Phylogenetic patterns of emergence of new genes support a model of frequent de novo evolution
New gene emergence is so far assumed to be mostly driven by duplication and divergence of existing genes. The possibility that entirely new genes could emerge out of the non-coding genomic background was long thought to be almost negligible. With the increasing availability of fully sequenced genome...
Saved in:
Published in | BMC genomics Vol. 14; no. 1; p. 117 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central
21.02.2013
|
Subjects | |
Online Access | Get full text |
ISSN | 1471-2164 1471-2164 |
DOI | 10.1186/1471-2164-14-117 |
Cover
Abstract | New gene emergence is so far assumed to be mostly driven by duplication and divergence of existing genes. The possibility that entirely new genes could emerge out of the non-coding genomic background was long thought to be almost negligible. With the increasing availability of fully sequenced genomes across broad scales of phylogeny, it has become possible to systematically study the origin of new genes over time and thus revisit this question.
We have used phylostratigraphy to assess trends of gene evolution across successive phylogenetic phases, using mostly the well-annotated mouse genome as a reference. We find several significant general trends and confirm them for three other vertebrate genomes (humans, zebrafish and stickleback). Younger genes are shorter, both with respect to gene length, as well as to open reading frame length. They contain also fewer exons and have fewer recognizable domains. Average exon length, on the other hand, does not change much over time. Only the most recently evolved genes have longer exons and they are often associated with active promotor regions, i.e. are part of bidirectional promotors. We have also revisited the possibility that de novo evolution of genes could occur even within existing genes, by making use of an alternative reading frame (overprinting). We find several cases among the annotated Ensembl ORFs, where the new reading frame has emerged at a higher phylostratigraphic level than the original one. We discuss some of these overprinted genes, which include also the Hoxa9 gene where an alternative reading frame covering the homeobox has emerged within the lineage leading to rodents and primates (Euarchontoglires).
We suggest that the overall trends of gene emergence are more compatible with a de novo evolution model for orphan genes than a general duplication-divergence model. Hence de novo evolution of genes appears to have occurred continuously throughout evolutionary time and should therefore be considered as a general mechanism for the emergence of new gene functions. |
---|---|
AbstractList | New gene emergence is so far assumed to be mostly driven by duplication and divergence of existing genes. The possibility that entirely new genes could emerge out of the non-coding genomic background was long thought to be almost negligible. With the increasing availability of fully sequenced genomes across broad scales of phylogeny, it has become possible to systematically study the origin of new genes over time and thus revisit this question.BACKGROUNDNew gene emergence is so far assumed to be mostly driven by duplication and divergence of existing genes. The possibility that entirely new genes could emerge out of the non-coding genomic background was long thought to be almost negligible. With the increasing availability of fully sequenced genomes across broad scales of phylogeny, it has become possible to systematically study the origin of new genes over time and thus revisit this question.We have used phylostratigraphy to assess trends of gene evolution across successive phylogenetic phases, using mostly the well-annotated mouse genome as a reference. We find several significant general trends and confirm them for three other vertebrate genomes (humans, zebrafish and stickleback). Younger genes are shorter, both with respect to gene length, as well as to open reading frame length. They contain also fewer exons and have fewer recognizable domains. Average exon length, on the other hand, does not change much over time. Only the most recently evolved genes have longer exons and they are often associated with active promotor regions, i.e. are part of bidirectional promotors. We have also revisited the possibility that de novo evolution of genes could occur even within existing genes, by making use of an alternative reading frame (overprinting). We find several cases among the annotated Ensembl ORFs, where the new reading frame has emerged at a higher phylostratigraphic level than the original one. We discuss some of these overprinted genes, which include also the Hoxa9 gene where an alternative reading frame covering the homeobox has emerged within the lineage leading to rodents and primates (Euarchontoglires).RESULTSWe have used phylostratigraphy to assess trends of gene evolution across successive phylogenetic phases, using mostly the well-annotated mouse genome as a reference. We find several significant general trends and confirm them for three other vertebrate genomes (humans, zebrafish and stickleback). Younger genes are shorter, both with respect to gene length, as well as to open reading frame length. They contain also fewer exons and have fewer recognizable domains. Average exon length, on the other hand, does not change much over time. Only the most recently evolved genes have longer exons and they are often associated with active promotor regions, i.e. are part of bidirectional promotors. We have also revisited the possibility that de novo evolution of genes could occur even within existing genes, by making use of an alternative reading frame (overprinting). We find several cases among the annotated Ensembl ORFs, where the new reading frame has emerged at a higher phylostratigraphic level than the original one. We discuss some of these overprinted genes, which include also the Hoxa9 gene where an alternative reading frame covering the homeobox has emerged within the lineage leading to rodents and primates (Euarchontoglires).We suggest that the overall trends of gene emergence are more compatible with a de novo evolution model for orphan genes than a general duplication-divergence model. Hence de novo evolution of genes appears to have occurred continuously throughout evolutionary time and should therefore be considered as a general mechanism for the emergence of new gene functions.CONCLUSIONSWe suggest that the overall trends of gene emergence are more compatible with a de novo evolution model for orphan genes than a general duplication-divergence model. Hence de novo evolution of genes appears to have occurred continuously throughout evolutionary time and should therefore be considered as a general mechanism for the emergence of new gene functions. Background: New gene emergence is so far assumed to be mostly driven by duplication and divergence of existing genes. The possibility that entirely new genes could emerge out of the non-coding genomic background was long thought to be almost negligible. With the increasing availability of fully sequenced genomes across broad scales of phylogeny, it has become possible to systematically study the origin of new genes over time and thus revisit this question. Results: We have used phylostratigraphy to assess trends of gene evolution across successive phylogenetic phases, using mostly the well-annotated mouse genome as a reference. We find several significant general trends and confirm them for three other vertebrate genomes (humans, zebrafish and stickleback). Younger genes are shorter, both with respect to gene length, as well as to open reading frame length. They contain also fewer exons and have fewer recognizable domains. Average exon length, on the other hand, does not change much over time. Only the most recently evolved genes have longer exons and they are often associated with active promotor regions, i.e. are part of bidirectional promotors. We have also revisited the possibility that de novo evolution of genes could occur even within existing genes, by making use of an alternative reading frame (overprinting). We find several cases among the annotated Ensembl ORFs, where the new reading frame has emerged at a higher phylostratigraphic level than the original one. We discuss some of these overprinted genes, which include also the Hoxa9 gene where an alternative reading frame covering the homeobox has emerged within the lineage leading to rodents and primates (Euarchontoglires). Conclusions: We suggest that the overall trends of gene emergence are more compatible with a de novo evolution model for orphan genes than a general duplication-divergence model. Hence de novo evolution of genes appears to have occurred continuously throughout evolutionary time and should therefore be considered as a general mechanism for the emergence of new gene functions. Doc number: 117 Abstract Background: New gene emergence is so far assumed to be mostly driven by duplication and divergence of existing genes. The possibility that entirely new genes could emerge out of the non-coding genomic background was long thought to be almost negligible. With the increasing availability of fully sequenced genomes across broad scales of phylogeny, it has become possible to systematically study the origin of new genes over time and thus revisit this question. Results: We have used phylostratigraphy to assess trends of gene evolution across successive phylogenetic phases, using mostly the well-annotated mouse genome as a reference. We find several significant general trends and confirm them for three other vertebrate genomes (humans, zebrafish and stickleback). Younger genes are shorter, both with respect to gene length, as well as to open reading frame length. They contain also fewer exons and have fewer recognizable domains. Average exon length, on the other hand, does not change much over time. Only the most recently evolved genes have longer exons and they are often associated with active promotor regions, i.e. are part of bidirectional promotors. We have also revisited the possibility that de novo evolution of genes could occur even within existing genes, by making use of an alternative reading frame (overprinting). We find several cases among the annotated Ensembl ORFs, where the new reading frame has emerged at a higher phylostratigraphic level than the original one. We discuss some of these overprinted genes, which include also the Hoxa9 gene where an alternative reading frame covering the homeobox has emerged within the lineage leading to rodents and primates (Euarchontoglires). Conclusions: We suggest that the overall trends of gene emergence are more compatible with a de novo evolution model for orphan genes than a general duplication-divergence model. Hence de novo evolution of genes appears to have occurred continuously throughout evolutionary time and should therefore be considered as a general mechanism for the emergence of new gene functions. New gene emergence is so far assumed to be mostly driven by duplication and divergence of existing genes. The possibility that entirely new genes could emerge out of the non-coding genomic background was long thought to be almost negligible. With the increasing availability of fully sequenced genomes across broad scales of phylogeny, it has become possible to systematically study the origin of new genes over time and thus revisit this question. We have used phylostratigraphy to assess trends of gene evolution across successive phylogenetic phases, using mostly the well-annotated mouse genome as a reference. We find several significant general trends and confirm them for three other vertebrate genomes (humans, zebrafish and stickleback). Younger genes are shorter, both with respect to gene length, as well as to open reading frame length. They contain also fewer exons and have fewer recognizable domains. Average exon length, on the other hand, does not change much over time. Only the most recently evolved genes have longer exons and they are often associated with active promotor regions, i.e. are part of bidirectional promotors. We have also revisited the possibility that de novo evolution of genes could occur even within existing genes, by making use of an alternative reading frame (overprinting). We find several cases among the annotated Ensembl ORFs, where the new reading frame has emerged at a higher phylostratigraphic level than the original one. We discuss some of these overprinted genes, which include also the Hoxa9 gene where an alternative reading frame covering the homeobox has emerged within the lineage leading to rodents and primates (Euarchontoglires). We suggest that the overall trends of gene emergence are more compatible with a de novo evolution model for orphan genes than a general duplication-divergence model. Hence de novo evolution of genes appears to have occurred continuously throughout evolutionary time and should therefore be considered as a general mechanism for the emergence of new gene functions. |
Author | Neme, Rafik Tautz, Diethard |
AuthorAffiliation | 1 Max-Planck Institute for Evolutionary Biology, August-Thienemannstrasse 2, Plön, 24306, Germany |
AuthorAffiliation_xml | – name: 1 Max-Planck Institute for Evolutionary Biology, August-Thienemannstrasse 2, Plön, 24306, Germany |
Author_xml | – sequence: 1 givenname: Rafik surname: Neme fullname: Neme, Rafik – sequence: 2 givenname: Diethard surname: Tautz fullname: Tautz, Diethard |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23433480$$D View this record in MEDLINE/PubMed |
BookMark | eNqNks1rFjEQh4NU7IfePUnAi5fVzccmeS8FKfYDCnqwRwnZ7KTdspusSfaV_vcmtH2phYIQyGTmmeE3MzlEez54QOg9aT8TosQXwiVpKBG8IeUQ-Qod7Fx7T-x9dJjSbdsSqWj3Bu1Txhnjqj1Av37c3E3hGjzk0eLF5AzRJxwchhli8VuoDw9_cIUSTuuyhJixwXMYYKpBF-H3Cj7jAbAP24BhG6Y1j8G_Ra-dmRK8e7iP0NXpt58n583l97OLk6-Xje0oy40BCX2vNooooL0UfbexwvRi4MT11BDpKLVy6J3qnBiGqr44oHUbKinrWnaEju_rLms_w2CLmGgmvcRxNvFOBzPqfyN-vNHXYauZIEKJrhT49FAghtJLynoek4VpMh7CmjQp0-IF5PI_UMqZ2lCiCvrxGXob1ujLJCrFeEEUK9SHp-J3qh-XVID2HrAxpBTB7RDS6voPdF20rosuVvFUkeJZih2zqSsp7Y_Ty4l_AVr0toY |
CitedBy_id | crossref_primary_10_1016_j_ympev_2017_09_012 crossref_primary_10_1016_j_jmb_2021_167180 crossref_primary_10_1002_pro_4371 crossref_primary_10_1093_molbev_msaf036 crossref_primary_10_1016_j_gene_2016_05_041 crossref_primary_10_1016_j_ydbio_2019_11_006 crossref_primary_10_1016_j_gene_2018_07_051 crossref_primary_10_1371_journal_pbio_3001775 crossref_primary_10_1534_genetics_113_152256 crossref_primary_10_1002_bies_202400146 crossref_primary_10_1093_gbe_evv098 crossref_primary_10_1126_science_adf1323 crossref_primary_10_1186_s12864_016_2392_0 crossref_primary_10_7554_eLife_09977 crossref_primary_10_1534_genetics_118_301249 crossref_primary_10_1093_gbe_evae129 crossref_primary_10_1371_journal_pone_0232101 crossref_primary_10_1016_j_tplants_2014_07_003 crossref_primary_10_1038_s41588_018_0040_0 crossref_primary_10_3389_fgene_2022_1045301 crossref_primary_10_1016_j_cub_2014_02_016 crossref_primary_10_1016_j_meegid_2015_03_031 crossref_primary_10_1093_molbev_msab360 crossref_primary_10_1105_tpc_114_123620 crossref_primary_10_1093_genetics_iyab207 crossref_primary_10_1098_rspb_2017_1357 crossref_primary_10_1093_bioinformatics_btab735 crossref_primary_10_1016_j_sbi_2020_11_010 crossref_primary_10_1073_pnas_1603718113 crossref_primary_10_1534_genetics_119_302187 crossref_primary_10_1016_j_ajhg_2017_12_014 crossref_primary_10_3390_agronomy15020298 crossref_primary_10_1038_s41559_023_02014_y crossref_primary_10_48130_tp_0024_0036 crossref_primary_10_1371_journal_pcbi_1003162 crossref_primary_10_1093_molbev_msx315 crossref_primary_10_1016_j_tig_2019_08_007 crossref_primary_10_1186_s12859_022_04702_1 crossref_primary_10_1016_j_jgg_2024_12_014 crossref_primary_10_1093_molbev_msad098 crossref_primary_10_3390_ijms19072064 crossref_primary_10_1186_s12862_018_1134_0 crossref_primary_10_1093_nar_gkab1238 crossref_primary_10_1111_pbi_12238 crossref_primary_10_7554_eLife_09638 crossref_primary_10_7554_eLife_78772 crossref_primary_10_1371_journal_pbio_3000862 crossref_primary_10_1093_gbe_evx099 crossref_primary_10_1186_s13062_016_0109_6 crossref_primary_10_1016_j_ajhg_2019_02_008 crossref_primary_10_1038_s41559_018_0639_7 crossref_primary_10_1017_S0967199423000631 crossref_primary_10_1371_journal_pcbi_1010399 crossref_primary_10_1093_gbe_evx136 crossref_primary_10_1371_journal_pcbi_1005375 crossref_primary_10_1134_S1062360421060035 crossref_primary_10_1038_nrm_2017_58 crossref_primary_10_1038_s41525_020_00167_4 crossref_primary_10_1016_j_tig_2024_04_010 crossref_primary_10_1093_molbev_msz300 crossref_primary_10_7554_eLife_44392 crossref_primary_10_1051_medsci_2018300 crossref_primary_10_1186_s13059_023_02895_z crossref_primary_10_1093_molbev_msaa153 crossref_primary_10_1101_gr_277482_122 crossref_primary_10_7554_eLife_57347 crossref_primary_10_3389_fpls_2022_872137 crossref_primary_10_7554_eLife_03523 crossref_primary_10_3390_jdb11020027 crossref_primary_10_1101_gr_234872_118 crossref_primary_10_1016_j_tig_2014_08_004 crossref_primary_10_1016_j_chom_2024_08_017 crossref_primary_10_1016_j_tig_2021_06_017 crossref_primary_10_1093_gbe_evad023 crossref_primary_10_1093_gbe_evv106 crossref_primary_10_1371_journal_pone_0119651 crossref_primary_10_1016_j_ajhg_2023_08_005 crossref_primary_10_1371_journal_pone_0072742 crossref_primary_10_1146_annurev_genet_111523_102413 crossref_primary_10_1101_gr_161315_113 crossref_primary_10_1016_j_tig_2015_02_007 crossref_primary_10_1021_acssynbio_0c00323 crossref_primary_10_1101_gr_279498_124 crossref_primary_10_1186_s13062_015_0104_3 crossref_primary_10_1002_bies_201400138 crossref_primary_10_3390_jof10080511 crossref_primary_10_1093_molbev_msaa105 crossref_primary_10_1093_gbe_evy161 crossref_primary_10_1038_s41559_017_0146 crossref_primary_10_1053_j_seminoncol_2018_11_002 crossref_primary_10_32388_KIEJWR_2 crossref_primary_10_1016_j_it_2014_07_008 crossref_primary_10_1093_hr_uhae252 crossref_primary_10_1093_gbe_evac028 crossref_primary_10_1093_gbe_evt155 crossref_primary_10_3389_fgene_2020_00820 crossref_primary_10_1371_journal_pone_0252674 crossref_primary_10_1042_BST20150089 crossref_primary_10_1186_s12862_016_0683_3 crossref_primary_10_1016_j_cub_2022_04_085 crossref_primary_10_1038_s41598_023_41410_z crossref_primary_10_1093_bib_bbx166 crossref_primary_10_1038_nrg_2016_78 crossref_primary_10_1016_j_plantsci_2019_05_001 crossref_primary_10_1038_s41467_021_21667_6 crossref_primary_10_1016_j_tig_2024_10_012 crossref_primary_10_1007_s11427_019_9482_0 crossref_primary_10_1098_rsta_2015_0065 crossref_primary_10_1371_journal_pgen_1008160 crossref_primary_10_1016_j_cell_2018_02_028 crossref_primary_10_1038_s41586_021_03511_5 crossref_primary_10_1186_s12859_019_3023_y crossref_primary_10_1007_s00018_016_2138_9 crossref_primary_10_1038_ncomms8866 crossref_primary_10_3390_genes12121913 crossref_primary_10_1016_j_yexcr_2020_111940 crossref_primary_10_1128_mBio_00837_19 crossref_primary_10_1007_s12064_015_0215_5 crossref_primary_10_3389_fgene_2021_652189 crossref_primary_10_1093_bioinformatics_btz171 crossref_primary_10_1093_gbe_evx109 crossref_primary_10_1186_s13227_017_0089_3 crossref_primary_10_1186_s42483_019_0041_7 crossref_primary_10_1371_journal_pgen_1005721 crossref_primary_10_1007_s13205_025_04213_9 crossref_primary_10_1093_gbe_evae176 crossref_primary_10_3389_fpls_2016_00983 crossref_primary_10_1016_j_jgg_2021_03_018 crossref_primary_10_1186_s12864_019_5611_7 crossref_primary_10_7554_eLife_27860 crossref_primary_10_1095_biolreprod_114_118166 crossref_primary_10_1101_gr_279166_124 crossref_primary_10_1093_gbe_evy267 crossref_primary_10_7554_eLife_01311 crossref_primary_10_4137_BBI_S39950 crossref_primary_10_1093_bib_bby074 crossref_primary_10_1371_journal_pgen_1004590 crossref_primary_10_1007_s00122_023_04411_0 crossref_primary_10_1093_molbev_msu292 crossref_primary_10_1051_medsci_20143012022 crossref_primary_10_1093_molbev_msac031 crossref_primary_10_2139_ssrn_4002758 crossref_primary_10_1016_j_molp_2014_12_008 crossref_primary_10_1186_s12864_016_3062_y crossref_primary_10_1093_molbev_msaa230 crossref_primary_10_1038_s41588_024_02059_0 crossref_primary_10_3389_fgene_2021_812139 crossref_primary_10_1534_genetics_120_302815 crossref_primary_10_1242_dev_184044 crossref_primary_10_1080_12298093_2018_1542970 crossref_primary_10_1371_journal_pgen_1005391 crossref_primary_10_5423_PPJ_OA_08_2014_0072 crossref_primary_10_1038_s41467_020_14500_z crossref_primary_10_1534_genetics_117_300467 crossref_primary_10_1038_s41598_023_49626_9 crossref_primary_10_1038_srep40301 crossref_primary_10_1186_s12862_015_0558_z crossref_primary_10_1016_j_celrep_2013_12_030 crossref_primary_10_1371_journal_pgen_1009227 crossref_primary_10_1038_s41598_017_07866_6 crossref_primary_10_1093_molbev_msw008 crossref_primary_10_1002_jez_b_22895 crossref_primary_10_1007_s00438_021_01810_0 crossref_primary_10_1093_g3journal_jkad122 crossref_primary_10_1093_molbev_msx210 |
Cites_doi | 10.1073/pnas.81.8.2421 10.1038/ng.790 10.1016/j.febslet.2011.01.017 10.1038/nrm1589 10.1186/1741-7007-8-66 10.1073/pnas.0901808106 10.1016/j.modgep.2003.08.006 10.1186/1471-2148-11-47 10.1101/gr.076588.108 10.1186/1471-2148-6-91 10.1093/bioinformatics/btq033 10.1101/gr.101386.109 10.1186/gb-2010-11-7-r74 10.1093/dnares/dsq006 10.1126/science.1162253 10.1073/pnas.89.20.9489 10.1016/j.sbi.2011.03.014 10.1042/BJ20090122 10.1139/O09-163 10.1093/database/bar030 10.1101/gr.1311003 10.1016/j.tig.2009.07.006 10.1073/pnas.0509809103 10.1016/j.neuron.2007.06.021 10.1093/molbev/msn214 10.1101/gr.098376.109 10.1093/gbe/evr099 10.1093/molbev/msr250 10.1038/cr.2010.31 10.1186/1471-2148-7-53 10.1534/genetics.107.084491 10.1016/j.cub.2009.07.049 10.1186/jbiol16 10.1093/nar/gkq963 10.1093/nar/gkh103 10.1093/emboj/20.14.3849 10.1093/nar/gkq1064 10.1093/molbev/mss179 10.1016/S0168-9525(00)02024-2 10.1038/nature11394 10.1038/nature11184 10.1016/S0169-5347(03)00033-8 10.1128/JVI.00595-09 10.1038/nature09632 10.1371/journal.pcbi.1000734 10.1371/journal.pbio.1000625 10.1093/bfgp/eln054 10.1016/j.jmb.2009.11.053 10.1101/gr.092759.109 10.1101/gr.095026.109 10.4161/cc.8.16.9305 10.1038/nrc1954 10.1093/nar/25.17.3389 10.1093/gbe/evq019 10.1371/journal.pgen.1002379 10.1016/j.tig.2007.08.014 10.1186/1471-2148-2-20 |
ContentType | Journal Article |
Copyright | 2013 Neme and Tautz; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Copyright © 2013 Neme and Tautz; licensee BioMed Central Ltd. 2013 Neme and Tautz; licensee BioMed Central Ltd. |
Copyright_xml | – notice: 2013 Neme and Tautz; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. – notice: Copyright © 2013 Neme and Tautz; licensee BioMed Central Ltd. 2013 Neme and Tautz; licensee BioMed Central Ltd. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QP 7QR 7SS 7TK 7U7 7X7 7XB 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 7X8 F1W H95 L.G 5PM |
DOI | 10.1186/1471-2164-14-117 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Entomology Abstracts (Full archive) Neurosciences Abstracts Toxicology Abstracts Health & Medical Collection (ProQuest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database (ProQuest) Biotechnology and BioEngineering Abstracts Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts MEDLINE - Academic ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection Toxicology Abstracts ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources |
DatabaseTitleList | MEDLINE - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Publicly Available Content Database MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1471-2164 |
EndPage | 117 |
ExternalDocumentID | PMC3616865 2935793601 23433480 10_1186_1471_2164_14_117 |
Genre | Journal Article |
GroupedDBID | --- 0R~ 23N 2VQ 2WC 2XV 4.4 53G 5VS 6J9 7X7 88E 8AO 8FE 8FH 8FI 8FJ AAFWJ AAHBH AAJSJ AASML AAYXX ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHSBF AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BMC BPHCQ BVXVI C1A C6C CCPQU CITATION CS3 DIK DU5 E3Z EAD EAP EAS EBD EBLON EBS EJD EMB EMK EMOBN ESX F5P FYUFA GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAO IGS IHR INH INR IPNFZ ISR ITC KQ8 LK8 M1P M48 M7P M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RBZ RIG RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS U2A UKHRP W2D WOQ WOW XSB CGR CUY CVF ECM EIF NPM 3V. 7QP 7QR 7SS 7TK 7U7 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 7X8 PUEGO F1W H95 L.G 5PM |
ID | FETCH-LOGICAL-c523t-ae7ebb89818e2b76b59c6ab6d41fb2a17f22c7dbf85f6dd234322ce0f92723503 |
IEDL.DBID | 7X7 |
ISSN | 1471-2164 |
IngestDate | Thu Aug 21 18:25:23 EDT 2025 Fri Sep 05 13:05:19 EDT 2025 Fri Sep 05 13:00:19 EDT 2025 Fri Jul 25 10:43:35 EDT 2025 Thu Apr 03 06:58:32 EDT 2025 Tue Jul 01 02:22:02 EDT 2025 Thu Apr 24 23:09:01 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c523t-ae7ebb89818e2b76b59c6ab6d41fb2a17f22c7dbf85f6dd234322ce0f92723503 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.proquest.com/docview/1323418383?pq-origsite=%requestingapplication% |
PMID | 23433480 |
PQID | 1323418383 |
PQPubID | 44682 |
PageCount | 1 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3616865 proquest_miscellaneous_1348486547 proquest_miscellaneous_1324389218 proquest_journals_1323418383 pubmed_primary_23433480 crossref_primary_10_1186_1471_2164_14_117 crossref_citationtrail_10_1186_1471_2164_14_117 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-02-21 |
PublicationDateYYYYMMDD | 2013-02-21 |
PublicationDate_xml | – month: 02 year: 2013 text: 2013-02-21 day: 21 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | BMC genomics |
PublicationTitleAlternate | BMC Genomics |
PublicationYear | 2013 |
Publisher | BioMed Central |
Publisher_xml | – name: BioMed Central |
References | 10.1186/1471-2164-14-117-B35 10.1186/1471-2164-14-117-B36 10.1186/1471-2164-14-117-B34 10.1186/1471-2164-14-117-B32 10.1186/1471-2164-14-117-B30 10.1186/1471-2164-14-117-B39 10.1186/1471-2164-14-117-B37 10.1186/1471-2164-14-117-B38 10.1186/1471-2164-14-117-B1 10.1186/1471-2164-14-117-B50 10.1186/1471-2164-14-117-B2 - 10.1186/1471-2164-14-117-B46 10.1186/1471-2164-14-117-B8 10.1186/1471-2164-14-117-B47 10.1186/1471-2164-14-117-B44 10.1186/1471-2164-14-117-B45 10.1186/1471-2164-14-117-B5 10.1186/1471-2164-14-117-B42 10.1186/1471-2164-14-117-B43 10.1186/1471-2164-14-117-B7 10.1186/1471-2164-14-117-B40 10.1186/1471-2164-14-117-B6 10.1186/1471-2164-14-117-B48 10.1186/1471-2164-14-117-B49 10.1186/1471-2164-14-117-B61 10.1186/1471-2164-14-117-B13 10.1186/1471-2164-14-117-B14 10.1186/1471-2164-14-117-B11 10.1186/1471-2164-14-117-B55 10.1186/1471-2164-14-117-B12 10.1186/1471-2164-14-117-B10 10.1186/1471-2164-14-117-B54 10.1186/1471-2164-14-117-B52 10.1186/1471-2164-14-117-B19 10.1186/1471-2164-14-117-B17 10.1186/1471-2164-14-117-B18 10.1186/1471-2164-14-117-B15 10.1186/1471-2164-14-117-B59 10.1186/1471-2164-14-117-B16 10.1186/1471-2164-14-117-B24 10.1186/1471-2164-14-117-B68 10.1186/1471-2164-14-117-B25 10.1186/1471-2164-14-117-B22 10.1186/1471-2164-14-117-B23 10.1186/1471-2164-14-117-B67 10.1186/1471-2164-14-117-B20 10.1186/1471-2164-14-117-B64 10.1186/1471-2164-14-117-B21 10.1186/1471-2164-14-117-B65 10.1186/1471-2164-14-117-B62 10.1186/1471-2164-14-117-B28 10.1186/1471-2164-14-117-B29 10.1186/1471-2164-14-117-B27 19597342 - Cell Cycle. 2009 Aug 15;8(16):2557-64 19716618 - Trends Genet. 2009 Sep;25(9):404-13 21241695 - FEBS Lett. 2011 Feb 18;585(4):641-4 21332978 - BMC Evol Biol. 2011;11:47 19064677 - Mol Biol Evol. 2009 Mar;26(3):603-12 22722833 - Nature. 2012 Jul 19;487(7407):370-4 12045153 - Genome Res. 2002 Jun;12(6):996-1006 16915296 - Nat Rev Cancer. 2006 Sep;6(9):663-73 16777968 - Proc Natl Acad Sci U S A. 2006 Jun 27;103(26):9935-9 19541911 - Genome Res. 2009 Sep;19(9):1639-45 11447126 - EMBO J. 2001 Jul 16;20(14):3849-60 19272021 - Biochem J. 2009 Apr 1;419(1):15-28 20633280 - Genome Biol. 2010;11(7):R74 22821011 - Mol Biol Evol. 2012 Dec;29(12):3767-80 21785142 - Database (Oxford). 2011;2011:bar030 21423180 - Nat Genet. 2011 Apr;43(4):379-86 21765801 - PLoS Biol. 2011 Jul;9(7):e1000625; discussion e1001102 9254694 - Nucleic Acids Res. 1997 Sep 1;25(17):3389-402 20376170 - PLoS Comput Biol. 2010 Mar;6(3):e1000734 18550802 - Genome Res. 2008 Sep;18(9):1446-55 17090320 - BMC Evol Biol. 2006;6:91 20624743 - Genome Biol Evol. 2010;2:393-409 20110278 - Bioinformatics. 2010 Mar 15;26(6):841-2 20453919 - Biochem Cell Biol. 2010 Apr;88(2):167-74 19640978 - J Virol. 2009 Oct;83(20):10719-36 6585807 - Proc Natl Acad Sci U S A. 1984 Apr;81(8):2421-5 21514145 - Curr Opin Struct Biol. 2011 Jun;21(3):412-8 21878963 - Nat Rev Genet. 2011 Oct;12(10):692-702 20211845 - DNA Res. 2010 Apr;17(2):51-9 19056940 - Science. 2008 Dec 19;322(5909):1849-51 11932250 - Genome Res. 2002 Apr;12(4):656-64 17408474 - BMC Evol Biol. 2007;7:53 20195295 - Cell Res. 2010 Apr;20(4):408-20 18820252 - Mol Biol Evol. 2008 Dec;25(12):2699-707 16110341 - PLoS Genet. 2005 Aug;1(2):e18 12410938 - BMC Evol Biol. 2002 Nov 1;2:20 19029536 - Genome Res. 2009 Feb;19(2):327-35 18493065 - Genetics. 2008 May;179(1):487-96 18029048 - Trends Genet. 2007 Nov;23(11):533-9 14525923 - Genome Res. 2003 Oct;13(10):2213-9 19797681 - Genome Res. 2009 Oct;19(10):1693-5 19733073 - Curr Biol. 2009 Sep 29;19(18):1527-31 22016574 - Mol Biol Evol. 2012 Feb;29(2):787-96 1329098 - Proc Natl Acad Sci U S A. 1992 Oct 15;89(20):9489-93 19944701 - J Mol Biol. 2010 Feb 19;396(2):396-405 22102831 - PLoS Genet. 2011 Nov;7(11):e1002379 21045057 - Nucleic Acids Res. 2011 Jan;39(Database issue):D800-6 19074495 - Brief Funct Genomic Proteomic. 2009 Jan;8(1):68-74 22889292 - Genome Biol. 2012;13(8):418 17435230 - Genetics. 2007 Jun;176(2):1131-7 21150997 - Nature. 2010 Dec 9;468(7325):815-8 10827456 - Trends Genet. 2000 Jun;16(6):276-7 17610818 - Neuron. 2007 Jul 5;55(1):69-85 20651121 - Genome Res. 2010 Oct;20(10):1313-26 15738986 - Nat Rev Mol Cell Biol. 2005 Mar;6(3):197-208 14681465 - Nucleic Acids Res. 2004 Jan 1;32(Database issue):D493-6 22096229 - Nucleic Acids Res. 2012 Jan;40(Database issue):D306-12 19351897 - Proc Natl Acad Sci U S A. 2009 May 5;106(18):7273-80 15588312 - J Biol. 2004;3(5):21 19726446 - Genome Res. 2009 Oct;19(10):1752-9 21948395 - Genome Biol Evol. 2011;3:1245-52 15161102 - Gene Expr Patterns. 2004 Mar;4(2):215-22 20492640 - BMC Biol. 2010;8:66 22951968 - Nature. 2012 Oct 4;490(7418):98-101 20959295 - Nucleic Acids Res. 2011 Jan;39(Database issue):D876-82 17511511 - PLoS Comput Biol. 2007 May;3(5):e91 |
References_xml | – ident: - doi: 10.1073/pnas.81.8.2421 – ident: 10.1186/1471-2164-14-117-B52 doi: 10.1038/ng.790 – ident: 10.1186/1471-2164-14-117-B14 doi: 10.1016/j.febslet.2011.01.017 – ident: 10.1186/1471-2164-14-117-B44 doi: 10.1038/nrm1589 – ident: 10.1186/1471-2164-14-117-B23 doi: 10.1186/1741-7007-8-66 – ident: 10.1186/1471-2164-14-117-B36 doi: 10.1073/pnas.0901808106 – ident: 10.1186/1471-2164-14-117-B40 doi: 10.1016/j.modgep.2003.08.006 – ident: 10.1186/1471-2164-14-117-B15 doi: 10.1186/1471-2148-11-47 – ident: 10.1186/1471-2164-14-117-B10 doi: 10.1101/gr.076588.108 – ident: 10.1186/1471-2164-14-117-B42 doi: 10.1186/1471-2148-6-91 – ident: 10.1186/1471-2164-14-117-B64 doi: 10.1093/bioinformatics/btq033 – ident: 10.1186/1471-2164-14-117-B5 doi: 10.1101/gr.101386.109 – ident: 10.1186/1471-2164-14-117-B38 doi: 10.1186/gb-2010-11-7-r74 – ident: 10.1186/1471-2164-14-117-B47 doi: 10.1093/dnares/dsq006 – ident: 10.1186/1471-2164-14-117-B49 doi: 10.1126/science.1162253 – ident: 10.1186/1471-2164-14-117-B27 doi: 10.1073/pnas.89.20.9489 – ident: 10.1186/1471-2164-14-117-B46 doi: 10.1016/j.sbi.2011.03.014 – ident: 10.1186/1471-2164-14-117-B37 doi: 10.1042/BJ20090122 – ident: 10.1186/1471-2164-14-117-B45 doi: 10.1139/O09-163 – ident: - doi: 10.1093/database/bar030 – ident: 10.1186/1471-2164-14-117-B1 doi: 10.1101/gr.1311003 – ident: 10.1186/1471-2164-14-117-B2 doi: 10.1016/j.tig.2009.07.006 – ident: 10.1186/1471-2164-14-117-B8 doi: 10.1073/pnas.0509809103 – ident: 10.1186/1471-2164-14-117-B39 doi: 10.1016/j.neuron.2007.06.021 – ident: 10.1186/1471-2164-14-117-B22 doi: 10.1093/molbev/msn214 – ident: 10.1186/1471-2164-14-117-B7 doi: 10.1101/gr.098376.109 – ident: 10.1186/1471-2164-14-117-B19 doi: 10.1093/gbe/evr099 – ident: 10.1186/1471-2164-14-117-B43 doi: 10.1093/molbev/msr250 – ident: 10.1186/1471-2164-14-117-B17 doi: 10.1038/cr.2010.31 – ident: 10.1186/1471-2164-14-117-B34 doi: 10.1186/1471-2148-7-53 – ident: 10.1186/1471-2164-14-117-B11 doi: 10.1534/genetics.107.084491 – ident: 10.1186/1471-2164-14-117-B13 doi: 10.1016/j.cub.2009.07.049 – ident: 10.1186/1471-2164-14-117-B65 doi: 10.1186/jbiol16 – ident: 10.1186/1471-2164-14-117-B61 doi: 10.1093/nar/gkq963 – ident: 10.1186/1471-2164-14-117-B62 doi: 10.1093/nar/gkh103 – ident: 10.1186/1471-2164-14-117-B30 doi: 10.1093/emboj/20.14.3849 – ident: 10.1186/1471-2164-14-117-B55 doi: 10.1093/nar/gkq1064 – ident: 10.1186/1471-2164-14-117-B29 doi: 10.1093/molbev/mss179 – ident: 10.1186/1471-2164-14-117-B67 doi: 10.1016/S0168-9525(00)02024-2 – ident: 10.1186/1471-2164-14-117-B25 doi: 10.1038/nature11394 – ident: 10.1186/1471-2164-14-117-B20 doi: 10.1038/nature11184 – ident: - doi: 10.1016/S0169-5347(03)00033-8 – ident: 10.1186/1471-2164-14-117-B28 doi: 10.1128/JVI.00595-09 – ident: 10.1186/1471-2164-14-117-B24 doi: 10.1038/nature09632 – ident: 10.1186/1471-2164-14-117-B12 doi: 10.1371/journal.pcbi.1000734 – ident: 10.1186/1471-2164-14-117-B48 doi: 10.1371/journal.pbio.1000625 – ident: - doi: 10.1093/bfgp/eln054 – ident: 10.1186/1471-2164-14-117-B54 doi: 10.1016/j.jmb.2009.11.053 – ident: 10.1186/1471-2164-14-117-B59 doi: 10.1101/gr.092759.109 – ident: 10.1186/1471-2164-14-117-B16 doi: 10.1101/gr.095026.109 – ident: 10.1186/1471-2164-14-117-B50 doi: 10.4161/cc.8.16.9305 – ident: 10.1186/1471-2164-14-117-B32 doi: 10.1038/nrc1954 – ident: 10.1186/1471-2164-14-117-B68 doi: 10.1093/nar/25.17.3389 – ident: 10.1186/1471-2164-14-117-B6 doi: 10.1093/gbe/evq019 – ident: 10.1186/1471-2164-14-117-B18 doi: 10.1371/journal.pgen.1002379 – ident: 10.1186/1471-2164-14-117-B21 doi: 10.1016/j.tig.2007.08.014 – ident: 10.1186/1471-2164-14-117-B35 doi: 10.1186/1471-2148-2-20 – reference: 22821011 - Mol Biol Evol. 2012 Dec;29(12):3767-80 – reference: 20959295 - Nucleic Acids Res. 2011 Jan;39(Database issue):D876-82 – reference: 19064677 - Mol Biol Evol. 2009 Mar;26(3):603-12 – reference: 20211845 - DNA Res. 2010 Apr;17(2):51-9 – reference: 19029536 - Genome Res. 2009 Feb;19(2):327-35 – reference: 19597342 - Cell Cycle. 2009 Aug 15;8(16):2557-64 – reference: 18550802 - Genome Res. 2008 Sep;18(9):1446-55 – reference: 21948395 - Genome Biol Evol. 2011;3:1245-52 – reference: 21241695 - FEBS Lett. 2011 Feb 18;585(4):641-4 – reference: 22889292 - Genome Biol. 2012;13(8):418 – reference: 15161102 - Gene Expr Patterns. 2004 Mar;4(2):215-22 – reference: 17408474 - BMC Evol Biol. 2007;7:53 – reference: 19726446 - Genome Res. 2009 Oct;19(10):1752-9 – reference: 19797681 - Genome Res. 2009 Oct;19(10):1693-5 – reference: 20492640 - BMC Biol. 2010;8:66 – reference: 22722833 - Nature. 2012 Jul 19;487(7407):370-4 – reference: 11932250 - Genome Res. 2002 Apr;12(4):656-64 – reference: 19541911 - Genome Res. 2009 Sep;19(9):1639-45 – reference: 19272021 - Biochem J. 2009 Apr 1;419(1):15-28 – reference: 20453919 - Biochem Cell Biol. 2010 Apr;88(2):167-74 – reference: 17090320 - BMC Evol Biol. 2006;6:91 – reference: 21785142 - Database (Oxford). 2011;2011:bar030 – reference: 20651121 - Genome Res. 2010 Oct;20(10):1313-26 – reference: 10827456 - Trends Genet. 2000 Jun;16(6):276-7 – reference: 20110278 - Bioinformatics. 2010 Mar 15;26(6):841-2 – reference: 22096229 - Nucleic Acids Res. 2012 Jan;40(Database issue):D306-12 – reference: 19944701 - J Mol Biol. 2010 Feb 19;396(2):396-405 – reference: 1329098 - Proc Natl Acad Sci U S A. 1992 Oct 15;89(20):9489-93 – reference: 21150997 - Nature. 2010 Dec 9;468(7325):815-8 – reference: 17511511 - PLoS Comput Biol. 2007 May;3(5):e91 – reference: 12410938 - BMC Evol Biol. 2002 Nov 1;2:20 – reference: 19733073 - Curr Biol. 2009 Sep 29;19(18):1527-31 – reference: 22951968 - Nature. 2012 Oct 4;490(7418):98-101 – reference: 18493065 - Genetics. 2008 May;179(1):487-96 – reference: 21423180 - Nat Genet. 2011 Apr;43(4):379-86 – reference: 17610818 - Neuron. 2007 Jul 5;55(1):69-85 – reference: 19056940 - Science. 2008 Dec 19;322(5909):1849-51 – reference: 19640978 - J Virol. 2009 Oct;83(20):10719-36 – reference: 19074495 - Brief Funct Genomic Proteomic. 2009 Jan;8(1):68-74 – reference: 19351897 - Proc Natl Acad Sci U S A. 2009 May 5;106(18):7273-80 – reference: 12045153 - Genome Res. 2002 Jun;12(6):996-1006 – reference: 21332978 - BMC Evol Biol. 2011;11:47 – reference: 18820252 - Mol Biol Evol. 2008 Dec;25(12):2699-707 – reference: 20624743 - Genome Biol Evol. 2010;2:393-409 – reference: 18029048 - Trends Genet. 2007 Nov;23(11):533-9 – reference: 22102831 - PLoS Genet. 2011 Nov;7(11):e1002379 – reference: 20376170 - PLoS Comput Biol. 2010 Mar;6(3):e1000734 – reference: 15588312 - J Biol. 2004;3(5):21 – reference: 22016574 - Mol Biol Evol. 2012 Feb;29(2):787-96 – reference: 17435230 - Genetics. 2007 Jun;176(2):1131-7 – reference: 21514145 - Curr Opin Struct Biol. 2011 Jun;21(3):412-8 – reference: 15738986 - Nat Rev Mol Cell Biol. 2005 Mar;6(3):197-208 – reference: 21878963 - Nat Rev Genet. 2011 Oct;12(10):692-702 – reference: 14525923 - Genome Res. 2003 Oct;13(10):2213-9 – reference: 14681465 - Nucleic Acids Res. 2004 Jan 1;32(Database issue):D493-6 – reference: 16777968 - Proc Natl Acad Sci U S A. 2006 Jun 27;103(26):9935-9 – reference: 20633280 - Genome Biol. 2010;11(7):R74 – reference: 21765801 - PLoS Biol. 2011 Jul;9(7):e1000625; discussion e1001102 – reference: 19716618 - Trends Genet. 2009 Sep;25(9):404-13 – reference: 20195295 - Cell Res. 2010 Apr;20(4):408-20 – reference: 16110341 - PLoS Genet. 2005 Aug;1(2):e18 – reference: 9254694 - Nucleic Acids Res. 1997 Sep 1;25(17):3389-402 – reference: 16915296 - Nat Rev Cancer. 2006 Sep;6(9):663-73 – reference: 6585807 - Proc Natl Acad Sci U S A. 1984 Apr;81(8):2421-5 – reference: 21045057 - Nucleic Acids Res. 2011 Jan;39(Database issue):D800-6 – reference: 11447126 - EMBO J. 2001 Jul 16;20(14):3849-60 |
SSID | ssj0017825 |
Score | 2.4895594 |
Snippet | New gene emergence is so far assumed to be mostly driven by duplication and divergence of existing genes. The possibility that entirely new genes could emerge... Doc number: 117 Abstract Background: New gene emergence is so far assumed to be mostly driven by duplication and divergence of existing genes. The possibility... Background: New gene emergence is so far assumed to be mostly driven by duplication and divergence of existing genes. The possibility that entirely new genes... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 117 |
SubjectTerms | Aging - genetics Animals Biological Evolution Candidates Chromosomes - genetics Danio rerio Evolutionary biology Exons - genetics Genes Genetics Genome Genomes Genomics Homeodomain Proteins - genetics Humans Membrane Proteins - classification Membrane Proteins - genetics Mice Models, Genetic Open Reading Frames - genetics Phylogenetics Phylogeny Promoter Regions, Genetic Smegmamorpha - genetics Zebrafish - genetics |
SummonAdditionalLinks | – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR3LSgQxrPhA8CK-XV9U8OJhdNvptN2DiIgiguLBBS8ytNMWBZlZ9yH69ybd2dVVWZjDDEmHNkmbhDQJIYeMG2NcahKBpT4FdyExaVYkOmDermpKEwPtt3fyui1uHrPH7_TomoC9f1077CfV7r4ef7x9nsGGP40bXssTBgdswsHuTxg8TM2S-Rgtwot84jumALowGwUq_xk1qZj-WJu_L03-0EJXy2SpNh_p-ZDfK2TGl6tkYdhQ8nONPN0_gwMOMoGpibQTa2eWPVoF6us0S48fYEpTROrR3qCDa6eGxpY4CAzdeLu6T52nZfVeUf9ei-c6aV9dPlxcJ3UDhaQA_7KfGK-8tboFStlzq6TNWoU0VjrBguWGqcB5oZwNOgvSOY5JprzwzdDiiqdZM90gc2VV-i1CfSuw1GTOu9QLx4VlTukg4IwquA2q2SAnI-rlRV1dHJtcvObRy9AyR3rnSG94wxLjDXI0HtEZVtaYgrs7Ykg-EpEc_GhQwRpc7AY5GINhd2DIw5S-GkQcbO8Odsw0HKGFxibMDbI55PF4QkgSAMPy1AT3xwhYnXsSUr48xyrdqWQS_ro9feo7ZJHHBhscZHGXzPW7A78HZk7f7kfp_QJRqPr_ priority: 102 providerName: Scholars Portal |
Title | Phylogenetic patterns of emergence of new genes support a model of frequent de novo evolution |
URI | https://www.ncbi.nlm.nih.gov/pubmed/23433480 https://www.proquest.com/docview/1323418383 https://www.proquest.com/docview/1324389218 https://www.proquest.com/docview/1348486547 https://pubmed.ncbi.nlm.nih.gov/PMC3616865 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS-QwEA93ysG9iPfpqrfk4F58CLtJ0yT7JHoocqDIccK-SEmaBA-kXe2u4H_vTDZb9Q4WSmnJtKQz0_nIx_wI-cGFtdYXlkks9SmFj8wWZc1MxH27eqxsmmg_v1BnV_LXtJzmAbcuL6tc2cRkqH1b4xj5CLImMLgGEqrD2R1D1CicXc0QGm_JJodIBKEb9LRPuDh4v3I1NWnUiIMhZgLyA8bhSBBlL1zRf_Hlv8skX_id022ylQNGerSU8AfyJjQfybslhOTjJ3J9eQMpN2gBbkaks1Qts-loG2nIGysD3kDwTJGoo91ihiE3tTSB4GBjvE_rqefUB9q0Dy0ND1khP5Or05M_P89YhkxgNWSUc2aDDs6ZCbjhIJxWrpzUyjrlJY9OWK6jELX2LpoyKu8FbisVdRjHidCiKMfFF7LRtE3YITRMIi9s6YMvgvRCOu61iRKsUi1c1OMBGa24V9W5njjCWtxWKa8wqkJ-V8hvuMKi4gNy0D8xW9bSWEO7vxJIlf-qrnrWgQH53jfD_4CTHLYJ7SLRIKA7RC7raKSRBmGXB-TrUsZ9h5Al0Ayfp19JvyfAetyvW5q_N6kud6G4grfuru_6HnkvEqSGAF3cJxvz-0X4BoHN3A2T9g7J5vHJxeXvYRoegPO5NE9-Bvvg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7RRVV7QX13C21dqT30YO3GcZzsAVV9gJYCK1SBxKVK7dgWSCjZkl0Qf47f1hlvkkIr7Q0ph0SeRM547JnxeOYDeB8JrbWNNZdU6lMK67mOk4JnnvJ206HSIdC-P1HjI_n9ODleges2F4aOVbZrYliobVXQHvkAvSZccDN0qD5Nf3NCjaLoaguhoRtoBbsZSow1iR277uoSXbh6c-cbjvcHIba3Dr-OeYMywAt0wmZcu9QZk41QczlhUmWSUaG0UVZG3ggdpV6IIrXGZ4lX1grKxBSFG_qRSEWcDGP87j1YlbSB0oPVL1uTgx9dHAP1b9IGRzM1iFAVcIEeCo_wCiBpN5Thfxbuvwc1b2i-7Uew1pis7PNCxh7DiiufwP0FiOXVU_h5cIJOP8ohpUOyaajXWdas8sw1qZ2OHtB8Z0RUs3o-JaOfaRZgeKjRn4cT3TNmHSuri4q5i2ZKPIOjO2Hnc-iVVeleAnMjH8U6sc7GTlohTWTTzEtcFwthfDrsw6DlXl40Fc0JWOMsD55NpnLid078xjsqa96Hj90b00U1jyW0G-2A5M28rvO_UtiHd10zzkgKs-jSVfNAQ5DyaDsto5GZzAj4uQ8vFmPcdYhYgs34e-mt0e8IqCL47Zby9CRUBo9VpPCrr5Z3_S08GB_u7-V7O5PddXgoAsCHQLncgN7sfO5eo5k1M28aWWbw666nzx8wODyI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phylogenetic+patterns+of+emergence+of+new+genes+support+a+model+of+frequent+de+novo+evolution&rft.jtitle=BMC+genomics&rft.au=Neme%2C+Rafik&rft.au=Tautz%2C+Diethard&rft.date=2013-02-21&rft.pub=BioMed+Central&rft.eissn=1471-2164&rft.volume=14&rft_id=info:doi/10.1186%2F1471-2164-14-117&rft.externalDocID=2935793601 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2164&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2164&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2164&client=summon |