The non-invasive Berlin Brain–Computer Interface: Fast acquisition of effective performance in untrained subjects
Brain–Computer Interface (BCI) systems establish a direct communication channel from the brain to an output device. These systems use brain signals recorded from the scalp, the surface of the cortex, or from inside the brain to enable users to control a variety of applications. BCI systems that bypa...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 37; no. 2; pp. 539 - 550 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
15.08.2007
Elsevier Limited |
Subjects | |
Online Access | Get full text |
ISSN | 1053-8119 1095-9572 |
DOI | 10.1016/j.neuroimage.2007.01.051 |
Cover
Abstract | Brain–Computer Interface (BCI) systems establish a direct communication channel from the brain to an output device. These systems use brain signals recorded from the scalp, the surface of the cortex, or from inside the brain to enable users to control a variety of applications. BCI systems that bypass conventional motor output pathways of nerves and muscles can provide novel control options for paralyzed patients. One classical approach to establish EEG-based control is to set up a system that is controlled by a specific EEG feature which is known to be susceptible to conditioning and to let the subjects learn the voluntary control of that feature. In contrast, the Berlin Brain–Computer Interface (BBCI) uses well established motor competencies of its users and a machine learning approach to extract subject-specific patterns from high-dimensional features optimized for detecting the user's intent. Thus the long subject training is replaced by a short calibration measurement (20 min) and machine learning (1 min). We report results from a study in which 10 subjects, who had no or little experience with BCI feedback, controlled computer applications by voluntary imagination of limb movements: these intentions led to modulations of spontaneous brain activity specifically, somatotopically matched sensorimotor 7–30 Hz rhythms were diminished over pericentral cortices. The peak information transfer rate was above 35 bits per minute (bpm) for 3 subjects, above 23 bpm for two, and above 12 bpm for 3 subjects, while one subject could achieve no BCI control. Compared to other BCI systems which need longer subject training to achieve comparable results, we propose that the key to quick efficiency in the BBCI system is its flexibility due to complex but physiologically meaningful features and its adaptivity which respects the enormous inter-subject variability. |
---|---|
AbstractList | Brain-Computer Interface (BCI) systems establish a direct communication channel from the brain to an output device. These systems use brain signals recorded from the scalp, the surface of the cortex, or from inside the brain to enable users to control a variety of applications. BCI systems that bypass conventional motor output pathways of nerves and muscles can provide novel control options for paralyzed patients. One classical approach to establish EEG-based control is to set up a system that is controlled by a specific EEG feature which is known to be susceptible to conditioning and to let the subjects learn the voluntary control of that feature. In contrast, the Berlin Brain-Computer Interface (BBCI) uses well established motor competencies of its users and a machine learning approach to extract subject-specific patterns from high-dimensional features optimized for detecting the user's intent. Thus the long subject training is replaced by a short calibration measurement (20 min) and machine learning (1 min). We report results from a study in which 10 subjects, who had no or little experience with BCI feedback, controlled computer applications by voluntary imagination of limb movements: these intentions led to modulations of spontaneous brain activity specifically, somatotopically matched sensorimotor 7-30 Hz rhythms were diminished over pericentral cortices. The peak information transfer rate was above 35 bits per minute (bpm) for 3 subjects, above 23 bpm for two, and above 12 bpm for 3 subjects, while one subject could achieve no BCI control. Compared to other BCI systems which need longer subject training to achieve comparable results, we propose that the key to quick efficiency in the BBCI system is its flexibility due to complex but physiologically meaningful features and its adaptivity which respects the enormous inter-subject variability. Brain-Computer Interface (BCI) systems establish a direct communication channel from the brain to an output device. These systems use brain signals recorded from the scalp, the surface of the cortex, or from inside the brain to enable users to control a variety of applications. BCI systems that bypass conventional motor output pathways of nerves and muscles can provide novel control options for paralyzed patients. One classical approach to establish EEG-based control is to set up a system that is controlled by a specific EEG feature which is known to be susceptible to conditioning and to let the subjects learn the voluntary control of that feature. In contrast, the Berlin Brain-Computer Interface (BBCI) uses well established motor competencies of its users and a machine learning approach to extract subject-specific patterns from high-dimensional features optimized for detecting the user's intent. Thus the long subject training is replaced by a short calibration measurement (20 min) and machine learning (1 min). We report results from a study in which 10 subjects, who had no or little experience with BCI feedback, controlled computer applications by voluntary imagination of limb movements: these intentions led to modulations of spontaneous brain activity specifically, somatotopically matched sensorimotor 7-30 Hz rhythms were diminished over pericentral cortices. The peak information transfer rate was above 35 bits per minute (bpm) for 3 subjects, above 23 bpm for two, and above 12 bpm for 3 subjects, while one subject could achieve no BCI control. Compared to other BCI systems which need longer subject training to achieve comparable results, we propose that the key to quick efficiency in the BBCI system is its flexibility due to complex but physiologically meaningful features and its adaptivity which respects the enormous inter-subject variability.Brain-Computer Interface (BCI) systems establish a direct communication channel from the brain to an output device. These systems use brain signals recorded from the scalp, the surface of the cortex, or from inside the brain to enable users to control a variety of applications. BCI systems that bypass conventional motor output pathways of nerves and muscles can provide novel control options for paralyzed patients. One classical approach to establish EEG-based control is to set up a system that is controlled by a specific EEG feature which is known to be susceptible to conditioning and to let the subjects learn the voluntary control of that feature. In contrast, the Berlin Brain-Computer Interface (BBCI) uses well established motor competencies of its users and a machine learning approach to extract subject-specific patterns from high-dimensional features optimized for detecting the user's intent. Thus the long subject training is replaced by a short calibration measurement (20 min) and machine learning (1 min). We report results from a study in which 10 subjects, who had no or little experience with BCI feedback, controlled computer applications by voluntary imagination of limb movements: these intentions led to modulations of spontaneous brain activity specifically, somatotopically matched sensorimotor 7-30 Hz rhythms were diminished over pericentral cortices. The peak information transfer rate was above 35 bits per minute (bpm) for 3 subjects, above 23 bpm for two, and above 12 bpm for 3 subjects, while one subject could achieve no BCI control. Compared to other BCI systems which need longer subject training to achieve comparable results, we propose that the key to quick efficiency in the BBCI system is its flexibility due to complex but physiologically meaningful features and its adaptivity which respects the enormous inter-subject variability. Brain–Computer Interface (BCI) systems establish a direct communication channel from the brain to an output device. These systems use brain signals recorded from the scalp, the surface of the cortex, or from inside the brain to enable users to control a variety of applications. BCI systems that bypass conventional motor output pathways of nerves and muscles can provide novel control options for paralyzed patients. One classical approach to establish EEG-based control is to set up a system that is controlled by a specific EEG feature which is known to be susceptible to conditioning and to let the subjects learn the voluntary control of that feature. In contrast, the Berlin Brain–Computer Interface (BBCI) uses well established motor competencies of its users and a machine learning approach to extract subject-specific patterns from high-dimensional features optimized for detecting the user's intent. Thus the long subject training is replaced by a short calibration measurement (20 min) and machine learning (1 min). We report results from a study in which 10 subjects, who had no or little experience with BCI feedback, controlled computer applications by voluntary imagination of limb movements: these intentions led to modulations of spontaneous brain activity specifically, somatotopically matched sensorimotor 7–30 Hz rhythms were diminished over pericentral cortices. The peak information transfer rate was above 35 bits per minute (bpm) for 3 subjects, above 23 bpm for two, and above 12 bpm for 3 subjects, while one subject could achieve no BCI control. Compared to other BCI systems which need longer subject training to achieve comparable results, we propose that the key to quick efficiency in the BBCI system is its flexibility due to complex but physiologically meaningful features and its adaptivity which respects the enormous inter-subject variability. |
Author | Müller, Klaus-Robert Blankertz, Benjamin Krauledat, Matthias Dornhege, Guido Curio, Gabriel |
Author_xml | – sequence: 1 givenname: Benjamin surname: Blankertz fullname: Blankertz, Benjamin email: benjamin.blankertz@first.fraunhofer.de organization: Fraunhofer FIRST (IDA), Kekuléstr. 7, 12 489 Berlin, Germany – sequence: 2 givenname: Guido surname: Dornhege fullname: Dornhege, Guido organization: Fraunhofer FIRST (IDA), Kekuléstr. 7, 12 489 Berlin, Germany – sequence: 3 givenname: Matthias surname: Krauledat fullname: Krauledat, Matthias organization: Fraunhofer FIRST (IDA), Kekuléstr. 7, 12 489 Berlin, Germany – sequence: 4 givenname: Klaus-Robert surname: Müller fullname: Müller, Klaus-Robert organization: Fraunhofer FIRST (IDA), Kekuléstr. 7, 12 489 Berlin, Germany – sequence: 5 givenname: Gabriel surname: Curio fullname: Curio, Gabriel organization: Dept. of Neurology, Campus Benjamin Franklin, Charité University Medicine Berlin, Germany |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/17475513$$D View this record in MEDLINE/PubMed |
BookMark | eNqNks1u1DAURi3Uiv7AKyBLSOwSfJN44rBAdEYUKlViU9aW41yDQ2JP7WSk7ngH3rBPUkdTQJpNu7Et-fgk_j6fkSPnHRJCgeXAYPW-zx3OwdtR_cC8YKzOGeSMwwtyCqzhWcPr4mhZ8zITAM0JOYuxZ4w1UImX5ATqquYcylMSb34iTfbMup2Kdod0jWGwjq6Dsu7-95-NH7fzhIFeuTQapfEDvVRxokrfzjbayXpHvaFoDOppEWwT5sOonEaaRLObFhV2NM5tn5j4ihwbNUR8_Tifk--Xn282X7Prb1-uNhfXmeZFOWVG8xrLthCoBK-qdA1hOmhYY7AtAYTWqsSyaEyHgNCKSjW6UyrtNAVyxctz8m7v3QZ_O2Oc5GijxmFQDv0c5UpAio6LBL49AHs_B5f-TQJnq7qoSrZQbx6puR2xk9uQ8g938m-YCfi4B3TwMQY0UttJLQEtCQwSmFzak738355c2pMMZGovCcSB4N83nj663h_FFOjOYpBRW0wVdDakzGXn7XMknw4kOj0Fq9XwC--ep3gAdUPTlg |
CitedBy_id | crossref_primary_10_3390_electronics11152293 crossref_primary_10_1016_j_patrec_2017_05_020 crossref_primary_10_1088_1741_2560_10_2_026018 crossref_primary_10_1016_j_bspc_2022_104153 crossref_primary_10_3390_s140101474 crossref_primary_10_1007_s10548_022_00907_y crossref_primary_10_1007_s00521_021_06352_5 crossref_primary_10_1109_TCDS_2017_2787040 crossref_primary_10_1007_s12021_019_09435_w crossref_primary_10_1007_s11277_020_07045_3 crossref_primary_10_3390_s20174749 crossref_primary_10_3390_s19173769 crossref_primary_10_5391_JKIIS_2012_22_6_774 crossref_primary_10_3389_fninf_2024_1459970 crossref_primary_10_1007_s11042_023_17118_7 crossref_primary_10_1007_s11517_012_1026_1 crossref_primary_10_1109_TNNLS_2019_2946869 crossref_primary_10_3389_fninf_2014_00088 crossref_primary_10_1007_s00521_022_08027_1 crossref_primary_10_1016_j_clinph_2015_06_004 crossref_primary_10_1109_TNSRE_2017_2684084 crossref_primary_10_1134_S1063785020060127 crossref_primary_10_1371_journal_pone_0101729 crossref_primary_10_3390_brainsci15010027 crossref_primary_10_1109_ACCESS_2020_3003056 crossref_primary_10_1088_1741_2560_13_5_056012 crossref_primary_10_1016_j_irbm_2019_11_002 crossref_primary_10_1007_s10548_010_0135_0 crossref_primary_10_3390_s16020201 crossref_primary_10_1109_TBME_2009_2032162 crossref_primary_10_1016_j_bspc_2021_102826 crossref_primary_10_3390_brainsci13071109 crossref_primary_10_1016_j_measen_2022_100616 crossref_primary_10_1117_1_NPh_5_1_011008 crossref_primary_10_1109_TNSRE_2023_3241301 crossref_primary_10_1155_2020_7285057 crossref_primary_10_3389_fnins_2020_559858 crossref_primary_10_1109_JPROC_2015_2415800 crossref_primary_10_3390_s19020379 crossref_primary_10_1587_transcom_2016SNI0002 crossref_primary_10_1109_TBME_2024_3474049 crossref_primary_10_1142_S0129065721500039 crossref_primary_10_1016_j_physrep_2021_03_002 crossref_primary_10_1109_TNSRE_2023_3329482 crossref_primary_10_1186_s12859_017_1964_6 crossref_primary_10_5302_J_ICROS_2011_17_8_747 crossref_primary_10_1016_j_compbiomed_2017_10_025 crossref_primary_10_1016_j_ijhcs_2009_05_009 crossref_primary_10_1088_1741_2552_ac9c94 crossref_primary_10_1016_j_jneumeth_2014_11_007 crossref_primary_10_3389_fnins_2023_1219133 crossref_primary_10_1016_j_neuroimage_2015_05_009 crossref_primary_10_1016_j_neuroimage_2011_07_084 crossref_primary_10_1080_00222895_2014_982067 crossref_primary_10_1007_s11265_019_1440_9 crossref_primary_10_1088_1741_2560_10_1_016012 crossref_primary_10_3390_e24020195 crossref_primary_10_1111_psyp_13832 crossref_primary_10_1063_1_5113844 crossref_primary_10_1088_1741_2552_abca17 crossref_primary_10_3389_fnins_2019_00502 crossref_primary_10_1016_j_jneumeth_2013_11_015 crossref_primary_10_1016_j_neuroimage_2010_03_022 crossref_primary_10_1177_1550059414522229 crossref_primary_10_1088_1741_2560_8_2_025009 crossref_primary_10_1007_s10916_018_0931_8 crossref_primary_10_1088_1741_2560_8_2_025005 crossref_primary_10_1093_brain_awt077 crossref_primary_10_1371_journal_pone_0076214 crossref_primary_10_1049_2024_5596468 crossref_primary_10_1088_1741_2560_10_1_016002 crossref_primary_10_1109_TBME_2013_2287245 crossref_primary_10_1016_j_bspc_2023_105556 crossref_primary_10_3389_fnhum_2016_00170 crossref_primary_10_1103_PhysRevLett_103_214101 crossref_primary_10_1109_TBME_2020_3034112 crossref_primary_10_1109_TIP_2012_2187672 crossref_primary_10_1109_TBME_2022_3201241 crossref_primary_10_1109_TBME_2018_2799661 crossref_primary_10_1016_j_ijpsycho_2012_01_014 crossref_primary_10_1016_j_medntd_2025_100353 crossref_primary_10_1109_TNSRE_2021_3099908 crossref_primary_10_1016_j_neuroimage_2009_07_045 crossref_primary_10_1109_TNSRE_2020_3017167 crossref_primary_10_1088_1741_2560_7_5_056009 crossref_primary_10_1109_TBME_2010_2093133 crossref_primary_10_1109_TNSRE_2018_2837003 crossref_primary_10_3390_electronics13142770 crossref_primary_10_1088_1741_2552_aac313 crossref_primary_10_1016_j_bspc_2023_105537 crossref_primary_10_1088_1741_2560_10_2_026005 crossref_primary_10_9718_JBER_2011_32_4_295 crossref_primary_10_1007_s00034_022_02071_x crossref_primary_10_1080_21681163_2023_2192831 crossref_primary_10_3389_fnagi_2022_828377 crossref_primary_10_3390_electronics12244944 crossref_primary_10_1109_TNNLS_2023_3292179 crossref_primary_10_1016_j_neuroimage_2011_06_084 crossref_primary_10_1016_j_clinph_2013_03_009 crossref_primary_10_1155_2018_9476432 crossref_primary_10_1109_TITB_2012_2194298 crossref_primary_10_1007_s00422_024_00984_1 crossref_primary_10_3390_s140405967 crossref_primary_10_1002_ima_22821 crossref_primary_10_1002_ima_22823 crossref_primary_10_3389_fnins_2017_00550 crossref_primary_10_1016_j_neunet_2009_06_003 crossref_primary_10_1155_2018_6323414 crossref_primary_10_1088_1361_6579_acd51b crossref_primary_10_3389_fnins_2021_729449 crossref_primary_10_1088_1741_2552_ab4dba crossref_primary_10_1162_neco_a_01070 crossref_primary_10_1109_TNSRE_2012_2229296 crossref_primary_10_3389_fnins_2017_00674 crossref_primary_10_1088_1741_2560_8_2_025012 crossref_primary_10_1016_j_bspc_2019_04_034 crossref_primary_10_1016_j_clinph_2012_11_010 crossref_primary_10_1088_1741_2552_aa620b crossref_primary_10_1016_j_knosys_2024_111904 crossref_primary_10_1631_FITEE_1400299 crossref_primary_10_1016_j_bspc_2018_02_021 crossref_primary_10_1142_S0129065721500301 crossref_primary_10_1109_TNNLS_2023_3305621 crossref_primary_10_1016_j_jksuci_2022_09_020 crossref_primary_10_1016_j_neuroimage_2015_05_078 crossref_primary_10_1007_s12559_017_9478_0 crossref_primary_10_1016_j_neuroimage_2019_05_074 crossref_primary_10_1038_s41598_017_08928_5 crossref_primary_10_3389_fnhum_2019_00128 crossref_primary_10_1109_TNSRE_2019_2900725 crossref_primary_10_3109_17483107_2014_961569 crossref_primary_10_1088_1741_2552_aa5d5f crossref_primary_10_1007_s11517_025_03298_x crossref_primary_10_1007_s11277_014_1861_5 crossref_primary_10_1007_s11571_020_09592_8 crossref_primary_10_1097_WCO_0b013e3282f14782 crossref_primary_10_1142_S0129065712500220 crossref_primary_10_2200_S00148ED1V01Y200809BME022 crossref_primary_10_1007_s11434_008_0547_3 crossref_primary_10_1016_j_asoc_2019_105519 crossref_primary_10_1109_ACCESS_2023_3329678 crossref_primary_10_1016_j_brainres_2013_03_050 crossref_primary_10_3390_brainsci11010043 crossref_primary_10_1007_s11055_018_0681_6 crossref_primary_10_1016_j_bspc_2022_104321 crossref_primary_10_1016_j_ijleo_2017_10_085 crossref_primary_10_1088_1741_2560_8_5_056001 crossref_primary_10_3390_s24051678 crossref_primary_10_1097_WNR_0000000000000480 crossref_primary_10_3934_mbe_2021213 crossref_primary_10_1371_journal_pone_0087056 crossref_primary_10_3390_s21061988 crossref_primary_10_1371_journal_pone_0129435 crossref_primary_10_1109_RBME_2011_2170675 crossref_primary_10_1016_j_neuroimage_2010_06_048 crossref_primary_10_1007_s10548_009_0121_6 crossref_primary_10_1515_bmt_2010_015 crossref_primary_10_1109_TBME_2018_2872855 crossref_primary_10_1088_1741_2560_8_4_046035 crossref_primary_10_1109_ACCESS_2022_3173629 crossref_primary_10_1109_JSEN_2022_3171808 crossref_primary_10_1186_s12984_015_0102_9 crossref_primary_10_1016_j_engappai_2023_106863 crossref_primary_10_1051_e3sconf_202235101026 crossref_primary_10_1155_2017_2948742 crossref_primary_10_3389_fnhum_2024_1421922 crossref_primary_10_5391_JKIIS_2010_20_1_001 crossref_primary_10_1088_1741_2552_ac1ade crossref_primary_10_1109_MIS_2008_41 crossref_primary_10_1016_j_cmpb_2023_107641 crossref_primary_10_1007_s12204_022_2488_4 crossref_primary_10_1002_ima_22913 crossref_primary_10_1007_s12152_019_09409_4 crossref_primary_10_1016_j_neunet_2024_106351 crossref_primary_10_1109_TNSRE_2023_3257261 crossref_primary_10_1109_TSP_2024_3403965 crossref_primary_10_1109_TBME_2009_2039997 crossref_primary_10_1109_TBME_2012_2188799 crossref_primary_10_1016_j_neuroimage_2016_06_056 crossref_primary_10_1051_matecconf_201714001024 crossref_primary_10_1109_ACCESS_2018_2868713 crossref_primary_10_1016_j_bspc_2021_103190 crossref_primary_10_1016_j_neunet_2018_02_011 crossref_primary_10_5391_JKIIS_2010_20_1_015 crossref_primary_10_1109_TNSRE_2016_2528167 crossref_primary_10_1016_j_bspc_2013_08_012 crossref_primary_10_1007_s00422_014_0589_3 crossref_primary_10_1088_1741_2552_abd51f crossref_primary_10_1186_s12859_021_04091_x crossref_primary_10_1007_s11517_024_03036_9 crossref_primary_10_1155_2019_2087132 crossref_primary_10_1002_biot_200800244 crossref_primary_10_1109_ACCESS_2020_2995302 crossref_primary_10_1016_j_conb_2007_07_009 crossref_primary_10_1016_j_neuroimage_2017_08_005 crossref_primary_10_1109_TNSRE_2016_2646763 crossref_primary_10_1007_s11571_021_09669_y crossref_primary_10_1016_j_conb_2008_07_006 crossref_primary_10_1111_j_1469_8986_2009_00816_x crossref_primary_10_1016_j_bbe_2021_08_003 crossref_primary_10_1523_ENEURO_0145_22_2022 crossref_primary_10_1016_j_cmpbup_2021_100027 crossref_primary_10_1016_j_jneumeth_2008_07_019 crossref_primary_10_1007_s11042_024_20510_6 crossref_primary_10_1109_TNSRE_2023_3269055 crossref_primary_10_1007_s11771_017_3461_5 crossref_primary_10_3390_s24154989 crossref_primary_10_1063_1_5006511 crossref_primary_10_1109_JPROC_2015_2411333 crossref_primary_10_1109_ACCESS_2024_3459866 crossref_primary_10_1109_JPROC_2015_2413993 crossref_primary_10_1186_1471_2202_10_S1_P69 crossref_primary_10_1016_j_neucom_2020_09_017 crossref_primary_10_1016_j_neuroimage_2010_11_004 crossref_primary_10_1007_s11517_023_02976_y crossref_primary_10_1080_2326263X_2016_1263916 crossref_primary_10_1177_155005941104200411 crossref_primary_10_1016_j_neucom_2024_127944 crossref_primary_10_1080_2326263X_2022_2033073 crossref_primary_10_1109_TNSRE_2023_3237583 crossref_primary_10_1016_j_bspc_2015_04_001 crossref_primary_10_1109_TNSRE_2018_2826559 crossref_primary_10_1109_TNSRE_2018_2848883 crossref_primary_10_1162_NECO_a_00089 crossref_primary_10_1016_j_jneumeth_2009_01_015 crossref_primary_10_1080_10255842_2024_2356633 crossref_primary_10_1142_S0129065721500404 crossref_primary_10_1007_s10548_020_00801_5 crossref_primary_10_1186_s12984_016_0172_3 crossref_primary_10_1016_j_compbiomed_2020_103822 crossref_primary_10_1016_j_bspc_2021_103289 crossref_primary_10_1109_JPROC_2015_2404941 crossref_primary_10_1016_j_bspc_2019_01_008 crossref_primary_10_1016_j_neuroimage_2021_118851 crossref_primary_10_1016_j_knosys_2025_113074 crossref_primary_10_1016_j_neuropsychologia_2007_10_008 crossref_primary_10_1088_1741_2560_8_4_046003 crossref_primary_10_1155_2017_9817305 crossref_primary_10_1016_j_clinph_2007_11_013 crossref_primary_10_1155_2016_1489692 crossref_primary_10_1016_j_engappai_2023_105862 crossref_primary_10_1007_s11055_020_00977_0 crossref_primary_10_1109_TITB_2012_2230012 crossref_primary_10_1016_j_clinph_2014_07_007 crossref_primary_10_1371_journal_pone_0276133 crossref_primary_10_5573_IEIESPC_2015_4_2_097 crossref_primary_10_1007_s10489_021_02975_2 crossref_primary_10_1007_s10916_019_1270_0 crossref_primary_10_1016_j_compbiomed_2017_05_024 crossref_primary_10_1016_j_neuroimage_2011_03_061 crossref_primary_10_1007_s13042_012_0139_z crossref_primary_10_1109_TNSRE_2022_3219418 crossref_primary_10_1007_s12530_019_09280_x crossref_primary_10_1016_j_neuroimage_2013_07_079 crossref_primary_10_5302_J_ICROS_2013_13_1866 crossref_primary_10_1016_j_bspc_2021_103101 crossref_primary_10_1371_journal_pone_0111070 crossref_primary_10_1109_ACCESS_2019_2908189 crossref_primary_10_3389_fnhum_2017_00462 crossref_primary_10_1038_nrneurol_2012_219 crossref_primary_10_3389_fnins_2021_733546 crossref_primary_10_1166_jmihi_2021_3904 crossref_primary_10_1186_1475_925X_12_77 crossref_primary_10_1162_pres_19_1_54 crossref_primary_10_1088_1741_2560_11_5_056015 crossref_primary_10_1016_j_neunet_2022_06_008 crossref_primary_10_1007_s40012_016_0091_2 crossref_primary_10_1109_ACCESS_2020_2999091 crossref_primary_10_1109_ACCESS_2024_3368384 crossref_primary_10_1088_1741_2552_ad7f8e crossref_primary_10_3390_electronics12122743 crossref_primary_10_1016_j_ins_2024_121585 crossref_primary_10_1016_j_neucom_2013_05_005 crossref_primary_10_1007_s11571_021_09768_w crossref_primary_10_1109_TNSRE_2023_3243257 crossref_primary_10_35741_issn_0258_2724_54_4_3 crossref_primary_10_1016_j_measurement_2023_113673 crossref_primary_10_1088_1741_2552_ac27fc crossref_primary_10_1109_JBHI_2014_2328494 crossref_primary_10_1109_TIM_2024_3451593 crossref_primary_10_5607_en_2009_18_2_137 crossref_primary_10_1371_journal_pone_0002967 crossref_primary_10_3390_mi5041082 crossref_primary_10_1109_TBME_2019_2913914 crossref_primary_10_1155_2015_251945 crossref_primary_10_3389_fnhum_2021_625983 crossref_primary_10_1016_j_clinph_2010_02_157 crossref_primary_10_1016_j_neucom_2011_09_013 crossref_primary_10_1186_1743_0003_6_14 crossref_primary_10_1088_1741_2560_12_4_046007 crossref_primary_10_1109_TIM_2024_3375980 crossref_primary_10_1109_JBHI_2024_3402324 crossref_primary_10_1155_2013_537218 crossref_primary_10_1007_s11036_021_01754_0 crossref_primary_10_1109_TNN_2010_2084099 crossref_primary_10_1523_JNEUROSCI_5577_12_2013 crossref_primary_10_1155_2022_1603104 crossref_primary_10_1080_07370024_2023_2170801 crossref_primary_10_1016_j_compeleceng_2024_109680 crossref_primary_10_1088_1741_2560_11_5_056002 crossref_primary_10_1186_1475_925X_12_43 crossref_primary_10_1007_s11432_022_3548_2 crossref_primary_10_1162_NECO_a_00544 crossref_primary_10_1109_TNNLS_2020_3015505 crossref_primary_10_1016_j_neuroimage_2025_121123 crossref_primary_10_1109_TITS_2024_3522308 crossref_primary_10_1007_s11071_018_4047_y crossref_primary_10_1007_s13042_023_01914_6 crossref_primary_10_4018_ijmtie_2012040101 crossref_primary_10_1007_s11571_020_09608_3 crossref_primary_10_1016_j_ijpsycho_2017_08_007 crossref_primary_10_3389_fnins_2021_779231 crossref_primary_10_1016_j_jneumeth_2007_09_022 crossref_primary_10_1111_j_1467_8640_2007_00316_x crossref_primary_10_1016_j_bspc_2020_102171 crossref_primary_10_1016_j_jneumeth_2021_109249 crossref_primary_10_1016_j_jneumeth_2018_08_001 crossref_primary_10_1109_TNSRE_2019_2922713 crossref_primary_10_1016_j_eswa_2023_122286 crossref_primary_10_2139_ssrn_2427564 crossref_primary_10_1109_TNNLS_2020_3048385 crossref_primary_10_5391_JKIIS_2010_20_1_153 crossref_primary_10_1007_s00521_020_05603_1 crossref_primary_10_1155_2016_7431012 crossref_primary_10_1371_journal_pone_0207351 crossref_primary_10_1016_j_compbiomed_2022_105299 crossref_primary_10_1155_2018_1482874 crossref_primary_10_1016_j_swevo_2019_100597 crossref_primary_10_1016_j_neuroimage_2019_116333 crossref_primary_10_1016_j_neuroimage_2008_12_069 crossref_primary_10_1155_2009_104180 crossref_primary_10_3389_fnhum_2020_597864 crossref_primary_10_1016_j_bspc_2020_102026 crossref_primary_10_1016_j_neucom_2024_128889 crossref_primary_10_1007_s13755_021_00142_y crossref_primary_10_4236_jsip_2012_33037 crossref_primary_10_1142_S0129065718500454 crossref_primary_10_3390_s24217080 crossref_primary_10_3389_fnins_2016_00573 crossref_primary_10_1109_TNSRE_2017_2759241 crossref_primary_10_1159_000446698 crossref_primary_10_1109_TNSRE_2021_3139095 crossref_primary_10_1109_TFUZZ_2023_3336673 crossref_primary_10_1016_j_bspc_2021_103307 crossref_primary_10_3389_fnhum_2017_00134 crossref_primary_10_1016_j_bspc_2016_08_024 crossref_primary_10_1016_j_patcog_2011_04_018 crossref_primary_10_3390_app132111787 crossref_primary_10_1186_s12859_018_2365_1 crossref_primary_10_1109_TCDS_2022_3174660 crossref_primary_10_1088_1741_2552_ac6770 crossref_primary_10_1109_JBHI_2023_3292909 crossref_primary_10_1016_j_neunet_2009_07_020 crossref_primary_10_1109_TNSRE_2012_2205707 crossref_primary_10_1007_s11571_021_09752_4 crossref_primary_10_1007_s00500_012_0895_4 crossref_primary_10_1186_1743_0003_8_24 crossref_primary_10_1007_s11055_018_0666_5 crossref_primary_10_1109_TBCAS_2017_2779324 crossref_primary_10_1093_gigascience_giz002 crossref_primary_10_1016_j_neuroimage_2010_09_003 crossref_primary_10_1109_TNSRE_2021_3088637 crossref_primary_10_1088_1741_2552_ad38db crossref_primary_10_1016_j_neuroimage_2024_120906 crossref_primary_10_3389_fnins_2021_652058 crossref_primary_10_5626_JCSE_2013_7_2_112 crossref_primary_10_1371_journal_pone_0148886 crossref_primary_10_1109_TNSRE_2014_2315717 crossref_primary_10_1109_MCI_2015_2501545 crossref_primary_10_1109_TNSRE_2009_2027705 crossref_primary_10_1109_TNSRE_2024_3445115 crossref_primary_10_5302_J_ICROS_2013_13_1915 crossref_primary_10_1109_JBHI_2016_2582683 crossref_primary_10_1007_s00521_011_0744_x crossref_primary_10_1109_ACCESS_2023_3326720 crossref_primary_10_1109_TNSRE_2020_2980299 crossref_primary_10_1088_1741_2560_13_3_036018 crossref_primary_10_1109_TNSRE_2016_2606416 crossref_primary_10_1109_TNSRE_2015_2418351 crossref_primary_10_1016_j_jneumeth_2021_109274 crossref_primary_10_1007_s11042_017_5586_9 crossref_primary_10_1088_1741_2552_aadea0 crossref_primary_10_1109_JBHI_2024_3358917 crossref_primary_10_1016_j_bspc_2009_09_002 crossref_primary_10_1016_j_neunet_2020_01_022 crossref_primary_10_1109_ACCESS_2018_2868178 crossref_primary_10_1007_s11633_018_1158_3 crossref_primary_10_1088_1741_2560_11_3_035007 crossref_primary_10_1109_TAC_2011_2166713 crossref_primary_10_62762_CJIF_2024_876830 crossref_primary_10_1155_2018_9385947 crossref_primary_10_1016_j_biopsycho_2011_09_006 crossref_primary_10_5391_JKIIS_2012_22_4_429 crossref_primary_10_1016_j_jneumeth_2021_109182 crossref_primary_10_1523_JNEUROSCI_5171_07_2008 crossref_primary_10_1155_2020_1838140 crossref_primary_10_1002_ima_20285 crossref_primary_10_1088_1741_2560_11_3_035010 crossref_primary_10_1038_s41598_019_45605_1 crossref_primary_10_1109_ACCESS_2023_3285660 crossref_primary_10_1109_TBME_2018_2881092 crossref_primary_10_1109_TSMCB_2009_2018469 crossref_primary_10_1186_s40708_021_00151_3 crossref_primary_10_1109_MSP_2013_2249294 crossref_primary_10_1007_s10439_011_0248_y crossref_primary_10_1016_j_neucom_2022_09_124 crossref_primary_10_1007_s11517_018_1821_4 crossref_primary_10_1016_j_jneumeth_2022_109593 crossref_primary_10_1016_j_neuri_2023_100136 crossref_primary_10_1088_1741_2560_11_3_035001 crossref_primary_10_3389_fncom_2021_684373 crossref_primary_10_1109_TNSRE_2017_2655542 crossref_primary_10_1016_j_bspc_2010_08_003 crossref_primary_10_1109_MSP_2008_4408441 crossref_primary_10_1016_j_jphysparis_2009_08_007 crossref_primary_10_1142_S1793536913500076 crossref_primary_10_1088_1741_2552_ac463a crossref_primary_10_1109_TNSRE_2023_3327788 crossref_primary_10_1088_1741_2552_ac123f crossref_primary_10_1371_journal_pone_0085100 crossref_primary_10_1016_j_cub_2012_05_022 crossref_primary_10_1016_j_jneumeth_2022_109489 crossref_primary_10_1109_TBME_2022_3202189 crossref_primary_10_3389_fnhum_2022_902183 crossref_primary_10_1016_j_neunet_2019_07_007 crossref_primary_10_3390_brainsci9120352 crossref_primary_10_1016_j_bspc_2021_102608 crossref_primary_10_1007_s11517_012_0992_7 crossref_primary_10_1109_JPROC_2012_2185009 crossref_primary_10_1088_1742_6596_1169_1_012044 crossref_primary_10_1177_1071181312561229 crossref_primary_10_1161_STROKEAHA_112_665489 crossref_primary_10_1016_j_compbiomed_2025_109944 crossref_primary_10_1016_j_compbiomed_2021_104546 crossref_primary_10_1038_srep36267 crossref_primary_10_1109_TNNLS_2023_3238519 crossref_primary_10_1016_j_bspc_2021_102831 crossref_primary_10_1162_NECO_a_00888 crossref_primary_10_1007_s11042_023_15900_1 crossref_primary_10_1080_10447318_2011_535749 crossref_primary_10_3389_fneur_2018_00350 crossref_primary_10_1016_j_bspc_2012_03_004 crossref_primary_10_1016_j_bspc_2018_04_010 crossref_primary_10_1016_j_jneumeth_2020_108725 crossref_primary_10_1016_j_neucom_2021_08_067 crossref_primary_10_3389_fnhum_2014_00574 crossref_primary_10_1016_j_neunet_2009_08_006 crossref_primary_10_1155_2018_9890132 crossref_primary_10_1088_1741_2560_10_5_056014 crossref_primary_10_1088_1741_2552_ad2496 crossref_primary_10_1016_j_neubiorev_2014_06_009 crossref_primary_10_1109_TCDS_2021_3099988 crossref_primary_10_1016_j_bspc_2021_102749 crossref_primary_10_1016_j_neucom_2025_129410 crossref_primary_10_1109_TBME_2009_2022948 crossref_primary_10_1142_S0218126619501238 crossref_primary_10_1016_j_jneumeth_2020_108833 crossref_primary_10_1109_TBME_2014_2305159 crossref_primary_10_1007_s00521_016_2178_y crossref_primary_10_1109_TBME_2023_3274231 crossref_primary_10_1088_1741_2560_10_5_056003 crossref_primary_10_1109_JETCAS_2012_2222833 crossref_primary_10_3389_fnhum_2023_1292428 crossref_primary_10_3389_fnins_2022_842635 crossref_primary_10_1109_TNSRE_2023_3246989 |
Cites_doi | 10.1016/S1388-2457(02)00057-3 10.1037/0033-2909.127.3.358 10.1109/TNSRE.2003.814484 10.1109/TRE.2000.847807 10.1016/S0167-8760(01)00178-7 10.1088/1741-2560/3/1/R02 10.1016/S0013-4694(98)00084-4 10.1109/TBME.2004.827088 10.1023/A:1024637331493 10.1016/0013-4694(73)90216-2 10.1016/S0304-3940(99)00452-8 10.1109/TNSRE.2006.875642 10.1001/archneurpsyc.1938.02270010106010 10.1109/TNSRE.2003.814435 10.1109/TNN.2002.1000132 10.1016/S1388-2457(99)00141-8 10.1109/TNSRE.2003.814456 10.1109/86.895947 10.1016/j.neuroimage.2005.12.003 10.1109/86.895946 10.1016/0013-4694(80)90265-5 10.1007/BF01814320 10.1212/01.WNL.0000158616.43002.6D 10.1109/TNSRE.2006.875557 10.1016/S0301-0511(03)00073-5 10.1109/TBME.2006.883649 10.1109/TBME.2004.826692 10.1109/MSP.2006.1708426 10.1016/S0278-2626(03)00036-8 10.1016/j.cogbrainres.2005.08.014 10.1109/72.914517 10.1109/86.847812 10.1103/PhysRevLett.94.084102 10.1007/BF01062488 10.1109/TBME.2005.851521 10.1109/TBME.2002.803536 10.1007/BF00998830 10.1016/S0013-4694(98)00107-2 |
ContentType | Journal Article |
Copyright | 2007 Elsevier Inc. Copyright Elsevier Limited Aug 15, 2007 |
Copyright_xml | – notice: 2007 Elsevier Inc. – notice: Copyright Elsevier Limited Aug 15, 2007 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 |
DOI | 10.1016/j.neuroimage.2007.01.051 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic ProQuest One Psychology |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1095-9572 |
EndPage | 550 |
ExternalDocumentID | 3244516411 17475513 10_1016_j_neuroimage_2007_01_051 S1053811907000535 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAFWJ AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ABXDB ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADFGL ADFRT ADMUD ADNMO ADVLN ADXHL AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPKN AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRLJ AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CAG CCPQU COF CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HDW HEI HMCUK HMK HMO HMQ HVGLF HZ~ IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OK1 OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SES SEW SNS SSH SSN SSZ T5K TEORI UKHRP UV1 WUQ XPP YK3 Z5R ZMT ZU3 ~G- 3V. 6I. AACTN AADPK AAIAV ABLVK ABYKQ AFKWA AJBFU AJOXV AMFUW C45 EFLBG LCYCR NCXOZ RIG ZA5 AAYXX AGRNS ALIPV CITATION CGR CUY CVF ECM EIF NPM 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 ACLOT ~HD |
ID | FETCH-LOGICAL-c523t-fc57e3b28ea85441198fd1909feb3118cca3e329fde1e1b84a9cdaa11892e5a53 |
IEDL.DBID | 7X7 |
ISSN | 1053-8119 |
IngestDate | Sun Sep 28 06:24:28 EDT 2025 Wed Aug 13 06:11:18 EDT 2025 Mon Jul 21 06:04:11 EDT 2025 Thu Apr 24 23:10:25 EDT 2025 Tue Jul 01 00:49:57 EDT 2025 Fri Feb 23 02:31:37 EST 2024 Tue Aug 26 17:34:05 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c523t-fc57e3b28ea85441198fd1909feb3118cca3e329fde1e1b84a9cdaa11892e5a53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 17475513 |
PQID | 1506724308 |
PQPubID | 2031077 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_68100758 proquest_journals_1506724308 pubmed_primary_17475513 crossref_citationtrail_10_1016_j_neuroimage_2007_01_051 crossref_primary_10_1016_j_neuroimage_2007_01_051 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2007_01_051 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2007_01_051 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2007-08-15 |
PublicationDateYYYYMMDD | 2007-08-15 |
PublicationDate_xml | – month: 08 year: 2007 text: 2007-08-15 day: 15 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Amsterdam |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2007 |
Publisher | Elsevier Inc Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
References | Pfurtscheller, Neuper, Ramoser, Müller-Gerking (bib44) 1999; 269 Krauledat, Losch, Curio (bib29) 2006 Rockstroh, Birbaumer, Elbert, Lutzenberger (bib49) 1984; 9 Haykin (bib24) 1995 Kaper, Ritter (bib27) 2004 Birbaumer, Kübler, Ghanayim, Hinterberger, Perelmouter, Kaiser, Iversen, Kotchoubey, Neumann, Flor (bib2) 2000; 8 Guger, Ramoser, Pfurtscheller (bib22) 2000; 8 Müller, Krauledat, Dornhege, Curio, Blankertz (bib39) 2004; 49 Neuper, Pfurtscheller (bib40) 2001; 43 McFarland, Sarnacki, Wolpaw (bib34) 2003; 63 Cheng, Gao, Gao, Xu (bib9) 2002; 49 Blankertz, Dornhege, Schäfer, Krepki, Kohlmorgen, Müller, Kunzmann, Losch, Curio (bib3) 2003; 11 Wolpaw, Birbaumer, William, Heetderks, McFarland, Peckham, Schalk, Donchin, Quatrano, Robinson, Vaughan (bib54) 2000; 8 Kübler, Kotchoubey, Kaiser, Wolpaw, Birbaumer (bib31) 2001; 127 Müller, Anderson, Birch (bib38) 2003; 11 Tomioka, R., Aihara, K., Müller, K.-R., in press. Logistic regression for single trial EEG classification. In: Advances in Neural Inf. Proc. Systems (NIPS 06), volume 19. MIT Press. Guger, Ramoser, Pfurtscheller (bib23) 2000; 8 Müller, Blankertz (bib36) 2006; 23 Elbert, Rockstroh, Lutzenberger, Birbaumer (bib20) 1980; 48 Blankertz, Dornhege, Krauledat, Schröder, Williamson, Murray-Smith, Müller (bib6) 2006 Fukunaga (bib21) 1990 del Millán, Mouriño (bib12) 2003; 11 Pfurtscheller, Neuper, Birbaumer (bib45) 2005 Dornhege, Blankertz, Curio, Müller (bib14) 2004; 51 Dornhege, Braun, Kohlmorgen, Blankertz, Müller, Curio, Hagemann, Bruns, Schrauf, Kincses (bib17) 2007 Pfurtscheller, Brunner, Schlögl, Lopes da Silva (bib46) 2006; 31 Curran, Stokes (bib10) 2003; 51 Vaughan, Miner, McFarland, Wolpaw (bib53) 1998; 107 Müller, Mika, Rätsch, Tsuda, Schölkopf (bib37) 2001; 12 Dornhege, Blankertz, Krauledat, Losch, Curio, Müller (bib16) 2006; 53 Blankertz, Müller, Curio, Vaughan, Schalk, Wolpaw, Schlögl, Neuper, Pfurtscheller, Hinterberger, Schröder, Birbaumer (bib4) 2004; 51 Jasper, Andrews (bib25) 1938; 39 Meinecke, Ziehe, Kurths, Müller (bib35) 2005; 94 del Millán, Mouriño, Franzé, Cinotti, Varsta, Heikkonen, Babiloni (bib13) 2002; 13 Popescu, Badower, Fazli, Dornhege, Müller (bib47) 2006 Berger (bib1) 1933; 99 Pfurtscheller, Lopes da Silva (bib43) 1999; 110 Wolpaw, Birbaumer, McFarland, Pfurtscheller, Vaughan (bib55) 2002; 113 Neuper, Scherer, Reiner, Pfurtscheller (bib41) 2005; 25 Kübler, Nijboer, Mellinger, Vaughan, Pawelzik, Schalk, McFarland, Birbaumer, Wolpaw (bib32) 2005; 64 Koles, Soong (bib28) 1998; 107 Lemm, Blankertz, Curio, Müller (bib33) 2005; 52 Nolte, Meinecke, Ziehe, Müller (bib42) 2006 Tomioka, Dornhege, Aihara, Müller (bib51) 2006 Ramoser, Müller-Gerking, Pfurtscheller (bib48) 2000; 8 Dornhege, Blankertz, Curio, Müller (bib15) 2004; vol. 16 Krausz, Scherer, Korisek, Pfurtscheller (bib30) 2003; 28 da Silva, van Lierop, Schrijer, van Leeuwen (bib11) 1973; 35 Shenoy, Krauledat, Blankertz, Rao, Müller (bib50) 2006; 3 Blankertz, Müller, Krusienski, Schalk, Wolpaw, Schlögl, Pfurtscheller, del Millán, Schröder, Birbaumer (bib8) 2006; 14 (bib18) 2007 Dornhege, Krauledat, Müller, Blankertz (bib19) 2007 Jasper, Penfield (bib26) 1949; 183 Blankertz, Dornhege, Lemm, Krauledat, Curio, Müller (bib7) 2006; 12 Blankertz, Dornhege, Krauledat, Müller, Kunzmann, Losch, Curio (bib5) 2006; 14 del Millán (10.1016/j.neuroimage.2007.01.051_bib13) 2002; 13 Neuper (10.1016/j.neuroimage.2007.01.051_bib41) 2005; 25 Tomioka (10.1016/j.neuroimage.2007.01.051_bib51) 2006 10.1016/j.neuroimage.2007.01.051_bib52 Müller (10.1016/j.neuroimage.2007.01.051_bib38) 2003; 11 Pfurtscheller (10.1016/j.neuroimage.2007.01.051_bib45) 2005 Blankertz (10.1016/j.neuroimage.2007.01.051_bib4) 2004; 51 Guger (10.1016/j.neuroimage.2007.01.051_bib22) 2000; 8 Dornhege (10.1016/j.neuroimage.2007.01.051_bib17) 2007 Kübler (10.1016/j.neuroimage.2007.01.051_bib32) 2005; 64 Fukunaga (10.1016/j.neuroimage.2007.01.051_bib21) 1990 Pfurtscheller (10.1016/j.neuroimage.2007.01.051_bib43) 1999; 110 Wolpaw (10.1016/j.neuroimage.2007.01.051_bib54) 2000; 8 Blankertz (10.1016/j.neuroimage.2007.01.051_bib6) 2006 Koles (10.1016/j.neuroimage.2007.01.051_bib28) 1998; 107 del Millán (10.1016/j.neuroimage.2007.01.051_bib12) 2003; 11 Jasper (10.1016/j.neuroimage.2007.01.051_bib26) 1949; 183 Neuper (10.1016/j.neuroimage.2007.01.051_bib40) 2001; 43 Ramoser (10.1016/j.neuroimage.2007.01.051_bib48) 2000; 8 Wolpaw (10.1016/j.neuroimage.2007.01.051_bib55) 2002; 113 Berger (10.1016/j.neuroimage.2007.01.051_bib1) 1933; 99 Blankertz (10.1016/j.neuroimage.2007.01.051_bib3) 2003; 11 Shenoy (10.1016/j.neuroimage.2007.01.051_bib50) 2006; 3 Jasper (10.1016/j.neuroimage.2007.01.051_bib25) 1938; 39 Popescu (10.1016/j.neuroimage.2007.01.051_bib47) 2006 Cheng (10.1016/j.neuroimage.2007.01.051_bib9) 2002; 49 (10.1016/j.neuroimage.2007.01.051_bib18) 2007 Elbert (10.1016/j.neuroimage.2007.01.051_bib20) 1980; 48 McFarland (10.1016/j.neuroimage.2007.01.051_bib34) 2003; 63 Nolte (10.1016/j.neuroimage.2007.01.051_bib42) 2006 Krauledat (10.1016/j.neuroimage.2007.01.051_bib29) 2006 Müller (10.1016/j.neuroimage.2007.01.051_bib39) 2004; 49 Dornhege (10.1016/j.neuroimage.2007.01.051_bib16) 2006; 53 Birbaumer (10.1016/j.neuroimage.2007.01.051_bib2) 2000; 8 Blankertz (10.1016/j.neuroimage.2007.01.051_bib5) 2006; 14 Dornhege (10.1016/j.neuroimage.2007.01.051_bib15) 2004; vol. 16 Lemm (10.1016/j.neuroimage.2007.01.051_bib33) 2005; 52 Müller (10.1016/j.neuroimage.2007.01.051_bib36) 2006; 23 Müller (10.1016/j.neuroimage.2007.01.051_bib37) 2001; 12 Dornhege (10.1016/j.neuroimage.2007.01.051_bib19) 2007 Blankertz (10.1016/j.neuroimage.2007.01.051_bib8) 2006; 14 Kaper (10.1016/j.neuroimage.2007.01.051_bib27) 2004 Dornhege (10.1016/j.neuroimage.2007.01.051_bib14) 2004; 51 Pfurtscheller (10.1016/j.neuroimage.2007.01.051_bib44) 1999; 269 Haykin (10.1016/j.neuroimage.2007.01.051_bib24) 1995 Kübler (10.1016/j.neuroimage.2007.01.051_bib31) 2001; 127 Guger (10.1016/j.neuroimage.2007.01.051_bib23) 2000; 8 Rockstroh (10.1016/j.neuroimage.2007.01.051_bib49) 1984; 9 Blankertz (10.1016/j.neuroimage.2007.01.051_bib7) 2006; 12 Curran (10.1016/j.neuroimage.2007.01.051_bib10) 2003; 51 Pfurtscheller (10.1016/j.neuroimage.2007.01.051_bib46) 2006; 31 Vaughan (10.1016/j.neuroimage.2007.01.051_bib53) 1998; 107 Krausz (10.1016/j.neuroimage.2007.01.051_bib30) 2003; 28 da Silva (10.1016/j.neuroimage.2007.01.051_bib11) 1973; 35 Meinecke (10.1016/j.neuroimage.2007.01.051_bib35) 2005; 94 |
References_xml | – start-page: 207 year: 2007 end-page: 233 ident: bib19 article-title: Towards Brain–Computer Interfacing, chapter General signal processing and machine learning tools for BCI publication-title: MIT Press – start-page: 4363 year: 2004 end-page: 4366 ident: bib27 article-title: Generalizing to new subjects in brain–computer interfacing publication-title: Proceedings of the 26th Annual International Conference IEEE EMBS, San Francisco – volume: 8 start-page: 447 year: 2000 end-page: 456 ident: bib22 article-title: Real-time EEG analysis with subject-specific spatial patterns for a Brain Computer Interface (BCI) publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – year: 1995 ident: bib24 article-title: Adaptive Filter Theory – volume: 107 start-page: 428 year: 1998 end-page: 433 ident: bib53 article-title: EEG-based communication: analysis of concurrent EMG activity publication-title: Electroencephalogr. Clin. Neurophysiol. – volume: 11 start-page: 159 year: 2003 end-page: 161 ident: bib12 article-title: Asynchronous bci and local neural classifiers: an overview of the adaptive brain interface project publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 12 start-page: 581 year: 2006 end-page: 607 ident: bib7 article-title: The Berlin Brain–Computer Interface: machine learning based detection of user specific brain states publication-title: J. Univer. Comput. Sci. – volume: 12 start-page: 181 year: 2001 end-page: 201 ident: bib37 article-title: An introduction to kernel-based learning algorithms publication-title: IEEE Neural Netw. – volume: 51 start-page: 326 year: 2003 end-page: 336 ident: bib10 article-title: Learning to control brain activity: a review of the production and control of EEG components for driving brain–computer interface (BCI) systems publication-title: Brain Cogn. – volume: 113 start-page: 767 year: 2002 end-page: 791 ident: bib55 article-title: Brain–computer interfaces for communication and control publication-title: Clin. Neurophysiol. – volume: 43 start-page: 41 year: 2001 end-page: 58 ident: bib40 article-title: Event-related dynamics of cortical rhythms: frequency-specific features and functional correlates publication-title: Int. J. Psychophysiol. – volume: 8 start-page: 447 year: 2000 end-page: 456 ident: bib23 article-title: Real-time EEG analysis with subject-specific spatial patterns for a Brain Computer Interface (BCI) publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – year: 2007 ident: bib18 publication-title: Towards Brain–Computer Interfacing – volume: 28 start-page: 233 year: 2003 end-page: 240 ident: bib30 article-title: Critical decision-speed and information transfer in the “Graz Brain–Computer Interface” publication-title: Appl. Psychophysiol. Biofeedback – start-page: 73 year: 2006 ident: bib42 article-title: Identifying interactions in mixed and noisy complex systems publication-title: Phys. Rev. E – volume: 8 start-page: 441 year: 2000 end-page: 446 ident: bib48 article-title: Optimal spatial filtering of single trial EEG during imagined hand movement publication-title: IEEE Trans. Rehabil. Eng. – volume: 53 start-page: 2274 year: 2006 end-page: 2281 ident: bib16 article-title: Combined optimization of spatial and temporal filters for improving brain–computer interfacing publication-title: IEEE Trans. Biomed. Eng. – start-page: 409 year: 2007 end-page: 422 ident: bib17 article-title: Improving human performance in a real operating environment through real-time mental workload detection publication-title: Towards Brain–Computer Interfacing – volume: 183 start-page: 163 year: 1949 end-page: 174 ident: bib26 article-title: Electrocorticograms in man: effects of voluntary movement upon the electrical activity of the precentral gyrus publication-title: Arch. Psychiatr. Nervenkrankh. – volume: 51 start-page: 1044 year: 2004 end-page: 1051 ident: bib4 article-title: The BCI competition 2003: progress and perspectives in detection and discrimination of EEG single trials publication-title: IEEE Trans. Biomed. Eng. – reference: Tomioka, R., Aihara, K., Müller, K.-R., in press. Logistic regression for single trial EEG classification. In: Advances in Neural Inf. Proc. Systems (NIPS 06), volume 19. MIT Press. – volume: 52 start-page: 1541 year: 2005 end-page: 1548 ident: bib33 article-title: Spatio-spectral filters for improved classification of single trial EEG publication-title: IEEE Trans. Biomed. Eng. – volume: 9 start-page: 139 year: 1984 end-page: 160 ident: bib49 article-title: Operant control of EEG and event-related and slow brain potentials publication-title: Biofeedback Self-Regul. – volume: 39 start-page: 96 year: 1938 end-page: 115 ident: bib25 article-title: Normal differentiation of occipital and precentral regions in man publication-title: Arch. Neurol. Psychiatry (Chicago) – volume: 107 start-page: 343 year: 1998 end-page: 352 ident: bib28 article-title: EEG source localization: implementing the spatio-temporal decomposition approach publication-title: Electroencephalogr. Clin. Neurophysiol. – start-page: 108 year: 2006 end-page: 109 ident: bib6 article-title: The Berlin Brain–Computer Interface presents the novel mental typewriter Hex-o-Spell publication-title: Proceedings of the 3rd International Brain–Computer Interface Workshop and Training Course 2006 – volume: 11 start-page: 165 year: 2003 end-page: 169 ident: bib38 article-title: Linear and non-linear methods for brain–computer interfaces publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – start-page: 22 year: 2006 end-page: 23 ident: bib51 article-title: An iterative algorithm for spatio-temporal filter optimization publication-title: Proceedings of the 3rd International Brain–Computer Interface Workshop and Training Course 2006 – volume: 49 start-page: 11 year: 2004 end-page: 22 ident: bib39 article-title: Machine learning techniques for brain–computer interfaces publication-title: Biomed. Tech. – volume: 23 start-page: 125 year: 2006 end-page: 128 ident: bib36 article-title: Toward noninvasive brain–computer interfaces publication-title: IEEE Signal Process. Mag. – volume: 31 start-page: 153 year: 2006 end-page: 159 ident: bib46 article-title: Mu rhythm (de)synchronization and EEG single-trial classification of different motor imagery tasks publication-title: NeuroImage – volume: 64 start-page: 1775 year: 2005 end-page: 1777 ident: bib32 article-title: Patients with ALS can use sensorimotor rhythms to operate a brain–computer interface publication-title: Neurology – volume: 11 start-page: 127 year: 2003 end-page: 131 ident: bib3 article-title: Boosting bit rates and error detection for the classification of fast-paced motor commands based on single-trial EEG analysis publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 3 start-page: R13 year: 2006 end-page: R23 ident: bib50 article-title: Towards adaptive classification for BCI publication-title: J. Neural Eng. – volume: 94 start-page: 084102 year: 2005 ident: bib35 article-title: Measuring phase synchronization of superimposed signals publication-title: Phys. Rev. Lett. – start-page: 367 year: 2005 end-page: 401 ident: bib45 article-title: Human brain–computer interface publication-title: Motor Cortex in Voluntary Movements – volume: 8 start-page: 164 year: 2000 end-page: 173 ident: bib54 article-title: Brain–computer interface technology: a review of the first international meeting publication-title: IEEE Trans. Rehabil. Eng. – volume: 99 start-page: 555 year: 1933 end-page: 574 ident: bib1 article-title: Über das Elektroenkephalogramm des Menschen publication-title: Arch. Psychiatr. Nervenkrankh. – year: 1990 ident: bib21 publication-title: Introduction to statistical pattern recognition – volume: 110 start-page: 1842 year: 1999 end-page: 1857 ident: bib43 article-title: Event-related EEG/MEG synchronization and desynchronization: basic principles publication-title: Clin. Neurophysiol. – volume: 51 start-page: 993 year: 2004 end-page: 1002 ident: bib14 article-title: Boosting bit rates in non-invasive EEG single-trial classifications by feature combination and multi-class paradigms publication-title: IEEE Trans. Biomed. Eng. – volume: 48 start-page: 293 year: 1980 end-page: 301 ident: bib20 article-title: Biofeedback of slow cortical potentials. I publication-title: Electroencephalogr. Clin. Neurophysiol. – volume: 14 start-page: 147 year: 2006 end-page: 152 ident: bib5 article-title: The Berlin Brain–Computer Interface: EEG-based communication without subject training publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 13 start-page: 678 year: 2002 end-page: 686 ident: bib13 article-title: A local neural classifier for the recognition of EEG patterns associated to mental tasks publication-title: IEEE Trans. Neural Netw. – volume: vol. 16 start-page: 733 year: 2004 end-page: 740 ident: bib15 article-title: Increase information transfer rates in BCI by CSP extension to multi-class publication-title: Advances in Neural Information Processing Systems – volume: 49 start-page: 1181 year: 2002 end-page: 1186 ident: bib9 article-title: Design and implementation of a brain–computer interface with high transfer rates publication-title: IEEE Trans. Biomed. Eng. – start-page: 60 year: 2006 end-page: 61 ident: bib29 article-title: Brain state differences between calibration and application session influence BCI classification accuracy publication-title: Proceedings of the 3rd International Brain–Computer Interface Workshop and Training Course 2006 – volume: 14 start-page: 153 year: 2006 end-page: 159 ident: bib8 article-title: The BCI competition III: validating alternative approaches to actual BCI problems publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 35 start-page: 627 year: 1973 end-page: 640 ident: bib11 article-title: Organization of thalamic and cortical alpha rhythm: spectra and coherences publication-title: Electroencephalogr. Clin. Neurophysiol. – volume: 25 start-page: 668 year: 2005 end-page: 677 ident: bib41 article-title: Imagery of motor actions: differential effects of kinesthetic and visual-motor mode of imagery in single-trial EEG publication-title: Brain Res. Cogn. Brain Res. – volume: 127 start-page: 358 year: 2001 end-page: 375 ident: bib31 article-title: Brain–computer communication: unlocking the locked in publication-title: Psychol. Bull. – volume: 8 start-page: 190 year: 2000 end-page: 193 ident: bib2 article-title: The though translation device (TTD) for completely paralyzed patients publication-title: IEEE Trans. Rehabil. Eng. – volume: 269 start-page: 153 year: 1999 end-page: 156 ident: bib44 article-title: Visually guided motor imagery activates sensorimotor areas in humans publication-title: Neurosci. Lett. – start-page: 123 year: 2006 end-page: 124 ident: bib47 article-title: EEG-based control of reaching to visual targets publication-title: Dynamical Principles for Neuroscience and Intelligent Biomimetic Devices—Abstracts of the EPFL-LATSIS Symposium 2006 – volume: 63 start-page: 237 year: 2003 end-page: 251 ident: bib34 article-title: Brain–computer interface (BCI) operation: optimizing information transfer rates publication-title: Biol. Psychol. – volume: 113 start-page: 767 year: 2002 ident: 10.1016/j.neuroimage.2007.01.051_bib55 article-title: Brain–computer interfaces for communication and control publication-title: Clin. Neurophysiol. doi: 10.1016/S1388-2457(02)00057-3 – volume: 127 start-page: 358 issue: 3 year: 2001 ident: 10.1016/j.neuroimage.2007.01.051_bib31 article-title: Brain–computer communication: unlocking the locked in publication-title: Psychol. Bull. doi: 10.1037/0033-2909.127.3.358 – volume: 11 start-page: 165 issue: 2 year: 2003 ident: 10.1016/j.neuroimage.2007.01.051_bib38 article-title: Linear and non-linear methods for brain–computer interfaces publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2003.814484 – volume: 8 start-page: 164 issue: 2 year: 2000 ident: 10.1016/j.neuroimage.2007.01.051_bib54 article-title: Brain–computer interface technology: a review of the first international meeting publication-title: IEEE Trans. Rehabil. Eng. doi: 10.1109/TRE.2000.847807 – volume: 43 start-page: 41 year: 2001 ident: 10.1016/j.neuroimage.2007.01.051_bib40 article-title: Event-related dynamics of cortical rhythms: frequency-specific features and functional correlates publication-title: Int. J. Psychophysiol. doi: 10.1016/S0167-8760(01)00178-7 – volume: 3 start-page: R13 year: 2006 ident: 10.1016/j.neuroimage.2007.01.051_bib50 article-title: Towards adaptive classification for BCI publication-title: J. Neural Eng. doi: 10.1088/1741-2560/3/1/R02 – volume: 107 start-page: 343 year: 1998 ident: 10.1016/j.neuroimage.2007.01.051_bib28 article-title: EEG source localization: implementing the spatio-temporal decomposition approach publication-title: Electroencephalogr. Clin. Neurophysiol. doi: 10.1016/S0013-4694(98)00084-4 – volume: 12 start-page: 581 issue: 6 year: 2006 ident: 10.1016/j.neuroimage.2007.01.051_bib7 article-title: The Berlin Brain–Computer Interface: machine learning based detection of user specific brain states publication-title: J. Univer. Comput. Sci. – volume: 51 start-page: 993 issue: 6 year: 2004 ident: 10.1016/j.neuroimage.2007.01.051_bib14 article-title: Boosting bit rates in non-invasive EEG single-trial classifications by feature combination and multi-class paradigms publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2004.827088 – volume: 28 start-page: 233 issue: 3 year: 2003 ident: 10.1016/j.neuroimage.2007.01.051_bib30 article-title: Critical decision-speed and information transfer in the “Graz Brain–Computer Interface” publication-title: Appl. Psychophysiol. Biofeedback doi: 10.1023/A:1024637331493 – start-page: 73 year: 2006 ident: 10.1016/j.neuroimage.2007.01.051_bib42 article-title: Identifying interactions in mixed and noisy complex systems publication-title: Phys. Rev. E – ident: 10.1016/j.neuroimage.2007.01.051_bib52 – volume: 35 start-page: 627 year: 1973 ident: 10.1016/j.neuroimage.2007.01.051_bib11 article-title: Organization of thalamic and cortical alpha rhythm: spectra and coherences publication-title: Electroencephalogr. Clin. Neurophysiol. doi: 10.1016/0013-4694(73)90216-2 – year: 1995 ident: 10.1016/j.neuroimage.2007.01.051_bib24 – volume: 269 start-page: 153 year: 1999 ident: 10.1016/j.neuroimage.2007.01.051_bib44 article-title: Visually guided motor imagery activates sensorimotor areas in humans publication-title: Neurosci. Lett. doi: 10.1016/S0304-3940(99)00452-8 – volume: 14 start-page: 153 issue: 2 year: 2006 ident: 10.1016/j.neuroimage.2007.01.051_bib8 article-title: The BCI competition III: validating alternative approaches to actual BCI problems publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2006.875642 – volume: 39 start-page: 96 year: 1938 ident: 10.1016/j.neuroimage.2007.01.051_bib25 article-title: Normal differentiation of occipital and precentral regions in man publication-title: Arch. Neurol. Psychiatry (Chicago) doi: 10.1001/archneurpsyc.1938.02270010106010 – volume: 11 start-page: 159 issue: 2 year: 2003 ident: 10.1016/j.neuroimage.2007.01.051_bib12 article-title: Asynchronous bci and local neural classifiers: an overview of the adaptive brain interface project publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2003.814435 – volume: 13 start-page: 678 issue: 3 year: 2002 ident: 10.1016/j.neuroimage.2007.01.051_bib13 article-title: A local neural classifier for the recognition of EEG patterns associated to mental tasks publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2002.1000132 – volume: 110 start-page: 1842 issue: 11 year: 1999 ident: 10.1016/j.neuroimage.2007.01.051_bib43 article-title: Event-related EEG/MEG synchronization and desynchronization: basic principles publication-title: Clin. Neurophysiol. doi: 10.1016/S1388-2457(99)00141-8 – volume: 49 start-page: 11 issue: 1 year: 2004 ident: 10.1016/j.neuroimage.2007.01.051_bib39 article-title: Machine learning techniques for brain–computer interfaces publication-title: Biomed. Tech. – volume: 11 start-page: 127 issue: 2 year: 2003 ident: 10.1016/j.neuroimage.2007.01.051_bib3 article-title: Boosting bit rates and error detection for the classification of fast-paced motor commands based on single-trial EEG analysis publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2003.814456 – start-page: 4363 year: 2004 ident: 10.1016/j.neuroimage.2007.01.051_bib27 article-title: Generalizing to new subjects in brain–computer interfacing – volume: 8 start-page: 447 issue: 4 year: 2000 ident: 10.1016/j.neuroimage.2007.01.051_bib22 article-title: Real-time EEG analysis with subject-specific spatial patterns for a Brain Computer Interface (BCI) publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/86.895947 – start-page: 367 year: 2005 ident: 10.1016/j.neuroimage.2007.01.051_bib45 article-title: Human brain–computer interface – volume: 31 start-page: 153 issue: 1 year: 2006 ident: 10.1016/j.neuroimage.2007.01.051_bib46 article-title: Mu rhythm (de)synchronization and EEG single-trial classification of different motor imagery tasks publication-title: NeuroImage doi: 10.1016/j.neuroimage.2005.12.003 – volume: 8 start-page: 441 issue: 4 year: 2000 ident: 10.1016/j.neuroimage.2007.01.051_bib48 article-title: Optimal spatial filtering of single trial EEG during imagined hand movement publication-title: IEEE Trans. Rehabil. Eng. doi: 10.1109/86.895946 – start-page: 207 year: 2007 ident: 10.1016/j.neuroimage.2007.01.051_bib19 article-title: Towards Brain–Computer Interfacing, chapter General signal processing and machine learning tools for BCI – year: 2007 ident: 10.1016/j.neuroimage.2007.01.051_bib18 – start-page: 22 year: 2006 ident: 10.1016/j.neuroimage.2007.01.051_bib51 article-title: An iterative algorithm for spatio-temporal filter optimization – start-page: 409 year: 2007 ident: 10.1016/j.neuroimage.2007.01.051_bib17 article-title: Improving human performance in a real operating environment through real-time mental workload detection – start-page: 123 year: 2006 ident: 10.1016/j.neuroimage.2007.01.051_bib47 article-title: EEG-based control of reaching to visual targets – start-page: 108 year: 2006 ident: 10.1016/j.neuroimage.2007.01.051_bib6 article-title: The Berlin Brain–Computer Interface presents the novel mental typewriter Hex-o-Spell – volume: 48 start-page: 293 year: 1980 ident: 10.1016/j.neuroimage.2007.01.051_bib20 article-title: Biofeedback of slow cortical potentials. I publication-title: Electroencephalogr. Clin. Neurophysiol. doi: 10.1016/0013-4694(80)90265-5 – volume: 99 start-page: 555 issue: 6 year: 1933 ident: 10.1016/j.neuroimage.2007.01.051_bib1 article-title: Über das Elektroenkephalogramm des Menschen publication-title: Arch. Psychiatr. Nervenkrankh. doi: 10.1007/BF01814320 – volume: 64 start-page: 1775 issue: 10 year: 2005 ident: 10.1016/j.neuroimage.2007.01.051_bib32 article-title: Patients with ALS can use sensorimotor rhythms to operate a brain–computer interface publication-title: Neurology doi: 10.1212/01.WNL.0000158616.43002.6D – volume: 14 start-page: 147 issue: 2 year: 2006 ident: 10.1016/j.neuroimage.2007.01.051_bib5 article-title: The Berlin Brain–Computer Interface: EEG-based communication without subject training publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2006.875557 – volume: 63 start-page: 237 year: 2003 ident: 10.1016/j.neuroimage.2007.01.051_bib34 article-title: Brain–computer interface (BCI) operation: optimizing information transfer rates publication-title: Biol. Psychol. doi: 10.1016/S0301-0511(03)00073-5 – volume: 53 start-page: 2274 issue: 11 year: 2006 ident: 10.1016/j.neuroimage.2007.01.051_bib16 article-title: Combined optimization of spatial and temporal filters for improving brain–computer interfacing publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2006.883649 – volume: 51 start-page: 1044 issue: 6 year: 2004 ident: 10.1016/j.neuroimage.2007.01.051_bib4 article-title: The BCI competition 2003: progress and perspectives in detection and discrimination of EEG single trials publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2004.826692 – volume: vol. 16 start-page: 733 year: 2004 ident: 10.1016/j.neuroimage.2007.01.051_bib15 article-title: Increase information transfer rates in BCI by CSP extension to multi-class – volume: 23 start-page: 125 issue: 5 year: 2006 ident: 10.1016/j.neuroimage.2007.01.051_bib36 article-title: Toward noninvasive brain–computer interfaces publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2006.1708426 – volume: 51 start-page: 326 year: 2003 ident: 10.1016/j.neuroimage.2007.01.051_bib10 article-title: Learning to control brain activity: a review of the production and control of EEG components for driving brain–computer interface (BCI) systems publication-title: Brain Cogn. doi: 10.1016/S0278-2626(03)00036-8 – volume: 25 start-page: 668 issue: 3 year: 2005 ident: 10.1016/j.neuroimage.2007.01.051_bib41 article-title: Imagery of motor actions: differential effects of kinesthetic and visual-motor mode of imagery in single-trial EEG publication-title: Brain Res. Cogn. Brain Res. doi: 10.1016/j.cogbrainres.2005.08.014 – volume: 8 start-page: 447 issue: 4 year: 2000 ident: 10.1016/j.neuroimage.2007.01.051_bib23 article-title: Real-time EEG analysis with subject-specific spatial patterns for a Brain Computer Interface (BCI) publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/86.895947 – volume: 12 start-page: 181 issue: 2 year: 2001 ident: 10.1016/j.neuroimage.2007.01.051_bib37 article-title: An introduction to kernel-based learning algorithms publication-title: IEEE Neural Netw. doi: 10.1109/72.914517 – volume: 8 start-page: 190 issue: 2 year: 2000 ident: 10.1016/j.neuroimage.2007.01.051_bib2 article-title: The though translation device (TTD) for completely paralyzed patients publication-title: IEEE Trans. Rehabil. Eng. doi: 10.1109/86.847812 – start-page: 60 year: 2006 ident: 10.1016/j.neuroimage.2007.01.051_bib29 article-title: Brain state differences between calibration and application session influence BCI classification accuracy – year: 1990 ident: 10.1016/j.neuroimage.2007.01.051_bib21 – volume: 94 start-page: 084102 issue: 8 year: 2005 ident: 10.1016/j.neuroimage.2007.01.051_bib35 article-title: Measuring phase synchronization of superimposed signals publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.94.084102 – volume: 183 start-page: 163 year: 1949 ident: 10.1016/j.neuroimage.2007.01.051_bib26 article-title: Electrocorticograms in man: effects of voluntary movement upon the electrical activity of the precentral gyrus publication-title: Arch. Psychiatr. Nervenkrankh. doi: 10.1007/BF01062488 – volume: 52 start-page: 1541 issue: 9 year: 2005 ident: 10.1016/j.neuroimage.2007.01.051_bib33 article-title: Spatio-spectral filters for improved classification of single trial EEG publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2005.851521 – volume: 49 start-page: 1181 issue: 10 year: 2002 ident: 10.1016/j.neuroimage.2007.01.051_bib9 article-title: Design and implementation of a brain–computer interface with high transfer rates publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2002.803536 – volume: 9 start-page: 139 issue: 2 year: 1984 ident: 10.1016/j.neuroimage.2007.01.051_bib49 article-title: Operant control of EEG and event-related and slow brain potentials publication-title: Biofeedback Self-Regul. doi: 10.1007/BF00998830 – volume: 107 start-page: 428 year: 1998 ident: 10.1016/j.neuroimage.2007.01.051_bib53 article-title: EEG-based communication: analysis of concurrent EMG activity publication-title: Electroencephalogr. Clin. Neurophysiol. doi: 10.1016/S0013-4694(98)00107-2 |
SSID | ssj0009148 |
Score | 2.491397 |
Snippet | Brain–Computer Interface (BCI) systems establish a direct communication channel from the brain to an output device. These systems use brain signals recorded... Brain-Computer Interface (BCI) systems establish a direct communication channel from the brain to an output device. These systems use brain signals recorded... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 539 |
SubjectTerms | Adult Algorithms Amyotrophic lateral sclerosis Brain - physiology Brain research Communication Aids for Disabled Computer User Training - methods Discriminant analysis Electroencephalography Humans Learning - physiology Male Man-Machine Systems Middle Aged Patients Psychomotor Performance - physiology Signal processing Studies User-Computer Interface |
SummonAdditionalLinks | – databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] dbid: AIKHN link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07b9swED6kDlB0CZL05ebFoStrU5QsspmSoIaTIFnaANkISiIBFa3jVlbm_of-w_6S3omUjQ4BDHQVdQTJI-9B3n0H8N5L71WqLa_8pOCpk5bOnObKj3Mni0KlivKdb24ns7v06j6734KLPheGwiqj7A8yvZPW8csoruZoUdejz2gZoLpBhZYHlJJnsJ2gtlcD2D67vJ7drrF3RRoy4jLJiSAG9IQwrw42sv6OhzfiGYoP40w8paWeskI7bTTdhZ1oRrKzMNI92HLzfXh-Ex_KX0KD7Gfo2fN6_mgpQp0FXCt2TiUh_vz63VdzYN2VoLel-8imtlkyW_5o6xDIxR48C_Ee1MFinWLAsKN23lWXcBVr2oIuc5pXcDf99OVixmN9BV6i-7nkvsyIH4lyVlEpMqGVr3A9tUcPGx0PZK50MtG-csIJZJvVZWUttujEZTaTr2GAM3FvgUmPnkZZuQINQnIRbaEmVUYGVa6ttuUQ8n49TRnBx2mU30wfZfbVrDlBtTFzMxYGOTEEsaJcBACODWh0zzLTJ5iiSDSoJTagPV3R_rMRN6Q-7HeIicKgMQTimCepHKshnKya8RjT24ydu4e2MQQLh9Yb_vEm7Kv1ZNHhoyo87_5rYAfwItxKKy6yQxgsf7buCM2pZXEcj8tfPQ8igA priority: 102 providerName: Elsevier |
Title | The non-invasive Berlin Brain–Computer Interface: Fast acquisition of effective performance in untrained subjects |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811907000535 https://dx.doi.org/10.1016/j.neuroimage.2007.01.051 https://www.ncbi.nlm.nih.gov/pubmed/17475513 https://www.proquest.com/docview/1506724308 https://www.proquest.com/docview/68100758 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxELZ4SFUviBbaBmjqQ6-mcbybteFQASIKbYkQKlJultdrS6naPNgsR347M2tv9kSVkw_2WOsdP74Zj-cj5KsX3stEGVb4Qc4SJwyuOcWk72VO5LlMJL53vh0PRg_Jj0k6iQ63MoZVNntivVEXc4s-8m-YCS_rJ6Invy-WDFmj8HY1Umhsk10OSASpG7JJ1ibd5Ul4CpcKJqFBjOQJ8V11vsjpP1i1MZEhP-2l_LXj6TX4WR9Dw32yF_EjvQgKf0e23Ow9eXMbb8gPyBL0TsGkZ9PZk8HQdBoSWtFL5IJgDYkDrT2B3lh3RoemXFFjl9U0xG_RuachzAPFF-3LAgrdVLOaVMIVtKxy9OGUh-RheP37asQirQKzYHWumLcpqqEvnZHIQMaV9AXgAuXBsAZ7A3QqnOgrXzjuOGjLKFsYAzWq71KTig9kB8bhPhEqPBgYtnA54EC0DE0uB0WKOCpTRhnbIVnzN7WNOcfxK__qJrjsj271gJSYme5xDXroEL6WXIS8GxvIqEZhunlXCjuhhsNhA9nztWzEHgFTbCh90swPHfeAUrcztkO-rKth9eKVjJm5eVVqzAYHoA1afAyzqh0s2HlIvnP0_66PydvgbZaMpydkZ_VYuc8Ak1Z5l2yfPvNuvSK6ZPfi6v7XHZY3P0djKC-vx3f3L62NGbM |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELaqVAIuFW_SFuoDHA3ZV9YGVYhCo5Q2EUKt1Jvxrm0pqN0k3SyIP8dvY2ZtZ09FufTsHcveseflmfkIeW0Ta3kqFNN2WLDUJArvnGDcDnKTFAVPOdY7T6bD8UX69TK73CJ_Qy0MplUGmdgKaj0vMUb-Djvh5XGaDPjHxZIhahS-rgYIDeWhFfRh22LMF3acmj-_wYWrD0--AL_fxPHo-PzzmHmUAVaCE7ZitsxwVTE3iiMgF3jhVoOaFBb8TDC_YYuJSWJhtYlMBItXotRKwYiITaYQNQJUwHaKAZQe2T46nn773rX9jVJXjJcljMPUPpfIZZi1HStn1yA3fCvF6O0gi25TkLcZwK0iHD0kO96CpZ_ckXtEtkz1mNyb-Df6J2QJJ49W84rNql8Kk-Opa6lFjxCNggUYCdrGIq0qzXs6UvWKqnLZzFwGGZ1b6hJNkHzR1TZQmKapWlgLo2ndFBhFqp-Sizv55c9ID_ZhXhCaWHBxSm0KsETRN1UFH-oMLblcKKHKPsnD35Sl73qOq7ySIb3tp-z4gKCcuRxEEvjQJ9GacuE6f2xAIwLDZKhsBVksQT1tQPthTeutH2fVbEi9H86H9FKolt2d6ZOD9TDID3wUUpWZN7XEfnRgNsIXz92p6jYLnibC_-z-f-oDcn98PjmTZyfT0z3ywMW-OYuyfdJb3TTmJRhtq-KVvxmU_Ljry_gP6A5YWg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqVqq4IN4sLdQHOJpuXhsbVCFKu2opXVWISr0Zxw9pK8juNhsQf5FfxUxsb05Fe-k5GSuOPS975vsIee0y53guFDNuVLHcZgp1TjDuhqXNqornHPudzyejk8v881VxtUH-xl4YLKuMNrEz1Gam8Yx8H5HwyjTPhnzfhbKIi6Pxh_mCIYMU3rRGOg0VaBbMQQc3Fpo8zuyf35DONQenR7D2b9J0fPzt0wkLjANMQ0K2ZE4X-IUpt4ojORdk5M6AyxQOck4IxWG6mc1S4YxNbAITUUIbpeCJSG2hkEEC3MFWCV4fEsGtw-PJxdceAjjJfWNekTEOQ4e6Il9t1qFXTn-CDQmwisnbYZHc5ixvC4Y7pzh-QO6HaJZ-9NvvIdmw9SOyfR7u6x-TBexCWs9qNq1_KSyUpx5eix4iMwWLlBK0O5d0Stt3dKyaJVV60U59NRmdOeqLTlB83vc5UBimrTuKC2to01Z4otQ8IZd38sufkk2Yh31OaOYg3dHGVhCVYp6qKj4yBUZ1pVBC6QEp49-UOiCg41f-kLHU7Vr264AEnaUcJhLWYUCSleTco4CsISPigsnY5Qp2WYKrWkP2_Uo2REI-wllTejfuDxksUiN7_RmQvdVjsCV4QaRqO2sbidh0EELCG8_8ruonC1knUgG9-P_Qe2QblFJ-OZ2c7ZB7_hics6TYJZvLm9a-hPhtWb0KikHJ97vWxX_6n1ye |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+non-invasive+Berlin+Brain%E2%80%93Computer+Interface%3A+Fast+acquisition+of+effective+performance+in+untrained+subjects&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Blankertz%2C+Benjamin&rft.au=Dornhege%2C+Guido&rft.au=Krauledat%2C+Matthias&rft.au=M%C3%BCller%2C+Klaus-Robert&rft.date=2007-08-15&rft.issn=1053-8119&rft.volume=37&rft.issue=2&rft.spage=539&rft.epage=550&rft_id=info:doi/10.1016%2Fj.neuroimage.2007.01.051&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neuroimage_2007_01_051 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |