexpbot.2022.104824_bib99
  article-title: Confirmation of drought tolerance of ectopically expressed AtABF3 gene in soybean
  publication-title: Mol. Cells
– volume: 9
  start-page: 1291
  year: 2018
  ident: 10.1016/j.envexpbot.2022.104824_bib105
  article-title: Regulatory uncertainty around new breeding techniques
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2018.01291
– year: 2017
  ident: 10.1016/j.envexpbot.2022.104824_bib66
  article-title: Transgenic crops – hazards and uncertainties: More than 750 studies disregarded by the GMOs regulatory bodies
  publication-title: Bras.: Minist. Agrar. Dev.
– volume: 58
  start-page: 1268
  issue: 7
  year: 2017
  ident: 10.1016/j.envexpbot.2022.104824_bib144
  article-title: Soybean NIMA-Related Kinase1 promotes plant growth and improves salt and cold tolerance
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pcx060
– volume: 40
  start-page: 462
  year: 2017
  ident: 10.1016/j.envexpbot.2022.104824_bib62
  article-title: Nitric oxide function in plant abiotic stress
  publication-title: Plant Cell Environ.
  doi: 10.1111/pce.12707
– volume: 65
  start-page: 541
  year: 2018
  ident: 10.1016/j.envexpbot.2022.104824_bib107
  article-title: The soybean GmRACK1 gene plays a role in drought tolerance at vegetative stages
  publication-title: Russ. J. Plant Physiol.
  doi: 10.1134/S1021443718040155
– volume: 51
  start-page: 865
  year: 2021
  ident: 10.1016/j.envexpbot.2022.104824_bib207
  article-title: The genome of cultivated peanut provides insight into legume karyotypes, polyploid evolution and crop domestication
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-019-0402-2
– volume: 9
  start-page: 985
  year: 2018
  ident: 10.1016/j.envexpbot.2022.104824_bib82
  article-title: CRISPR for Crop improvement: an updated review
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2018.00985
– volume: 36
  start-page: 291
  year: 2017
  ident: 10.1016/j.envexpbot.2022.104824_bib196
  article-title: Genome editing-principles and applications for functional genomics research and crop improvement
  publication-title: Crit. Rev. Plant Sci.
  doi: 10.1080/07352689.2017.1402989
– volume: 76
  start-page: 167
  year: 2010
  ident: 10.1016/j.envexpbot.2022.104824_bib189
  article-title: Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants
  publication-title: S. Afr. J. Bot.
  doi: 10.1016/j.sajb.2009.10.007
– volume: 33
  start-page: 41
  year: 2015
  ident: 10.1016/j.envexpbot.2022.104824_bib31
  article-title: The CRISPR/Cas9 system for plant genome editing and beyond
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2014.12.006
– volume: 4
  start-page: 697
  year: 2011
  ident: 10.1016/j.envexpbot.2022.104824_bib188
  article-title: Overexpression of TaNAC69 leads to enhanced transcript levels of stress up-regulated genes and dehydration tolerance in bread wheat
  publication-title: Mol. Plant
  doi: 10.1093/mp/ssr013
– volume: 74
  start-page: 37
  year: 2013
  ident: 10.1016/j.envexpbot.2022.104824_bib14
  article-title: Gene transfer in legumes
  publication-title: Prog. Bot.
  doi: 10.1007/978-3-642-30967-0_2
– volume: 9
  year: 2014
  ident: 10.1016/j.envexpbot.2022.104824_bib170
  article-title: Expression of a vacuole-localized BURP-domain protein from soybean (SALI3-2) enhances tolerance to cadmium and copper stresses
  publication-title: PLoS One
– volume: 38
  start-page: 437
  year: 2019
  ident: 10.1016/j.envexpbot.2022.104824_bib72
  article-title: CRISPR/Cas precision: do we need to worry about off-targeting in plants?
  publication-title: Plant Cell Rep.
  doi: 10.1007/s00299-018-2355-9
– volume: 258
  start-page: 122
  year: 2017
  ident: 10.1016/j.envexpbot.2022.104824_bib132
  article-title: MicroRNA156 improves drought stress tolerance in alfalfa (Medicago sativa) by silencing SPL13
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2017.01.018
– volume: 431
  start-page: 356
  year: 2004
  ident: 10.1016/j.envexpbot.2022.104824_bib21
  article-title: RNA silencing in plants
  publication-title: Nature
  doi: 10.1038/nature02874
– volume: 36
  start-page: 36
  year: 2016
  ident: 10.1016/j.envexpbot.2022.104824_bib33
  article-title: Enhanced salinity stress tolerance in transgenic chilli pepper (Capsicum annuum L.) plants overexpressing the wheat antiporter (TaNHX2) gene
  publication-title: Mol. Breed.
  doi: 10.1007/s11032-016-0451-5
– volume: 3
  start-page: 668
  year: 2015
  ident: 10.1016/j.envexpbot.2022.104824_bib133
  article-title: Salinity tolerance of crops–what is the cost?
  publication-title: New Phytol.
  doi: 10.1111/nph.13519
– volume: 169
  start-page: 960
  year: 2015
  ident: 10.1016/j.envexpbot.2022.104824_bib114
  article-title: Cas9-Guide RNA directed genome editing in soybean
  publication-title: Plant Physiol.
  doi: 10.1104/pp.15.00783
– volume: 36
  start-page: 117
  year: 2017
  ident: 10.1016/j.envexpbot.2022.104824_bib8
  article-title: Efficient targeted multiallelic mutagenesis intetraploid potato (Solanum tuberosum) by transient CRISPR-Cas9 expression in protoplasts
  publication-title: Plant Cell Rep.
  doi: 10.1007/s00299-016-2062-3
– volume: 32
  start-page: 947
  year: 2014
  ident: 10.1016/j.envexpbot.2022.104824_bib184
  article-title: Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2969
– volume: 21
  start-page: 31
  year: 2016
  ident: 10.1016/j.envexpbot.2022.104824_bib56
  article-title: Landrace germplasm for improving yield and abiotic stress adaptation
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2015.10.012
– volume: 164
  start-page: 378
  year: 2018
  ident: 10.1016/j.envexpbot.2022.104824_bib9
  article-title: Genome editing in potato via CRISPR-Cas9 ribonucleoprotein delivery
  publication-title: Physiol. Plant
  doi: 10.1111/ppl.12731
– volume: 11
  year: 2021
  ident: 10.1016/j.envexpbot.2022.104824_bib53
  article-title: Structural conservation of WEE1 and its role in cell cycle regulation in plants
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-03268-x
– volume: 39
  start-page: 851
  year: 2020
  ident: 10.1016/j.envexpbot.2022.104824_bib157
  article-title: Constitutive expression of a group 3 LEA protein from Medicago falcata (MfLEA3) increases cold and drought tolerance in transgenic tobacco
  publication-title: Plant Cell Rep.
  doi: 10.1007/s00299-020-02534-y
– volume: 46
  start-page: 707
  year: 2014
  ident: 10.1016/j.envexpbot.2022.104824_bib154
  article-title: A reference genome for common bean and genome-wide analysis of dual domestications
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3008
– volume: 10
  start-page: 1446
  year: 2019
  ident: 10.1016/j.envexpbot.2022.104824_bib74
  article-title: Creation of early flowering germplasm of soybean by CRISPR/Cas9 technology
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2019.01446
– volume: 16
  start-page: 176
  year: 2018
  ident: 10.1016/j.envexpbot.2022.104824_bib37
  article-title: CRISPR/Cas9-mediated targeted mutagenesis of GmFT2a delays flowering time in soybean
  publication-title: Plant Biotechnol. J.
  doi: 10.1111/pbi.12758
– volume: 31
  start-page: 688
  year: 2013
  ident: 10.1016/j.envexpbot.2022.104824_bib109
  article-title: Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2654
– volume: 15
  year: 2016
  ident: 10.1016/j.envexpbot.2022.104824_bib180
  article-title: Cloning and characterization of a novel betaine aldehyde dehydrogenase gene from Suaeda corniculata
  publication-title: Genet. Mol. Res.
– volume: 21
  start-page: 2695
  year: 2020
  ident: 10.1016/j.envexpbot.2022.104824_bib11
  article-title: Transgenic breeding approaches for improving abiotic stress tolerance: Recent progress and future perspectives
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms21082695
– volume: 7
  start-page: 703
  year: 2016
  ident: 10.1016/j.envexpbot.2022.104824_bib54
  article-title: Recent advances in genome editing using CRISPR/Cas9
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2016.00703
– volume: 123
  start-page: 149
  year: 2018
  ident: 10.1016/j.envexpbot.2022.104824_bib176
  article-title: Osmotin: a plant defense tool against biotic and abiotic stresses
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2017.12.012
– volume: 49
  start-page: 311
  year: 2018
  ident: 10.1016/j.envexpbot.2022.104824_bib171
  article-title: Agrobacterium-mediated transformation of a Eucalyptus camaldulensis × E. tereticornis hybrid using peeled nodal-stem segments with yeast HAL2 for improving salt tolerance
  publication-title: New
  doi: 10.1007/s11056-017-9621-5
– volume: Volume II
  start-page: 579
  year: 2015
  ident: 10.1016/j.envexpbot.2022.104824_bib123
  article-title: Genetic engineering strategies for abiotic stress tolerance in plants
– volume: 85
  start-page: 31
  year: 2014
  ident: 10.1016/j.envexpbot.2022.104824_bib108
  article-title: Overexpression of codA gene confers enhanced tolerance to abiotic stresses in alfalfa
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2014.10.010
– volume: 23
  start-page: 75
  year: 2014
  ident: 10.1016/j.envexpbot.2022.104824_bib143
  article-title: Phenotyping soybean plants transformed with rd29A:AtDREB1A for drought tolerance in the greenhouse and field
  publication-title: Transgenic Res.
  doi: 10.1007/s11248-013-9723-6
– volume: 5
  start-page: 86
  year: 2014
  ident: 10.1016/j.envexpbot.2022.104824_bib142
  article-title: Response of plants to water stress
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2014.00086
– volume: 211
  year: 2021
  ident: 10.1016/j.envexpbot.2022.104824_bib73
  article-title: Cadmium toxicity in plants: Impacts and remediation strategies
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2020.111887
– volume: 16
  start-page: 1125
  year: 2018
  ident: 10.1016/j.envexpbot.2022.104824_bib50
  article-title: CRISPR/cas9 and TALENS generate heritable mutations for genes involved in small RNA processing of Glycine max and Medicago truncatula
  publication-title: Plant Biotechnol. J.
  doi: 10.1111/pbi.12857
– volume: 162
  start-page: 2
  issue: 1
  year: 2018
  ident: 10.1016/j.envexpbot.2022.104824_bib193
  article-title: Plant adaptations to the combination of drought and high temperatures
  publication-title: Physiol. Plant
  doi: 10.1111/ppl.12540
– volume: 7
  start-page: 1029
  year: 2016
  ident: 10.1016/j.envexpbot.2022.104824_bib92
  article-title: Transcription factors and plants response to drought stress: current understanding and future directions
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2016.01029
– volume: 59
  start-page: 413
  year: 2015
  ident: 10.1016/j.envexpbot.2022.104824_bib159
  article-title: Embracing new-generation ‘omics’ tools to improve drought tolerance in cereal and food-legume crops
  publication-title: Biol. Plant
  doi: 10.1007/s10535-015-0515-0
– volume: 6
  start-page: 84
  year: 2015
  ident: 10.1016/j.envexpbot.2022.104824_bib175
  article-title: Recent advances in the dissection of drought-stress regulatory networks and strategies for development of drought-tolerant transgenic rice plants
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2015.00084
– volume: 50
  start-page: 1132
  year: 2018
  ident: 10.1016/j.envexpbot.2022.104824_bib149
  article-title: CRISPR-Cas9 genome editing in human cells occurs via the Fanconi anemia pathway
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-018-0174-0
– volume: 67
  start-page: 2119
  year: 2020
  ident: 10.1016/j.envexpbot.2022.104824_bib155
  article-title: Genetic manipulation of pea (Pisum sativum L.) with Arabidopsis"s heat shock factor HsfA1d improves ROS scavenging system to confront thermal stress
  publication-title: Genet. Res. Crop Evol.
  doi: 10.1007/s10722-020-00966-9
– volume: 233
  start-page: 1265
  year: 2011
  ident: 10.1016/j.envexpbot.2022.104824_bib3
  article-title: Overexpression of HARDY, an AP2/ERF gene from Arabidopsis, improves drought and salt tolerance by reducing transpiration and sodium uptake in transgenic Trifolium alexandrinum L
  publication-title: Planta
  doi: 10.1007/s00425-011-1382-3
– volume: 8
  start-page: 2135
  year: 2017
  ident: 10.1016/j.envexpbot.2022.104824_bib87
  article-title: Editing citrus genome via SaCas9/sgRNA system
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2017.02135
– volume: 95
  start-page: 26
  year: 2015
  ident: 10.1016/j.envexpbot.2022.104824_bib110
  article-title: The overexpression of a chrysanthemum WRKY transcription factor enhances aphid resistance
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2015.07.002
– volume: 12
  year: 2021
  ident: 10.1016/j.envexpbot.2022.104824_bib61
  article-title: Molecular characterisation of soybean osmotins and their involvement in drought stress response
  publication-title: Front. Genet.
  doi: 10.3389/fgene.2021.632685
– volume: 18
  start-page: 243
  year: 2018
  ident: 10.1016/j.envexpbot.2022.104824_bib162
  article-title: WRKY transcription factors in legumes
  publication-title: BMC Plant Biol.
  doi: 10.1186/s12870-018-1467-2
– volume: 227
  start-page: 148
  year: 2004
  ident: 10.1016/j.envexpbot.2022.104824_bib130
  article-title: Characterization of altered metabolism in transgenic alfalfa overexpressing malate dehydrogenase to confer aluminum tolerance
  publication-title: Am. Chem. Soc.
– volume: 20
  start-page: 1427
  issue: 14
  year: 2018
  ident: 10.1016/j.envexpbot.2022.104824_bib137
  article-title: The Crotalaria juncea metal transporter CjNRAMP1 has a high Fe uptake activity, even in an environment with high Cd contamination
  publication-title: Int. J. Phytoremediat.
  doi: 10.1080/15226514.2018.1501333
– volume: 149
  start-page: 67
  year: 2013
  ident: 10.1016/j.envexpbot.2022.104824_bib208
  article-title: A cold responsive galactinol synthase gene from Medicago falcata (MfGolS1) is induced by -inositol and confers multiple tolerances to abiotic stresses
  publication-title: Physiol. Plant
  doi: 10.1111/ppl.12019
– volume: 22
  start-page: 7687
  issue: 14
  year: 2021
  ident: 10.1016/j.envexpbot.2022.104824_bib1
  article-title: Tuning beforehand: A foresight on RNA interference (RNAi) and in vitro-derived dsRNAs to enhance crop resilience to biotic and abiotic stresses
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms22147687
– volume: 98
  start-page: 767
  issue: 5
  year: 2019
  ident: 10.1016/j.envexpbot.2022.104824_bib118
  article-title: The genome of cowpea (Vigna unguiculata [L.] Walp.)
  publication-title: Plant J.
  doi: 10.1111/tpj.14349
– volume: 149
  start-page: 310
  year: 2013
  ident: 10.1016/j.envexpbot.2022.104824_bib167
  article-title: Nitric oxide mediates cold- and dehydration-induced expression of a novel MfHyPRP that confers tolerance to abiotic stress
  publication-title: Physiol. Plant
  doi: 10.1111/ppl.12032
– volume: 131
  start-page: 892
  year: 2003
  ident: 10.1016/j.envexpbot.2022.104824_bib161
  article-title: Recent advances in legume transformation
  publication-title: Plant Physiol.
  doi: 10.1104/pp.102.017681
– volume: 19
  start-page: 1276
  year: 2020
  ident: 10.1016/j.envexpbot.2022.104824_bib43
  article-title: SgRVE6, a LHY-CCA1-Like transcription factor from Fine-Stem tylo, upregulates NB-LRR gene expression and enhances cold tolerance in tobacco
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2020.01276
– volume: 2
  start-page: 22
  issue: 1
  year: 2009
  ident: 10.1016/j.envexpbot.2022.104824_bib190
  article-title: Overexpression of SOS (Salt Overly Sensitive) genes increases salt tolerance in transgenic Arabidopsis
  publication-title: Mol. Plant
  doi: 10.1093/mp/ssn058
– volume: 35
  start-page: 871
  year: 2017
  ident: 10.1016/j.envexpbot.2022.104824_bib199
  article-title: Next-generation insect-resistant plants: RNAi- mediated crop protection
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2017.04.009
– volume: 18
  start-page: 31
  year: 2018
  ident: 10.1016/j.envexpbot.2022.104824_bib98
  article-title: CRISPR/Cas9 genome editing in wheat
  publication-title: Funct. Integr. Genom.
  doi: 10.1007/s10142-017-0572-x
– volume: 11
  start-page: 294
  year: 2020
  ident: 10.1016/j.envexpbot.2022.104824_bib197
  article-title: Efficient generation of CRISPR/Cas9-mediated homozygous/biallelic Medicago truncatula mutants using a hairy root system
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2020.00294
– volume: 18
  start-page: 553
  issue: 6
  year: 2017
  ident: 10.1016/j.envexpbot.2022.104824_bib179
  article-title: Salinity tolerance mechanism of osmotin and osmotin-like proteins: a promising candidate for enhancing plant salt tolerance
  publication-title: Curr. Genom.
  doi: 10.2174/1389202918666170705153045
– volume: 37
  start-page: 613
  year: 2019
  ident: 10.1016/j.envexpbot.2022.104824_bib124
  article-title: Worldwide CRISPR patent landscape shows strong geographical biases
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-019-0138-7
– volume: 22
  start-page: 949
  year: 2021
  ident: 10.1016/j.envexpbot.2022.104824_bib186
  article-title: Defining the Cell Wall, Cell Cycle and Chromatin Landmarks in the Responses of Brachypodium distachyon to Salinity
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms22020949
– volume: vol 2
  start-page: 41
  year: 2018
  ident: 10.1016/j.envexpbot.2022.104824_bib120
  article-title: RNA interference: a promising approach for crop improvement
– volume: 36
  start-page: 371
  year: 2017
  ident: 10.1016/j.envexpbot.2022.104824_bib128
  article-title: Targeted mutagenesis by CRISPR/Cas9 system in the model legume Medicago truncatula
  publication-title: Plant Cell Rep.
  doi: 10.1007/s00299-016-2069-9
– volume: 206
  year: 2020
  ident: 10.1016/j.envexpbot.2022.104824_bib173
  article-title: Over-expression of rice R1-type MYB transcription factor confers different abiotic stress tolerance in transgenic Arabidopsis
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2020.111361
– volume: 131
  start-page: 31
  year: 2018
  ident: 10.1016/j.envexpbot.2022.104824_bib2
  article-title: Genome editing using CRISPR/Cas9-targeted mutagenesis: an opportunity for yield improvements of crop plants grown under environmental stresses
  publication-title: Plant. Physiol. Biochem.
  doi: 10.1016/j.plaphy.2018.03.012
– volume: 21
  year: 2020
  ident: 10.1016/j.envexpbot.2022.104824_bib153
  article-title: The evolving landscape around genome editing in agriculture
  publication-title: EMBO Rep.
  doi: 10.15252/embr.202050680
– volume: 58
  start-page: 1155
  issue: 3
  year: 2018
  ident: 10.1016/j.envexpbot.2022.104824_bib194
  article-title: Key soybean maturity groups to increase grain yield in Brazil
  publication-title: Crop Sci.
  doi: 10.2135/cropsci2017.09.0581
– volume: 101
  start-page: 15289
  issue: 43
  year: 2004
  ident: 10.1016/j.envexpbot.2022.104824_bib49
  article-title: Estimating genome conservation between crop and model legume species
  publication-title: PNAS
  doi: 10.1073/pnas.0402251101
– start-page: 157
  year: 2017
  ident: 10.1016/j.envexpbot.2022.104824_bib165
  article-title: Gene editing technologies- ZFNs, TALENs, and CRISPR/Cas9
– volume: 12
  year: 2017
  ident: 10.1016/j.envexpbot.2022.104824_bib113
  article-title: Overexpression of GmFDL19 enhances tolerance to drought and salt stresses in soybean
  publication-title: PLoS One
– volume: 71
  start-page: 22
  year: 2013
  ident: 10.1016/j.envexpbot.2022.104824_bib169
  article-title: Overexpression of GsZFP1 enhances salt and drought tolerance in transgenic alfalfa (Medicago sativa L.)
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2013.06.024
– volume: 14
  start-page: 9643
  year: 2013
  ident: 10.1016/j.envexpbot.2022.104824_bib75
  article-title: Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms14059643
– volume: 68
  start-page: 2013
  year: 2017
  ident: 10.1016/j.envexpbot.2022.104824_bib163
  article-title: The legume miR1514a modulates a NAC transcription factor transcript to trigger phasiRNA formation in response to drought
  publication-title: J. Exp. Bot.
SSID ssj0007376
Score 2.4688995
SecondaryResourceType review_article
Snippet Protein legumes are among the most important crops for sustainable agriculture and global food security for decades to come. Unfortunately, they are subject to...
SourceID unpaywall
hal
proquest
crossref
nrccanada
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 104824
SubjectTerms abiotic stress
biotechnology
botany
climate change
cold
CRISPR/Cas
Drought
Extreme temperatures
food security
Gene transfer
genes
heat
Heavy metals
Legume crops
legumes
Life Sciences
RNA interference
Salinity
stress tolerance
sustainable agriculture
transgenesis
SummonAdditionalLinks – databaseName: Elsevier ScienceDirect
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKhVQuCAoVy0sGcQ1NHDvrcCtVqxUqnKjUCzLjRyBVlKy62dJe-tuZyavsARWJSyJbYyWaGY8_2_Ng7J3AJdEXQkYhLSCiHFIRCCsin6RzB8rrxFE08ucv2eJUfjpTZ1vscIyFIbfKwfb3Nr2z1kPP_sDN_WVZUoxvrjXlOhRdCCSl3ZbYRJ1-f3Pr5jFPuwJzXd5Mot7w8Qr1Zbha2oacKoWg-04t5N9WqHs_yVVyp75wnT8WbGDSnXW9hOtfUFV_LE_Hj9jDAVfyg_7XH7OtUO-y-x8bxH7Xu2zv6DaeDamGCb16wr6fENZsuS2bdjpk523TVCsOtee9o_iKI7Tl5Xj-wIHIS8f7QBMkrwLV5wi8rHmX-AHfVfiBZm_1lJ0eH309XERD0YXIKSHbiEqjFxoQmVmtFeQ-w2kulPZSS3AWEYtPgwfcpRQKtAepk5DYPMONj57PQaZ7bLtu6vCM8WCLVMfglMqczOMM2a88YT6bWpuqfMaykdHGDRnJqTBGZUbXs3MzSciQhEwvoRmLp4HLPinH3UM-jJI0G_plcOm4e_BblP30KcrIvTg4MdSHACBPs1hcJjP2bVKNDVJHxtqU9DJIYVz3gL4ftQZbMWSASNIam0owUlhpIHhpcqts7gqLu049Y29GdTNoAuheB-rQrFeGMBYJSSNNMunhv3Lm-f9w5gV7QK3eA_Ql224v1uEVorTWvu6m4W_KNz3a
  priority: 102
  providerName: Elsevier
Title Latest biotechnology tools and targets for improving abiotic stress tolerance in protein legumes
URI https://dx.doi.org/10.1016/j.envexpbot.2022.104824
https://nrc-publications.canada.ca/eng/view/object/?id=0a6a172b-b34a-42b4-aed4-9b5b9cfb6268
https://www.proquest.com/docview/2661040288
https://hal.inrae.fr/hal-03693602
https://linkinghub.elsevier.com/retrieve/pii/S0098847222000466
UnpaywallVersion publishedVersion
Volume 197
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-7307
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007376
  issn: 0098-8472
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1873-7307
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007376
  issn: 0098-8472
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection
  customDbUrl:
  eissn: 1873-7307
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007376
  issn: 0098-8472
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1873-7307
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007376
  issn: 0098-8472
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-7307
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007376
  issn: 0098-8472
  databaseCode: AKRWK
  dateStart: 19760101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbYFmm58FhYUR6VQVxTGsdOHW4F7arAUnGg0nJAxnac3UCVVE1aWA78dmbygiKhRXtplGisKvGXmc_ONzOEPGMQEuOEcc8FifawhpSnmWFe7AcTq0UsfYvZyO_m4WzB35yK02bDrWjU7uCzzzdm1MaGyl-vq_5SW_d8laaY3htJiWUOWZX9GO6RfiiAi_dIfzF_P_3YFspEG1xxyUngAZQnOwIvl23d95XJUVHJGH7slIz_KzztnaNOcj9b20qMpXcI6f4mW-mLb3q5_CM2Hd8iqr2rWpLydbQpzcj--Kvg49Vv-za52dBWOq1xdodcc9kBuf4yB2p5cUAOj36ny4FV4y-Ku-TzCVLZkpo0L7s9fFrm-bKgOotprUMvKDBnmrbbG1SjeWppnccC5kuH7T8cTTNa1ZWA49KdgVct7pHF8dGHVzOv6engWcF46WHn9URqIH5GSqGjOAQvwoSMueTaGiBEceBiDYugRGgZay5955sohHWVnEw0Dw5JL8szd59QZ5JAjrUVIrQ8GofwZESMlNIExgQiGpCwnUplm4Ln2HdjqVpl2xfVYUAhBlSNgQEZdwNXdc2Py4e8aOdNNdSlpiQKItPlg58Curq_woLfs-mJwmvAL6IgHLOtPyCfOvDtmFqMBSrFgwILZasfXV8HXMLZWIcaiKpRJuBacWa40i7mKjLCRDYxsKiVA_KkBbQCD4OfjXTm8k2hkMLhJEmw8Tuk_--TeXCFMQ_JDTyrdaWPSK9cb9xj4H6lGZK90U9_SPrT129n82Hzuv8Cxi5dTQ
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELe2gVReEAwmOr4M4jWscezU4W1Mmwp0e9qkvSBzdpwRFCXVmm7shb-du3yNPqAh8dKo7lmp7s7nn5Pf3TH2TuCWmGZCBj7KIKAaUgEIK4I0jKYOVKpDR9nIxyfx7Ex-PlfnG-ygz4UhWmUX-9uY3kTrbmSv0-beIs8pxzfRmmodiiYFMt5k96QSUzqBvf91y_OYRk2HuaZwJomvkbx8eeV_LmxFrEoh6IWnFvJvW9Tmd-JKjspL1xCyYA2UjlblAm6uoSj-2J-OHrGHHbDk--1_f8w2fLnN7n-sEPzdbLOdw9uENpTqVvTyCfs2J7BZc5tX9fCUnddVVSw5lClvmeJLjtiW5_0DCA4knjveZpqgeOGpQYfnecmbyg94LfwFxr3lU3Z2dHh6MAu6rguBU0LWAfVGzzQgNLNaK0jSGNe5UDqVWoKzCFnSyKeAx5RMgU5B6tCHNonx5KOnU5DRDtsqq9I_Y9zbLNITcErFTiaTGNWvUgJ9NrI2UsmYxb2ijetKklNnjML03LMfZrCQIQuZ1kJjNhkmLtqqHHdP-dBb0qw5mMG94-7Jb9H2w62oJPdsf25oDBFAEsUTcRWO2dfBNdZEHUVrk9PFoIRxzQe04-g1-G0CMSCUtMZGEowUVhrwqTSJVTZxmcVjpx6zN727GYwB9GIHSl-tloZAFhlJo0w4-OG_amb3fzTzmo1mp8dzM_908uU5e0C_tHTQF2yrvlz5lwjZavuqWZK_AcMHQP0
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF7RFKlceBQqwksL4uoSr3edNbeAWkWoVByIVA5o2Zdbg2VHsRMov54ZvyBIqKiXWLZmFdn7eebb9TczhLxkEBJdynjgo1QHWEMq0MywwIXR1GrhZGgxG_n9aTxf8Hdn4qzbcKs6tTv47Iu1OexjQ-OvV01_qY1_tcwyTO9NpMQyh6zJfox3yG4sgIuPyO7i9MPsU18oE21wxSWnUQBQnm4JvHyx8T-WpkRFJWP4sVMy_q_wtHOBOsm9YmUbMZbeIqR762KpL7_rPP8jNh3fIaq_q1aS8u1wXZtD-_Ovgo_Xv-275HZHW-msxdk9csMX--TmmxKo5eU-OTj6nS4HVp2_qO6TLydIZWtqsrIe9vBpXZZ5RXXhaKtDrygwZ5r12xtUo3lmaZvHAua5x_YfnmYFbepKwDH35-BVqwdkcXz08e086Ho6BFYwXgfYeT2VGoifkVLoxMXgRZiQjkuurQFC5CLvNCyCUqGl01yGPjRJDOsqOZ1qHh2QUVEW_iGh3qSRnGgrRGx5MonhyQiHlNJExkQiGZO4n0plu4Ln2HcjV72y7asaMKAQA6rFwJhMhoHLtubH1UNe9_OmOurSUhIFkenqwS8AXcNfYcHv-exE4TXgF0kUT9gmHJPPA_i2TC3GApXhQYGFss2Pbq8DLuFsomMNRNUoE3GtODNcae-4SowwiU0NLGrlmDzvAa3Aw-BnI134cl0ppHA4SRJswgHp__tkHl1jzGNyC89aXekTMqpXa_8UuF9tnnUv-C_C-FrB
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Latest+biotechnology+tools+and+targets+for+improving+abiotic+stress+tolerance+in+protein+legumes&rft.jtitle=Environmental+and+experimental+botany&rft.au=D%C3%A9tain%2C+Alexandre&rft.au=Bhowmik%2C+Pankaj&rft.au=Leborgne-Castel%2C+Nathalie&rft.au=Ochatt%2C+Sergio&rft.date=2022-05-01&rft.pub=Elsevier+B.V&rft.issn=0098-8472&rft.volume=197&rft_id=info:doi/10.1016%2Fj.envexpbot.2022.104824&rft.externalDocID=S0098847222000466
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-8472&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-8472&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-8472&client=summon