Prediction of STN-DBS Electrode Implantation Track in Parkinson's Disease by Using Local Field Potentials

Optimal electrophysiological placement of the DBS electrode may lead to better long term clinical outcomes. Inter-subject anatomical variability and limitations in stereotaxic neuroimaging increase the complexity of physiological mapping performed in the operating room. Microelectrode single unit ne...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in neuroscience Vol. 10; p. 198
Main Authors Telkes, Ilknur, Jimenez-Shahed, Joohi, Viswanathan, Ashwin, Abosch, Aviva, Ince, Nuri F.
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Research Foundation 09.05.2016
Frontiers Media S.A
Subjects
Online AccessGet full text
ISSN1662-453X
1662-4548
1662-453X
DOI10.3389/fnins.2016.00198

Cover

Abstract Optimal electrophysiological placement of the DBS electrode may lead to better long term clinical outcomes. Inter-subject anatomical variability and limitations in stereotaxic neuroimaging increase the complexity of physiological mapping performed in the operating room. Microelectrode single unit neuronal recording remains the most common intraoperative mapping technique, but requires significant expertise and is fraught by potential technical difficulties including robust measurement of the signal. In contrast, local field potentials (LFPs), owing to their oscillatory and robust nature and being more correlated with the disease symptoms, can overcome these technical issues. Therefore, we hypothesized that multiple spectral features extracted from microelectrode-recorded LFPs could be used to automate the identification of the optimal track and the STN localization. In this regard, we recorded LFPs from microelectrodes in three tracks from 22 patients during DBS electrode implantation surgery at different depths and aimed to predict the track selected by the neurosurgeon based on the interpretation of single unit recordings. A least mean square (LMS) algorithm was used to de-correlate LFPs in each track, in order to remove common activity between channels and increase their spatial specificity. Subband power in the beta band (11-32 Hz) and high frequency range (200-450 Hz) were extracted from the de-correlated LFP data and used as features. A linear discriminant analysis (LDA) method was applied both for the localization of the dorsal border of STN and the prediction of the optimal track. By fusing the information from these low and high frequency bands, the dorsal border of STN was localized with a root mean square (RMS) error of 1.22 mm. The prediction accuracy for the optimal track was 80%. Individual beta band (11-32 Hz) and the range of high frequency oscillations (200-450 Hz) provided prediction accuracies of 72 and 68% respectively. The best prediction result obtained with monopolar LFP data was 68%. These results establish the initial evidence that LFPs can be strategically fused with computational intelligence in the operating room for STN localization and the selection of the track for chronic DBS electrode implantation.
AbstractList Optimal electrophysiological placement of the DBS electrode may lead to better long term clinical outcomes. Inter-subject anatomical variability and limitations in stereotaxic neuroimaging increase the complexity of physiological mapping performed in the operating room. Microelectrode single unit neuronal recording remains the most common intraoperative mapping technique, but requires significant expertise and is fraught by potential technical difficulties including robust measurement of the signal. In contrast, local field potentials (LFPs), owing to their oscillatory and robust nature and being more correlated with the disease symptoms, can overcome these technical issues. Therefore, we hypothesized that multiple spectral features extracted from microelectrode-recorded LFPs could be used to automate the identification of the optimal track and the STN localization. In this regard, we recorded LFPs from microelectrodes in three tracks from 22 patients during DBS electrode implantation surgery at different depths and aimed to predict the track selected by the neurosurgeon based on the interpretation of single unit recordings. A least mean square (LMS) algorithm was used to de-correlate LFPs in each track, in order to remove common activity between channels and increase their spatial specificity. Subband power in the beta band (11-32 Hz) and high frequency range (200-450 Hz) were extracted from the de-correlated LFP data and used as features. A linear discriminant analysis (LDA) method was applied both for the localization of the dorsal border of STN and the prediction of the optimal track. By fusing the information from these low and high frequency bands, the dorsal border of STN was localized with a root mean square (RMS) error of 1.22 mm. The prediction accuracy for the optimal track was 80%. Individual beta band (11-32 Hz) and the range of high frequency oscillations (200-450 Hz) provided prediction accuracies of 72 and 68% respectively. The best prediction result obtained with monopolar LFP data was 68%. These results establish the initial evidence that LFPs can be strategically fused with computational intelligence in the operating room for STN localization and the selection of the track for chronic DBS electrode implantation.Optimal electrophysiological placement of the DBS electrode may lead to better long term clinical outcomes. Inter-subject anatomical variability and limitations in stereotaxic neuroimaging increase the complexity of physiological mapping performed in the operating room. Microelectrode single unit neuronal recording remains the most common intraoperative mapping technique, but requires significant expertise and is fraught by potential technical difficulties including robust measurement of the signal. In contrast, local field potentials (LFPs), owing to their oscillatory and robust nature and being more correlated with the disease symptoms, can overcome these technical issues. Therefore, we hypothesized that multiple spectral features extracted from microelectrode-recorded LFPs could be used to automate the identification of the optimal track and the STN localization. In this regard, we recorded LFPs from microelectrodes in three tracks from 22 patients during DBS electrode implantation surgery at different depths and aimed to predict the track selected by the neurosurgeon based on the interpretation of single unit recordings. A least mean square (LMS) algorithm was used to de-correlate LFPs in each track, in order to remove common activity between channels and increase their spatial specificity. Subband power in the beta band (11-32 Hz) and high frequency range (200-450 Hz) were extracted from the de-correlated LFP data and used as features. A linear discriminant analysis (LDA) method was applied both for the localization of the dorsal border of STN and the prediction of the optimal track. By fusing the information from these low and high frequency bands, the dorsal border of STN was localized with a root mean square (RMS) error of 1.22 mm. The prediction accuracy for the optimal track was 80%. Individual beta band (11-32 Hz) and the range of high frequency oscillations (200-450 Hz) provided prediction accuracies of 72 and 68% respectively. The best prediction result obtained with monopolar LFP data was 68%. These results establish the initial evidence that LFPs can be strategically fused with computational intelligence in the operating room for STN localization and the selection of the track for chronic DBS electrode implantation.
Optimal electrophysiological placement of the DBS electrode may lead to better long term clinical outcomes. Inter-subject anatomical variability and limitations in stereotaxic neuroimaging increase the complexity of physiological mapping performed in the operating room. Microelectrode single unit neuronal recording remains the most common intraoperative mapping technique, but requires significant expertise and is fraught by potential technical difficulties including robust measurement of the signal. In contrast, local field potentials (LFPs), owing to their oscillatory and robust nature and being more correlated with the disease symptoms, can overcome these technical issues. Therefore, we hypothesized that multiple spectral features extracted from microelectrode-recorded LFPs could be used to automate the identification of the optimal track and the STN localization. In this regard, we recorded LFPs from microelectrodes in three tracks from 22 patients during DBS electrode implantation surgery at different depths and aimed to predict the track selected by the neurosurgeon based on the interpretation of single unit recordings. A least mean square (LMS) algorithm was used to de-correlate LFPs in each track, in order to remove common activity between channels and increase their spatial specificity. Subband power in the beta band (11-32Hz) and high frequency range (200-450Hz) were extracted from the de-correlated LFP data and used as features. A linear discriminant analysis (LDA) method was applied both for the localization of the dorsal border of STN and the prediction of the optimal track. By fusing the information from these low and high frequency bands, the dorsal border of STN was localized with a root mean square error of 1.22 mm. The prediction accuracy for the optimal track was 80%. Individual beta band (11-32Hz) and the range of high frequency oscillations (200-450Hz) provided prediction accuracies of 72% and 68% respectively. The best prediction result obtained with monopolar LFP data was 68%. These results establish the initial evidence that LFPs can be strategically fused with computational intelligence in the operating room for STN localization and the selection of the track for chronic DBS electrode implantation.
Optimal electrophysiological placement of the DBS electrode may lead to better long term clinical outcomes. Inter-subject anatomical variability and limitations in stereotaxic neuroimaging increase the complexity of physiological mapping performed in the operating room. Microelectrode single unit neuronal recording remains the most common intraoperative mapping technique, but requires significant expertise and is fraught by potential technical difficulties including robust measurement of the signal. In contrast, local field potentials (LFPs), owing to their oscillatory and robust nature and being more correlated with the disease symptoms, can overcome these technical issues. Therefore, we hypothesized that multiple spectral features extracted from microelectrode-recorded LFPs could be used to automate the identification of the optimal track and the STN localization. In this regard, we recorded LFPs from microelectrodes in three tracks from 22 patients during DBS electrode implantation surgery at different depths and aimed to predict the track selected by the neurosurgeon based on the interpretation of single unit recordings. A least mean square (LMS) algorithm was used to de-correlate LFPs in each track, in order to remove common activity between channels and increase their spatial specificity. Subband power in the beta band (11-32 Hz) and high frequency range (200-450 Hz) were extracted from the de-correlated LFP data and used as features. A linear discriminant analysis (LDA) method was applied both for the localization of the dorsal border of STN and the prediction of the optimal track. By fusing the information from these low and high frequency bands, the dorsal border of STN was localized with a root mean square (RMS) error of 1.22 mm. The prediction accuracy for the optimal track was 80%. Individual beta band (11-32 Hz) and the range of high frequency oscillations (200-450 Hz) provided prediction accuracies of 72 and 68% respectively. The best prediction result obtained with monopolar LFP data was 68%. These results establish the initial evidence that LFPs can be strategically fused with computational intelligence in the operating room for STN localization and the selection of the track for chronic DBS electrode implantation.
Author Viswanathan, Ashwin
Telkes, Ilknur
Jimenez-Shahed, Joohi
Ince, Nuri F.
Abosch, Aviva
AuthorAffiliation 2 Department of Neurology, Baylor College of Medicine Houston, TX, USA
4 Department of Neurosurgery, University of Colorado Aurora, CO, USA
1 Clinical Neural Engineering Lab., Biomedical Engineering Department, University of Houston Houston, TX, USA
3 Department of Neurosurgery, Baylor College of Medicine Houston, TX, USA
AuthorAffiliation_xml – name: 2 Department of Neurology, Baylor College of Medicine Houston, TX, USA
– name: 3 Department of Neurosurgery, Baylor College of Medicine Houston, TX, USA
– name: 4 Department of Neurosurgery, University of Colorado Aurora, CO, USA
– name: 1 Clinical Neural Engineering Lab., Biomedical Engineering Department, University of Houston Houston, TX, USA
Author_xml – sequence: 1
  givenname: Ilknur
  surname: Telkes
  fullname: Telkes, Ilknur
– sequence: 2
  givenname: Joohi
  surname: Jimenez-Shahed
  fullname: Jimenez-Shahed, Joohi
– sequence: 3
  givenname: Ashwin
  surname: Viswanathan
  fullname: Viswanathan, Ashwin
– sequence: 4
  givenname: Aviva
  surname: Abosch
  fullname: Abosch, Aviva
– sequence: 5
  givenname: Nuri F.
  surname: Ince
  fullname: Ince, Nuri F.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27242404$$D View this record in MEDLINE/PubMed
BookMark eNqFkstvEzEQxleoiD7gzglZ4gCXBL_Wa1-QoA-IFEGkphI3y2t7g1PHDvaGKv99nWyp2h7oya_ffJ6Zb46rgxCDraq3CI4J4eJTF1zIYwwRG0OIBH9RHSHG8IjW5NfBg_1hdZzzEkKGOcWvqkPcYIoppEeVmyVrnO5dDCB24HL-Y3T29RKce6v7FI0Fk9Xaq9CrPTFPSl8DF8BMpevydQwfMjhz2apsQbsFV9mFBZhGrTy4cNYbMIu9Db1TPr-uXnZlsW_u1pPq6uJ8fvp9NP35bXL6ZTrSNSb9qGuQ0pYY3CKFSMswFo1RmiihLW-gEKZVSDS0E0wwBjtqmNUtYh2FEFNDyUk1GXRNVEu5Tm6l0lZG5eT-IqaFVKl32lsptGGIW9Ux0lDKmxa1sKkZgoSrcrRFCw1am7BW2xvl_b0ggnJngdxbIHcWyL0FJebzELPetCtrdCk_Kf8okccvwf2Wi_hXUs4gEbsCPt4JpPhnY3MvVy5r64sNNm6yRBxyRrBA9fNoIwhGteA79P0TdBk3KRQnJCawrgkiFBbq3cPk77P-NzAFYAOgU8w52U5qNwxHqcX5_7UFPgl8tpO3Uy7k6Q
CitedBy_id crossref_primary_10_1007_s11062_018_9717_3
crossref_primary_10_3390_brainsci9070173
crossref_primary_10_1088_1741_2552_ab37b4
crossref_primary_10_1227_ons_0000000000000298
crossref_primary_10_3389_fnins_2020_00394
crossref_primary_10_1088_1741_2552_ac5c8c
crossref_primary_10_14814_phy2_13322
crossref_primary_10_3389_fnins_2020_00391
crossref_primary_10_1016_j_brs_2019_11_013
crossref_primary_10_3390_brainsci8010017
crossref_primary_10_1016_j_neuroimage_2020_117144
crossref_primary_10_1093_braincomms_fcac003
crossref_primary_10_1080_14737175_2020_1677465
crossref_primary_10_1038_s42003_021_01915_7
crossref_primary_10_1080_00207454_2018_1450253
crossref_primary_10_1038_s41598_020_74196_5
crossref_primary_10_1016_j_wneu_2021_05_136
crossref_primary_10_3389_fnhum_2020_00145
crossref_primary_10_18231_j_ijn_2021_010
crossref_primary_10_1016_j_cmpb_2019_105091
crossref_primary_10_1088_1741_2552_abb581
crossref_primary_10_1038_s41598_025_92111_8
crossref_primary_10_3389_fnins_2020_00611
crossref_primary_10_1016_j_nbd_2021_105372
crossref_primary_10_1111_ejn_15257
crossref_primary_10_1073_pnas_1810589115
crossref_primary_10_3390_diagnostics12010084
crossref_primary_10_1109_TBME_2022_3215092
crossref_primary_10_1080_17434440_2021_1909471
crossref_primary_10_3389_fnins_2018_00998
crossref_primary_10_1016_j_wneu_2018_09_047
crossref_primary_10_3389_fnhum_2022_958521
crossref_primary_10_1038_srep46675
crossref_primary_10_1016_j_bja_2021_01_036
crossref_primary_10_1063_5_0144682
crossref_primary_10_1111_ner_13466
crossref_primary_10_1002_mds_28093
crossref_primary_10_3171_2021_8_JNS204225
crossref_primary_10_1038_s41598_022_21860_7
crossref_primary_10_1159_000492231
crossref_primary_10_1016_j_clinph_2020_03_040
crossref_primary_10_1016_j_nicl_2017_07_018
crossref_primary_10_1111_ejn_14898
crossref_primary_10_3389_fneur_2021_710206
crossref_primary_10_1016_j_isci_2022_105124
crossref_primary_10_3171_2017_12_JNS171964
crossref_primary_10_1109_TBME_2022_3142716
crossref_primary_10_3390_medsci9020020
crossref_primary_10_1016_j_neurom_2023_02_081
crossref_primary_10_1016_j_jneumeth_2020_108826
Cites_doi 10.1016/S1474-4422(08)70291-6
10.1088/1741-2560/6/2/026006
10.1109/BIBE.2008.4696820
10.1097/WCO.0000000000000034
10.1016/j.parkreldis.2009.07.013
10.1002/mds.20960
10.3171/2014.6.PEDS13605
10.1109/TBME.1982.324973
10.1002/mds.25007
10.1159/000093721
10.1523/JNEUROSCI.0282-08.2008
10.1159/000230692
10.1016/j.expneurol.2005.11.019
10.1016/j.expneurol.2004.06.001
10.1016/j.expneurol.2011.02.015
10.1109/PROC.1975.10036
10.1227/01.NEU.0000372091.64824.63
10.1093/brain/awf128
10.3171/jns.2002.97.5.1167
10.1097/00006123-200008000-00005
10.1002/mds.20056
10.1093/brain/awg229
10.1016/j.jns.2011.07.027
10.1109/10.52329
10.1016/j.brainresbull.2005.11.012
10.1002/mds.25962
10.1097/WNR.0b013e32833282c8
10.1523/JNEUROSCI.5459-09.2010
10.1152/jn.00697.2006
10.1016/j.neuroimage.2013.05.084
10.1002/mds.23232
10.1016/j.expneurol.2006.01.012
10.1002/mds.20956
10.1159/000364913
10.1159/000120427
10.1088/1741-2560/8/3/036018
10.1159/000343207
10.1016/j.expneurol.2012.09.013
10.1002/ana.410440407
10.1001/archneur.62.8.noc40425
ContentType Journal Article
Copyright 2016. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2016 Telkes, Jimenez-Shahed, Viswanathan, Abosch and Ince. 2016 Telkes, Jimenez-Shahed, Viswanathan, Abosch and Ince
Copyright_xml – notice: 2016. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2016 Telkes, Jimenez-Shahed, Viswanathan, Abosch and Ince. 2016 Telkes, Jimenez-Shahed, Viswanathan, Abosch and Ince
DBID AAYXX
CITATION
NPM
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
7TK
5PM
ADTOC
UNPAY
DOA
DOI 10.3389/fnins.2016.00198
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection (Proquest)
Biological Sciences
Science Database (Proquest)
Biological Science Database (Proquest)
Proquest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
Neurosciences Abstracts
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
Neurosciences Abstracts
DatabaseTitleList MEDLINE - Academic

Publicly Available Content Database
Neurosciences Abstracts

PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Medicine
EISSN 1662-453X
ExternalDocumentID oai_doaj_org_article_9cd618eaf6374487b1b07561038a487e
10.3389/fnins.2016.00198
PMC4860394
27242404
10_3389_fnins_2016_00198
Genre Journal Article
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GrantInformation_xml – fundername: National Science Foundation
  grantid: CBET-1343548
GroupedDBID ---
29H
2WC
53G
5GY
5VS
88I
8FE
8FH
9T4
AAFWJ
AAYXX
ABUWG
ACGFO
ACGFS
ADRAZ
AEGXH
AENEX
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BBNVY
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
CS3
DIK
DU5
DWQXO
E3Z
EBS
EJD
EMOBN
F5P
FRP
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HYE
KQ8
LK8
M2P
M48
M7P
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PUEGO
RNS
RPM
W2D
ACXDI
C1A
IAO
IEA
IHR
ISR
M~E
NPM
3V.
7XB
8FK
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
7TK
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c523t-f71ace3d2b1a13b62297dac3a9ce87099dba1974f969660f4d6ecb16f40024d43
IEDL.DBID M48
ISSN 1662-453X
1662-4548
IngestDate Fri Oct 03 12:51:59 EDT 2025
Sun Oct 26 05:55:07 EDT 2025
Tue Sep 30 16:50:49 EDT 2025
Thu Oct 02 08:40:17 EDT 2025
Fri Sep 05 09:14:07 EDT 2025
Fri Jul 25 11:41:51 EDT 2025
Thu Jan 02 22:24:52 EST 2025
Wed Oct 01 01:43:03 EDT 2025
Thu Apr 24 22:56:52 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords LDA classification
local field potentials
subthalamic nucleus
least mean square algorithm
microelectrode recordings
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c523t-f71ace3d2b1a13b62297dac3a9ce87099dba1974f969660f4d6ecb16f40024d43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
This article was submitted to Neuroprosthetics, a section of the journal Frontiers in Neuroscience
Edited by: Paolo Bonifazi, Tel Aviv University, Israel
Reviewed by: Alessandro Stefani, University of Rome, Italy; J. Luis Lujan, Mayo Clinic, USA
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.frontiersin.org/articles/10.3389/fnins.2016.00198/pdf
PMID 27242404
PQID 2305531340
PQPubID 4424402
ParticipantIDs doaj_primary_oai_doaj_org_article_9cd618eaf6374487b1b07561038a487e
unpaywall_primary_10_3389_fnins_2016_00198
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4860394
proquest_miscellaneous_1808632915
proquest_miscellaneous_1793215985
proquest_journals_2305531340
pubmed_primary_27242404
crossref_citationtrail_10_3389_fnins_2016_00198
crossref_primary_10_3389_fnins_2016_00198
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-05-09
PublicationDateYYYYMMDD 2016-05-09
PublicationDate_xml – month: 05
  year: 2016
  text: 2016-05-09
  day: 09
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Lausanne
PublicationTitle Frontiers in neuroscience
PublicationTitleAlternate Front Neurosci
PublicationYear 2016
Publisher Frontiers Research Foundation
Frontiers Media S.A
Publisher_xml – name: Frontiers Research Foundation
– name: Frontiers Media S.A
References Benabid (B4) 2009; 8
Abosch (B2) 2013; 91
Gross (B12) 2006; 21
Foffani (B10) 2006; 69
Brittain (B5) 2014; 85
Levy (B21) 2002; 125(Pt 6)
Okun (B25) 2005; 62
Thompson (B37) 2014; 92
Hayes (B14) 1996
Kane (B19) 2009; 20
Abosch (B1) 2002; 97
Richardson (B32) 2009; 87
Wong (B42) 2009; 6
Oswal (B26) 2013; 26
Kühn (B20) 2008; 28
Sanghera M (B33) 2004
Priori (B28) 2004; 189
Trottenberg (B38) 2006; 200
Chen (B6) 2006; 198
Falkenberg (B8) 2006; 84
Foffani (B11) 2003; 126
Holdefer (B16) 2010; 25
Xiaowu (B43) 2010; 16
Hariz (B13) 2012; 27
Özkurt (B35) 2011; 229
Rezai (B31) 2006; 21
Telkes (B36) 2014
Novak (B24) 2011; 310
Ferrara (B9) 1982; 29
Herzog (B15) 2004; 19
Ince (B18) 2010; 67
Alpaydin (B3) 2010
Lopez-Azcarate (B22) 2010; 30
Widrow (B41) 1975; 63
Michmizos (B23) 2008
Weinberger (B40) 2006; 96
Hutchison (B17) 1998; 44
Starr (B34) 2014; 14
Wang (B39) 2014; 29
Rouse (B30) 2011; 8
Priori (B29) 2013; 245
Zonenshayn (B44) 2000; 47
Chen (B7) 1990; 37
Patel (B27) 2008; 86
21376039 - Exp Neurol. 2011 Jun;229(2):324-31
25570528 - Conf Proc IEEE Eng Med Biol Soc. 2014;2014:2621-4
19682943 - Parkinsonism Relat Disord. 2010 Feb;16(2):96-100
12023310 - Brain. 2002 Jun;125(Pt 6):1196-209
15372594 - Mov Disord. 2004 Sep;19(9):1050-4
21855895 - J Neurol Sci. 2011 Nov 15;310(1-2):44-9
23022916 - Exp Neurol. 2013 Jul;245:77-86
16533660 - Brain Res Bull. 2006 Mar 31;69(2):123-30
18334857 - Stereotact Funct Neurosurg. 2008;86(3):153-61
7106797 - IEEE Trans Biomed Eng. 1982 Jun;29(6):458-60
10942001 - Neurosurgery. 2000 Aug;47(2):282-92; discussion 292-4
17005611 - J Neurophysiol. 2006 Dec;96(6):3248-56
19829159 - Neuroreport. 2009 Nov 25;20(17):1549-53
23711535 - Neuroimage. 2014 Jan 15;85 Pt 2:637-47
23154755 - Stereotact Funct Neurosurg. 2013;91(1):1-11
16499911 - Exp Neurol. 2006 Jul;200(1):56-65
19081516 - Lancet Neurol. 2009 Jan;8(1):67-81
20644424 - Neurosurgery. 2010 Aug;67(2):390-7
19287077 - J Neural Eng. 2009 Apr;6(2):026006
12450039 - J Neurosurg. 2002 Nov;97(5):1167-72
25041924 - Mov Disord. 2014 Sep;29(10):1265-72
24150222 - Curr Opin Neurol. 2013 Dec;26(6):662-70
16403500 - Exp Neurol. 2006 Mar;198(1):214-21
19641340 - Stereotact Funct Neurosurg. 2009;87(5):297-303
18550758 - J Neurosci. 2008 Jun 11;28(24):6165-73
16810720 - Mov Disord. 2006 Jun;21 Suppl 14:S259-83
20721922 - Mov Disord. 2010 Oct 15;25(13):2067-75
20463229 - J Neurosci. 2010 May 12;30(19):6667-77
25084088 - J Neurosurg Pediatr. 2014 Oct;14(4):400-8
22674402 - Mov Disord. 2012 Jun;27(7):930-3
2329002 - IEEE Trans Biomed Eng. 1990 Mar;37(3):285-94
16741376 - Stereotact Funct Neurosurg. 2006;84(1):35-44; discussion 44-5
15956104 - Arch Neurol. 2005 Aug;62(8):1250-5
21543839 - J Neural Eng. 2011 Jun;8(3):036018
9778260 - Ann Neurol. 1998 Oct;44(4):622-8
12937087 - Brain. 2003 Oct;126(Pt 10):2153-63
15380487 - Exp Neurol. 2004 Oct;189(2):369-79
25170784 - Stereotact Funct Neurosurg. 2014;92(4):251-63
16810673 - Mov Disord. 2006 Jun;21 Suppl 14:S197-218
References_xml – volume: 8
  start-page: 67
  year: 2009
  ident: B4
  article-title: Deep brain stimulation of the subthalamic nucleus for the treatment of Parkinson's disease
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(08)70291-6
– volume: 6
  start-page: 026006
  year: 2009
  ident: B42
  article-title: Functional localization and visualization of the subthalamic nucleus from microelectrode recordings acquired during DBS surgery with unsupervised machine learning
  publication-title: J. Neural Eng
  doi: 10.1088/1741-2560/6/2/026006
– start-page: 1
  volume-title: 8th IEEE International Conference on BioInformatics and BioEngineering, 2008 (BIBE 2008)
  year: 2008
  ident: B23
  article-title: Automatic intra-operative localization of STN using the beta band frequencies of microelectrode recordings
  doi: 10.1109/BIBE.2008.4696820
– volume: 26
  start-page: 662
  year: 2013
  ident: B26
  article-title: Synchronized neural oscillations and the pathophysiology of Parkinson's disease
  publication-title: Curr. Opin. Neurol
  doi: 10.1097/WCO.0000000000000034
– volume: 16
  start-page: 96
  year: 2010
  ident: B43
  article-title: Risks of intracranial hemorrhage in patients with Parkinson's disease receiving deep brain stimulation and ablation
  publication-title: Parkinsonism Relat. Disord
  doi: 10.1016/j.parkreldis.2009.07.013
– volume: 21
  start-page: S259
  year: 2006
  ident: B12
  article-title: Electrophysiological mapping for the implantation of deep brain stimulators for Parkinson's disease and tremor
  publication-title: Mov. Disord.
  doi: 10.1002/mds.20960
– volume: 14
  start-page: 400
  year: 2014
  ident: B34
  article-title: Interventional MRI-guided deep brain stimulation in pediatric dystonia: first experience with the clearpoint system
  publication-title: J. Neurosurg. Pediatr
  doi: 10.3171/2014.6.PEDS13605
– volume: 29
  start-page: 458
  year: 1982
  ident: B9
  article-title: Fetal electrocardiogram enhancement by time-sequenced adaptive filtering
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.1982.324973
– volume: 27
  start-page: 930
  year: 2012
  ident: B13
  article-title: Twenty-five years of deep brain stimulation: celebrations and apprehensions
  publication-title: Mov. Disord
  doi: 10.1002/mds.25007
– volume: 84
  start-page: 35
  year: 2006
  ident: B8
  article-title: Automatic analysis and visualization of microelectrode recording trajectories to the subthalamic nucleus: preliminary results
  publication-title: Stereotact. Funct. Neurosurg.
  doi: 10.1159/000093721
– volume: 28
  start-page: 6165
  year: 2008
  ident: B20
  article-title: High-frequency stimulation of the subthalamic nucleus suppresses oscillatory beta activity in patients with Parkinson's disease in parallel with improvement in motor performance
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.0282-08.2008
– volume: 87
  start-page: 297
  year: 2009
  ident: B32
  article-title: Surgical repositioning of misplaced subthalamic electrodes in Parkinson's disease: location of effective and ineffective leads
  publication-title: Stereotact. Funct. Neurosurg.
  doi: 10.1159/000230692
– volume: 198
  start-page: 214
  year: 2006
  ident: B6
  article-title: Intra-operative recordings of local field potentials can help localize the subthalamic nucleus in Parkinson's disease surgery
  publication-title: Exp. Neurol.
  doi: 10.1016/j.expneurol.2005.11.019
– volume: 189
  start-page: 369
  year: 2004
  ident: B28
  article-title: Rhythm-specific pharmacological modulation of subthalamic activity in Parkinson's disease
  publication-title: Exp. Neurol.
  doi: 10.1016/j.expneurol.2004.06.001
– volume: 229
  start-page: 324
  year: 2011
  ident: B35
  article-title: High frequency oscillations in the subthalamic nucleus: A neurophysiological marker of the motor state in Parkinson's disease
  publication-title: Exp. Neurol
  doi: 10.1016/j.expneurol.2011.02.015
– volume: 63
  start-page: 1692
  year: 1975
  ident: B41
  article-title: Adaptive noise cancelling: principles and applications
  publication-title: Proc. IEEE
  doi: 10.1109/PROC.1975.10036
– volume-title: Introduction to Machine Learning, 2nd Edn.
  year: 2010
  ident: B3
– start-page: 111
  volume-title: Microelectrode Recording in Movement Disorder Surgery
  year: 2004
  ident: B33
  article-title: Techniques in data analysis: general principles
– volume: 67
  start-page: 390
  year: 2010
  ident: B18
  article-title: Selection of optimal programming contacts based on local field potential recordings from subthalamic nucleus in patients with Parkinson's disease
  publication-title: Neurosurgery
  doi: 10.1227/01.NEU.0000372091.64824.63
– volume: 125(Pt 6)
  start-page: 1196
  year: 2002
  ident: B21
  article-title: Dependence of subthalamic nucleus oscillations on movement and dopamine in Parkinson's disease
  publication-title: Brain
  doi: 10.1093/brain/awf128
– volume: 97
  start-page: 1167
  year: 2002
  ident: B1
  article-title: Movement-related neurons of the subthalamic nucleus in patients with Parkinson disease
  publication-title: J. Neurosurg.
  doi: 10.3171/jns.2002.97.5.1167
– volume: 47
  start-page: 282
  year: 2000
  ident: B44
  article-title: Comparison of anatomic and neurophysiological methods for subthalamic nucleus targeting
  publication-title: Neurosurgery
  doi: 10.1097/00006123-200008000-00005
– volume: 19
  start-page: 1050
  year: 2004
  ident: B15
  article-title: Most effective stimulation site in subthalamic deep brain stimulation for Parkinson's disease
  publication-title: Mov. Disord
  doi: 10.1002/mds.20056
– volume: 126
  start-page: 2153
  year: 2003
  ident: B11
  article-title: 300-Hz subthalamic oscillations in Parkinson's disease
  publication-title: Brain
  doi: 10.1093/brain/awg229
– volume: 310
  start-page: 44
  year: 2011
  ident: B24
  article-title: Localization of the subthalamic nucleus in Parkinson disease using multiunit activity
  publication-title: J. Neurol. Sci
  doi: 10.1016/j.jns.2011.07.027
– volume: 37
  start-page: 285
  year: 1990
  ident: B7
  article-title: Multichannel adaptive enhancement of the electrogastrogram
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.52329
– volume: 69
  start-page: 123
  year: 2006
  ident: B10
  article-title: Subthalamic oscillatory activities at beta or higher frequency do not change after high-frequency DBS in Parkinson's disease
  publication-title: Brain Res. Bull.
  doi: 10.1016/j.brainresbull.2005.11.012
– volume: 29
  start-page: 1265
  year: 2014
  ident: B39
  article-title: High-frequency oscillations in Parkinson's disease: spatial distribution and clinical relevance
  publication-title: Mov. Disord
  doi: 10.1002/mds.25962
– volume: 20
  start-page: 1549
  year: 2009
  ident: B19
  article-title: Dopamine-dependent high-frequency oscillatory activity in thalamus and subthalamic nucleus of patients with Parkinson's disease
  publication-title: Neuroreport
  doi: 10.1097/WNR.0b013e32833282c8
– volume: 30
  start-page: 6667
  year: 2010
  ident: B22
  article-title: Coupling between beta and high-frequency activity in the human subthalamic nucleus may be a pathophysiological mechanism in Parkinson's disease
  publication-title: J. Neurosci
  doi: 10.1523/JNEUROSCI.5459-09.2010
– volume: 96
  start-page: 3248
  year: 2006
  ident: B40
  article-title: Beta oscillatory activity in the subthalamic nucleus and its relation to dopaminergic response in Parkinson's disease
  publication-title: J. Neurophysiol
  doi: 10.1152/jn.00697.2006
– volume: 85
  start-page: 637
  year: 2014
  ident: B5
  article-title: Oscillations and the basal ganglia: motor control and beyond
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.084
– start-page: 2621
  volume-title: 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
  year: 2014
  ident: B36
  article-title: Localization of subthalamic nucleus borders using macroelectrode local field potential recordings
– volume-title: Statistical Digital Signal Processing and Modeling, 2006th Edn.
  year: 1996
  ident: B14
– volume: 25
  start-page: 2067
  year: 2010
  ident: B16
  article-title: Intraoperative local field recording for deep brain stimulation in Parkinson's disease and essential tremor
  publication-title: Mov. Disord
  doi: 10.1002/mds.23232
– volume: 200
  start-page: 56
  year: 2006
  ident: B38
  article-title: Subthalamic gamma activity in patients with Parkinson's disease
  publication-title: Exp. Neurol
  doi: 10.1016/j.expneurol.2006.01.012
– volume: 21
  start-page: S197
  year: 2006
  ident: B31
  article-title: Deep brain stimulation for Parkinson's disease: surgical issues
  publication-title: Mov. Disord
  doi: 10.1002/mds.20956
– volume: 92
  start-page: 251
  year: 2014
  ident: B37
  article-title: Clinical implications of local field potentials for understanding and treating movement disorders
  publication-title: Stereotact. Funct. Neurosurg
  doi: 10.1159/000364913
– volume: 86
  start-page: 153
  year: 2008
  ident: B27
  article-title: Comparison of atlas- and magnetic-resonance-imaging-based stereotactic targeting of the subthalamic nucleus in the surgical treatment of Parkinson's disease
  publication-title: Stereotact. Funct. Neurosurg
  doi: 10.1159/000120427
– volume: 8
  start-page: 036018
  year: 2011
  ident: B30
  article-title: A chronic generalized bi-directional brain-machine interface
  publication-title: J. Neural Eng
  doi: 10.1088/1741-2560/8/3/036018
– volume: 91
  start-page: 1
  year: 2013
  ident: B2
  article-title: An international survey of deep brain stimulation procedural steps
  publication-title: Stereotact. Funct. Neurosurg.
  doi: 10.1159/000343207
– volume: 245
  start-page: 77
  year: 2013
  ident: B29
  article-title: Adaptive deep brain stimulation (aDBS) controlled by local field potential oscillations
  publication-title: Exp. Neurol
  doi: 10.1016/j.expneurol.2012.09.013
– volume: 44
  start-page: 622
  year: 1998
  ident: B17
  article-title: Neurophysiological identification of the subthalamic nucleus in surgery for Parkinson's disease
  publication-title: Ann. Neurol
  doi: 10.1002/ana.410440407
– volume: 62
  start-page: 1250
  year: 2005
  ident: B25
  article-title: Management of referred deep brain stimulation failures
  publication-title: Arch. Neurol
  doi: 10.1001/archneur.62.8.noc40425
– reference: 16810720 - Mov Disord. 2006 Jun;21 Suppl 14:S259-83
– reference: 21855895 - J Neurol Sci. 2011 Nov 15;310(1-2):44-9
– reference: 24150222 - Curr Opin Neurol. 2013 Dec;26(6):662-70
– reference: 23154755 - Stereotact Funct Neurosurg. 2013;91(1):1-11
– reference: 23022916 - Exp Neurol. 2013 Jul;245:77-86
– reference: 19829159 - Neuroreport. 2009 Nov 25;20(17):1549-53
– reference: 19081516 - Lancet Neurol. 2009 Jan;8(1):67-81
– reference: 23711535 - Neuroimage. 2014 Jan 15;85 Pt 2:637-47
– reference: 20644424 - Neurosurgery. 2010 Aug;67(2):390-7
– reference: 16533660 - Brain Res Bull. 2006 Mar 31;69(2):123-30
– reference: 10942001 - Neurosurgery. 2000 Aug;47(2):282-92; discussion 292-4
– reference: 9778260 - Ann Neurol. 1998 Oct;44(4):622-8
– reference: 15956104 - Arch Neurol. 2005 Aug;62(8):1250-5
– reference: 15380487 - Exp Neurol. 2004 Oct;189(2):369-79
– reference: 21543839 - J Neural Eng. 2011 Jun;8(3):036018
– reference: 12023310 - Brain. 2002 Jun;125(Pt 6):1196-209
– reference: 7106797 - IEEE Trans Biomed Eng. 1982 Jun;29(6):458-60
– reference: 19641340 - Stereotact Funct Neurosurg. 2009;87(5):297-303
– reference: 18334857 - Stereotact Funct Neurosurg. 2008;86(3):153-61
– reference: 2329002 - IEEE Trans Biomed Eng. 1990 Mar;37(3):285-94
– reference: 17005611 - J Neurophysiol. 2006 Dec;96(6):3248-56
– reference: 21376039 - Exp Neurol. 2011 Jun;229(2):324-31
– reference: 25170784 - Stereotact Funct Neurosurg. 2014;92(4):251-63
– reference: 16741376 - Stereotact Funct Neurosurg. 2006;84(1):35-44; discussion 44-5
– reference: 16403500 - Exp Neurol. 2006 Mar;198(1):214-21
– reference: 16810673 - Mov Disord. 2006 Jun;21 Suppl 14:S197-218
– reference: 20721922 - Mov Disord. 2010 Oct 15;25(13):2067-75
– reference: 25084088 - J Neurosurg Pediatr. 2014 Oct;14(4):400-8
– reference: 25570528 - Conf Proc IEEE Eng Med Biol Soc. 2014;2014:2621-4
– reference: 19682943 - Parkinsonism Relat Disord. 2010 Feb;16(2):96-100
– reference: 22674402 - Mov Disord. 2012 Jun;27(7):930-3
– reference: 19287077 - J Neural Eng. 2009 Apr;6(2):026006
– reference: 25041924 - Mov Disord. 2014 Sep;29(10):1265-72
– reference: 18550758 - J Neurosci. 2008 Jun 11;28(24):6165-73
– reference: 15372594 - Mov Disord. 2004 Sep;19(9):1050-4
– reference: 12450039 - J Neurosurg. 2002 Nov;97(5):1167-72
– reference: 20463229 - J Neurosci. 2010 May 12;30(19):6667-77
– reference: 16499911 - Exp Neurol. 2006 Jul;200(1):56-65
– reference: 12937087 - Brain. 2003 Oct;126(Pt 10):2153-63
SSID ssj0062842
Score 2.3619363
Snippet Optimal electrophysiological placement of the DBS electrode may lead to better long term clinical outcomes. Inter-subject anatomical variability and...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 198
SubjectTerms Brain mapping
Decision making
Electrodes
Intelligence
LDA classification
Least mean square algorithm
Local Field Potentials
Localization
Medicine
microelectrode recordings
Microelectrodes
Movement disorders
Neurodegenerative diseases
Neuroimaging
Neuroscience
Neurosurgery
Oscillations
Parkinson's disease
Signal processing
Solitary tract nucleus
Subthalamic Nucleus
Surgery
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxsxEBYll_RS2qSPbdOgQim0sNjalaXVMS8TShsCSSA3odWDmrhySGyKb_0b_Xv9JZ2R1ktMS3Lp0V6tvZ4ZzcznGX1DyHtZcYAN4P2CFLzkIoxKIy0rm8AgoDjPbKJr-noiji_458vR5Z1RX9gTlumBs-AGyjrBGm-CqCVACdmyFqKcQF5vAy89et9ho1ZgKvtgAU63ykVJgGBqEOIkIjc3S5UH1awFocTV_68E8-8-yc1FvDbLH2Y6vROExk_Jky57pHv5qZ-RRz5uke29CMj5-5J-oKmfM_1Rvk2uTm-wCIOCp7NAz85PysP9M3qU5944T5EY2OSTR5FCzLJXdBIpHoNOJ8J-__x1Sw9z_Ya2S5qaC-gXjH10jH1v9HQ2x14jMODn5GJ8dH5wXHajFUoLyHMOmmHG-tpVLTOsbkVVKemMrY2yHnawUq41DKBGQPIcMQzcCW9bJgLHoO54_YJsxFn0rwjlsgkqMNl6zjikH43g0kPa57wLI8NEQQYrWWvb8Y7j-IupBvyB2tFJOxq1o5N2CvKxv-M6c27cs3Yf1devQ7bs9AbYkO5sSD9kQwXZWSlfd1sYvgO50GpW82FB3vWXYfNhRcVEP1vcavRukDOpZnTPmgZQY10pBmteZnvqn7aSeDpnyAsi1yxt7eesX4mTb4kEHIeH1Qru_NTb5IPCev0_hPWGPMZPTE2faodszG8W_i0kZvN2N-3BPyJNNbY
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3raxNBEF9qCtovoq2PaJUVRFE4kr3b7N5-EGlsQhEbgm2h3469fWhovItpguS_d2bvgUGJ35LcHLm7ed_M_IaQ1zLmkDaA9fNS8IgLP4i0NCxKPQOHYh0zAa7pfCLOrvjn68H1Hpk0szDYVtnYxGCobWnwHXkvRmiqhCW8_3HxM8KtUVhdbVZo6Hq1gv0QIMbukP0YkbE6ZH84mky_NrZZgDEO9U-Bs0IQrFeFS0jTVM8XswLxu1moTqh0y1EFPP9_BaF_91LeWxcLvfml5_M_HNX4AblfR5j0pBKJh2TPFYfk6KSA7PrHhr6hoeczvEw_JHfP69L6EZlNl_gZ-URLTy8uJ9Hp8IKOqjU51lHEEdbVoFJBwcWZGzorKE5NhwGyt7f0tCr20HxDQycC_YKOko6xSY5OyxU2JoG0PyJX49Hlp7Oo3sMQGUhTV8BGpo1LbJwzzZJcxLGSVptEK-NA3ZWyuWaQl3hE2hF9z61wJmfCc4wALE8ek05RFu4poVymXnkmc8cZh1glFVw6iBGts36gmeiSXvPQM1ODlOOujHkGyQqyKQtsypBNWWBTl7xrz1hUAB07aIfIx5YOobXDD-XyW1ZraqaMFSx12otEQu4qc5ZDWCUQSF7DV9clx40UZLW-w3-00tklr9rDoKlYftGFK9e3GZpCCLBUOthBk0KKmcSKAc2TSrDaq40ljvL0eZfILZHbup3tI8Xse0AMx01jiYIz37fC-d-H9Wz3fT4nB0gbej_VMemslmv3AuKzVf6yVrrfoAw3yg
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELege4AXvsZHx0BGQiCQstaJY8ePHVs1IagqbZXGU-T4Q1Tr3Gpthcpfz52TFgrTEOKtaS5tfT777nq_-5mQ1zLlkDbA7uel4AkXPk-0NCwpPAOHYh0zka7p80CcjPjH83yNJpw3sEqPrft4EPQ41EzBDUQMVzhkVKrjwzgg1TaLhQRVdGbW3yY7IodwvEV2RoNh7wsmWgI7gvLs_OdrXtSlyms_Zss1RQb_68LOP9GTd5Zhplff9GTyi2vq3yfVelA1IuXiYLmoDsz33_ge_2vUD8i9JnClvVr-IbnlwiOy2wuQtF-u6BsaoaTxP_pdMh5eYf0H55xOPT09GyRHh6f0uD5yxzqKnMS6bnoKFNyluaDjQLEDOzajvZ3To7pwRKsVjagG-gmdLu0j4I4OpwsEOcHKeUxG_eOzDydJc6ZDYiDlXYBJMG1cZtOKaZZVIk2VtNpkWhkHW4dSttIMchyPrD2i67kVzlRMeI7RhOXZE9IK0-CeEcpl4ZVnsnKccYh7CsGlg3jTOutzzUSbdNbTWZqG8BzP3ZiUkPigRsuo0RI1WkaNtsm7zROzmuzjBtlDtJCNHNJ0xzdg7spm7kplrGCF015kEvJgWbEKQjSBpPQaLl2b7K_tq2z2DvgOJGHLWMa7bfJqcxtWPZZydHDT5bzEbRWCNVXkN8gUkK5mqWIg87Q22c2vTSW2BXV5m8gtY94azvadMP4a2cfx1LJMwZPvN2b_V2Xt_Yvwc3IXLyKqVO2T1uJq6V5A5LeoXjZr-weKOFUJ
  priority: 102
  providerName: Unpaywall
Title Prediction of STN-DBS Electrode Implantation Track in Parkinson's Disease by Using Local Field Potentials
URI https://www.ncbi.nlm.nih.gov/pubmed/27242404
https://www.proquest.com/docview/2305531340
https://www.proquest.com/docview/1793215985
https://www.proquest.com/docview/1808632915
https://pubmed.ncbi.nlm.nih.gov/PMC4860394
https://www.frontiersin.org/articles/10.3389/fnins.2016.00198/pdf
https://doaj.org/article/9cd618eaf6374487b1b07561038a487e
UnpaywallVersion publishedVersion
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1662-453X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062842
  issn: 1662-453X
  databaseCode: KQ8
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1662-453X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062842
  issn: 1662-453X
  databaseCode: DOA
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1662-453X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062842
  issn: 1662-453X
  databaseCode: DIK
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1662-453X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062842
  issn: 1662-453X
  databaseCode: GX1
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1662-453X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062842
  issn: 1662-453X
  databaseCode: RPM
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1662-453X
  dateEnd: 20211231
  omitProxy: true
  ssIdentifier: ssj0062842
  issn: 1662-453X
  databaseCode: BENPR
  dateStart: 20071015
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1662-453X
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0062842
  issn: 1662-453X
  databaseCode: M48
  dateStart: 20071001
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfG9gAvCBgfgVEZCQ2BFFYnrh0_INSyVhNiVcVWaTxFTmJDRXG6fgj633PnpBEV1eAxiR0lvjvfne_ud4S8lBEHtwF2PysFD7mwnVDLnIWJZaBQCsNyD9d0PhRnY_7xqnO1RzbVJfUCLna6dthPajyfvv11vX4PAv8OPU7QtyfWTRwibzMfV1DJ8ew6xLZSGH6te2zcIgeguhT2djjnTZhBwN7sw6ECS4fAdq_imDtfuqW3PLz_Lpv079TK2ys30-ufejr9Q28N7pG7tcFJuxWH3Cd7xj0gh10HzvaPNT2mPgXUn60fkslojnEbpBUtLb24HIanvQvar1rlFIYilrCuipUcBTWXf6cTR7Fy2heRvVrQ0yrgQ7M19dkI9BMqSzrARDk6KpeYnAQr_5CMB_3LD2dh3YshzMFVXQIpmc5NXEQZ0yzORBQpWeg81io3IPJKFZlm4JtYRNsRbcsLYfKMCcvRCih4_Ijsu9KZJ4RymVhlmcwMZxzslURwacBOLExhO5qJgJxsVjrNa6By7JcxTcFhQdqknjYp0ib1tAnI62bGrALpuGFsD4nXjEN4bX-jnH9Na2lNVV4IlhhtRSzBf5UZy8C0Eggmr-HSBORoQ_p0w7JphOBpMYt5OyAvmscgrRiC0c6Uq0WK2yEYWSrp3DAmATczjhSDMY8rbmq-NpJYztPmAZFbfLb1O9tP3OSbRw3HbmOxgplvGo7852I9_Y8feUbu4ASfBKqOyP5yvjLPwVBbZi1y0OsPR59b_qCj5UUP7o2Ho-6X3-YTP7E
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEF6VVqK8IGg5AgUWiUMgWcnam7X3oUINSZTSJIpoK_XNrL27EBHskENV_hy_jZm1HRGBwlPffOz6mtk5PDPfEPIq9Dm4DSD9bCi4x4VteipMmRdZBgpFG5Y6uKbBUPQu-aer5tUO-VXVwmBaZSUTnaDWeYr_yOs-QlMFLOCND9OfHnaNwuhq1UJDla0V9LGDGCsLO87M6hpcuPnxaRvo_dr3u52Ljz2v7DLgpeCELeAhmUpNoP2EKRYkwvdlqFUaKJkaYGYpdaIYWN0WcWREw3ItTJowYTnqN80DuO4tsscDLsH522t1hqPPlS4QIPxdvFVgbRI4B0WgFNxCWbfZOEO8cOaiITLaUIyuf8C_jN6_czf3l9lUra7VZPKHYuzeI3dLi5aeFCx4n-yY7IAcnmTgzf9Y0TfU5Zi6n_cH5PagDOUfkvFohtvIFzS39Pxi6LVb57RTtOXRhiJusSoKozIKKjX9TscZxSptV7D2dk7bRXCJJivqMh9oHxUz7WJSHh3lC0yEgtX1gFzeCEUekt0sz8xjQnkYWWlZmBjOONhGkeChAZtUG22biokaqVcfPU5LUHTszTGJwTlCMsWOTDGSKXZkqpF36xnTAhBky9gW0nE9DqG83YF89jUuJUMsUy1YZJQVQQi-cpiwBMw4gcD1CnZNjRxVXBCX8gXusV4NNfJyfRokA4Z7VGby5TxG0QsGnYyaW8ZE4NIGvmQw5lHBWOun9UMsHWrwGgk3WG7jdTbPZONvDqEcO5sFEma-XzPnfz_Wk-3v-YLs9y4G_bh_Ojx7Su7gPJd3Ko_I7mK2NM_ANlwkz8sFSMmXm17zvwFRnXTk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEF6VVip9QdByBAosEodAspK1N2vvQ4UakqilbRTRVuqbWXt3S0SwQw5V-Yv8KmbWh4hA4alvSbwbH3N7Zr4h5HXocwgbQPvZUHCPC9v2VJgyL7IMDIo2LHVwTWcDcXTJP1-1rzbIr6oXBssqK53oFLXOU3xH3vQRmipgAW81bVkWMez2P05-ejhBCjOt1TgNVY5Z0AcObqxs8jgxyxsI52YHx12g_Rvf7_cuPh155cQBL4WAbA4XzFRqAu0nTLEgEb4vQ63SQMnUAGNLqRPFwAO3iCkjWpZrYdKECcvR1mkewP_eIVuY_AIlsdXpDYZfKrsgwBC43KvAPiUIFIqkKYSIsmmzUYbY4cxlRmS0YiTdLIF_OcB_13HeXWQTtbxR4_EfRrJ_n9wrvVt6WLDjA7Jhsl2yd5hBZP9jSd9SV2_qXuTvku2zMq2_R0bDKX5GHqG5pecXA6_bOae9YkSPNhQxjFXRJJVRMK_pdzrKKHZsu-a1dzPaLRJNNFlSVwVBT9FI0z4W6NFhPseiKJC0h-TyVijyiGxmeWaeEMrDyErLwsRwxsFPigQPDfin2mjbVkw0SLN66HFaAqTjnI5xDIESkil2ZIqRTLEjU4O8r3dMCnCQNWs7SMd6HcJ6ux_y6XVcaolYplqwyCgrghDi5jBhCbh0AkHsFXw1DbJfcUFc6ho4Ry0ZDfKqPgxaAlM_KjP5YhajGgbnTkbtNWsiCG8DXzJY87hgrPpq_RDbiFq8QcIVllu5ndUj2eibQyvHKWeBhJ0faub878N6uv4-X5JtkP349Hhw8ozs4DZXgir3yeZ8ujDPwU2cJy9K-aPk622L_G_B7nkT
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELege4AXvsZHx0BGQiCQstaJY8ePHVs1IagqbZXGU-T4Q1Tr3Gpthcpfz52TFgrTEOKtaS5tfT777nq_-5mQ1zLlkDbA7uel4AkXPk-0NCwpPAOHYh0zka7p80CcjPjH83yNJpw3sEqPrft4EPQ41EzBDUQMVzhkVKrjwzgg1TaLhQRVdGbW3yY7IodwvEV2RoNh7wsmWgI7gvLs_OdrXtSlyms_Zss1RQb_68LOP9GTd5Zhplff9GTyi2vq3yfVelA1IuXiYLmoDsz33_ge_2vUD8i9JnClvVr-IbnlwiOy2wuQtF-u6BsaoaTxP_pdMh5eYf0H55xOPT09GyRHh6f0uD5yxzqKnMS6bnoKFNyluaDjQLEDOzajvZ3To7pwRKsVjagG-gmdLu0j4I4OpwsEOcHKeUxG_eOzDydJc6ZDYiDlXYBJMG1cZtOKaZZVIk2VtNpkWhkHW4dSttIMchyPrD2i67kVzlRMeI7RhOXZE9IK0-CeEcpl4ZVnsnKccYh7CsGlg3jTOutzzUSbdNbTWZqG8BzP3ZiUkPigRsuo0RI1WkaNtsm7zROzmuzjBtlDtJCNHNJ0xzdg7spm7kplrGCF015kEvJgWbEKQjSBpPQaLl2b7K_tq2z2DvgOJGHLWMa7bfJqcxtWPZZydHDT5bzEbRWCNVXkN8gUkK5mqWIg87Q22c2vTSW2BXV5m8gtY94azvadMP4a2cfx1LJMwZPvN2b_V2Xt_Yvwc3IXLyKqVO2T1uJq6V5A5LeoXjZr-weKOFUJ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+STN-DBS+Electrode+Implantation+Track+in+Parkinson%27s+Disease+by+Using+Local+Field+Potentials&rft.jtitle=Frontiers+in+neuroscience&rft.au=Telkes%2C+Ilknur&rft.au=Jimenez-Shahed%2C+Joohi&rft.au=Viswanathan%2C+Ashwin&rft.au=Abosch%2C+Aviva&rft.date=2016-05-09&rft.issn=1662-4548&rft.volume=10&rft.spage=198&rft_id=info:doi/10.3389%2Ffnins.2016.00198&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-453X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-453X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-453X&client=summon