License Plate Recognition From Still Images and Video Sequences: A Survey
License plate recognition (LPR) algorithms in images or videos are generally composed of the following three processing steps: 1) extraction of a license plate region; 2) segmentation of the plate characters; and 3) recognition of each character. This task is quite challenging due to the diversity o...
Saved in:
Published in | IEEE transactions on intelligent transportation systems Vol. 9; no. 3; pp. 377 - 391 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway, NJ
IEEE
01.09.2008
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1524-9050 1558-0016 |
DOI | 10.1109/TITS.2008.922938 |
Cover
Abstract | License plate recognition (LPR) algorithms in images or videos are generally composed of the following three processing steps: 1) extraction of a license plate region; 2) segmentation of the plate characters; and 3) recognition of each character. This task is quite challenging due to the diversity of plate formats and the nonuniform outdoor illumination conditions during image acquisition. Therefore, most approaches work only under restricted conditions such as fixed illumination, limited vehicle speed, designated routes, and stationary backgrounds. Numerous techniques have been developed for LPR in still images or video sequences, and the purpose of this paper is to categorize and assess them. Issues such as processing time, computational power, and recognition rate are also addressed, when available. Finally, this paper offers to researchers a link to a public image database to define a common reference point for LPR algorithmic assessment. |
---|---|
AbstractList | License plate recognition (LPR) algorithms in images or videos are generally composed of the following three processing steps: 1) extraction of a license plate region; 2) segmentation of the plate characters; and 3) recognition of each character. This task is quite challenging due to the diversity of plate formats and the nonuniform outdoor illumination conditions during image acquisition. Therefore, most approaches work only under restricted conditions such as fixed illumination, limited vehicle speed, designated routes, and stationary backgrounds. Numerous techniques have been developed for LPR in still images or video sequences, and the purpose of this paper is to categorize and assess them. Issues such as processing time, computational power, and recognition rate are also addressed, when available. Finally, this paper offers to researchers a link to a public image database to define a common reference point for LPR algorithmic assessment. License plate recognition (LPR) algorithms in images or videos are generally composed of the following three processing steps: 1) extraction of a license plate region; 2) segmentation of the plate characters; and 3) recognition [abstract truncated by publisher]. |
Author | Anagnostopoulos, Ioannis E. Loumos, Vassili Kayafas, Eleftherios Anagnostopoulos, Christos-Nikolaos E. Psoroulas, Ioannis D. |
Author_xml | – sequence: 1 givenname: Christos-Nikolaos E. surname: Anagnostopoulos fullname: Anagnostopoulos, Christos-Nikolaos E. email: canag@ct.aegean.gr organization: Dept. of Cultural Technol. & Commun., Aegean Univ., Mytilene – sequence: 2 givenname: Ioannis E. surname: Anagnostopoulos fullname: Anagnostopoulos, Ioannis E. email: janag@aegean.gr – sequence: 3 givenname: Ioannis D. surname: Psoroulas fullname: Psoroulas, Ioannis D. email: psoroulas@telecom.ntua.gr – sequence: 4 givenname: Vassili surname: Loumos fullname: Loumos, Vassili email: loumos@cs.ntua.gr – sequence: 5 givenname: Eleftherios surname: Kayafas fullname: Kayafas, Eleftherios email: kayafas@cs.ntua.gr |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20641896$$DView record in Pascal Francis |
BookMark | eNqFks1rGzEQxUVJoPm6F3oRhbandUdfu1JvITStwdBSO70KWTsKCmttKq0D-e-rxWkPOaQgkBh-b3gzT6fkKI0JCXnDYMEYmE-b5Wa94AB6YTg3Qr8iJ0wp3QCw9mh-c9kYUPCanJZyV6tSMXZClqvoMRWkPwY3If2JfrxNcYpjotd53NH1FIeBLnfuFgt1qae_Yo8jXePvPSaP5TO9pOt9fsDHc3Ic3FDw4uk-IzfXXzZX35rV96_Lq8tV4xUXUxM61oaeodDSILZ96IV3bsv8FrYdY12dpe984B10yCF4DOiM00oaL5RUQpyRj4e-93msJspkd7F4HAaXcNwXa0C0vK3nv6TuFBjouKzkhxdJIaVUivMKvnsG3o37nOq8VrfcSKWBVej9E-SKd0PILvlY7H2OO5cfLYdWMm1mf-2B83ksJWOwPk5u3v2UXRwsAztHa-do7RytPURbhfBM-Lf3C5K3B0lExH94_QPaKCb-AOeerpU |
CODEN | ITISFG |
CitedBy_id | crossref_primary_10_1016_j_jksuci_2017_09_001 crossref_primary_10_1145_3126549 crossref_primary_10_1109_ACCESS_2020_3047929 crossref_primary_10_1117_1_JEI_25_5_053034 crossref_primary_10_3390_s22218439 crossref_primary_10_1109_TITS_2016_2597160 crossref_primary_10_1109_TITS_2010_2047500 crossref_primary_10_1109_TITS_2016_2606369 crossref_primary_10_1016_j_ijleo_2015_09_006 crossref_primary_10_1109_TITS_2016_2552778 crossref_primary_10_1088_1742_6596_2023_1_012004 crossref_primary_10_1109_TITS_2014_2304515 crossref_primary_10_4304_jsw_9_9_2353_2360 crossref_primary_10_1016_j_eswa_2011_08_143 crossref_primary_10_1049_iet_its_2018_5151 crossref_primary_10_1007_s12555_016_0332_z crossref_primary_10_3390_app10082780 crossref_primary_10_1049_iet_its_2017_0138 crossref_primary_10_1109_TITS_2018_2859035 crossref_primary_10_3390_electronics10040480 crossref_primary_10_1016_j_neucom_2014_05_091 crossref_primary_10_1109_TC_2020_2970413 crossref_primary_10_1145_2464526_2464541 crossref_primary_10_1109_ACCESS_2017_2737418 crossref_primary_10_1016_j_patcog_2010_06_008 crossref_primary_10_1109_MC_2016_14 crossref_primary_10_1109_TCSVT_2012_2203741 crossref_primary_10_1109_TMM_2011_2170666 crossref_primary_10_21122_2227_1031_2022_21_5_367_373 crossref_primary_10_1109_TIP_2016_2631901 crossref_primary_10_1016_j_conengprac_2020_104458 crossref_primary_10_3390_s23239487 crossref_primary_10_1016_j_jvcir_2016_01_015 crossref_primary_10_2478_s11772_012_0049_3 crossref_primary_10_3390_math10091569 crossref_primary_10_1109_TITS_2010_2042958 crossref_primary_10_1186_s13640_021_00572_4 crossref_primary_10_1016_j_iatssr_2018_05_005 crossref_primary_10_1109_TITS_2011_2114346 crossref_primary_10_1088_1742_6596_1821_1_012049 crossref_primary_10_1109_ACCESS_2022_3186010 crossref_primary_10_1109_TITS_2015_2496545 crossref_primary_10_3390_app12125994 crossref_primary_10_1109_TITS_2011_2158001 crossref_primary_10_1007_s00530_020_00655_8 crossref_primary_10_1061__ASCE_ST_1943_541X_0001334 crossref_primary_10_3390_s120608355 crossref_primary_10_1088_1757_899X_231_1_012055 crossref_primary_10_5573_ieek_2012_49_12_131 crossref_primary_10_1109_TITS_2021_3130898 crossref_primary_10_1049_itr2_12079 crossref_primary_10_3390_systems10050177 crossref_primary_10_1109_TITS_2013_2267054 crossref_primary_10_4218_etrij_15_2314_0077 crossref_primary_10_1117_1_JEI_24_2_023020 crossref_primary_10_1007_s11042_017_4356_z crossref_primary_10_3390_s22030921 crossref_primary_10_3390_s20195589 crossref_primary_10_1109_TMM_2020_3035279 crossref_primary_10_1080_01969720903294601 crossref_primary_10_1007_s10946_020_09861_1 crossref_primary_10_1007_s11370_009_0043_x crossref_primary_10_1007_s00371_013_0917_y crossref_primary_10_3390_app11146292 crossref_primary_10_1109_TITS_2023_3278533 crossref_primary_10_1109_TMM_2011_2156910 crossref_primary_10_1177_0954407019851339 crossref_primary_10_1002_sec_679 crossref_primary_10_1117_1_JEI_24_3_033001 crossref_primary_10_1117_1_JEI_28_1_013001 crossref_primary_10_1016_j_matpr_2020_09_046 crossref_primary_10_1007_s11042_022_14195_y crossref_primary_10_3807_JOSK_2010_14_4_376 crossref_primary_10_9717_kmms_2012_15_6_737 crossref_primary_10_1109_TVT_2012_2226218 crossref_primary_10_12720_joig_1_2_94_98 crossref_primary_10_1016_j_patcog_2023_110177 crossref_primary_10_14778_3137628_3137664 crossref_primary_10_1016_j_neucom_2021_03_103 crossref_primary_10_1016_j_procs_2018_08_168 crossref_primary_10_1002_int_22511 crossref_primary_10_18034_abcjar_v4i2_549 crossref_primary_10_1016_j_engappai_2015_09_009 crossref_primary_10_1142_S0218001413500250 crossref_primary_10_1109_TITS_2014_2336675 crossref_primary_10_1515_eng_2024_0101 crossref_primary_10_1016_j_jvcir_2024_104314 crossref_primary_10_1109_TITS_2011_2180714 crossref_primary_10_1109_MITS_2013_2292652 crossref_primary_10_1016_j_eswa_2010_08_106 crossref_primary_10_7840_kics_2013_38C_12_1114 crossref_primary_10_1007_s11047_019_09746_6 crossref_primary_10_1007_s11554_012_0258_5 crossref_primary_10_1016_j_compeleceng_2015_02_014 crossref_primary_10_1016_j_eswa_2017_09_036 crossref_primary_10_1016_j_neucom_2021_07_082 crossref_primary_10_1109_ACCESS_2020_2994287 crossref_primary_10_1007_s00500_017_2696_2 crossref_primary_10_1142_S0218001415500044 crossref_primary_10_1049_ipr2_12262 crossref_primary_10_1109_ACCESS_2020_2979185 crossref_primary_10_1007_s00500_023_08128_6 crossref_primary_10_1016_j_engfracmech_2022_109002 crossref_primary_10_1155_2016_6260372 crossref_primary_10_3390_s21093028 crossref_primary_10_1109_TITS_2011_2145417 crossref_primary_10_1016_j_neucom_2014_10_104 crossref_primary_10_1109_ACCESS_2023_3254365 crossref_primary_10_1016_j_imavis_2018_02_002 crossref_primary_10_1007_s10617_020_09241_7 crossref_primary_10_1049_iet_cds_2012_0064 crossref_primary_10_1016_j_comcom_2020_01_058 crossref_primary_10_1109_TITS_2016_2639020 crossref_primary_10_3390_app12031445 crossref_primary_10_3390_s151026143 crossref_primary_10_1016_j_visinf_2019_07_001 crossref_primary_10_1080_01969722_2011_634671 crossref_primary_10_1117_1_JEI_26_5_051406 crossref_primary_10_1016_j_cviu_2013_04_005 crossref_primary_10_1049_ipr2_12674 crossref_primary_10_15407_kvt199_01_005 crossref_primary_10_1109_TIP_2020_2967578 crossref_primary_10_1109_TIM_2024_3476570 crossref_primary_10_3390_info11040221 crossref_primary_10_3390_jimaging5040044 crossref_primary_10_1007_s11042_017_4429_z crossref_primary_10_1007_s11042_024_19415_1 crossref_primary_10_1007_s12293_016_0187_0 crossref_primary_10_1049_iet_cds_2012_0339 crossref_primary_10_4218_etrij_13_0112_0545 crossref_primary_10_1007_s12239_010_0089_y crossref_primary_10_1016_j_cviu_2019_03_001 crossref_primary_10_1016_j_eswa_2013_06_004 crossref_primary_10_1109_ACCESS_2020_3024625 crossref_primary_10_1117_1_JEI_28_1_013036 crossref_primary_10_1142_S0218488513500335 crossref_primary_10_1016_j_imavis_2019_04_007 crossref_primary_10_35940_ijitee_L9342_11111222 crossref_primary_10_1109_MITS_2015_2412146 crossref_primary_10_1007_s12555_010_0506_z crossref_primary_10_1016_j_matpr_2020_11_650 crossref_primary_10_1109_TITS_2010_2092769 crossref_primary_10_1016_j_neucom_2019_11_069 crossref_primary_10_1117_1_JEI_26_5_053027 crossref_primary_10_1109_JIOT_2017_2705560 crossref_primary_10_4218_etrij_17_0115_0766 crossref_primary_10_1109_TETCI_2019_2907718 crossref_primary_10_1109_TIE_2011_2161249 crossref_primary_10_3390_electronics9091522 crossref_primary_10_1080_21680566_2013_780987 crossref_primary_10_1007_s00138_012_0414_8 crossref_primary_10_1109_TNSE_2020_3048167 crossref_primary_10_1016_j_procs_2016_03_054 crossref_primary_10_1109_TITS_2017_2780093 crossref_primary_10_1016_j_inffus_2013_05_008 crossref_primary_10_1016_j_matpr_2022_09_165 crossref_primary_10_1049_iet_its_2019_0253 crossref_primary_10_1108_SASBE_07_2019_0083 crossref_primary_10_1002_stc_1856 crossref_primary_10_1007_s11042_020_08948_w crossref_primary_10_1109_TITS_2014_2340701 crossref_primary_10_3169_mta_13_119 crossref_primary_10_1109_TITS_2022_3213018 crossref_primary_10_3390_technologies9010009 crossref_primary_10_1007_s13369_016_2136_0 crossref_primary_10_1049_itr2_12030 crossref_primary_10_1142_S0218001413500249 crossref_primary_10_9728_dcs_2013_14_4_447 crossref_primary_10_4018_IJISP_201907010101 crossref_primary_10_1016_j_asoc_2015_02_032 crossref_primary_10_1364_OE_22_013531 crossref_primary_10_1016_j_trc_2011_11_003 crossref_primary_10_1007_s10586_022_03536_z crossref_primary_10_1049_iet_its_2016_0008 crossref_primary_10_1049_iet_its_2017_0224 crossref_primary_10_1109_TCSVT_2024_3454331 |
Cites_doi | 10.1109/34.9113 10.1109/ICPR.2006.400 10.1109/CNNA.1998.685366 10.1109/25.901900 10.1109/41.824138 10.1007/11494669_108 10.1109/ISIE.2001.932025 10.1109/TITS.2004.825086 10.1016/j.patrec.2005.04.014 10.1109/TITS.2006.880641 10.1109/ISIE.1997.648635 10.1109/TITS.2007.895291 10.1109/CVPR.2007.383412 10.1023/B:VISI.0000013087.49260.fb 10.1109/34.232073 10.1109/CVPR.1997.609310 10.1109/SIBGRA.2004.1352951 10.1109/IPDPS.2006.1639437 10.1109/AVSS.2003.1217917 10.1109/ISSPA.1999.818210 10.1109/MWSCAS.1995.504495 10.1109/INDCON.2005.1590116 10.1109/TBME.1970.4502739 10.1109/ICPR.2006.1115 10.1007/s001380050081 10.1155/ASP/2006/51306 10.1109/ICPR.2006.239 10.1016/0893-6080(90)90049-Q 10.1109/INDIN.2010.5549461 10.1023/A:1008078328650 10.1007/s00138-006-0023-5 10.1016/0031-3203(95)00118-2 10.1111/j.1551-6708.1987.tb00862.x 10.1109/ISSPIT.2005.1577108 10.1109/APCCAS.1998.743881 10.1109/72.761706 10.1109/IECON.2003.1280330 10.1109/34.1000236 10.1109/JVA.2006.30 10.1109/25.467963 10.1109/MASSP.1984.1162229 10.1109/FGCN.2008.135 10.1109/ITSC.2003.1252632 10.1109/TPAMI.2004.111 10.1109/TPAMI.2004.97 10.1109/ICPR.2004.1333775 10.1007/BF00130487 10.1109/TPAMI.1987.4767981 10.1109/TPAMI.2002.1046177 10.1109/IJCNN.2003.1223862 10.1109/AVSS.2005.1577325 10.1109/ICNN.1995.487708 10.1109/IIS.1997.645232 10.1109/AVSS.2006.100 10.1109/IVS.2003.1212889 10.1109/ACV.1998.732882 10.1177/004051750407400716 10.1109/34.655647 10.1109/SIPS.2005.1579889 10.1016/0031-3203(79)90006-2 10.1109/34.400568 10.1002/0471221325 10.1109/81.721253 10.1016/S0031-3203(99)00055-2 10.1109/72.265964 10.1109/ICIP.1996.560964 10.1109/AVSS.2006.30 10.1007/978-3-662-03939-7 10.1109/ICIP.2006.313121 10.1109/NNSP.2001.943157 10.1109/ICIP.2003.1246708 10.1007/3-540-34783-6_23 10.1109/ISIE.1998.711680 10.1109/ICDAR.1997.620636 10.1109/ICPR.2002.1047833 10.1023/A:1007975324482 10.1007/BF01413708 10.1109/5.18626 10.1016/S0031-3203(99)00079-5 10.1109/TPAMI.1987.4767935 10.1016/0165-0114(94)90297-6 10.1109/ICNSC.2004.1297038 10.1109/TSMC.1979.4310076 10.5244/C.18.61 10.1109/AUTOID.2005.50 10.1109/ITSC.2005.1520110 10.1109/ICME.2003.1221626 10.1109/ICOSP.1998.770850 10.1109/ITSC.2003.1251994 10.1162/089976600300015538 10.1109/ICPR.2004.1334387 10.1109/26.3776 10.1109/ICSMC.1998.727533 10.1109/21.155943 10.1007/978-94-017-3217-8 10.1109/ICNSC.2004.1297046 10.1109/34.368145 10.1109/RTTAS.1995.516201 10.1109/ITSC.2001.948677 10.1109/91.298447 10.1142/S0129065797000148 10.1073/pnas.93.4.1591 10.1109/ICPR.2004.1333776 10.1109/ICOSP.2004.1442289 10.1109/34.825753 10.1109/29.21701 10.1016/j.engappai.2005.03.011 10.1162/089976699300016197 10.1109/ICPR.2004.1334477 10.1109/ICPR.2006.758 10.1109/34.667881 10.7551/mitpress/5236.001.0001 10.1007/978-3-642-48779-8_7 10.1007/978-3-540-45179-2_39 10.1109/TIFS.2007.897251 10.1016/j.patcog.2005.01.026 10.1109/34.85672 10.1109/ICIP.2002.1039130 10.1109/TPAMI.1981.4767076 10.1109/ICOSP.2004.1441601 10.1109/NNSP.2000.890140 10.1109/ICPR.2006.761 10.1109/AINA.2005.257 10.1016/0734-189X(85)90093-3 10.1049/el:19990977 |
ContentType | Journal Article |
Copyright | 2008 INIST-CNRS Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008 |
Copyright_xml | – notice: 2008 INIST-CNRS – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008 |
DBID | 97E RIA RIE AAYXX CITATION IQODW 7SC 7SP 8FD FR3 JQ2 KR7 L7M L~C L~D F28 |
DOI | 10.1109/TITS.2008.922938 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Pascal-Francis Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ANTE: Abstracts in New Technology & Engineering |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Civil Engineering Abstracts Civil Engineering Abstracts Civil Engineering Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Applied Sciences |
EISSN | 1558-0016 |
EndPage | 391 |
ExternalDocumentID | 2326812401 20641896 10_1109_TITS_2008_922938 4518951 |
Genre | orig-research |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS ZY4 AAYXX CITATION RIG IQODW 7SC 7SP 8FD FR3 JQ2 KR7 L7M L~C L~D F28 |
ID | FETCH-LOGICAL-c523t-f716fd1e3849ee6dfd3caab1cb0b7117109d7cf2707e20fcefea9a8549c354533 |
IEDL.DBID | RIE |
ISSN | 1524-9050 |
IngestDate | Sat Sep 27 20:41:49 EDT 2025 Sun Sep 28 09:54:48 EDT 2025 Sun Sep 28 00:01:28 EDT 2025 Sun Jun 29 16:22:49 EDT 2025 Mon Jul 21 09:15:30 EDT 2025 Tue Jul 01 04:28:56 EDT 2025 Thu Apr 24 23:04:29 EDT 2025 Wed Aug 27 02:24:08 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | license plate recognition (LPR) optical character recognition (OCR) Image processing license plate identification license plate segmentation Registration (vehicle) Segmentation Image databank Outdoor installation Video signal Algorithmics Processing time Pattern recognition Character recognition Stationary condition Plate Luminance Optical character recognition Image sequence Fixed image Illumination |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c523t-f716fd1e3849ee6dfd3caab1cb0b7117109d7cf2707e20fcefea9a8549c354533 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 content type line 23 |
OpenAccessLink | http://doi.org/10.1109/TITS.2008.922938 |
PQID | 862945801 |
PQPubID | 23500 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_903626626 crossref_citationtrail_10_1109_TITS_2008_922938 crossref_primary_10_1109_TITS_2008_922938 proquest_journals_862945801 proquest_miscellaneous_875090724 proquest_miscellaneous_34445522 ieee_primary_4518951 pascalfrancis_primary_20641896 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2008-09-01 |
PublicationDateYYYYMMDD | 2008-09-01 |
PublicationDate_xml | – month: 09 year: 2008 text: 2008-09-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Piscataway, NJ |
PublicationPlace_xml | – name: Piscataway, NJ – name: New York |
PublicationTitle | IEEE transactions on intelligent transportation systems |
PublicationTitleAbbrev | TITS |
PublicationYear | 2008 |
Publisher | IEEE Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref56 ref58 ref52 ref54 Dlagnekov (ref28) 2004 ref50 Jia (ref96); 3 Zhang (ref80) 2002; 23 Li (ref88) Isard (ref107) 1998; 29 ref46 ref45 ref48 Kahraman (ref21) 2003; 2869 ref47 ref42 ref41 Garibotto (ref145) 2001; 2059 ref44 ref43 ref49 Duan (ref25) ref9 ref4 ref3 ref6 ref5 Kim (ref8); 2388 ref100 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref149 ref33 ref146 ref32 ref39 ref38 Kang (ref147); 1 ref155 ref156 ref153 ref154 ref151 ref152 Gonzalez (ref55) 1993 ref150 ref24 ref26 ref20 Lee (ref143) 2006; 3973 ref157 ref27 ref29 Opas (ref129) Llorens (ref65) 2005; 3522 Adorni (ref22) ref13 ref12 ref128 ref14 ref97 ref126 ref127 ref11 ref99 ref124 ref10 ref98 Yalçın (ref106); 1 ref125 Anagnostopoulos (ref69) 2000; 1 ref16 ref19 ref18 Broumandnia (ref15) ref93 ref133 ref134 ref95 ref131 ref94 ref132 ref130 ref90 Ma (ref101) ref89 ref139 ref86 ref137 Haykin (ref67) 1999 ref85 ref138 ref135 ref87 ref136 Hu (ref73) 2005; 3497 Storn (ref108) 1995 ref144 ref81 ref84 ref142 ref83 ref140 ref141 ref79 Martin (ref1) ref78 ref109 ref75 Schlesinger (ref92) 2002 ref104 ref74 ref105 ref77 Ahmad (ref82) 1995; 2 ref102 ref76 ref103 ref2 Lee (ref51); 2 Yoshimori (ref23) 2003; 2773 ref111 ref70 ref112 ref72 ref110 Nomura (ref53) 2004; E87-D Cano (ref17) 2003; 2652 ref68 ref119 ref117 ref118 ref64 ref115 ref63 ref116 ref66 ref113 ref114 Lee (ref59) 2004; 3322 Franc (ref91) 2005; 3663 Shi (ref7) 2005; 3483 ref60 ref122 ref123 ref62 ref120 ref61 ref121 Bishop (ref71) 1997 |
References_xml | – ident: ref56 doi: 10.1109/34.9113 – volume: 23 start-page: 45 issue: 1–3 year: 2002 ident: ref80 article-title: A novel feature extraction method and hybrid tree classification for handwritten numeral recognition publication-title: Pattern Recognit. Lett. – ident: ref111 doi: 10.1109/ICPR.2006.400 – ident: ref29 doi: 10.1109/CNNA.1998.685366 – ident: ref37 doi: 10.1109/25.901900 – volume: 3522 start-page: 571 volume-title: Car License Plates Extraction and Recognition Based on Connected Components Analysis and HMM Decoding year: 2005 ident: ref65 – volume: 1 start-page: 658 volume-title: Proc. 18th ICPR ident: ref106 article-title: Integrating differential evolution and condensation algorithms for license plate tracking – volume: 2059 start-page: 749 volume-title: A Binocular License Plate Reader for High Precision Speed Measurement year: 2001 ident: ref145 – volume-title: Proc. Int. Conf. GVIP ident: ref15 article-title: Application of pattern recognition for Farsi license plate recognition – ident: ref33 doi: 10.1109/41.824138 – ident: ref79 doi: 10.1007/11494669_108 – ident: ref27 doi: 10.1109/ISIE.2001.932025 – ident: ref20 doi: 10.1109/TITS.2004.825086 – volume: 3483 start-page: 1159 volume-title: Automatic License Plate Recognition System Based on Color Image Processing year: 2005 ident: ref7 – volume-title: Digital Image Processing year: 1993 ident: ref55 – ident: ref3 doi: 10.1016/j.patrec.2005.04.014 – ident: ref39 doi: 10.1109/TITS.2006.880641 – ident: ref137 doi: 10.1109/ISIE.1997.648635 – ident: ref151 doi: 10.1109/TITS.2007.895291 – ident: ref152 doi: 10.1109/CVPR.2007.383412 – ident: ref157 doi: 10.1023/B:VISI.0000013087.49260.fb – ident: ref74 doi: 10.1109/34.232073 – ident: ref12 doi: 10.1109/CVPR.1997.609310 – ident: ref50 doi: 10.1109/SIBGRA.2004.1352951 – ident: ref78 doi: 10.1109/IPDPS.2006.1639437 – volume: 2652 start-page: 142 volume-title: Vehicle License Plate Segmentation in Natural Images year: 2003 ident: ref17 – ident: ref134 doi: 10.1109/AVSS.2003.1217917 – ident: ref132 doi: 10.1109/ISSPA.1999.818210 – ident: ref133 doi: 10.1109/MWSCAS.1995.504495 – volume: 1 start-page: 167 volume-title: Proc. 26th Int. Inf. Technol. Interfaces ident: ref147 article-title: Implementation of embedded system for vehicle tracking and license plates recognition using spatial relative distance – ident: ref45 doi: 10.1109/INDCON.2005.1590116 – ident: ref122 doi: 10.1109/TBME.1970.4502739 – ident: ref102 doi: 10.1109/ICPR.2006.1115 – ident: ref24 doi: 10.1007/s001380050081 – ident: ref155 doi: 10.1155/ASP/2006/51306 – ident: ref89 doi: 10.1109/ICPR.2006.239 – ident: ref70 doi: 10.1016/0893-6080(90)90049-Q – ident: ref77 doi: 10.1109/INDIN.2010.5549461 – volume: 29 start-page: 5 issue: 1 year: 1998 ident: ref107 article-title: Condensation—Conditional density propagation for visual tracking publication-title: Int. J. Comput. Vis. doi: 10.1023/A:1008078328650 – start-page: 90 volume-title: Proc. 24th IASTED Int. Multiconference, Signal Process., Pattern Recog. Appl. ident: ref101 article-title: A license plate locating algorithm based on multiple Gauss filters and morphology mathematics – ident: ref153 doi: 10.1007/s00138-006-0023-5 – ident: ref119 doi: 10.1016/0031-3203(95)00118-2 – ident: ref136 doi: 10.1111/j.1551-6708.1987.tb00862.x – ident: ref87 doi: 10.1109/ISSPIT.2005.1577108 – ident: ref135 doi: 10.1109/APCCAS.1998.743881 – volume: 3663 start-page: 385 volume-title: License Plate Character Segmentation Using Hidden Markov Chains year: 2005 ident: ref91 – ident: ref124 doi: 10.1109/72.761706 – volume: 2773 start-page: 585 volume-title: License Plate Detection Using Hereditary Threshold Determine Method year: 2003 ident: ref23 – ident: ref43 doi: 10.1109/IECON.2003.1280330 – volume: 2 start-page: 301 volume-title: Proc. IEEE ICIP ident: ref51 article-title: Automatic recognition of a car license plate using color image processing – ident: ref94 doi: 10.1109/34.1000236 – ident: ref149 doi: 10.1109/JVA.2006.30 – ident: ref6 doi: 10.1109/25.467963 – ident: ref34 doi: 10.1109/MASSP.1984.1162229 – ident: ref68 doi: 10.1109/FGCN.2008.135 – ident: ref4 doi: 10.1109/ITSC.2003.1252632 – ident: ref114 doi: 10.1109/TPAMI.2004.111 – ident: ref103 doi: 10.1109/TPAMI.2004.97 – volume-title: License Plate Detection Using AdaBoost year: 2004 ident: ref28 – ident: ref90 doi: 10.1109/ICPR.2004.1333775 – ident: ref97 doi: 10.1007/BF00130487 – ident: ref60 doi: 10.1109/TPAMI.1987.4767981 – ident: ref11 doi: 10.1109/TPAMI.2002.1046177 – ident: ref31 doi: 10.1109/IJCNN.2003.1223862 – ident: ref40 doi: 10.1109/AVSS.2005.1577325 – ident: ref19 doi: 10.1109/ICNN.1995.487708 – ident: ref18 doi: 10.1109/IIS.1997.645232 – ident: ref150 doi: 10.1109/AVSS.2006.100 – ident: ref125 doi: 10.1109/IVS.2003.1212889 – ident: ref13 doi: 10.1109/ACV.1998.732882 – ident: ref41 doi: 10.1177/004051750407400716 – ident: ref104 doi: 10.1109/34.655647 – ident: ref72 doi: 10.1109/SIPS.2005.1579889 – ident: ref62 doi: 10.1016/0031-3203(79)90006-2 – ident: ref93 doi: 10.1109/34.400568 – ident: ref117 doi: 10.1002/0471221325 – ident: ref30 doi: 10.1109/81.721253 – ident: ref42 doi: 10.1016/S0031-3203(99)00055-2 – ident: ref57 doi: 10.1109/72.265964 – ident: ref47 doi: 10.1109/ICIP.1996.560964 – ident: ref109 doi: 10.1109/AVSS.2006.30 – ident: ref54 doi: 10.1007/978-3-662-03939-7 – volume: 2 start-page: 153 issue: 28 year: 1995 ident: ref82 article-title: Recognition of handwritten numerals with multiple feature and multistage classifier publication-title: Pattern Recognit. – ident: ref154 doi: 10.1109/ICIP.2006.313121 – ident: ref126 doi: 10.1109/NNSP.2001.943157 – ident: ref113 doi: 10.1109/ICIP.2003.1246708 – ident: ref138 doi: 10.1007/3-540-34783-6_23 – ident: ref127 doi: 10.1109/ISIE.1998.711680 – ident: ref85 doi: 10.1109/ICDAR.1997.620636 – ident: ref100 doi: 10.1109/ICPR.2002.1047833 – ident: ref75 doi: 10.1023/A:1007975324482 – ident: ref36 doi: 10.1007/BF01413708 – ident: ref66 doi: 10.1109/5.18626 – start-page: 704 volume-title: Proc. 25th Annu. Conf. Ind. Electron. Soc. ident: ref129 article-title: Automatic license number extraction and its parallel implementation – ident: ref9 doi: 10.1016/S0031-3203(99)00079-5 – ident: ref58 doi: 10.1109/TPAMI.1987.4767935 – ident: ref139 doi: 10.1016/0165-0114(94)90297-6 – volume-title: Neural Networks for Pattern Recognition year: 1997 ident: ref71 – ident: ref76 doi: 10.1109/ICNSC.2004.1297038 – ident: ref38 doi: 10.1109/TSMC.1979.4310076 – ident: ref141 doi: 10.5244/C.18.61 – volume: 3 start-page: 574 volume-title: Proc. 18th ICPR ident: ref96 article-title: Gaussian weighted histogram intersection for license plate classification – ident: ref44 doi: 10.1109/AUTOID.2005.50 – ident: ref95 doi: 10.1109/ITSC.2005.1520110 – volume: 3497 start-page: 216 volume-title: A Novel Approach for License Plate Recognition Using Subspace Projection and Probabilistic Neural Network year: 2005 ident: ref73 – ident: ref146 doi: 10.1109/ICME.2003.1221626 – ident: ref128 doi: 10.1109/ICOSP.1998.770850 – volume-title: Proc. IASTED Int. Conf. SPPRA ident: ref1 article-title: New methods for automatic reading of VLP’s (Vehicle License Plates) – ident: ref144 doi: 10.1109/ITSC.2003.1251994 – ident: ref115 doi: 10.1162/089976600300015538 – ident: ref2 doi: 10.1109/ICPR.2004.1334387 – volume-title: Differential evolution—A simple and efficient adaptive scheme for global optimization over continuous spaces year: 1995 ident: ref108 – ident: ref35 doi: 10.1109/26.3776 – ident: ref130 doi: 10.1109/ICSMC.1998.727533 – volume: 3973 start-page: 66 volume-title: Neural Network Approach to Identify Model of Vehicles year: 2006 ident: ref143 – ident: ref83 doi: 10.1109/21.155943 – volume-title: Ten Lectures on Statistical and Structural Pattern Recognition year: 2002 ident: ref92 doi: 10.1007/978-94-017-3217-8 – ident: ref16 doi: 10.1109/ICNSC.2004.1297046 – ident: ref84 doi: 10.1109/34.368145 – ident: ref48 doi: 10.1109/RTTAS.1995.516201 – ident: ref131 doi: 10.1109/ITSC.2001.948677 – ident: ref140 doi: 10.1109/91.298447 – ident: ref14 doi: 10.1142/S0129065797000148 – ident: ref112 doi: 10.1073/pnas.93.4.1591 – ident: ref5 doi: 10.1109/ICPR.2004.1333776 – start-page: 59 volume-title: Proc. Int. Conf. Comput. Sci. (RIVF) ident: ref25 article-title: Building an automatic vehicle license-plate recognition system – start-page: 174 volume-title: Proc. 1st ICICIC ident: ref88 article-title: Research on vehicle license plate location based on neural networks – ident: ref46 doi: 10.1109/ICOSP.2004.1442289 – ident: ref10 doi: 10.1109/34.825753 – volume: 1 start-page: 2 issue: 2 year: 2000 ident: ref69 article-title: Digital image processing and neural networks for vehicle license plate identification publication-title: J. Electr. Eng. – ident: ref121 doi: 10.1109/29.21701 – volume-title: Neural Networks: A Comprehensive Foundation year: 1999 ident: ref67 – ident: ref86 doi: 10.1016/j.engappai.2005.03.011 – ident: ref116 doi: 10.1162/089976699300016197 – ident: ref142 doi: 10.1109/ICPR.2004.1334477 – ident: ref110 doi: 10.1109/ICPR.2006.758 – volume: 2869 start-page: 381 volume-title: License Plate Character Segmentation Based on the Gabor Transform and Vector Quantization year: 2003 ident: ref21 – ident: ref81 doi: 10.1109/34.667881 – ident: ref118 doi: 10.7551/mitpress/5236.001.0001 – ident: ref123 doi: 10.1007/978-3-642-48779-8_7 – ident: ref64 doi: 10.1007/978-3-540-45179-2_39 – ident: ref156 doi: 10.1109/TIFS.2007.897251 – ident: ref52 doi: 10.1016/j.patcog.2005.01.026 – volume: 3322 start-page: 646 volume-title: Adaptive Local Binarization Method for Recognition of Vehicle License Plates year: 2004 ident: ref59 – volume: E87-D start-page: 1012 issue: 4 year: 2004 ident: ref53 article-title: A new method for degraded color image binarization based on adaptive lightning on grayscale versions publication-title: IEICE Trans. Inf. Syst. – ident: ref61 doi: 10.1109/34.85672 – ident: ref98 doi: 10.1109/ICIP.2002.1039130 – ident: ref105 doi: 10.1109/TPAMI.1981.4767076 – ident: ref49 doi: 10.1109/ICOSP.2004.1441601 – ident: ref32 doi: 10.1109/NNSP.2000.890140 – ident: ref99 doi: 10.1109/ICPR.2006.761 – ident: ref26 doi: 10.1109/AINA.2005.257 – volume: 2388 start-page: 293 volume-title: Color Texture-Based Object Detection: An Application to License Plate Localization ident: ref8 – volume-title: Proc. Workshop sulla Percezione e Visione nelle Macchine ident: ref22 article-title: Efficient low-level vision program design using sub-machine-code genetic programming – ident: ref63 doi: 10.1016/0734-189X(85)90093-3 – ident: ref120 doi: 10.1049/el:19990977 |
SSID | ssj0014511 |
Score | 2.4586513 |
Snippet | License plate recognition (LPR) algorithms in images or videos are generally composed of the following three processing steps: 1) extraction of a license plate... |
SourceID | proquest pascalfrancis crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 377 |
SubjectTerms | Algorithms Applied sciences Artificial intelligence Character recognition Computer science; control theory; systems Control theory. Systems Exact sciences and technology Ground, air and sea transportation, marine construction Illumination Image databases Image processing Image recognition Image segmentation Information systems. Data bases Intelligent transportation systems Intelligent vehicles license plate identification License plate recognition license plate recognition (LPR) license plate segmentation Licenses Lighting Memory organisation. Data processing Nonuniform optical character recognition (OCR) Optical character recognition software Pattern recognition. Digital image processing. Computational geometry Recognition Robotics Software Video sequences |
Title | License Plate Recognition From Still Images and Video Sequences: A Survey |
URI | https://ieeexplore.ieee.org/document/4518951 https://www.proquest.com/docview/862945801 https://www.proquest.com/docview/34445522 https://www.proquest.com/docview/875090724 https://www.proquest.com/docview/903626626 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0016 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014511 issn: 1524-9050 databaseCode: RIE dateStart: 20000101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VnuDAqyBCofjABYnsOrGzjrlViFUXUYTYLeotip2xVHWboE2CBL-ecV6iQBFSDpEykZyZ2PON5_MMwEsrlYicVKGKchtKw5NQG7MIhSV_ZQmfF87vQ55-XJycyffnyfkevJ7OwiBiRz7Dmb_tcvlFZVu_VTaXSZRqf176llK6P6s1ZQx8na2uNmosQ80TPqYkuZ5vVpt1z5rUMXm39JoL6nqqeEZkXpNSXN_N4o-FufM2y3twOo6zJ5lcztrGzOyP30o4_u-H3Ie7A-xkx_1_8gD2sHwId34pRngAqw-0ZpQ1sk9bwp_s88gsqkq23FVXbN1cbLdsdUULUM3ysmBfLgqs2HrkYr9hx2zd7r7h90dwtny3eXsSDo0WQktxaBM6CppcEaFIpUZcFK4QNs9NZA03Koo8XbNQ1sWKK4y5s-gw13lKoaUVhMCEeAz7ZVXiE2BaoVRkClNgLJ0SqU2RIIHP9jmbJCaA-aj7zA5VyH0zjG3WRSNcZ95afXPM3loBvJre-NpX4PiH7IFX9iQ36DmAo2vmnZ7HBMhIYhHA4WjvbJjDdUaxnpYJefAAXkxPafL5jEpeYtXWmZBSJoRgA2A3SKQekXEVy5tFdFcSiK6nfx_9IdweSSo8egb7za7F54SEGnPUTYGfDuUEZw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED9N4wF44GsgssHmB16QSOskTh3zNiGqFtoJ0Q7tLYqdszTRJahpJsFfzzlfYsAQUh4i5SI5d7Hvd76f7wBeGSGjwArpyyAzvtA89pXWEz8y5K8M4fPcun3I5dlkdi4-XMQXe_BmOAuDiA35DEfutsnl56Wp3VbZWMRBotx56TsxRRWyPa015Axcpa2mOmoofMVj3icluRqv5-tVy5tUIfm35IYTarqqOE5kVpFabNvP4o-lufE304ew7Efa0ky-juqdHpkfvxVx_N9PeQQPOuDJTts_5THsYfEE7v9SjvAA5gtaNYoK2acNIVD2uecWlQWbbssrttpdbjZsfkVLUMWyImdfLnMs2apnY79lp2xVb6_x-1M4n75fv5v5XasF31AkuvMthU02DzBKhEKc5DaPTJbpwGiuZRA4wmYujQ0llxhya9BiprKEgksTEQaLomewX5QFPgemJApJptA5hsLKKDEJEihw-T5r4lh7MO51n5quDrlrh7FJm3iEq9RZq22P2VrLg9fDG9_aGhz_kD1wyh7kOj17cHzDvMPzkCAZSUw8OOrtnXazuEop2lMiJh_uwcnwlKafy6lkBZZ1lUZCiJgwrAfsFonEYTIuQ3G7iGqKAtF1-PfRn8Dd2Xq5SBfzs49HcK-nrPDgBezvtjW-JFy008fNdPgJ2z0HuA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=License+Plate+Recognition+From+Still+Images+and+Video+Sequences%3A+A+Survey&rft.jtitle=IEEE+transactions+on+intelligent+transportation+systems&rft.au=Anagnostopoulos%2C+C-NE&rft.au=Anagnostopoulos%2C+I+E&rft.au=Psoroulas%2C+I+D&rft.au=Loumos%2C+V&rft.date=2008-09-01&rft.issn=1524-9050&rft.volume=9&rft.issue=3&rft_id=info:doi/10.1109%2FTITS.2008.922938&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-9050&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-9050&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-9050&client=summon |