Optimal RNA isolation method and primer design to detect gene knockdown by qPCR when validating Drosophila transgenic RNAi lines
Objective RNA interference is employed extensively in Drosophila research to study gene function within a specific cell-type or tissue. Thousands of transgenic Drosophila lines have been generated to express double stranded RNA for gene knockdown; however, no standardized method exists for quantifyi...
Saved in:
Published in | BMC research notes Vol. 10; no. 1; pp. 647 - 7 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
BioMed Central
29.11.2017
BioMed Central Ltd BMC |
Subjects | |
Online Access | Get full text |
ISSN | 1756-0500 1756-0500 |
DOI | 10.1186/s13104-017-2959-0 |
Cover
Abstract | Objective
RNA interference is employed extensively in
Drosophila
research to study gene function within a specific cell-type or tissue. Thousands of transgenic
Drosophila
lines have been generated to express double stranded RNA for gene knockdown; however, no standardized method exists for quantifying their knockdown efficiency. Since antibodies are not available for many proteins, quantitative real-time PCR is often used. Here, we explore how primer design and RNA isolation method can influence detection of gene knockdown using qPCR.
Results
We tested differences in detected gene knockdown efficiency when using purified polyadenylated mRNA or total RNA as templates for cDNA synthesis. We also tested two different primer locations for each gene: one to amplify a region 5′ of the RNAi cut site, and one to amplify a region 3′ of the cut site. Consistently, the strongest gene knockdown was detected when qPCR was performed using 5′ primer sets in combination with mRNA-derived cDNA. Our results indicate that detection of undegraded mRNA cleavage fragments can result in underestimation of true knockdown efficiency for a RNAi construct. Purification of polyadenylated mRNA, combined with primers designed to amplify the non-polyadenylated 5′ mRNA cleavage fragment can avoid this problem. |
---|---|
AbstractList | RNA interference is employed extensively in Drosophila research to study gene function within a specific cell-type or tissue. Thousands of transgenic Drosophila lines have been generated to express double stranded RNA for gene knockdown; however, no standardized method exists for quantifying their knockdown efficiency. Since antibodies are not available for many proteins, quantitative real-time PCR is often used. Here, we explore how primer design and RNA isolation method can influence detection of gene knockdown using qPCR.OBJECTIVERNA interference is employed extensively in Drosophila research to study gene function within a specific cell-type or tissue. Thousands of transgenic Drosophila lines have been generated to express double stranded RNA for gene knockdown; however, no standardized method exists for quantifying their knockdown efficiency. Since antibodies are not available for many proteins, quantitative real-time PCR is often used. Here, we explore how primer design and RNA isolation method can influence detection of gene knockdown using qPCR.We tested differences in detected gene knockdown efficiency when using purified polyadenylated mRNA or total RNA as templates for cDNA synthesis. We also tested two different primer locations for each gene: one to amplify a region 5' of the RNAi cut site, and one to amplify a region 3' of the cut site. Consistently, the strongest gene knockdown was detected when qPCR was performed using 5' primer sets in combination with mRNA-derived cDNA. Our results indicate that detection of undegraded mRNA cleavage fragments can result in underestimation of true knockdown efficiency for a RNAi construct. Purification of polyadenylated mRNA, combined with primers designed to amplify the non-polyadenylated 5' mRNA cleavage fragment can avoid this problem.RESULTSWe tested differences in detected gene knockdown efficiency when using purified polyadenylated mRNA or total RNA as templates for cDNA synthesis. We also tested two different primer locations for each gene: one to amplify a region 5' of the RNAi cut site, and one to amplify a region 3' of the cut site. Consistently, the strongest gene knockdown was detected when qPCR was performed using 5' primer sets in combination with mRNA-derived cDNA. Our results indicate that detection of undegraded mRNA cleavage fragments can result in underestimation of true knockdown efficiency for a RNAi construct. Purification of polyadenylated mRNA, combined with primers designed to amplify the non-polyadenylated 5' mRNA cleavage fragment can avoid this problem. Objective RNA interference is employed extensively in Drosophila research to study gene function within a specific cell-type or tissue. Thousands of transgenic Drosophila lines have been generated to express double stranded RNA for gene knockdown; however, no standardized method exists for quantifying their knockdown efficiency. Since antibodies are not available for many proteins, quantitative real-time PCR is often used. Here, we explore how primer design and RNA isolation method can influence detection of gene knockdown using qPCR. Results We tested differences in detected gene knockdown efficiency when using purified polyadenylated mRNA or total RNA as templates for cDNA synthesis. We also tested two different primer locations for each gene: one to amplify a region 5' of the RNAi cut site, and one to amplify a region 3' of the cut site. Consistently, the strongest gene knockdown was detected when qPCR was performed using 5' primer sets in combination with mRNA-derived cDNA. Our results indicate that detection of undegraded mRNA cleavage fragments can result in underestimation of true knockdown efficiency for a RNAi construct. Purification of polyadenylated mRNA, combined with primers designed to amplify the non-polyadenylated 5' mRNA cleavage fragment can avoid this problem. Keywords: RNAi knockdown efficiency, Quantitative real-time PCR, UAS-Gal4 system, Drosophila transgenic RNAi lines Abstract Objective RNA interference is employed extensively in Drosophila research to study gene function within a specific cell-type or tissue. Thousands of transgenic Drosophila lines have been generated to express double stranded RNA for gene knockdown; however, no standardized method exists for quantifying their knockdown efficiency. Since antibodies are not available for many proteins, quantitative real-time PCR is often used. Here, we explore how primer design and RNA isolation method can influence detection of gene knockdown using qPCR. Results We tested differences in detected gene knockdown efficiency when using purified polyadenylated mRNA or total RNA as templates for cDNA synthesis. We also tested two different primer locations for each gene: one to amplify a region 5′ of the RNAi cut site, and one to amplify a region 3′ of the cut site. Consistently, the strongest gene knockdown was detected when qPCR was performed using 5′ primer sets in combination with mRNA-derived cDNA. Our results indicate that detection of undegraded mRNA cleavage fragments can result in underestimation of true knockdown efficiency for a RNAi construct. Purification of polyadenylated mRNA, combined with primers designed to amplify the non-polyadenylated 5′ mRNA cleavage fragment can avoid this problem. Objective RNA interference is employed extensively in Drosophila research to study gene function within a specific cell-type or tissue. Thousands of transgenic Drosophila lines have been generated to express double stranded RNA for gene knockdown; however, no standardized method exists for quantifying their knockdown efficiency. Since antibodies are not available for many proteins, quantitative real-time PCR is often used. Here, we explore how primer design and RNA isolation method can influence detection of gene knockdown using qPCR. Results We tested differences in detected gene knockdown efficiency when using purified polyadenylated mRNA or total RNA as templates for cDNA synthesis. We also tested two different primer locations for each gene: one to amplify a region 5′ of the RNAi cut site, and one to amplify a region 3′ of the cut site. Consistently, the strongest gene knockdown was detected when qPCR was performed using 5′ primer sets in combination with mRNA-derived cDNA. Our results indicate that detection of undegraded mRNA cleavage fragments can result in underestimation of true knockdown efficiency for a RNAi construct. Purification of polyadenylated mRNA, combined with primers designed to amplify the non-polyadenylated 5′ mRNA cleavage fragment can avoid this problem. RNA interference is employed extensively in Drosophila research to study gene function within a specific cell-type or tissue. Thousands of transgenic Drosophila lines have been generated to express double stranded RNA for gene knockdown; however, no standardized method exists for quantifying their knockdown efficiency. Since antibodies are not available for many proteins, quantitative real-time PCR is often used. Here, we explore how primer design and RNA isolation method can influence detection of gene knockdown using qPCR. We tested differences in detected gene knockdown efficiency when using purified polyadenylated mRNA or total RNA as templates for cDNA synthesis. We also tested two different primer locations for each gene: one to amplify a region 5' of the RNAi cut site, and one to amplify a region 3' of the cut site. Consistently, the strongest gene knockdown was detected when qPCR was performed using 5' primer sets in combination with mRNA-derived cDNA. Our results indicate that detection of undegraded mRNA cleavage fragments can result in underestimation of true knockdown efficiency for a RNAi construct. Purification of polyadenylated mRNA, combined with primers designed to amplify the non-polyadenylated 5' mRNA cleavage fragment can avoid this problem. RNA interference is employed extensively in Drosophila research to study gene function within a specific cell-type or tissue. Thousands of transgenic Drosophila lines have been generated to express double stranded RNA for gene knockdown; however, no standardized method exists for quantifying their knockdown efficiency. Since antibodies are not available for many proteins, quantitative real-time PCR is often used. Here, we explore how primer design and RNA isolation method can influence detection of gene knockdown using qPCR. We tested differences in detected gene knockdown efficiency when using purified polyadenylated mRNA or total RNA as templates for cDNA synthesis. We also tested two different primer locations for each gene: one to amplify a region 5' of the RNAi cut site, and one to amplify a region 3' of the cut site. Consistently, the strongest gene knockdown was detected when qPCR was performed using 5' primer sets in combination with mRNA-derived cDNA. Our results indicate that detection of undegraded mRNA cleavage fragments can result in underestimation of true knockdown efficiency for a RNAi construct. Purification of polyadenylated mRNA, combined with primers designed to amplify the non-polyadenylated 5' mRNA cleavage fragment can avoid this problem. |
ArticleNumber | 647 |
Audience | Academic |
Author | Kramer, Jamie M. Mainland, Roslyn L. Lyons, Taylor A. Ruth, Mike M. |
Author_xml | – sequence: 1 givenname: Roslyn L. surname: Mainland fullname: Mainland, Roslyn L. organization: Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University – sequence: 2 givenname: Taylor A. surname: Lyons fullname: Lyons, Taylor A. organization: Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University – sequence: 3 givenname: Mike M. surname: Ruth fullname: Ruth, Mike M. organization: Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University – sequence: 4 givenname: Jamie M. orcidid: 0000-0002-0924-1279 surname: Kramer fullname: Kramer, Jamie M. email: jkramer6@uwo.ca organization: Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, Department of Biology, Faculty of Science, Western University, Division of Genetics and Development, Children’s Health Research Institute |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29187229$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kktv1DAUhSNURB_wA9ggS2xgkWI7iZ1skEbDa6SKQRWwtRz7JuNpxp7GmZbu-OncNC3qIFRlYcs558s9zjlODnzwkCQvGT1lrBTvIssYzVPKZMqrokrpk-SIyUKktKD04MH-MDmOcU2pYGXJniWHvGKl5Lw6Sn4vt4Pb6I6cf50RF0OnBxc82cCwCpZob8m2dxvoiYXoWk-GgLsBzEBa8EAufDAXNlx7Ut-Qy2_zc3K9Ak-udOcsknxLPvQhhu3KdZoMvfYRbc6MX3Okcx7i8-Rpo7sIL-7Wk-THp4_f51_Ss-XnxXx2lpqC5zTN6jITOS1swSUT2pSi0IUtTQ25LUWVA4WaC8G0NFWd01yAzngpRU2p1LWpspNkMXFt0Gs1htL9jQraqduD0LdK94MzHSibGZrV1mqGYG4q3VR4c9aUrJFNIRmy3k-s7a7egDXgMVq3B91_491KteFKFZLKknMEvLkD9OFyB3FQGxcNdJ32EHZRsUpSgfMzitLXk7TVOJrzTUCiGeVqVuQio5gyQ9Xpf1T4WNg4g61pHJ7vGd7uGVAzwK-h1bsY1WL5c1_76mHcvznvW4QCOQkM_uzYQ6OMG26LhFO4TjGqxr6qqa8K-6rGvqoxHfvHeQ9_zMMnT0Stb6FX67DrPZbnEdMfsaj7LA |
CitedBy_id | crossref_primary_10_1016_j_ydbio_2024_08_002 crossref_primary_10_1074_jbc_RA119_010710 crossref_primary_10_1371_journal_pbio_2006146 crossref_primary_10_1094_PHYTO_09_20_0409_R crossref_primary_10_1002_ece3_5387 crossref_primary_10_1038_s42003_022_04370_0 crossref_primary_10_1242_dmm_037325 crossref_primary_10_1007_s10340_024_01779_w |
Cites_doi | 10.1261/rna.7231505 10.1186/1756-0500-3-53 10.1101/gad.201327.112 10.1016/j.ydbio.2009.08.017 10.1534/g3.113.007021 10.1093/nar/gku717 10.1038/nature05954 10.1093/nar/16.23.10953 10.1016/0301-0082(94)90074-4 10.1016/j.celrep.2014.06.017 10.1038/nrg2364 10.1016/j.bbrc.2017.01.092 10.1186/1471-2199-12-46 10.1038/nmeth.1592 10.1093/nar/gks596 10.1186/gb-2003-4-9-117 10.1002/elps.1150180333 10.1242/dev.118.2.401 10.1158/0008-5472.CAN-16-0963 10.1038/418244a 10.1093/nar/29.9.e45 10.1016/j.febslet.2009.10.036 10.1093/bioinformatics/btm091 |
ContentType | Journal Article |
Copyright | The Author(s) 2017 COPYRIGHT 2017 BioMed Central Ltd. |
Copyright_xml | – notice: The Author(s) 2017 – notice: COPYRIGHT 2017 BioMed Central Ltd. |
DBID | C6C AAYXX CITATION NPM IOV 7X8 5PM DOA |
DOI | 10.1186/s13104-017-2959-0 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed Gale In Context: Opposing Viewpoints MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1756-0500 |
EndPage | 7 |
ExternalDocumentID | oai_doaj_org_article_d3c03bdda16942c9af9061dc81f7f571 PMC5707822 A546302873 29187229 10_1186_s13104_017_2959_0 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Natural Sciences and Engineering Research Council of Canada funderid: http://dx.doi.org/10.13039/501100000038 – fundername: Canadian Institutes of Health Research funderid: http://dx.doi.org/10.13039/501100000024 – fundername: ; |
GroupedDBID | --- 0R~ 23N 2WC 53G 5GY 5VS 6J9 7X7 88E 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AASML ABDBF ABUWG ACGFO ACGFS ACIHN ACMJI ACPRK ACUHS ADBBV ADRAZ ADUKV AEAQA AFKRA AFPKN AHBYD AHMBA AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CS3 DIK E3Z EBD EBLON EBS EJD EMOBN ESX F5P FYUFA GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAO IEA IHR INH INR IOV ITC KQ8 LK8 M1P M48 M7P MK0 M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS UKHRP ~8M AAYXX CITATION -A0 3V. ACRMQ ADINQ ALIPV C24 NPM PMFND 7X8 5PM |
ID | FETCH-LOGICAL-c5240-3b836405d52716ac865a5d8cbe4d8694e0eb2661a7c9b4046ea32876b007abc93 |
IEDL.DBID | M48 |
ISSN | 1756-0500 |
IngestDate | Wed Aug 27 01:30:27 EDT 2025 Tue Sep 30 16:52:19 EDT 2025 Thu Sep 04 15:22:37 EDT 2025 Tue Jun 17 21:26:47 EDT 2025 Tue Jun 10 20:22:48 EDT 2025 Fri Jun 27 05:02:46 EDT 2025 Tue Feb 25 01:06:50 EST 2025 Wed Oct 01 04:11:38 EDT 2025 Thu Apr 24 23:08:57 EDT 2025 Sat Sep 06 07:29:11 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Quantitative real-time PCR transgenic RNAi lines RNAi knockdown efficiency UAS-Gal4 system Drosophila transgenic RNAi lines |
Language | English |
License | Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5240-3b836405d52716ac865a5d8cbe4d8694e0eb2661a7c9b4046ea32876b007abc93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-0924-1279 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s13104-017-2959-0 |
PMID | 29187229 |
PQID | 1970632810 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_d3c03bdda16942c9af9061dc81f7f571 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5707822 proquest_miscellaneous_1970632810 gale_infotracmisc_A546302873 gale_infotracacademiconefile_A546302873 gale_incontextgauss_IOV_A546302873 pubmed_primary_29187229 crossref_citationtrail_10_1186_s13104_017_2959_0 crossref_primary_10_1186_s13104_017_2959_0 springer_journals_10_1186_s13104_017_2959_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20171129 |
PublicationDateYYYYMMDD | 2017-11-29 |
PublicationDate_xml | – month: 11 year: 2017 text: 20171129 day: 29 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | BMC research notes |
PublicationTitleAbbrev | BMC Res Notes |
PublicationTitleAlternate | BMC Res Notes |
PublicationYear | 2017 |
Publisher | BioMed Central BioMed Central Ltd BMC |
Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: BMC |
References | J Waldholm (2959_CR16) 2011; 12 A Untergrasser (2959_CR12) 2012; 40 GJ Hannon (2959_CR1) 2002; 418 JQ Ni (2959_CR6) 2011; 8 AJ Jeffreys (2959_CR22) 1988; 16 L Anderson (2959_CR20) 1997; 18 T Koressaar (2959_CR11) 2007; 23 H Oh (2959_CR18) 2014; 8 T Maier (2959_CR10) 2009; 583 HM Herz (2959_CR17) 2012; 26 AH Brand (2959_CR4) 1993; 118 M Boutros (2959_CR7) 2008; 9 S Korneev (2959_CR23) 1994; 42 Y Hu (2959_CR8) 2013; 3 K Holmes (2959_CR9) 2010; 3 MW Pfaffl (2959_CR13) 2001; 29 D Greenbaum (2959_CR21) 2003; 4 G Dietzl (2959_CR5) 2007; 448 Y Hashimoto (2959_CR2) 2017; 484 JC Eissenberg (2959_CR14) 2010; 339 TI Orban (2959_CR3) 2005; 11 G Xie (2959_CR19) 2017; 77 J Shi (2959_CR15) 2014; 42 |
References_xml | – volume: 11 start-page: 459 issue: 4 year: 2005 ident: 2959_CR3 publication-title: RNA doi: 10.1261/rna.7231505 – volume: 3 start-page: 53 issue: 3 year: 2010 ident: 2959_CR9 publication-title: BMC Res Notes doi: 10.1186/1756-0500-3-53 – volume: 26 start-page: 2604 year: 2012 ident: 2959_CR17 publication-title: Genes Dev doi: 10.1101/gad.201327.112 – volume: 339 start-page: 240 year: 2010 ident: 2959_CR14 publication-title: Dev Biol doi: 10.1016/j.ydbio.2009.08.017 – volume: 3 start-page: 1607 issue: 9 year: 2013 ident: 2959_CR8 publication-title: G3 (Bethesda) doi: 10.1534/g3.113.007021 – volume: 42 start-page: 9730 year: 2014 ident: 2959_CR15 publication-title: Nucleic Acids Res doi: 10.1093/nar/gku717 – volume: 448 start-page: 151 year: 2007 ident: 2959_CR5 publication-title: Nature doi: 10.1038/nature05954 – volume: 16 start-page: 10953 issue: 23 year: 1988 ident: 2959_CR22 publication-title: Nucleic Acids Res doi: 10.1093/nar/16.23.10953 – volume: 42 start-page: 339 year: 1994 ident: 2959_CR23 publication-title: Progress Neurobiol doi: 10.1016/0301-0082(94)90074-4 – volume: 8 start-page: 449 issue: 2 year: 2014 ident: 2959_CR18 publication-title: Cell Rep. doi: 10.1016/j.celrep.2014.06.017 – volume: 9 start-page: 554 year: 2008 ident: 2959_CR7 publication-title: Nat Rev Genet doi: 10.1038/nrg2364 – volume: 484 start-page: 1 year: 2017 ident: 2959_CR2 publication-title: Biochem Biophys Res Commun doi: 10.1016/j.bbrc.2017.01.092 – volume: 12 start-page: 46 year: 2011 ident: 2959_CR16 publication-title: BMC Mol Biol doi: 10.1186/1471-2199-12-46 – volume: 8 start-page: 405 year: 2011 ident: 2959_CR6 publication-title: Nat Methods doi: 10.1038/nmeth.1592 – volume: 40 start-page: e115 issue: 15 year: 2012 ident: 2959_CR12 publication-title: Nucleic Acids Res doi: 10.1093/nar/gks596 – volume: 4 start-page: 117 issue: 9 year: 2003 ident: 2959_CR21 publication-title: Genome Biol doi: 10.1186/gb-2003-4-9-117 – volume: 18 start-page: 533 year: 1997 ident: 2959_CR20 publication-title: Electrophoresis doi: 10.1002/elps.1150180333 – volume: 118 start-page: 401 issue: 2 year: 1993 ident: 2959_CR4 publication-title: Development doi: 10.1242/dev.118.2.401 – volume: 77 start-page: 862 issue: 4 year: 2017 ident: 2959_CR19 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-16-0963 – volume: 418 start-page: 244 year: 2002 ident: 2959_CR1 publication-title: Nature doi: 10.1038/418244a – volume: 29 start-page: e45 year: 2001 ident: 2959_CR13 publication-title: Nucleic Acids Res doi: 10.1093/nar/29.9.e45 – volume: 583 start-page: 3966 year: 2009 ident: 2959_CR10 publication-title: FEBBS Lett. doi: 10.1016/j.febslet.2009.10.036 – volume: 23 start-page: 1289 issue: 10 year: 2007 ident: 2959_CR11 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm091 |
SSID | ssj0061881 |
Score | 2.2004983 |
Snippet | Objective
RNA interference is employed extensively in
Drosophila
research to study gene function within a specific cell-type or tissue. Thousands of transgenic... RNA interference is employed extensively in Drosophila research to study gene function within a specific cell-type or tissue. Thousands of transgenic... Objective RNA interference is employed extensively in Drosophila research to study gene function within a specific cell-type or tissue. Thousands of transgenic... Abstract Objective RNA interference is employed extensively in Drosophila research to study gene function within a specific cell-type or tissue. Thousands of... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 647 |
SubjectTerms | Analysis Biomedical and Life Sciences Biomedicine Drosophila Drosophila transgenic RNAi lines Genes Genetic aspects Genetic engineering Genetic research Life Sciences Medicine/Public Health Messenger RNA Methods Proteins Quantitative real-time PCR Research Note RNA interference RNAi knockdown efficiency UAS-Gal4 system |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fa9UwFA4yEHwRf1udEkUQlLImadPk8TodU3CT4WRvIU3SrThz5-29yN780z0n7R3rRH3x7dKc9jYnX3LOaU6-Q8gLV_pSF5bnXrAyL7mrcg3AwQ_5tkSHoE31Uz7uyd3D8sNRdXSp1BfmhA30wIPitrxwhWi8t0xqeJS2rQYT5J1ibd1W6fQ4BzO2DqaGNVgypdi4h8mU3OoZeDGYbVHnHL97FRMrlMj6f1-SL9mkq_mSVzZNky3auUVujk4knQ0vf5tcC_EOuT6UlTy_S37uwzrwDQQO9ma0A3Al7dOhWDS10dMzJPVfUJ_SN-hyDr9wM4ECmgL9GmGN9BCd0-acfv-0fUB_nIRIAZIdnoWIx_TtIlU_6E4tXaKtg9s6h__WUfRa-3vkcOfd5-3dfKy0kLsKRiUXjRISXDdfcYifrFOyspVXrgmlV6D3UEAADpbc1k43JYTUwQoItSTM2do2Tov7ZCPOY3hIKOcBKeSLRntwtUTbyCDAS-HS61BKpTNSrDVv3EhDjtUwTk0KR5Q0w2AZGCyDg2WKjLy6uOVs4OD4m_AbHM4LQaTPThcAVGYElfkXqDLyHMFgkCAjYgbOsV31vXm__8XMsH4AOGW1yMjLUaidQw-cHQ80gB6QU2siuTmRhBnsJs3P1pgz2IRpbzHMV71hugYXkisG3XowYPCiY1wzVYOqM1JP0Dnp-bQldieJQLxKNIk8I6_XODbjytX_WbGP_odiH5MbHGchYzARN8nGcrEKT8CrWzZP0wT-Bd9jRes priority: 102 providerName: Directory of Open Access Journals – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9UwFA8yEXwRnV_VOaIIglJs0jZNHu_uHFNwk-FkbyFN0q04c-ftvcje_NM9J-29rPMDfCvNCSU5v5Oc05z8DiEvbeEKlRmeupwVacFtmSoADv7INwU6BE2sn_LxQOwfFx9OypOBLBrvwlw9v2dSvO0Y-B-YJ1GlHP9YQXR-s4R1F7P3pmK6WnQFk5INh5Z_7DbadiI7_-9r8JVN6HqC5LVT0rj57N0ldwavkU56Nd8jN3zYJLf6OpKX98nPQzD8byBwdDChLaApTjftq0NTExy9QBb_OXUxX4MuZvCEpwcU4OPp1wCLooNwnNaX9Pun6RH9ceYDBQy2ePkhnNLdeSx30J4busDNDbq1Fr_WUnRTuwfkeO_d5-l-OpRWSG0JakjzWuYCfDVXcgiYjJWiNKWTtvaFk0IVPoOIG7ZuU1lVFxBDe5NDbCXASCtTW5U_JBthFvxjQjn3yBmf1cqBb5U3tfA5uCVcOOULIVVCstXMazvwjmP5i3Md4w8pdK8sDcrSqCydJeT1ustFT7rxL-EdVOdaEPmy4wuAkR7MT7vcZnntnGEwOG6VaRRgxlnJmqopK5aQFwgGjYwYAVNuTs2y6_T7wy96ggUDwAur8oS8GoSaGYzAmuEGA8wDkmiNJLdGkmCydtT8fIU5jU2Y5xb8bNlppirwGblkMKxHPQbXA-OKyQqmOiHVCJ2jkY9bQnsWGcPLyIvIE_JmhWM9LFXd3yf2yX9JPyW3OZobY2BxW2RjMV_6Z-CvLertaKm_AGpGNWI priority: 102 providerName: Springer Nature |
Title | Optimal RNA isolation method and primer design to detect gene knockdown by qPCR when validating Drosophila transgenic RNAi lines |
URI | https://link.springer.com/article/10.1186/s13104-017-2959-0 https://www.ncbi.nlm.nih.gov/pubmed/29187229 https://www.proquest.com/docview/1970632810 https://pubmed.ncbi.nlm.nih.gov/PMC5707822 https://doaj.org/article/d3c03bdda16942c9af9061dc81f7f571 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVADU databaseName: BioMed Central Open Access Free customDbUrl: eissn: 1756-0500 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0061881 issn: 1756-0500 databaseCode: RBZ dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAFT databaseName: Colorado Digital library customDbUrl: eissn: 1756-0500 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0061881 issn: 1756-0500 databaseCode: KQ8 dateStart: 20080101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1756-0500 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0061881 issn: 1756-0500 databaseCode: DOA dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Academic Search Ultimate (ASU) - EBSCO customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1756-0500 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0061881 issn: 1756-0500 databaseCode: ABDBF dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1756-0500 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0061881 issn: 1756-0500 databaseCode: DIK dateStart: 20080101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1756-0500 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0061881 issn: 1756-0500 databaseCode: GX1 dateStart: 20080101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center) customDbUrl: eissn: 1756-0500 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0061881 issn: 1756-0500 databaseCode: M~E dateStart: 20080101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central (US National Library of Medicine) customDbUrl: eissn: 1756-0500 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0061881 issn: 1756-0500 databaseCode: RPM dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection (ProQuest) customDbUrl: eissn: 1756-0500 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0061881 issn: 1756-0500 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central Database Suite (ProQuest) customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1756-0500 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0061881 issn: 1756-0500 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1756-0500 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0061881 issn: 1756-0500 databaseCode: M48 dateStart: 20081001 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: Springer Nature HAS Fully OA customDbUrl: eissn: 1756-0500 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0061881 issn: 1756-0500 databaseCode: AAJSJ dateStart: 20081201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 1756-0500 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0061881 issn: 1756-0500 databaseCode: C6C dateStart: 20081201 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELfGJiReEN8ERmUQEhIoLHE-_YBQVzaNSuumQtHeLMd2uoiSbk0r6Bt_OndOUpExkHhKFV9Sne93vjv7ckfISxXqkHuSuTrwQzdkKnI5AAc38mWIDkFu-6ccj-KjSTg8i862SNveqpnA6trQDvtJTRaztz8u1-9B4d9ZhU_jvcoHHwVzKRKX4a4WRPA7YJgYgvw43BwqxH5qe5aCwYQgOvLaQ85rX9ExU7aa_59r9m9G62pC5ZVTVWusDu-Q242XSfs1LO6SLVPeIzfrvpPr--TnCSwU34BgPOrTAtBnxUPrbtJUlppeYNX_BdU2v4Mu5_ALTxsowM3QryUsohrCd5qt6eXpYEy_n5uSAmYL_FiinNIPC9seoZhJukRjCI8VCv-toOjWVg_I5PDg8-DIbVoxuCoCsblBlgYx-HY6YhBgSZXGkYx0qjIT6jTmofEgQgdTLxPFsxBibiMDiMViUOpEZooHD8l2OS_NY0IZM1hj3su4Bl8syLPYBODGsFhzE8Ypd4jXzrxQTZ1ybJcxEzZeSWNRC0uAsAQKS3gOeb155KIu0vEv4n0U54YQ62vbG_PFVDTqKnSgvCDTWvrAHFNc5hzwo1Xq50keJb5DXiAYBFbQKDFFZypXVSU-nnwRfWwwAF5bEjjkVUOUz4EDJZsvHmAesOhWh3K3QwkqrjrDz1vMCRzCvLjSzFeV8HkCPiZLfWDrUY3BDWOM-2kCU-2QpIPODufdkbI4txXGI1tHkTnkTYtj0Wrm3yf2yf9I4Sm5xVDbfB8UbpdsLxcr8wzcu2XWIzeSs6RHdvr94achXPcPRqdjuDuIBz27ZdKzav0LhPdLOA |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR1db9Mw0EKdELwgvgkMMAgJCRQRO45jP5bB1I2tQ2NDe7Mc2-kiRjqaVmhv_HTOTlKR8SHxFsVnRfd9F5_vEHphmGUy0TS2KWExoyaLJQiO_5GvmQ8IyjA_ZX_KJ8ds9yQ76e5xN321e38kGSx1UGvB3zQEIhFfMZHH1P-7gjx9Q2QZZyO0MR7vftrtDTAnQpDuAPOPGwcuKHTq_90e_-KQLhdLXjoxDY5o-ya60UWQeNyy_Ba64urb6Go7U_LiDvpxAEbgKwAcTse4AskKpMftpGisa4vPfUf_BbahdgMv5_DkTxIwiJLDX2owkBZSc1xc4G8ftw7x91NXY5DHyl-EqGf43SKMPqjONF56RwfbKuO_VmEfsjZ30fH2-6OtSdyNWYhNBiyJ00KkHOI2m1FInrQRPNOZFaZwzAoumUsg-wY3rnMjCwb5tNMp5FkcFDbXhZHpPTSq57V7gDClzvePTwppIc5Ky4K7FEIUyq10jAsZoaSnvDJdD3I_CuNMhVxEcNUySwGzlGeWSiL0ar3lvG3A8S_gt56da0DfOzu8mC9mqlNFZVOTpIW1mgBy1EhdSpAZawQp8zLLSYSee2FQvjtG7ctvZnrVNGrn4LMa--EBEJHlaYRedkDlHDAwurvNAHTwDbUGkJsDSFBfM1h-1suc8ku-5q1281WjiMwhfqSCAFr3WxlcI0YlETmQOkL5QDoHmA9X6uo0dA_PQo9EGqHXvRyrzmw1fyfsw_-CfoquTY7299TezvTDI3SdetUjBLRvE42Wi5V7DHHcsnjS6e1P54s9ww |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZQKxAXxJtAAYOQkEBRYydx7OPSsmoLbKtCUW-WYzvbiJJdNrtCvfHTmcljRcpD4hbFY0X2vOPxN4S8sIlLVGR46GKWhAm3aahAcPBHvkkwICia_ikfJmLvJDk4TU-7Pqd1X-3eH0m2dxoQpalabs9d0aq4FNs1g6gEqyeykON_LMjZN2WqBGRfm6PRwceD3hgLJiXrDjP_OHHgjhrU_t9t8y_O6XLh5KXT08YpjW-SG100SUct-2-RK766Ta62_SUv7pAfh2AQvgLB8WRES5Cyhg207RpNTeXoHNH9F9Q1dRx0OYMnPFWgIFaefqnAWDpI02l-Qb8d7RzT72e-oiCbJV6KqKZ0d9G0QSjPDV2i04NppcWvlRTD1_ouORm__bSzF3YtF0KbAnvCOJexgBjOpRwSKWOlSE3qpM194qRQiY8gEweXbjKr8gRya29iyLkEKG9mcqvie2SjmlX-AaGce8SSj3LlIOaKi1z4GMIVLpzyiZAqIFG_89p2eOTYFuNcN3mJFLpllgZmaWSWjgLyaj1l3oJx_Iv4DbJzTYg42s2L2WKqO7XULrZRnDtnGCyOW2UKBTLjrGRFVqQZC8hzFAaNSBkVluJMzaqu9f7hZz3CRgIQnWVxQF52RMUMVmBNd7MB9gHBtQaUWwNKUGU7GH7Wy5zGIax_q_xsVWumMogluWSwrPutDK4XxhWTGWx1QLKBdA5WPhypyrMGSTxt8BJ5QF73cqw7E1b_fWMf_hf1U3LtaHes3-9P3j0i1zlqHmOgfFtkY7lY-ccQ0i3zJ53a_gTJpUIN |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+RNA+isolation+method+and+primer+design+to+detect+gene+knockdown+by+qPCR+when+validating+Drosophila+transgenic+RNAi+lines&rft.jtitle=BMC+research+notes&rft.au=Mainland%2C+Roslyn+L.&rft.au=Lyons%2C+Taylor+A.&rft.au=Ruth%2C+Mike+M.&rft.au=Kramer%2C+Jamie+M.&rft.date=2017-11-29&rft.issn=1756-0500&rft.eissn=1756-0500&rft.volume=10&rft.issue=1&rft_id=info:doi/10.1186%2Fs13104-017-2959-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s13104_017_2959_0 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1756-0500&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1756-0500&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1756-0500&client=summon |