The non-invasive Berlin Brain–Computer Interface: Fast acquisition of effective performance in untrained subjects

Brain–Computer Interface (BCI) systems establish a direct communication channel from the brain to an output device. These systems use brain signals recorded from the scalp, the surface of the cortex, or from inside the brain to enable users to control a variety of applications. BCI systems that bypa...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 37; no. 2; pp. 539 - 550
Main Authors Blankertz, Benjamin, Dornhege, Guido, Krauledat, Matthias, Müller, Klaus-Robert, Curio, Gabriel
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 15.08.2007
Elsevier Limited
Subjects
Online AccessGet full text
ISSN1053-8119
1095-9572
DOI10.1016/j.neuroimage.2007.01.051

Cover

Abstract Brain–Computer Interface (BCI) systems establish a direct communication channel from the brain to an output device. These systems use brain signals recorded from the scalp, the surface of the cortex, or from inside the brain to enable users to control a variety of applications. BCI systems that bypass conventional motor output pathways of nerves and muscles can provide novel control options for paralyzed patients. One classical approach to establish EEG-based control is to set up a system that is controlled by a specific EEG feature which is known to be susceptible to conditioning and to let the subjects learn the voluntary control of that feature. In contrast, the Berlin Brain–Computer Interface (BBCI) uses well established motor competencies of its users and a machine learning approach to extract subject-specific patterns from high-dimensional features optimized for detecting the user's intent. Thus the long subject training is replaced by a short calibration measurement (20 min) and machine learning (1 min). We report results from a study in which 10 subjects, who had no or little experience with BCI feedback, controlled computer applications by voluntary imagination of limb movements: these intentions led to modulations of spontaneous brain activity specifically, somatotopically matched sensorimotor 7–30 Hz rhythms were diminished over pericentral cortices. The peak information transfer rate was above 35 bits per minute (bpm) for 3 subjects, above 23 bpm for two, and above 12 bpm for 3 subjects, while one subject could achieve no BCI control. Compared to other BCI systems which need longer subject training to achieve comparable results, we propose that the key to quick efficiency in the BBCI system is its flexibility due to complex but physiologically meaningful features and its adaptivity which respects the enormous inter-subject variability.
AbstractList Brain-Computer Interface (BCI) systems establish a direct communication channel from the brain to an output device. These systems use brain signals recorded from the scalp, the surface of the cortex, or from inside the brain to enable users to control a variety of applications. BCI systems that bypass conventional motor output pathways of nerves and muscles can provide novel control options for paralyzed patients. One classical approach to establish EEG-based control is to set up a system that is controlled by a specific EEG feature which is known to be susceptible to conditioning and to let the subjects learn the voluntary control of that feature. In contrast, the Berlin Brain-Computer Interface (BBCI) uses well established motor competencies of its users and a machine learning approach to extract subject-specific patterns from high-dimensional features optimized for detecting the user's intent. Thus the long subject training is replaced by a short calibration measurement (20 min) and machine learning (1 min). We report results from a study in which 10 subjects, who had no or little experience with BCI feedback, controlled computer applications by voluntary imagination of limb movements: these intentions led to modulations of spontaneous brain activity specifically, somatotopically matched sensorimotor 7-30 Hz rhythms were diminished over pericentral cortices. The peak information transfer rate was above 35 bits per minute (bpm) for 3 subjects, above 23 bpm for two, and above 12 bpm for 3 subjects, while one subject could achieve no BCI control. Compared to other BCI systems which need longer subject training to achieve comparable results, we propose that the key to quick efficiency in the BBCI system is its flexibility due to complex but physiologically meaningful features and its adaptivity which respects the enormous inter-subject variability.
Brain-Computer Interface (BCI) systems establish a direct communication channel from the brain to an output device. These systems use brain signals recorded from the scalp, the surface of the cortex, or from inside the brain to enable users to control a variety of applications. BCI systems that bypass conventional motor output pathways of nerves and muscles can provide novel control options for paralyzed patients. One classical approach to establish EEG-based control is to set up a system that is controlled by a specific EEG feature which is known to be susceptible to conditioning and to let the subjects learn the voluntary control of that feature. In contrast, the Berlin Brain-Computer Interface (BBCI) uses well established motor competencies of its users and a machine learning approach to extract subject-specific patterns from high-dimensional features optimized for detecting the user's intent. Thus the long subject training is replaced by a short calibration measurement (20 min) and machine learning (1 min). We report results from a study in which 10 subjects, who had no or little experience with BCI feedback, controlled computer applications by voluntary imagination of limb movements: these intentions led to modulations of spontaneous brain activity specifically, somatotopically matched sensorimotor 7-30 Hz rhythms were diminished over pericentral cortices. The peak information transfer rate was above 35 bits per minute (bpm) for 3 subjects, above 23 bpm for two, and above 12 bpm for 3 subjects, while one subject could achieve no BCI control. Compared to other BCI systems which need longer subject training to achieve comparable results, we propose that the key to quick efficiency in the BBCI system is its flexibility due to complex but physiologically meaningful features and its adaptivity which respects the enormous inter-subject variability.Brain-Computer Interface (BCI) systems establish a direct communication channel from the brain to an output device. These systems use brain signals recorded from the scalp, the surface of the cortex, or from inside the brain to enable users to control a variety of applications. BCI systems that bypass conventional motor output pathways of nerves and muscles can provide novel control options for paralyzed patients. One classical approach to establish EEG-based control is to set up a system that is controlled by a specific EEG feature which is known to be susceptible to conditioning and to let the subjects learn the voluntary control of that feature. In contrast, the Berlin Brain-Computer Interface (BBCI) uses well established motor competencies of its users and a machine learning approach to extract subject-specific patterns from high-dimensional features optimized for detecting the user's intent. Thus the long subject training is replaced by a short calibration measurement (20 min) and machine learning (1 min). We report results from a study in which 10 subjects, who had no or little experience with BCI feedback, controlled computer applications by voluntary imagination of limb movements: these intentions led to modulations of spontaneous brain activity specifically, somatotopically matched sensorimotor 7-30 Hz rhythms were diminished over pericentral cortices. The peak information transfer rate was above 35 bits per minute (bpm) for 3 subjects, above 23 bpm for two, and above 12 bpm for 3 subjects, while one subject could achieve no BCI control. Compared to other BCI systems which need longer subject training to achieve comparable results, we propose that the key to quick efficiency in the BBCI system is its flexibility due to complex but physiologically meaningful features and its adaptivity which respects the enormous inter-subject variability.
Brain–Computer Interface (BCI) systems establish a direct communication channel from the brain to an output device. These systems use brain signals recorded from the scalp, the surface of the cortex, or from inside the brain to enable users to control a variety of applications. BCI systems that bypass conventional motor output pathways of nerves and muscles can provide novel control options for paralyzed patients. One classical approach to establish EEG-based control is to set up a system that is controlled by a specific EEG feature which is known to be susceptible to conditioning and to let the subjects learn the voluntary control of that feature. In contrast, the Berlin Brain–Computer Interface (BBCI) uses well established motor competencies of its users and a machine learning approach to extract subject-specific patterns from high-dimensional features optimized for detecting the user's intent. Thus the long subject training is replaced by a short calibration measurement (20 min) and machine learning (1 min). We report results from a study in which 10 subjects, who had no or little experience with BCI feedback, controlled computer applications by voluntary imagination of limb movements: these intentions led to modulations of spontaneous brain activity specifically, somatotopically matched sensorimotor 7–30 Hz rhythms were diminished over pericentral cortices. The peak information transfer rate was above 35 bits per minute (bpm) for 3 subjects, above 23 bpm for two, and above 12 bpm for 3 subjects, while one subject could achieve no BCI control. Compared to other BCI systems which need longer subject training to achieve comparable results, we propose that the key to quick efficiency in the BBCI system is its flexibility due to complex but physiologically meaningful features and its adaptivity which respects the enormous inter-subject variability.
Author Müller, Klaus-Robert
Blankertz, Benjamin
Krauledat, Matthias
Dornhege, Guido
Curio, Gabriel
Author_xml – sequence: 1
  givenname: Benjamin
  surname: Blankertz
  fullname: Blankertz, Benjamin
  email: benjamin.blankertz@first.fraunhofer.de
  organization: Fraunhofer FIRST (IDA), Kekuléstr. 7, 12 489 Berlin, Germany
– sequence: 2
  givenname: Guido
  surname: Dornhege
  fullname: Dornhege, Guido
  organization: Fraunhofer FIRST (IDA), Kekuléstr. 7, 12 489 Berlin, Germany
– sequence: 3
  givenname: Matthias
  surname: Krauledat
  fullname: Krauledat, Matthias
  organization: Fraunhofer FIRST (IDA), Kekuléstr. 7, 12 489 Berlin, Germany
– sequence: 4
  givenname: Klaus-Robert
  surname: Müller
  fullname: Müller, Klaus-Robert
  organization: Fraunhofer FIRST (IDA), Kekuléstr. 7, 12 489 Berlin, Germany
– sequence: 5
  givenname: Gabriel
  surname: Curio
  fullname: Curio, Gabriel
  organization: Dept. of Neurology, Campus Benjamin Franklin, Charité University Medicine Berlin, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/17475513$$D View this record in MEDLINE/PubMed
BookMark eNqNks1u1DAURi3Uiv7AKyBLSOwSfJN44rBAdEYUKlViU9aW41yDQ2JP7WSk7ngH3rBPUkdTQJpNu7Et-fgk_j6fkSPnHRJCgeXAYPW-zx3OwdtR_cC8YKzOGeSMwwtyCqzhWcPr4mhZ8zITAM0JOYuxZ4w1UImX5ATqquYcylMSb34iTfbMup2Kdod0jWGwjq6Dsu7-95-NH7fzhIFeuTQapfEDvVRxokrfzjbayXpHvaFoDOppEWwT5sOonEaaRLObFhV2NM5tn5j4ihwbNUR8_Tifk--Xn282X7Prb1-uNhfXmeZFOWVG8xrLthCoBK-qdA1hOmhYY7AtAYTWqsSyaEyHgNCKSjW6UyrtNAVyxctz8m7v3QZ_O2Oc5GijxmFQDv0c5UpAio6LBL49AHs_B5f-TQJnq7qoSrZQbx6puR2xk9uQ8g938m-YCfi4B3TwMQY0UttJLQEtCQwSmFzak738355c2pMMZGovCcSB4N83nj663h_FFOjOYpBRW0wVdDakzGXn7XMknw4kOj0Fq9XwC--ep3gAdUPTlg
CitedBy_id crossref_primary_10_3390_electronics11152293
crossref_primary_10_1016_j_patrec_2017_05_020
crossref_primary_10_1088_1741_2560_10_2_026018
crossref_primary_10_1016_j_bspc_2022_104153
crossref_primary_10_3390_s140101474
crossref_primary_10_1007_s10548_022_00907_y
crossref_primary_10_1007_s00521_021_06352_5
crossref_primary_10_1109_TCDS_2017_2787040
crossref_primary_10_1007_s12021_019_09435_w
crossref_primary_10_1007_s11277_020_07045_3
crossref_primary_10_3390_s20174749
crossref_primary_10_3390_s19173769
crossref_primary_10_5391_JKIIS_2012_22_6_774
crossref_primary_10_3389_fninf_2024_1459970
crossref_primary_10_1007_s11042_023_17118_7
crossref_primary_10_1007_s11517_012_1026_1
crossref_primary_10_1109_TNNLS_2019_2946869
crossref_primary_10_3389_fninf_2014_00088
crossref_primary_10_1007_s00521_022_08027_1
crossref_primary_10_1016_j_clinph_2015_06_004
crossref_primary_10_1109_TNSRE_2017_2684084
crossref_primary_10_1134_S1063785020060127
crossref_primary_10_1371_journal_pone_0101729
crossref_primary_10_3390_brainsci15010027
crossref_primary_10_1109_ACCESS_2020_3003056
crossref_primary_10_1088_1741_2560_13_5_056012
crossref_primary_10_1016_j_irbm_2019_11_002
crossref_primary_10_1007_s10548_010_0135_0
crossref_primary_10_3390_s16020201
crossref_primary_10_1109_TBME_2009_2032162
crossref_primary_10_1016_j_bspc_2021_102826
crossref_primary_10_3390_brainsci13071109
crossref_primary_10_1016_j_measen_2022_100616
crossref_primary_10_1117_1_NPh_5_1_011008
crossref_primary_10_1109_TNSRE_2023_3241301
crossref_primary_10_1155_2020_7285057
crossref_primary_10_3389_fnins_2020_559858
crossref_primary_10_1109_JPROC_2015_2415800
crossref_primary_10_3390_s19020379
crossref_primary_10_1587_transcom_2016SNI0002
crossref_primary_10_1109_TBME_2024_3474049
crossref_primary_10_1142_S0129065721500039
crossref_primary_10_1016_j_physrep_2021_03_002
crossref_primary_10_1109_TNSRE_2023_3329482
crossref_primary_10_1186_s12859_017_1964_6
crossref_primary_10_5302_J_ICROS_2011_17_8_747
crossref_primary_10_1016_j_compbiomed_2017_10_025
crossref_primary_10_1016_j_ijhcs_2009_05_009
crossref_primary_10_1088_1741_2552_ac9c94
crossref_primary_10_1016_j_jneumeth_2014_11_007
crossref_primary_10_3389_fnins_2023_1219133
crossref_primary_10_1016_j_neuroimage_2015_05_009
crossref_primary_10_1016_j_neuroimage_2011_07_084
crossref_primary_10_1080_00222895_2014_982067
crossref_primary_10_1007_s11265_019_1440_9
crossref_primary_10_1088_1741_2560_10_1_016012
crossref_primary_10_3390_e24020195
crossref_primary_10_1111_psyp_13832
crossref_primary_10_1063_1_5113844
crossref_primary_10_1088_1741_2552_abca17
crossref_primary_10_3389_fnins_2019_00502
crossref_primary_10_1016_j_jneumeth_2013_11_015
crossref_primary_10_1016_j_neuroimage_2010_03_022
crossref_primary_10_1177_1550059414522229
crossref_primary_10_1088_1741_2560_8_2_025009
crossref_primary_10_1007_s10916_018_0931_8
crossref_primary_10_1088_1741_2560_8_2_025005
crossref_primary_10_1093_brain_awt077
crossref_primary_10_1371_journal_pone_0076214
crossref_primary_10_1049_2024_5596468
crossref_primary_10_1088_1741_2560_10_1_016002
crossref_primary_10_1109_TBME_2013_2287245
crossref_primary_10_1016_j_bspc_2023_105556
crossref_primary_10_3389_fnhum_2016_00170
crossref_primary_10_1103_PhysRevLett_103_214101
crossref_primary_10_1109_TBME_2020_3034112
crossref_primary_10_1109_TIP_2012_2187672
crossref_primary_10_1109_TBME_2022_3201241
crossref_primary_10_1109_TBME_2018_2799661
crossref_primary_10_1016_j_ijpsycho_2012_01_014
crossref_primary_10_1016_j_medntd_2025_100353
crossref_primary_10_1109_TNSRE_2021_3099908
crossref_primary_10_1016_j_neuroimage_2009_07_045
crossref_primary_10_1109_TNSRE_2020_3017167
crossref_primary_10_1088_1741_2560_7_5_056009
crossref_primary_10_1109_TBME_2010_2093133
crossref_primary_10_1109_TNSRE_2018_2837003
crossref_primary_10_3390_electronics13142770
crossref_primary_10_1088_1741_2552_aac313
crossref_primary_10_1016_j_bspc_2023_105537
crossref_primary_10_1088_1741_2560_10_2_026005
crossref_primary_10_9718_JBER_2011_32_4_295
crossref_primary_10_1007_s00034_022_02071_x
crossref_primary_10_1080_21681163_2023_2192831
crossref_primary_10_3389_fnagi_2022_828377
crossref_primary_10_3390_electronics12244944
crossref_primary_10_1109_TNNLS_2023_3292179
crossref_primary_10_1016_j_neuroimage_2011_06_084
crossref_primary_10_1016_j_clinph_2013_03_009
crossref_primary_10_1155_2018_9476432
crossref_primary_10_1109_TITB_2012_2194298
crossref_primary_10_1007_s00422_024_00984_1
crossref_primary_10_3390_s140405967
crossref_primary_10_1002_ima_22821
crossref_primary_10_1002_ima_22823
crossref_primary_10_3389_fnins_2017_00550
crossref_primary_10_1016_j_neunet_2009_06_003
crossref_primary_10_1155_2018_6323414
crossref_primary_10_1088_1361_6579_acd51b
crossref_primary_10_3389_fnins_2021_729449
crossref_primary_10_1088_1741_2552_ab4dba
crossref_primary_10_1162_neco_a_01070
crossref_primary_10_1109_TNSRE_2012_2229296
crossref_primary_10_3389_fnins_2017_00674
crossref_primary_10_1088_1741_2560_8_2_025012
crossref_primary_10_1016_j_bspc_2019_04_034
crossref_primary_10_1016_j_clinph_2012_11_010
crossref_primary_10_1088_1741_2552_aa620b
crossref_primary_10_1016_j_knosys_2024_111904
crossref_primary_10_1631_FITEE_1400299
crossref_primary_10_1016_j_bspc_2018_02_021
crossref_primary_10_1142_S0129065721500301
crossref_primary_10_1109_TNNLS_2023_3305621
crossref_primary_10_1016_j_jksuci_2022_09_020
crossref_primary_10_1016_j_neuroimage_2015_05_078
crossref_primary_10_1007_s12559_017_9478_0
crossref_primary_10_1016_j_neuroimage_2019_05_074
crossref_primary_10_1038_s41598_017_08928_5
crossref_primary_10_3389_fnhum_2019_00128
crossref_primary_10_1109_TNSRE_2019_2900725
crossref_primary_10_3109_17483107_2014_961569
crossref_primary_10_1088_1741_2552_aa5d5f
crossref_primary_10_1007_s11517_025_03298_x
crossref_primary_10_1007_s11277_014_1861_5
crossref_primary_10_1007_s11571_020_09592_8
crossref_primary_10_1097_WCO_0b013e3282f14782
crossref_primary_10_1142_S0129065712500220
crossref_primary_10_2200_S00148ED1V01Y200809BME022
crossref_primary_10_1007_s11434_008_0547_3
crossref_primary_10_1016_j_asoc_2019_105519
crossref_primary_10_1109_ACCESS_2023_3329678
crossref_primary_10_1016_j_brainres_2013_03_050
crossref_primary_10_3390_brainsci11010043
crossref_primary_10_1007_s11055_018_0681_6
crossref_primary_10_1016_j_bspc_2022_104321
crossref_primary_10_1016_j_ijleo_2017_10_085
crossref_primary_10_1088_1741_2560_8_5_056001
crossref_primary_10_3390_s24051678
crossref_primary_10_1097_WNR_0000000000000480
crossref_primary_10_3934_mbe_2021213
crossref_primary_10_1371_journal_pone_0087056
crossref_primary_10_3390_s21061988
crossref_primary_10_1371_journal_pone_0129435
crossref_primary_10_1109_RBME_2011_2170675
crossref_primary_10_1016_j_neuroimage_2010_06_048
crossref_primary_10_1007_s10548_009_0121_6
crossref_primary_10_1515_bmt_2010_015
crossref_primary_10_1109_TBME_2018_2872855
crossref_primary_10_1088_1741_2560_8_4_046035
crossref_primary_10_1109_ACCESS_2022_3173629
crossref_primary_10_1109_JSEN_2022_3171808
crossref_primary_10_1186_s12984_015_0102_9
crossref_primary_10_1016_j_engappai_2023_106863
crossref_primary_10_1051_e3sconf_202235101026
crossref_primary_10_1155_2017_2948742
crossref_primary_10_3389_fnhum_2024_1421922
crossref_primary_10_5391_JKIIS_2010_20_1_001
crossref_primary_10_1088_1741_2552_ac1ade
crossref_primary_10_1109_MIS_2008_41
crossref_primary_10_1016_j_cmpb_2023_107641
crossref_primary_10_1007_s12204_022_2488_4
crossref_primary_10_1002_ima_22913
crossref_primary_10_1007_s12152_019_09409_4
crossref_primary_10_1016_j_neunet_2024_106351
crossref_primary_10_1109_TNSRE_2023_3257261
crossref_primary_10_1109_TSP_2024_3403965
crossref_primary_10_1109_TBME_2009_2039997
crossref_primary_10_1109_TBME_2012_2188799
crossref_primary_10_1016_j_neuroimage_2016_06_056
crossref_primary_10_1051_matecconf_201714001024
crossref_primary_10_1109_ACCESS_2018_2868713
crossref_primary_10_1016_j_bspc_2021_103190
crossref_primary_10_1016_j_neunet_2018_02_011
crossref_primary_10_5391_JKIIS_2010_20_1_015
crossref_primary_10_1109_TNSRE_2016_2528167
crossref_primary_10_1016_j_bspc_2013_08_012
crossref_primary_10_1007_s00422_014_0589_3
crossref_primary_10_1088_1741_2552_abd51f
crossref_primary_10_1186_s12859_021_04091_x
crossref_primary_10_1007_s11517_024_03036_9
crossref_primary_10_1155_2019_2087132
crossref_primary_10_1002_biot_200800244
crossref_primary_10_1109_ACCESS_2020_2995302
crossref_primary_10_1016_j_conb_2007_07_009
crossref_primary_10_1016_j_neuroimage_2017_08_005
crossref_primary_10_1109_TNSRE_2016_2646763
crossref_primary_10_1007_s11571_021_09669_y
crossref_primary_10_1016_j_conb_2008_07_006
crossref_primary_10_1111_j_1469_8986_2009_00816_x
crossref_primary_10_1016_j_bbe_2021_08_003
crossref_primary_10_1523_ENEURO_0145_22_2022
crossref_primary_10_1016_j_cmpbup_2021_100027
crossref_primary_10_1016_j_jneumeth_2008_07_019
crossref_primary_10_1007_s11042_024_20510_6
crossref_primary_10_1109_TNSRE_2023_3269055
crossref_primary_10_1007_s11771_017_3461_5
crossref_primary_10_3390_s24154989
crossref_primary_10_1063_1_5006511
crossref_primary_10_1109_JPROC_2015_2411333
crossref_primary_10_1109_ACCESS_2024_3459866
crossref_primary_10_1109_JPROC_2015_2413993
crossref_primary_10_1186_1471_2202_10_S1_P69
crossref_primary_10_1016_j_neucom_2020_09_017
crossref_primary_10_1016_j_neuroimage_2010_11_004
crossref_primary_10_1007_s11517_023_02976_y
crossref_primary_10_1080_2326263X_2016_1263916
crossref_primary_10_1177_155005941104200411
crossref_primary_10_1016_j_neucom_2024_127944
crossref_primary_10_1080_2326263X_2022_2033073
crossref_primary_10_1109_TNSRE_2023_3237583
crossref_primary_10_1016_j_bspc_2015_04_001
crossref_primary_10_1109_TNSRE_2018_2826559
crossref_primary_10_1109_TNSRE_2018_2848883
crossref_primary_10_1162_NECO_a_00089
crossref_primary_10_1016_j_jneumeth_2009_01_015
crossref_primary_10_1080_10255842_2024_2356633
crossref_primary_10_1142_S0129065721500404
crossref_primary_10_1007_s10548_020_00801_5
crossref_primary_10_1186_s12984_016_0172_3
crossref_primary_10_1016_j_compbiomed_2020_103822
crossref_primary_10_1016_j_bspc_2021_103289
crossref_primary_10_1109_JPROC_2015_2404941
crossref_primary_10_1016_j_bspc_2019_01_008
crossref_primary_10_1016_j_neuroimage_2021_118851
crossref_primary_10_1016_j_knosys_2025_113074
crossref_primary_10_1016_j_neuropsychologia_2007_10_008
crossref_primary_10_1088_1741_2560_8_4_046003
crossref_primary_10_1155_2017_9817305
crossref_primary_10_1016_j_clinph_2007_11_013
crossref_primary_10_1155_2016_1489692
crossref_primary_10_1016_j_engappai_2023_105862
crossref_primary_10_1007_s11055_020_00977_0
crossref_primary_10_1109_TITB_2012_2230012
crossref_primary_10_1016_j_clinph_2014_07_007
crossref_primary_10_1371_journal_pone_0276133
crossref_primary_10_5573_IEIESPC_2015_4_2_097
crossref_primary_10_1007_s10489_021_02975_2
crossref_primary_10_1007_s10916_019_1270_0
crossref_primary_10_1016_j_compbiomed_2017_05_024
crossref_primary_10_1016_j_neuroimage_2011_03_061
crossref_primary_10_1007_s13042_012_0139_z
crossref_primary_10_1109_TNSRE_2022_3219418
crossref_primary_10_1007_s12530_019_09280_x
crossref_primary_10_1016_j_neuroimage_2013_07_079
crossref_primary_10_5302_J_ICROS_2013_13_1866
crossref_primary_10_1016_j_bspc_2021_103101
crossref_primary_10_1371_journal_pone_0111070
crossref_primary_10_1109_ACCESS_2019_2908189
crossref_primary_10_3389_fnhum_2017_00462
crossref_primary_10_1038_nrneurol_2012_219
crossref_primary_10_3389_fnins_2021_733546
crossref_primary_10_1166_jmihi_2021_3904
crossref_primary_10_1186_1475_925X_12_77
crossref_primary_10_1162_pres_19_1_54
crossref_primary_10_1088_1741_2560_11_5_056015
crossref_primary_10_1016_j_neunet_2022_06_008
crossref_primary_10_1007_s40012_016_0091_2
crossref_primary_10_1109_ACCESS_2020_2999091
crossref_primary_10_1109_ACCESS_2024_3368384
crossref_primary_10_1088_1741_2552_ad7f8e
crossref_primary_10_3390_electronics12122743
crossref_primary_10_1016_j_ins_2024_121585
crossref_primary_10_1016_j_neucom_2013_05_005
crossref_primary_10_1007_s11571_021_09768_w
crossref_primary_10_1109_TNSRE_2023_3243257
crossref_primary_10_35741_issn_0258_2724_54_4_3
crossref_primary_10_1016_j_measurement_2023_113673
crossref_primary_10_1088_1741_2552_ac27fc
crossref_primary_10_1109_JBHI_2014_2328494
crossref_primary_10_1109_TIM_2024_3451593
crossref_primary_10_5607_en_2009_18_2_137
crossref_primary_10_1371_journal_pone_0002967
crossref_primary_10_3390_mi5041082
crossref_primary_10_1109_TBME_2019_2913914
crossref_primary_10_1155_2015_251945
crossref_primary_10_3389_fnhum_2021_625983
crossref_primary_10_1016_j_clinph_2010_02_157
crossref_primary_10_1016_j_neucom_2011_09_013
crossref_primary_10_1186_1743_0003_6_14
crossref_primary_10_1088_1741_2560_12_4_046007
crossref_primary_10_1109_TIM_2024_3375980
crossref_primary_10_1109_JBHI_2024_3402324
crossref_primary_10_1155_2013_537218
crossref_primary_10_1007_s11036_021_01754_0
crossref_primary_10_1109_TNN_2010_2084099
crossref_primary_10_1523_JNEUROSCI_5577_12_2013
crossref_primary_10_1155_2022_1603104
crossref_primary_10_1080_07370024_2023_2170801
crossref_primary_10_1016_j_compeleceng_2024_109680
crossref_primary_10_1088_1741_2560_11_5_056002
crossref_primary_10_1186_1475_925X_12_43
crossref_primary_10_1007_s11432_022_3548_2
crossref_primary_10_1162_NECO_a_00544
crossref_primary_10_1109_TNNLS_2020_3015505
crossref_primary_10_1016_j_neuroimage_2025_121123
crossref_primary_10_1109_TITS_2024_3522308
crossref_primary_10_1007_s11071_018_4047_y
crossref_primary_10_1007_s13042_023_01914_6
crossref_primary_10_4018_ijmtie_2012040101
crossref_primary_10_1007_s11571_020_09608_3
crossref_primary_10_1016_j_ijpsycho_2017_08_007
crossref_primary_10_3389_fnins_2021_779231
crossref_primary_10_1016_j_jneumeth_2007_09_022
crossref_primary_10_1111_j_1467_8640_2007_00316_x
crossref_primary_10_1016_j_bspc_2020_102171
crossref_primary_10_1016_j_jneumeth_2021_109249
crossref_primary_10_1016_j_jneumeth_2018_08_001
crossref_primary_10_1109_TNSRE_2019_2922713
crossref_primary_10_1016_j_eswa_2023_122286
crossref_primary_10_2139_ssrn_2427564
crossref_primary_10_1109_TNNLS_2020_3048385
crossref_primary_10_5391_JKIIS_2010_20_1_153
crossref_primary_10_1007_s00521_020_05603_1
crossref_primary_10_1155_2016_7431012
crossref_primary_10_1371_journal_pone_0207351
crossref_primary_10_1016_j_compbiomed_2022_105299
crossref_primary_10_1155_2018_1482874
crossref_primary_10_1016_j_swevo_2019_100597
crossref_primary_10_1016_j_neuroimage_2019_116333
crossref_primary_10_1016_j_neuroimage_2008_12_069
crossref_primary_10_1155_2009_104180
crossref_primary_10_3389_fnhum_2020_597864
crossref_primary_10_1016_j_bspc_2020_102026
crossref_primary_10_1016_j_neucom_2024_128889
crossref_primary_10_1007_s13755_021_00142_y
crossref_primary_10_4236_jsip_2012_33037
crossref_primary_10_1142_S0129065718500454
crossref_primary_10_3390_s24217080
crossref_primary_10_3389_fnins_2016_00573
crossref_primary_10_1109_TNSRE_2017_2759241
crossref_primary_10_1159_000446698
crossref_primary_10_1109_TNSRE_2021_3139095
crossref_primary_10_1109_TFUZZ_2023_3336673
crossref_primary_10_1016_j_bspc_2021_103307
crossref_primary_10_3389_fnhum_2017_00134
crossref_primary_10_1016_j_bspc_2016_08_024
crossref_primary_10_1016_j_patcog_2011_04_018
crossref_primary_10_3390_app132111787
crossref_primary_10_1186_s12859_018_2365_1
crossref_primary_10_1109_TCDS_2022_3174660
crossref_primary_10_1088_1741_2552_ac6770
crossref_primary_10_1109_JBHI_2023_3292909
crossref_primary_10_1016_j_neunet_2009_07_020
crossref_primary_10_1109_TNSRE_2012_2205707
crossref_primary_10_1007_s11571_021_09752_4
crossref_primary_10_1007_s00500_012_0895_4
crossref_primary_10_1186_1743_0003_8_24
crossref_primary_10_1007_s11055_018_0666_5
crossref_primary_10_1109_TBCAS_2017_2779324
crossref_primary_10_1093_gigascience_giz002
crossref_primary_10_1016_j_neuroimage_2010_09_003
crossref_primary_10_1109_TNSRE_2021_3088637
crossref_primary_10_1088_1741_2552_ad38db
crossref_primary_10_1016_j_neuroimage_2024_120906
crossref_primary_10_3389_fnins_2021_652058
crossref_primary_10_5626_JCSE_2013_7_2_112
crossref_primary_10_1371_journal_pone_0148886
crossref_primary_10_1109_TNSRE_2014_2315717
crossref_primary_10_1109_MCI_2015_2501545
crossref_primary_10_1109_TNSRE_2009_2027705
crossref_primary_10_1109_TNSRE_2024_3445115
crossref_primary_10_5302_J_ICROS_2013_13_1915
crossref_primary_10_1109_JBHI_2016_2582683
crossref_primary_10_1007_s00521_011_0744_x
crossref_primary_10_1109_ACCESS_2023_3326720
crossref_primary_10_1109_TNSRE_2020_2980299
crossref_primary_10_1088_1741_2560_13_3_036018
crossref_primary_10_1109_TNSRE_2016_2606416
crossref_primary_10_1109_TNSRE_2015_2418351
crossref_primary_10_1016_j_jneumeth_2021_109274
crossref_primary_10_1007_s11042_017_5586_9
crossref_primary_10_1088_1741_2552_aadea0
crossref_primary_10_1109_JBHI_2024_3358917
crossref_primary_10_1016_j_bspc_2009_09_002
crossref_primary_10_1016_j_neunet_2020_01_022
crossref_primary_10_1109_ACCESS_2018_2868178
crossref_primary_10_1007_s11633_018_1158_3
crossref_primary_10_1088_1741_2560_11_3_035007
crossref_primary_10_1109_TAC_2011_2166713
crossref_primary_10_62762_CJIF_2024_876830
crossref_primary_10_1155_2018_9385947
crossref_primary_10_1016_j_biopsycho_2011_09_006
crossref_primary_10_5391_JKIIS_2012_22_4_429
crossref_primary_10_1016_j_jneumeth_2021_109182
crossref_primary_10_1523_JNEUROSCI_5171_07_2008
crossref_primary_10_1155_2020_1838140
crossref_primary_10_1002_ima_20285
crossref_primary_10_1088_1741_2560_11_3_035010
crossref_primary_10_1038_s41598_019_45605_1
crossref_primary_10_1109_ACCESS_2023_3285660
crossref_primary_10_1109_TBME_2018_2881092
crossref_primary_10_1109_TSMCB_2009_2018469
crossref_primary_10_1186_s40708_021_00151_3
crossref_primary_10_1109_MSP_2013_2249294
crossref_primary_10_1007_s10439_011_0248_y
crossref_primary_10_1016_j_neucom_2022_09_124
crossref_primary_10_1007_s11517_018_1821_4
crossref_primary_10_1016_j_jneumeth_2022_109593
crossref_primary_10_1016_j_neuri_2023_100136
crossref_primary_10_1088_1741_2560_11_3_035001
crossref_primary_10_3389_fncom_2021_684373
crossref_primary_10_1109_TNSRE_2017_2655542
crossref_primary_10_1016_j_bspc_2010_08_003
crossref_primary_10_1109_MSP_2008_4408441
crossref_primary_10_1016_j_jphysparis_2009_08_007
crossref_primary_10_1142_S1793536913500076
crossref_primary_10_1088_1741_2552_ac463a
crossref_primary_10_1109_TNSRE_2023_3327788
crossref_primary_10_1088_1741_2552_ac123f
crossref_primary_10_1371_journal_pone_0085100
crossref_primary_10_1016_j_cub_2012_05_022
crossref_primary_10_1016_j_jneumeth_2022_109489
crossref_primary_10_1109_TBME_2022_3202189
crossref_primary_10_3389_fnhum_2022_902183
crossref_primary_10_1016_j_neunet_2019_07_007
crossref_primary_10_3390_brainsci9120352
crossref_primary_10_1016_j_bspc_2021_102608
crossref_primary_10_1007_s11517_012_0992_7
crossref_primary_10_1109_JPROC_2012_2185009
crossref_primary_10_1088_1742_6596_1169_1_012044
crossref_primary_10_1177_1071181312561229
crossref_primary_10_1161_STROKEAHA_112_665489
crossref_primary_10_1016_j_compbiomed_2025_109944
crossref_primary_10_1016_j_compbiomed_2021_104546
crossref_primary_10_1038_srep36267
crossref_primary_10_1109_TNNLS_2023_3238519
crossref_primary_10_1016_j_bspc_2021_102831
crossref_primary_10_1162_NECO_a_00888
crossref_primary_10_1007_s11042_023_15900_1
crossref_primary_10_1080_10447318_2011_535749
crossref_primary_10_3389_fneur_2018_00350
crossref_primary_10_1016_j_bspc_2012_03_004
crossref_primary_10_1016_j_bspc_2018_04_010
crossref_primary_10_1016_j_jneumeth_2020_108725
crossref_primary_10_1016_j_neucom_2021_08_067
crossref_primary_10_3389_fnhum_2014_00574
crossref_primary_10_1016_j_neunet_2009_08_006
crossref_primary_10_1155_2018_9890132
crossref_primary_10_1088_1741_2560_10_5_056014
crossref_primary_10_1088_1741_2552_ad2496
crossref_primary_10_1016_j_neubiorev_2014_06_009
crossref_primary_10_1109_TCDS_2021_3099988
crossref_primary_10_1016_j_bspc_2021_102749
crossref_primary_10_1016_j_neucom_2025_129410
crossref_primary_10_1109_TBME_2009_2022948
crossref_primary_10_1142_S0218126619501238
crossref_primary_10_1016_j_jneumeth_2020_108833
crossref_primary_10_1109_TBME_2014_2305159
crossref_primary_10_1007_s00521_016_2178_y
crossref_primary_10_1109_TBME_2023_3274231
crossref_primary_10_1088_1741_2560_10_5_056003
crossref_primary_10_1109_JETCAS_2012_2222833
crossref_primary_10_3389_fnhum_2023_1292428
crossref_primary_10_3389_fnins_2022_842635
crossref_primary_10_1109_TNSRE_2023_3246989
Cites_doi 10.1016/S1388-2457(02)00057-3
10.1037/0033-2909.127.3.358
10.1109/TNSRE.2003.814484
10.1109/TRE.2000.847807
10.1016/S0167-8760(01)00178-7
10.1088/1741-2560/3/1/R02
10.1016/S0013-4694(98)00084-4
10.1109/TBME.2004.827088
10.1023/A:1024637331493
10.1016/0013-4694(73)90216-2
10.1016/S0304-3940(99)00452-8
10.1109/TNSRE.2006.875642
10.1001/archneurpsyc.1938.02270010106010
10.1109/TNSRE.2003.814435
10.1109/TNN.2002.1000132
10.1016/S1388-2457(99)00141-8
10.1109/TNSRE.2003.814456
10.1109/86.895947
10.1016/j.neuroimage.2005.12.003
10.1109/86.895946
10.1016/0013-4694(80)90265-5
10.1007/BF01814320
10.1212/01.WNL.0000158616.43002.6D
10.1109/TNSRE.2006.875557
10.1016/S0301-0511(03)00073-5
10.1109/TBME.2006.883649
10.1109/TBME.2004.826692
10.1109/MSP.2006.1708426
10.1016/S0278-2626(03)00036-8
10.1016/j.cogbrainres.2005.08.014
10.1109/72.914517
10.1109/86.847812
10.1103/PhysRevLett.94.084102
10.1007/BF01062488
10.1109/TBME.2005.851521
10.1109/TBME.2002.803536
10.1007/BF00998830
10.1016/S0013-4694(98)00107-2
ContentType Journal Article
Copyright 2007 Elsevier Inc.
Copyright Elsevier Limited Aug 15, 2007
Copyright_xml – notice: 2007 Elsevier Inc.
– notice: Copyright Elsevier Limited Aug 15, 2007
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
DOI 10.1016/j.neuroimage.2007.01.051
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic


ProQuest One Psychology
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 550
ExternalDocumentID 3244516411
17475513
10_1016_j_neuroimage_2007_01_051
S1053811907000535
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAFWJ
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACPRK
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADFGL
ADFRT
ADMUD
ADNMO
ADVLN
ADXHL
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPKN
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRLJ
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CAG
CCPQU
COF
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HDW
HEI
HMCUK
HMK
HMO
HMQ
HVGLF
HZ~
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OK1
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PUEGO
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SNS
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
WUQ
XPP
YK3
Z5R
ZMT
ZU3
~G-
3V.
6I.
AACTN
AADPK
AAIAV
ABLVK
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
C45
EFLBG
LCYCR
NCXOZ
RIG
ZA5
AAYXX
AGRNS
ALIPV
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
ACLOT
~HD
ID FETCH-LOGICAL-c523t-fc57e3b28ea85441198fd1909feb3118cca3e329fde1e1b84a9cdaa11892e5a53
IEDL.DBID 7X7
ISSN 1053-8119
IngestDate Sun Sep 28 06:24:28 EDT 2025
Wed Aug 13 06:11:18 EDT 2025
Mon Jul 21 06:04:11 EDT 2025
Thu Apr 24 23:10:25 EDT 2025
Tue Jul 01 00:49:57 EDT 2025
Fri Feb 23 02:31:37 EST 2024
Tue Aug 26 17:34:05 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c523t-fc57e3b28ea85441198fd1909feb3118cca3e329fde1e1b84a9cdaa11892e5a53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 17475513
PQID 1506724308
PQPubID 2031077
PageCount 12
ParticipantIDs proquest_miscellaneous_68100758
proquest_journals_1506724308
pubmed_primary_17475513
crossref_citationtrail_10_1016_j_neuroimage_2007_01_051
crossref_primary_10_1016_j_neuroimage_2007_01_051
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2007_01_051
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2007_01_051
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2007-08-15
PublicationDateYYYYMMDD 2007-08-15
PublicationDate_xml – month: 08
  year: 2007
  text: 2007-08-15
  day: 15
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2007
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Pfurtscheller, Neuper, Ramoser, Müller-Gerking (bib44) 1999; 269
Krauledat, Losch, Curio (bib29) 2006
Rockstroh, Birbaumer, Elbert, Lutzenberger (bib49) 1984; 9
Haykin (bib24) 1995
Kaper, Ritter (bib27) 2004
Birbaumer, Kübler, Ghanayim, Hinterberger, Perelmouter, Kaiser, Iversen, Kotchoubey, Neumann, Flor (bib2) 2000; 8
Guger, Ramoser, Pfurtscheller (bib22) 2000; 8
Müller, Krauledat, Dornhege, Curio, Blankertz (bib39) 2004; 49
Neuper, Pfurtscheller (bib40) 2001; 43
McFarland, Sarnacki, Wolpaw (bib34) 2003; 63
Cheng, Gao, Gao, Xu (bib9) 2002; 49
Blankertz, Dornhege, Schäfer, Krepki, Kohlmorgen, Müller, Kunzmann, Losch, Curio (bib3) 2003; 11
Wolpaw, Birbaumer, William, Heetderks, McFarland, Peckham, Schalk, Donchin, Quatrano, Robinson, Vaughan (bib54) 2000; 8
Kübler, Kotchoubey, Kaiser, Wolpaw, Birbaumer (bib31) 2001; 127
Müller, Anderson, Birch (bib38) 2003; 11
Tomioka, R., Aihara, K., Müller, K.-R., in press. Logistic regression for single trial EEG classification. In: Advances in Neural Inf. Proc. Systems (NIPS 06), volume 19. MIT Press.
Guger, Ramoser, Pfurtscheller (bib23) 2000; 8
Müller, Blankertz (bib36) 2006; 23
Elbert, Rockstroh, Lutzenberger, Birbaumer (bib20) 1980; 48
Blankertz, Dornhege, Krauledat, Schröder, Williamson, Murray-Smith, Müller (bib6) 2006
Fukunaga (bib21) 1990
del Millán, Mouriño (bib12) 2003; 11
Pfurtscheller, Neuper, Birbaumer (bib45) 2005
Dornhege, Blankertz, Curio, Müller (bib14) 2004; 51
Dornhege, Braun, Kohlmorgen, Blankertz, Müller, Curio, Hagemann, Bruns, Schrauf, Kincses (bib17) 2007
Pfurtscheller, Brunner, Schlögl, Lopes da Silva (bib46) 2006; 31
Curran, Stokes (bib10) 2003; 51
Vaughan, Miner, McFarland, Wolpaw (bib53) 1998; 107
Müller, Mika, Rätsch, Tsuda, Schölkopf (bib37) 2001; 12
Dornhege, Blankertz, Krauledat, Losch, Curio, Müller (bib16) 2006; 53
Blankertz, Müller, Curio, Vaughan, Schalk, Wolpaw, Schlögl, Neuper, Pfurtscheller, Hinterberger, Schröder, Birbaumer (bib4) 2004; 51
Jasper, Andrews (bib25) 1938; 39
Meinecke, Ziehe, Kurths, Müller (bib35) 2005; 94
del Millán, Mouriño, Franzé, Cinotti, Varsta, Heikkonen, Babiloni (bib13) 2002; 13
Popescu, Badower, Fazli, Dornhege, Müller (bib47) 2006
Berger (bib1) 1933; 99
Pfurtscheller, Lopes da Silva (bib43) 1999; 110
Wolpaw, Birbaumer, McFarland, Pfurtscheller, Vaughan (bib55) 2002; 113
Neuper, Scherer, Reiner, Pfurtscheller (bib41) 2005; 25
Kübler, Nijboer, Mellinger, Vaughan, Pawelzik, Schalk, McFarland, Birbaumer, Wolpaw (bib32) 2005; 64
Koles, Soong (bib28) 1998; 107
Lemm, Blankertz, Curio, Müller (bib33) 2005; 52
Nolte, Meinecke, Ziehe, Müller (bib42) 2006
Tomioka, Dornhege, Aihara, Müller (bib51) 2006
Ramoser, Müller-Gerking, Pfurtscheller (bib48) 2000; 8
Dornhege, Blankertz, Curio, Müller (bib15) 2004; vol. 16
Krausz, Scherer, Korisek, Pfurtscheller (bib30) 2003; 28
da Silva, van Lierop, Schrijer, van Leeuwen (bib11) 1973; 35
Shenoy, Krauledat, Blankertz, Rao, Müller (bib50) 2006; 3
Blankertz, Müller, Krusienski, Schalk, Wolpaw, Schlögl, Pfurtscheller, del Millán, Schröder, Birbaumer (bib8) 2006; 14
(bib18) 2007
Dornhege, Krauledat, Müller, Blankertz (bib19) 2007
Jasper, Penfield (bib26) 1949; 183
Blankertz, Dornhege, Lemm, Krauledat, Curio, Müller (bib7) 2006; 12
Blankertz, Dornhege, Krauledat, Müller, Kunzmann, Losch, Curio (bib5) 2006; 14
del Millán (10.1016/j.neuroimage.2007.01.051_bib13) 2002; 13
Neuper (10.1016/j.neuroimage.2007.01.051_bib41) 2005; 25
Tomioka (10.1016/j.neuroimage.2007.01.051_bib51) 2006
10.1016/j.neuroimage.2007.01.051_bib52
Müller (10.1016/j.neuroimage.2007.01.051_bib38) 2003; 11
Pfurtscheller (10.1016/j.neuroimage.2007.01.051_bib45) 2005
Blankertz (10.1016/j.neuroimage.2007.01.051_bib4) 2004; 51
Guger (10.1016/j.neuroimage.2007.01.051_bib22) 2000; 8
Dornhege (10.1016/j.neuroimage.2007.01.051_bib17) 2007
Kübler (10.1016/j.neuroimage.2007.01.051_bib32) 2005; 64
Fukunaga (10.1016/j.neuroimage.2007.01.051_bib21) 1990
Pfurtscheller (10.1016/j.neuroimage.2007.01.051_bib43) 1999; 110
Wolpaw (10.1016/j.neuroimage.2007.01.051_bib54) 2000; 8
Blankertz (10.1016/j.neuroimage.2007.01.051_bib6) 2006
Koles (10.1016/j.neuroimage.2007.01.051_bib28) 1998; 107
del Millán (10.1016/j.neuroimage.2007.01.051_bib12) 2003; 11
Jasper (10.1016/j.neuroimage.2007.01.051_bib26) 1949; 183
Neuper (10.1016/j.neuroimage.2007.01.051_bib40) 2001; 43
Ramoser (10.1016/j.neuroimage.2007.01.051_bib48) 2000; 8
Wolpaw (10.1016/j.neuroimage.2007.01.051_bib55) 2002; 113
Berger (10.1016/j.neuroimage.2007.01.051_bib1) 1933; 99
Blankertz (10.1016/j.neuroimage.2007.01.051_bib3) 2003; 11
Shenoy (10.1016/j.neuroimage.2007.01.051_bib50) 2006; 3
Jasper (10.1016/j.neuroimage.2007.01.051_bib25) 1938; 39
Popescu (10.1016/j.neuroimage.2007.01.051_bib47) 2006
Cheng (10.1016/j.neuroimage.2007.01.051_bib9) 2002; 49
(10.1016/j.neuroimage.2007.01.051_bib18) 2007
Elbert (10.1016/j.neuroimage.2007.01.051_bib20) 1980; 48
McFarland (10.1016/j.neuroimage.2007.01.051_bib34) 2003; 63
Nolte (10.1016/j.neuroimage.2007.01.051_bib42) 2006
Krauledat (10.1016/j.neuroimage.2007.01.051_bib29) 2006
Müller (10.1016/j.neuroimage.2007.01.051_bib39) 2004; 49
Dornhege (10.1016/j.neuroimage.2007.01.051_bib16) 2006; 53
Birbaumer (10.1016/j.neuroimage.2007.01.051_bib2) 2000; 8
Blankertz (10.1016/j.neuroimage.2007.01.051_bib5) 2006; 14
Dornhege (10.1016/j.neuroimage.2007.01.051_bib15) 2004; vol. 16
Lemm (10.1016/j.neuroimage.2007.01.051_bib33) 2005; 52
Müller (10.1016/j.neuroimage.2007.01.051_bib36) 2006; 23
Müller (10.1016/j.neuroimage.2007.01.051_bib37) 2001; 12
Dornhege (10.1016/j.neuroimage.2007.01.051_bib19) 2007
Blankertz (10.1016/j.neuroimage.2007.01.051_bib8) 2006; 14
Kaper (10.1016/j.neuroimage.2007.01.051_bib27) 2004
Dornhege (10.1016/j.neuroimage.2007.01.051_bib14) 2004; 51
Pfurtscheller (10.1016/j.neuroimage.2007.01.051_bib44) 1999; 269
Haykin (10.1016/j.neuroimage.2007.01.051_bib24) 1995
Kübler (10.1016/j.neuroimage.2007.01.051_bib31) 2001; 127
Guger (10.1016/j.neuroimage.2007.01.051_bib23) 2000; 8
Rockstroh (10.1016/j.neuroimage.2007.01.051_bib49) 1984; 9
Blankertz (10.1016/j.neuroimage.2007.01.051_bib7) 2006; 12
Curran (10.1016/j.neuroimage.2007.01.051_bib10) 2003; 51
Pfurtscheller (10.1016/j.neuroimage.2007.01.051_bib46) 2006; 31
Vaughan (10.1016/j.neuroimage.2007.01.051_bib53) 1998; 107
Krausz (10.1016/j.neuroimage.2007.01.051_bib30) 2003; 28
da Silva (10.1016/j.neuroimage.2007.01.051_bib11) 1973; 35
Meinecke (10.1016/j.neuroimage.2007.01.051_bib35) 2005; 94
References_xml – start-page: 207
  year: 2007
  end-page: 233
  ident: bib19
  article-title: Towards Brain–Computer Interfacing, chapter General signal processing and machine learning tools for BCI
  publication-title: MIT Press
– start-page: 4363
  year: 2004
  end-page: 4366
  ident: bib27
  article-title: Generalizing to new subjects in brain–computer interfacing
  publication-title: Proceedings of the 26th Annual International Conference IEEE EMBS, San Francisco
– volume: 8
  start-page: 447
  year: 2000
  end-page: 456
  ident: bib22
  article-title: Real-time EEG analysis with subject-specific spatial patterns for a Brain Computer Interface (BCI)
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– year: 1995
  ident: bib24
  article-title: Adaptive Filter Theory
– volume: 107
  start-page: 428
  year: 1998
  end-page: 433
  ident: bib53
  article-title: EEG-based communication: analysis of concurrent EMG activity
  publication-title: Electroencephalogr. Clin. Neurophysiol.
– volume: 11
  start-page: 159
  year: 2003
  end-page: 161
  ident: bib12
  article-title: Asynchronous bci and local neural classifiers: an overview of the adaptive brain interface project
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 12
  start-page: 581
  year: 2006
  end-page: 607
  ident: bib7
  article-title: The Berlin Brain–Computer Interface: machine learning based detection of user specific brain states
  publication-title: J. Univer. Comput. Sci.
– volume: 12
  start-page: 181
  year: 2001
  end-page: 201
  ident: bib37
  article-title: An introduction to kernel-based learning algorithms
  publication-title: IEEE Neural Netw.
– volume: 51
  start-page: 326
  year: 2003
  end-page: 336
  ident: bib10
  article-title: Learning to control brain activity: a review of the production and control of EEG components for driving brain–computer interface (BCI) systems
  publication-title: Brain Cogn.
– volume: 113
  start-page: 767
  year: 2002
  end-page: 791
  ident: bib55
  article-title: Brain–computer interfaces for communication and control
  publication-title: Clin. Neurophysiol.
– volume: 43
  start-page: 41
  year: 2001
  end-page: 58
  ident: bib40
  article-title: Event-related dynamics of cortical rhythms: frequency-specific features and functional correlates
  publication-title: Int. J. Psychophysiol.
– volume: 8
  start-page: 447
  year: 2000
  end-page: 456
  ident: bib23
  article-title: Real-time EEG analysis with subject-specific spatial patterns for a Brain Computer Interface (BCI)
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– year: 2007
  ident: bib18
  publication-title: Towards Brain–Computer Interfacing
– volume: 28
  start-page: 233
  year: 2003
  end-page: 240
  ident: bib30
  article-title: Critical decision-speed and information transfer in the “Graz Brain–Computer Interface”
  publication-title: Appl. Psychophysiol. Biofeedback
– start-page: 73
  year: 2006
  ident: bib42
  article-title: Identifying interactions in mixed and noisy complex systems
  publication-title: Phys. Rev. E
– volume: 8
  start-page: 441
  year: 2000
  end-page: 446
  ident: bib48
  article-title: Optimal spatial filtering of single trial EEG during imagined hand movement
  publication-title: IEEE Trans. Rehabil. Eng.
– volume: 53
  start-page: 2274
  year: 2006
  end-page: 2281
  ident: bib16
  article-title: Combined optimization of spatial and temporal filters for improving brain–computer interfacing
  publication-title: IEEE Trans. Biomed. Eng.
– start-page: 409
  year: 2007
  end-page: 422
  ident: bib17
  article-title: Improving human performance in a real operating environment through real-time mental workload detection
  publication-title: Towards Brain–Computer Interfacing
– volume: 183
  start-page: 163
  year: 1949
  end-page: 174
  ident: bib26
  article-title: Electrocorticograms in man: effects of voluntary movement upon the electrical activity of the precentral gyrus
  publication-title: Arch. Psychiatr. Nervenkrankh.
– volume: 51
  start-page: 1044
  year: 2004
  end-page: 1051
  ident: bib4
  article-title: The BCI competition 2003: progress and perspectives in detection and discrimination of EEG single trials
  publication-title: IEEE Trans. Biomed. Eng.
– reference: Tomioka, R., Aihara, K., Müller, K.-R., in press. Logistic regression for single trial EEG classification. In: Advances in Neural Inf. Proc. Systems (NIPS 06), volume 19. MIT Press.
– volume: 52
  start-page: 1541
  year: 2005
  end-page: 1548
  ident: bib33
  article-title: Spatio-spectral filters for improved classification of single trial EEG
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 9
  start-page: 139
  year: 1984
  end-page: 160
  ident: bib49
  article-title: Operant control of EEG and event-related and slow brain potentials
  publication-title: Biofeedback Self-Regul.
– volume: 39
  start-page: 96
  year: 1938
  end-page: 115
  ident: bib25
  article-title: Normal differentiation of occipital and precentral regions in man
  publication-title: Arch. Neurol. Psychiatry (Chicago)
– volume: 107
  start-page: 343
  year: 1998
  end-page: 352
  ident: bib28
  article-title: EEG source localization: implementing the spatio-temporal decomposition approach
  publication-title: Electroencephalogr. Clin. Neurophysiol.
– start-page: 108
  year: 2006
  end-page: 109
  ident: bib6
  article-title: The Berlin Brain–Computer Interface presents the novel mental typewriter Hex-o-Spell
  publication-title: Proceedings of the 3rd International Brain–Computer Interface Workshop and Training Course 2006
– volume: 11
  start-page: 165
  year: 2003
  end-page: 169
  ident: bib38
  article-title: Linear and non-linear methods for brain–computer interfaces
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– start-page: 22
  year: 2006
  end-page: 23
  ident: bib51
  article-title: An iterative algorithm for spatio-temporal filter optimization
  publication-title: Proceedings of the 3rd International Brain–Computer Interface Workshop and Training Course 2006
– volume: 49
  start-page: 11
  year: 2004
  end-page: 22
  ident: bib39
  article-title: Machine learning techniques for brain–computer interfaces
  publication-title: Biomed. Tech.
– volume: 23
  start-page: 125
  year: 2006
  end-page: 128
  ident: bib36
  article-title: Toward noninvasive brain–computer interfaces
  publication-title: IEEE Signal Process. Mag.
– volume: 31
  start-page: 153
  year: 2006
  end-page: 159
  ident: bib46
  article-title: Mu rhythm (de)synchronization and EEG single-trial classification of different motor imagery tasks
  publication-title: NeuroImage
– volume: 64
  start-page: 1775
  year: 2005
  end-page: 1777
  ident: bib32
  article-title: Patients with ALS can use sensorimotor rhythms to operate a brain–computer interface
  publication-title: Neurology
– volume: 11
  start-page: 127
  year: 2003
  end-page: 131
  ident: bib3
  article-title: Boosting bit rates and error detection for the classification of fast-paced motor commands based on single-trial EEG analysis
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 3
  start-page: R13
  year: 2006
  end-page: R23
  ident: bib50
  article-title: Towards adaptive classification for BCI
  publication-title: J. Neural Eng.
– volume: 94
  start-page: 084102
  year: 2005
  ident: bib35
  article-title: Measuring phase synchronization of superimposed signals
  publication-title: Phys. Rev. Lett.
– start-page: 367
  year: 2005
  end-page: 401
  ident: bib45
  article-title: Human brain–computer interface
  publication-title: Motor Cortex in Voluntary Movements
– volume: 8
  start-page: 164
  year: 2000
  end-page: 173
  ident: bib54
  article-title: Brain–computer interface technology: a review of the first international meeting
  publication-title: IEEE Trans. Rehabil. Eng.
– volume: 99
  start-page: 555
  year: 1933
  end-page: 574
  ident: bib1
  article-title: Über das Elektroenkephalogramm des Menschen
  publication-title: Arch. Psychiatr. Nervenkrankh.
– year: 1990
  ident: bib21
  publication-title: Introduction to statistical pattern recognition
– volume: 110
  start-page: 1842
  year: 1999
  end-page: 1857
  ident: bib43
  article-title: Event-related EEG/MEG synchronization and desynchronization: basic principles
  publication-title: Clin. Neurophysiol.
– volume: 51
  start-page: 993
  year: 2004
  end-page: 1002
  ident: bib14
  article-title: Boosting bit rates in non-invasive EEG single-trial classifications by feature combination and multi-class paradigms
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 48
  start-page: 293
  year: 1980
  end-page: 301
  ident: bib20
  article-title: Biofeedback of slow cortical potentials. I
  publication-title: Electroencephalogr. Clin. Neurophysiol.
– volume: 14
  start-page: 147
  year: 2006
  end-page: 152
  ident: bib5
  article-title: The Berlin Brain–Computer Interface: EEG-based communication without subject training
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 13
  start-page: 678
  year: 2002
  end-page: 686
  ident: bib13
  article-title: A local neural classifier for the recognition of EEG patterns associated to mental tasks
  publication-title: IEEE Trans. Neural Netw.
– volume: vol. 16
  start-page: 733
  year: 2004
  end-page: 740
  ident: bib15
  article-title: Increase information transfer rates in BCI by CSP extension to multi-class
  publication-title: Advances in Neural Information Processing Systems
– volume: 49
  start-page: 1181
  year: 2002
  end-page: 1186
  ident: bib9
  article-title: Design and implementation of a brain–computer interface with high transfer rates
  publication-title: IEEE Trans. Biomed. Eng.
– start-page: 60
  year: 2006
  end-page: 61
  ident: bib29
  article-title: Brain state differences between calibration and application session influence BCI classification accuracy
  publication-title: Proceedings of the 3rd International Brain–Computer Interface Workshop and Training Course 2006
– volume: 14
  start-page: 153
  year: 2006
  end-page: 159
  ident: bib8
  article-title: The BCI competition III: validating alternative approaches to actual BCI problems
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 35
  start-page: 627
  year: 1973
  end-page: 640
  ident: bib11
  article-title: Organization of thalamic and cortical alpha rhythm: spectra and coherences
  publication-title: Electroencephalogr. Clin. Neurophysiol.
– volume: 25
  start-page: 668
  year: 2005
  end-page: 677
  ident: bib41
  article-title: Imagery of motor actions: differential effects of kinesthetic and visual-motor mode of imagery in single-trial EEG
  publication-title: Brain Res. Cogn. Brain Res.
– volume: 127
  start-page: 358
  year: 2001
  end-page: 375
  ident: bib31
  article-title: Brain–computer communication: unlocking the locked in
  publication-title: Psychol. Bull.
– volume: 8
  start-page: 190
  year: 2000
  end-page: 193
  ident: bib2
  article-title: The though translation device (TTD) for completely paralyzed patients
  publication-title: IEEE Trans. Rehabil. Eng.
– volume: 269
  start-page: 153
  year: 1999
  end-page: 156
  ident: bib44
  article-title: Visually guided motor imagery activates sensorimotor areas in humans
  publication-title: Neurosci. Lett.
– start-page: 123
  year: 2006
  end-page: 124
  ident: bib47
  article-title: EEG-based control of reaching to visual targets
  publication-title: Dynamical Principles for Neuroscience and Intelligent Biomimetic Devices—Abstracts of the EPFL-LATSIS Symposium 2006
– volume: 63
  start-page: 237
  year: 2003
  end-page: 251
  ident: bib34
  article-title: Brain–computer interface (BCI) operation: optimizing information transfer rates
  publication-title: Biol. Psychol.
– volume: 113
  start-page: 767
  year: 2002
  ident: 10.1016/j.neuroimage.2007.01.051_bib55
  article-title: Brain–computer interfaces for communication and control
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/S1388-2457(02)00057-3
– volume: 127
  start-page: 358
  issue: 3
  year: 2001
  ident: 10.1016/j.neuroimage.2007.01.051_bib31
  article-title: Brain–computer communication: unlocking the locked in
  publication-title: Psychol. Bull.
  doi: 10.1037/0033-2909.127.3.358
– volume: 11
  start-page: 165
  issue: 2
  year: 2003
  ident: 10.1016/j.neuroimage.2007.01.051_bib38
  article-title: Linear and non-linear methods for brain–computer interfaces
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2003.814484
– volume: 8
  start-page: 164
  issue: 2
  year: 2000
  ident: 10.1016/j.neuroimage.2007.01.051_bib54
  article-title: Brain–computer interface technology: a review of the first international meeting
  publication-title: IEEE Trans. Rehabil. Eng.
  doi: 10.1109/TRE.2000.847807
– volume: 43
  start-page: 41
  year: 2001
  ident: 10.1016/j.neuroimage.2007.01.051_bib40
  article-title: Event-related dynamics of cortical rhythms: frequency-specific features and functional correlates
  publication-title: Int. J. Psychophysiol.
  doi: 10.1016/S0167-8760(01)00178-7
– volume: 3
  start-page: R13
  year: 2006
  ident: 10.1016/j.neuroimage.2007.01.051_bib50
  article-title: Towards adaptive classification for BCI
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/3/1/R02
– volume: 107
  start-page: 343
  year: 1998
  ident: 10.1016/j.neuroimage.2007.01.051_bib28
  article-title: EEG source localization: implementing the spatio-temporal decomposition approach
  publication-title: Electroencephalogr. Clin. Neurophysiol.
  doi: 10.1016/S0013-4694(98)00084-4
– volume: 12
  start-page: 581
  issue: 6
  year: 2006
  ident: 10.1016/j.neuroimage.2007.01.051_bib7
  article-title: The Berlin Brain–Computer Interface: machine learning based detection of user specific brain states
  publication-title: J. Univer. Comput. Sci.
– volume: 51
  start-page: 993
  issue: 6
  year: 2004
  ident: 10.1016/j.neuroimage.2007.01.051_bib14
  article-title: Boosting bit rates in non-invasive EEG single-trial classifications by feature combination and multi-class paradigms
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2004.827088
– volume: 28
  start-page: 233
  issue: 3
  year: 2003
  ident: 10.1016/j.neuroimage.2007.01.051_bib30
  article-title: Critical decision-speed and information transfer in the “Graz Brain–Computer Interface”
  publication-title: Appl. Psychophysiol. Biofeedback
  doi: 10.1023/A:1024637331493
– start-page: 73
  year: 2006
  ident: 10.1016/j.neuroimage.2007.01.051_bib42
  article-title: Identifying interactions in mixed and noisy complex systems
  publication-title: Phys. Rev. E
– ident: 10.1016/j.neuroimage.2007.01.051_bib52
– volume: 35
  start-page: 627
  year: 1973
  ident: 10.1016/j.neuroimage.2007.01.051_bib11
  article-title: Organization of thalamic and cortical alpha rhythm: spectra and coherences
  publication-title: Electroencephalogr. Clin. Neurophysiol.
  doi: 10.1016/0013-4694(73)90216-2
– year: 1995
  ident: 10.1016/j.neuroimage.2007.01.051_bib24
– volume: 269
  start-page: 153
  year: 1999
  ident: 10.1016/j.neuroimage.2007.01.051_bib44
  article-title: Visually guided motor imagery activates sensorimotor areas in humans
  publication-title: Neurosci. Lett.
  doi: 10.1016/S0304-3940(99)00452-8
– volume: 14
  start-page: 153
  issue: 2
  year: 2006
  ident: 10.1016/j.neuroimage.2007.01.051_bib8
  article-title: The BCI competition III: validating alternative approaches to actual BCI problems
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2006.875642
– volume: 39
  start-page: 96
  year: 1938
  ident: 10.1016/j.neuroimage.2007.01.051_bib25
  article-title: Normal differentiation of occipital and precentral regions in man
  publication-title: Arch. Neurol. Psychiatry (Chicago)
  doi: 10.1001/archneurpsyc.1938.02270010106010
– volume: 11
  start-page: 159
  issue: 2
  year: 2003
  ident: 10.1016/j.neuroimage.2007.01.051_bib12
  article-title: Asynchronous bci and local neural classifiers: an overview of the adaptive brain interface project
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2003.814435
– volume: 13
  start-page: 678
  issue: 3
  year: 2002
  ident: 10.1016/j.neuroimage.2007.01.051_bib13
  article-title: A local neural classifier for the recognition of EEG patterns associated to mental tasks
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2002.1000132
– volume: 110
  start-page: 1842
  issue: 11
  year: 1999
  ident: 10.1016/j.neuroimage.2007.01.051_bib43
  article-title: Event-related EEG/MEG synchronization and desynchronization: basic principles
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/S1388-2457(99)00141-8
– volume: 49
  start-page: 11
  issue: 1
  year: 2004
  ident: 10.1016/j.neuroimage.2007.01.051_bib39
  article-title: Machine learning techniques for brain–computer interfaces
  publication-title: Biomed. Tech.
– volume: 11
  start-page: 127
  issue: 2
  year: 2003
  ident: 10.1016/j.neuroimage.2007.01.051_bib3
  article-title: Boosting bit rates and error detection for the classification of fast-paced motor commands based on single-trial EEG analysis
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2003.814456
– start-page: 4363
  year: 2004
  ident: 10.1016/j.neuroimage.2007.01.051_bib27
  article-title: Generalizing to new subjects in brain–computer interfacing
– volume: 8
  start-page: 447
  issue: 4
  year: 2000
  ident: 10.1016/j.neuroimage.2007.01.051_bib22
  article-title: Real-time EEG analysis with subject-specific spatial patterns for a Brain Computer Interface (BCI)
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/86.895947
– start-page: 367
  year: 2005
  ident: 10.1016/j.neuroimage.2007.01.051_bib45
  article-title: Human brain–computer interface
– volume: 31
  start-page: 153
  issue: 1
  year: 2006
  ident: 10.1016/j.neuroimage.2007.01.051_bib46
  article-title: Mu rhythm (de)synchronization and EEG single-trial classification of different motor imagery tasks
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2005.12.003
– volume: 8
  start-page: 441
  issue: 4
  year: 2000
  ident: 10.1016/j.neuroimage.2007.01.051_bib48
  article-title: Optimal spatial filtering of single trial EEG during imagined hand movement
  publication-title: IEEE Trans. Rehabil. Eng.
  doi: 10.1109/86.895946
– start-page: 207
  year: 2007
  ident: 10.1016/j.neuroimage.2007.01.051_bib19
  article-title: Towards Brain–Computer Interfacing, chapter General signal processing and machine learning tools for BCI
– year: 2007
  ident: 10.1016/j.neuroimage.2007.01.051_bib18
– start-page: 22
  year: 2006
  ident: 10.1016/j.neuroimage.2007.01.051_bib51
  article-title: An iterative algorithm for spatio-temporal filter optimization
– start-page: 409
  year: 2007
  ident: 10.1016/j.neuroimage.2007.01.051_bib17
  article-title: Improving human performance in a real operating environment through real-time mental workload detection
– start-page: 123
  year: 2006
  ident: 10.1016/j.neuroimage.2007.01.051_bib47
  article-title: EEG-based control of reaching to visual targets
– start-page: 108
  year: 2006
  ident: 10.1016/j.neuroimage.2007.01.051_bib6
  article-title: The Berlin Brain–Computer Interface presents the novel mental typewriter Hex-o-Spell
– volume: 48
  start-page: 293
  year: 1980
  ident: 10.1016/j.neuroimage.2007.01.051_bib20
  article-title: Biofeedback of slow cortical potentials. I
  publication-title: Electroencephalogr. Clin. Neurophysiol.
  doi: 10.1016/0013-4694(80)90265-5
– volume: 99
  start-page: 555
  issue: 6
  year: 1933
  ident: 10.1016/j.neuroimage.2007.01.051_bib1
  article-title: Über das Elektroenkephalogramm des Menschen
  publication-title: Arch. Psychiatr. Nervenkrankh.
  doi: 10.1007/BF01814320
– volume: 64
  start-page: 1775
  issue: 10
  year: 2005
  ident: 10.1016/j.neuroimage.2007.01.051_bib32
  article-title: Patients with ALS can use sensorimotor rhythms to operate a brain–computer interface
  publication-title: Neurology
  doi: 10.1212/01.WNL.0000158616.43002.6D
– volume: 14
  start-page: 147
  issue: 2
  year: 2006
  ident: 10.1016/j.neuroimage.2007.01.051_bib5
  article-title: The Berlin Brain–Computer Interface: EEG-based communication without subject training
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2006.875557
– volume: 63
  start-page: 237
  year: 2003
  ident: 10.1016/j.neuroimage.2007.01.051_bib34
  article-title: Brain–computer interface (BCI) operation: optimizing information transfer rates
  publication-title: Biol. Psychol.
  doi: 10.1016/S0301-0511(03)00073-5
– volume: 53
  start-page: 2274
  issue: 11
  year: 2006
  ident: 10.1016/j.neuroimage.2007.01.051_bib16
  article-title: Combined optimization of spatial and temporal filters for improving brain–computer interfacing
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2006.883649
– volume: 51
  start-page: 1044
  issue: 6
  year: 2004
  ident: 10.1016/j.neuroimage.2007.01.051_bib4
  article-title: The BCI competition 2003: progress and perspectives in detection and discrimination of EEG single trials
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2004.826692
– volume: vol. 16
  start-page: 733
  year: 2004
  ident: 10.1016/j.neuroimage.2007.01.051_bib15
  article-title: Increase information transfer rates in BCI by CSP extension to multi-class
– volume: 23
  start-page: 125
  issue: 5
  year: 2006
  ident: 10.1016/j.neuroimage.2007.01.051_bib36
  article-title: Toward noninvasive brain–computer interfaces
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2006.1708426
– volume: 51
  start-page: 326
  year: 2003
  ident: 10.1016/j.neuroimage.2007.01.051_bib10
  article-title: Learning to control brain activity: a review of the production and control of EEG components for driving brain–computer interface (BCI) systems
  publication-title: Brain Cogn.
  doi: 10.1016/S0278-2626(03)00036-8
– volume: 25
  start-page: 668
  issue: 3
  year: 2005
  ident: 10.1016/j.neuroimage.2007.01.051_bib41
  article-title: Imagery of motor actions: differential effects of kinesthetic and visual-motor mode of imagery in single-trial EEG
  publication-title: Brain Res. Cogn. Brain Res.
  doi: 10.1016/j.cogbrainres.2005.08.014
– volume: 8
  start-page: 447
  issue: 4
  year: 2000
  ident: 10.1016/j.neuroimage.2007.01.051_bib23
  article-title: Real-time EEG analysis with subject-specific spatial patterns for a Brain Computer Interface (BCI)
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/86.895947
– volume: 12
  start-page: 181
  issue: 2
  year: 2001
  ident: 10.1016/j.neuroimage.2007.01.051_bib37
  article-title: An introduction to kernel-based learning algorithms
  publication-title: IEEE Neural Netw.
  doi: 10.1109/72.914517
– volume: 8
  start-page: 190
  issue: 2
  year: 2000
  ident: 10.1016/j.neuroimage.2007.01.051_bib2
  article-title: The though translation device (TTD) for completely paralyzed patients
  publication-title: IEEE Trans. Rehabil. Eng.
  doi: 10.1109/86.847812
– start-page: 60
  year: 2006
  ident: 10.1016/j.neuroimage.2007.01.051_bib29
  article-title: Brain state differences between calibration and application session influence BCI classification accuracy
– year: 1990
  ident: 10.1016/j.neuroimage.2007.01.051_bib21
– volume: 94
  start-page: 084102
  issue: 8
  year: 2005
  ident: 10.1016/j.neuroimage.2007.01.051_bib35
  article-title: Measuring phase synchronization of superimposed signals
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.94.084102
– volume: 183
  start-page: 163
  year: 1949
  ident: 10.1016/j.neuroimage.2007.01.051_bib26
  article-title: Electrocorticograms in man: effects of voluntary movement upon the electrical activity of the precentral gyrus
  publication-title: Arch. Psychiatr. Nervenkrankh.
  doi: 10.1007/BF01062488
– volume: 52
  start-page: 1541
  issue: 9
  year: 2005
  ident: 10.1016/j.neuroimage.2007.01.051_bib33
  article-title: Spatio-spectral filters for improved classification of single trial EEG
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2005.851521
– volume: 49
  start-page: 1181
  issue: 10
  year: 2002
  ident: 10.1016/j.neuroimage.2007.01.051_bib9
  article-title: Design and implementation of a brain–computer interface with high transfer rates
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2002.803536
– volume: 9
  start-page: 139
  issue: 2
  year: 1984
  ident: 10.1016/j.neuroimage.2007.01.051_bib49
  article-title: Operant control of EEG and event-related and slow brain potentials
  publication-title: Biofeedback Self-Regul.
  doi: 10.1007/BF00998830
– volume: 107
  start-page: 428
  year: 1998
  ident: 10.1016/j.neuroimage.2007.01.051_bib53
  article-title: EEG-based communication: analysis of concurrent EMG activity
  publication-title: Electroencephalogr. Clin. Neurophysiol.
  doi: 10.1016/S0013-4694(98)00107-2
SSID ssj0009148
Score 2.491397
Snippet Brain–Computer Interface (BCI) systems establish a direct communication channel from the brain to an output device. These systems use brain signals recorded...
Brain-Computer Interface (BCI) systems establish a direct communication channel from the brain to an output device. These systems use brain signals recorded...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 539
SubjectTerms Adult
Algorithms
Amyotrophic lateral sclerosis
Brain - physiology
Brain research
Communication Aids for Disabled
Computer User Training - methods
Discriminant analysis
Electroencephalography
Humans
Learning - physiology
Male
Man-Machine Systems
Middle Aged
Patients
Psychomotor Performance - physiology
Signal processing
Studies
User-Computer Interface
SummonAdditionalLinks – databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  dbid: AIKHN
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07b9swED6kDlB0CZL05ebFoStrU5QsspmSoIaTIFnaANkISiIBFa3jVlbm_of-w_6S3omUjQ4BDHQVdQTJI-9B3n0H8N5L71WqLa_8pOCpk5bOnObKj3Mni0KlivKdb24ns7v06j6734KLPheGwiqj7A8yvZPW8csoruZoUdejz2gZoLpBhZYHlJJnsJ2gtlcD2D67vJ7drrF3RRoy4jLJiSAG9IQwrw42sv6OhzfiGYoP40w8paWeskI7bTTdhZ1oRrKzMNI92HLzfXh-Ex_KX0KD7Gfo2fN6_mgpQp0FXCt2TiUh_vz63VdzYN2VoLel-8imtlkyW_5o6xDIxR48C_Ee1MFinWLAsKN23lWXcBVr2oIuc5pXcDf99OVixmN9BV6i-7nkvsyIH4lyVlEpMqGVr3A9tUcPGx0PZK50MtG-csIJZJvVZWUttujEZTaTr2GAM3FvgUmPnkZZuQINQnIRbaEmVUYGVa6ttuUQ8n49TRnBx2mU30wfZfbVrDlBtTFzMxYGOTEEsaJcBACODWh0zzLTJ5iiSDSoJTagPV3R_rMRN6Q-7HeIicKgMQTimCepHKshnKya8RjT24ydu4e2MQQLh9Yb_vEm7Kv1ZNHhoyo87_5rYAfwItxKKy6yQxgsf7buCM2pZXEcj8tfPQ8igA
  priority: 102
  providerName: Elsevier
Title The non-invasive Berlin Brain–Computer Interface: Fast acquisition of effective performance in untrained subjects
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811907000535
https://dx.doi.org/10.1016/j.neuroimage.2007.01.051
https://www.ncbi.nlm.nih.gov/pubmed/17475513
https://www.proquest.com/docview/1506724308
https://www.proquest.com/docview/68100758
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxELZ4SFUviBbaBmjqQ6-mcbybteFQASIKbYkQKlJultdrS6naPNgsR347M2tv9kSVkw_2WOsdP74Zj-cj5KsX3stEGVb4Qc4SJwyuOcWk72VO5LlMJL53vh0PRg_Jj0k6iQ63MoZVNntivVEXc4s-8m-YCS_rJ6Invy-WDFmj8HY1Umhsk10OSASpG7JJ1ibd5Ul4CpcKJqFBjOQJ8V11vsjpP1i1MZEhP-2l_LXj6TX4WR9Dw32yF_EjvQgKf0e23Ow9eXMbb8gPyBL0TsGkZ9PZk8HQdBoSWtFL5IJgDYkDrT2B3lh3RoemXFFjl9U0xG_RuachzAPFF-3LAgrdVLOaVMIVtKxy9OGUh-RheP37asQirQKzYHWumLcpqqEvnZHIQMaV9AXgAuXBsAZ7A3QqnOgrXzjuOGjLKFsYAzWq71KTig9kB8bhPhEqPBgYtnA54EC0DE0uB0WKOCpTRhnbIVnzN7WNOcfxK__qJrjsj271gJSYme5xDXroEL6WXIS8GxvIqEZhunlXCjuhhsNhA9nztWzEHgFTbCh90swPHfeAUrcztkO-rKth9eKVjJm5eVVqzAYHoA1afAyzqh0s2HlIvnP0_66PydvgbZaMpydkZ_VYuc8Ak1Z5l2yfPvNuvSK6ZPfi6v7XHZY3P0djKC-vx3f3L62NGbM
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELaqVAIuFW_SFuoDHA3ZV9YGVYhCo5Q2EUKt1Jvxrm0pqN0k3SyIP8dvY2ZtZ09FufTsHcveseflmfkIeW0Ta3kqFNN2WLDUJArvnGDcDnKTFAVPOdY7T6bD8UX69TK73CJ_Qy0MplUGmdgKaj0vMUb-Djvh5XGaDPjHxZIhahS-rgYIDeWhFfRh22LMF3acmj-_wYWrD0--AL_fxPHo-PzzmHmUAVaCE7ZitsxwVTE3iiMgF3jhVoOaFBb8TDC_YYuJSWJhtYlMBItXotRKwYiITaYQNQJUwHaKAZQe2T46nn773rX9jVJXjJcljMPUPpfIZZi1HStn1yA3fCvF6O0gi25TkLcZwK0iHD0kO96CpZ_ckXtEtkz1mNyb-Df6J2QJJ49W84rNql8Kk-Opa6lFjxCNggUYCdrGIq0qzXs6UvWKqnLZzFwGGZ1b6hJNkHzR1TZQmKapWlgLo2ndFBhFqp-Sizv55c9ID_ZhXhCaWHBxSm0KsETRN1UFH-oMLblcKKHKPsnD35Sl73qOq7ySIb3tp-z4gKCcuRxEEvjQJ9GacuE6f2xAIwLDZKhsBVksQT1tQPthTeutH2fVbEi9H86H9FKolt2d6ZOD9TDID3wUUpWZN7XEfnRgNsIXz92p6jYLnibC_-z-f-oDcn98PjmTZyfT0z3ywMW-OYuyfdJb3TTmJRhtq-KVvxmU_Ljry_gP6A5YWg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqVqq4IN4sLdQHOJpuXhsbVCFKu2opXVWISr0Zxw9pK8juNhsQf5FfxUxsb05Fe-k5GSuOPS975vsIee0y53guFDNuVLHcZgp1TjDuhqXNqornHPudzyejk8v881VxtUH-xl4YLKuMNrEz1Gam8Yx8H5HwyjTPhnzfhbKIi6Pxh_mCIYMU3rRGOg0VaBbMQQc3Fpo8zuyf35DONQenR7D2b9J0fPzt0wkLjANMQ0K2ZE4X-IUpt4ojORdk5M6AyxQOck4IxWG6mc1S4YxNbAITUUIbpeCJSG2hkEEC3MFWCV4fEsGtw-PJxdceAjjJfWNekTEOQ4e6Il9t1qFXTn-CDQmwisnbYZHc5ixvC4Y7pzh-QO6HaJZ-9NvvIdmw9SOyfR7u6x-TBexCWs9qNq1_KSyUpx5eix4iMwWLlBK0O5d0Stt3dKyaJVV60U59NRmdOeqLTlB83vc5UBimrTuKC2to01Z4otQ8IZd38sufkk2Yh31OaOYg3dHGVhCVYp6qKj4yBUZ1pVBC6QEp49-UOiCg41f-kLHU7Vr264AEnaUcJhLWYUCSleTco4CsISPigsnY5Qp2WYKrWkP2_Uo2REI-wllTejfuDxksUiN7_RmQvdVjsCV4QaRqO2sbidh0EELCG8_8ruonC1knUgG9-P_Qe2QblFJ-OZ2c7ZB7_hics6TYJZvLm9a-hPhtWb0KikHJ97vWxX_6n1ye
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+non-invasive+Berlin+Brain%E2%80%93Computer+Interface%3A+Fast+acquisition+of+effective+performance+in+untrained+subjects&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Blankertz%2C+Benjamin&rft.au=Dornhege%2C+Guido&rft.au=Krauledat%2C+Matthias&rft.au=M%C3%BCller%2C+Klaus-Robert&rft.date=2007-08-15&rft.issn=1053-8119&rft.volume=37&rft.issue=2&rft.spage=539&rft.epage=550&rft_id=info:doi/10.1016%2Fj.neuroimage.2007.01.051&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neuroimage_2007_01_051
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon