Variable Inclusion and Shrinkage Algorithms

The Lasso is a popular and computationally efficient procedure for automatically performing both variable selection and coefficient shrinkage on linear regression models. One limitation of the Lasso is that the same tuning parameter is used for both variable selection and shrinkage. As a result, it...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Statistical Association Vol. 103; no. 483; pp. 1304 - 1315
Main Authors Radchenko, Peter, James, Gareth M
Format Journal Article
LanguageEnglish
Published Alexandria, VA Taylor & Francis 01.09.2008
American Statistical Association
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN0162-1459
1537-274X
DOI10.1198/016214508000000481

Cover

Abstract The Lasso is a popular and computationally efficient procedure for automatically performing both variable selection and coefficient shrinkage on linear regression models. One limitation of the Lasso is that the same tuning parameter is used for both variable selection and shrinkage. As a result, it typically ends up selecting a model with too many variables to prevent overshrinkage of the regression coefficients. We suggest an improved class of methods called variable inclusion and shrinkage algorithms (VISA). Our approach is capable of selecting sparse models while avoiding overshrinkage problems and uses a path algorithm, and so also is computationally efficient. We show through extensive simulations that VISA significantly outperforms the Lasso and also provides improvements over more recent procedures, such as the Dantzig selector, relaxed Lasso, and adaptive Lasso. In addition, we provide theoretical justification for VISA in terms of nonasymptotic bounds on the estimation error that suggest it should exhibit good performance even for large numbers of predictors. Finally, we extend the VISA methodology, path algorithm, and theoretical bounds to the generalized linear models framework.
AbstractList The Lasso is a popular and computationally efficient procedure for automatically performing both variable selection and coefficient shrinkage on linear regression models. One limitation of the Lasso is that the same tuning parameter is used for both variable selection and shrinkage. As a result, it typically ends up selecting a model with too many variables to prevent overshrinkage of the regression coefficients. We suggest an improved class of methods called variable inclusion and shrinkage algorithms (VISA). Our approach is capable of selecting sparse models while avoiding overshrinkage problems and uses a path algorithm, and so also is computationally efficient. We show through extensive simulations that VISA significantly outperforms the Lasso and also provides improvements over more recent procedures, such as the Dantzig selector, relaxed Lasso, and adaptive Lasso. In addition, we provide theoretical justification for VISA in terms of nonasymptotic bounds on the estimation error that suggest it should exhibit good performance even for large numbers of predictors. Finally, we extend the VISA methodology, path algorithm, and theoretical bounds to the generalized linear models framework.
The Lasso is a popular and computationally efficient procedure for automatically performing both variable selection and coefficient shrinkage on linear regression models. One limitation of the Lasso is that the same tuning parameter is used for both variable selection and shrinkage. As a result, it typically ends up selecting a model with too many variables to prevent overshrinkage of the regression coefficients. We suggest an improved class of methods called variable inclusion and shrinkage algorithms (VISA). Our approach is capable of selecting sparse models while avoiding overshrinkage problems and uses a path algorithm, and so also is computationally efficient. We show through extensive simulations that VISA significantly outperforms the Lasso and also provides improvements over more recent procedures, such as the Dantzig selector, relaxed Lasso, and adaptive Lasso. In addition, we provide theoretical justification for VISA in terms of nonasymptotic bounds on the estimation error that suggest it should exhibit good performance even for large numbers of predictors. Finally, we extend the VISA methodology, path algorithm, and theoretical bounds to the generalized linear models framework. [PUBLICATION ABSTRACT]
Author Radchenko, Peter
James, Gareth M
Author_xml – sequence: 1
  givenname: Peter
  surname: Radchenko
  fullname: Radchenko, Peter
– sequence: 2
  givenname: Gareth M
  surname: James
  fullname: James, Gareth M
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20767648$$DView record in Pascal Francis
BookMark eNqNkMlKBDEURYMo2A4_IAiNoBspTSpVldTCRSNOILhwwF14lUo0bTrRJI3696ZtB1AQs3mLd064766gReedQmiD4D1CWr6PSVOSqsYcv7-KkwU0IDVlRcmq20U0mAFFJtpltBLjeAYxzgdo9waCgc6q4ZmTdhqNd0Nw_fDyPhj3AHdqOLJ3Pph0P4lraEmDjWr9Y66i6-Ojq8PT4vzi5OxwdF7IuqSpkNDWTdNRwKrHJYNOdT3pNKOUtn3Da9kSLLEmklSE1EQxVnPdKM3qvsJadXQV7cz_fQz-aapiEhMTpbIWnPLTKCjDJS0Zy-DWD3Dsp8HlbCKfzdqGcJ6h7Q8IogSrAzhpongMZgLhVZSYNaypZlw552TwMQalvxCCxaxk8bvkLPEfkjQJUm4xBTD2b3Vzro5j8uE7Tw6TaZr3B_O9cdqHCTz7YHuR4NX68HkE_U-0P_zfmkgvib4B2e2uqg
CODEN JSTNAL
CitedBy_id crossref_primary_10_1016_j_csda_2016_05_016
crossref_primary_10_1214_10_AOAS375
crossref_primary_10_1016_j_csda_2012_06_017
crossref_primary_10_1214_10_AOAS377
crossref_primary_10_1287_opre_2020_2005
crossref_primary_10_1287_ijoc_2022_1208
crossref_primary_10_1214_10_AOAS350
crossref_primary_10_1080_00273171_2016_1178566
crossref_primary_10_1088_1742_6596_1869_1_012140
crossref_primary_10_1002_sim_6257
crossref_primary_10_1080_10618600_2012_679223
crossref_primary_10_1111_j_1541_0420_2010_01395_x
crossref_primary_10_1016_j_jmva_2015_02_007
crossref_primary_10_1080_10618600_2012_657139
crossref_primary_10_1007_s10260_014_0281_8
crossref_primary_10_31642_JoKMC_2018_100102
crossref_primary_10_1002_sim_5975
crossref_primary_10_1080_02664763_2014_980788
crossref_primary_10_1109_ACCESS_2019_2909071
crossref_primary_10_1007_s00362_011_0405_2
crossref_primary_10_1214_09_AOAS284
crossref_primary_10_1177_09622802231203322
crossref_primary_10_1214_08_AOS641
crossref_primary_10_1007_s11222_012_9359_z
crossref_primary_10_1093_biomet_asp013
crossref_primary_10_1509_jmr_15_0307
crossref_primary_10_1016_j_csda_2012_07_023
crossref_primary_10_1515_sagmb_2016_0077
crossref_primary_10_1080_02664763_2016_1221913
crossref_primary_10_1111_insr_12023
crossref_primary_10_1089_cmb_2017_0029
crossref_primary_10_1534_genetics_110_114280
crossref_primary_10_1016_j_ijforecast_2012_05_001
crossref_primary_10_1038_s44220_022_00001_z
crossref_primary_10_1080_03610918_2020_1804585
crossref_primary_10_1016_j_jmva_2013_11_016
crossref_primary_10_1155_2020_7874140
crossref_primary_10_1002_sim_9197
crossref_primary_10_1198_jasa_2010_tm10130
Cites_doi 10.1214/009053604000000067
10.1214/009053606000001523
10.1137/S1064827596304010
10.1111/j.2517-6161.1996.tb02080.x
10.1016/j.csda.2006.12.019
10.2307/1269656
10.1111/j.1467-9868.2007.00607.x
10.1198/016214501753382273
10.2307/2282438
10.1111/j.1467-9868.2005.00503.x
10.1198/016214506000000735
ContentType Journal Article
Copyright American Statistical Association 2008
Copyright 2008 American Statistical Association
2008 INIST-CNRS
Copyright American Statistical Association Sep 2008
Copyright_xml – notice: American Statistical Association 2008
– notice: Copyright 2008 American Statistical Association
– notice: 2008 INIST-CNRS
– notice: Copyright American Statistical Association Sep 2008
DBID AAYXX
CITATION
IQODW
8BJ
FQK
JBE
K9.
DOI 10.1198/016214508000000481
DatabaseName CrossRef
Pascal-Francis
International Bibliography of the Social Sciences (IBSS)
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
ProQuest Health & Medical Complete (Alumni)
DatabaseTitle CrossRef
International Bibliography of the Social Sciences (IBSS)
ProQuest Health & Medical Complete (Alumni)
DatabaseTitleList
International Bibliography of the Social Sciences (IBSS)

DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 1537-274X
EndPage 1315
ExternalDocumentID 1582516811
20767648
10_1198_016214508000000481
27640163
10710521
Genre Article
Feature
GroupedDBID -DZ
-~X
..I
.7F
.QJ
0BK
0R~
29L
2AX
30N
4.4
5GY
5RE
692
7WY
85S
8FL
AABCJ
AAENE
AAGDL
AAHBH
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
AAWIL
ABAWQ
ABBHK
ABCCY
ABEHJ
ABFAN
ABFIM
ABJNI
ABLIJ
ABLJU
ABPAQ
ABPEM
ABPFR
ABPPZ
ABPQH
ABTAI
ABUFD
ABXSQ
ABXUL
ABXYU
ABYWD
ACGFO
ACGFS
ACGOD
ACHJO
ACIWK
ACMTB
ACNCT
ACTCW
ACTIO
ACTMH
ACUBG
ADCVX
ADGTB
ADLSF
ADMHG
ADODI
ADULT
AEISY
AENEX
AEOZL
AEPSL
AEUPB
AEYOC
AFFNX
AFRVT
AFVYC
AFXHP
AGCQS
AGDLA
AGLNM
AGMYJ
AHDZW
AIHAF
AIJEM
AIYEW
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
ALRMG
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CJ0
CS3
D0L
DGEBU
DKSSO
DQDLB
DSRWC
DU5
EBS
ECEWR
EJD
E~A
E~B
F5P
FEDTE
FJW
FVMVE
GTTXZ
H13
HF~
HQ6
HZ~
H~9
H~P
IPNFZ
IPSME
J.P
JAAYA
JAS
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
K60
K6~
KYCEM
LU7
M4Z
MS~
MVM
MW2
NA5
NY~
O9-
OFU
OK1
P2P
RIG
RNANH
RNS
ROSJB
RTWRZ
RWL
RXW
S-T
SA0
SJN
SNACF
TAE
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TOXWX
TTHFI
TUROJ
U5U
UPT
UT5
UU3
WH7
WZA
YQT
YYM
YYP
ZGOLN
~S~
ADYSH
AFSUE
ALIPV
AMPGV
.-4
.GJ
07G
1OL
3R3
7X7
88E
88I
8AF
8C1
8FE
8FG
8FI
8FJ
8G5
8R4
8R5
AAAVZ
AAFWJ
AAIKQ
AAKBW
AAYXX
ABEFU
ABJCF
ABRLO
ABUWG
ACAGQ
ACGEE
ADBBV
ADXHL
AEUMN
AFKRA
AFQQW
AGLEN
AGROQ
AHMOU
AI.
ALCKM
AMATQ
AMEWO
AMVHM
AMXXU
AQUVI
AZQEC
BCCOT
BENPR
BEZIV
BGLVJ
BKNYI
BKOMP
BPHCQ
BPLKW
BVXVI
C06
CCPQU
CITATION
CRFIH
DMQIW
DWIFK
DWQXO
E.L
FRNLG
FYUFA
GNUQQ
GROUPED_ABI_INFORM_RESEARCH
GUQSH
HCIFZ
HGD
HMCUK
HVGLF
IVXBP
K9-
KQ8
L6V
LJTGL
M0C
M0R
M0T
M1P
M2O
M2P
M7S
NHB
NUSFT
P-O
PADUT
PHGZM
PHGZT
PJZUB
PPXIY
PQBIZ
PQBZA
PQGLB
PQQKQ
PRG
PROAC
PSQYO
PTHSS
PUEGO
Q2X
QCRFL
S0X
TAQ
TFMCV
UB9
UKHRP
UQL
VH1
VOH
WHG
YXB
ZCG
ZGI
ZUP
ZXP
IQODW
8BJ
FQK
JBE
K9.
ID FETCH-LOGICAL-c523t-ca9566b3a0ed027abebd1bf73339d685c910c0f1c141151e7758f6ef75d40feb3
ISSN 0162-1459
IngestDate Sat Sep 27 20:21:25 EDT 2025
Sun Oct 26 04:24:32 EDT 2025
Mon Jul 21 09:15:55 EDT 2025
Thu Apr 24 23:05:05 EDT 2025
Wed Oct 01 03:57:25 EDT 2025
Thu May 29 08:44:08 EDT 2025
Mon Oct 20 23:47:17 EDT 2025
Mon May 13 12:12:05 EDT 2019
IsPeerReviewed true
IsScholarly true
Issue 483
Keywords Ridge regression
Rank statistic
Estimation error
Generalized linear model
Error estimation
Linear regression
Lasso
Shrinkage estimator
Algorithm
Linear model
Dantzig selector
Parametric method
Statistical method
Statistical regression
Regression coefficient
Selection problem
Simulation
Regression model
Law of large numbers
Application
Variable selection
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c523t-ca9566b3a0ed027abebd1bf73339d685c910c0f1c141151e7758f6ef75d40feb3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
PQID 274796188
PQPubID 41715
PageCount 12
ParticipantIDs crossref_primary_10_1198_016214508000000481
informaworld_taylorfrancis_310_1198_016214508000000481
proquest_miscellaneous_37023277
crossref_citationtrail_10_1198_016214508000000481
proquest_journals_274796188
pascalfrancis_primary_20767648
jstor_primary_27640163
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-09-01
PublicationDateYYYYMMDD 2008-09-01
PublicationDate_xml – month: 09
  year: 2008
  text: 2008-09-01
  day: 01
PublicationDecade 2000
PublicationPlace Alexandria, VA
PublicationPlace_xml – name: Alexandria, VA
– name: Alexandria
PublicationTitle Journal of the American Statistical Association
PublicationYear 2008
Publisher Taylor & Francis
American Statistical Association
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: American Statistical Association
– name: Taylor & Francis Ltd
References p_16
p_2
Tibshirani R. (p_12) 1996; 58
p_1
p_4
p_3
p_6
p_5
p_15
p_10
p_11
James G. M. (p_8) 2008
References_xml – ident: p_4
  doi: 10.1214/009053604000000067
– ident: p_2
  doi: 10.1214/009053606000001523
– ident: p_3
  doi: 10.1137/S1064827596304010
– year: 2008
  ident: p_8
  publication-title: Journal of the Royal Statistical Society, Ser. B, to appear.
– volume: 58
  start-page: 267
  year: 1996
  ident: p_12
  publication-title: Journal of the Royal Statistical Society, Ser. B
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– ident: p_10
  doi: 10.1016/j.csda.2006.12.019
– ident: p_6
  doi: 10.2307/1269656
– ident: p_11
  doi: 10.1111/j.1467-9868.2007.00607.x
– ident: p_5
  doi: 10.1198/016214501753382273
– ident: p_1
  doi: 10.2307/2282438
– ident: p_16
  doi: 10.1111/j.1467-9868.2005.00503.x
– ident: p_15
  doi: 10.1198/016214506000000735
SSID ssj0000788
Score 2.1337786
Snippet The Lasso is a popular and computationally efficient procedure for automatically performing both variable selection and coefficient shrinkage on linear...
SourceID proquest
pascalfrancis
crossref
jstor
informaworld
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1304
SubjectTerms Algorithms
Applications
Branch & bound algorithms
Coefficients
Correlations
Covariance
Dantzig selector
Datasets
Error rates
Exact sciences and technology
Feature selection
Forecasts
General topics
Generalized linear model
Generalized linear models
Justification
Lasso
Linear analysis
Linear inference, regression
Mathematical analysis
Mathematical independent variables
Mathematics
Methodology
Modeling
Parametric inference
Probability and statistics
Regression analysis
Sciences and techniques of general use
Statistical analysis
Statistical methods
Statistics
Structural analysis
Theory and Methods
Variable coefficients
Variable selection
Variables
Title Variable Inclusion and Shrinkage Algorithms
URI https://www.tandfonline.com/doi/abs/10.1198/016214508000000481
https://www.jstor.org/stable/27640163
https://www.proquest.com/docview/274796188
https://www.proquest.com/docview/37023277
Volume 103
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: aylor and Francis Online
  customDbUrl:
  mediaType: online
  eissn: 1537-274X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000788
  issn: 0162-1459
  databaseCode: AHDZW
  dateStart: 19970301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAWR
  databaseName: Taylor & Francis Science and Technology Library-DRAA
  customDbUrl:
  eissn: 1537-274X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000788
  issn: 0162-1459
  databaseCode: 30N
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.tandfonline.com/page/title-lists
  providerName: Taylor & Francis
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb5wwELba9JJLlbSNSpOmHHpbkYJtbHOMqkRRpeTSpMoN2cZ0pa7YKOuVqv76jg0YVmy2jwtCYLA13zCeGeaB0EemsaqoqsHIAUsHNOIskTLXCSjPueYSWEQ7f8f1Dbu6o1_u8_uhraLPLrHqTP_amlfyP6jCNcDVZcn-A7LhpXABzgFfOALCcPwrjL-BoetTn-ArX6xXfWTx1_kjWJguGOd88X0J1v-8K0k-VUJHiSW-la_1dZu3wOZ_BVWAcPNjOYnr9aG23sPueubOZ9dnG84EEaKl7Ch-_w8Tdo5IhpOMdtW8e0makhHLUEFGkhH2SjraZTPSZnFOJXjRZiUwV0LdqbNpW9Nm2K9CFCHmDKxDRp6jF3CKXeMOkt4M-zD3XUfDSvuUqUJ8mr5-Qy3ZKFrbB6q6qFm5AoLUbceTyebtNZLbA_SyQzE-b_niED0zzSu0H2i6eo1mPYPEgUFiYJA4MEg8MMgbdHd5cfv5Kum6YyQ6x8QmWoJpyxSRqalSzKUyqspUzQkhRcVErkER1Gmd6YyC1p8ZDpZhzUzN84qmtVHkCO01y8a8RXGlwJDFROUKF1RRrajTJIWQuShAyLMIZT1xSt2VjncdTBalNyELUU4JGqFZeOahLZyyc3Q2pnlpvbuqo_SW8aX9aSPEdjxDdk125BEN6-oZKUKnGxAPA1LOYIyI0HGPednJgVXp_DqubxLc_RDugpB2f95kY5ZrWAwH1Rhz_u6pmY_R_vA5nqA9-7g270HbterUM_VvMmOhPA
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZ4HODCG1EGowduqNBXkvaIENN4bBce4laStGWIsaGtkxC_HruPwWDaAc512tRx3O9zHRvgkGtXxb5KkeQg00FE7FhSMm0heGZaSDQRTfGOVps37_zLB_ZQ9jkdlmmVxKHTolBE7qtpc1MwutjhYXCCMIUKbBPYsYuKJ_OwyBDpUwsDz25_uWKRN54keQsHhNWpman3mPgyTdQtrXIVKXFSDlF3adH04pf_zj9KjVV4rF6nyEV5OR5l6lh__Kj0-I_3XYOVErCap4WFrcNc0tuAZcKoRYnnTTi6R75NJ7BMdDbdEYXfTHyWedMZINFFf2Wedp_6g-es8zrcgrvG-e1Z0yp7MFgaKWpmaYlq5cqTdhIjg5UqUbGjUuF5XhjzgGmEG9pOHe34iC2dRCD_SHmSChb7dopMfRsWev1esgNmrJAuuZ5iyg195WtFLdlZEEgWhOhKuAFOpf9IlwXKqU9GN8qJShhEv_VgwNF4zFtRnmOmtPN9WaMsD4qUizlFPsreMwP4jDHerIdt50YznpcrOJJZ7hlQn7CiLwFbcJQJDKhVZhWVHmUYUfSAuvPg1YPxVXQF9H9H9pL-CCcjEIC5Quz-dcoHsNS8bV1H1xftqxosV6kxtrMHC9lglOwj_spUPd9jn0sqHe4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgSIgLb0QZjx64oUKfSXtEwMRzQuIhblGSNoAYG9o6CfHrsfsYDNAOnOO0aeo43-c4NsAu075KQ2WQ5CDTQUTsOVJG2kHwHGkuUUU0-Tuu2uz0Ljx_iB4qh9ugCqskDm3KRBGFrabF_ZaacoEn8QGiFMqvTVjHLROeTMMMoyMxusLhtr8sMS_qTpK8gx2S-tLMn88Y25jG0pbWoYoUNykHOHWmrHnxy3wXe1JrAUT9NWUoysv-MFf7-uNHosf_f-4izFdw1T4s9WsJprLuMswRQi0TPK_A3j2ybbp_ZaOp6QzJ-Wbjq-ybpz7SXLRW9mHnsdd_zp9eB6tw1zq5PTp1qgoMjkaCmjtaIn1iKpBuliJ_lSpTqacMD4IgSVkcaQQb2jWe9kJEll7GkX0YlhkepaFrkKevQaPb62brYKcKyZIfqEj5SahCraggexTHMooTNCTMAq-efqGr9ORUJaMjCpqSxOL3PFiwN-rzVibnmCjtff-rIi9cItW__ENe5O-5BWxCn2DSy9YKnRmNy-cMqSwLLNgeU6IvAZczlIktaNZaJSp7MhDkO6DaPNi6M2pFQ0CnO7Kb9YY4GI7wy-d8479D3oHZ6-OWuDxrXzRhro6Lcb1NaOT9YbaF4CtX28UK-wSazhyS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Variable+Inclusion+and+Shrinkage+Algorithms&rft.jtitle=Journal+of+the+American+Statistical+Association&rft.au=Radchenko%2C+Peter&rft.au=James%2C+Gareth+M.&rft.date=2008-09-01&rft.pub=American+Statistical+Association&rft.issn=0162-1459&rft.volume=103&rft.issue=483&rft.spage=1304&rft.epage=1315&rft_id=info:doi/10.1198%2F016214508000000481&rft.externalDocID=27640163
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-1459&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-1459&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-1459&client=summon