Cortical thickness analysis examined through power analysis and a population simulation
We have previously developed a procedure for measuring the thickness of cerebral cortex over the whole brain using 3-D MRI data and a fully automated surface-extraction (ASP) algorithm. This paper examines the precision of this algorithm, its optimal performance parameters, and the sensitivity of th...
        Saved in:
      
    
          | Published in | NeuroImage (Orlando, Fla.) Vol. 24; no. 1; pp. 163 - 173 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          Elsevier Inc
    
        2005
     Elsevier Limited  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1053-8119 1095-9572  | 
| DOI | 10.1016/j.neuroimage.2004.07.045 | 
Cover
| Abstract | We have previously developed a procedure for measuring the thickness of cerebral cortex over the whole brain using 3-D MRI data and a fully automated surface-extraction (ASP) algorithm. This paper examines the precision of this algorithm, its optimal performance parameters, and the sensitivity of the method to subtle, focal changes in cortical thickness.
The precision of cortical thickness measurements was studied using a simulated population study and single subject reproducibility metrics. Cortical thickness was shown to be a reliable method, reaching a sensitivity (probability of a true-positive) of 0.93. Six different cortical thickness metrics were compared. The simplest and most precise method measures the distance between corresponding vertices from the white matter to the gray matter surface. Given two groups of 25 subjects, a 0.6-mm (15%) change in thickness can be recovered after blurring with a 3-D Gaussian kernel (full-width half max = 30 mm). Smoothing across the 2-D surface manifold also improves precision; in this experiment, the optimal kernel size was 30 mm. | 
    
|---|---|
| AbstractList | We have previously developed a procedure for measuring the thickness of cerebral cortex over the whole brain using 3-D MRI data and a fully automated surface-extraction (ASP) algorithm. This paper examines the precision of this algorithm, its optimal performance parameters, and the sensitivity of the method to subtle, focal changes in cortical thickness. The precision of cortical thickness measurements was studied using a simulated population study and single subject reproducibility metrics. Cortical thickness was shown to be a reliable method, reaching a sensitivity (probability of a true-positive) of 0.93. Six different cortical thickness metrics were compared. The simplest and most precise method measures the distance between corresponding vertices from the white matter to the gray matter surface. Given two groups of 25 subjects, a 0.6-mm (15%) change in thickness can be recovered after blurring with a 3-D Gaussian kernel (full-width half max = 30 mm). Smoothing across the 2-D surface manifold also improves precision; in this experiment, the optimal kernel size was 30 mm. We have previously developed a procedure for measuring the thickness of cerebral cortex over the whole brain using 3-D MRI data and a fully automated surface-extraction (ASP) algorithm. This paper examines the precision of this algorithm, its optimal performance parameters, and the sensitivity of the method to subtle, focal changes in cortical thickness. The precision of cortical thickness measurements was studied using a simulated population study and single subject reproducibility metrics. Cortical thickness was shown to be a reliable method, reaching a sensitivity (probability of a true-positive) of 0.93. Six different cortical thickness metrics were compared. The simplest and most precise method measures the distance between corresponding vertices from the white matter to the gray matter surface. Given two groups of 25 subjects, a 0.6-mm (15%) change in thickness can be recovered after blurring with a 3-D Gaussian kernel (full-width half max = 30 mm). Smoothing across the 2-D surface manifold also improves precision; in this experiment, the optimal kernel size was 30 mm.We have previously developed a procedure for measuring the thickness of cerebral cortex over the whole brain using 3-D MRI data and a fully automated surface-extraction (ASP) algorithm. This paper examines the precision of this algorithm, its optimal performance parameters, and the sensitivity of the method to subtle, focal changes in cortical thickness. The precision of cortical thickness measurements was studied using a simulated population study and single subject reproducibility metrics. Cortical thickness was shown to be a reliable method, reaching a sensitivity (probability of a true-positive) of 0.93. Six different cortical thickness metrics were compared. The simplest and most precise method measures the distance between corresponding vertices from the white matter to the gray matter surface. Given two groups of 25 subjects, a 0.6-mm (15%) change in thickness can be recovered after blurring with a 3-D Gaussian kernel (full-width half max = 30 mm). Smoothing across the 2-D surface manifold also improves precision; in this experiment, the optimal kernel size was 30 mm. We have previously developed a procedure for measuring the thickness of cerebral cortex over the whole brain using 3-D MRI data and a fully automated surface-extraction (ASP) algorithm. This paper examines the precision of this algorithm, its optimal performance parameters, and the sensitivity of the method to subtle, focal changes in cortical thickness. The precision of cortical thickness measurements was studied using a simulated population study and single subject reproducibility metrics. Cortical thickness was shown to be a reliable method, reaching a sensitivity (probability of a true-positive) of 0.93. Six different cortical thickness metrics were compared. The simplest and most precise method measures the distance between corresponding vertices from the white matter to the gray matter surface. Given two groups of 25 subjects, a 0.6-mm (15%) change in thickness can be recovered after blurring with a 3-D Gaussian kernel (full-width half max = 30 mm). Smoothing across the 2-D surface manifold also improves precision; in this experiment, the optimal kernel size was 30 mm.  | 
    
| Author | Lerch, Jason P. Evans, Alan C.  | 
    
| Author_xml | – sequence: 1 givenname: Jason P. surname: Lerch fullname: Lerch, Jason P. – sequence: 2 givenname: Alan C. surname: Evans fullname: Evans, Alan C. email: alan@bic.mni.mcgill.ca  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/15588607$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqNkk1v1DAQhi1URD_gL6BISNwSxnHsJBcErFpAqsSlEkfLH5PW28Re7KSw_x4vu1BpL_Tkkeedx5r39Tk58cEjIQWFigIV79aVxyUGN6lbrGqApoK2goY_I2cUel72vK1PdjVnZUdpf0rOU1oDQE-b7gU5pZx3nYD2jHxfhTg7o8ZivnPm3mNKhfJq3CaXCvylJufR5l4My-1dsQk_MT72lbeFypebZVSzC75IbjqUL8nzQY0JXx3OC3JzdXmz-lJef_v8dfXxujS8ZnOpa93UDJW1VA-obQdGd3rogQ3C6l4zaHXHesUb1XDOLNesHkSLqhUaRM0uyNs9dhPDjwXTLCeXDI6j8hiWJEXLaiF4l4VvjoTrsMS8SJKUgxB130CbVa8PqkVPaOUmZovjVv71Kwve7wUmhpQiDtK4-c_Cc1RulBTkLiC5lo8ByV1AElqZA8qA7gjw743_j37aj2L288FhlMk49Aati2hmaYN7CuTDEcSMzu8-wD1un4b4DUkdyRc | 
    
| CitedBy_id | crossref_primary_10_1007_s00429_013_0576_9 crossref_primary_10_1016_j_neuroimage_2016_08_041 crossref_primary_10_1016_j_neurobiolaging_2015_10_017 crossref_primary_10_1016_j_neulet_2008_03_071 crossref_primary_10_1523_JNEUROSCI_3039_07_2007 crossref_primary_10_1016_j_neuroimage_2005_09_068 crossref_primary_10_1002_brb3_1278 crossref_primary_10_1016_j_neuroimage_2017_11_068 crossref_primary_10_1016_j_brainres_2016_03_041 crossref_primary_10_3389_fnagi_2022_796110 crossref_primary_10_1371_journal_pone_0084054 crossref_primary_10_1093_brain_aww263 crossref_primary_10_1093_cercor_bhh200 crossref_primary_10_1002_hbm_23247 crossref_primary_10_1017_S0033291713000998 crossref_primary_10_1523_JNEUROSCI_1722_05_2005 crossref_primary_10_1002_hbm_26632 crossref_primary_10_1016_j_cortex_2019_06_008 crossref_primary_10_1016_j_intell_2009_03_010 crossref_primary_10_1016_j_bpsc_2021_11_008 crossref_primary_10_1371_journal_pbio_3000678 crossref_primary_10_1186_1471_2202_15_106 crossref_primary_10_1016_j_nicl_2020_102382 crossref_primary_10_1093_schbul_sbp151 crossref_primary_10_1017_S0033291714002694 crossref_primary_10_1002_ima_20230 crossref_primary_10_1016_j_neuroimage_2006_11_021 crossref_primary_10_1002_hbm_23359 crossref_primary_10_1002_dad2_12304 crossref_primary_10_1002_hbm_25776 crossref_primary_10_1016_j_neuroimage_2011_06_026 crossref_primary_10_3389_fnagi_2022_878758 crossref_primary_10_3389_frcha_2023_1171337 crossref_primary_10_1016_j_neuroimage_2008_06_039 crossref_primary_10_1016_j_neurobiolaging_2010_07_010 crossref_primary_10_1016_j_jalz_2016_12_007 crossref_primary_10_1073_pnas_1311630111 crossref_primary_10_1016_j_neuroimage_2009_01_055 crossref_primary_10_3988_jcn_2023_0451 crossref_primary_10_1109_TMI_2008_918338 crossref_primary_10_1089_neu_2016_4502 crossref_primary_10_1002_hbm_22050 crossref_primary_10_1016_j_neuroimage_2013_09_038 crossref_primary_10_1016_j_neuropsychologia_2018_11_013 crossref_primary_10_1016_j_neuroimage_2006_10_006 crossref_primary_10_1002_hbm_22299 crossref_primary_10_1016_j_mri_2008_09_002 crossref_primary_10_1371_journal_pone_0055977 crossref_primary_10_1016_j_jaac_2014_06_015 crossref_primary_10_1002_ab_20396 crossref_primary_10_1016_j_neuroscience_2017_02_039 crossref_primary_10_1016_j_yebeh_2023_109521 crossref_primary_10_1016_j_neuron_2011_09_028 crossref_primary_10_1016_j_nicl_2012_10_002 crossref_primary_10_1007_s12021_018_9356_2 crossref_primary_10_1016_j_neuroimage_2021_117974 crossref_primary_10_3389_fnagi_2016_00185 crossref_primary_10_1016_j_neuroimage_2010_12_013 crossref_primary_10_3390_jcm10020345 crossref_primary_10_1016_j_neuropsychologia_2017_08_024 crossref_primary_10_1016_j_neuroscience_2013_04_051 crossref_primary_10_1097_CHI_0b013e3181825b0c crossref_primary_10_1002_hbm_22120 crossref_primary_10_1002_hbm_20187 crossref_primary_10_3233_JAD_210119 crossref_primary_10_1176_appi_ajp_2013_12070950 crossref_primary_10_1016_j_biopsych_2013_09_012 crossref_primary_10_1111_epi_14736 crossref_primary_10_3233_JAD_170537 crossref_primary_10_1016_j_neuroimage_2014_12_063 crossref_primary_10_1016_j_tics_2004_12_008 crossref_primary_10_1097_CHI_0b013e31817eed7a crossref_primary_10_1016_j_compbiomed_2014_02_003 crossref_primary_10_1016_j_dadm_2015_11_008 crossref_primary_10_1007_s00106_011_2267_2 crossref_primary_10_1016_j_dcn_2023_101269 crossref_primary_10_1016_j_intell_2008_09_006 crossref_primary_10_1073_pnas_1006025107 crossref_primary_10_1111_cns_12317 crossref_primary_10_1016_j_wneu_2021_06_039 crossref_primary_10_1371_journal_pone_0026113 crossref_primary_10_3233_JAD_170545 crossref_primary_10_1002_ddrr_86 crossref_primary_10_1016_j_ijdevneu_2010_10_003 crossref_primary_10_1016_j_nicl_2016_10_010 crossref_primary_10_1007_s11682_015_9403_7 crossref_primary_10_1016_j_media_2014_04_006 crossref_primary_10_1016_j_neuroimage_2011_05_032 crossref_primary_10_1111_jon_12521 crossref_primary_10_3389_fnins_2017_00695 crossref_primary_10_1016_j_ijrobp_2015_07_2293 crossref_primary_10_1093_brain_awu030 crossref_primary_10_1212_WNL_0000000000003247 crossref_primary_10_1093_cercor_bhaa401 crossref_primary_10_1002_hbm_21378 crossref_primary_10_1093_brain_awu036 crossref_primary_10_3174_ajnr_A5020 crossref_primary_10_1038_mp_2014_3 crossref_primary_10_1016_j_jpsychires_2010_10_016 crossref_primary_10_3389_fpsyg_2014_00496 crossref_primary_10_1038_s41398_019_0382_0 crossref_primary_10_1038_s41598_018_36580_0 crossref_primary_10_1016_j_nicl_2021_102685 crossref_primary_10_1016_j_neuroimage_2006_12_021 crossref_primary_10_1002_mds_25820 crossref_primary_10_1016_j_biopsych_2018_04_023 crossref_primary_10_1016_j_cortex_2016_07_003 crossref_primary_10_1016_j_neuroimage_2006_02_051 crossref_primary_10_1378_chest_15_0171 crossref_primary_10_1155_2020_8874119 crossref_primary_10_1002_hbm_24434 crossref_primary_10_1093_cercor_bhab502 crossref_primary_10_3389_fnhum_2018_00373 crossref_primary_10_1038_s41598_018_19390_2 crossref_primary_10_3174_ajnr_A6560 crossref_primary_10_1097_RLU_0000000000005384 crossref_primary_10_3389_fnagi_2021_650371 crossref_primary_10_1016_j_neuroimage_2009_01_004 crossref_primary_10_1002_hbm_25761 crossref_primary_10_1016_j_jneumeth_2011_12_011 crossref_primary_10_1007_s13311_021_01030_9 crossref_primary_10_1038_s41598_021_84281_y crossref_primary_10_1016_j_neuroimage_2011_05_053 crossref_primary_10_1016_j_schres_2009_10_018 crossref_primary_10_1186_s13195_018_0432_5 crossref_primary_10_1016_j_neuroimage_2011_05_050 crossref_primary_10_1093_cercor_bhs125 crossref_primary_10_1016_j_jagp_2013_01_013 crossref_primary_10_1093_cercor_bht334 crossref_primary_10_1093_cercor_bhu305 crossref_primary_10_1093_schbul_sbx178 crossref_primary_10_1093_brain_awv387 crossref_primary_10_1002_hbm_22369 crossref_primary_10_1364_BOE_7_000629 crossref_primary_10_1016_j_bbi_2018_06_009 crossref_primary_10_1002_aur_1256 crossref_primary_10_1371_journal_pone_0129250 crossref_primary_10_1186_s13550_021_00774_x crossref_primary_10_1002_hbm_23652 crossref_primary_10_1016_S1474_4422_07_70106_0 crossref_primary_10_1016_j_brainres_2012_01_034 crossref_primary_10_1177_0883073815579710 crossref_primary_10_1016_j_jpsychires_2016_11_008 crossref_primary_10_1016_j_scitotenv_2021_146129 crossref_primary_10_1155_2016_3217960 crossref_primary_10_1007_s00221_009_1999_7 crossref_primary_10_1111_pcn_12919 crossref_primary_10_1523_JNEUROSCI_4753_06_2007 crossref_primary_10_1016_j_neuroimage_2021_118312 crossref_primary_10_1093_cercor_bhab123 crossref_primary_10_12779_dnd_2015_14_4_149 crossref_primary_10_3389_fninf_2019_00016 crossref_primary_10_1038_srep34722 crossref_primary_10_1002_hbm_20494 crossref_primary_10_1016_j_bandc_2011_09_005 crossref_primary_10_1002_brb3_191 crossref_primary_10_1016_j_neuroimage_2006_01_042 crossref_primary_10_1007_s00429_012_0417_2 crossref_primary_10_1371_journal_pone_0117692 crossref_primary_10_1016_j_schres_2015_10_016 crossref_primary_10_1016_j_schres_2018_08_024 crossref_primary_10_2217_nmt_12_13 crossref_primary_10_1016_j_neuroimage_2005_11_042 crossref_primary_10_1093_brain_awp105 crossref_primary_10_1002_hbm_20369 crossref_primary_10_1002_hbm_24847 crossref_primary_10_1016_j_neuroimage_2010_06_042 crossref_primary_10_1002_hbm_24604 crossref_primary_10_1093_cercor_bhab015 crossref_primary_10_1097_RLU_0000000000005793 crossref_primary_10_1159_000368962 crossref_primary_10_1038_s41467_024_45627_y crossref_primary_10_1111_j_1469_7610_2006_01658_x crossref_primary_10_1093_cercor_bhx190 crossref_primary_10_1371_journal_pone_0175683 crossref_primary_10_1016_j_neuroimage_2010_07_052 crossref_primary_10_1016_j_neuroimage_2010_12_080 crossref_primary_10_1016_j_neuroimage_2009_02_015 crossref_primary_10_1038_npp_2016_84 crossref_primary_10_1093_cercor_bhp226 crossref_primary_10_1016_j_cortex_2016_10_019 crossref_primary_10_1002_hbm_26815 crossref_primary_10_1093_brain_awq103 crossref_primary_10_1093_cercor_bhab151 crossref_primary_10_1176_appi_ajp_2008_08050781 crossref_primary_10_1016_j_cmpb_2013_12_023 crossref_primary_10_1016_j_neuroimage_2008_01_027 crossref_primary_10_1002_hbm_21481 crossref_primary_10_1016_j_schres_2017_11_038 crossref_primary_10_1111_ejn_13408 crossref_primary_10_1017_S1366728923000445 crossref_primary_10_1016_j_neuropsychologia_2017_03_014 crossref_primary_10_1093_cercor_bhz007 crossref_primary_10_1371_journal_pone_0025446 crossref_primary_10_1016_j_neuroimage_2009_11_018 crossref_primary_10_1016_j_schres_2012_07_006 crossref_primary_10_1007_s11682_024_00911_9 crossref_primary_10_1002_mds_25615 crossref_primary_10_1371_journal_pone_0174219 crossref_primary_10_1038_srep43571 crossref_primary_10_1093_cercor_bhab035 crossref_primary_10_1109_TMI_2017_2671839 crossref_primary_10_1016_j_neuroimage_2005_08_061 crossref_primary_10_1016_j_cmpb_2014_06_004 crossref_primary_10_1093_cercor_bhz279 crossref_primary_10_3389_fnhum_2015_00089 crossref_primary_10_1177_1756286419838682 crossref_primary_10_1016_j_neuroimage_2010_11_015 crossref_primary_10_1016_j_parkreldis_2020_01_006 crossref_primary_10_3109_02688697_2010_522742 crossref_primary_10_3389_fninf_2021_665560 crossref_primary_10_1038_s41537_023_00347_y crossref_primary_10_1038_s41398_019_0631_2 crossref_primary_10_1523_JNEUROSCI_5451_08_2009 crossref_primary_10_1212_WNL_0000000000000387 crossref_primary_10_1002_alz_13461 crossref_primary_10_1093_schbul_sbu070 crossref_primary_10_1111_j_1365_2788_2011_01490_x crossref_primary_10_1093_cercor_bhx086 crossref_primary_10_1016_j_neuroimage_2023_120283 crossref_primary_10_1038_npjschz_2016_29 crossref_primary_10_1186_s12868_016_0247_x crossref_primary_10_1016_j_cortex_2015_03_011 crossref_primary_10_1016_j_jns_2013_07_014 crossref_primary_10_1016_j_neurobiolaging_2021_01_021 crossref_primary_10_1038_s41598_021_83135_x crossref_primary_10_1007_s00429_025_02890_z crossref_primary_10_1007_s10548_013_0308_8 crossref_primary_10_1016_j_neuroimage_2004_12_052 crossref_primary_10_1016_j_neulet_2008_03_032 crossref_primary_10_1016_j_dib_2015_10_044 crossref_primary_10_1016_j_neuroimage_2019_116045 crossref_primary_10_1016_j_nicl_2015_04_008 crossref_primary_10_1002_hbm_20689 crossref_primary_10_3233_JAD_191175 crossref_primary_10_1016_j_neuroimage_2010_12_043 crossref_primary_10_1016_j_neuropsychologia_2015_08_007 crossref_primary_10_1038_mp_2010_72 crossref_primary_10_1016_j_hcl_2008_04_005 crossref_primary_10_1016_j_bandl_2013_05_014 crossref_primary_10_1016_j_neuroimage_2008_02_019 crossref_primary_10_1016_j_pscychresns_2016_11_004 crossref_primary_10_1093_brain_awaa234 crossref_primary_10_1002_hbm_22410 crossref_primary_10_1002_hbm_22776 crossref_primary_10_1093_braincomms_fcad279 crossref_primary_10_1002_hbm_20235 crossref_primary_10_1007_s00415_015_7946_6 crossref_primary_10_1016_j_schres_2017_06_048 crossref_primary_10_1002_mds_25541 crossref_primary_10_1002_hbm_20238 crossref_primary_10_1016_j_chb_2025_108582 crossref_primary_10_3389_fnins_2020_00622 crossref_primary_10_1038_s41598_020_62832_z crossref_primary_10_1093_cercor_bhz040 crossref_primary_10_1016_j_neuroimage_2014_03_033 crossref_primary_10_1016_j_neurobiolaging_2007_12_019 crossref_primary_10_1007_s00330_017_4836_6 crossref_primary_10_1093_cercor_bhy197 crossref_primary_10_1186_s12880_024_01256_x crossref_primary_10_1093_cercor_bhn196 crossref_primary_10_1371_journal_pone_0127118 crossref_primary_10_1093_cercor_bhr311 crossref_primary_10_1016_j_neuroimage_2012_09_050 crossref_primary_10_1016_j_pscychresns_2013_09_003 crossref_primary_10_1111_ene_12816 crossref_primary_10_1523_JNEUROSCI_1946_14_2015 crossref_primary_10_1093_cercor_bhad142 crossref_primary_10_1016_j_nicl_2016_05_017 crossref_primary_10_14336_AD_2018_0125 crossref_primary_10_1111_ane_12262 crossref_primary_10_3174_ajnr_A2578 crossref_primary_10_1016_j_biopsych_2013_06_008 crossref_primary_10_1016_j_neurobiolaging_2017_09_009 crossref_primary_10_1111_jne_12698 crossref_primary_10_1016_j_neuint_2011_06_003 crossref_primary_10_1002_alz_14236 crossref_primary_10_1016_j_neuroimage_2013_07_070 crossref_primary_10_1016_j_neuroimage_2015_10_010 crossref_primary_10_1093_cercor_bhm211 crossref_primary_10_12779_dnd_2019_18_3_77 crossref_primary_10_1016_j_ijdevneu_2013_05_010 crossref_primary_10_1016_j_nicl_2019_102140 crossref_primary_10_1016_j_biopsych_2016_12_005 crossref_primary_10_1073_pnas_0707741104 crossref_primary_10_1080_01621459_2019_1635479 crossref_primary_10_1016_j_neuroimage_2015_09_011 crossref_primary_10_3389_fnagi_2024_1356745 crossref_primary_10_1093_cercor_bhu174 crossref_primary_10_1016_j_media_2008_09_001 crossref_primary_10_1016_j_parkreldis_2014_06_011 crossref_primary_10_3233_JAD_220745 crossref_primary_10_1093_psyrad_kkac017 crossref_primary_10_1212_WNL_0000000000002516 crossref_primary_10_1093_cercor_bhx317 crossref_primary_10_3390_brainsci13030487 crossref_primary_10_1002_hbm_20402 crossref_primary_10_1007_s10548_022_00910_3 crossref_primary_10_1002_hbm_20887 crossref_primary_10_1016_j_neuroimage_2008_03_022 crossref_primary_10_1093_cercor_bhad286 crossref_primary_10_1098_rstb_2008_0330 crossref_primary_10_1155_2012_870196 crossref_primary_10_1038_s41598_021_85058_z crossref_primary_10_1093_cercor_bhw024 crossref_primary_10_1016_j_brainres_2014_09_005 crossref_primary_10_1016_j_cortex_2019_09_015 crossref_primary_10_1016_j_schres_2017_01_054 crossref_primary_10_1111_ene_14195 crossref_primary_10_3389_fnagi_2017_00038 crossref_primary_10_1093_cercor_bhx229 crossref_primary_10_1016_j_schres_2009_07_026 crossref_primary_10_1093_cercor_bhl149 crossref_primary_10_1016_j_neurobiolaging_2014_05_040 crossref_primary_10_1002_hbm_22732 crossref_primary_10_3389_fnagi_2014_00118 crossref_primary_10_1093_brain_awp089 crossref_primary_10_1038_mp_2013_17 crossref_primary_10_1093_cercor_bhu079 crossref_primary_10_1111_j_1552_6569_2008_00293_x crossref_primary_10_1093_schbul_sbt177 crossref_primary_10_1016_j_jaac_2011_03_016 crossref_primary_10_3389_fnagi_2019_00147 crossref_primary_10_1109_JBHI_2015_2460012 crossref_primary_10_1212_WNL_0000000000001884 crossref_primary_10_1017_S0954579408000552 crossref_primary_10_1016_j_neuroimage_2007_02_042 crossref_primary_10_3174_ajnr_A1484 crossref_primary_10_1002_hbm_22843 crossref_primary_10_1002_brb3_940 crossref_primary_10_1016_j_pediatrneurol_2015_06_013 crossref_primary_10_1016_j_jalz_2007_04_168 crossref_primary_10_1016_j_neuroimage_2016_11_025 crossref_primary_10_1523_JNEUROSCI_5309_07_2008 crossref_primary_10_1016_j_neuroimage_2008_12_046 crossref_primary_10_1002_ajmg_a_61532 crossref_primary_10_3389_fnins_2021_650082 crossref_primary_10_1212_01_wnl_0000345969_57574_f5 crossref_primary_10_1111_j_1601_183X_2012_00844_x crossref_primary_10_1016_j_pnpbp_2020_109879 crossref_primary_10_1186_s12938_020_0757_8 crossref_primary_10_1523_JNEUROSCI_2248_18_2019 crossref_primary_10_1016_j_neurobiolaging_2022_12_006 crossref_primary_10_1523_JNEUROSCI_0165_05_2005 crossref_primary_10_1186_2040_2392_2_4 crossref_primary_10_1016_j_jalz_2006_05_2325 crossref_primary_10_1016_j_nicl_2014_08_017 crossref_primary_10_3233_JAD_201092 crossref_primary_10_1016_j_nicl_2021_102910 crossref_primary_10_1155_2015_817595 crossref_primary_10_1016_j_media_2015_02_003 crossref_primary_10_1016_j_neuroimage_2014_09_035 crossref_primary_10_1016_j_nicl_2014_09_005 crossref_primary_10_1111_acer_15119 crossref_primary_10_1016_j_neuroimage_2007_10_043 crossref_primary_10_1016_j_neuroimage_2011_08_017 crossref_primary_10_1016_j_neuroimage_2015_02_046 crossref_primary_10_1093_cercor_bhm244 crossref_primary_10_1371_journal_pone_0124222 crossref_primary_10_1016_j_bpsc_2020_06_020 crossref_primary_10_1016_j_neuroimage_2010_11_082 crossref_primary_10_1007_s00330_014_3239_1 crossref_primary_10_1016_j_pscychresns_2024_111804 crossref_primary_10_1016_j_rasd_2014_12_013 crossref_primary_10_1093_cercor_bhaa097 crossref_primary_10_1371_journal_pone_0216152 crossref_primary_10_1016_j_neuroimage_2007_08_042 crossref_primary_10_1016_j_neuroimage_2008_04_261 crossref_primary_10_3233_JAD_220975 crossref_primary_10_1016_j_nicl_2014_09_013 crossref_primary_10_1016_j_neuroimage_2015_02_036 crossref_primary_10_1371_journal_pone_0101372 crossref_primary_10_3389_fnhum_2019_00343 crossref_primary_10_3174_ajnr_A2882 crossref_primary_10_1093_cercor_bhac156 crossref_primary_10_1038_s42003_024_06956_2 crossref_primary_10_1093_brain_awab284 crossref_primary_10_1016_j_seizure_2015_06_009 crossref_primary_10_1016_j_neulet_2016_09_042 crossref_primary_10_1016_j_jalz_2006_05_1210 crossref_primary_10_1016_j_cmpb_2021_106286 crossref_primary_10_1038_s41593_024_01672_w crossref_primary_10_1016_j_parkreldis_2013_06_012 crossref_primary_10_1016_j_nicl_2015_12_010 crossref_primary_10_1002_hbm_22925 crossref_primary_10_1016_j_neurobiolaging_2009_02_004 crossref_primary_10_1186_s13039_016_0221_4 crossref_primary_10_1016_j_parkreldis_2014_08_021 crossref_primary_10_1007_s10548_009_0105_6 crossref_primary_10_1007_s11682_018_0007_x crossref_primary_10_1371_journal_pcbi_1006376 crossref_primary_10_1016_j_neuroscience_2012_06_030 crossref_primary_10_1002_hbm_20740 crossref_primary_10_1016_j_media_2008_10_006 crossref_primary_10_1002_hbm_25159 crossref_primary_10_1016_j_neuroimage_2023_119885 crossref_primary_10_1371_journal_pone_0086624 crossref_primary_10_1016_j_pscychresns_2013_06_008 crossref_primary_10_1007_s12021_011_9127_9 crossref_primary_10_1093_cercor_bhr194 crossref_primary_10_1093_schbul_sbt100 crossref_primary_10_1111_desc_12096 crossref_primary_10_1016_j_concog_2015_04_020 crossref_primary_10_1016_j_neuroimage_2020_117622 crossref_primary_10_1038_s42003_024_05787_5 crossref_primary_10_1002_hbm_20814 crossref_primary_10_1016_j_neuroimage_2012_03_069 crossref_primary_10_1038_jcbfm_2014_246 crossref_primary_10_1016_j_dcn_2024_101504 crossref_primary_10_1093_brain_awu246 crossref_primary_10_1038_s41593_020_0665_z crossref_primary_10_7554_eLife_33977 crossref_primary_10_1111_j_1460_9568_2007_05356_x crossref_primary_10_3389_fnins_2024_1428900 crossref_primary_10_1016_j_neuroimage_2008_12_016 crossref_primary_10_1371_journal_pone_0134468 crossref_primary_10_1016_j_dadm_2016_10_007 crossref_primary_10_1093_cercor_bhv301 crossref_primary_10_1093_schbul_sbr049 crossref_primary_10_1212_WNL_0b013e318205d521 crossref_primary_10_1016_j_neuroimage_2013_05_066 crossref_primary_10_1016_j_biopsych_2013_04_007 crossref_primary_10_1016_j_neuroimage_2020_116765 crossref_primary_10_1017_S0033291719002071 crossref_primary_10_1109_TMI_2006_884187 crossref_primary_10_1093_schbul_sbad160 crossref_primary_10_3390_jcm9051424 crossref_primary_10_1016_j_neuropsychologia_2011_10_010 crossref_primary_10_1007_s00429_014_0953_z crossref_primary_10_1016_j_nicl_2023_103371 crossref_primary_10_1093_schizbullopen_sgaa039 crossref_primary_10_1016_j_neuroimage_2013_04_003 crossref_primary_10_1212_WNL_0000000000207806 crossref_primary_10_1038_s44220_023_00194_x crossref_primary_10_1016_j_mri_2012_02_029 crossref_primary_10_1016_j_neurobiolaging_2014_03_042 crossref_primary_10_1017_S0033291712001328 crossref_primary_10_1002_gps_2491 crossref_primary_10_1016_j_neurad_2021_11_007 crossref_primary_10_1093_cercor_bhs187 crossref_primary_10_1523_JNEUROSCI_0141_08_2008 crossref_primary_10_3389_fnins_2019_01134 crossref_primary_10_1016_j_pscychresns_2017_10_010 crossref_primary_10_1038_npp_2011_72 crossref_primary_10_1177_0165025417727872 crossref_primary_10_3389_fnins_2020_598868 crossref_primary_10_1371_journal_pone_0073208 crossref_primary_10_1016_j_cortex_2012_02_011 crossref_primary_10_1002_alz_14298 crossref_primary_10_1038_srep26682 crossref_primary_10_1016_j_neuroimage_2016_03_032 crossref_primary_10_1371_journal_pone_0179590 crossref_primary_10_1016_j_cortex_2009_06_008 crossref_primary_10_1016_j_neuroimage_2022_119254 crossref_primary_10_1002_hbm_26259 crossref_primary_10_1016_j_bandc_2009_08_009 crossref_primary_10_3389_fnhum_2015_00472 crossref_primary_10_1038_s41598_021_04462_7 crossref_primary_10_3389_fpsyt_2017_00291 crossref_primary_10_1016_j_brainres_2017_11_012 crossref_primary_10_1038_nn_4501 crossref_primary_10_1542_peds_2005_2969 crossref_primary_10_1016_j_neuroimage_2010_03_074 crossref_primary_10_1016_j_neuroimage_2014_07_064 crossref_primary_10_1186_s13195_018_0462_z crossref_primary_10_1007_s10803_011_1261_6 crossref_primary_10_1016_j_cortex_2014_05_001 crossref_primary_10_1017_S1041610214001483 crossref_primary_10_1016_j_neuroimage_2010_01_007 crossref_primary_10_1093_cercor_bhv319 crossref_primary_10_1002_hbm_20829 crossref_primary_10_1371_journal_pone_0076702 crossref_primary_10_1002_hbm_70044 crossref_primary_10_1016_j_pscychresns_2011_09_009 crossref_primary_10_1016_j_medntd_2020_100035 crossref_primary_10_1038_tp_2015_1 crossref_primary_10_1126_sciadv_1700489 crossref_primary_10_1016_j_neuroimage_2011_04_069 crossref_primary_10_1007_s13311_022_01276_x crossref_primary_10_1016_j_wneu_2023_10_095 crossref_primary_10_1016_j_neuroimage_2011_01_010 crossref_primary_10_1016_j_nicl_2021_102620 crossref_primary_10_1002_ima_22217 crossref_primary_10_1016_j_neuroimage_2008_07_016 crossref_primary_10_1016_j_schres_2016_09_036 crossref_primary_10_1093_cercor_bhv107 crossref_primary_10_1016_j_neuroimage_2011_01_016 crossref_primary_10_1212_WNL_0000000000209802 crossref_primary_10_1038_srep24284 crossref_primary_10_1002_hbm_23163 crossref_primary_10_1002_hbm_24011 crossref_primary_10_1016_j_jalz_2019_03_012 crossref_primary_10_1016_j_ejpn_2013_05_005 crossref_primary_10_1186_1471_2342_9_20 crossref_primary_10_1007_s11682_008_9034_3 crossref_primary_10_1016_j_neuroimage_2007_12_036 crossref_primary_10_1016_j_nicl_2018_04_023 crossref_primary_10_1016_j_neurobiolaging_2010_11_008 crossref_primary_10_1016_j_neurobiolaging_2013_01_004 crossref_primary_10_1016_j_neulet_2008_06_013 crossref_primary_10_1016_j_neulet_2017_04_026 crossref_primary_10_1038_nature04513 crossref_primary_10_1016_j_neuroimage_2012_12_071 crossref_primary_10_1371_journal_pone_0148852 crossref_primary_10_1093_braincomms_fcab205 crossref_primary_10_1111_j_1552_6569_2006_00036_x crossref_primary_10_1016_j_neuroimage_2010_01_028 crossref_primary_10_1016_j_neuroimage_2011_02_042 crossref_primary_10_1016_j_neurobiolaging_2006_09_013 crossref_primary_10_1371_journal_pone_0050590 crossref_primary_10_1007_s00234_013_1246_6 crossref_primary_10_1016_j_neurobiolaging_2019_03_003 crossref_primary_10_3389_fdata_2021_637724 crossref_primary_10_1093_cercor_bht072 crossref_primary_10_1002_hbm_24284 crossref_primary_10_1016_j_biopsycho_2012_09_007 crossref_primary_10_1111_j_1749_6632_2009_05063_x crossref_primary_10_1016_j_neuroimage_2018_05_014 crossref_primary_10_1016_j_neuroimage_2013_12_040 crossref_primary_10_1093_cercor_bhu167 crossref_primary_10_1016_j_crphys_2021_09_005 crossref_primary_10_1016_j_brainres_2016_11_029 crossref_primary_10_1176_appi_ajp_2010_10030385 crossref_primary_10_1016_j_neurobiolaging_2009_11_013 crossref_primary_10_1093_cercor_bhl109 crossref_primary_10_1016_j_neuroimage_2021_118172 crossref_primary_10_1371_journal_pone_0054980 crossref_primary_10_1093_cercor_bht180 crossref_primary_10_1016_j_neuroimage_2016_01_007 crossref_primary_10_1038_s41467_018_06569_4 crossref_primary_10_1093_cercor_bht182 crossref_primary_10_3389_fneur_2014_00076 crossref_primary_10_1136_gpsych_2018_100005 crossref_primary_10_18632_aging_102362 crossref_primary_10_1016_j_schres_2019_05_044 crossref_primary_10_1007_s00429_005_0045_1 crossref_primary_10_1007_s00723_020_01192_3 crossref_primary_10_1016_j_neuroimage_2009_09_052 crossref_primary_10_3389_fneur_2018_00010 crossref_primary_10_4329_wjr_v6_i11_855  | 
    
| Cites_doi | 10.1073/pnas.200033797 10.1006/nimg.2000.0582 10.1098/rstb.2001.0915 10.1002/(SICI)1097-0193(1999)8:2/3<98::AID-HBM5>3.0.CO;2-F 10.1109/TMI.2002.806283 10.1097/00004728-199803000-00032 10.1006/nimg.1999.0534 10.1038/jcbfm.1992.127 10.1109/42.811276 10.1002/1097-0193(200009)11:1<12::AID-HBM20>3.0.CO;2-K 10.1523/JNEUROSCI.21-01-00194.2001 10.1002/(SICI)1097-0193(1996)4:1<58::AID-HBM4>3.0.CO;2-O 10.1002/hbm.460030304 10.1212/WNL.58.5.695 10.1006/nimg.2000.0652 10.1097/00004728-199403000-00005 10.1006/nimg.2001.1037 10.1109/42.668698 10.1006/nimg.2000.0666 10.1006/nimg.2001.0848 10.1126/science.283.5409.1908 10.1109/TMI.2003.817775 10.1006/nimg.1995.1032  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2004 Copyright Elsevier Limited Jan 1, 2005  | 
    
| Copyright_xml | – notice: 2004 – notice: Copyright Elsevier Limited Jan 1, 2005  | 
    
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8  | 
    
| DOI | 10.1016/j.neuroimage.2004.07.045 | 
    
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Psychology Database Biological Science Database (Proquest) Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic  | 
    
| DatabaseTitleList | ProQuest One Psychology MEDLINE - Academic MEDLINE  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Medicine | 
    
| EISSN | 1095-9572 | 
    
| EndPage | 173 | 
    
| ExternalDocumentID | 3244309781 15588607 10_1016_j_neuroimage_2004_07_045 S1053811904004185  | 
    
| Genre | Research Support, Non-U.S. Gov't Journal Article Comparative Study  | 
    
| GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAFWJ AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ABXDB ACDAQ ACGFO ACGFS ACIEU ACLOT ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADFGL ADFRT ADMUD ADNMO ADVLN ADXHL AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPKN AFPUW AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRLJ AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CAG CCPQU COF CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HDW HEI HMCUK HMK HMO HMQ HVGLF HZ~ IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OK1 OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SES SEW SNS SSH SSN SSZ T5K TEORI UKHRP UV1 WUQ XPP YK3 Z5R ZMT ZU3 ~G- ~HD 3V. 6I. AACTN AADPK AAIAV ABLVK ABYKQ AFKWA AJBFU AJOXV AMFUW C45 LCYCR NCXOZ RIG ZA5 AAYXX CITATION PUEGO 0SF ALIPV CGR CUY CVF ECM EIF NPM 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8  | 
    
| ID | FETCH-LOGICAL-c523t-b2b423eadd1bfebd80cb8bf903f6db9b307b839a54a4553d5b32f67ea76b0623 | 
    
| IEDL.DBID | BENPR | 
    
| ISSN | 1053-8119 | 
    
| IngestDate | Sat Sep 27 16:43:51 EDT 2025 Tue Oct 07 06:43:58 EDT 2025 Wed Feb 19 01:39:17 EST 2025 Wed Oct 01 01:28:48 EDT 2025 Thu Apr 24 23:16:11 EDT 2025 Fri Feb 23 02:25:14 EST 2024 Tue Oct 14 19:29:13 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Language | English | 
    
| License | https://www.elsevier.com/tdm/userlicense/1.0 | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c523t-b2b423eadd1bfebd80cb8bf903f6db9b307b839a54a4553d5b32f67ea76b0623 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23  | 
    
| PMID | 15588607 | 
    
| PQID | 1506629407 | 
    
| PQPubID | 2031077 | 
    
| PageCount | 11 | 
    
| ParticipantIDs | proquest_miscellaneous_67326658 proquest_journals_1506629407 pubmed_primary_15588607 crossref_citationtrail_10_1016_j_neuroimage_2004_07_045 crossref_primary_10_1016_j_neuroimage_2004_07_045 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2004_07_045 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2004_07_045  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2005 2005-1-00 2005-Jan-01 20050101  | 
    
| PublicationDateYYYYMMDD | 2005-01-01 | 
    
| PublicationDate_xml | – year: 2005 text: 2005  | 
    
| PublicationDecade | 2000 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States – name: Amsterdam  | 
    
| PublicationTitle | NeuroImage (Orlando, Fla.) | 
    
| PublicationTitleAlternate | Neuroimage | 
    
| PublicationYear | 2005 | 
    
| Publisher | Elsevier Inc Elsevier Limited  | 
    
| Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited  | 
    
| References | Jones, Buchbinder (bib10) 2000; 11 Sled, Zijdenbos (bib22) 1998; 17 Rosas, Liu (bib21) 2002; 58 Tosun, Rettman (bib23) 2001 Kabani, Le Goualher (bib11) 2001; 13 Pratt (bib19) 1991 Zeng, Staib (bib30) 1999; 18 Collins, Holmes (bib5) 1995; 3 MacDonald (bib13) 1997 Baron, Chetelat (bib2) 2001; 14 Brodmann (bib3) 1909 Meyer, Roychowdhury (bib16) 1996; 17 Collins, Neelin (bib6) 1994; 18 Mazziotta, Toga (bib15) 2001; 356 Worsley, Evans (bib25) 1992; 12 Holmes, Hoge (bib9) 1998; 22 Ashburner, Friston (bib1) 2000; 11 Worsley, Marrett (bib26) 1996; 4 Paus, Zijdenbos (bib18) 1999; 283 Wright, McGuire (bib28) 1995; 2 MacDonald, Kabani (bib14) 2000; 12 Von Economo, Koskinas (bib24) 1925 Genovese, Lazar (bib8) 2002; 15 Miller, Massie (bib17) 2000; 12 Kollokian (bib12) 1996 Chung, Worsley (bib4) 2002 Pruessner, Collins (bib20) 2001; 21 Fischl, Dale (bib7) 2000; 97 Yezzi, Prince (bib29) 2003; 22 Zijdenbos, Forghani (bib31) 2002; 21 Worsley, Andermann (bib27) 1999; 8 Collins (10.1016/j.neuroimage.2004.07.045_bib5) 1995; 3 Pratt (10.1016/j.neuroimage.2004.07.045_bib19) 1991 Miller (10.1016/j.neuroimage.2004.07.045_bib17) 2000; 12 Kabani (10.1016/j.neuroimage.2004.07.045_bib11) 2001; 13 Rosas (10.1016/j.neuroimage.2004.07.045_bib21) 2002; 58 Ashburner (10.1016/j.neuroimage.2004.07.045_bib1) 2000; 11 Chung (10.1016/j.neuroimage.2004.07.045_bib4) 2002 Zeng (10.1016/j.neuroimage.2004.07.045_bib30) 1999; 18 Paus (10.1016/j.neuroimage.2004.07.045_bib18) 1999; 283 Pruessner (10.1016/j.neuroimage.2004.07.045_bib20) 2001; 21 Genovese (10.1016/j.neuroimage.2004.07.045_bib8) 2002; 15 Yezzi (10.1016/j.neuroimage.2004.07.045_bib29) 2003; 22 Mazziotta (10.1016/j.neuroimage.2004.07.045_bib15) 2001; 356 Holmes (10.1016/j.neuroimage.2004.07.045_bib9) 1998; 22 Jones (10.1016/j.neuroimage.2004.07.045_bib10) 2000; 11 Fischl (10.1016/j.neuroimage.2004.07.045_bib7) 2000; 97 Kollokian (10.1016/j.neuroimage.2004.07.045_bib12) 1996 Meyer (10.1016/j.neuroimage.2004.07.045_bib16) 1996; 17 Baron (10.1016/j.neuroimage.2004.07.045_bib2) 2001; 14 Tosun (10.1016/j.neuroimage.2004.07.045_bib23) 2001 Worsley (10.1016/j.neuroimage.2004.07.045_bib27) 1999; 8 Brodmann (10.1016/j.neuroimage.2004.07.045_bib3) 1909 Worsley (10.1016/j.neuroimage.2004.07.045_bib25) 1992; 12 MacDonald (10.1016/j.neuroimage.2004.07.045_bib14) 2000; 12 Collins (10.1016/j.neuroimage.2004.07.045_bib6) 1994; 18 Sled (10.1016/j.neuroimage.2004.07.045_bib22) 1998; 17 Wright (10.1016/j.neuroimage.2004.07.045_bib28) 1995; 2 MacDonald (10.1016/j.neuroimage.2004.07.045_bib13) 1997 Zijdenbos (10.1016/j.neuroimage.2004.07.045_bib31) 2002; 21 Worsley (10.1016/j.neuroimage.2004.07.045_bib26) 1996; 4 Von Economo (10.1016/j.neuroimage.2004.07.045_bib24) 1925  | 
    
| References_xml | – volume: 13 start-page: 375 year: 2001 end-page: 380 ident: bib11 article-title: Measurement of cortical thickness using an automated 3-D algorithm: a validation study publication-title: NeuroImage – year: 1909 ident: bib3 article-title: Vergleichende Lokalisationslehre der Großhirnrinde – volume: 12 start-page: 676 year: 2000 end-page: 687 ident: bib17 article-title: Bayesian construction of geometrically based cortical thickness metrics publication-title: NeuroImage – volume: 22 start-page: 1332 year: 2003 end-page: 1339 ident: bib29 article-title: An Eulerian PDE approach for computing tissue thickness publication-title: IEEE Trans. Med. Imag. – volume: 11 start-page: 12 year: 2000 end-page: 32 ident: bib10 article-title: Three-dimensional mapping of cortical thickness using Laplace's equation publication-title: Hum. Brain Mapp. – volume: 2 start-page: 244 year: 1995 end-page: 252 ident: bib28 article-title: A voxel-based method for the statistical analysis of gray and white matter density applied to schizophrenia publication-title: NeuroImage – year: 2001 ident: bib23 article-title: Calculation of human cerebral cortical thickness on opposing sulcal banks – volume: 356 start-page: 1293 year: 2001 end-page: 1322 ident: bib15 article-title: A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM) publication-title: Philos. Trans. R. Soc. London, B Biol. Sci. – volume: 17 start-page: 1699 year: 1996 end-page: 1706 ident: bib16 article-title: Location of the central sulcus via cortical thickness of the precentral and postcentral gyri on MR publication-title: Am. J. Neuroradiol. – volume: 18 start-page: 192 year: 1994 end-page: 205 ident: bib6 article-title: Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space publication-title: J. Comput. Assist. Tomogr. – year: 1991 ident: bib19 article-title: Digital Image Processing – volume: 21 start-page: 1280 year: 2002 end-page: 1291 ident: bib31 article-title: Automatic “pipeline” analysis of 3-D MRI data for clinical trials: application to multiple sclerosis publication-title: IEEE Trans. Med. Imag. – volume: 283 start-page: 1908 year: 1999 end-page: 1911 ident: bib18 article-title: Structural maturation of neural pathways in children and adolescents: in vivo study publication-title: Science – volume: 58 start-page: 695 year: 2002 end-page: 701 ident: bib21 article-title: Regional and progressive thinning of the cortical ribbon in Huntington's disease publication-title: Neurology – year: 1925 ident: bib24 article-title: Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen – start-page: 24 year: 1996 end-page: 106 ident: bib12 article-title: Performance analysis of automatic techniques for tissue classification in magnetic resonance images of the human brain publication-title: Computer Science – volume: 12 start-page: 340 year: 2000 end-page: 356 ident: bib14 article-title: Automated 3-D extraction of inner and outer surfaces of cerebral cortex from MRI publication-title: NeuroImage – volume: 22 start-page: 324 year: 1998 end-page: 333 ident: bib9 article-title: Enhancement of MR images using registration for signal averaging publication-title: J. Comput. Assist. Tomogr. – volume: 17 start-page: 87 year: 1998 end-page: 97 ident: bib22 article-title: A nonparametric method for automatic correction of intensity nonuniformity in MRI data publication-title: IEEE Trans. Med. Imag. – volume: 21 start-page: 194 year: 2001 end-page: 200 ident: bib20 article-title: Age and gender predict volume decline in the anterior and posterior hippocampus in early adulthood publication-title: J. Neurosci. – year: 2002 ident: bib4 article-title: Tensor-Based Surface Morphometry – volume: 4 start-page: 58 year: 1996 end-page: 73 ident: bib26 article-title: A unified statistical approach for determining significant signal in images of cerebral activation publication-title: Hum. Brain Mapp. – volume: 97 start-page: 11050 year: 2000 end-page: 11055 ident: bib7 article-title: Measuring the thickness of the human cerebral cortex from magnetic resonance images publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 11 start-page: 805 year: 2000 end-page: 821 ident: bib1 article-title: Voxel-based morphometry—The methods publication-title: NeuroImage – volume: 14 start-page: 298 year: 2001 end-page: 309 ident: bib2 article-title: In vivo mapping of gray matter loss with voxel-based morphometry in mild Alzheimer's disease publication-title: NeuroImage – volume: 8 start-page: 98 year: 1999 end-page: 101 ident: bib27 article-title: Detecting changes in nonisotropic images publication-title: Hum. Brain Mapp. – volume: 3 start-page: 190 year: 1995 end-page: 208 ident: bib5 article-title: Automatic 3D model-based neuroanatomical segmentation publication-title: Hum. Brain Mapp. – volume: 15 start-page: 870 year: 2002 end-page: 878 ident: bib8 article-title: Thresholding of statistical maps in functional neuroimaging using the false discovery rate publication-title: NeuroImage – volume: 18 start-page: 927 year: 1999 end-page: 937 ident: bib30 article-title: Segmentation and measurement of the cortex from 3-D MR images using coupled-surfaces propagation publication-title: IEEE Trans. Med. Imag. – volume: 12 start-page: 900 year: 1992 end-page: 918 ident: bib25 article-title: A three-dimensional statistical analysis for CBF activation studies in human brain publication-title: J. Cereb. Blood Flow Metab. – start-page: 59 year: 1997 end-page: 143 ident: bib13 article-title: A method for identifying geometrically simple surfaces from three dimensional images publication-title: School of Computer Science – volume: 97 start-page: 11050 issue: 20 year: 2000 ident: 10.1016/j.neuroimage.2004.07.045_bib7 article-title: Measuring the thickness of the human cerebral cortex from magnetic resonance images publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.200033797 – year: 2002 ident: 10.1016/j.neuroimage.2004.07.045_bib4 – year: 1925 ident: 10.1016/j.neuroimage.2004.07.045_bib24 – volume: 11 start-page: 805 issue: 6 Pt 1 year: 2000 ident: 10.1016/j.neuroimage.2004.07.045_bib1 article-title: Voxel-based morphometry—The methods publication-title: NeuroImage doi: 10.1006/nimg.2000.0582 – year: 1991 ident: 10.1016/j.neuroimage.2004.07.045_bib19 – volume: 356 start-page: 1293 issue: 1412 year: 2001 ident: 10.1016/j.neuroimage.2004.07.045_bib15 article-title: A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM) publication-title: Philos. Trans. R. Soc. London, B Biol. Sci. doi: 10.1098/rstb.2001.0915 – volume: 8 start-page: 98 issue: 2–3 year: 1999 ident: 10.1016/j.neuroimage.2004.07.045_bib27 article-title: Detecting changes in nonisotropic images publication-title: Hum. Brain Mapp. doi: 10.1002/(SICI)1097-0193(1999)8:2/3<98::AID-HBM5>3.0.CO;2-F – volume: 21 start-page: 1280 issue: 10 year: 2002 ident: 10.1016/j.neuroimage.2004.07.045_bib31 article-title: Automatic “pipeline” analysis of 3-D MRI data for clinical trials: application to multiple sclerosis publication-title: IEEE Trans. Med. Imag. doi: 10.1109/TMI.2002.806283 – volume: 22 start-page: 324 issue: 2 year: 1998 ident: 10.1016/j.neuroimage.2004.07.045_bib9 article-title: Enhancement of MR images using registration for signal averaging publication-title: J. Comput. Assist. Tomogr. doi: 10.1097/00004728-199803000-00032 – volume: 12 start-page: 340 issue: 3 year: 2000 ident: 10.1016/j.neuroimage.2004.07.045_bib14 article-title: Automated 3-D extraction of inner and outer surfaces of cerebral cortex from MRI publication-title: NeuroImage doi: 10.1006/nimg.1999.0534 – volume: 12 start-page: 900 issue: 6 year: 1992 ident: 10.1016/j.neuroimage.2004.07.045_bib25 article-title: A three-dimensional statistical analysis for CBF activation studies in human brain publication-title: J. Cereb. Blood Flow Metab. doi: 10.1038/jcbfm.1992.127 – volume: 18 start-page: 927 issue: 10 year: 1999 ident: 10.1016/j.neuroimage.2004.07.045_bib30 article-title: Segmentation and measurement of the cortex from 3-D MR images using coupled-surfaces propagation publication-title: IEEE Trans. Med. Imag. doi: 10.1109/42.811276 – volume: 11 start-page: 12 issue: 1 year: 2000 ident: 10.1016/j.neuroimage.2004.07.045_bib10 article-title: Three-dimensional mapping of cortical thickness using Laplace's equation publication-title: Hum. Brain Mapp. doi: 10.1002/1097-0193(200009)11:1<12::AID-HBM20>3.0.CO;2-K – volume: 21 start-page: 194 issue: 1 year: 2001 ident: 10.1016/j.neuroimage.2004.07.045_bib20 article-title: Age and gender predict volume decline in the anterior and posterior hippocampus in early adulthood publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.21-01-00194.2001 – volume: 4 start-page: 58 year: 1996 ident: 10.1016/j.neuroimage.2004.07.045_bib26 article-title: A unified statistical approach for determining significant signal in images of cerebral activation publication-title: Hum. Brain Mapp. doi: 10.1002/(SICI)1097-0193(1996)4:1<58::AID-HBM4>3.0.CO;2-O – volume: 3 start-page: 190 issue: 3 year: 1995 ident: 10.1016/j.neuroimage.2004.07.045_bib5 article-title: Automatic 3D model-based neuroanatomical segmentation publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.460030304 – volume: 58 start-page: 695 issue: 5 year: 2002 ident: 10.1016/j.neuroimage.2004.07.045_bib21 article-title: Regional and progressive thinning of the cortical ribbon in Huntington's disease publication-title: Neurology doi: 10.1212/WNL.58.5.695 – volume: 13 start-page: 375 issue: 2 year: 2001 ident: 10.1016/j.neuroimage.2004.07.045_bib11 article-title: Measurement of cortical thickness using an automated 3-D algorithm: a validation study publication-title: NeuroImage doi: 10.1006/nimg.2000.0652 – year: 2001 ident: 10.1016/j.neuroimage.2004.07.045_bib23 article-title: Calculation of human cerebral cortical thickness on opposing sulcal banks – volume: 18 start-page: 192 issue: 2 year: 1994 ident: 10.1016/j.neuroimage.2004.07.045_bib6 article-title: Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space publication-title: J. Comput. Assist. Tomogr. doi: 10.1097/00004728-199403000-00005 – year: 1909 ident: 10.1016/j.neuroimage.2004.07.045_bib3 – volume: 15 start-page: 870 issue: 4 year: 2002 ident: 10.1016/j.neuroimage.2004.07.045_bib8 article-title: Thresholding of statistical maps in functional neuroimaging using the false discovery rate publication-title: NeuroImage doi: 10.1006/nimg.2001.1037 – volume: 17 start-page: 87 issue: 1 year: 1998 ident: 10.1016/j.neuroimage.2004.07.045_bib22 article-title: A nonparametric method for automatic correction of intensity nonuniformity in MRI data publication-title: IEEE Trans. Med. Imag. doi: 10.1109/42.668698 – volume: 12 start-page: 676 issue: 6 year: 2000 ident: 10.1016/j.neuroimage.2004.07.045_bib17 article-title: Bayesian construction of geometrically based cortical thickness metrics publication-title: NeuroImage doi: 10.1006/nimg.2000.0666 – volume: 17 start-page: 1699 issue: 9 year: 1996 ident: 10.1016/j.neuroimage.2004.07.045_bib16 article-title: Location of the central sulcus via cortical thickness of the precentral and postcentral gyri on MR publication-title: Am. J. Neuroradiol. – start-page: 24 year: 1996 ident: 10.1016/j.neuroimage.2004.07.045_bib12 article-title: Performance analysis of automatic techniques for tissue classification in magnetic resonance images of the human brain – volume: 14 start-page: 298 issue: 2 year: 2001 ident: 10.1016/j.neuroimage.2004.07.045_bib2 article-title: In vivo mapping of gray matter loss with voxel-based morphometry in mild Alzheimer's disease publication-title: NeuroImage doi: 10.1006/nimg.2001.0848 – volume: 283 start-page: 1908 issue: 5409 year: 1999 ident: 10.1016/j.neuroimage.2004.07.045_bib18 article-title: Structural maturation of neural pathways in children and adolescents: in vivo study publication-title: Science doi: 10.1126/science.283.5409.1908 – volume: 22 start-page: 1332 issue: 10 year: 2003 ident: 10.1016/j.neuroimage.2004.07.045_bib29 article-title: An Eulerian PDE approach for computing tissue thickness publication-title: IEEE Trans. Med. Imag. doi: 10.1109/TMI.2003.817775 – volume: 2 start-page: 244 issue: 4 year: 1995 ident: 10.1016/j.neuroimage.2004.07.045_bib28 article-title: A voxel-based method for the statistical analysis of gray and white matter density applied to schizophrenia publication-title: NeuroImage doi: 10.1006/nimg.1995.1032 – start-page: 59 year: 1997 ident: 10.1016/j.neuroimage.2004.07.045_bib13 article-title: A method for identifying geometrically simple surfaces from three dimensional images  | 
    
| SSID | ssj0009148 | 
    
| Score | 2.3970723 | 
    
| Snippet | We have previously developed a procedure for measuring the thickness of cerebral cortex over the whole brain using 3-D MRI data and a fully automated... | 
    
| SourceID | proquest pubmed crossref elsevier  | 
    
| SourceType | Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 163 | 
    
| SubjectTerms | Accuracy Algorithms Artificial Intelligence Automation Cephalometry - statistics & numerical data Cerebral Cortex - anatomy & histology Computer Graphics Computer Simulation Fingers & toes Humans Imaging, Three-Dimensional Mathematical Computing Neurosciences Normal Distribution Probability Theory Reference Values Reproducibility of Results Signal Processing, Computer-Assisted Simulation Sports injuries Studies Surface Properties  | 
    
| SummonAdditionalLinks | – databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] dbid: AIKHN link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED_SFEZfRruuXfqx6aGvJnIsyTJ9KqEl20hf1rG-CV0kQ9rGCU0K_fN7suWEwgaBvRnJB_L5viTd_Q7gwpbO21LLxJP7SkSuRFKgKxOOmKXSKdL1cN4xvlWj3-LHvbzvwLCthQlpldH2Nza9ttZxpB-52V9Mp_1fFBmQuyGHFsSQ3M4O7JL_0boLu1fff45uN9i7qWgq4mSWBIKY0NOkedWwkdMZKW-9WayRPENt09-91L-i0Nob3ezDxxhGsqtmpQfQ8dUn-DCOF-WH8Gc4f65PqVnIZ38M9ozZiD_C_Kud0VuOxSY9bBFapW3mbeWYpcG2tRdbTmfx8TPc3VzfDUdJ7KGQTGiLuUpwgBQwkbi4FEuPTvMJaiwLnpXKYYGk4kgxkpXCCikzJzEblCr3NlfIKTQ6gm41r_wXYAXXfuAwczm3QokUc8vTiXROFJkoddGDvGWZmUR88dDm4sm0iWQPZsPs0P5SGJ4bYnYP0jXlosHY2IKmaP-KaWtIyeoZcgRb0F6uad_J2pbUZ60QmKjvSxNwGtWgoN1xD76tp0lTw_WLrfz8ZRky6CgakroHx43obD5WSq0Vz0_-a2GnsFfjytbnQ2fQXT2_-HOKmFb4NWrEG43BGD4 priority: 102 providerName: Elsevier  | 
    
| Title | Cortical thickness analysis examined through power analysis and a population simulation | 
    
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811904004185 https://dx.doi.org/10.1016/j.neuroimage.2004.07.045 https://www.ncbi.nlm.nih.gov/pubmed/15588607 https://www.proquest.com/docview/1506629407 https://www.proquest.com/docview/67326658  | 
    
| Volume | 24 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1095-9572 dateEnd: 20191231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: ACRLP dateStart: 19950301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1095-9572 dateEnd: 20191231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: AIKHN dateStart: 19950301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1095-9572 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1095-9572 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: AKRWK dateStart: 19920801 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1095-9572 dateEnd: 20250902 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: 7X7 dateStart: 20020801 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1095-9572 dateEnd: 20250902 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: BENPR dateStart: 19980501 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFD7aWgnxghjXwlbywKshF19iIYRGtalcVk3TEH2L7NiRxta0rJ3EE7-dY8duXgD1JYninEhxzrE_28ffB_BaNcaqpmTEYvdFqOCUSG0akmpdZMxwjHU333E249Nv9POczfdgFvfCuLTK2Cb6htosazdH_tYx4fFc4vjjw-oncapRbnU1SmioIK1g3nuKsX0Y5o4ZawDDjyez84uehjej3eY4VpAyy2TI7ekyvjyD5NUC49iPGz2pp9vm9PcO61-A1HdMpw_hQUCUyXHnAgewZ9tHcO8srJk_hu-T5a2fsE5cavu1a9oSFahIEvtLLfApkwS9nmTlVNP6ctWaROHNqPKVrK8W4fIJXJ6eXE6mJMgpkBpHmxuic43YCT3HZLqx2pRprUvdyLRouNFSY7RrhEuKUUUZKwzTRd5wYZXgOkWU9BQG7bK1zyGRaWlzowsjUkU5zbRQaVYzY6gsaFPKEYhYZVUdqMad4sVNFXPKflR9ZTslTFqlosLKHkG2tVx1dBs72Mj4V6q4nRQbwAr7hB1s321tA-TooMSO1ofRCaoQ-uuqd9QRvNoWY9C6lRjV2uXd2iXTITBi5Qieda7TfyxjZclT8eL_r34J9z2HrJ8LOoTB5vbOHiE62ugx7L_5neFRzMUYhseTi6_n7vzpy3Q2DuHwBztMFxI | 
    
| linkProvider | ProQuest | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqVgIuqDy7UKgPcLRwEtuJhSoEpdWWdlcILaI3y44dqcBml-5WbX8c_42xY28ugPbSW5RkImVsz8Oe-T6EXunGOt1UnDhwX4SVghFpbEOoMUXGrYC17vc7RmMx_Mo-nfGzDfQ79cL4sspkE4OhtrPa75G_8Uh4IpeQf7yb_yKeNcqfriYKDR2pFex-gBiLjR0n7uYKUrjF_vFHGO_XeX50ODkYksgyQGpIwpbE5AZCClCozUzjjK1obSrTSFo0whppYBEYiCI0Z5pxXlhuirwRpdOlMFR43APwAFusYBJyv60Ph-PPX3rU34x1vXi8IFWWyVhK1BWYBcDK8ymYjZCmBgxR31X1d__4r_g3-MGjbXQ_BrD4fTfjHqAN1z5Ed0bxiP4R-nYwuwj749hX0v_wlhTriHyC3bWewlsWR3ogPPckbf1z3Vqs4WYiFcOL82m8fIwmt6HXJ2iznbVuB2FJK5dbU9iSaiZYZkpNs5pby2TBmkoOUJlUpuqIbO4JNn6qVML2XfXK9sSbTNFSgbIHKFtJzjt0jzVkZBoVlbpXwd4qcEFryL5dycYIp4tc1pTeTZNARUuzUP26GKC91WOwEf7gR7dudrnwtXsQh_FqgJ52U6f_Wc6rStDy2f8_vYfuDiejU3V6PD55ju4F-NqwDbWLNpcXl-4FBGZL8zJOf4zULS-4P1tST74 | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqVqq4IMpzoVAf4GjVSfwUqhBqWbWUVhyK2Jtlx7bUwmaX7laUn8a_Y5w4mwugvfQWJZlIGc_L45lvEHptow82Kk4CuC_CpGBEOx8Jda4quBeg6ynfcXYujr-wjxM-2UC_-16YVFbZ28TWUPtZnXLk-wkJT5Qa9h_7MZdFfD4av5v_IGmCVDpp7cdpdCJyGn79hO3b4uDkCNb6TVmOP1wcHpM8YYDUsAFbElc6CCeAmb5wMTivaO2Ui5pWUXinHSiAgwjCcmYZ55XnriqjkMFK4ahImAdg_bdkVelUTSgncsD7LVjXhccroopC5yKirrSshaq8nILBaDeoLXpo6qf6u2f8V-TbesDxA3Q_h674fSdrO2gjNA_R9lk-nH-Evh7OrtvMOE419N-SDcU2Y57gcGun8JbHeTAQnqfxbMNz23hs4WY_TgwvLqf58jG6uAuuPkGbzawJzxDWVIXSu8pLaplghZOWFjX3numKRaVHSPYsM3XGNE-jNb6bvnjtygzMTiM3maHSALNHqFhRzjtcjzVodL8qpu9bBUtrwPmsQft2RZtjmy5mWZN6txcCk23MwgwaMUJ7q8dgHdKRj23C7GaRqvYgAuNqhJ52ojP8LOdKCSqf___Te2gb1Mx8Ojk_fYHutbi1bf5pF20ur2_CS4jIlu5VK_sYmTvWtT866k1Y | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cortical+thickness+analysis+examined+through+power+analysis+and+a+population+simulation&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Lerch%2C+Jason+P.&rft.au=Evans%2C+Alan+C.&rft.date=2005&rft.pub=Elsevier+Inc&rft.issn=1053-8119&rft.volume=24&rft.issue=1&rft.spage=163&rft.epage=173&rft_id=info:doi/10.1016%2Fj.neuroimage.2004.07.045&rft.externalDocID=S1053811904004185 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |