Phylogenetic patterns of emergence of new genes support a model of frequent de novo evolution

New gene emergence is so far assumed to be mostly driven by duplication and divergence of existing genes. The possibility that entirely new genes could emerge out of the non-coding genomic background was long thought to be almost negligible. With the increasing availability of fully sequenced genome...

Full description

Saved in:
Bibliographic Details
Published inBMC genomics Vol. 14; no. 1; p. 117
Main Authors Neme, Rafik, Tautz, Diethard
Format Journal Article
LanguageEnglish
Published England BioMed Central 21.02.2013
Subjects
Online AccessGet full text
ISSN1471-2164
1471-2164
DOI10.1186/1471-2164-14-117

Cover

Abstract New gene emergence is so far assumed to be mostly driven by duplication and divergence of existing genes. The possibility that entirely new genes could emerge out of the non-coding genomic background was long thought to be almost negligible. With the increasing availability of fully sequenced genomes across broad scales of phylogeny, it has become possible to systematically study the origin of new genes over time and thus revisit this question. We have used phylostratigraphy to assess trends of gene evolution across successive phylogenetic phases, using mostly the well-annotated mouse genome as a reference. We find several significant general trends and confirm them for three other vertebrate genomes (humans, zebrafish and stickleback). Younger genes are shorter, both with respect to gene length, as well as to open reading frame length. They contain also fewer exons and have fewer recognizable domains. Average exon length, on the other hand, does not change much over time. Only the most recently evolved genes have longer exons and they are often associated with active promotor regions, i.e. are part of bidirectional promotors. We have also revisited the possibility that de novo evolution of genes could occur even within existing genes, by making use of an alternative reading frame (overprinting). We find several cases among the annotated Ensembl ORFs, where the new reading frame has emerged at a higher phylostratigraphic level than the original one. We discuss some of these overprinted genes, which include also the Hoxa9 gene where an alternative reading frame covering the homeobox has emerged within the lineage leading to rodents and primates (Euarchontoglires). We suggest that the overall trends of gene emergence are more compatible with a de novo evolution model for orphan genes than a general duplication-divergence model. Hence de novo evolution of genes appears to have occurred continuously throughout evolutionary time and should therefore be considered as a general mechanism for the emergence of new gene functions.
AbstractList New gene emergence is so far assumed to be mostly driven by duplication and divergence of existing genes. The possibility that entirely new genes could emerge out of the non-coding genomic background was long thought to be almost negligible. With the increasing availability of fully sequenced genomes across broad scales of phylogeny, it has become possible to systematically study the origin of new genes over time and thus revisit this question.BACKGROUNDNew gene emergence is so far assumed to be mostly driven by duplication and divergence of existing genes. The possibility that entirely new genes could emerge out of the non-coding genomic background was long thought to be almost negligible. With the increasing availability of fully sequenced genomes across broad scales of phylogeny, it has become possible to systematically study the origin of new genes over time and thus revisit this question.We have used phylostratigraphy to assess trends of gene evolution across successive phylogenetic phases, using mostly the well-annotated mouse genome as a reference. We find several significant general trends and confirm them for three other vertebrate genomes (humans, zebrafish and stickleback). Younger genes are shorter, both with respect to gene length, as well as to open reading frame length. They contain also fewer exons and have fewer recognizable domains. Average exon length, on the other hand, does not change much over time. Only the most recently evolved genes have longer exons and they are often associated with active promotor regions, i.e. are part of bidirectional promotors. We have also revisited the possibility that de novo evolution of genes could occur even within existing genes, by making use of an alternative reading frame (overprinting). We find several cases among the annotated Ensembl ORFs, where the new reading frame has emerged at a higher phylostratigraphic level than the original one. We discuss some of these overprinted genes, which include also the Hoxa9 gene where an alternative reading frame covering the homeobox has emerged within the lineage leading to rodents and primates (Euarchontoglires).RESULTSWe have used phylostratigraphy to assess trends of gene evolution across successive phylogenetic phases, using mostly the well-annotated mouse genome as a reference. We find several significant general trends and confirm them for three other vertebrate genomes (humans, zebrafish and stickleback). Younger genes are shorter, both with respect to gene length, as well as to open reading frame length. They contain also fewer exons and have fewer recognizable domains. Average exon length, on the other hand, does not change much over time. Only the most recently evolved genes have longer exons and they are often associated with active promotor regions, i.e. are part of bidirectional promotors. We have also revisited the possibility that de novo evolution of genes could occur even within existing genes, by making use of an alternative reading frame (overprinting). We find several cases among the annotated Ensembl ORFs, where the new reading frame has emerged at a higher phylostratigraphic level than the original one. We discuss some of these overprinted genes, which include also the Hoxa9 gene where an alternative reading frame covering the homeobox has emerged within the lineage leading to rodents and primates (Euarchontoglires).We suggest that the overall trends of gene emergence are more compatible with a de novo evolution model for orphan genes than a general duplication-divergence model. Hence de novo evolution of genes appears to have occurred continuously throughout evolutionary time and should therefore be considered as a general mechanism for the emergence of new gene functions.CONCLUSIONSWe suggest that the overall trends of gene emergence are more compatible with a de novo evolution model for orphan genes than a general duplication-divergence model. Hence de novo evolution of genes appears to have occurred continuously throughout evolutionary time and should therefore be considered as a general mechanism for the emergence of new gene functions.
Background: New gene emergence is so far assumed to be mostly driven by duplication and divergence of existing genes. The possibility that entirely new genes could emerge out of the non-coding genomic background was long thought to be almost negligible. With the increasing availability of fully sequenced genomes across broad scales of phylogeny, it has become possible to systematically study the origin of new genes over time and thus revisit this question. Results: We have used phylostratigraphy to assess trends of gene evolution across successive phylogenetic phases, using mostly the well-annotated mouse genome as a reference. We find several significant general trends and confirm them for three other vertebrate genomes (humans, zebrafish and stickleback). Younger genes are shorter, both with respect to gene length, as well as to open reading frame length. They contain also fewer exons and have fewer recognizable domains. Average exon length, on the other hand, does not change much over time. Only the most recently evolved genes have longer exons and they are often associated with active promotor regions, i.e. are part of bidirectional promotors. We have also revisited the possibility that de novo evolution of genes could occur even within existing genes, by making use of an alternative reading frame (overprinting). We find several cases among the annotated Ensembl ORFs, where the new reading frame has emerged at a higher phylostratigraphic level than the original one. We discuss some of these overprinted genes, which include also the Hoxa9 gene where an alternative reading frame covering the homeobox has emerged within the lineage leading to rodents and primates (Euarchontoglires). Conclusions: We suggest that the overall trends of gene emergence are more compatible with a de novo evolution model for orphan genes than a general duplication-divergence model. Hence de novo evolution of genes appears to have occurred continuously throughout evolutionary time and should therefore be considered as a general mechanism for the emergence of new gene functions.
Doc number: 117 Abstract Background: New gene emergence is so far assumed to be mostly driven by duplication and divergence of existing genes. The possibility that entirely new genes could emerge out of the non-coding genomic background was long thought to be almost negligible. With the increasing availability of fully sequenced genomes across broad scales of phylogeny, it has become possible to systematically study the origin of new genes over time and thus revisit this question. Results: We have used phylostratigraphy to assess trends of gene evolution across successive phylogenetic phases, using mostly the well-annotated mouse genome as a reference. We find several significant general trends and confirm them for three other vertebrate genomes (humans, zebrafish and stickleback). Younger genes are shorter, both with respect to gene length, as well as to open reading frame length. They contain also fewer exons and have fewer recognizable domains. Average exon length, on the other hand, does not change much over time. Only the most recently evolved genes have longer exons and they are often associated with active promotor regions, i.e. are part of bidirectional promotors. We have also revisited the possibility that de novo evolution of genes could occur even within existing genes, by making use of an alternative reading frame (overprinting). We find several cases among the annotated Ensembl ORFs, where the new reading frame has emerged at a higher phylostratigraphic level than the original one. We discuss some of these overprinted genes, which include also the Hoxa9 gene where an alternative reading frame covering the homeobox has emerged within the lineage leading to rodents and primates (Euarchontoglires). Conclusions: We suggest that the overall trends of gene emergence are more compatible with a de novo evolution model for orphan genes than a general duplication-divergence model. Hence de novo evolution of genes appears to have occurred continuously throughout evolutionary time and should therefore be considered as a general mechanism for the emergence of new gene functions.
New gene emergence is so far assumed to be mostly driven by duplication and divergence of existing genes. The possibility that entirely new genes could emerge out of the non-coding genomic background was long thought to be almost negligible. With the increasing availability of fully sequenced genomes across broad scales of phylogeny, it has become possible to systematically study the origin of new genes over time and thus revisit this question. We have used phylostratigraphy to assess trends of gene evolution across successive phylogenetic phases, using mostly the well-annotated mouse genome as a reference. We find several significant general trends and confirm them for three other vertebrate genomes (humans, zebrafish and stickleback). Younger genes are shorter, both with respect to gene length, as well as to open reading frame length. They contain also fewer exons and have fewer recognizable domains. Average exon length, on the other hand, does not change much over time. Only the most recently evolved genes have longer exons and they are often associated with active promotor regions, i.e. are part of bidirectional promotors. We have also revisited the possibility that de novo evolution of genes could occur even within existing genes, by making use of an alternative reading frame (overprinting). We find several cases among the annotated Ensembl ORFs, where the new reading frame has emerged at a higher phylostratigraphic level than the original one. We discuss some of these overprinted genes, which include also the Hoxa9 gene where an alternative reading frame covering the homeobox has emerged within the lineage leading to rodents and primates (Euarchontoglires). We suggest that the overall trends of gene emergence are more compatible with a de novo evolution model for orphan genes than a general duplication-divergence model. Hence de novo evolution of genes appears to have occurred continuously throughout evolutionary time and should therefore be considered as a general mechanism for the emergence of new gene functions.
Author Neme, Rafik
Tautz, Diethard
AuthorAffiliation 1 Max-Planck Institute for Evolutionary Biology, August-Thienemannstrasse 2, Plön, 24306, Germany
AuthorAffiliation_xml – name: 1 Max-Planck Institute for Evolutionary Biology, August-Thienemannstrasse 2, Plön, 24306, Germany
Author_xml – sequence: 1
  givenname: Rafik
  surname: Neme
  fullname: Neme, Rafik
– sequence: 2
  givenname: Diethard
  surname: Tautz
  fullname: Tautz, Diethard
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23433480$$D View this record in MEDLINE/PubMed
BookMark eNqNks1rFjEQh4NU7IfePUnAi5fVzccmeS8FKfYDCnqwRwnZ7KTdspusSfaV_vcmtH2phYIQyGTmmeE3MzlEez54QOg9aT8TosQXwiVpKBG8IeUQ-Qod7Fx7T-x9dJjSbdsSqWj3Bu1Txhnjqj1Av37c3E3hGjzk0eLF5AzRJxwchhli8VuoDw9_cIUSTuuyhJixwXMYYKpBF-H3Cj7jAbAP24BhG6Y1j8G_Ra-dmRK8e7iP0NXpt58n583l97OLk6-Xje0oy40BCX2vNooooL0UfbexwvRi4MT11BDpKLVy6J3qnBiGqr44oHUbKinrWnaEju_rLms_w2CLmGgmvcRxNvFOBzPqfyN-vNHXYauZIEKJrhT49FAghtJLynoek4VpMh7CmjQp0-IF5PI_UMqZ2lCiCvrxGXob1ujLJCrFeEEUK9SHp-J3qh-XVID2HrAxpBTB7RDS6voPdF20rosuVvFUkeJZih2zqSsp7Y_Ty4l_AVr0toY
CitedBy_id crossref_primary_10_1016_j_ympev_2017_09_012
crossref_primary_10_1016_j_jmb_2021_167180
crossref_primary_10_1002_pro_4371
crossref_primary_10_1093_molbev_msaf036
crossref_primary_10_1016_j_gene_2016_05_041
crossref_primary_10_1016_j_ydbio_2019_11_006
crossref_primary_10_1016_j_gene_2018_07_051
crossref_primary_10_1371_journal_pbio_3001775
crossref_primary_10_1534_genetics_113_152256
crossref_primary_10_1002_bies_202400146
crossref_primary_10_1093_gbe_evv098
crossref_primary_10_1126_science_adf1323
crossref_primary_10_1186_s12864_016_2392_0
crossref_primary_10_7554_eLife_09977
crossref_primary_10_1534_genetics_118_301249
crossref_primary_10_1093_gbe_evae129
crossref_primary_10_1371_journal_pone_0232101
crossref_primary_10_1016_j_tplants_2014_07_003
crossref_primary_10_1038_s41588_018_0040_0
crossref_primary_10_3389_fgene_2022_1045301
crossref_primary_10_1016_j_cub_2014_02_016
crossref_primary_10_1016_j_meegid_2015_03_031
crossref_primary_10_1093_molbev_msab360
crossref_primary_10_1105_tpc_114_123620
crossref_primary_10_1093_genetics_iyab207
crossref_primary_10_1098_rspb_2017_1357
crossref_primary_10_1093_bioinformatics_btab735
crossref_primary_10_1016_j_sbi_2020_11_010
crossref_primary_10_1073_pnas_1603718113
crossref_primary_10_1534_genetics_119_302187
crossref_primary_10_1016_j_ajhg_2017_12_014
crossref_primary_10_3390_agronomy15020298
crossref_primary_10_1038_s41559_023_02014_y
crossref_primary_10_48130_tp_0024_0036
crossref_primary_10_1371_journal_pcbi_1003162
crossref_primary_10_1093_molbev_msx315
crossref_primary_10_1016_j_tig_2019_08_007
crossref_primary_10_1186_s12859_022_04702_1
crossref_primary_10_1016_j_jgg_2024_12_014
crossref_primary_10_1093_molbev_msad098
crossref_primary_10_3390_ijms19072064
crossref_primary_10_1186_s12862_018_1134_0
crossref_primary_10_1093_nar_gkab1238
crossref_primary_10_1111_pbi_12238
crossref_primary_10_7554_eLife_09638
crossref_primary_10_7554_eLife_78772
crossref_primary_10_1371_journal_pbio_3000862
crossref_primary_10_1093_gbe_evx099
crossref_primary_10_1186_s13062_016_0109_6
crossref_primary_10_1016_j_ajhg_2019_02_008
crossref_primary_10_1038_s41559_018_0639_7
crossref_primary_10_1017_S0967199423000631
crossref_primary_10_1371_journal_pcbi_1010399
crossref_primary_10_1093_gbe_evx136
crossref_primary_10_1371_journal_pcbi_1005375
crossref_primary_10_1134_S1062360421060035
crossref_primary_10_1038_nrm_2017_58
crossref_primary_10_1038_s41525_020_00167_4
crossref_primary_10_1016_j_tig_2024_04_010
crossref_primary_10_1093_molbev_msz300
crossref_primary_10_7554_eLife_44392
crossref_primary_10_1051_medsci_2018300
crossref_primary_10_1186_s13059_023_02895_z
crossref_primary_10_1093_molbev_msaa153
crossref_primary_10_1101_gr_277482_122
crossref_primary_10_7554_eLife_57347
crossref_primary_10_3389_fpls_2022_872137
crossref_primary_10_7554_eLife_03523
crossref_primary_10_3390_jdb11020027
crossref_primary_10_1101_gr_234872_118
crossref_primary_10_1016_j_tig_2014_08_004
crossref_primary_10_1016_j_chom_2024_08_017
crossref_primary_10_1016_j_tig_2021_06_017
crossref_primary_10_1093_gbe_evad023
crossref_primary_10_1093_gbe_evv106
crossref_primary_10_1371_journal_pone_0119651
crossref_primary_10_1016_j_ajhg_2023_08_005
crossref_primary_10_1371_journal_pone_0072742
crossref_primary_10_1146_annurev_genet_111523_102413
crossref_primary_10_1101_gr_161315_113
crossref_primary_10_1016_j_tig_2015_02_007
crossref_primary_10_1021_acssynbio_0c00323
crossref_primary_10_1101_gr_279498_124
crossref_primary_10_1186_s13062_015_0104_3
crossref_primary_10_1002_bies_201400138
crossref_primary_10_3390_jof10080511
crossref_primary_10_1093_molbev_msaa105
crossref_primary_10_1093_gbe_evy161
crossref_primary_10_1038_s41559_017_0146
crossref_primary_10_1053_j_seminoncol_2018_11_002
crossref_primary_10_32388_KIEJWR_2
crossref_primary_10_1016_j_it_2014_07_008
crossref_primary_10_1093_hr_uhae252
crossref_primary_10_1093_gbe_evac028
crossref_primary_10_1093_gbe_evt155
crossref_primary_10_3389_fgene_2020_00820
crossref_primary_10_1371_journal_pone_0252674
crossref_primary_10_1042_BST20150089
crossref_primary_10_1186_s12862_016_0683_3
crossref_primary_10_1016_j_cub_2022_04_085
crossref_primary_10_1038_s41598_023_41410_z
crossref_primary_10_1093_bib_bbx166
crossref_primary_10_1038_nrg_2016_78
crossref_primary_10_1016_j_plantsci_2019_05_001
crossref_primary_10_1038_s41467_021_21667_6
crossref_primary_10_1016_j_tig_2024_10_012
crossref_primary_10_1007_s11427_019_9482_0
crossref_primary_10_1098_rsta_2015_0065
crossref_primary_10_1371_journal_pgen_1008160
crossref_primary_10_1016_j_cell_2018_02_028
crossref_primary_10_1038_s41586_021_03511_5
crossref_primary_10_1186_s12859_019_3023_y
crossref_primary_10_1007_s00018_016_2138_9
crossref_primary_10_1038_ncomms8866
crossref_primary_10_3390_genes12121913
crossref_primary_10_1016_j_yexcr_2020_111940
crossref_primary_10_1128_mBio_00837_19
crossref_primary_10_1007_s12064_015_0215_5
crossref_primary_10_3389_fgene_2021_652189
crossref_primary_10_1093_bioinformatics_btz171
crossref_primary_10_1093_gbe_evx109
crossref_primary_10_1186_s13227_017_0089_3
crossref_primary_10_1186_s42483_019_0041_7
crossref_primary_10_1371_journal_pgen_1005721
crossref_primary_10_1007_s13205_025_04213_9
crossref_primary_10_1093_gbe_evae176
crossref_primary_10_3389_fpls_2016_00983
crossref_primary_10_1016_j_jgg_2021_03_018
crossref_primary_10_1186_s12864_019_5611_7
crossref_primary_10_7554_eLife_27860
crossref_primary_10_1095_biolreprod_114_118166
crossref_primary_10_1101_gr_279166_124
crossref_primary_10_1093_gbe_evy267
crossref_primary_10_7554_eLife_01311
crossref_primary_10_4137_BBI_S39950
crossref_primary_10_1093_bib_bby074
crossref_primary_10_1371_journal_pgen_1004590
crossref_primary_10_1007_s00122_023_04411_0
crossref_primary_10_1093_molbev_msu292
crossref_primary_10_1051_medsci_20143012022
crossref_primary_10_1093_molbev_msac031
crossref_primary_10_2139_ssrn_4002758
crossref_primary_10_1016_j_molp_2014_12_008
crossref_primary_10_1186_s12864_016_3062_y
crossref_primary_10_1093_molbev_msaa230
crossref_primary_10_1038_s41588_024_02059_0
crossref_primary_10_3389_fgene_2021_812139
crossref_primary_10_1534_genetics_120_302815
crossref_primary_10_1242_dev_184044
crossref_primary_10_1080_12298093_2018_1542970
crossref_primary_10_1371_journal_pgen_1005391
crossref_primary_10_5423_PPJ_OA_08_2014_0072
crossref_primary_10_1038_s41467_020_14500_z
crossref_primary_10_1534_genetics_117_300467
crossref_primary_10_1038_s41598_023_49626_9
crossref_primary_10_1038_srep40301
crossref_primary_10_1186_s12862_015_0558_z
crossref_primary_10_1016_j_celrep_2013_12_030
crossref_primary_10_1371_journal_pgen_1009227
crossref_primary_10_1038_s41598_017_07866_6
crossref_primary_10_1093_molbev_msw008
crossref_primary_10_1002_jez_b_22895
crossref_primary_10_1007_s00438_021_01810_0
crossref_primary_10_1093_g3journal_jkad122
crossref_primary_10_1093_molbev_msx210
Cites_doi 10.1073/pnas.81.8.2421
10.1038/ng.790
10.1016/j.febslet.2011.01.017
10.1038/nrm1589
10.1186/1741-7007-8-66
10.1073/pnas.0901808106
10.1016/j.modgep.2003.08.006
10.1186/1471-2148-11-47
10.1101/gr.076588.108
10.1186/1471-2148-6-91
10.1093/bioinformatics/btq033
10.1101/gr.101386.109
10.1186/gb-2010-11-7-r74
10.1093/dnares/dsq006
10.1126/science.1162253
10.1073/pnas.89.20.9489
10.1016/j.sbi.2011.03.014
10.1042/BJ20090122
10.1139/O09-163
10.1093/database/bar030
10.1101/gr.1311003
10.1016/j.tig.2009.07.006
10.1073/pnas.0509809103
10.1016/j.neuron.2007.06.021
10.1093/molbev/msn214
10.1101/gr.098376.109
10.1093/gbe/evr099
10.1093/molbev/msr250
10.1038/cr.2010.31
10.1186/1471-2148-7-53
10.1534/genetics.107.084491
10.1016/j.cub.2009.07.049
10.1186/jbiol16
10.1093/nar/gkq963
10.1093/nar/gkh103
10.1093/emboj/20.14.3849
10.1093/nar/gkq1064
10.1093/molbev/mss179
10.1016/S0168-9525(00)02024-2
10.1038/nature11394
10.1038/nature11184
10.1016/S0169-5347(03)00033-8
10.1128/JVI.00595-09
10.1038/nature09632
10.1371/journal.pcbi.1000734
10.1371/journal.pbio.1000625
10.1093/bfgp/eln054
10.1016/j.jmb.2009.11.053
10.1101/gr.092759.109
10.1101/gr.095026.109
10.4161/cc.8.16.9305
10.1038/nrc1954
10.1093/nar/25.17.3389
10.1093/gbe/evq019
10.1371/journal.pgen.1002379
10.1016/j.tig.2007.08.014
10.1186/1471-2148-2-20
ContentType Journal Article
Copyright 2013 Neme and Tautz; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © 2013 Neme and Tautz; licensee BioMed Central Ltd. 2013 Neme and Tautz; licensee BioMed Central Ltd.
Copyright_xml – notice: 2013 Neme and Tautz; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
– notice: Copyright © 2013 Neme and Tautz; licensee BioMed Central Ltd. 2013 Neme and Tautz; licensee BioMed Central Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QP
7QR
7SS
7TK
7U7
7X7
7XB
88E
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
7X8
F1W
H95
L.G
5PM
DOI 10.1186/1471-2164-14-117
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Entomology Abstracts (Full archive)
Neurosciences Abstracts
Toxicology Abstracts
Health & Medical Collection (ProQuest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database (ProQuest)
Biotechnology and BioEngineering Abstracts
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
MEDLINE - Academic
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
Toxicology Abstracts
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
DatabaseTitleList MEDLINE - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Publicly Available Content Database
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2164
EndPage 117
ExternalDocumentID PMC3616865
2935793601
23433480
10_1186_1471_2164_14_117
Genre Journal Article
GroupedDBID ---
0R~
23N
2VQ
2WC
2XV
4.4
53G
5VS
6J9
7X7
88E
8AO
8FE
8FH
8FI
8FJ
AAFWJ
AAHBH
AAJSJ
AASML
AAYXX
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C1A
C6C
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
IGS
IHR
INH
INR
IPNFZ
ISR
ITC
KQ8
LK8
M1P
M48
M7P
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
RIG
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
U2A
UKHRP
W2D
WOQ
WOW
XSB
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QP
7QR
7SS
7TK
7U7
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
7X8
PUEGO
F1W
H95
L.G
5PM
ID FETCH-LOGICAL-c523t-ae7ebb89818e2b76b59c6ab6d41fb2a17f22c7dbf85f6dd234322ce0f92723503
IEDL.DBID 7X7
ISSN 1471-2164
IngestDate Thu Aug 21 18:25:23 EDT 2025
Fri Sep 05 13:05:19 EDT 2025
Fri Sep 05 13:00:19 EDT 2025
Fri Jul 25 10:43:35 EDT 2025
Thu Apr 03 06:58:32 EDT 2025
Tue Jul 01 02:22:02 EDT 2025
Thu Apr 24 23:09:01 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c523t-ae7ebb89818e2b76b59c6ab6d41fb2a17f22c7dbf85f6dd234322ce0f92723503
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/1323418383?pq-origsite=%requestingapplication%
PMID 23433480
PQID 1323418383
PQPubID 44682
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3616865
proquest_miscellaneous_1348486547
proquest_miscellaneous_1324389218
proquest_journals_1323418383
pubmed_primary_23433480
crossref_primary_10_1186_1471_2164_14_117
crossref_citationtrail_10_1186_1471_2164_14_117
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-02-21
PublicationDateYYYYMMDD 2013-02-21
PublicationDate_xml – month: 02
  year: 2013
  text: 2013-02-21
  day: 21
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle BMC genomics
PublicationTitleAlternate BMC Genomics
PublicationYear 2013
Publisher BioMed Central
Publisher_xml – name: BioMed Central
References 10.1186/1471-2164-14-117-B35
10.1186/1471-2164-14-117-B36
10.1186/1471-2164-14-117-B34
10.1186/1471-2164-14-117-B32
10.1186/1471-2164-14-117-B30
10.1186/1471-2164-14-117-B39
10.1186/1471-2164-14-117-B37
10.1186/1471-2164-14-117-B38
10.1186/1471-2164-14-117-B1
10.1186/1471-2164-14-117-B50
10.1186/1471-2164-14-117-B2
-
10.1186/1471-2164-14-117-B46
10.1186/1471-2164-14-117-B8
10.1186/1471-2164-14-117-B47
10.1186/1471-2164-14-117-B44
10.1186/1471-2164-14-117-B45
10.1186/1471-2164-14-117-B5
10.1186/1471-2164-14-117-B42
10.1186/1471-2164-14-117-B43
10.1186/1471-2164-14-117-B7
10.1186/1471-2164-14-117-B40
10.1186/1471-2164-14-117-B6
10.1186/1471-2164-14-117-B48
10.1186/1471-2164-14-117-B49
10.1186/1471-2164-14-117-B61
10.1186/1471-2164-14-117-B13
10.1186/1471-2164-14-117-B14
10.1186/1471-2164-14-117-B11
10.1186/1471-2164-14-117-B55
10.1186/1471-2164-14-117-B12
10.1186/1471-2164-14-117-B10
10.1186/1471-2164-14-117-B54
10.1186/1471-2164-14-117-B52
10.1186/1471-2164-14-117-B19
10.1186/1471-2164-14-117-B17
10.1186/1471-2164-14-117-B18
10.1186/1471-2164-14-117-B15
10.1186/1471-2164-14-117-B59
10.1186/1471-2164-14-117-B16
10.1186/1471-2164-14-117-B24
10.1186/1471-2164-14-117-B68
10.1186/1471-2164-14-117-B25
10.1186/1471-2164-14-117-B22
10.1186/1471-2164-14-117-B23
10.1186/1471-2164-14-117-B67
10.1186/1471-2164-14-117-B20
10.1186/1471-2164-14-117-B64
10.1186/1471-2164-14-117-B21
10.1186/1471-2164-14-117-B65
10.1186/1471-2164-14-117-B62
10.1186/1471-2164-14-117-B28
10.1186/1471-2164-14-117-B29
10.1186/1471-2164-14-117-B27
19597342 - Cell Cycle. 2009 Aug 15;8(16):2557-64
19716618 - Trends Genet. 2009 Sep;25(9):404-13
21241695 - FEBS Lett. 2011 Feb 18;585(4):641-4
21332978 - BMC Evol Biol. 2011;11:47
19064677 - Mol Biol Evol. 2009 Mar;26(3):603-12
22722833 - Nature. 2012 Jul 19;487(7407):370-4
12045153 - Genome Res. 2002 Jun;12(6):996-1006
16915296 - Nat Rev Cancer. 2006 Sep;6(9):663-73
16777968 - Proc Natl Acad Sci U S A. 2006 Jun 27;103(26):9935-9
19541911 - Genome Res. 2009 Sep;19(9):1639-45
11447126 - EMBO J. 2001 Jul 16;20(14):3849-60
19272021 - Biochem J. 2009 Apr 1;419(1):15-28
20633280 - Genome Biol. 2010;11(7):R74
22821011 - Mol Biol Evol. 2012 Dec;29(12):3767-80
21785142 - Database (Oxford). 2011;2011:bar030
21423180 - Nat Genet. 2011 Apr;43(4):379-86
21765801 - PLoS Biol. 2011 Jul;9(7):e1000625; discussion e1001102
9254694 - Nucleic Acids Res. 1997 Sep 1;25(17):3389-402
20376170 - PLoS Comput Biol. 2010 Mar;6(3):e1000734
18550802 - Genome Res. 2008 Sep;18(9):1446-55
17090320 - BMC Evol Biol. 2006;6:91
20624743 - Genome Biol Evol. 2010;2:393-409
20110278 - Bioinformatics. 2010 Mar 15;26(6):841-2
20453919 - Biochem Cell Biol. 2010 Apr;88(2):167-74
19640978 - J Virol. 2009 Oct;83(20):10719-36
6585807 - Proc Natl Acad Sci U S A. 1984 Apr;81(8):2421-5
21514145 - Curr Opin Struct Biol. 2011 Jun;21(3):412-8
21878963 - Nat Rev Genet. 2011 Oct;12(10):692-702
20211845 - DNA Res. 2010 Apr;17(2):51-9
19056940 - Science. 2008 Dec 19;322(5909):1849-51
11932250 - Genome Res. 2002 Apr;12(4):656-64
17408474 - BMC Evol Biol. 2007;7:53
20195295 - Cell Res. 2010 Apr;20(4):408-20
18820252 - Mol Biol Evol. 2008 Dec;25(12):2699-707
16110341 - PLoS Genet. 2005 Aug;1(2):e18
12410938 - BMC Evol Biol. 2002 Nov 1;2:20
19029536 - Genome Res. 2009 Feb;19(2):327-35
18493065 - Genetics. 2008 May;179(1):487-96
18029048 - Trends Genet. 2007 Nov;23(11):533-9
14525923 - Genome Res. 2003 Oct;13(10):2213-9
19797681 - Genome Res. 2009 Oct;19(10):1693-5
19733073 - Curr Biol. 2009 Sep 29;19(18):1527-31
22016574 - Mol Biol Evol. 2012 Feb;29(2):787-96
1329098 - Proc Natl Acad Sci U S A. 1992 Oct 15;89(20):9489-93
19944701 - J Mol Biol. 2010 Feb 19;396(2):396-405
22102831 - PLoS Genet. 2011 Nov;7(11):e1002379
21045057 - Nucleic Acids Res. 2011 Jan;39(Database issue):D800-6
19074495 - Brief Funct Genomic Proteomic. 2009 Jan;8(1):68-74
22889292 - Genome Biol. 2012;13(8):418
17435230 - Genetics. 2007 Jun;176(2):1131-7
21150997 - Nature. 2010 Dec 9;468(7325):815-8
10827456 - Trends Genet. 2000 Jun;16(6):276-7
17610818 - Neuron. 2007 Jul 5;55(1):69-85
20651121 - Genome Res. 2010 Oct;20(10):1313-26
15738986 - Nat Rev Mol Cell Biol. 2005 Mar;6(3):197-208
14681465 - Nucleic Acids Res. 2004 Jan 1;32(Database issue):D493-6
22096229 - Nucleic Acids Res. 2012 Jan;40(Database issue):D306-12
19351897 - Proc Natl Acad Sci U S A. 2009 May 5;106(18):7273-80
15588312 - J Biol. 2004;3(5):21
19726446 - Genome Res. 2009 Oct;19(10):1752-9
21948395 - Genome Biol Evol. 2011;3:1245-52
15161102 - Gene Expr Patterns. 2004 Mar;4(2):215-22
20492640 - BMC Biol. 2010;8:66
22951968 - Nature. 2012 Oct 4;490(7418):98-101
20959295 - Nucleic Acids Res. 2011 Jan;39(Database issue):D876-82
17511511 - PLoS Comput Biol. 2007 May;3(5):e91
References_xml – ident: -
  doi: 10.1073/pnas.81.8.2421
– ident: 10.1186/1471-2164-14-117-B52
  doi: 10.1038/ng.790
– ident: 10.1186/1471-2164-14-117-B14
  doi: 10.1016/j.febslet.2011.01.017
– ident: 10.1186/1471-2164-14-117-B44
  doi: 10.1038/nrm1589
– ident: 10.1186/1471-2164-14-117-B23
  doi: 10.1186/1741-7007-8-66
– ident: 10.1186/1471-2164-14-117-B36
  doi: 10.1073/pnas.0901808106
– ident: 10.1186/1471-2164-14-117-B40
  doi: 10.1016/j.modgep.2003.08.006
– ident: 10.1186/1471-2164-14-117-B15
  doi: 10.1186/1471-2148-11-47
– ident: 10.1186/1471-2164-14-117-B10
  doi: 10.1101/gr.076588.108
– ident: 10.1186/1471-2164-14-117-B42
  doi: 10.1186/1471-2148-6-91
– ident: 10.1186/1471-2164-14-117-B64
  doi: 10.1093/bioinformatics/btq033
– ident: 10.1186/1471-2164-14-117-B5
  doi: 10.1101/gr.101386.109
– ident: 10.1186/1471-2164-14-117-B38
  doi: 10.1186/gb-2010-11-7-r74
– ident: 10.1186/1471-2164-14-117-B47
  doi: 10.1093/dnares/dsq006
– ident: 10.1186/1471-2164-14-117-B49
  doi: 10.1126/science.1162253
– ident: 10.1186/1471-2164-14-117-B27
  doi: 10.1073/pnas.89.20.9489
– ident: 10.1186/1471-2164-14-117-B46
  doi: 10.1016/j.sbi.2011.03.014
– ident: 10.1186/1471-2164-14-117-B37
  doi: 10.1042/BJ20090122
– ident: 10.1186/1471-2164-14-117-B45
  doi: 10.1139/O09-163
– ident: -
  doi: 10.1093/database/bar030
– ident: 10.1186/1471-2164-14-117-B1
  doi: 10.1101/gr.1311003
– ident: 10.1186/1471-2164-14-117-B2
  doi: 10.1016/j.tig.2009.07.006
– ident: 10.1186/1471-2164-14-117-B8
  doi: 10.1073/pnas.0509809103
– ident: 10.1186/1471-2164-14-117-B39
  doi: 10.1016/j.neuron.2007.06.021
– ident: 10.1186/1471-2164-14-117-B22
  doi: 10.1093/molbev/msn214
– ident: 10.1186/1471-2164-14-117-B7
  doi: 10.1101/gr.098376.109
– ident: 10.1186/1471-2164-14-117-B19
  doi: 10.1093/gbe/evr099
– ident: 10.1186/1471-2164-14-117-B43
  doi: 10.1093/molbev/msr250
– ident: 10.1186/1471-2164-14-117-B17
  doi: 10.1038/cr.2010.31
– ident: 10.1186/1471-2164-14-117-B34
  doi: 10.1186/1471-2148-7-53
– ident: 10.1186/1471-2164-14-117-B11
  doi: 10.1534/genetics.107.084491
– ident: 10.1186/1471-2164-14-117-B13
  doi: 10.1016/j.cub.2009.07.049
– ident: 10.1186/1471-2164-14-117-B65
  doi: 10.1186/jbiol16
– ident: 10.1186/1471-2164-14-117-B61
  doi: 10.1093/nar/gkq963
– ident: 10.1186/1471-2164-14-117-B62
  doi: 10.1093/nar/gkh103
– ident: 10.1186/1471-2164-14-117-B30
  doi: 10.1093/emboj/20.14.3849
– ident: 10.1186/1471-2164-14-117-B55
  doi: 10.1093/nar/gkq1064
– ident: 10.1186/1471-2164-14-117-B29
  doi: 10.1093/molbev/mss179
– ident: 10.1186/1471-2164-14-117-B67
  doi: 10.1016/S0168-9525(00)02024-2
– ident: 10.1186/1471-2164-14-117-B25
  doi: 10.1038/nature11394
– ident: 10.1186/1471-2164-14-117-B20
  doi: 10.1038/nature11184
– ident: -
  doi: 10.1016/S0169-5347(03)00033-8
– ident: 10.1186/1471-2164-14-117-B28
  doi: 10.1128/JVI.00595-09
– ident: 10.1186/1471-2164-14-117-B24
  doi: 10.1038/nature09632
– ident: 10.1186/1471-2164-14-117-B12
  doi: 10.1371/journal.pcbi.1000734
– ident: 10.1186/1471-2164-14-117-B48
  doi: 10.1371/journal.pbio.1000625
– ident: -
  doi: 10.1093/bfgp/eln054
– ident: 10.1186/1471-2164-14-117-B54
  doi: 10.1016/j.jmb.2009.11.053
– ident: 10.1186/1471-2164-14-117-B59
  doi: 10.1101/gr.092759.109
– ident: 10.1186/1471-2164-14-117-B16
  doi: 10.1101/gr.095026.109
– ident: 10.1186/1471-2164-14-117-B50
  doi: 10.4161/cc.8.16.9305
– ident: 10.1186/1471-2164-14-117-B32
  doi: 10.1038/nrc1954
– ident: 10.1186/1471-2164-14-117-B68
  doi: 10.1093/nar/25.17.3389
– ident: 10.1186/1471-2164-14-117-B6
  doi: 10.1093/gbe/evq019
– ident: 10.1186/1471-2164-14-117-B18
  doi: 10.1371/journal.pgen.1002379
– ident: 10.1186/1471-2164-14-117-B21
  doi: 10.1016/j.tig.2007.08.014
– ident: 10.1186/1471-2164-14-117-B35
  doi: 10.1186/1471-2148-2-20
– reference: 22821011 - Mol Biol Evol. 2012 Dec;29(12):3767-80
– reference: 20959295 - Nucleic Acids Res. 2011 Jan;39(Database issue):D876-82
– reference: 19064677 - Mol Biol Evol. 2009 Mar;26(3):603-12
– reference: 20211845 - DNA Res. 2010 Apr;17(2):51-9
– reference: 19029536 - Genome Res. 2009 Feb;19(2):327-35
– reference: 19597342 - Cell Cycle. 2009 Aug 15;8(16):2557-64
– reference: 18550802 - Genome Res. 2008 Sep;18(9):1446-55
– reference: 21948395 - Genome Biol Evol. 2011;3:1245-52
– reference: 21241695 - FEBS Lett. 2011 Feb 18;585(4):641-4
– reference: 22889292 - Genome Biol. 2012;13(8):418
– reference: 15161102 - Gene Expr Patterns. 2004 Mar;4(2):215-22
– reference: 17408474 - BMC Evol Biol. 2007;7:53
– reference: 19726446 - Genome Res. 2009 Oct;19(10):1752-9
– reference: 19797681 - Genome Res. 2009 Oct;19(10):1693-5
– reference: 20492640 - BMC Biol. 2010;8:66
– reference: 22722833 - Nature. 2012 Jul 19;487(7407):370-4
– reference: 11932250 - Genome Res. 2002 Apr;12(4):656-64
– reference: 19541911 - Genome Res. 2009 Sep;19(9):1639-45
– reference: 19272021 - Biochem J. 2009 Apr 1;419(1):15-28
– reference: 20453919 - Biochem Cell Biol. 2010 Apr;88(2):167-74
– reference: 17090320 - BMC Evol Biol. 2006;6:91
– reference: 21785142 - Database (Oxford). 2011;2011:bar030
– reference: 20651121 - Genome Res. 2010 Oct;20(10):1313-26
– reference: 10827456 - Trends Genet. 2000 Jun;16(6):276-7
– reference: 20110278 - Bioinformatics. 2010 Mar 15;26(6):841-2
– reference: 22096229 - Nucleic Acids Res. 2012 Jan;40(Database issue):D306-12
– reference: 19944701 - J Mol Biol. 2010 Feb 19;396(2):396-405
– reference: 1329098 - Proc Natl Acad Sci U S A. 1992 Oct 15;89(20):9489-93
– reference: 21150997 - Nature. 2010 Dec 9;468(7325):815-8
– reference: 17511511 - PLoS Comput Biol. 2007 May;3(5):e91
– reference: 12410938 - BMC Evol Biol. 2002 Nov 1;2:20
– reference: 19733073 - Curr Biol. 2009 Sep 29;19(18):1527-31
– reference: 22951968 - Nature. 2012 Oct 4;490(7418):98-101
– reference: 18493065 - Genetics. 2008 May;179(1):487-96
– reference: 21423180 - Nat Genet. 2011 Apr;43(4):379-86
– reference: 17610818 - Neuron. 2007 Jul 5;55(1):69-85
– reference: 19056940 - Science. 2008 Dec 19;322(5909):1849-51
– reference: 19640978 - J Virol. 2009 Oct;83(20):10719-36
– reference: 19074495 - Brief Funct Genomic Proteomic. 2009 Jan;8(1):68-74
– reference: 19351897 - Proc Natl Acad Sci U S A. 2009 May 5;106(18):7273-80
– reference: 12045153 - Genome Res. 2002 Jun;12(6):996-1006
– reference: 21332978 - BMC Evol Biol. 2011;11:47
– reference: 18820252 - Mol Biol Evol. 2008 Dec;25(12):2699-707
– reference: 20624743 - Genome Biol Evol. 2010;2:393-409
– reference: 18029048 - Trends Genet. 2007 Nov;23(11):533-9
– reference: 22102831 - PLoS Genet. 2011 Nov;7(11):e1002379
– reference: 20376170 - PLoS Comput Biol. 2010 Mar;6(3):e1000734
– reference: 15588312 - J Biol. 2004;3(5):21
– reference: 22016574 - Mol Biol Evol. 2012 Feb;29(2):787-96
– reference: 17435230 - Genetics. 2007 Jun;176(2):1131-7
– reference: 21514145 - Curr Opin Struct Biol. 2011 Jun;21(3):412-8
– reference: 15738986 - Nat Rev Mol Cell Biol. 2005 Mar;6(3):197-208
– reference: 21878963 - Nat Rev Genet. 2011 Oct;12(10):692-702
– reference: 14525923 - Genome Res. 2003 Oct;13(10):2213-9
– reference: 14681465 - Nucleic Acids Res. 2004 Jan 1;32(Database issue):D493-6
– reference: 16777968 - Proc Natl Acad Sci U S A. 2006 Jun 27;103(26):9935-9
– reference: 20633280 - Genome Biol. 2010;11(7):R74
– reference: 21765801 - PLoS Biol. 2011 Jul;9(7):e1000625; discussion e1001102
– reference: 19716618 - Trends Genet. 2009 Sep;25(9):404-13
– reference: 20195295 - Cell Res. 2010 Apr;20(4):408-20
– reference: 16110341 - PLoS Genet. 2005 Aug;1(2):e18
– reference: 9254694 - Nucleic Acids Res. 1997 Sep 1;25(17):3389-402
– reference: 16915296 - Nat Rev Cancer. 2006 Sep;6(9):663-73
– reference: 6585807 - Proc Natl Acad Sci U S A. 1984 Apr;81(8):2421-5
– reference: 21045057 - Nucleic Acids Res. 2011 Jan;39(Database issue):D800-6
– reference: 11447126 - EMBO J. 2001 Jul 16;20(14):3849-60
SSID ssj0017825
Score 2.4895594
Snippet New gene emergence is so far assumed to be mostly driven by duplication and divergence of existing genes. The possibility that entirely new genes could emerge...
Doc number: 117 Abstract Background: New gene emergence is so far assumed to be mostly driven by duplication and divergence of existing genes. The possibility...
Background: New gene emergence is so far assumed to be mostly driven by duplication and divergence of existing genes. The possibility that entirely new genes...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 117
SubjectTerms Aging - genetics
Animals
Biological Evolution
Candidates
Chromosomes - genetics
Danio rerio
Evolutionary biology
Exons - genetics
Genes
Genetics
Genome
Genomes
Genomics
Homeodomain Proteins - genetics
Humans
Membrane Proteins - classification
Membrane Proteins - genetics
Mice
Models, Genetic
Open Reading Frames - genetics
Phylogenetics
Phylogeny
Promoter Regions, Genetic
Smegmamorpha - genetics
Zebrafish - genetics
SummonAdditionalLinks – databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR3LSgQxrPhA8CK-XV9U8OJhdNvptN2DiIgiguLBBS8ytNMWBZlZ9yH69ybd2dVVWZjDDEmHNkmbhDQJIYeMG2NcahKBpT4FdyExaVYkOmDermpKEwPtt3fyui1uHrPH7_TomoC9f1077CfV7r4ef7x9nsGGP40bXssTBgdswsHuTxg8TM2S-Rgtwot84jumALowGwUq_xk1qZj-WJu_L03-0EJXy2SpNh_p-ZDfK2TGl6tkYdhQ8nONPN0_gwMOMoGpibQTa2eWPVoF6us0S48fYEpTROrR3qCDa6eGxpY4CAzdeLu6T52nZfVeUf9ei-c6aV9dPlxcJ3UDhaQA_7KfGK-8tboFStlzq6TNWoU0VjrBguWGqcB5oZwNOgvSOY5JprzwzdDiiqdZM90gc2VV-i1CfSuw1GTOu9QLx4VlTukg4IwquA2q2SAnI-rlRV1dHJtcvObRy9AyR3rnSG94wxLjDXI0HtEZVtaYgrs7Ykg-EpEc_GhQwRpc7AY5GINhd2DIw5S-GkQcbO8Odsw0HKGFxibMDbI55PF4QkgSAMPy1AT3xwhYnXsSUr48xyrdqWQS_ro9feo7ZJHHBhscZHGXzPW7A78HZk7f7kfp_QJRqPr_
  priority: 102
  providerName: Scholars Portal
Title Phylogenetic patterns of emergence of new genes support a model of frequent de novo evolution
URI https://www.ncbi.nlm.nih.gov/pubmed/23433480
https://www.proquest.com/docview/1323418383
https://www.proquest.com/docview/1324389218
https://www.proquest.com/docview/1348486547
https://pubmed.ncbi.nlm.nih.gov/PMC3616865
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS-QwEA93ysG9iPfpqrfk4F58CLtJ0yT7JHoocqDIccK-SEmaBA-kXe2u4H_vTDZb9Q4WSmnJtKQz0_nIx_wI-cGFtdYXlkks9SmFj8wWZc1MxH27eqxsmmg_v1BnV_LXtJzmAbcuL6tc2cRkqH1b4xj5CLImMLgGEqrD2R1D1CicXc0QGm_JJodIBKEb9LRPuDh4v3I1NWnUiIMhZgLyA8bhSBBlL1zRf_Hlv8skX_id022ylQNGerSU8AfyJjQfybslhOTjJ3J9eQMpN2gBbkaks1Qts-loG2nIGysD3kDwTJGoo91ihiE3tTSB4GBjvE_rqefUB9q0Dy0ND1khP5Or05M_P89YhkxgNWSUc2aDDs6ZCbjhIJxWrpzUyjrlJY9OWK6jELX2LpoyKu8FbisVdRjHidCiKMfFF7LRtE3YITRMIi9s6YMvgvRCOu61iRKsUi1c1OMBGa24V9W5njjCWtxWKa8wqkJ-V8hvuMKi4gNy0D8xW9bSWEO7vxJIlf-qrnrWgQH53jfD_4CTHLYJ7SLRIKA7RC7raKSRBmGXB-TrUsZ9h5Al0Ayfp19JvyfAetyvW5q_N6kud6G4grfuru_6HnkvEqSGAF3cJxvz-0X4BoHN3A2T9g7J5vHJxeXvYRoegPO5NE9-Bvvg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7RRVV7QX13C21dqT30YO3GcZzsAVV9gJYCK1SBxKVK7dgWSCjZkl0Qf47f1hlvkkIr7Q0ph0SeRM547JnxeOYDeB8JrbWNNZdU6lMK67mOk4JnnvJ206HSIdC-P1HjI_n9ODleges2F4aOVbZrYliobVXQHvkAvSZccDN0qD5Nf3NCjaLoaguhoRtoBbsZSow1iR277uoSXbh6c-cbjvcHIba3Dr-OeYMywAt0wmZcu9QZk41QczlhUmWSUaG0UVZG3ggdpV6IIrXGZ4lX1grKxBSFG_qRSEWcDGP87j1YlbSB0oPVL1uTgx9dHAP1b9IGRzM1iFAVcIEeCo_wCiBpN5Thfxbuvwc1b2i-7Uew1pis7PNCxh7DiiufwP0FiOXVU_h5cIJOP8ohpUOyaajXWdas8sw1qZ2OHtB8Z0RUs3o-JaOfaRZgeKjRn4cT3TNmHSuri4q5i2ZKPIOjO2Hnc-iVVeleAnMjH8U6sc7GTlohTWTTzEtcFwthfDrsw6DlXl40Fc0JWOMsD55NpnLid078xjsqa96Hj90b00U1jyW0G-2A5M28rvO_UtiHd10zzkgKs-jSVfNAQ5DyaDsto5GZzAj4uQ8vFmPcdYhYgs34e-mt0e8IqCL47Zby9CRUBo9VpPCrr5Z3_S08GB_u7-V7O5PddXgoAsCHQLncgN7sfO5eo5k1M28aWWbw666nzx8wODyI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phylogenetic+patterns+of+emergence+of+new+genes+support+a+model+of+frequent+de+novo+evolution&rft.jtitle=BMC+genomics&rft.au=Neme%2C+Rafik&rft.au=Tautz%2C+Diethard&rft.date=2013-02-21&rft.pub=BioMed+Central&rft.eissn=1471-2164&rft.volume=14&rft_id=info:doi/10.1186%2F1471-2164-14-117&rft.externalDocID=2935793601
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2164&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2164&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2164&client=summon