Optimal RNA isolation method and primer design to detect gene knockdown by qPCR when validating Drosophila transgenic RNAi lines

Objective RNA interference is employed extensively in Drosophila research to study gene function within a specific cell-type or tissue. Thousands of transgenic Drosophila lines have been generated to express double stranded RNA for gene knockdown; however, no standardized method exists for quantifyi...

Full description

Saved in:
Bibliographic Details
Published inBMC research notes Vol. 10; no. 1; pp. 647 - 7
Main Authors Mainland, Roslyn L., Lyons, Taylor A., Ruth, Mike M., Kramer, Jamie M.
Format Journal Article
LanguageEnglish
Published London BioMed Central 29.11.2017
BioMed Central Ltd
BMC
Subjects
Online AccessGet full text
ISSN1756-0500
1756-0500
DOI10.1186/s13104-017-2959-0

Cover

Abstract Objective RNA interference is employed extensively in Drosophila research to study gene function within a specific cell-type or tissue. Thousands of transgenic Drosophila lines have been generated to express double stranded RNA for gene knockdown; however, no standardized method exists for quantifying their knockdown efficiency. Since antibodies are not available for many proteins, quantitative real-time PCR is often used. Here, we explore how primer design and RNA isolation method can influence detection of gene knockdown using qPCR. Results We tested differences in detected gene knockdown efficiency when using purified polyadenylated mRNA or total RNA as templates for cDNA synthesis. We also tested two different primer locations for each gene: one to amplify a region 5′ of the RNAi cut site, and one to amplify a region 3′ of the cut site. Consistently, the strongest gene knockdown was detected when qPCR was performed using 5′ primer sets in combination with mRNA-derived cDNA. Our results indicate that detection of undegraded mRNA cleavage fragments can result in underestimation of true knockdown efficiency for a RNAi construct. Purification of polyadenylated mRNA, combined with primers designed to amplify the non-polyadenylated 5′ mRNA cleavage fragment can avoid this problem.
AbstractList RNA interference is employed extensively in Drosophila research to study gene function within a specific cell-type or tissue. Thousands of transgenic Drosophila lines have been generated to express double stranded RNA for gene knockdown; however, no standardized method exists for quantifying their knockdown efficiency. Since antibodies are not available for many proteins, quantitative real-time PCR is often used. Here, we explore how primer design and RNA isolation method can influence detection of gene knockdown using qPCR.OBJECTIVERNA interference is employed extensively in Drosophila research to study gene function within a specific cell-type or tissue. Thousands of transgenic Drosophila lines have been generated to express double stranded RNA for gene knockdown; however, no standardized method exists for quantifying their knockdown efficiency. Since antibodies are not available for many proteins, quantitative real-time PCR is often used. Here, we explore how primer design and RNA isolation method can influence detection of gene knockdown using qPCR.We tested differences in detected gene knockdown efficiency when using purified polyadenylated mRNA or total RNA as templates for cDNA synthesis. We also tested two different primer locations for each gene: one to amplify a region 5' of the RNAi cut site, and one to amplify a region 3' of the cut site. Consistently, the strongest gene knockdown was detected when qPCR was performed using 5' primer sets in combination with mRNA-derived cDNA. Our results indicate that detection of undegraded mRNA cleavage fragments can result in underestimation of true knockdown efficiency for a RNAi construct. Purification of polyadenylated mRNA, combined with primers designed to amplify the non-polyadenylated 5' mRNA cleavage fragment can avoid this problem.RESULTSWe tested differences in detected gene knockdown efficiency when using purified polyadenylated mRNA or total RNA as templates for cDNA synthesis. We also tested two different primer locations for each gene: one to amplify a region 5' of the RNAi cut site, and one to amplify a region 3' of the cut site. Consistently, the strongest gene knockdown was detected when qPCR was performed using 5' primer sets in combination with mRNA-derived cDNA. Our results indicate that detection of undegraded mRNA cleavage fragments can result in underestimation of true knockdown efficiency for a RNAi construct. Purification of polyadenylated mRNA, combined with primers designed to amplify the non-polyadenylated 5' mRNA cleavage fragment can avoid this problem.
Objective RNA interference is employed extensively in Drosophila research to study gene function within a specific cell-type or tissue. Thousands of transgenic Drosophila lines have been generated to express double stranded RNA for gene knockdown; however, no standardized method exists for quantifying their knockdown efficiency. Since antibodies are not available for many proteins, quantitative real-time PCR is often used. Here, we explore how primer design and RNA isolation method can influence detection of gene knockdown using qPCR. Results We tested differences in detected gene knockdown efficiency when using purified polyadenylated mRNA or total RNA as templates for cDNA synthesis. We also tested two different primer locations for each gene: one to amplify a region 5' of the RNAi cut site, and one to amplify a region 3' of the cut site. Consistently, the strongest gene knockdown was detected when qPCR was performed using 5' primer sets in combination with mRNA-derived cDNA. Our results indicate that detection of undegraded mRNA cleavage fragments can result in underestimation of true knockdown efficiency for a RNAi construct. Purification of polyadenylated mRNA, combined with primers designed to amplify the non-polyadenylated 5' mRNA cleavage fragment can avoid this problem. Keywords: RNAi knockdown efficiency, Quantitative real-time PCR, UAS-Gal4 system, Drosophila transgenic RNAi lines
Abstract Objective RNA interference is employed extensively in Drosophila research to study gene function within a specific cell-type or tissue. Thousands of transgenic Drosophila lines have been generated to express double stranded RNA for gene knockdown; however, no standardized method exists for quantifying their knockdown efficiency. Since antibodies are not available for many proteins, quantitative real-time PCR is often used. Here, we explore how primer design and RNA isolation method can influence detection of gene knockdown using qPCR. Results We tested differences in detected gene knockdown efficiency when using purified polyadenylated mRNA or total RNA as templates for cDNA synthesis. We also tested two different primer locations for each gene: one to amplify a region 5′ of the RNAi cut site, and one to amplify a region 3′ of the cut site. Consistently, the strongest gene knockdown was detected when qPCR was performed using 5′ primer sets in combination with mRNA-derived cDNA. Our results indicate that detection of undegraded mRNA cleavage fragments can result in underestimation of true knockdown efficiency for a RNAi construct. Purification of polyadenylated mRNA, combined with primers designed to amplify the non-polyadenylated 5′ mRNA cleavage fragment can avoid this problem.
Objective RNA interference is employed extensively in Drosophila research to study gene function within a specific cell-type or tissue. Thousands of transgenic Drosophila lines have been generated to express double stranded RNA for gene knockdown; however, no standardized method exists for quantifying their knockdown efficiency. Since antibodies are not available for many proteins, quantitative real-time PCR is often used. Here, we explore how primer design and RNA isolation method can influence detection of gene knockdown using qPCR. Results We tested differences in detected gene knockdown efficiency when using purified polyadenylated mRNA or total RNA as templates for cDNA synthesis. We also tested two different primer locations for each gene: one to amplify a region 5′ of the RNAi cut site, and one to amplify a region 3′ of the cut site. Consistently, the strongest gene knockdown was detected when qPCR was performed using 5′ primer sets in combination with mRNA-derived cDNA. Our results indicate that detection of undegraded mRNA cleavage fragments can result in underestimation of true knockdown efficiency for a RNAi construct. Purification of polyadenylated mRNA, combined with primers designed to amplify the non-polyadenylated 5′ mRNA cleavage fragment can avoid this problem.
RNA interference is employed extensively in Drosophila research to study gene function within a specific cell-type or tissue. Thousands of transgenic Drosophila lines have been generated to express double stranded RNA for gene knockdown; however, no standardized method exists for quantifying their knockdown efficiency. Since antibodies are not available for many proteins, quantitative real-time PCR is often used. Here, we explore how primer design and RNA isolation method can influence detection of gene knockdown using qPCR. We tested differences in detected gene knockdown efficiency when using purified polyadenylated mRNA or total RNA as templates for cDNA synthesis. We also tested two different primer locations for each gene: one to amplify a region 5' of the RNAi cut site, and one to amplify a region 3' of the cut site. Consistently, the strongest gene knockdown was detected when qPCR was performed using 5' primer sets in combination with mRNA-derived cDNA. Our results indicate that detection of undegraded mRNA cleavage fragments can result in underestimation of true knockdown efficiency for a RNAi construct. Purification of polyadenylated mRNA, combined with primers designed to amplify the non-polyadenylated 5' mRNA cleavage fragment can avoid this problem.
RNA interference is employed extensively in Drosophila research to study gene function within a specific cell-type or tissue. Thousands of transgenic Drosophila lines have been generated to express double stranded RNA for gene knockdown; however, no standardized method exists for quantifying their knockdown efficiency. Since antibodies are not available for many proteins, quantitative real-time PCR is often used. Here, we explore how primer design and RNA isolation method can influence detection of gene knockdown using qPCR. We tested differences in detected gene knockdown efficiency when using purified polyadenylated mRNA or total RNA as templates for cDNA synthesis. We also tested two different primer locations for each gene: one to amplify a region 5' of the RNAi cut site, and one to amplify a region 3' of the cut site. Consistently, the strongest gene knockdown was detected when qPCR was performed using 5' primer sets in combination with mRNA-derived cDNA. Our results indicate that detection of undegraded mRNA cleavage fragments can result in underestimation of true knockdown efficiency for a RNAi construct. Purification of polyadenylated mRNA, combined with primers designed to amplify the non-polyadenylated 5' mRNA cleavage fragment can avoid this problem.
ArticleNumber 647
Audience Academic
Author Kramer, Jamie M.
Mainland, Roslyn L.
Lyons, Taylor A.
Ruth, Mike M.
Author_xml – sequence: 1
  givenname: Roslyn L.
  surname: Mainland
  fullname: Mainland, Roslyn L.
  organization: Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University
– sequence: 2
  givenname: Taylor A.
  surname: Lyons
  fullname: Lyons, Taylor A.
  organization: Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University
– sequence: 3
  givenname: Mike M.
  surname: Ruth
  fullname: Ruth, Mike M.
  organization: Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University
– sequence: 4
  givenname: Jamie M.
  orcidid: 0000-0002-0924-1279
  surname: Kramer
  fullname: Kramer, Jamie M.
  email: jkramer6@uwo.ca
  organization: Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, Department of Biology, Faculty of Science, Western University, Division of Genetics and Development, Children’s Health Research Institute
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29187229$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv1DAUhSNURB_wA9ggS2xgkWI7iZ1skEbDa6SKQRWwtRz7JuNpxp7GmZbu-OncNC3qIFRlYcs558s9zjlODnzwkCQvGT1lrBTvIssYzVPKZMqrokrpk-SIyUKktKD04MH-MDmOcU2pYGXJniWHvGKl5Lw6Sn4vt4Pb6I6cf50RF0OnBxc82cCwCpZob8m2dxvoiYXoWk-GgLsBzEBa8EAufDAXNlx7Ut-Qy2_zc3K9Ak-udOcsknxLPvQhhu3KdZoMvfYRbc6MX3Okcx7i8-Rpo7sIL-7Wk-THp4_f51_Ss-XnxXx2lpqC5zTN6jITOS1swSUT2pSi0IUtTQ25LUWVA4WaC8G0NFWd01yAzngpRU2p1LWpspNkMXFt0Gs1htL9jQraqduD0LdK94MzHSibGZrV1mqGYG4q3VR4c9aUrJFNIRmy3k-s7a7egDXgMVq3B91_491KteFKFZLKknMEvLkD9OFyB3FQGxcNdJ32EHZRsUpSgfMzitLXk7TVOJrzTUCiGeVqVuQio5gyQ9Xpf1T4WNg4g61pHJ7vGd7uGVAzwK-h1bsY1WL5c1_76mHcvznvW4QCOQkM_uzYQ6OMG26LhFO4TjGqxr6qqa8K-6rGvqoxHfvHeQ9_zMMnT0Stb6FX67DrPZbnEdMfsaj7LA
CitedBy_id crossref_primary_10_1016_j_ydbio_2024_08_002
crossref_primary_10_1074_jbc_RA119_010710
crossref_primary_10_1371_journal_pbio_2006146
crossref_primary_10_1094_PHYTO_09_20_0409_R
crossref_primary_10_1002_ece3_5387
crossref_primary_10_1038_s42003_022_04370_0
crossref_primary_10_1242_dmm_037325
crossref_primary_10_1007_s10340_024_01779_w
Cites_doi 10.1261/rna.7231505
10.1186/1756-0500-3-53
10.1101/gad.201327.112
10.1016/j.ydbio.2009.08.017
10.1534/g3.113.007021
10.1093/nar/gku717
10.1038/nature05954
10.1093/nar/16.23.10953
10.1016/0301-0082(94)90074-4
10.1016/j.celrep.2014.06.017
10.1038/nrg2364
10.1016/j.bbrc.2017.01.092
10.1186/1471-2199-12-46
10.1038/nmeth.1592
10.1093/nar/gks596
10.1186/gb-2003-4-9-117
10.1002/elps.1150180333
10.1242/dev.118.2.401
10.1158/0008-5472.CAN-16-0963
10.1038/418244a
10.1093/nar/29.9.e45
10.1016/j.febslet.2009.10.036
10.1093/bioinformatics/btm091
ContentType Journal Article
Copyright The Author(s) 2017
COPYRIGHT 2017 BioMed Central Ltd.
Copyright_xml – notice: The Author(s) 2017
– notice: COPYRIGHT 2017 BioMed Central Ltd.
DBID C6C
AAYXX
CITATION
NPM
IOV
7X8
5PM
DOA
DOI 10.1186/s13104-017-2959-0
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
Gale In Context: Opposing Viewpoints
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic




PubMed

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1756-0500
EndPage 7
ExternalDocumentID oai_doaj_org_article_d3c03bdda16942c9af9061dc81f7f571
PMC5707822
A546302873
29187229
10_1186_s13104_017_2959_0
Genre Journal Article
GrantInformation_xml – fundername: Natural Sciences and Engineering Research Council of Canada
  funderid: http://dx.doi.org/10.13039/501100000038
– fundername: Canadian Institutes of Health Research
  funderid: http://dx.doi.org/10.13039/501100000024
– fundername: ;
GroupedDBID ---
0R~
23N
2WC
53G
5GY
5VS
6J9
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACMJI
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AFKRA
AFPKN
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
E3Z
EBD
EBLON
EBS
EJD
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
IEA
IHR
INH
INR
IOV
ITC
KQ8
LK8
M1P
M48
M7P
MK0
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
~8M
AAYXX
CITATION
-A0
3V.
ACRMQ
ADINQ
ALIPV
C24
NPM
PMFND
7X8
5PM
ID FETCH-LOGICAL-c5240-3b836405d52716ac865a5d8cbe4d8694e0eb2661a7c9b4046ea32876b007abc93
IEDL.DBID M48
ISSN 1756-0500
IngestDate Wed Aug 27 01:30:27 EDT 2025
Tue Sep 30 16:52:19 EDT 2025
Thu Sep 04 15:22:37 EDT 2025
Tue Jun 17 21:26:47 EDT 2025
Tue Jun 10 20:22:48 EDT 2025
Fri Jun 27 05:02:46 EDT 2025
Tue Feb 25 01:06:50 EST 2025
Wed Oct 01 04:11:38 EDT 2025
Thu Apr 24 23:08:57 EDT 2025
Sat Sep 06 07:29:11 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Quantitative real-time PCR
transgenic RNAi lines
RNAi knockdown efficiency
UAS-Gal4 system
Drosophila transgenic RNAi lines
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5240-3b836405d52716ac865a5d8cbe4d8694e0eb2661a7c9b4046ea32876b007abc93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0924-1279
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s13104-017-2959-0
PMID 29187229
PQID 1970632810
PQPubID 23479
PageCount 7
ParticipantIDs doaj_primary_oai_doaj_org_article_d3c03bdda16942c9af9061dc81f7f571
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5707822
proquest_miscellaneous_1970632810
gale_infotracmisc_A546302873
gale_infotracacademiconefile_A546302873
gale_incontextgauss_IOV_A546302873
pubmed_primary_29187229
crossref_citationtrail_10_1186_s13104_017_2959_0
crossref_primary_10_1186_s13104_017_2959_0
springer_journals_10_1186_s13104_017_2959_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20171129
PublicationDateYYYYMMDD 2017-11-29
PublicationDate_xml – month: 11
  year: 2017
  text: 20171129
  day: 29
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC research notes
PublicationTitleAbbrev BMC Res Notes
PublicationTitleAlternate BMC Res Notes
PublicationYear 2017
Publisher BioMed Central
BioMed Central Ltd
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: BMC
References J Waldholm (2959_CR16) 2011; 12
A Untergrasser (2959_CR12) 2012; 40
GJ Hannon (2959_CR1) 2002; 418
JQ Ni (2959_CR6) 2011; 8
AJ Jeffreys (2959_CR22) 1988; 16
L Anderson (2959_CR20) 1997; 18
T Koressaar (2959_CR11) 2007; 23
H Oh (2959_CR18) 2014; 8
T Maier (2959_CR10) 2009; 583
HM Herz (2959_CR17) 2012; 26
AH Brand (2959_CR4) 1993; 118
M Boutros (2959_CR7) 2008; 9
S Korneev (2959_CR23) 1994; 42
Y Hu (2959_CR8) 2013; 3
K Holmes (2959_CR9) 2010; 3
MW Pfaffl (2959_CR13) 2001; 29
D Greenbaum (2959_CR21) 2003; 4
G Dietzl (2959_CR5) 2007; 448
Y Hashimoto (2959_CR2) 2017; 484
JC Eissenberg (2959_CR14) 2010; 339
TI Orban (2959_CR3) 2005; 11
G Xie (2959_CR19) 2017; 77
J Shi (2959_CR15) 2014; 42
References_xml – volume: 11
  start-page: 459
  issue: 4
  year: 2005
  ident: 2959_CR3
  publication-title: RNA
  doi: 10.1261/rna.7231505
– volume: 3
  start-page: 53
  issue: 3
  year: 2010
  ident: 2959_CR9
  publication-title: BMC Res Notes
  doi: 10.1186/1756-0500-3-53
– volume: 26
  start-page: 2604
  year: 2012
  ident: 2959_CR17
  publication-title: Genes Dev
  doi: 10.1101/gad.201327.112
– volume: 339
  start-page: 240
  year: 2010
  ident: 2959_CR14
  publication-title: Dev Biol
  doi: 10.1016/j.ydbio.2009.08.017
– volume: 3
  start-page: 1607
  issue: 9
  year: 2013
  ident: 2959_CR8
  publication-title: G3 (Bethesda)
  doi: 10.1534/g3.113.007021
– volume: 42
  start-page: 9730
  year: 2014
  ident: 2959_CR15
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gku717
– volume: 448
  start-page: 151
  year: 2007
  ident: 2959_CR5
  publication-title: Nature
  doi: 10.1038/nature05954
– volume: 16
  start-page: 10953
  issue: 23
  year: 1988
  ident: 2959_CR22
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/16.23.10953
– volume: 42
  start-page: 339
  year: 1994
  ident: 2959_CR23
  publication-title: Progress Neurobiol
  doi: 10.1016/0301-0082(94)90074-4
– volume: 8
  start-page: 449
  issue: 2
  year: 2014
  ident: 2959_CR18
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2014.06.017
– volume: 9
  start-page: 554
  year: 2008
  ident: 2959_CR7
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg2364
– volume: 484
  start-page: 1
  year: 2017
  ident: 2959_CR2
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/j.bbrc.2017.01.092
– volume: 12
  start-page: 46
  year: 2011
  ident: 2959_CR16
  publication-title: BMC Mol Biol
  doi: 10.1186/1471-2199-12-46
– volume: 8
  start-page: 405
  year: 2011
  ident: 2959_CR6
  publication-title: Nat Methods
  doi: 10.1038/nmeth.1592
– volume: 40
  start-page: e115
  issue: 15
  year: 2012
  ident: 2959_CR12
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gks596
– volume: 4
  start-page: 117
  issue: 9
  year: 2003
  ident: 2959_CR21
  publication-title: Genome Biol
  doi: 10.1186/gb-2003-4-9-117
– volume: 18
  start-page: 533
  year: 1997
  ident: 2959_CR20
  publication-title: Electrophoresis
  doi: 10.1002/elps.1150180333
– volume: 118
  start-page: 401
  issue: 2
  year: 1993
  ident: 2959_CR4
  publication-title: Development
  doi: 10.1242/dev.118.2.401
– volume: 77
  start-page: 862
  issue: 4
  year: 2017
  ident: 2959_CR19
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-16-0963
– volume: 418
  start-page: 244
  year: 2002
  ident: 2959_CR1
  publication-title: Nature
  doi: 10.1038/418244a
– volume: 29
  start-page: e45
  year: 2001
  ident: 2959_CR13
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/29.9.e45
– volume: 583
  start-page: 3966
  year: 2009
  ident: 2959_CR10
  publication-title: FEBBS Lett.
  doi: 10.1016/j.febslet.2009.10.036
– volume: 23
  start-page: 1289
  issue: 10
  year: 2007
  ident: 2959_CR11
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm091
SSID ssj0061881
Score 2.2004983
Snippet Objective RNA interference is employed extensively in Drosophila research to study gene function within a specific cell-type or tissue. Thousands of transgenic...
RNA interference is employed extensively in Drosophila research to study gene function within a specific cell-type or tissue. Thousands of transgenic...
Objective RNA interference is employed extensively in Drosophila research to study gene function within a specific cell-type or tissue. Thousands of transgenic...
Abstract Objective RNA interference is employed extensively in Drosophila research to study gene function within a specific cell-type or tissue. Thousands of...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 647
SubjectTerms Analysis
Biomedical and Life Sciences
Biomedicine
Drosophila
Drosophila transgenic RNAi lines
Genes
Genetic aspects
Genetic engineering
Genetic research
Life Sciences
Medicine/Public Health
Messenger RNA
Methods
Proteins
Quantitative real-time PCR
Research Note
RNA interference
RNAi knockdown efficiency
UAS-Gal4 system
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fa9UwFA4yEHwRf1udEkUQlLImadPk8TodU3CT4WRvIU3SrThz5-29yN780z0n7R3rRH3x7dKc9jYnX3LOaU6-Q8gLV_pSF5bnXrAyL7mrcg3AwQ_5tkSHoE31Uz7uyd3D8sNRdXSp1BfmhA30wIPitrxwhWi8t0xqeJS2rQYT5J1ibd1W6fQ4BzO2DqaGNVgypdi4h8mU3OoZeDGYbVHnHL97FRMrlMj6f1-SL9mkq_mSVzZNky3auUVujk4knQ0vf5tcC_EOuT6UlTy_S37uwzrwDQQO9ma0A3Al7dOhWDS10dMzJPVfUJ_SN-hyDr9wM4ECmgL9GmGN9BCd0-acfv-0fUB_nIRIAZIdnoWIx_TtIlU_6E4tXaKtg9s6h__WUfRa-3vkcOfd5-3dfKy0kLsKRiUXjRISXDdfcYifrFOyspVXrgmlV6D3UEAADpbc1k43JYTUwQoItSTM2do2Tov7ZCPOY3hIKOcBKeSLRntwtUTbyCDAS-HS61BKpTNSrDVv3EhDjtUwTk0KR5Q0w2AZGCyDg2WKjLy6uOVs4OD4m_AbHM4LQaTPThcAVGYElfkXqDLyHMFgkCAjYgbOsV31vXm__8XMsH4AOGW1yMjLUaidQw-cHQ80gB6QU2siuTmRhBnsJs3P1pgz2IRpbzHMV71hugYXkisG3XowYPCiY1wzVYOqM1JP0Dnp-bQldieJQLxKNIk8I6_XODbjytX_WbGP_odiH5MbHGchYzARN8nGcrEKT8CrWzZP0wT-Bd9jRes
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9UwFA8yEXwRnV_VOaIIglJs0jZNHu_uHFNwk-FkbyFN0q04c-ftvcje_NM9J-29rPMDfCvNCSU5v5Oc05z8DiEvbeEKlRmeupwVacFtmSoADv7INwU6BE2sn_LxQOwfFx9OypOBLBrvwlw9v2dSvO0Y-B-YJ1GlHP9YQXR-s4R1F7P3pmK6WnQFk5INh5Z_7DbadiI7_-9r8JVN6HqC5LVT0rj57N0ldwavkU56Nd8jN3zYJLf6OpKX98nPQzD8byBwdDChLaApTjftq0NTExy9QBb_OXUxX4MuZvCEpwcU4OPp1wCLooNwnNaX9Pun6RH9ceYDBQy2ePkhnNLdeSx30J4busDNDbq1Fr_WUnRTuwfkeO_d5-l-OpRWSG0JakjzWuYCfDVXcgiYjJWiNKWTtvaFk0IVPoOIG7ZuU1lVFxBDe5NDbCXASCtTW5U_JBthFvxjQjn3yBmf1cqBb5U3tfA5uCVcOOULIVVCstXMazvwjmP5i3Md4w8pdK8sDcrSqCydJeT1ustFT7rxL-EdVOdaEPmy4wuAkR7MT7vcZnntnGEwOG6VaRRgxlnJmqopK5aQFwgGjYwYAVNuTs2y6_T7wy96ggUDwAur8oS8GoSaGYzAmuEGA8wDkmiNJLdGkmCydtT8fIU5jU2Y5xb8bNlppirwGblkMKxHPQbXA-OKyQqmOiHVCJ2jkY9bQnsWGcPLyIvIE_JmhWM9LFXd3yf2yX9JPyW3OZobY2BxW2RjMV_6Z-CvLertaKm_AGpGNWI
  priority: 102
  providerName: Springer Nature
Title Optimal RNA isolation method and primer design to detect gene knockdown by qPCR when validating Drosophila transgenic RNAi lines
URI https://link.springer.com/article/10.1186/s13104-017-2959-0
https://www.ncbi.nlm.nih.gov/pubmed/29187229
https://www.proquest.com/docview/1970632810
https://pubmed.ncbi.nlm.nih.gov/PMC5707822
https://doaj.org/article/d3c03bdda16942c9af9061dc81f7f571
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central Open Access Free
  customDbUrl:
  eissn: 1756-0500
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0061881
  issn: 1756-0500
  databaseCode: RBZ
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Colorado Digital library
  customDbUrl:
  eissn: 1756-0500
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0061881
  issn: 1756-0500
  databaseCode: KQ8
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1756-0500
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0061881
  issn: 1756-0500
  databaseCode: DOA
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Academic Search Ultimate (ASU) - EBSCO
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1756-0500
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0061881
  issn: 1756-0500
  databaseCode: ABDBF
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1756-0500
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0061881
  issn: 1756-0500
  databaseCode: DIK
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1756-0500
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0061881
  issn: 1756-0500
  databaseCode: GX1
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center)
  customDbUrl:
  eissn: 1756-0500
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0061881
  issn: 1756-0500
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central (US National Library of Medicine)
  customDbUrl:
  eissn: 1756-0500
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0061881
  issn: 1756-0500
  databaseCode: RPM
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (ProQuest)
  customDbUrl:
  eissn: 1756-0500
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0061881
  issn: 1756-0500
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central Database Suite (ProQuest)
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1756-0500
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0061881
  issn: 1756-0500
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1756-0500
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0061881
  issn: 1756-0500
  databaseCode: M48
  dateStart: 20081001
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: Springer Nature HAS Fully OA
  customDbUrl:
  eissn: 1756-0500
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0061881
  issn: 1756-0500
  databaseCode: AAJSJ
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1756-0500
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0061881
  issn: 1756-0500
  databaseCode: C6C
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELfGJiReEN8ERmUQEhIoLHE-_YBQVzaNSuumQtHeLMd2uoiSbk0r6Bt_OndOUpExkHhKFV9Sne93vjv7ckfISxXqkHuSuTrwQzdkKnI5AAc38mWIDkFu-6ccj-KjSTg8i862SNveqpnA6trQDvtJTRaztz8u1-9B4d9ZhU_jvcoHHwVzKRKX4a4WRPA7YJgYgvw43BwqxH5qe5aCwYQgOvLaQ85rX9ExU7aa_59r9m9G62pC5ZVTVWusDu-Q242XSfs1LO6SLVPeIzfrvpPr--TnCSwU34BgPOrTAtBnxUPrbtJUlppeYNX_BdU2v4Mu5_ALTxsowM3QryUsohrCd5qt6eXpYEy_n5uSAmYL_FiinNIPC9seoZhJukRjCI8VCv-toOjWVg_I5PDg8-DIbVoxuCoCsblBlgYx-HY6YhBgSZXGkYx0qjIT6jTmofEgQgdTLxPFsxBibiMDiMViUOpEZooHD8l2OS_NY0IZM1hj3su4Bl8syLPYBODGsFhzE8Ypd4jXzrxQTZ1ybJcxEzZeSWNRC0uAsAQKS3gOeb155KIu0vEv4n0U54YQ62vbG_PFVDTqKnSgvCDTWvrAHFNc5hzwo1Xq50keJb5DXiAYBFbQKDFFZypXVSU-nnwRfWwwAF5bEjjkVUOUz4EDJZsvHmAesOhWh3K3QwkqrjrDz1vMCRzCvLjSzFeV8HkCPiZLfWDrUY3BDWOM-2kCU-2QpIPODufdkbI4txXGI1tHkTnkTYtj0Wrm3yf2yf9I4Sm5xVDbfB8UbpdsLxcr8wzcu2XWIzeSs6RHdvr94achXPcPRqdjuDuIBz27ZdKzav0LhPdLOA
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR1db9Mw0EKdELwgvgkMMAgJCRQRO45jP5bB1I2tQ2NDe7Mc2-kiRjqaVmhv_HTOTlKR8SHxFsVnRfd9F5_vEHphmGUy0TS2KWExoyaLJQiO_5GvmQ8IyjA_ZX_KJ8ds9yQ76e5xN321e38kGSx1UGvB3zQEIhFfMZHH1P-7gjx9Q2QZZyO0MR7vftrtDTAnQpDuAPOPGwcuKHTq_90e_-KQLhdLXjoxDY5o-ya60UWQeNyy_Ba64urb6Go7U_LiDvpxAEbgKwAcTse4AskKpMftpGisa4vPfUf_BbahdgMv5_DkTxIwiJLDX2owkBZSc1xc4G8ftw7x91NXY5DHyl-EqGf43SKMPqjONF56RwfbKuO_VmEfsjZ30fH2-6OtSdyNWYhNBiyJ00KkHOI2m1FInrQRPNOZFaZwzAoumUsg-wY3rnMjCwb5tNMp5FkcFDbXhZHpPTSq57V7gDClzvePTwppIc5Ky4K7FEIUyq10jAsZoaSnvDJdD3I_CuNMhVxEcNUySwGzlGeWSiL0ar3lvG3A8S_gt56da0DfOzu8mC9mqlNFZVOTpIW1mgBy1EhdSpAZawQp8zLLSYSee2FQvjtG7ctvZnrVNGrn4LMa--EBEJHlaYRedkDlHDAwurvNAHTwDbUGkJsDSFBfM1h-1suc8ku-5q1281WjiMwhfqSCAFr3WxlcI0YlETmQOkL5QDoHmA9X6uo0dA_PQo9EGqHXvRyrzmw1fyfsw_-CfoquTY7299TezvTDI3SdetUjBLRvE42Wi5V7DHHcsnjS6e1P54s9ww
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZQKxAXxJtAAYOQkEBRYydx7OPSsmoLbKtCUW-WYzvbiJJdNrtCvfHTmcljRcpD4hbFY0X2vOPxN4S8sIlLVGR46GKWhAm3aahAcPBHvkkwICia_ikfJmLvJDk4TU-7Pqd1X-3eH0m2dxoQpalabs9d0aq4FNs1g6gEqyeykON_LMjZN2WqBGRfm6PRwceD3hgLJiXrDjP_OHHgjhrU_t9t8y_O6XLh5KXT08YpjW-SG100SUct-2-RK766Ta62_SUv7pAfh2AQvgLB8WRES5Cyhg207RpNTeXoHNH9F9Q1dRx0OYMnPFWgIFaefqnAWDpI02l-Qb8d7RzT72e-oiCbJV6KqKZ0d9G0QSjPDV2i04NppcWvlRTD1_ouORm__bSzF3YtF0KbAnvCOJexgBjOpRwSKWOlSE3qpM194qRQiY8gEweXbjKr8gRya29iyLkEKG9mcqvie2SjmlX-AaGce8SSj3LlIOaKi1z4GMIVLpzyiZAqIFG_89p2eOTYFuNcN3mJFLpllgZmaWSWjgLyaj1l3oJx_Iv4DbJzTYg42s2L2WKqO7XULrZRnDtnGCyOW2UKBTLjrGRFVqQZC8hzFAaNSBkVluJMzaqu9f7hZz3CRgIQnWVxQF52RMUMVmBNd7MB9gHBtQaUWwNKUGU7GH7Wy5zGIax_q_xsVWumMogluWSwrPutDK4XxhWTGWx1QLKBdA5WPhypyrMGSTxt8BJ5QF73cqw7E1b_fWMf_hf1U3LtaHes3-9P3j0i1zlqHmOgfFtkY7lY-ccQ0i3zJ53a_gTJpUIN
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+RNA+isolation+method+and+primer+design+to+detect+gene+knockdown+by+qPCR+when+validating+Drosophila+transgenic+RNAi+lines&rft.jtitle=BMC+research+notes&rft.au=Mainland%2C+Roslyn+L.&rft.au=Lyons%2C+Taylor+A.&rft.au=Ruth%2C+Mike+M.&rft.au=Kramer%2C+Jamie+M.&rft.date=2017-11-29&rft.issn=1756-0500&rft.eissn=1756-0500&rft.volume=10&rft.issue=1&rft_id=info:doi/10.1186%2Fs13104-017-2959-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s13104_017_2959_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1756-0500&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1756-0500&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1756-0500&client=summon