Cortical thickness analysis examined through power analysis and a population simulation

We have previously developed a procedure for measuring the thickness of cerebral cortex over the whole brain using 3-D MRI data and a fully automated surface-extraction (ASP) algorithm. This paper examines the precision of this algorithm, its optimal performance parameters, and the sensitivity of th...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 24; no. 1; pp. 163 - 173
Main Authors Lerch, Jason P., Evans, Alan C.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 2005
Elsevier Limited
Subjects
Online AccessGet full text
ISSN1053-8119
1095-9572
DOI10.1016/j.neuroimage.2004.07.045

Cover

Abstract We have previously developed a procedure for measuring the thickness of cerebral cortex over the whole brain using 3-D MRI data and a fully automated surface-extraction (ASP) algorithm. This paper examines the precision of this algorithm, its optimal performance parameters, and the sensitivity of the method to subtle, focal changes in cortical thickness. The precision of cortical thickness measurements was studied using a simulated population study and single subject reproducibility metrics. Cortical thickness was shown to be a reliable method, reaching a sensitivity (probability of a true-positive) of 0.93. Six different cortical thickness metrics were compared. The simplest and most precise method measures the distance between corresponding vertices from the white matter to the gray matter surface. Given two groups of 25 subjects, a 0.6-mm (15%) change in thickness can be recovered after blurring with a 3-D Gaussian kernel (full-width half max = 30 mm). Smoothing across the 2-D surface manifold also improves precision; in this experiment, the optimal kernel size was 30 mm.
AbstractList We have previously developed a procedure for measuring the thickness of cerebral cortex over the whole brain using 3-D MRI data and a fully automated surface-extraction (ASP) algorithm. This paper examines the precision of this algorithm, its optimal performance parameters, and the sensitivity of the method to subtle, focal changes in cortical thickness. The precision of cortical thickness measurements was studied using a simulated population study and single subject reproducibility metrics. Cortical thickness was shown to be a reliable method, reaching a sensitivity (probability of a true-positive) of 0.93. Six different cortical thickness metrics were compared. The simplest and most precise method measures the distance between corresponding vertices from the white matter to the gray matter surface. Given two groups of 25 subjects, a 0.6-mm (15%) change in thickness can be recovered after blurring with a 3-D Gaussian kernel (full-width half max = 30 mm). Smoothing across the 2-D surface manifold also improves precision; in this experiment, the optimal kernel size was 30 mm.
We have previously developed a procedure for measuring the thickness of cerebral cortex over the whole brain using 3-D MRI data and a fully automated surface-extraction (ASP) algorithm. This paper examines the precision of this algorithm, its optimal performance parameters, and the sensitivity of the method to subtle, focal changes in cortical thickness. The precision of cortical thickness measurements was studied using a simulated population study and single subject reproducibility metrics. Cortical thickness was shown to be a reliable method, reaching a sensitivity (probability of a true-positive) of 0.93. Six different cortical thickness metrics were compared. The simplest and most precise method measures the distance between corresponding vertices from the white matter to the gray matter surface. Given two groups of 25 subjects, a 0.6-mm (15%) change in thickness can be recovered after blurring with a 3-D Gaussian kernel (full-width half max = 30 mm). Smoothing across the 2-D surface manifold also improves precision; in this experiment, the optimal kernel size was 30 mm.We have previously developed a procedure for measuring the thickness of cerebral cortex over the whole brain using 3-D MRI data and a fully automated surface-extraction (ASP) algorithm. This paper examines the precision of this algorithm, its optimal performance parameters, and the sensitivity of the method to subtle, focal changes in cortical thickness. The precision of cortical thickness measurements was studied using a simulated population study and single subject reproducibility metrics. Cortical thickness was shown to be a reliable method, reaching a sensitivity (probability of a true-positive) of 0.93. Six different cortical thickness metrics were compared. The simplest and most precise method measures the distance between corresponding vertices from the white matter to the gray matter surface. Given two groups of 25 subjects, a 0.6-mm (15%) change in thickness can be recovered after blurring with a 3-D Gaussian kernel (full-width half max = 30 mm). Smoothing across the 2-D surface manifold also improves precision; in this experiment, the optimal kernel size was 30 mm.
We have previously developed a procedure for measuring the thickness of cerebral cortex over the whole brain using 3-D MRI data and a fully automated surface-extraction (ASP) algorithm. This paper examines the precision of this algorithm, its optimal performance parameters, and the sensitivity of the method to subtle, focal changes in cortical thickness. The precision of cortical thickness measurements was studied using a simulated population study and single subject reproducibility metrics. Cortical thickness was shown to be a reliable method, reaching a sensitivity (probability of a true-positive) of 0.93. Six different cortical thickness metrics were compared. The simplest and most precise method measures the distance between corresponding vertices from the white matter to the gray matter surface. Given two groups of 25 subjects, a 0.6-mm (15%) change in thickness can be recovered after blurring with a 3-D Gaussian kernel (full-width half max = 30 mm). Smoothing across the 2-D surface manifold also improves precision; in this experiment, the optimal kernel size was 30 mm.
Author Lerch, Jason P.
Evans, Alan C.
Author_xml – sequence: 1
  givenname: Jason P.
  surname: Lerch
  fullname: Lerch, Jason P.
– sequence: 2
  givenname: Alan C.
  surname: Evans
  fullname: Evans, Alan C.
  email: alan@bic.mni.mcgill.ca
BackLink https://www.ncbi.nlm.nih.gov/pubmed/15588607$$D View this record in MEDLINE/PubMed
BookMark eNqNkk1v1DAQhi1URD_gL6BISNwSxnHsJBcErFpAqsSlEkfLH5PW28Re7KSw_x4vu1BpL_Tkkeedx5r39Tk58cEjIQWFigIV79aVxyUGN6lbrGqApoK2goY_I2cUel72vK1PdjVnZUdpf0rOU1oDQE-b7gU5pZx3nYD2jHxfhTg7o8ZivnPm3mNKhfJq3CaXCvylJufR5l4My-1dsQk_MT72lbeFypebZVSzC75IbjqUL8nzQY0JXx3OC3JzdXmz-lJef_v8dfXxujS8ZnOpa93UDJW1VA-obQdGd3rogQ3C6l4zaHXHesUb1XDOLNesHkSLqhUaRM0uyNs9dhPDjwXTLCeXDI6j8hiWJEXLaiF4l4VvjoTrsMS8SJKUgxB130CbVa8PqkVPaOUmZovjVv71Kwve7wUmhpQiDtK4-c_Cc1RulBTkLiC5lo8ByV1AElqZA8qA7gjw743_j37aj2L288FhlMk49Aati2hmaYN7CuTDEcSMzu8-wD1un4b4DUkdyRc
CitedBy_id crossref_primary_10_1007_s00429_013_0576_9
crossref_primary_10_1016_j_neuroimage_2016_08_041
crossref_primary_10_1016_j_neurobiolaging_2015_10_017
crossref_primary_10_1016_j_neulet_2008_03_071
crossref_primary_10_1523_JNEUROSCI_3039_07_2007
crossref_primary_10_1016_j_neuroimage_2005_09_068
crossref_primary_10_1002_brb3_1278
crossref_primary_10_1016_j_neuroimage_2017_11_068
crossref_primary_10_1016_j_brainres_2016_03_041
crossref_primary_10_3389_fnagi_2022_796110
crossref_primary_10_1371_journal_pone_0084054
crossref_primary_10_1093_brain_aww263
crossref_primary_10_1093_cercor_bhh200
crossref_primary_10_1002_hbm_23247
crossref_primary_10_1017_S0033291713000998
crossref_primary_10_1523_JNEUROSCI_1722_05_2005
crossref_primary_10_1002_hbm_26632
crossref_primary_10_1016_j_cortex_2019_06_008
crossref_primary_10_1016_j_intell_2009_03_010
crossref_primary_10_1016_j_bpsc_2021_11_008
crossref_primary_10_1371_journal_pbio_3000678
crossref_primary_10_1186_1471_2202_15_106
crossref_primary_10_1016_j_nicl_2020_102382
crossref_primary_10_1093_schbul_sbp151
crossref_primary_10_1017_S0033291714002694
crossref_primary_10_1002_ima_20230
crossref_primary_10_1016_j_neuroimage_2006_11_021
crossref_primary_10_1002_hbm_23359
crossref_primary_10_1002_dad2_12304
crossref_primary_10_1002_hbm_25776
crossref_primary_10_1016_j_neuroimage_2011_06_026
crossref_primary_10_3389_fnagi_2022_878758
crossref_primary_10_3389_frcha_2023_1171337
crossref_primary_10_1016_j_neuroimage_2008_06_039
crossref_primary_10_1016_j_neurobiolaging_2010_07_010
crossref_primary_10_1016_j_jalz_2016_12_007
crossref_primary_10_1073_pnas_1311630111
crossref_primary_10_1016_j_neuroimage_2009_01_055
crossref_primary_10_3988_jcn_2023_0451
crossref_primary_10_1109_TMI_2008_918338
crossref_primary_10_1089_neu_2016_4502
crossref_primary_10_1002_hbm_22050
crossref_primary_10_1016_j_neuroimage_2013_09_038
crossref_primary_10_1016_j_neuropsychologia_2018_11_013
crossref_primary_10_1016_j_neuroimage_2006_10_006
crossref_primary_10_1002_hbm_22299
crossref_primary_10_1016_j_mri_2008_09_002
crossref_primary_10_1371_journal_pone_0055977
crossref_primary_10_1016_j_jaac_2014_06_015
crossref_primary_10_1002_ab_20396
crossref_primary_10_1016_j_neuroscience_2017_02_039
crossref_primary_10_1016_j_yebeh_2023_109521
crossref_primary_10_1016_j_neuron_2011_09_028
crossref_primary_10_1016_j_nicl_2012_10_002
crossref_primary_10_1007_s12021_018_9356_2
crossref_primary_10_1016_j_neuroimage_2021_117974
crossref_primary_10_3389_fnagi_2016_00185
crossref_primary_10_1016_j_neuroimage_2010_12_013
crossref_primary_10_3390_jcm10020345
crossref_primary_10_1016_j_neuropsychologia_2017_08_024
crossref_primary_10_1016_j_neuroscience_2013_04_051
crossref_primary_10_1097_CHI_0b013e3181825b0c
crossref_primary_10_1002_hbm_22120
crossref_primary_10_1002_hbm_20187
crossref_primary_10_3233_JAD_210119
crossref_primary_10_1176_appi_ajp_2013_12070950
crossref_primary_10_1016_j_biopsych_2013_09_012
crossref_primary_10_1111_epi_14736
crossref_primary_10_3233_JAD_170537
crossref_primary_10_1016_j_neuroimage_2014_12_063
crossref_primary_10_1016_j_tics_2004_12_008
crossref_primary_10_1097_CHI_0b013e31817eed7a
crossref_primary_10_1016_j_compbiomed_2014_02_003
crossref_primary_10_1016_j_dadm_2015_11_008
crossref_primary_10_1007_s00106_011_2267_2
crossref_primary_10_1016_j_dcn_2023_101269
crossref_primary_10_1016_j_intell_2008_09_006
crossref_primary_10_1073_pnas_1006025107
crossref_primary_10_1111_cns_12317
crossref_primary_10_1016_j_wneu_2021_06_039
crossref_primary_10_1371_journal_pone_0026113
crossref_primary_10_3233_JAD_170545
crossref_primary_10_1002_ddrr_86
crossref_primary_10_1016_j_ijdevneu_2010_10_003
crossref_primary_10_1016_j_nicl_2016_10_010
crossref_primary_10_1007_s11682_015_9403_7
crossref_primary_10_1016_j_media_2014_04_006
crossref_primary_10_1016_j_neuroimage_2011_05_032
crossref_primary_10_1111_jon_12521
crossref_primary_10_3389_fnins_2017_00695
crossref_primary_10_1016_j_ijrobp_2015_07_2293
crossref_primary_10_1093_brain_awu030
crossref_primary_10_1212_WNL_0000000000003247
crossref_primary_10_1093_cercor_bhaa401
crossref_primary_10_1002_hbm_21378
crossref_primary_10_1093_brain_awu036
crossref_primary_10_3174_ajnr_A5020
crossref_primary_10_1038_mp_2014_3
crossref_primary_10_1016_j_jpsychires_2010_10_016
crossref_primary_10_3389_fpsyg_2014_00496
crossref_primary_10_1038_s41398_019_0382_0
crossref_primary_10_1038_s41598_018_36580_0
crossref_primary_10_1016_j_nicl_2021_102685
crossref_primary_10_1016_j_neuroimage_2006_12_021
crossref_primary_10_1002_mds_25820
crossref_primary_10_1016_j_biopsych_2018_04_023
crossref_primary_10_1016_j_cortex_2016_07_003
crossref_primary_10_1016_j_neuroimage_2006_02_051
crossref_primary_10_1378_chest_15_0171
crossref_primary_10_1155_2020_8874119
crossref_primary_10_1002_hbm_24434
crossref_primary_10_1093_cercor_bhab502
crossref_primary_10_3389_fnhum_2018_00373
crossref_primary_10_1038_s41598_018_19390_2
crossref_primary_10_3174_ajnr_A6560
crossref_primary_10_1097_RLU_0000000000005384
crossref_primary_10_3389_fnagi_2021_650371
crossref_primary_10_1016_j_neuroimage_2009_01_004
crossref_primary_10_1002_hbm_25761
crossref_primary_10_1016_j_jneumeth_2011_12_011
crossref_primary_10_1007_s13311_021_01030_9
crossref_primary_10_1038_s41598_021_84281_y
crossref_primary_10_1016_j_neuroimage_2011_05_053
crossref_primary_10_1016_j_schres_2009_10_018
crossref_primary_10_1186_s13195_018_0432_5
crossref_primary_10_1016_j_neuroimage_2011_05_050
crossref_primary_10_1093_cercor_bhs125
crossref_primary_10_1016_j_jagp_2013_01_013
crossref_primary_10_1093_cercor_bht334
crossref_primary_10_1093_cercor_bhu305
crossref_primary_10_1093_schbul_sbx178
crossref_primary_10_1093_brain_awv387
crossref_primary_10_1002_hbm_22369
crossref_primary_10_1364_BOE_7_000629
crossref_primary_10_1016_j_bbi_2018_06_009
crossref_primary_10_1002_aur_1256
crossref_primary_10_1371_journal_pone_0129250
crossref_primary_10_1186_s13550_021_00774_x
crossref_primary_10_1002_hbm_23652
crossref_primary_10_1016_S1474_4422_07_70106_0
crossref_primary_10_1016_j_brainres_2012_01_034
crossref_primary_10_1177_0883073815579710
crossref_primary_10_1016_j_jpsychires_2016_11_008
crossref_primary_10_1016_j_scitotenv_2021_146129
crossref_primary_10_1155_2016_3217960
crossref_primary_10_1007_s00221_009_1999_7
crossref_primary_10_1111_pcn_12919
crossref_primary_10_1523_JNEUROSCI_4753_06_2007
crossref_primary_10_1016_j_neuroimage_2021_118312
crossref_primary_10_1093_cercor_bhab123
crossref_primary_10_12779_dnd_2015_14_4_149
crossref_primary_10_3389_fninf_2019_00016
crossref_primary_10_1038_srep34722
crossref_primary_10_1002_hbm_20494
crossref_primary_10_1016_j_bandc_2011_09_005
crossref_primary_10_1002_brb3_191
crossref_primary_10_1016_j_neuroimage_2006_01_042
crossref_primary_10_1007_s00429_012_0417_2
crossref_primary_10_1371_journal_pone_0117692
crossref_primary_10_1016_j_schres_2015_10_016
crossref_primary_10_1016_j_schres_2018_08_024
crossref_primary_10_2217_nmt_12_13
crossref_primary_10_1016_j_neuroimage_2005_11_042
crossref_primary_10_1093_brain_awp105
crossref_primary_10_1002_hbm_20369
crossref_primary_10_1002_hbm_24847
crossref_primary_10_1016_j_neuroimage_2010_06_042
crossref_primary_10_1002_hbm_24604
crossref_primary_10_1093_cercor_bhab015
crossref_primary_10_1097_RLU_0000000000005793
crossref_primary_10_1159_000368962
crossref_primary_10_1038_s41467_024_45627_y
crossref_primary_10_1111_j_1469_7610_2006_01658_x
crossref_primary_10_1093_cercor_bhx190
crossref_primary_10_1371_journal_pone_0175683
crossref_primary_10_1016_j_neuroimage_2010_07_052
crossref_primary_10_1016_j_neuroimage_2010_12_080
crossref_primary_10_1016_j_neuroimage_2009_02_015
crossref_primary_10_1038_npp_2016_84
crossref_primary_10_1093_cercor_bhp226
crossref_primary_10_1016_j_cortex_2016_10_019
crossref_primary_10_1002_hbm_26815
crossref_primary_10_1093_brain_awq103
crossref_primary_10_1093_cercor_bhab151
crossref_primary_10_1176_appi_ajp_2008_08050781
crossref_primary_10_1016_j_cmpb_2013_12_023
crossref_primary_10_1016_j_neuroimage_2008_01_027
crossref_primary_10_1002_hbm_21481
crossref_primary_10_1016_j_schres_2017_11_038
crossref_primary_10_1111_ejn_13408
crossref_primary_10_1017_S1366728923000445
crossref_primary_10_1016_j_neuropsychologia_2017_03_014
crossref_primary_10_1093_cercor_bhz007
crossref_primary_10_1371_journal_pone_0025446
crossref_primary_10_1016_j_neuroimage_2009_11_018
crossref_primary_10_1016_j_schres_2012_07_006
crossref_primary_10_1007_s11682_024_00911_9
crossref_primary_10_1002_mds_25615
crossref_primary_10_1371_journal_pone_0174219
crossref_primary_10_1038_srep43571
crossref_primary_10_1093_cercor_bhab035
crossref_primary_10_1109_TMI_2017_2671839
crossref_primary_10_1016_j_neuroimage_2005_08_061
crossref_primary_10_1016_j_cmpb_2014_06_004
crossref_primary_10_1093_cercor_bhz279
crossref_primary_10_3389_fnhum_2015_00089
crossref_primary_10_1177_1756286419838682
crossref_primary_10_1016_j_neuroimage_2010_11_015
crossref_primary_10_1016_j_parkreldis_2020_01_006
crossref_primary_10_3109_02688697_2010_522742
crossref_primary_10_3389_fninf_2021_665560
crossref_primary_10_1038_s41537_023_00347_y
crossref_primary_10_1038_s41398_019_0631_2
crossref_primary_10_1523_JNEUROSCI_5451_08_2009
crossref_primary_10_1212_WNL_0000000000000387
crossref_primary_10_1002_alz_13461
crossref_primary_10_1093_schbul_sbu070
crossref_primary_10_1111_j_1365_2788_2011_01490_x
crossref_primary_10_1093_cercor_bhx086
crossref_primary_10_1016_j_neuroimage_2023_120283
crossref_primary_10_1038_npjschz_2016_29
crossref_primary_10_1186_s12868_016_0247_x
crossref_primary_10_1016_j_cortex_2015_03_011
crossref_primary_10_1016_j_jns_2013_07_014
crossref_primary_10_1016_j_neurobiolaging_2021_01_021
crossref_primary_10_1038_s41598_021_83135_x
crossref_primary_10_1007_s00429_025_02890_z
crossref_primary_10_1007_s10548_013_0308_8
crossref_primary_10_1016_j_neuroimage_2004_12_052
crossref_primary_10_1016_j_neulet_2008_03_032
crossref_primary_10_1016_j_dib_2015_10_044
crossref_primary_10_1016_j_neuroimage_2019_116045
crossref_primary_10_1016_j_nicl_2015_04_008
crossref_primary_10_1002_hbm_20689
crossref_primary_10_3233_JAD_191175
crossref_primary_10_1016_j_neuroimage_2010_12_043
crossref_primary_10_1016_j_neuropsychologia_2015_08_007
crossref_primary_10_1038_mp_2010_72
crossref_primary_10_1016_j_hcl_2008_04_005
crossref_primary_10_1016_j_bandl_2013_05_014
crossref_primary_10_1016_j_neuroimage_2008_02_019
crossref_primary_10_1016_j_pscychresns_2016_11_004
crossref_primary_10_1093_brain_awaa234
crossref_primary_10_1002_hbm_22410
crossref_primary_10_1002_hbm_22776
crossref_primary_10_1093_braincomms_fcad279
crossref_primary_10_1002_hbm_20235
crossref_primary_10_1007_s00415_015_7946_6
crossref_primary_10_1016_j_schres_2017_06_048
crossref_primary_10_1002_mds_25541
crossref_primary_10_1002_hbm_20238
crossref_primary_10_1016_j_chb_2025_108582
crossref_primary_10_3389_fnins_2020_00622
crossref_primary_10_1038_s41598_020_62832_z
crossref_primary_10_1093_cercor_bhz040
crossref_primary_10_1016_j_neuroimage_2014_03_033
crossref_primary_10_1016_j_neurobiolaging_2007_12_019
crossref_primary_10_1007_s00330_017_4836_6
crossref_primary_10_1093_cercor_bhy197
crossref_primary_10_1186_s12880_024_01256_x
crossref_primary_10_1093_cercor_bhn196
crossref_primary_10_1371_journal_pone_0127118
crossref_primary_10_1093_cercor_bhr311
crossref_primary_10_1016_j_neuroimage_2012_09_050
crossref_primary_10_1016_j_pscychresns_2013_09_003
crossref_primary_10_1111_ene_12816
crossref_primary_10_1523_JNEUROSCI_1946_14_2015
crossref_primary_10_1093_cercor_bhad142
crossref_primary_10_1016_j_nicl_2016_05_017
crossref_primary_10_14336_AD_2018_0125
crossref_primary_10_1111_ane_12262
crossref_primary_10_3174_ajnr_A2578
crossref_primary_10_1016_j_biopsych_2013_06_008
crossref_primary_10_1016_j_neurobiolaging_2017_09_009
crossref_primary_10_1111_jne_12698
crossref_primary_10_1016_j_neuint_2011_06_003
crossref_primary_10_1002_alz_14236
crossref_primary_10_1016_j_neuroimage_2013_07_070
crossref_primary_10_1016_j_neuroimage_2015_10_010
crossref_primary_10_1093_cercor_bhm211
crossref_primary_10_12779_dnd_2019_18_3_77
crossref_primary_10_1016_j_ijdevneu_2013_05_010
crossref_primary_10_1016_j_nicl_2019_102140
crossref_primary_10_1016_j_biopsych_2016_12_005
crossref_primary_10_1073_pnas_0707741104
crossref_primary_10_1080_01621459_2019_1635479
crossref_primary_10_1016_j_neuroimage_2015_09_011
crossref_primary_10_3389_fnagi_2024_1356745
crossref_primary_10_1093_cercor_bhu174
crossref_primary_10_1016_j_media_2008_09_001
crossref_primary_10_1016_j_parkreldis_2014_06_011
crossref_primary_10_3233_JAD_220745
crossref_primary_10_1093_psyrad_kkac017
crossref_primary_10_1212_WNL_0000000000002516
crossref_primary_10_1093_cercor_bhx317
crossref_primary_10_3390_brainsci13030487
crossref_primary_10_1002_hbm_20402
crossref_primary_10_1007_s10548_022_00910_3
crossref_primary_10_1002_hbm_20887
crossref_primary_10_1016_j_neuroimage_2008_03_022
crossref_primary_10_1093_cercor_bhad286
crossref_primary_10_1098_rstb_2008_0330
crossref_primary_10_1155_2012_870196
crossref_primary_10_1038_s41598_021_85058_z
crossref_primary_10_1093_cercor_bhw024
crossref_primary_10_1016_j_brainres_2014_09_005
crossref_primary_10_1016_j_cortex_2019_09_015
crossref_primary_10_1016_j_schres_2017_01_054
crossref_primary_10_1111_ene_14195
crossref_primary_10_3389_fnagi_2017_00038
crossref_primary_10_1093_cercor_bhx229
crossref_primary_10_1016_j_schres_2009_07_026
crossref_primary_10_1093_cercor_bhl149
crossref_primary_10_1016_j_neurobiolaging_2014_05_040
crossref_primary_10_1002_hbm_22732
crossref_primary_10_3389_fnagi_2014_00118
crossref_primary_10_1093_brain_awp089
crossref_primary_10_1038_mp_2013_17
crossref_primary_10_1093_cercor_bhu079
crossref_primary_10_1111_j_1552_6569_2008_00293_x
crossref_primary_10_1093_schbul_sbt177
crossref_primary_10_1016_j_jaac_2011_03_016
crossref_primary_10_3389_fnagi_2019_00147
crossref_primary_10_1109_JBHI_2015_2460012
crossref_primary_10_1212_WNL_0000000000001884
crossref_primary_10_1017_S0954579408000552
crossref_primary_10_1016_j_neuroimage_2007_02_042
crossref_primary_10_3174_ajnr_A1484
crossref_primary_10_1002_hbm_22843
crossref_primary_10_1002_brb3_940
crossref_primary_10_1016_j_pediatrneurol_2015_06_013
crossref_primary_10_1016_j_jalz_2007_04_168
crossref_primary_10_1016_j_neuroimage_2016_11_025
crossref_primary_10_1523_JNEUROSCI_5309_07_2008
crossref_primary_10_1016_j_neuroimage_2008_12_046
crossref_primary_10_1002_ajmg_a_61532
crossref_primary_10_3389_fnins_2021_650082
crossref_primary_10_1212_01_wnl_0000345969_57574_f5
crossref_primary_10_1111_j_1601_183X_2012_00844_x
crossref_primary_10_1016_j_pnpbp_2020_109879
crossref_primary_10_1186_s12938_020_0757_8
crossref_primary_10_1523_JNEUROSCI_2248_18_2019
crossref_primary_10_1016_j_neurobiolaging_2022_12_006
crossref_primary_10_1523_JNEUROSCI_0165_05_2005
crossref_primary_10_1186_2040_2392_2_4
crossref_primary_10_1016_j_jalz_2006_05_2325
crossref_primary_10_1016_j_nicl_2014_08_017
crossref_primary_10_3233_JAD_201092
crossref_primary_10_1016_j_nicl_2021_102910
crossref_primary_10_1155_2015_817595
crossref_primary_10_1016_j_media_2015_02_003
crossref_primary_10_1016_j_neuroimage_2014_09_035
crossref_primary_10_1016_j_nicl_2014_09_005
crossref_primary_10_1111_acer_15119
crossref_primary_10_1016_j_neuroimage_2007_10_043
crossref_primary_10_1016_j_neuroimage_2011_08_017
crossref_primary_10_1016_j_neuroimage_2015_02_046
crossref_primary_10_1093_cercor_bhm244
crossref_primary_10_1371_journal_pone_0124222
crossref_primary_10_1016_j_bpsc_2020_06_020
crossref_primary_10_1016_j_neuroimage_2010_11_082
crossref_primary_10_1007_s00330_014_3239_1
crossref_primary_10_1016_j_pscychresns_2024_111804
crossref_primary_10_1016_j_rasd_2014_12_013
crossref_primary_10_1093_cercor_bhaa097
crossref_primary_10_1371_journal_pone_0216152
crossref_primary_10_1016_j_neuroimage_2007_08_042
crossref_primary_10_1016_j_neuroimage_2008_04_261
crossref_primary_10_3233_JAD_220975
crossref_primary_10_1016_j_nicl_2014_09_013
crossref_primary_10_1016_j_neuroimage_2015_02_036
crossref_primary_10_1371_journal_pone_0101372
crossref_primary_10_3389_fnhum_2019_00343
crossref_primary_10_3174_ajnr_A2882
crossref_primary_10_1093_cercor_bhac156
crossref_primary_10_1038_s42003_024_06956_2
crossref_primary_10_1093_brain_awab284
crossref_primary_10_1016_j_seizure_2015_06_009
crossref_primary_10_1016_j_neulet_2016_09_042
crossref_primary_10_1016_j_jalz_2006_05_1210
crossref_primary_10_1016_j_cmpb_2021_106286
crossref_primary_10_1038_s41593_024_01672_w
crossref_primary_10_1016_j_parkreldis_2013_06_012
crossref_primary_10_1016_j_nicl_2015_12_010
crossref_primary_10_1002_hbm_22925
crossref_primary_10_1016_j_neurobiolaging_2009_02_004
crossref_primary_10_1186_s13039_016_0221_4
crossref_primary_10_1016_j_parkreldis_2014_08_021
crossref_primary_10_1007_s10548_009_0105_6
crossref_primary_10_1007_s11682_018_0007_x
crossref_primary_10_1371_journal_pcbi_1006376
crossref_primary_10_1016_j_neuroscience_2012_06_030
crossref_primary_10_1002_hbm_20740
crossref_primary_10_1016_j_media_2008_10_006
crossref_primary_10_1002_hbm_25159
crossref_primary_10_1016_j_neuroimage_2023_119885
crossref_primary_10_1371_journal_pone_0086624
crossref_primary_10_1016_j_pscychresns_2013_06_008
crossref_primary_10_1007_s12021_011_9127_9
crossref_primary_10_1093_cercor_bhr194
crossref_primary_10_1093_schbul_sbt100
crossref_primary_10_1111_desc_12096
crossref_primary_10_1016_j_concog_2015_04_020
crossref_primary_10_1016_j_neuroimage_2020_117622
crossref_primary_10_1038_s42003_024_05787_5
crossref_primary_10_1002_hbm_20814
crossref_primary_10_1016_j_neuroimage_2012_03_069
crossref_primary_10_1038_jcbfm_2014_246
crossref_primary_10_1016_j_dcn_2024_101504
crossref_primary_10_1093_brain_awu246
crossref_primary_10_1038_s41593_020_0665_z
crossref_primary_10_7554_eLife_33977
crossref_primary_10_1111_j_1460_9568_2007_05356_x
crossref_primary_10_3389_fnins_2024_1428900
crossref_primary_10_1016_j_neuroimage_2008_12_016
crossref_primary_10_1371_journal_pone_0134468
crossref_primary_10_1016_j_dadm_2016_10_007
crossref_primary_10_1093_cercor_bhv301
crossref_primary_10_1093_schbul_sbr049
crossref_primary_10_1212_WNL_0b013e318205d521
crossref_primary_10_1016_j_neuroimage_2013_05_066
crossref_primary_10_1016_j_biopsych_2013_04_007
crossref_primary_10_1016_j_neuroimage_2020_116765
crossref_primary_10_1017_S0033291719002071
crossref_primary_10_1109_TMI_2006_884187
crossref_primary_10_1093_schbul_sbad160
crossref_primary_10_3390_jcm9051424
crossref_primary_10_1016_j_neuropsychologia_2011_10_010
crossref_primary_10_1007_s00429_014_0953_z
crossref_primary_10_1016_j_nicl_2023_103371
crossref_primary_10_1093_schizbullopen_sgaa039
crossref_primary_10_1016_j_neuroimage_2013_04_003
crossref_primary_10_1212_WNL_0000000000207806
crossref_primary_10_1038_s44220_023_00194_x
crossref_primary_10_1016_j_mri_2012_02_029
crossref_primary_10_1016_j_neurobiolaging_2014_03_042
crossref_primary_10_1017_S0033291712001328
crossref_primary_10_1002_gps_2491
crossref_primary_10_1016_j_neurad_2021_11_007
crossref_primary_10_1093_cercor_bhs187
crossref_primary_10_1523_JNEUROSCI_0141_08_2008
crossref_primary_10_3389_fnins_2019_01134
crossref_primary_10_1016_j_pscychresns_2017_10_010
crossref_primary_10_1038_npp_2011_72
crossref_primary_10_1177_0165025417727872
crossref_primary_10_3389_fnins_2020_598868
crossref_primary_10_1371_journal_pone_0073208
crossref_primary_10_1016_j_cortex_2012_02_011
crossref_primary_10_1002_alz_14298
crossref_primary_10_1038_srep26682
crossref_primary_10_1016_j_neuroimage_2016_03_032
crossref_primary_10_1371_journal_pone_0179590
crossref_primary_10_1016_j_cortex_2009_06_008
crossref_primary_10_1016_j_neuroimage_2022_119254
crossref_primary_10_1002_hbm_26259
crossref_primary_10_1016_j_bandc_2009_08_009
crossref_primary_10_3389_fnhum_2015_00472
crossref_primary_10_1038_s41598_021_04462_7
crossref_primary_10_3389_fpsyt_2017_00291
crossref_primary_10_1016_j_brainres_2017_11_012
crossref_primary_10_1038_nn_4501
crossref_primary_10_1542_peds_2005_2969
crossref_primary_10_1016_j_neuroimage_2010_03_074
crossref_primary_10_1016_j_neuroimage_2014_07_064
crossref_primary_10_1186_s13195_018_0462_z
crossref_primary_10_1007_s10803_011_1261_6
crossref_primary_10_1016_j_cortex_2014_05_001
crossref_primary_10_1017_S1041610214001483
crossref_primary_10_1016_j_neuroimage_2010_01_007
crossref_primary_10_1093_cercor_bhv319
crossref_primary_10_1002_hbm_20829
crossref_primary_10_1371_journal_pone_0076702
crossref_primary_10_1002_hbm_70044
crossref_primary_10_1016_j_pscychresns_2011_09_009
crossref_primary_10_1016_j_medntd_2020_100035
crossref_primary_10_1038_tp_2015_1
crossref_primary_10_1126_sciadv_1700489
crossref_primary_10_1016_j_neuroimage_2011_04_069
crossref_primary_10_1007_s13311_022_01276_x
crossref_primary_10_1016_j_wneu_2023_10_095
crossref_primary_10_1016_j_neuroimage_2011_01_010
crossref_primary_10_1016_j_nicl_2021_102620
crossref_primary_10_1002_ima_22217
crossref_primary_10_1016_j_neuroimage_2008_07_016
crossref_primary_10_1016_j_schres_2016_09_036
crossref_primary_10_1093_cercor_bhv107
crossref_primary_10_1016_j_neuroimage_2011_01_016
crossref_primary_10_1212_WNL_0000000000209802
crossref_primary_10_1038_srep24284
crossref_primary_10_1002_hbm_23163
crossref_primary_10_1002_hbm_24011
crossref_primary_10_1016_j_jalz_2019_03_012
crossref_primary_10_1016_j_ejpn_2013_05_005
crossref_primary_10_1186_1471_2342_9_20
crossref_primary_10_1007_s11682_008_9034_3
crossref_primary_10_1016_j_neuroimage_2007_12_036
crossref_primary_10_1016_j_nicl_2018_04_023
crossref_primary_10_1016_j_neurobiolaging_2010_11_008
crossref_primary_10_1016_j_neurobiolaging_2013_01_004
crossref_primary_10_1016_j_neulet_2008_06_013
crossref_primary_10_1016_j_neulet_2017_04_026
crossref_primary_10_1038_nature04513
crossref_primary_10_1016_j_neuroimage_2012_12_071
crossref_primary_10_1371_journal_pone_0148852
crossref_primary_10_1093_braincomms_fcab205
crossref_primary_10_1111_j_1552_6569_2006_00036_x
crossref_primary_10_1016_j_neuroimage_2010_01_028
crossref_primary_10_1016_j_neuroimage_2011_02_042
crossref_primary_10_1016_j_neurobiolaging_2006_09_013
crossref_primary_10_1371_journal_pone_0050590
crossref_primary_10_1007_s00234_013_1246_6
crossref_primary_10_1016_j_neurobiolaging_2019_03_003
crossref_primary_10_3389_fdata_2021_637724
crossref_primary_10_1093_cercor_bht072
crossref_primary_10_1002_hbm_24284
crossref_primary_10_1016_j_biopsycho_2012_09_007
crossref_primary_10_1111_j_1749_6632_2009_05063_x
crossref_primary_10_1016_j_neuroimage_2018_05_014
crossref_primary_10_1016_j_neuroimage_2013_12_040
crossref_primary_10_1093_cercor_bhu167
crossref_primary_10_1016_j_crphys_2021_09_005
crossref_primary_10_1016_j_brainres_2016_11_029
crossref_primary_10_1176_appi_ajp_2010_10030385
crossref_primary_10_1016_j_neurobiolaging_2009_11_013
crossref_primary_10_1093_cercor_bhl109
crossref_primary_10_1016_j_neuroimage_2021_118172
crossref_primary_10_1371_journal_pone_0054980
crossref_primary_10_1093_cercor_bht180
crossref_primary_10_1016_j_neuroimage_2016_01_007
crossref_primary_10_1038_s41467_018_06569_4
crossref_primary_10_1093_cercor_bht182
crossref_primary_10_3389_fneur_2014_00076
crossref_primary_10_1136_gpsych_2018_100005
crossref_primary_10_18632_aging_102362
crossref_primary_10_1016_j_schres_2019_05_044
crossref_primary_10_1007_s00429_005_0045_1
crossref_primary_10_1007_s00723_020_01192_3
crossref_primary_10_1016_j_neuroimage_2009_09_052
crossref_primary_10_3389_fneur_2018_00010
crossref_primary_10_4329_wjr_v6_i11_855
Cites_doi 10.1073/pnas.200033797
10.1006/nimg.2000.0582
10.1098/rstb.2001.0915
10.1002/(SICI)1097-0193(1999)8:2/3<98::AID-HBM5>3.0.CO;2-F
10.1109/TMI.2002.806283
10.1097/00004728-199803000-00032
10.1006/nimg.1999.0534
10.1038/jcbfm.1992.127
10.1109/42.811276
10.1002/1097-0193(200009)11:1<12::AID-HBM20>3.0.CO;2-K
10.1523/JNEUROSCI.21-01-00194.2001
10.1002/(SICI)1097-0193(1996)4:1<58::AID-HBM4>3.0.CO;2-O
10.1002/hbm.460030304
10.1212/WNL.58.5.695
10.1006/nimg.2000.0652
10.1097/00004728-199403000-00005
10.1006/nimg.2001.1037
10.1109/42.668698
10.1006/nimg.2000.0666
10.1006/nimg.2001.0848
10.1126/science.283.5409.1908
10.1109/TMI.2003.817775
10.1006/nimg.1995.1032
ContentType Journal Article
Copyright 2004
Copyright Elsevier Limited Jan 1, 2005
Copyright_xml – notice: 2004
– notice: Copyright Elsevier Limited Jan 1, 2005
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
DOI 10.1016/j.neuroimage.2004.07.045
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Biological Science Database (Proquest)
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList ProQuest One Psychology
MEDLINE - Academic
MEDLINE


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 173
ExternalDocumentID 3244309781
15588607
10_1016_j_neuroimage_2004_07_045
S1053811904004185
Genre Research Support, Non-U.S. Gov't
Journal Article
Comparative Study
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAFWJ
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACLOT
ACPRK
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADFGL
ADFRT
ADMUD
ADNMO
ADVLN
ADXHL
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPKN
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRLJ
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CAG
CCPQU
COF
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HDW
HEI
HMCUK
HMK
HMO
HMQ
HVGLF
HZ~
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OK1
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SNS
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
WUQ
XPP
YK3
Z5R
ZMT
ZU3
~G-
~HD
3V.
6I.
AACTN
AADPK
AAIAV
ABLVK
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
C45
LCYCR
NCXOZ
RIG
ZA5
AAYXX
CITATION
PUEGO
0SF
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
ID FETCH-LOGICAL-c523t-b2b423eadd1bfebd80cb8bf903f6db9b307b839a54a4553d5b32f67ea76b0623
IEDL.DBID BENPR
ISSN 1053-8119
IngestDate Sat Sep 27 16:43:51 EDT 2025
Tue Oct 07 06:43:58 EDT 2025
Wed Feb 19 01:39:17 EST 2025
Wed Oct 01 01:28:48 EDT 2025
Thu Apr 24 23:16:11 EDT 2025
Fri Feb 23 02:25:14 EST 2024
Tue Oct 14 19:29:13 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c523t-b2b423eadd1bfebd80cb8bf903f6db9b307b839a54a4553d5b32f67ea76b0623
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PMID 15588607
PQID 1506629407
PQPubID 2031077
PageCount 11
ParticipantIDs proquest_miscellaneous_67326658
proquest_journals_1506629407
pubmed_primary_15588607
crossref_citationtrail_10_1016_j_neuroimage_2004_07_045
crossref_primary_10_1016_j_neuroimage_2004_07_045
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2004_07_045
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2004_07_045
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2005
2005-1-00
2005-Jan-01
20050101
PublicationDateYYYYMMDD 2005-01-01
PublicationDate_xml – year: 2005
  text: 2005
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2005
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Jones, Buchbinder (bib10) 2000; 11
Sled, Zijdenbos (bib22) 1998; 17
Rosas, Liu (bib21) 2002; 58
Tosun, Rettman (bib23) 2001
Kabani, Le Goualher (bib11) 2001; 13
Pratt (bib19) 1991
Zeng, Staib (bib30) 1999; 18
Collins, Holmes (bib5) 1995; 3
MacDonald (bib13) 1997
Baron, Chetelat (bib2) 2001; 14
Brodmann (bib3) 1909
Meyer, Roychowdhury (bib16) 1996; 17
Collins, Neelin (bib6) 1994; 18
Mazziotta, Toga (bib15) 2001; 356
Worsley, Evans (bib25) 1992; 12
Holmes, Hoge (bib9) 1998; 22
Ashburner, Friston (bib1) 2000; 11
Worsley, Marrett (bib26) 1996; 4
Paus, Zijdenbos (bib18) 1999; 283
Wright, McGuire (bib28) 1995; 2
MacDonald, Kabani (bib14) 2000; 12
Von Economo, Koskinas (bib24) 1925
Genovese, Lazar (bib8) 2002; 15
Miller, Massie (bib17) 2000; 12
Kollokian (bib12) 1996
Chung, Worsley (bib4) 2002
Pruessner, Collins (bib20) 2001; 21
Fischl, Dale (bib7) 2000; 97
Yezzi, Prince (bib29) 2003; 22
Zijdenbos, Forghani (bib31) 2002; 21
Worsley, Andermann (bib27) 1999; 8
Collins (10.1016/j.neuroimage.2004.07.045_bib5) 1995; 3
Pratt (10.1016/j.neuroimage.2004.07.045_bib19) 1991
Miller (10.1016/j.neuroimage.2004.07.045_bib17) 2000; 12
Kabani (10.1016/j.neuroimage.2004.07.045_bib11) 2001; 13
Rosas (10.1016/j.neuroimage.2004.07.045_bib21) 2002; 58
Ashburner (10.1016/j.neuroimage.2004.07.045_bib1) 2000; 11
Chung (10.1016/j.neuroimage.2004.07.045_bib4) 2002
Zeng (10.1016/j.neuroimage.2004.07.045_bib30) 1999; 18
Paus (10.1016/j.neuroimage.2004.07.045_bib18) 1999; 283
Pruessner (10.1016/j.neuroimage.2004.07.045_bib20) 2001; 21
Genovese (10.1016/j.neuroimage.2004.07.045_bib8) 2002; 15
Yezzi (10.1016/j.neuroimage.2004.07.045_bib29) 2003; 22
Mazziotta (10.1016/j.neuroimage.2004.07.045_bib15) 2001; 356
Holmes (10.1016/j.neuroimage.2004.07.045_bib9) 1998; 22
Jones (10.1016/j.neuroimage.2004.07.045_bib10) 2000; 11
Fischl (10.1016/j.neuroimage.2004.07.045_bib7) 2000; 97
Kollokian (10.1016/j.neuroimage.2004.07.045_bib12) 1996
Meyer (10.1016/j.neuroimage.2004.07.045_bib16) 1996; 17
Baron (10.1016/j.neuroimage.2004.07.045_bib2) 2001; 14
Tosun (10.1016/j.neuroimage.2004.07.045_bib23) 2001
Worsley (10.1016/j.neuroimage.2004.07.045_bib27) 1999; 8
Brodmann (10.1016/j.neuroimage.2004.07.045_bib3) 1909
Worsley (10.1016/j.neuroimage.2004.07.045_bib25) 1992; 12
MacDonald (10.1016/j.neuroimage.2004.07.045_bib14) 2000; 12
Collins (10.1016/j.neuroimage.2004.07.045_bib6) 1994; 18
Sled (10.1016/j.neuroimage.2004.07.045_bib22) 1998; 17
Wright (10.1016/j.neuroimage.2004.07.045_bib28) 1995; 2
MacDonald (10.1016/j.neuroimage.2004.07.045_bib13) 1997
Zijdenbos (10.1016/j.neuroimage.2004.07.045_bib31) 2002; 21
Worsley (10.1016/j.neuroimage.2004.07.045_bib26) 1996; 4
Von Economo (10.1016/j.neuroimage.2004.07.045_bib24) 1925
References_xml – volume: 13
  start-page: 375
  year: 2001
  end-page: 380
  ident: bib11
  article-title: Measurement of cortical thickness using an automated 3-D algorithm: a validation study
  publication-title: NeuroImage
– year: 1909
  ident: bib3
  article-title: Vergleichende Lokalisationslehre der Großhirnrinde
– volume: 12
  start-page: 676
  year: 2000
  end-page: 687
  ident: bib17
  article-title: Bayesian construction of geometrically based cortical thickness metrics
  publication-title: NeuroImage
– volume: 22
  start-page: 1332
  year: 2003
  end-page: 1339
  ident: bib29
  article-title: An Eulerian PDE approach for computing tissue thickness
  publication-title: IEEE Trans. Med. Imag.
– volume: 11
  start-page: 12
  year: 2000
  end-page: 32
  ident: bib10
  article-title: Three-dimensional mapping of cortical thickness using Laplace's equation
  publication-title: Hum. Brain Mapp.
– volume: 2
  start-page: 244
  year: 1995
  end-page: 252
  ident: bib28
  article-title: A voxel-based method for the statistical analysis of gray and white matter density applied to schizophrenia
  publication-title: NeuroImage
– year: 2001
  ident: bib23
  article-title: Calculation of human cerebral cortical thickness on opposing sulcal banks
– volume: 356
  start-page: 1293
  year: 2001
  end-page: 1322
  ident: bib15
  article-title: A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM)
  publication-title: Philos. Trans. R. Soc. London, B Biol. Sci.
– volume: 17
  start-page: 1699
  year: 1996
  end-page: 1706
  ident: bib16
  article-title: Location of the central sulcus via cortical thickness of the precentral and postcentral gyri on MR
  publication-title: Am. J. Neuroradiol.
– volume: 18
  start-page: 192
  year: 1994
  end-page: 205
  ident: bib6
  article-title: Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space
  publication-title: J. Comput. Assist. Tomogr.
– year: 1991
  ident: bib19
  article-title: Digital Image Processing
– volume: 21
  start-page: 1280
  year: 2002
  end-page: 1291
  ident: bib31
  article-title: Automatic “pipeline” analysis of 3-D MRI data for clinical trials: application to multiple sclerosis
  publication-title: IEEE Trans. Med. Imag.
– volume: 283
  start-page: 1908
  year: 1999
  end-page: 1911
  ident: bib18
  article-title: Structural maturation of neural pathways in children and adolescents: in vivo study
  publication-title: Science
– volume: 58
  start-page: 695
  year: 2002
  end-page: 701
  ident: bib21
  article-title: Regional and progressive thinning of the cortical ribbon in Huntington's disease
  publication-title: Neurology
– year: 1925
  ident: bib24
  article-title: Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen
– start-page: 24
  year: 1996
  end-page: 106
  ident: bib12
  article-title: Performance analysis of automatic techniques for tissue classification in magnetic resonance images of the human brain
  publication-title: Computer Science
– volume: 12
  start-page: 340
  year: 2000
  end-page: 356
  ident: bib14
  article-title: Automated 3-D extraction of inner and outer surfaces of cerebral cortex from MRI
  publication-title: NeuroImage
– volume: 22
  start-page: 324
  year: 1998
  end-page: 333
  ident: bib9
  article-title: Enhancement of MR images using registration for signal averaging
  publication-title: J. Comput. Assist. Tomogr.
– volume: 17
  start-page: 87
  year: 1998
  end-page: 97
  ident: bib22
  article-title: A nonparametric method for automatic correction of intensity nonuniformity in MRI data
  publication-title: IEEE Trans. Med. Imag.
– volume: 21
  start-page: 194
  year: 2001
  end-page: 200
  ident: bib20
  article-title: Age and gender predict volume decline in the anterior and posterior hippocampus in early adulthood
  publication-title: J. Neurosci.
– year: 2002
  ident: bib4
  article-title: Tensor-Based Surface Morphometry
– volume: 4
  start-page: 58
  year: 1996
  end-page: 73
  ident: bib26
  article-title: A unified statistical approach for determining significant signal in images of cerebral activation
  publication-title: Hum. Brain Mapp.
– volume: 97
  start-page: 11050
  year: 2000
  end-page: 11055
  ident: bib7
  article-title: Measuring the thickness of the human cerebral cortex from magnetic resonance images
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 11
  start-page: 805
  year: 2000
  end-page: 821
  ident: bib1
  article-title: Voxel-based morphometry—The methods
  publication-title: NeuroImage
– volume: 14
  start-page: 298
  year: 2001
  end-page: 309
  ident: bib2
  article-title: In vivo mapping of gray matter loss with voxel-based morphometry in mild Alzheimer's disease
  publication-title: NeuroImage
– volume: 8
  start-page: 98
  year: 1999
  end-page: 101
  ident: bib27
  article-title: Detecting changes in nonisotropic images
  publication-title: Hum. Brain Mapp.
– volume: 3
  start-page: 190
  year: 1995
  end-page: 208
  ident: bib5
  article-title: Automatic 3D model-based neuroanatomical segmentation
  publication-title: Hum. Brain Mapp.
– volume: 15
  start-page: 870
  year: 2002
  end-page: 878
  ident: bib8
  article-title: Thresholding of statistical maps in functional neuroimaging using the false discovery rate
  publication-title: NeuroImage
– volume: 18
  start-page: 927
  year: 1999
  end-page: 937
  ident: bib30
  article-title: Segmentation and measurement of the cortex from 3-D MR images using coupled-surfaces propagation
  publication-title: IEEE Trans. Med. Imag.
– volume: 12
  start-page: 900
  year: 1992
  end-page: 918
  ident: bib25
  article-title: A three-dimensional statistical analysis for CBF activation studies in human brain
  publication-title: J. Cereb. Blood Flow Metab.
– start-page: 59
  year: 1997
  end-page: 143
  ident: bib13
  article-title: A method for identifying geometrically simple surfaces from three dimensional images
  publication-title: School of Computer Science
– volume: 97
  start-page: 11050
  issue: 20
  year: 2000
  ident: 10.1016/j.neuroimage.2004.07.045_bib7
  article-title: Measuring the thickness of the human cerebral cortex from magnetic resonance images
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.200033797
– year: 2002
  ident: 10.1016/j.neuroimage.2004.07.045_bib4
– year: 1925
  ident: 10.1016/j.neuroimage.2004.07.045_bib24
– volume: 11
  start-page: 805
  issue: 6 Pt 1
  year: 2000
  ident: 10.1016/j.neuroimage.2004.07.045_bib1
  article-title: Voxel-based morphometry—The methods
  publication-title: NeuroImage
  doi: 10.1006/nimg.2000.0582
– year: 1991
  ident: 10.1016/j.neuroimage.2004.07.045_bib19
– volume: 356
  start-page: 1293
  issue: 1412
  year: 2001
  ident: 10.1016/j.neuroimage.2004.07.045_bib15
  article-title: A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM)
  publication-title: Philos. Trans. R. Soc. London, B Biol. Sci.
  doi: 10.1098/rstb.2001.0915
– volume: 8
  start-page: 98
  issue: 2–3
  year: 1999
  ident: 10.1016/j.neuroimage.2004.07.045_bib27
  article-title: Detecting changes in nonisotropic images
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/(SICI)1097-0193(1999)8:2/3<98::AID-HBM5>3.0.CO;2-F
– volume: 21
  start-page: 1280
  issue: 10
  year: 2002
  ident: 10.1016/j.neuroimage.2004.07.045_bib31
  article-title: Automatic “pipeline” analysis of 3-D MRI data for clinical trials: application to multiple sclerosis
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/TMI.2002.806283
– volume: 22
  start-page: 324
  issue: 2
  year: 1998
  ident: 10.1016/j.neuroimage.2004.07.045_bib9
  article-title: Enhancement of MR images using registration for signal averaging
  publication-title: J. Comput. Assist. Tomogr.
  doi: 10.1097/00004728-199803000-00032
– volume: 12
  start-page: 340
  issue: 3
  year: 2000
  ident: 10.1016/j.neuroimage.2004.07.045_bib14
  article-title: Automated 3-D extraction of inner and outer surfaces of cerebral cortex from MRI
  publication-title: NeuroImage
  doi: 10.1006/nimg.1999.0534
– volume: 12
  start-page: 900
  issue: 6
  year: 1992
  ident: 10.1016/j.neuroimage.2004.07.045_bib25
  article-title: A three-dimensional statistical analysis for CBF activation studies in human brain
  publication-title: J. Cereb. Blood Flow Metab.
  doi: 10.1038/jcbfm.1992.127
– volume: 18
  start-page: 927
  issue: 10
  year: 1999
  ident: 10.1016/j.neuroimage.2004.07.045_bib30
  article-title: Segmentation and measurement of the cortex from 3-D MR images using coupled-surfaces propagation
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/42.811276
– volume: 11
  start-page: 12
  issue: 1
  year: 2000
  ident: 10.1016/j.neuroimage.2004.07.045_bib10
  article-title: Three-dimensional mapping of cortical thickness using Laplace's equation
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/1097-0193(200009)11:1<12::AID-HBM20>3.0.CO;2-K
– volume: 21
  start-page: 194
  issue: 1
  year: 2001
  ident: 10.1016/j.neuroimage.2004.07.045_bib20
  article-title: Age and gender predict volume decline in the anterior and posterior hippocampus in early adulthood
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.21-01-00194.2001
– volume: 4
  start-page: 58
  year: 1996
  ident: 10.1016/j.neuroimage.2004.07.045_bib26
  article-title: A unified statistical approach for determining significant signal in images of cerebral activation
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/(SICI)1097-0193(1996)4:1<58::AID-HBM4>3.0.CO;2-O
– volume: 3
  start-page: 190
  issue: 3
  year: 1995
  ident: 10.1016/j.neuroimage.2004.07.045_bib5
  article-title: Automatic 3D model-based neuroanatomical segmentation
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.460030304
– volume: 58
  start-page: 695
  issue: 5
  year: 2002
  ident: 10.1016/j.neuroimage.2004.07.045_bib21
  article-title: Regional and progressive thinning of the cortical ribbon in Huntington's disease
  publication-title: Neurology
  doi: 10.1212/WNL.58.5.695
– volume: 13
  start-page: 375
  issue: 2
  year: 2001
  ident: 10.1016/j.neuroimage.2004.07.045_bib11
  article-title: Measurement of cortical thickness using an automated 3-D algorithm: a validation study
  publication-title: NeuroImage
  doi: 10.1006/nimg.2000.0652
– year: 2001
  ident: 10.1016/j.neuroimage.2004.07.045_bib23
  article-title: Calculation of human cerebral cortical thickness on opposing sulcal banks
– volume: 18
  start-page: 192
  issue: 2
  year: 1994
  ident: 10.1016/j.neuroimage.2004.07.045_bib6
  article-title: Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space
  publication-title: J. Comput. Assist. Tomogr.
  doi: 10.1097/00004728-199403000-00005
– year: 1909
  ident: 10.1016/j.neuroimage.2004.07.045_bib3
– volume: 15
  start-page: 870
  issue: 4
  year: 2002
  ident: 10.1016/j.neuroimage.2004.07.045_bib8
  article-title: Thresholding of statistical maps in functional neuroimaging using the false discovery rate
  publication-title: NeuroImage
  doi: 10.1006/nimg.2001.1037
– volume: 17
  start-page: 87
  issue: 1
  year: 1998
  ident: 10.1016/j.neuroimage.2004.07.045_bib22
  article-title: A nonparametric method for automatic correction of intensity nonuniformity in MRI data
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/42.668698
– volume: 12
  start-page: 676
  issue: 6
  year: 2000
  ident: 10.1016/j.neuroimage.2004.07.045_bib17
  article-title: Bayesian construction of geometrically based cortical thickness metrics
  publication-title: NeuroImage
  doi: 10.1006/nimg.2000.0666
– volume: 17
  start-page: 1699
  issue: 9
  year: 1996
  ident: 10.1016/j.neuroimage.2004.07.045_bib16
  article-title: Location of the central sulcus via cortical thickness of the precentral and postcentral gyri on MR
  publication-title: Am. J. Neuroradiol.
– start-page: 24
  year: 1996
  ident: 10.1016/j.neuroimage.2004.07.045_bib12
  article-title: Performance analysis of automatic techniques for tissue classification in magnetic resonance images of the human brain
– volume: 14
  start-page: 298
  issue: 2
  year: 2001
  ident: 10.1016/j.neuroimage.2004.07.045_bib2
  article-title: In vivo mapping of gray matter loss with voxel-based morphometry in mild Alzheimer's disease
  publication-title: NeuroImage
  doi: 10.1006/nimg.2001.0848
– volume: 283
  start-page: 1908
  issue: 5409
  year: 1999
  ident: 10.1016/j.neuroimage.2004.07.045_bib18
  article-title: Structural maturation of neural pathways in children and adolescents: in vivo study
  publication-title: Science
  doi: 10.1126/science.283.5409.1908
– volume: 22
  start-page: 1332
  issue: 10
  year: 2003
  ident: 10.1016/j.neuroimage.2004.07.045_bib29
  article-title: An Eulerian PDE approach for computing tissue thickness
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/TMI.2003.817775
– volume: 2
  start-page: 244
  issue: 4
  year: 1995
  ident: 10.1016/j.neuroimage.2004.07.045_bib28
  article-title: A voxel-based method for the statistical analysis of gray and white matter density applied to schizophrenia
  publication-title: NeuroImage
  doi: 10.1006/nimg.1995.1032
– start-page: 59
  year: 1997
  ident: 10.1016/j.neuroimage.2004.07.045_bib13
  article-title: A method for identifying geometrically simple surfaces from three dimensional images
SSID ssj0009148
Score 2.3970723
Snippet We have previously developed a procedure for measuring the thickness of cerebral cortex over the whole brain using 3-D MRI data and a fully automated...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 163
SubjectTerms Accuracy
Algorithms
Artificial Intelligence
Automation
Cephalometry - statistics & numerical data
Cerebral Cortex - anatomy & histology
Computer Graphics
Computer Simulation
Fingers & toes
Humans
Imaging, Three-Dimensional
Mathematical Computing
Neurosciences
Normal Distribution
Probability Theory
Reference Values
Reproducibility of Results
Signal Processing, Computer-Assisted
Simulation
Sports injuries
Studies
Surface Properties
SummonAdditionalLinks – databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  dbid: AIKHN
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED_SFEZfRruuXfqx6aGvJnIsyTJ9KqEl20hf1rG-CV0kQ9rGCU0K_fN7suWEwgaBvRnJB_L5viTd_Q7gwpbO21LLxJP7SkSuRFKgKxOOmKXSKdL1cN4xvlWj3-LHvbzvwLCthQlpldH2Nza9ttZxpB-52V9Mp_1fFBmQuyGHFsSQ3M4O7JL_0boLu1fff45uN9i7qWgq4mSWBIKY0NOkedWwkdMZKW-9WayRPENt09-91L-i0Nob3ezDxxhGsqtmpQfQ8dUn-DCOF-WH8Gc4f65PqVnIZ38M9ozZiD_C_Kud0VuOxSY9bBFapW3mbeWYpcG2tRdbTmfx8TPc3VzfDUdJ7KGQTGiLuUpwgBQwkbi4FEuPTvMJaiwLnpXKYYGk4kgxkpXCCikzJzEblCr3NlfIKTQ6gm41r_wXYAXXfuAwczm3QokUc8vTiXROFJkoddGDvGWZmUR88dDm4sm0iWQPZsPs0P5SGJ4bYnYP0jXlosHY2IKmaP-KaWtIyeoZcgRb0F6uad_J2pbUZ60QmKjvSxNwGtWgoN1xD76tp0lTw_WLrfz8ZRky6CgakroHx43obD5WSq0Vz0_-a2GnsFfjytbnQ2fQXT2_-HOKmFb4NWrEG43BGD4
  priority: 102
  providerName: Elsevier
Title Cortical thickness analysis examined through power analysis and a population simulation
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811904004185
https://dx.doi.org/10.1016/j.neuroimage.2004.07.045
https://www.ncbi.nlm.nih.gov/pubmed/15588607
https://www.proquest.com/docview/1506629407
https://www.proquest.com/docview/67326658
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20191231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: ACRLP
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20191231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: AIKHN
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: AKRWK
  dateStart: 19920801
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20250902
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: 7X7
  dateStart: 20020801
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1095-9572
  dateEnd: 20250902
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: BENPR
  dateStart: 19980501
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFD7aWgnxghjXwlbywKshF19iIYRGtalcVk3TEH2L7NiRxta0rJ3EE7-dY8duXgD1JYninEhxzrE_28ffB_BaNcaqpmTEYvdFqOCUSG0akmpdZMxwjHU333E249Nv9POczfdgFvfCuLTK2Cb6htosazdH_tYx4fFc4vjjw-oncapRbnU1SmioIK1g3nuKsX0Y5o4ZawDDjyez84uehjej3eY4VpAyy2TI7ekyvjyD5NUC49iPGz2pp9vm9PcO61-A1HdMpw_hQUCUyXHnAgewZ9tHcO8srJk_hu-T5a2fsE5cavu1a9oSFahIEvtLLfApkwS9nmTlVNP6ctWaROHNqPKVrK8W4fIJXJ6eXE6mJMgpkBpHmxuic43YCT3HZLqx2pRprUvdyLRouNFSY7RrhEuKUUUZKwzTRd5wYZXgOkWU9BQG7bK1zyGRaWlzowsjUkU5zbRQaVYzY6gsaFPKEYhYZVUdqMad4sVNFXPKflR9ZTslTFqlosLKHkG2tVx1dBs72Mj4V6q4nRQbwAr7hB1s321tA-TooMSO1ofRCaoQ-uuqd9QRvNoWY9C6lRjV2uXd2iXTITBi5Qieda7TfyxjZclT8eL_r34J9z2HrJ8LOoTB5vbOHiE62ugx7L_5neFRzMUYhseTi6_n7vzpy3Q2DuHwBztMFxI
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqVgIuqDy7UKgPcLRwEtuJhSoEpdWWdlcILaI3y44dqcBml-5WbX8c_42xY28ugPbSW5RkImVsz8Oe-T6EXunGOt1UnDhwX4SVghFpbEOoMUXGrYC17vc7RmMx_Mo-nfGzDfQ79cL4sspkE4OhtrPa75G_8Uh4IpeQf7yb_yKeNcqfriYKDR2pFex-gBiLjR0n7uYKUrjF_vFHGO_XeX50ODkYksgyQGpIwpbE5AZCClCozUzjjK1obSrTSFo0whppYBEYiCI0Z5pxXlhuirwRpdOlMFR43APwAFusYBJyv60Ph-PPX3rU34x1vXi8IFWWyVhK1BWYBcDK8ymYjZCmBgxR31X1d__4r_g3-MGjbXQ_BrD4fTfjHqAN1z5Ed0bxiP4R-nYwuwj749hX0v_wlhTriHyC3bWewlsWR3ogPPckbf1z3Vqs4WYiFcOL82m8fIwmt6HXJ2iznbVuB2FJK5dbU9iSaiZYZkpNs5pby2TBmkoOUJlUpuqIbO4JNn6qVML2XfXK9sSbTNFSgbIHKFtJzjt0jzVkZBoVlbpXwd4qcEFryL5dycYIp4tc1pTeTZNARUuzUP26GKC91WOwEf7gR7dudrnwtXsQh_FqgJ52U6f_Wc6rStDy2f8_vYfuDiejU3V6PD55ju4F-NqwDbWLNpcXl-4FBGZL8zJOf4zULS-4P1tST74
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqVqq4IMpzoVAf4GjVSfwUqhBqWbWUVhyK2Jtlx7bUwmaX7laUn8a_Y5w4mwugvfQWJZlIGc_L45lvEHptow82Kk4CuC_CpGBEOx8Jda4quBeg6ynfcXYujr-wjxM-2UC_-16YVFbZ28TWUPtZnXLk-wkJT5Qa9h_7MZdFfD4av5v_IGmCVDpp7cdpdCJyGn79hO3b4uDkCNb6TVmOP1wcHpM8YYDUsAFbElc6CCeAmb5wMTivaO2Ui5pWUXinHSiAgwjCcmYZ55XnriqjkMFK4ahImAdg_bdkVelUTSgncsD7LVjXhccroopC5yKirrSshaq8nILBaDeoLXpo6qf6u2f8V-TbesDxA3Q_h674fSdrO2gjNA_R9lk-nH-Evh7OrtvMOE419N-SDcU2Y57gcGun8JbHeTAQnqfxbMNz23hs4WY_TgwvLqf58jG6uAuuPkGbzawJzxDWVIXSu8pLaplghZOWFjX3numKRaVHSPYsM3XGNE-jNb6bvnjtygzMTiM3maHSALNHqFhRzjtcjzVodL8qpu9bBUtrwPmsQft2RZtjmy5mWZN6txcCk23MwgwaMUJ7q8dgHdKRj23C7GaRqvYgAuNqhJ52ojP8LOdKCSqf___Te2gb1Mx8Ojk_fYHutbi1bf5pF20ur2_CS4jIlu5VK_sYmTvWtT866k1Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cortical+thickness+analysis+examined+through+power+analysis+and+a+population+simulation&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Lerch%2C+Jason+P.&rft.au=Evans%2C+Alan+C.&rft.date=2005&rft.pub=Elsevier+Inc&rft.issn=1053-8119&rft.volume=24&rft.issue=1&rft.spage=163&rft.epage=173&rft_id=info:doi/10.1016%2Fj.neuroimage.2004.07.045&rft.externalDocID=S1053811904004185
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon