Variable Inclusion and Shrinkage Algorithms
The Lasso is a popular and computationally efficient procedure for automatically performing both variable selection and coefficient shrinkage on linear regression models. One limitation of the Lasso is that the same tuning parameter is used for both variable selection and shrinkage. As a result, it...
Saved in:
| Published in | Journal of the American Statistical Association Vol. 103; no. 483; pp. 1304 - 1315 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Alexandria, VA
Taylor & Francis
01.09.2008
American Statistical Association Taylor & Francis Ltd |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0162-1459 1537-274X |
| DOI | 10.1198/016214508000000481 |
Cover
| Abstract | The Lasso is a popular and computationally efficient procedure for automatically performing both variable selection and coefficient shrinkage on linear regression models. One limitation of the Lasso is that the same tuning parameter is used for both variable selection and shrinkage. As a result, it typically ends up selecting a model with too many variables to prevent overshrinkage of the regression coefficients. We suggest an improved class of methods called variable inclusion and shrinkage algorithms (VISA). Our approach is capable of selecting sparse models while avoiding overshrinkage problems and uses a path algorithm, and so also is computationally efficient. We show through extensive simulations that VISA significantly outperforms the Lasso and also provides improvements over more recent procedures, such as the Dantzig selector, relaxed Lasso, and adaptive Lasso. In addition, we provide theoretical justification for VISA in terms of nonasymptotic bounds on the estimation error that suggest it should exhibit good performance even for large numbers of predictors. Finally, we extend the VISA methodology, path algorithm, and theoretical bounds to the generalized linear models framework. |
|---|---|
| AbstractList | The Lasso is a popular and computationally efficient procedure for automatically performing both variable selection and coefficient shrinkage on linear regression models. One limitation of the Lasso is that the same tuning parameter is used for both variable selection and shrinkage. As a result, it typically ends up selecting a model with too many variables to prevent overshrinkage of the regression coefficients. We suggest an improved class of methods called variable inclusion and shrinkage algorithms (VISA). Our approach is capable of selecting sparse models while avoiding overshrinkage problems and uses a path algorithm, and so also is computationally efficient. We show through extensive simulations that VISA significantly outperforms the Lasso and also provides improvements over more recent procedures, such as the Dantzig selector, relaxed Lasso, and adaptive Lasso. In addition, we provide theoretical justification for VISA in terms of nonasymptotic bounds on the estimation error that suggest it should exhibit good performance even for large numbers of predictors. Finally, we extend the VISA methodology, path algorithm, and theoretical bounds to the generalized linear models framework. The Lasso is a popular and computationally efficient procedure for automatically performing both variable selection and coefficient shrinkage on linear regression models. One limitation of the Lasso is that the same tuning parameter is used for both variable selection and shrinkage. As a result, it typically ends up selecting a model with too many variables to prevent overshrinkage of the regression coefficients. We suggest an improved class of methods called variable inclusion and shrinkage algorithms (VISA). Our approach is capable of selecting sparse models while avoiding overshrinkage problems and uses a path algorithm, and so also is computationally efficient. We show through extensive simulations that VISA significantly outperforms the Lasso and also provides improvements over more recent procedures, such as the Dantzig selector, relaxed Lasso, and adaptive Lasso. In addition, we provide theoretical justification for VISA in terms of nonasymptotic bounds on the estimation error that suggest it should exhibit good performance even for large numbers of predictors. Finally, we extend the VISA methodology, path algorithm, and theoretical bounds to the generalized linear models framework. [PUBLICATION ABSTRACT] |
| Author | Radchenko, Peter James, Gareth M |
| Author_xml | – sequence: 1 givenname: Peter surname: Radchenko fullname: Radchenko, Peter – sequence: 2 givenname: Gareth M surname: James fullname: James, Gareth M |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20767648$$DView record in Pascal Francis |
| BookMark | eNqNkMlKBDEURYMo2A4_IAiNoBspTSpVldTCRSNOILhwwF14lUo0bTrRJI3696ZtB1AQs3mLd064766gReedQmiD4D1CWr6PSVOSqsYcv7-KkwU0IDVlRcmq20U0mAFFJtpltBLjeAYxzgdo9waCgc6q4ZmTdhqNd0Nw_fDyPhj3AHdqOLJ3Pph0P4lraEmDjWr9Y66i6-Ojq8PT4vzi5OxwdF7IuqSpkNDWTdNRwKrHJYNOdT3pNKOUtn3Da9kSLLEmklSE1EQxVnPdKM3qvsJadXQV7cz_fQz-aapiEhMTpbIWnPLTKCjDJS0Zy-DWD3Dsp8HlbCKfzdqGcJ6h7Q8IogSrAzhpongMZgLhVZSYNaypZlw552TwMQalvxCCxaxk8bvkLPEfkjQJUm4xBTD2b3Vzro5j8uE7Tw6TaZr3B_O9cdqHCTz7YHuR4NX68HkE_U-0P_zfmkgvib4B2e2uqg |
| CODEN | JSTNAL |
| CitedBy_id | crossref_primary_10_1016_j_csda_2016_05_016 crossref_primary_10_1214_10_AOAS375 crossref_primary_10_1016_j_csda_2012_06_017 crossref_primary_10_1214_10_AOAS377 crossref_primary_10_1287_opre_2020_2005 crossref_primary_10_1287_ijoc_2022_1208 crossref_primary_10_1214_10_AOAS350 crossref_primary_10_1080_00273171_2016_1178566 crossref_primary_10_1088_1742_6596_1869_1_012140 crossref_primary_10_1002_sim_6257 crossref_primary_10_1080_10618600_2012_679223 crossref_primary_10_1111_j_1541_0420_2010_01395_x crossref_primary_10_1016_j_jmva_2015_02_007 crossref_primary_10_1080_10618600_2012_657139 crossref_primary_10_1007_s10260_014_0281_8 crossref_primary_10_31642_JoKMC_2018_100102 crossref_primary_10_1002_sim_5975 crossref_primary_10_1080_02664763_2014_980788 crossref_primary_10_1109_ACCESS_2019_2909071 crossref_primary_10_1007_s00362_011_0405_2 crossref_primary_10_1214_09_AOAS284 crossref_primary_10_1177_09622802231203322 crossref_primary_10_1214_08_AOS641 crossref_primary_10_1007_s11222_012_9359_z crossref_primary_10_1093_biomet_asp013 crossref_primary_10_1509_jmr_15_0307 crossref_primary_10_1016_j_csda_2012_07_023 crossref_primary_10_1515_sagmb_2016_0077 crossref_primary_10_1080_02664763_2016_1221913 crossref_primary_10_1111_insr_12023 crossref_primary_10_1089_cmb_2017_0029 crossref_primary_10_1534_genetics_110_114280 crossref_primary_10_1016_j_ijforecast_2012_05_001 crossref_primary_10_1038_s44220_022_00001_z crossref_primary_10_1080_03610918_2020_1804585 crossref_primary_10_1016_j_jmva_2013_11_016 crossref_primary_10_1155_2020_7874140 crossref_primary_10_1002_sim_9197 crossref_primary_10_1198_jasa_2010_tm10130 |
| Cites_doi | 10.1214/009053604000000067 10.1214/009053606000001523 10.1137/S1064827596304010 10.1111/j.2517-6161.1996.tb02080.x 10.1016/j.csda.2006.12.019 10.2307/1269656 10.1111/j.1467-9868.2007.00607.x 10.1198/016214501753382273 10.2307/2282438 10.1111/j.1467-9868.2005.00503.x 10.1198/016214506000000735 |
| ContentType | Journal Article |
| Copyright | American Statistical Association 2008 Copyright 2008 American Statistical Association 2008 INIST-CNRS Copyright American Statistical Association Sep 2008 |
| Copyright_xml | – notice: American Statistical Association 2008 – notice: Copyright 2008 American Statistical Association – notice: 2008 INIST-CNRS – notice: Copyright American Statistical Association Sep 2008 |
| DBID | AAYXX CITATION IQODW 8BJ FQK JBE K9. |
| DOI | 10.1198/016214508000000481 |
| DatabaseName | CrossRef Pascal-Francis International Bibliography of the Social Sciences (IBSS) International Bibliography of the Social Sciences International Bibliography of the Social Sciences ProQuest Health & Medical Complete (Alumni) |
| DatabaseTitle | CrossRef International Bibliography of the Social Sciences (IBSS) ProQuest Health & Medical Complete (Alumni) |
| DatabaseTitleList | International Bibliography of the Social Sciences (IBSS) |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Statistics Mathematics |
| EISSN | 1537-274X |
| EndPage | 1315 |
| ExternalDocumentID | 1582516811 20767648 10_1198_016214508000000481 27640163 10710521 |
| Genre | Article Feature |
| GroupedDBID | -DZ -~X ..I .7F .QJ 0BK 0R~ 29L 2AX 30N 4.4 5GY 5RE 692 7WY 85S 8FL AABCJ AAENE AAGDL AAHBH AAHIA AAJMT AALDU AAMIU AAPUL AAQRR AAWIL ABAWQ ABBHK ABCCY ABEHJ ABFAN ABFIM ABJNI ABLIJ ABLJU ABPAQ ABPEM ABPFR ABPPZ ABPQH ABTAI ABUFD ABXSQ ABXUL ABXYU ABYWD ACGFO ACGFS ACGOD ACHJO ACIWK ACMTB ACNCT ACTCW ACTIO ACTMH ACUBG ADCVX ADGTB ADLSF ADMHG ADODI ADULT AEISY AENEX AEOZL AEPSL AEUPB AEYOC AFFNX AFRVT AFVYC AFXHP AGCQS AGDLA AGLNM AGMYJ AHDZW AIHAF AIJEM AIYEW AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU ALRMG AQRUH AQTUD AVBZW AWYRJ BLEHA CCCUG CJ0 CS3 D0L DGEBU DKSSO DQDLB DSRWC DU5 EBS ECEWR EJD E~A E~B F5P FEDTE FJW FVMVE GTTXZ H13 HF~ HQ6 HZ~ H~9 H~P IPNFZ IPSME J.P JAAYA JAS JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JST K60 K6~ KYCEM LU7 M4Z MS~ MVM MW2 NA5 NY~ O9- OFU OK1 P2P RIG RNANH RNS ROSJB RTWRZ RWL RXW S-T SA0 SJN SNACF TAE TASJS TBQAZ TDBHL TEJ TFL TFT TFW TN5 TOXWX TTHFI TUROJ U5U UPT UT5 UU3 WH7 WZA YQT YYM YYP ZGOLN ~S~ ADYSH AFSUE ALIPV AMPGV .-4 .GJ 07G 1OL 3R3 7X7 88E 88I 8AF 8C1 8FE 8FG 8FI 8FJ 8G5 8R4 8R5 AAAVZ AAFWJ AAIKQ AAKBW AAYXX ABEFU ABJCF ABRLO ABUWG ACAGQ ACGEE ADBBV ADXHL AEUMN AFKRA AFQQW AGLEN AGROQ AHMOU AI. ALCKM AMATQ AMEWO AMVHM AMXXU AQUVI AZQEC BCCOT BENPR BEZIV BGLVJ BKNYI BKOMP BPHCQ BPLKW BVXVI C06 CCPQU CITATION CRFIH DMQIW DWIFK DWQXO E.L FRNLG FYUFA GNUQQ GROUPED_ABI_INFORM_RESEARCH GUQSH HCIFZ HGD HMCUK HVGLF IVXBP K9- KQ8 L6V LJTGL M0C M0R M0T M1P M2O M2P M7S NHB NUSFT P-O PADUT PHGZM PHGZT PJZUB PPXIY PQBIZ PQBZA PQGLB PQQKQ PRG PROAC PSQYO PTHSS PUEGO Q2X QCRFL S0X TAQ TFMCV UB9 UKHRP UQL VH1 VOH WHG YXB ZCG ZGI ZUP ZXP IQODW 8BJ FQK JBE K9. |
| ID | FETCH-LOGICAL-c523t-ca9566b3a0ed027abebd1bf73339d685c910c0f1c141151e7758f6ef75d40feb3 |
| ISSN | 0162-1459 |
| IngestDate | Sat Sep 27 20:21:25 EDT 2025 Sun Oct 26 04:24:32 EDT 2025 Mon Jul 21 09:15:55 EDT 2025 Thu Apr 24 23:05:05 EDT 2025 Wed Oct 01 03:57:25 EDT 2025 Thu May 29 08:44:08 EDT 2025 Mon Oct 20 23:47:17 EDT 2025 Mon May 13 12:12:05 EDT 2019 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 483 |
| Keywords | Ridge regression Rank statistic Estimation error Generalized linear model Error estimation Linear regression Lasso Shrinkage estimator Algorithm Linear model Dantzig selector Parametric method Statistical method Statistical regression Regression coefficient Selection problem Simulation Regression model Law of large numbers Application Variable selection |
| Language | English |
| License | CC BY 4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c523t-ca9566b3a0ed027abebd1bf73339d685c910c0f1c141151e7758f6ef75d40feb3 |
| Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
| PQID | 274796188 |
| PQPubID | 41715 |
| PageCount | 12 |
| ParticipantIDs | crossref_primary_10_1198_016214508000000481 informaworld_taylorfrancis_310_1198_016214508000000481 proquest_miscellaneous_37023277 crossref_citationtrail_10_1198_016214508000000481 proquest_journals_274796188 pascalfrancis_primary_20767648 jstor_primary_27640163 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2008-09-01 |
| PublicationDateYYYYMMDD | 2008-09-01 |
| PublicationDate_xml | – month: 09 year: 2008 text: 2008-09-01 day: 01 |
| PublicationDecade | 2000 |
| PublicationPlace | Alexandria, VA |
| PublicationPlace_xml | – name: Alexandria, VA – name: Alexandria |
| PublicationTitle | Journal of the American Statistical Association |
| PublicationYear | 2008 |
| Publisher | Taylor & Francis American Statistical Association Taylor & Francis Ltd |
| Publisher_xml | – name: Taylor & Francis – name: American Statistical Association – name: Taylor & Francis Ltd |
| References | p_16 p_2 Tibshirani R. (p_12) 1996; 58 p_1 p_4 p_3 p_6 p_5 p_15 p_10 p_11 James G. M. (p_8) 2008 |
| References_xml | – ident: p_4 doi: 10.1214/009053604000000067 – ident: p_2 doi: 10.1214/009053606000001523 – ident: p_3 doi: 10.1137/S1064827596304010 – year: 2008 ident: p_8 publication-title: Journal of the Royal Statistical Society, Ser. B, to appear. – volume: 58 start-page: 267 year: 1996 ident: p_12 publication-title: Journal of the Royal Statistical Society, Ser. B doi: 10.1111/j.2517-6161.1996.tb02080.x – ident: p_10 doi: 10.1016/j.csda.2006.12.019 – ident: p_6 doi: 10.2307/1269656 – ident: p_11 doi: 10.1111/j.1467-9868.2007.00607.x – ident: p_5 doi: 10.1198/016214501753382273 – ident: p_1 doi: 10.2307/2282438 – ident: p_16 doi: 10.1111/j.1467-9868.2005.00503.x – ident: p_15 doi: 10.1198/016214506000000735 |
| SSID | ssj0000788 |
| Score | 2.1337786 |
| Snippet | The Lasso is a popular and computationally efficient procedure for automatically performing both variable selection and coefficient shrinkage on linear... |
| SourceID | proquest pascalfrancis crossref jstor informaworld |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1304 |
| SubjectTerms | Algorithms Applications Branch & bound algorithms Coefficients Correlations Covariance Dantzig selector Datasets Error rates Exact sciences and technology Feature selection Forecasts General topics Generalized linear model Generalized linear models Justification Lasso Linear analysis Linear inference, regression Mathematical analysis Mathematical independent variables Mathematics Methodology Modeling Parametric inference Probability and statistics Regression analysis Sciences and techniques of general use Statistical analysis Statistical methods Statistics Structural analysis Theory and Methods Variable coefficients Variable selection Variables |
| Title | Variable Inclusion and Shrinkage Algorithms |
| URI | https://www.tandfonline.com/doi/abs/10.1198/016214508000000481 https://www.jstor.org/stable/27640163 https://www.proquest.com/docview/274796188 https://www.proquest.com/docview/37023277 |
| Volume | 103 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: aylor and Francis Online customDbUrl: mediaType: online eissn: 1537-274X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000788 issn: 0162-1459 databaseCode: AHDZW dateStart: 19970301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAWR databaseName: Taylor & Francis Science and Technology Library-DRAA customDbUrl: eissn: 1537-274X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000788 issn: 0162-1459 databaseCode: 30N dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.tandfonline.com/page/title-lists providerName: Taylor & Francis |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb5wwELba9JJLlbSNSpOmHHpbkYJtbHOMqkRRpeTSpMoN2cZ0pa7YKOuVqv76jg0YVmy2jwtCYLA13zCeGeaB0EemsaqoqsHIAUsHNOIskTLXCSjPueYSWEQ7f8f1Dbu6o1_u8_uhraLPLrHqTP_amlfyP6jCNcDVZcn-A7LhpXABzgFfOALCcPwrjL-BoetTn-ArX6xXfWTx1_kjWJguGOd88X0J1v-8K0k-VUJHiSW-la_1dZu3wOZ_BVWAcPNjOYnr9aG23sPueubOZ9dnG84EEaKl7Ch-_w8Tdo5IhpOMdtW8e0makhHLUEFGkhH2SjraZTPSZnFOJXjRZiUwV0LdqbNpW9Nm2K9CFCHmDKxDRp6jF3CKXeMOkt4M-zD3XUfDSvuUqUJ8mr5-Qy3ZKFrbB6q6qFm5AoLUbceTyebtNZLbA_SyQzE-b_niED0zzSu0H2i6eo1mPYPEgUFiYJA4MEg8MMgbdHd5cfv5Kum6YyQ6x8QmWoJpyxSRqalSzKUyqspUzQkhRcVErkER1Gmd6YyC1p8ZDpZhzUzN84qmtVHkCO01y8a8RXGlwJDFROUKF1RRrajTJIWQuShAyLMIZT1xSt2VjncdTBalNyELUU4JGqFZeOahLZyyc3Q2pnlpvbuqo_SW8aX9aSPEdjxDdk125BEN6-oZKUKnGxAPA1LOYIyI0HGPednJgVXp_DqubxLc_RDugpB2f95kY5ZrWAwH1Rhz_u6pmY_R_vA5nqA9-7g270HbterUM_VvMmOhPA |
| linkProvider | Taylor & Francis |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZ4HODCG1EGowduqNBXkvaIENN4bBce4laStGWIsaGtkxC_HruPwWDaAc512tRx3O9zHRvgkGtXxb5KkeQg00FE7FhSMm0heGZaSDQRTfGOVps37_zLB_ZQ9jkdlmmVxKHTolBE7qtpc1MwutjhYXCCMIUKbBPYsYuKJ_OwyBDpUwsDz25_uWKRN54keQsHhNWpman3mPgyTdQtrXIVKXFSDlF3adH04pf_zj9KjVV4rF6nyEV5OR5l6lh__Kj0-I_3XYOVErCap4WFrcNc0tuAZcKoRYnnTTi6R75NJ7BMdDbdEYXfTHyWedMZINFFf2Wedp_6g-es8zrcgrvG-e1Z0yp7MFgaKWpmaYlq5cqTdhIjg5UqUbGjUuF5XhjzgGmEG9pOHe34iC2dRCD_SHmSChb7dopMfRsWev1esgNmrJAuuZ5iyg195WtFLdlZEEgWhOhKuAFOpf9IlwXKqU9GN8qJShhEv_VgwNF4zFtRnmOmtPN9WaMsD4qUizlFPsreMwP4jDHerIdt50YznpcrOJJZ7hlQn7CiLwFbcJQJDKhVZhWVHmUYUfSAuvPg1YPxVXQF9H9H9pL-CCcjEIC5Quz-dcoHsNS8bV1H1xftqxosV6kxtrMHC9lglOwj_spUPd9jn0sqHe4 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgSIgLb0QZjx64oUKfSXtEwMRzQuIhblGSNoAYG9o6CfHrsfsYDNAOnOO0aeo43-c4NsAu075KQ2WQ5CDTQUTsOVJG2kHwHGkuUUU0-Tuu2uz0Ljx_iB4qh9ugCqskDm3KRBGFrabF_ZaacoEn8QGiFMqvTVjHLROeTMMMoyMxusLhtr8sMS_qTpK8gx2S-tLMn88Y25jG0pbWoYoUNykHOHWmrHnxy3wXe1JrAUT9NWUoysv-MFf7-uNHosf_f-4izFdw1T4s9WsJprLuMswRQi0TPK_A3j2ybbp_ZaOp6QzJ-Wbjq-ybpz7SXLRW9mHnsdd_zp9eB6tw1zq5PTp1qgoMjkaCmjtaIn1iKpBuliJ_lSpTqacMD4IgSVkcaQQb2jWe9kJEll7GkX0YlhkepaFrkKevQaPb62brYKcKyZIfqEj5SahCraggexTHMooTNCTMAq-efqGr9ORUJaMjCpqSxOL3PFiwN-rzVibnmCjtff-rIi9cItW__ENe5O-5BWxCn2DSy9YKnRmNy-cMqSwLLNgeU6IvAZczlIktaNZaJSp7MhDkO6DaPNi6M2pFQ0CnO7Kb9YY4GI7wy-d8479D3oHZ6-OWuDxrXzRhro6Lcb1NaOT9YbaF4CtX28UK-wSazhyS |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Variable+Inclusion+and+Shrinkage+Algorithms&rft.jtitle=Journal+of+the+American+Statistical+Association&rft.au=Radchenko%2C+Peter&rft.au=James%2C+Gareth+M.&rft.date=2008-09-01&rft.pub=American+Statistical+Association&rft.issn=0162-1459&rft.volume=103&rft.issue=483&rft.spage=1304&rft.epage=1315&rft_id=info:doi/10.1198%2F016214508000000481&rft.externalDocID=27640163 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-1459&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-1459&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-1459&client=summon |