Prediction of STN-DBS Electrode Implantation Track in Parkinson's Disease by Using Local Field Potentials
Optimal electrophysiological placement of the DBS electrode may lead to better long term clinical outcomes. Inter-subject anatomical variability and limitations in stereotaxic neuroimaging increase the complexity of physiological mapping performed in the operating room. Microelectrode single unit ne...
Saved in:
| Published in | Frontiers in neuroscience Vol. 10; p. 198 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Switzerland
Frontiers Research Foundation
09.05.2016
Frontiers Media S.A |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1662-453X 1662-4548 1662-453X |
| DOI | 10.3389/fnins.2016.00198 |
Cover
| Abstract | Optimal electrophysiological placement of the DBS electrode may lead to better long term clinical outcomes. Inter-subject anatomical variability and limitations in stereotaxic neuroimaging increase the complexity of physiological mapping performed in the operating room. Microelectrode single unit neuronal recording remains the most common intraoperative mapping technique, but requires significant expertise and is fraught by potential technical difficulties including robust measurement of the signal. In contrast, local field potentials (LFPs), owing to their oscillatory and robust nature and being more correlated with the disease symptoms, can overcome these technical issues. Therefore, we hypothesized that multiple spectral features extracted from microelectrode-recorded LFPs could be used to automate the identification of the optimal track and the STN localization. In this regard, we recorded LFPs from microelectrodes in three tracks from 22 patients during DBS electrode implantation surgery at different depths and aimed to predict the track selected by the neurosurgeon based on the interpretation of single unit recordings. A least mean square (LMS) algorithm was used to de-correlate LFPs in each track, in order to remove common activity between channels and increase their spatial specificity. Subband power in the beta band (11-32 Hz) and high frequency range (200-450 Hz) were extracted from the de-correlated LFP data and used as features. A linear discriminant analysis (LDA) method was applied both for the localization of the dorsal border of STN and the prediction of the optimal track. By fusing the information from these low and high frequency bands, the dorsal border of STN was localized with a root mean square (RMS) error of 1.22 mm. The prediction accuracy for the optimal track was 80%. Individual beta band (11-32 Hz) and the range of high frequency oscillations (200-450 Hz) provided prediction accuracies of 72 and 68% respectively. The best prediction result obtained with monopolar LFP data was 68%. These results establish the initial evidence that LFPs can be strategically fused with computational intelligence in the operating room for STN localization and the selection of the track for chronic DBS electrode implantation. |
|---|---|
| AbstractList | Optimal electrophysiological placement of the DBS electrode may lead to better long term clinical outcomes. Inter-subject anatomical variability and limitations in stereotaxic neuroimaging increase the complexity of physiological mapping performed in the operating room. Microelectrode single unit neuronal recording remains the most common intraoperative mapping technique, but requires significant expertise and is fraught by potential technical difficulties including robust measurement of the signal. In contrast, local field potentials (LFPs), owing to their oscillatory and robust nature and being more correlated with the disease symptoms, can overcome these technical issues. Therefore, we hypothesized that multiple spectral features extracted from microelectrode-recorded LFPs could be used to automate the identification of the optimal track and the STN localization. In this regard, we recorded LFPs from microelectrodes in three tracks from 22 patients during DBS electrode implantation surgery at different depths and aimed to predict the track selected by the neurosurgeon based on the interpretation of single unit recordings. A least mean square (LMS) algorithm was used to de-correlate LFPs in each track, in order to remove common activity between channels and increase their spatial specificity. Subband power in the beta band (11-32 Hz) and high frequency range (200-450 Hz) were extracted from the de-correlated LFP data and used as features. A linear discriminant analysis (LDA) method was applied both for the localization of the dorsal border of STN and the prediction of the optimal track. By fusing the information from these low and high frequency bands, the dorsal border of STN was localized with a root mean square (RMS) error of 1.22 mm. The prediction accuracy for the optimal track was 80%. Individual beta band (11-32 Hz) and the range of high frequency oscillations (200-450 Hz) provided prediction accuracies of 72 and 68% respectively. The best prediction result obtained with monopolar LFP data was 68%. These results establish the initial evidence that LFPs can be strategically fused with computational intelligence in the operating room for STN localization and the selection of the track for chronic DBS electrode implantation.Optimal electrophysiological placement of the DBS electrode may lead to better long term clinical outcomes. Inter-subject anatomical variability and limitations in stereotaxic neuroimaging increase the complexity of physiological mapping performed in the operating room. Microelectrode single unit neuronal recording remains the most common intraoperative mapping technique, but requires significant expertise and is fraught by potential technical difficulties including robust measurement of the signal. In contrast, local field potentials (LFPs), owing to their oscillatory and robust nature and being more correlated with the disease symptoms, can overcome these technical issues. Therefore, we hypothesized that multiple spectral features extracted from microelectrode-recorded LFPs could be used to automate the identification of the optimal track and the STN localization. In this regard, we recorded LFPs from microelectrodes in three tracks from 22 patients during DBS electrode implantation surgery at different depths and aimed to predict the track selected by the neurosurgeon based on the interpretation of single unit recordings. A least mean square (LMS) algorithm was used to de-correlate LFPs in each track, in order to remove common activity between channels and increase their spatial specificity. Subband power in the beta band (11-32 Hz) and high frequency range (200-450 Hz) were extracted from the de-correlated LFP data and used as features. A linear discriminant analysis (LDA) method was applied both for the localization of the dorsal border of STN and the prediction of the optimal track. By fusing the information from these low and high frequency bands, the dorsal border of STN was localized with a root mean square (RMS) error of 1.22 mm. The prediction accuracy for the optimal track was 80%. Individual beta band (11-32 Hz) and the range of high frequency oscillations (200-450 Hz) provided prediction accuracies of 72 and 68% respectively. The best prediction result obtained with monopolar LFP data was 68%. These results establish the initial evidence that LFPs can be strategically fused with computational intelligence in the operating room for STN localization and the selection of the track for chronic DBS electrode implantation. Optimal electrophysiological placement of the DBS electrode may lead to better long term clinical outcomes. Inter-subject anatomical variability and limitations in stereotaxic neuroimaging increase the complexity of physiological mapping performed in the operating room. Microelectrode single unit neuronal recording remains the most common intraoperative mapping technique, but requires significant expertise and is fraught by potential technical difficulties including robust measurement of the signal. In contrast, local field potentials (LFPs), owing to their oscillatory and robust nature and being more correlated with the disease symptoms, can overcome these technical issues. Therefore, we hypothesized that multiple spectral features extracted from microelectrode-recorded LFPs could be used to automate the identification of the optimal track and the STN localization. In this regard, we recorded LFPs from microelectrodes in three tracks from 22 patients during DBS electrode implantation surgery at different depths and aimed to predict the track selected by the neurosurgeon based on the interpretation of single unit recordings. A least mean square (LMS) algorithm was used to de-correlate LFPs in each track, in order to remove common activity between channels and increase their spatial specificity. Subband power in the beta band (11-32Hz) and high frequency range (200-450Hz) were extracted from the de-correlated LFP data and used as features. A linear discriminant analysis (LDA) method was applied both for the localization of the dorsal border of STN and the prediction of the optimal track. By fusing the information from these low and high frequency bands, the dorsal border of STN was localized with a root mean square error of 1.22 mm. The prediction accuracy for the optimal track was 80%. Individual beta band (11-32Hz) and the range of high frequency oscillations (200-450Hz) provided prediction accuracies of 72% and 68% respectively. The best prediction result obtained with monopolar LFP data was 68%. These results establish the initial evidence that LFPs can be strategically fused with computational intelligence in the operating room for STN localization and the selection of the track for chronic DBS electrode implantation. Optimal electrophysiological placement of the DBS electrode may lead to better long term clinical outcomes. Inter-subject anatomical variability and limitations in stereotaxic neuroimaging increase the complexity of physiological mapping performed in the operating room. Microelectrode single unit neuronal recording remains the most common intraoperative mapping technique, but requires significant expertise and is fraught by potential technical difficulties including robust measurement of the signal. In contrast, local field potentials (LFPs), owing to their oscillatory and robust nature and being more correlated with the disease symptoms, can overcome these technical issues. Therefore, we hypothesized that multiple spectral features extracted from microelectrode-recorded LFPs could be used to automate the identification of the optimal track and the STN localization. In this regard, we recorded LFPs from microelectrodes in three tracks from 22 patients during DBS electrode implantation surgery at different depths and aimed to predict the track selected by the neurosurgeon based on the interpretation of single unit recordings. A least mean square (LMS) algorithm was used to de-correlate LFPs in each track, in order to remove common activity between channels and increase their spatial specificity. Subband power in the beta band (11-32 Hz) and high frequency range (200-450 Hz) were extracted from the de-correlated LFP data and used as features. A linear discriminant analysis (LDA) method was applied both for the localization of the dorsal border of STN and the prediction of the optimal track. By fusing the information from these low and high frequency bands, the dorsal border of STN was localized with a root mean square (RMS) error of 1.22 mm. The prediction accuracy for the optimal track was 80%. Individual beta band (11-32 Hz) and the range of high frequency oscillations (200-450 Hz) provided prediction accuracies of 72 and 68% respectively. The best prediction result obtained with monopolar LFP data was 68%. These results establish the initial evidence that LFPs can be strategically fused with computational intelligence in the operating room for STN localization and the selection of the track for chronic DBS electrode implantation. |
| Author | Viswanathan, Ashwin Telkes, Ilknur Jimenez-Shahed, Joohi Ince, Nuri F. Abosch, Aviva |
| AuthorAffiliation | 2 Department of Neurology, Baylor College of Medicine Houston, TX, USA 4 Department of Neurosurgery, University of Colorado Aurora, CO, USA 1 Clinical Neural Engineering Lab., Biomedical Engineering Department, University of Houston Houston, TX, USA 3 Department of Neurosurgery, Baylor College of Medicine Houston, TX, USA |
| AuthorAffiliation_xml | – name: 2 Department of Neurology, Baylor College of Medicine Houston, TX, USA – name: 3 Department of Neurosurgery, Baylor College of Medicine Houston, TX, USA – name: 4 Department of Neurosurgery, University of Colorado Aurora, CO, USA – name: 1 Clinical Neural Engineering Lab., Biomedical Engineering Department, University of Houston Houston, TX, USA |
| Author_xml | – sequence: 1 givenname: Ilknur surname: Telkes fullname: Telkes, Ilknur – sequence: 2 givenname: Joohi surname: Jimenez-Shahed fullname: Jimenez-Shahed, Joohi – sequence: 3 givenname: Ashwin surname: Viswanathan fullname: Viswanathan, Ashwin – sequence: 4 givenname: Aviva surname: Abosch fullname: Abosch, Aviva – sequence: 5 givenname: Nuri F. surname: Ince fullname: Ince, Nuri F. |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27242404$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkstvEzEQxleoiD7gzglZ4gCXBL_Wa1-QoA-IFEGkphI3y2t7g1PHDvaGKv99nWyp2h7oya_ffJ6Zb46rgxCDraq3CI4J4eJTF1zIYwwRG0OIBH9RHSHG8IjW5NfBg_1hdZzzEkKGOcWvqkPcYIoppEeVmyVrnO5dDCB24HL-Y3T29RKce6v7FI0Fk9Xaq9CrPTFPSl8DF8BMpevydQwfMjhz2apsQbsFV9mFBZhGrTy4cNYbMIu9Db1TPr-uXnZlsW_u1pPq6uJ8fvp9NP35bXL6ZTrSNSb9qGuQ0pYY3CKFSMswFo1RmiihLW-gEKZVSDS0E0wwBjtqmNUtYh2FEFNDyUk1GXRNVEu5Tm6l0lZG5eT-IqaFVKl32lsptGGIW9Ux0lDKmxa1sKkZgoSrcrRFCw1am7BW2xvl_b0ggnJngdxbIHcWyL0FJebzELPetCtrdCk_Kf8okccvwf2Wi_hXUs4gEbsCPt4JpPhnY3MvVy5r64sNNm6yRBxyRrBA9fNoIwhGteA79P0TdBk3KRQnJCawrgkiFBbq3cPk77P-NzAFYAOgU8w52U5qNwxHqcX5_7UFPgl8tpO3Uy7k6Q |
| CitedBy_id | crossref_primary_10_1007_s11062_018_9717_3 crossref_primary_10_3390_brainsci9070173 crossref_primary_10_1088_1741_2552_ab37b4 crossref_primary_10_1227_ons_0000000000000298 crossref_primary_10_3389_fnins_2020_00394 crossref_primary_10_1088_1741_2552_ac5c8c crossref_primary_10_14814_phy2_13322 crossref_primary_10_3389_fnins_2020_00391 crossref_primary_10_1016_j_brs_2019_11_013 crossref_primary_10_3390_brainsci8010017 crossref_primary_10_1016_j_neuroimage_2020_117144 crossref_primary_10_1093_braincomms_fcac003 crossref_primary_10_1080_14737175_2020_1677465 crossref_primary_10_1038_s42003_021_01915_7 crossref_primary_10_1080_00207454_2018_1450253 crossref_primary_10_1038_s41598_020_74196_5 crossref_primary_10_1016_j_wneu_2021_05_136 crossref_primary_10_3389_fnhum_2020_00145 crossref_primary_10_18231_j_ijn_2021_010 crossref_primary_10_1016_j_cmpb_2019_105091 crossref_primary_10_1088_1741_2552_abb581 crossref_primary_10_1038_s41598_025_92111_8 crossref_primary_10_3389_fnins_2020_00611 crossref_primary_10_1016_j_nbd_2021_105372 crossref_primary_10_1111_ejn_15257 crossref_primary_10_1073_pnas_1810589115 crossref_primary_10_3390_diagnostics12010084 crossref_primary_10_1109_TBME_2022_3215092 crossref_primary_10_1080_17434440_2021_1909471 crossref_primary_10_3389_fnins_2018_00998 crossref_primary_10_1016_j_wneu_2018_09_047 crossref_primary_10_3389_fnhum_2022_958521 crossref_primary_10_1038_srep46675 crossref_primary_10_1016_j_bja_2021_01_036 crossref_primary_10_1063_5_0144682 crossref_primary_10_1111_ner_13466 crossref_primary_10_1002_mds_28093 crossref_primary_10_3171_2021_8_JNS204225 crossref_primary_10_1038_s41598_022_21860_7 crossref_primary_10_1159_000492231 crossref_primary_10_1016_j_clinph_2020_03_040 crossref_primary_10_1016_j_nicl_2017_07_018 crossref_primary_10_1111_ejn_14898 crossref_primary_10_3389_fneur_2021_710206 crossref_primary_10_1016_j_isci_2022_105124 crossref_primary_10_3171_2017_12_JNS171964 crossref_primary_10_1109_TBME_2022_3142716 crossref_primary_10_3390_medsci9020020 crossref_primary_10_1016_j_neurom_2023_02_081 crossref_primary_10_1016_j_jneumeth_2020_108826 |
| Cites_doi | 10.1016/S1474-4422(08)70291-6 10.1088/1741-2560/6/2/026006 10.1109/BIBE.2008.4696820 10.1097/WCO.0000000000000034 10.1016/j.parkreldis.2009.07.013 10.1002/mds.20960 10.3171/2014.6.PEDS13605 10.1109/TBME.1982.324973 10.1002/mds.25007 10.1159/000093721 10.1523/JNEUROSCI.0282-08.2008 10.1159/000230692 10.1016/j.expneurol.2005.11.019 10.1016/j.expneurol.2004.06.001 10.1016/j.expneurol.2011.02.015 10.1109/PROC.1975.10036 10.1227/01.NEU.0000372091.64824.63 10.1093/brain/awf128 10.3171/jns.2002.97.5.1167 10.1097/00006123-200008000-00005 10.1002/mds.20056 10.1093/brain/awg229 10.1016/j.jns.2011.07.027 10.1109/10.52329 10.1016/j.brainresbull.2005.11.012 10.1002/mds.25962 10.1097/WNR.0b013e32833282c8 10.1523/JNEUROSCI.5459-09.2010 10.1152/jn.00697.2006 10.1016/j.neuroimage.2013.05.084 10.1002/mds.23232 10.1016/j.expneurol.2006.01.012 10.1002/mds.20956 10.1159/000364913 10.1159/000120427 10.1088/1741-2560/8/3/036018 10.1159/000343207 10.1016/j.expneurol.2012.09.013 10.1002/ana.410440407 10.1001/archneur.62.8.noc40425 |
| ContentType | Journal Article |
| Copyright | 2016. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright © 2016 Telkes, Jimenez-Shahed, Viswanathan, Abosch and Ince. 2016 Telkes, Jimenez-Shahed, Viswanathan, Abosch and Ince |
| Copyright_xml | – notice: 2016. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright © 2016 Telkes, Jimenez-Shahed, Viswanathan, Abosch and Ince. 2016 Telkes, Jimenez-Shahed, Viswanathan, Abosch and Ince |
| DBID | AAYXX CITATION NPM 3V. 7XB 88I 8FE 8FH 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M2P M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 7TK 5PM ADTOC UNPAY DOA |
| DOI | 10.3389/fnins.2016.00198 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection (Proquest) Biological Sciences Science Database (Proquest) Biological Science Database (Proquest) Proquest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic Neurosciences Abstracts PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic Neurosciences Abstracts |
| DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database Neurosciences Abstracts PubMed |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology Medicine |
| EISSN | 1662-453X |
| ExternalDocumentID | oai_doaj_org_article_9cd618eaf6374487b1b07561038a487e 10.3389/fnins.2016.00198 PMC4860394 27242404 10_3389_fnins_2016_00198 |
| Genre | Journal Article |
| GeographicLocations | United States--US |
| GeographicLocations_xml | – name: United States--US |
| GrantInformation_xml | – fundername: National Science Foundation grantid: CBET-1343548 |
| GroupedDBID | --- 29H 2WC 53G 5GY 5VS 88I 8FE 8FH 9T4 AAFWJ AAYXX ABUWG ACGFO ACGFS ADRAZ AEGXH AENEX AFKRA AFPKN AIAGR ALMA_UNASSIGNED_HOLDINGS AZQEC BBNVY BENPR BHPHI BPHCQ CCPQU CITATION CS3 DIK DU5 DWQXO E3Z EBS EJD EMOBN F5P FRP GNUQQ GROUPED_DOAJ GX1 HCIFZ HYE KQ8 LK8 M2P M48 M7P O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PUEGO RNS RPM W2D ACXDI C1A IAO IEA IHR ISR M~E NPM 3V. 7XB 8FK PKEHL PQEST PQUKI PRINS Q9U 7X8 7TK 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c523t-f71ace3d2b1a13b62297dac3a9ce87099dba1974f969660f4d6ecb16f40024d43 |
| IEDL.DBID | M48 |
| ISSN | 1662-453X 1662-4548 |
| IngestDate | Fri Oct 03 12:51:59 EDT 2025 Sun Oct 26 05:55:07 EDT 2025 Tue Sep 30 16:50:49 EDT 2025 Thu Oct 02 08:40:17 EDT 2025 Fri Sep 05 09:14:07 EDT 2025 Fri Jul 25 11:41:51 EDT 2025 Thu Jan 02 22:24:52 EST 2025 Wed Oct 01 01:43:03 EDT 2025 Thu Apr 24 22:56:52 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | LDA classification local field potentials subthalamic nucleus least mean square algorithm microelectrode recordings |
| Language | English |
| License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c523t-f71ace3d2b1a13b62297dac3a9ce87099dba1974f969660f4d6ecb16f40024d43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 This article was submitted to Neuroprosthetics, a section of the journal Frontiers in Neuroscience Edited by: Paolo Bonifazi, Tel Aviv University, Israel Reviewed by: Alessandro Stefani, University of Rome, Italy; J. Luis Lujan, Mayo Clinic, USA |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.frontiersin.org/articles/10.3389/fnins.2016.00198/pdf |
| PMID | 27242404 |
| PQID | 2305531340 |
| PQPubID | 4424402 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_9cd618eaf6374487b1b07561038a487e unpaywall_primary_10_3389_fnins_2016_00198 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4860394 proquest_miscellaneous_1808632915 proquest_miscellaneous_1793215985 proquest_journals_2305531340 pubmed_primary_27242404 crossref_citationtrail_10_3389_fnins_2016_00198 crossref_primary_10_3389_fnins_2016_00198 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2016-05-09 |
| PublicationDateYYYYMMDD | 2016-05-09 |
| PublicationDate_xml | – month: 05 year: 2016 text: 2016-05-09 day: 09 |
| PublicationDecade | 2010 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Lausanne |
| PublicationTitle | Frontiers in neuroscience |
| PublicationTitleAlternate | Front Neurosci |
| PublicationYear | 2016 |
| Publisher | Frontiers Research Foundation Frontiers Media S.A |
| Publisher_xml | – name: Frontiers Research Foundation – name: Frontiers Media S.A |
| References | Benabid (B4) 2009; 8 Abosch (B2) 2013; 91 Gross (B12) 2006; 21 Foffani (B10) 2006; 69 Brittain (B5) 2014; 85 Levy (B21) 2002; 125(Pt 6) Okun (B25) 2005; 62 Thompson (B37) 2014; 92 Hayes (B14) 1996 Kane (B19) 2009; 20 Abosch (B1) 2002; 97 Richardson (B32) 2009; 87 Wong (B42) 2009; 6 Oswal (B26) 2013; 26 Kühn (B20) 2008; 28 Sanghera M (B33) 2004 Priori (B28) 2004; 189 Trottenberg (B38) 2006; 200 Chen (B6) 2006; 198 Falkenberg (B8) 2006; 84 Foffani (B11) 2003; 126 Holdefer (B16) 2010; 25 Xiaowu (B43) 2010; 16 Hariz (B13) 2012; 27 Özkurt (B35) 2011; 229 Rezai (B31) 2006; 21 Telkes (B36) 2014 Novak (B24) 2011; 310 Ferrara (B9) 1982; 29 Herzog (B15) 2004; 19 Ince (B18) 2010; 67 Alpaydin (B3) 2010 Lopez-Azcarate (B22) 2010; 30 Widrow (B41) 1975; 63 Michmizos (B23) 2008 Weinberger (B40) 2006; 96 Hutchison (B17) 1998; 44 Starr (B34) 2014; 14 Wang (B39) 2014; 29 Rouse (B30) 2011; 8 Priori (B29) 2013; 245 Zonenshayn (B44) 2000; 47 Chen (B7) 1990; 37 Patel (B27) 2008; 86 21376039 - Exp Neurol. 2011 Jun;229(2):324-31 25570528 - Conf Proc IEEE Eng Med Biol Soc. 2014;2014:2621-4 19682943 - Parkinsonism Relat Disord. 2010 Feb;16(2):96-100 12023310 - Brain. 2002 Jun;125(Pt 6):1196-209 15372594 - Mov Disord. 2004 Sep;19(9):1050-4 21855895 - J Neurol Sci. 2011 Nov 15;310(1-2):44-9 23022916 - Exp Neurol. 2013 Jul;245:77-86 16533660 - Brain Res Bull. 2006 Mar 31;69(2):123-30 18334857 - Stereotact Funct Neurosurg. 2008;86(3):153-61 7106797 - IEEE Trans Biomed Eng. 1982 Jun;29(6):458-60 10942001 - Neurosurgery. 2000 Aug;47(2):282-92; discussion 292-4 17005611 - J Neurophysiol. 2006 Dec;96(6):3248-56 19829159 - Neuroreport. 2009 Nov 25;20(17):1549-53 23711535 - Neuroimage. 2014 Jan 15;85 Pt 2:637-47 23154755 - Stereotact Funct Neurosurg. 2013;91(1):1-11 16499911 - Exp Neurol. 2006 Jul;200(1):56-65 19081516 - Lancet Neurol. 2009 Jan;8(1):67-81 20644424 - Neurosurgery. 2010 Aug;67(2):390-7 19287077 - J Neural Eng. 2009 Apr;6(2):026006 12450039 - J Neurosurg. 2002 Nov;97(5):1167-72 25041924 - Mov Disord. 2014 Sep;29(10):1265-72 24150222 - Curr Opin Neurol. 2013 Dec;26(6):662-70 16403500 - Exp Neurol. 2006 Mar;198(1):214-21 19641340 - Stereotact Funct Neurosurg. 2009;87(5):297-303 18550758 - J Neurosci. 2008 Jun 11;28(24):6165-73 16810720 - Mov Disord. 2006 Jun;21 Suppl 14:S259-83 20721922 - Mov Disord. 2010 Oct 15;25(13):2067-75 20463229 - J Neurosci. 2010 May 12;30(19):6667-77 25084088 - J Neurosurg Pediatr. 2014 Oct;14(4):400-8 22674402 - Mov Disord. 2012 Jun;27(7):930-3 2329002 - IEEE Trans Biomed Eng. 1990 Mar;37(3):285-94 16741376 - Stereotact Funct Neurosurg. 2006;84(1):35-44; discussion 44-5 15956104 - Arch Neurol. 2005 Aug;62(8):1250-5 21543839 - J Neural Eng. 2011 Jun;8(3):036018 9778260 - Ann Neurol. 1998 Oct;44(4):622-8 12937087 - Brain. 2003 Oct;126(Pt 10):2153-63 15380487 - Exp Neurol. 2004 Oct;189(2):369-79 25170784 - Stereotact Funct Neurosurg. 2014;92(4):251-63 16810673 - Mov Disord. 2006 Jun;21 Suppl 14:S197-218 |
| References_xml | – volume: 8 start-page: 67 year: 2009 ident: B4 article-title: Deep brain stimulation of the subthalamic nucleus for the treatment of Parkinson's disease publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(08)70291-6 – volume: 6 start-page: 026006 year: 2009 ident: B42 article-title: Functional localization and visualization of the subthalamic nucleus from microelectrode recordings acquired during DBS surgery with unsupervised machine learning publication-title: J. Neural Eng doi: 10.1088/1741-2560/6/2/026006 – start-page: 1 volume-title: 8th IEEE International Conference on BioInformatics and BioEngineering, 2008 (BIBE 2008) year: 2008 ident: B23 article-title: Automatic intra-operative localization of STN using the beta band frequencies of microelectrode recordings doi: 10.1109/BIBE.2008.4696820 – volume: 26 start-page: 662 year: 2013 ident: B26 article-title: Synchronized neural oscillations and the pathophysiology of Parkinson's disease publication-title: Curr. Opin. Neurol doi: 10.1097/WCO.0000000000000034 – volume: 16 start-page: 96 year: 2010 ident: B43 article-title: Risks of intracranial hemorrhage in patients with Parkinson's disease receiving deep brain stimulation and ablation publication-title: Parkinsonism Relat. Disord doi: 10.1016/j.parkreldis.2009.07.013 – volume: 21 start-page: S259 year: 2006 ident: B12 article-title: Electrophysiological mapping for the implantation of deep brain stimulators for Parkinson's disease and tremor publication-title: Mov. Disord. doi: 10.1002/mds.20960 – volume: 14 start-page: 400 year: 2014 ident: B34 article-title: Interventional MRI-guided deep brain stimulation in pediatric dystonia: first experience with the clearpoint system publication-title: J. Neurosurg. Pediatr doi: 10.3171/2014.6.PEDS13605 – volume: 29 start-page: 458 year: 1982 ident: B9 article-title: Fetal electrocardiogram enhancement by time-sequenced adaptive filtering publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.1982.324973 – volume: 27 start-page: 930 year: 2012 ident: B13 article-title: Twenty-five years of deep brain stimulation: celebrations and apprehensions publication-title: Mov. Disord doi: 10.1002/mds.25007 – volume: 84 start-page: 35 year: 2006 ident: B8 article-title: Automatic analysis and visualization of microelectrode recording trajectories to the subthalamic nucleus: preliminary results publication-title: Stereotact. Funct. Neurosurg. doi: 10.1159/000093721 – volume: 28 start-page: 6165 year: 2008 ident: B20 article-title: High-frequency stimulation of the subthalamic nucleus suppresses oscillatory beta activity in patients with Parkinson's disease in parallel with improvement in motor performance publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0282-08.2008 – volume: 87 start-page: 297 year: 2009 ident: B32 article-title: Surgical repositioning of misplaced subthalamic electrodes in Parkinson's disease: location of effective and ineffective leads publication-title: Stereotact. Funct. Neurosurg. doi: 10.1159/000230692 – volume: 198 start-page: 214 year: 2006 ident: B6 article-title: Intra-operative recordings of local field potentials can help localize the subthalamic nucleus in Parkinson's disease surgery publication-title: Exp. Neurol. doi: 10.1016/j.expneurol.2005.11.019 – volume: 189 start-page: 369 year: 2004 ident: B28 article-title: Rhythm-specific pharmacological modulation of subthalamic activity in Parkinson's disease publication-title: Exp. Neurol. doi: 10.1016/j.expneurol.2004.06.001 – volume: 229 start-page: 324 year: 2011 ident: B35 article-title: High frequency oscillations in the subthalamic nucleus: A neurophysiological marker of the motor state in Parkinson's disease publication-title: Exp. Neurol doi: 10.1016/j.expneurol.2011.02.015 – volume: 63 start-page: 1692 year: 1975 ident: B41 article-title: Adaptive noise cancelling: principles and applications publication-title: Proc. IEEE doi: 10.1109/PROC.1975.10036 – volume-title: Introduction to Machine Learning, 2nd Edn. year: 2010 ident: B3 – start-page: 111 volume-title: Microelectrode Recording in Movement Disorder Surgery year: 2004 ident: B33 article-title: Techniques in data analysis: general principles – volume: 67 start-page: 390 year: 2010 ident: B18 article-title: Selection of optimal programming contacts based on local field potential recordings from subthalamic nucleus in patients with Parkinson's disease publication-title: Neurosurgery doi: 10.1227/01.NEU.0000372091.64824.63 – volume: 125(Pt 6) start-page: 1196 year: 2002 ident: B21 article-title: Dependence of subthalamic nucleus oscillations on movement and dopamine in Parkinson's disease publication-title: Brain doi: 10.1093/brain/awf128 – volume: 97 start-page: 1167 year: 2002 ident: B1 article-title: Movement-related neurons of the subthalamic nucleus in patients with Parkinson disease publication-title: J. Neurosurg. doi: 10.3171/jns.2002.97.5.1167 – volume: 47 start-page: 282 year: 2000 ident: B44 article-title: Comparison of anatomic and neurophysiological methods for subthalamic nucleus targeting publication-title: Neurosurgery doi: 10.1097/00006123-200008000-00005 – volume: 19 start-page: 1050 year: 2004 ident: B15 article-title: Most effective stimulation site in subthalamic deep brain stimulation for Parkinson's disease publication-title: Mov. Disord doi: 10.1002/mds.20056 – volume: 126 start-page: 2153 year: 2003 ident: B11 article-title: 300-Hz subthalamic oscillations in Parkinson's disease publication-title: Brain doi: 10.1093/brain/awg229 – volume: 310 start-page: 44 year: 2011 ident: B24 article-title: Localization of the subthalamic nucleus in Parkinson disease using multiunit activity publication-title: J. Neurol. Sci doi: 10.1016/j.jns.2011.07.027 – volume: 37 start-page: 285 year: 1990 ident: B7 article-title: Multichannel adaptive enhancement of the electrogastrogram publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/10.52329 – volume: 69 start-page: 123 year: 2006 ident: B10 article-title: Subthalamic oscillatory activities at beta or higher frequency do not change after high-frequency DBS in Parkinson's disease publication-title: Brain Res. Bull. doi: 10.1016/j.brainresbull.2005.11.012 – volume: 29 start-page: 1265 year: 2014 ident: B39 article-title: High-frequency oscillations in Parkinson's disease: spatial distribution and clinical relevance publication-title: Mov. Disord doi: 10.1002/mds.25962 – volume: 20 start-page: 1549 year: 2009 ident: B19 article-title: Dopamine-dependent high-frequency oscillatory activity in thalamus and subthalamic nucleus of patients with Parkinson's disease publication-title: Neuroreport doi: 10.1097/WNR.0b013e32833282c8 – volume: 30 start-page: 6667 year: 2010 ident: B22 article-title: Coupling between beta and high-frequency activity in the human subthalamic nucleus may be a pathophysiological mechanism in Parkinson's disease publication-title: J. Neurosci doi: 10.1523/JNEUROSCI.5459-09.2010 – volume: 96 start-page: 3248 year: 2006 ident: B40 article-title: Beta oscillatory activity in the subthalamic nucleus and its relation to dopaminergic response in Parkinson's disease publication-title: J. Neurophysiol doi: 10.1152/jn.00697.2006 – volume: 85 start-page: 637 year: 2014 ident: B5 article-title: Oscillations and the basal ganglia: motor control and beyond publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.084 – start-page: 2621 volume-title: 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society year: 2014 ident: B36 article-title: Localization of subthalamic nucleus borders using macroelectrode local field potential recordings – volume-title: Statistical Digital Signal Processing and Modeling, 2006th Edn. year: 1996 ident: B14 – volume: 25 start-page: 2067 year: 2010 ident: B16 article-title: Intraoperative local field recording for deep brain stimulation in Parkinson's disease and essential tremor publication-title: Mov. Disord doi: 10.1002/mds.23232 – volume: 200 start-page: 56 year: 2006 ident: B38 article-title: Subthalamic gamma activity in patients with Parkinson's disease publication-title: Exp. Neurol doi: 10.1016/j.expneurol.2006.01.012 – volume: 21 start-page: S197 year: 2006 ident: B31 article-title: Deep brain stimulation for Parkinson's disease: surgical issues publication-title: Mov. Disord doi: 10.1002/mds.20956 – volume: 92 start-page: 251 year: 2014 ident: B37 article-title: Clinical implications of local field potentials for understanding and treating movement disorders publication-title: Stereotact. Funct. Neurosurg doi: 10.1159/000364913 – volume: 86 start-page: 153 year: 2008 ident: B27 article-title: Comparison of atlas- and magnetic-resonance-imaging-based stereotactic targeting of the subthalamic nucleus in the surgical treatment of Parkinson's disease publication-title: Stereotact. Funct. Neurosurg doi: 10.1159/000120427 – volume: 8 start-page: 036018 year: 2011 ident: B30 article-title: A chronic generalized bi-directional brain-machine interface publication-title: J. Neural Eng doi: 10.1088/1741-2560/8/3/036018 – volume: 91 start-page: 1 year: 2013 ident: B2 article-title: An international survey of deep brain stimulation procedural steps publication-title: Stereotact. Funct. Neurosurg. doi: 10.1159/000343207 – volume: 245 start-page: 77 year: 2013 ident: B29 article-title: Adaptive deep brain stimulation (aDBS) controlled by local field potential oscillations publication-title: Exp. Neurol doi: 10.1016/j.expneurol.2012.09.013 – volume: 44 start-page: 622 year: 1998 ident: B17 article-title: Neurophysiological identification of the subthalamic nucleus in surgery for Parkinson's disease publication-title: Ann. Neurol doi: 10.1002/ana.410440407 – volume: 62 start-page: 1250 year: 2005 ident: B25 article-title: Management of referred deep brain stimulation failures publication-title: Arch. Neurol doi: 10.1001/archneur.62.8.noc40425 – reference: 16810720 - Mov Disord. 2006 Jun;21 Suppl 14:S259-83 – reference: 21855895 - J Neurol Sci. 2011 Nov 15;310(1-2):44-9 – reference: 24150222 - Curr Opin Neurol. 2013 Dec;26(6):662-70 – reference: 23154755 - Stereotact Funct Neurosurg. 2013;91(1):1-11 – reference: 23022916 - Exp Neurol. 2013 Jul;245:77-86 – reference: 19829159 - Neuroreport. 2009 Nov 25;20(17):1549-53 – reference: 19081516 - Lancet Neurol. 2009 Jan;8(1):67-81 – reference: 23711535 - Neuroimage. 2014 Jan 15;85 Pt 2:637-47 – reference: 20644424 - Neurosurgery. 2010 Aug;67(2):390-7 – reference: 16533660 - Brain Res Bull. 2006 Mar 31;69(2):123-30 – reference: 10942001 - Neurosurgery. 2000 Aug;47(2):282-92; discussion 292-4 – reference: 9778260 - Ann Neurol. 1998 Oct;44(4):622-8 – reference: 15956104 - Arch Neurol. 2005 Aug;62(8):1250-5 – reference: 15380487 - Exp Neurol. 2004 Oct;189(2):369-79 – reference: 21543839 - J Neural Eng. 2011 Jun;8(3):036018 – reference: 12023310 - Brain. 2002 Jun;125(Pt 6):1196-209 – reference: 7106797 - IEEE Trans Biomed Eng. 1982 Jun;29(6):458-60 – reference: 19641340 - Stereotact Funct Neurosurg. 2009;87(5):297-303 – reference: 18334857 - Stereotact Funct Neurosurg. 2008;86(3):153-61 – reference: 2329002 - IEEE Trans Biomed Eng. 1990 Mar;37(3):285-94 – reference: 17005611 - J Neurophysiol. 2006 Dec;96(6):3248-56 – reference: 21376039 - Exp Neurol. 2011 Jun;229(2):324-31 – reference: 25170784 - Stereotact Funct Neurosurg. 2014;92(4):251-63 – reference: 16741376 - Stereotact Funct Neurosurg. 2006;84(1):35-44; discussion 44-5 – reference: 16403500 - Exp Neurol. 2006 Mar;198(1):214-21 – reference: 16810673 - Mov Disord. 2006 Jun;21 Suppl 14:S197-218 – reference: 20721922 - Mov Disord. 2010 Oct 15;25(13):2067-75 – reference: 25084088 - J Neurosurg Pediatr. 2014 Oct;14(4):400-8 – reference: 25570528 - Conf Proc IEEE Eng Med Biol Soc. 2014;2014:2621-4 – reference: 19682943 - Parkinsonism Relat Disord. 2010 Feb;16(2):96-100 – reference: 22674402 - Mov Disord. 2012 Jun;27(7):930-3 – reference: 19287077 - J Neural Eng. 2009 Apr;6(2):026006 – reference: 25041924 - Mov Disord. 2014 Sep;29(10):1265-72 – reference: 18550758 - J Neurosci. 2008 Jun 11;28(24):6165-73 – reference: 15372594 - Mov Disord. 2004 Sep;19(9):1050-4 – reference: 12450039 - J Neurosurg. 2002 Nov;97(5):1167-72 – reference: 20463229 - J Neurosci. 2010 May 12;30(19):6667-77 – reference: 16499911 - Exp Neurol. 2006 Jul;200(1):56-65 – reference: 12937087 - Brain. 2003 Oct;126(Pt 10):2153-63 |
| SSID | ssj0062842 |
| Score | 2.3619363 |
| Snippet | Optimal electrophysiological placement of the DBS electrode may lead to better long term clinical outcomes. Inter-subject anatomical variability and... |
| SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 198 |
| SubjectTerms | Brain mapping Decision making Electrodes Intelligence LDA classification Least mean square algorithm Local Field Potentials Localization Medicine microelectrode recordings Microelectrodes Movement disorders Neurodegenerative diseases Neuroimaging Neuroscience Neurosurgery Oscillations Parkinson's disease Signal processing Solitary tract nucleus Subthalamic Nucleus Surgery |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxsxEBYll_RS2qSPbdOgQim0sNjalaXVMS8TShsCSSA3odWDmrhySGyKb_0b_Xv9JZ2R1ktMS3Lp0V6tvZ4ZzcznGX1DyHtZcYAN4P2CFLzkIoxKIy0rm8AgoDjPbKJr-noiji_458vR5Z1RX9gTlumBs-AGyjrBGm-CqCVACdmyFqKcQF5vAy89et9ho1ZgKvtgAU63ykVJgGBqEOIkIjc3S5UH1awFocTV_68E8-8-yc1FvDbLH2Y6vROExk_Jky57pHv5qZ-RRz5uke29CMj5-5J-oKmfM_1Rvk2uTm-wCIOCp7NAz85PysP9M3qU5944T5EY2OSTR5FCzLJXdBIpHoNOJ8J-__x1Sw9z_Ya2S5qaC-gXjH10jH1v9HQ2x14jMODn5GJ8dH5wXHajFUoLyHMOmmHG-tpVLTOsbkVVKemMrY2yHnawUq41DKBGQPIcMQzcCW9bJgLHoO54_YJsxFn0rwjlsgkqMNl6zjikH43g0kPa57wLI8NEQQYrWWvb8Y7j-IupBvyB2tFJOxq1o5N2CvKxv-M6c27cs3Yf1devQ7bs9AbYkO5sSD9kQwXZWSlfd1sYvgO50GpW82FB3vWXYfNhRcVEP1vcavRukDOpZnTPmgZQY10pBmteZnvqn7aSeDpnyAsi1yxt7eesX4mTb4kEHIeH1Qru_NTb5IPCev0_hPWGPMZPTE2faodszG8W_i0kZvN2N-3BPyJNNbY priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3raxNBEF9qCtovoq2PaJUVRFE4kr3b7N5-EGlsQhEbgm2h3469fWhovItpguS_d2bvgUGJ35LcHLm7ed_M_IaQ1zLmkDaA9fNS8IgLP4i0NCxKPQOHYh0zAa7pfCLOrvjn68H1Hpk0szDYVtnYxGCobWnwHXkvRmiqhCW8_3HxM8KtUVhdbVZo6Hq1gv0QIMbukP0YkbE6ZH84mky_NrZZgDEO9U-Bs0IQrFeFS0jTVM8XswLxu1moTqh0y1EFPP9_BaF_91LeWxcLvfml5_M_HNX4AblfR5j0pBKJh2TPFYfk6KSA7PrHhr6hoeczvEw_JHfP69L6EZlNl_gZ-URLTy8uJ9Hp8IKOqjU51lHEEdbVoFJBwcWZGzorKE5NhwGyt7f0tCr20HxDQycC_YKOko6xSY5OyxU2JoG0PyJX49Hlp7Oo3sMQGUhTV8BGpo1LbJwzzZJcxLGSVptEK-NA3ZWyuWaQl3hE2hF9z61wJmfCc4wALE8ek05RFu4poVymXnkmc8cZh1glFVw6iBGts36gmeiSXvPQM1ODlOOujHkGyQqyKQtsypBNWWBTl7xrz1hUAB07aIfIx5YOobXDD-XyW1ZraqaMFSx12otEQu4qc5ZDWCUQSF7DV9clx40UZLW-w3-00tklr9rDoKlYftGFK9e3GZpCCLBUOthBk0KKmcSKAc2TSrDaq40ljvL0eZfILZHbup3tI8Xse0AMx01jiYIz37fC-d-H9Wz3fT4nB0gbej_VMemslmv3AuKzVf6yVrrfoAw3yg priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELege4AXvsZHx0BGQiCQstaJY8ePHVs1IagqbZXGU-T4Q1Tr3Gpthcpfz52TFgrTEOKtaS5tfT777nq_-5mQ1zLlkDbA7uel4AkXPk-0NCwpPAOHYh0zka7p80CcjPjH83yNJpw3sEqPrft4EPQ41EzBDUQMVzhkVKrjwzgg1TaLhQRVdGbW3yY7IodwvEV2RoNh7wsmWgI7gvLs_OdrXtSlyms_Zss1RQb_68LOP9GTd5Zhplff9GTyi2vq3yfVelA1IuXiYLmoDsz33_ge_2vUD8i9JnClvVr-IbnlwiOy2wuQtF-u6BsaoaTxP_pdMh5eYf0H55xOPT09GyRHh6f0uD5yxzqKnMS6bnoKFNyluaDjQLEDOzajvZ3To7pwRKsVjagG-gmdLu0j4I4OpwsEOcHKeUxG_eOzDydJc6ZDYiDlXYBJMG1cZtOKaZZVIk2VtNpkWhkHW4dSttIMchyPrD2i67kVzlRMeI7RhOXZE9IK0-CeEcpl4ZVnsnKccYh7CsGlg3jTOutzzUSbdNbTWZqG8BzP3ZiUkPigRsuo0RI1WkaNtsm7zROzmuzjBtlDtJCNHNJ0xzdg7spm7kplrGCF015kEvJgWbEKQjSBpPQaLl2b7K_tq2z2DvgOJGHLWMa7bfJqcxtWPZZydHDT5bzEbRWCNVXkN8gUkK5mqWIg87Q22c2vTSW2BXV5m8gtY94azvadMP4a2cfx1LJMwZPvN2b_V2Xt_Yvwc3IXLyKqVO2T1uJq6V5A5LeoXjZr-weKOFUJ priority: 102 providerName: Unpaywall |
| Title | Prediction of STN-DBS Electrode Implantation Track in Parkinson's Disease by Using Local Field Potentials |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/27242404 https://www.proquest.com/docview/2305531340 https://www.proquest.com/docview/1793215985 https://www.proquest.com/docview/1808632915 https://pubmed.ncbi.nlm.nih.gov/PMC4860394 https://www.frontiersin.org/articles/10.3389/fnins.2016.00198/pdf https://doaj.org/article/9cd618eaf6374487b1b07561038a487e |
| UnpaywallVersion | publishedVersion |
| Volume | 10 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1662-453X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062842 issn: 1662-453X databaseCode: KQ8 dateStart: 20070101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1662-453X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062842 issn: 1662-453X databaseCode: DOA dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1662-453X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062842 issn: 1662-453X databaseCode: DIK dateStart: 20070101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1662-453X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062842 issn: 1662-453X databaseCode: GX1 dateStart: 20070101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1662-453X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062842 issn: 1662-453X databaseCode: RPM dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1662-453X dateEnd: 20211231 omitProxy: true ssIdentifier: ssj0062842 issn: 1662-453X databaseCode: BENPR dateStart: 20071015 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1662-453X dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0062842 issn: 1662-453X databaseCode: M48 dateStart: 20071001 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfG9gAvCBgfgVEZCQ2BFFYnrh0_INSyVhNiVcVWaTxFTmJDRXG6fgj633PnpBEV1eAxiR0lvjvfne_ud4S8lBEHtwF2PysFD7mwnVDLnIWJZaBQCsNyD9d0PhRnY_7xqnO1RzbVJfUCLna6dthPajyfvv11vX4PAv8OPU7QtyfWTRwibzMfV1DJ8ew6xLZSGH6te2zcIgeguhT2djjnTZhBwN7sw6ECS4fAdq_imDtfuqW3PLz_Lpv079TK2ys30-ufejr9Q28N7pG7tcFJuxWH3Cd7xj0gh10HzvaPNT2mPgXUn60fkslojnEbpBUtLb24HIanvQvar1rlFIYilrCuipUcBTWXf6cTR7Fy2heRvVrQ0yrgQ7M19dkI9BMqSzrARDk6KpeYnAQr_5CMB_3LD2dh3YshzMFVXQIpmc5NXEQZ0yzORBQpWeg81io3IPJKFZlm4JtYRNsRbcsLYfKMCcvRCih4_Ijsu9KZJ4RymVhlmcwMZxzslURwacBOLExhO5qJgJxsVjrNa6By7JcxTcFhQdqknjYp0ib1tAnI62bGrALpuGFsD4nXjEN4bX-jnH9Na2lNVV4IlhhtRSzBf5UZy8C0Eggmr-HSBORoQ_p0w7JphOBpMYt5OyAvmscgrRiC0c6Uq0WK2yEYWSrp3DAmATczjhSDMY8rbmq-NpJYztPmAZFbfLb1O9tP3OSbRw3HbmOxgplvGo7852I9_Y8feUbu4ASfBKqOyP5yvjLPwVBbZi1y0OsPR59b_qCj5UUP7o2Ho-6X3-YTP7E |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEF6VVqK8IGg5AgUWiUMgWcnam7X3oUINSZTSJIpoK_XNrL27EBHskENV_hy_jZm1HRGBwlPffOz6mtk5PDPfEPIq9Dm4DSD9bCi4x4VteipMmRdZBgpFG5Y6uKbBUPQu-aer5tUO-VXVwmBaZSUTnaDWeYr_yOs-QlMFLOCND9OfHnaNwuhq1UJDla0V9LGDGCsLO87M6hpcuPnxaRvo_dr3u52Ljz2v7DLgpeCELeAhmUpNoP2EKRYkwvdlqFUaKJkaYGYpdaIYWN0WcWREw3ItTJowYTnqN80DuO4tsscDLsH522t1hqPPlS4QIPxdvFVgbRI4B0WgFNxCWbfZOEO8cOaiITLaUIyuf8C_jN6_czf3l9lUra7VZPKHYuzeI3dLi5aeFCx4n-yY7IAcnmTgzf9Y0TfU5Zi6n_cH5PagDOUfkvFohtvIFzS39Pxi6LVb57RTtOXRhiJusSoKozIKKjX9TscZxSptV7D2dk7bRXCJJivqMh9oHxUz7WJSHh3lC0yEgtX1gFzeCEUekt0sz8xjQnkYWWlZmBjOONhGkeChAZtUG22biokaqVcfPU5LUHTszTGJwTlCMsWOTDGSKXZkqpF36xnTAhBky9gW0nE9DqG83YF89jUuJUMsUy1YZJQVQQi-cpiwBMw4gcD1CnZNjRxVXBCX8gXusV4NNfJyfRokA4Z7VGby5TxG0QsGnYyaW8ZE4NIGvmQw5lHBWOun9UMsHWrwGgk3WG7jdTbPZONvDqEcO5sFEma-XzPnfz_Wk-3v-YLs9y4G_bh_Ojx7Su7gPJd3Ko_I7mK2NM_ANlwkz8sFSMmXm17zvwFRnXTk |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEF6VVip9QdByBAosEodAspK1N2vvQ4UakqilbRTRVuqbWXt3S0SwQw5V-Yv8KmbWh4hA4alvSbwbH3N7Zr4h5HXocwgbQPvZUHCPC9v2VJgyL7IMDIo2LHVwTWcDcXTJP1-1rzbIr6oXBssqK53oFLXOU3xH3vQRmipgAW81bVkWMez2P05-ejhBCjOt1TgNVY5Z0AcObqxs8jgxyxsI52YHx12g_Rvf7_cuPh155cQBL4WAbA4XzFRqAu0nTLEgEb4vQ63SQMnUAGNLqRPFwAO3iCkjWpZrYdKECcvR1mkewP_eIVuY_AIlsdXpDYZfKrsgwBC43KvAPiUIFIqkKYSIsmmzUYbY4cxlRmS0YiTdLIF_OcB_13HeXWQTtbxR4_EfRrJ_n9wrvVt6WLDjA7Jhsl2yd5hBZP9jSd9SV2_qXuTvku2zMq2_R0bDKX5GHqG5pecXA6_bOae9YkSPNhQxjFXRJJVRMK_pdzrKKHZsu-a1dzPaLRJNNFlSVwVBT9FI0z4W6NFhPseiKJC0h-TyVijyiGxmeWaeEMrDyErLwsRwxsFPigQPDfin2mjbVkw0SLN66HFaAqTjnI5xDIESkil2ZIqRTLEjU4O8r3dMCnCQNWs7SMd6HcJ6ux_y6XVcaolYplqwyCgrghDi5jBhCbh0AkHsFXw1DbJfcUFc6ho4Ry0ZDfKqPgxaAlM_KjP5YhajGgbnTkbtNWsiCG8DXzJY87hgrPpq_RDbiFq8QcIVllu5ndUj2eibQyvHKWeBhJ0faub878N6uv4-X5JtkP349Hhw8ozs4DZXgir3yeZ8ujDPwU2cJy9K-aPk622L_G_B7nkT |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELege4AXvsZHx0BGQiCQstaJY8ePHVs1IagqbZXGU-T4Q1Tr3Gpthcpfz52TFgrTEOKtaS5tfT777nq_-5mQ1zLlkDbA7uel4AkXPk-0NCwpPAOHYh0zka7p80CcjPjH83yNJpw3sEqPrft4EPQ41EzBDUQMVzhkVKrjwzgg1TaLhQRVdGbW3yY7IodwvEV2RoNh7wsmWgI7gvLs_OdrXtSlyms_Zss1RQb_68LOP9GTd5Zhplff9GTyi2vq3yfVelA1IuXiYLmoDsz33_ge_2vUD8i9JnClvVr-IbnlwiOy2wuQtF-u6BsaoaTxP_pdMh5eYf0H55xOPT09GyRHh6f0uD5yxzqKnMS6bnoKFNyluaDjQLEDOzajvZ3To7pwRKsVjagG-gmdLu0j4I4OpwsEOcHKeUxG_eOzDydJc6ZDYiDlXYBJMG1cZtOKaZZVIk2VtNpkWhkHW4dSttIMchyPrD2i67kVzlRMeI7RhOXZE9IK0-CeEcpl4ZVnsnKccYh7CsGlg3jTOutzzUSbdNbTWZqG8BzP3ZiUkPigRsuo0RI1WkaNtsm7zROzmuzjBtlDtJCNHNJ0xzdg7spm7kplrGCF015kEvJgWbEKQjSBpPQaLl2b7K_tq2z2DvgOJGHLWMa7bfJqcxtWPZZydHDT5bzEbRWCNVXkN8gUkK5mqWIg87Q22c2vTSW2BXV5m8gtY94azvadMP4a2cfx1LJMwZPvN2b_V2Xt_Yvwc3IXLyKqVO2T1uJq6V5A5LeoXjZr-weKOFUJ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+STN-DBS+Electrode+Implantation+Track+in+Parkinson%27s+Disease+by+Using+Local+Field+Potentials&rft.jtitle=Frontiers+in+neuroscience&rft.au=Telkes%2C+Ilknur&rft.au=Jimenez-Shahed%2C+Joohi&rft.au=Viswanathan%2C+Ashwin&rft.au=Abosch%2C+Aviva&rft.date=2016-05-09&rft.issn=1662-4548&rft.volume=10&rft.spage=198&rft_id=info:doi/10.3389%2Ffnins.2016.00198&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-453X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-453X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-453X&client=summon |