epiTCR: a highly sensitive predictor for TCR–peptide binding
Abstract Motivation Predicting the binding between T-cell receptor (TCR) and peptide presented by human leucocyte antigen molecule is a highly challenging task and a key bottleneck in the development of immunotherapy. Existing prediction tools, despite exhibiting good performance on the datasets the...
Saved in:
Published in | Bioinformatics (Oxford, England) Vol. 39; no. 5 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
04.05.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 1367-4811 1367-4803 1367-4811 |
DOI | 10.1093/bioinformatics/btad284 |
Cover
Abstract | Abstract
Motivation
Predicting the binding between T-cell receptor (TCR) and peptide presented by human leucocyte antigen molecule is a highly challenging task and a key bottleneck in the development of immunotherapy. Existing prediction tools, despite exhibiting good performance on the datasets they were built with, suffer from low true positive rates when used to predict epitopes capable of eliciting T-cell responses in patients. Therefore, an improved tool for TCR–peptide prediction built upon a large dataset combining existing publicly available data is still needed.
Results
We collected data from five public databases (IEDB, TBAdb, VDJdb, McPAS-TCR, and 10X) to form a dataset of >3 million TCR–peptide pairs, 3.27% of which were binding interactions. We proposed epiTCR, a Random Forest-based method dedicated to predicting the TCR–peptide interactions. epiTCR used simple input of TCR CDR3β sequences and antigen sequences, which are encoded by flattened BLOSUM62. epiTCR performed with area under the curve (0.98) and higher sensitivity (0.94) than other existing tools (NetTCR, Imrex, ATM-TCR, and pMTnet), while maintaining comparable prediction specificity (0.9). We identified seven epitopes that contributed to 98.67% of false positives predicted by epiTCR and exerted similar effects on other tools. We also demonstrated a considerable influence of peptide sequences on prediction, highlighting the need for more diverse peptides in a more balanced dataset. In conclusion, epiTCR is among the most well-performing tools, thanks to the use of combined data from public sources and its use will contribute to the quest in identifying neoantigens for precision cancer immunotherapy.
Availability and implementation
epiTCR is available on GitHub (https://github.com/ddiem-ri-4D/epiTCR). |
---|---|
AbstractList | Abstract
Motivation
Predicting the binding between T-cell receptor (TCR) and peptide presented by human leucocyte antigen molecule is a highly challenging task and a key bottleneck in the development of immunotherapy. Existing prediction tools, despite exhibiting good performance on the datasets they were built with, suffer from low true positive rates when used to predict epitopes capable of eliciting T-cell responses in patients. Therefore, an improved tool for TCR–peptide prediction built upon a large dataset combining existing publicly available data is still needed.
Results
We collected data from five public databases (IEDB, TBAdb, VDJdb, McPAS-TCR, and 10X) to form a dataset of >3 million TCR–peptide pairs, 3.27% of which were binding interactions. We proposed epiTCR, a Random Forest-based method dedicated to predicting the TCR–peptide interactions. epiTCR used simple input of TCR CDR3β sequences and antigen sequences, which are encoded by flattened BLOSUM62. epiTCR performed with area under the curve (0.98) and higher sensitivity (0.94) than other existing tools (NetTCR, Imrex, ATM-TCR, and pMTnet), while maintaining comparable prediction specificity (0.9). We identified seven epitopes that contributed to 98.67% of false positives predicted by epiTCR and exerted similar effects on other tools. We also demonstrated a considerable influence of peptide sequences on prediction, highlighting the need for more diverse peptides in a more balanced dataset. In conclusion, epiTCR is among the most well-performing tools, thanks to the use of combined data from public sources and its use will contribute to the quest in identifying neoantigens for precision cancer immunotherapy.
Availability and implementation
epiTCR is available on GitHub (https://github.com/ddiem-ri-4D/epiTCR). Predicting the binding between T-cell receptor (TCR) and peptide presented by human leucocyte antigen molecule is a highly challenging task and a key bottleneck in the development of immunotherapy. Existing prediction tools, despite exhibiting good performance on the datasets they were built with, suffer from low true positive rates when used to predict epitopes capable of eliciting T-cell responses in patients. Therefore, an improved tool for TCR-peptide prediction built upon a large dataset combining existing publicly available data is still needed.MOTIVATIONPredicting the binding between T-cell receptor (TCR) and peptide presented by human leucocyte antigen molecule is a highly challenging task and a key bottleneck in the development of immunotherapy. Existing prediction tools, despite exhibiting good performance on the datasets they were built with, suffer from low true positive rates when used to predict epitopes capable of eliciting T-cell responses in patients. Therefore, an improved tool for TCR-peptide prediction built upon a large dataset combining existing publicly available data is still needed.We collected data from five public databases (IEDB, TBAdb, VDJdb, McPAS-TCR, and 10X) to form a dataset of >3 million TCR-peptide pairs, 3.27% of which were binding interactions. We proposed epiTCR, a Random Forest-based method dedicated to predicting the TCR-peptide interactions. epiTCR used simple input of TCR CDR3β sequences and antigen sequences, which are encoded by flattened BLOSUM62. epiTCR performed with area under the curve (0.98) and higher sensitivity (0.94) than other existing tools (NetTCR, Imrex, ATM-TCR, and pMTnet), while maintaining comparable prediction specificity (0.9). We identified seven epitopes that contributed to 98.67% of false positives predicted by epiTCR and exerted similar effects on other tools. We also demonstrated a considerable influence of peptide sequences on prediction, highlighting the need for more diverse peptides in a more balanced dataset. In conclusion, epiTCR is among the most well-performing tools, thanks to the use of combined data from public sources and its use will contribute to the quest in identifying neoantigens for precision cancer immunotherapy.RESULTSWe collected data from five public databases (IEDB, TBAdb, VDJdb, McPAS-TCR, and 10X) to form a dataset of >3 million TCR-peptide pairs, 3.27% of which were binding interactions. We proposed epiTCR, a Random Forest-based method dedicated to predicting the TCR-peptide interactions. epiTCR used simple input of TCR CDR3β sequences and antigen sequences, which are encoded by flattened BLOSUM62. epiTCR performed with area under the curve (0.98) and higher sensitivity (0.94) than other existing tools (NetTCR, Imrex, ATM-TCR, and pMTnet), while maintaining comparable prediction specificity (0.9). We identified seven epitopes that contributed to 98.67% of false positives predicted by epiTCR and exerted similar effects on other tools. We also demonstrated a considerable influence of peptide sequences on prediction, highlighting the need for more diverse peptides in a more balanced dataset. In conclusion, epiTCR is among the most well-performing tools, thanks to the use of combined data from public sources and its use will contribute to the quest in identifying neoantigens for precision cancer immunotherapy.epiTCR is available on GitHub (https://github.com/ddiem-ri-4D/epiTCR).AVAILABILITY AND IMPLEMENTATIONepiTCR is available on GitHub (https://github.com/ddiem-ri-4D/epiTCR). Predicting the binding between T-cell receptor (TCR) and peptide presented by human leucocyte antigen molecule is a highly challenging task and a key bottleneck in the development of immunotherapy. Existing prediction tools, despite exhibiting good performance on the datasets they were built with, suffer from low true positive rates when used to predict epitopes capable of eliciting T-cell responses in patients. Therefore, an improved tool for TCR-peptide prediction built upon a large dataset combining existing publicly available data is still needed. We collected data from five public databases (IEDB, TBAdb, VDJdb, McPAS-TCR, and 10X) to form a dataset of >3 million TCR-peptide pairs, 3.27% of which were binding interactions. We proposed epiTCR, a Random Forest-based method dedicated to predicting the TCR-peptide interactions. epiTCR used simple input of TCR CDR3β sequences and antigen sequences, which are encoded by flattened BLOSUM62. epiTCR performed with area under the curve (0.98) and higher sensitivity (0.94) than other existing tools (NetTCR, Imrex, ATM-TCR, and pMTnet), while maintaining comparable prediction specificity (0.9). We identified seven epitopes that contributed to 98.67% of false positives predicted by epiTCR and exerted similar effects on other tools. We also demonstrated a considerable influence of peptide sequences on prediction, highlighting the need for more diverse peptides in a more balanced dataset. In conclusion, epiTCR is among the most well-performing tools, thanks to the use of combined data from public sources and its use will contribute to the quest in identifying neoantigens for precision cancer immunotherapy. epiTCR is available on GitHub (https://github.com/ddiem-ri-4D/epiTCR). |
Author | Giang, Hoa Nguyen, Thien-Phuc Hoang Phan, Minh-Duy Nguyen, Hoai-Nghia Pham, My-Diem Nguyen Nguyen, Thanh-Nhan Nguyen, Que-Tran Bui Pham, Thi Mong Quynh Tran, Le Son Nguyen, Vy |
Author_xml | – sequence: 1 givenname: My-Diem Nguyen orcidid: 0000-0001-6200-3766 surname: Pham fullname: Pham, My-Diem Nguyen – sequence: 2 givenname: Thanh-Nhan surname: Nguyen fullname: Nguyen, Thanh-Nhan – sequence: 3 givenname: Le Son surname: Tran fullname: Tran, Le Son – sequence: 4 givenname: Que-Tran Bui surname: Nguyen fullname: Nguyen, Que-Tran Bui – sequence: 5 givenname: Thien-Phuc Hoang orcidid: 0000-0002-8634-0326 surname: Nguyen fullname: Nguyen, Thien-Phuc Hoang – sequence: 6 givenname: Thi Mong Quynh surname: Pham fullname: Pham, Thi Mong Quynh – sequence: 7 givenname: Hoai-Nghia surname: Nguyen fullname: Nguyen, Hoai-Nghia – sequence: 8 givenname: Hoa surname: Giang fullname: Giang, Hoa – sequence: 9 givenname: Minh-Duy surname: Phan fullname: Phan, Minh-Duy email: pmduy@yahoo.com – sequence: 10 givenname: Vy orcidid: 0000-0003-3436-3662 surname: Nguyen fullname: Nguyen, Vy email: nttv.2002@gmail.com |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37094220$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkM1O3DAUha2Kqvy0r4Cy7GaK7cR2ghAIjaCthFSpomvLsW9mLsrYqe1Qza7v0DfkSQidaQtsyupauuc75_rskx0fPBByyOgHRpvyqMWAvgtxZTLadNRm43hdvSJ7rJRqVtWM7Tx675L9lG4opYIK-Ybsloo2Fed0j5zCgNfzr8eFKZa4WPbrIoFPmPEWiiGCQ5tDLKagYlLd_fw1wJDRQdGid-gXb8nrzvQJ3m3nAfl2eXE9_zS7-vLx8_z8amYFL_NMCtswWjvWyYY7WTvplGGCSwdNS6tWKc4bZ4USLRed4a5SEjhUsmmlE9SUB0RtfEc_mPUP0_d6iLgyca0Z1Q-N6KeN6G0jE3m2IYexXYGz4HM0_-hgUD_deFzqRbidTJlopFCTw_utQwzfR0hZrzBZ6HvjIYxJ85pKqkr1W3r4OOxvyp--J8HJRmBjSClCpy3m6eDwkI39_z8jn-EvboFtwDAOL2XuAVkzxVA |
CitedBy_id | crossref_primary_10_1007_s12033_024_01144_3 crossref_primary_10_3390_vaccines12070717 crossref_primary_10_1093_bib_bbae210 crossref_primary_10_1126_sciadv_adk2298 crossref_primary_10_34133_bmr_0080 crossref_primary_10_1016_j_immuno_2024_100040 crossref_primary_10_1016_j_tips_2024_10_013 crossref_primary_10_3389_fimmu_2025_1550252 crossref_primary_10_1038_s41392_023_01674_3 crossref_primary_10_1109_TCBBIO_2024_3504235 crossref_primary_10_1093_bioinformatics_btad743 crossref_primary_10_2198_electroph_68_53 crossref_primary_10_3390_vaccines11081304 crossref_primary_10_3389_fimmu_2024_1426173 crossref_primary_10_3389_fimmu_2023_1251603 crossref_primary_10_1093_bioadv_vbae190 crossref_primary_10_1016_j_cels_2024_12_006 crossref_primary_10_1002_imo2_43 crossref_primary_10_1093_bioinformatics_btae472 crossref_primary_10_3389_fgene_2024_1346784 crossref_primary_10_1093_bib_bbae602 crossref_primary_10_3389_fimmu_2023_1228873 crossref_primary_10_3389_fimmu_2024_1394003 |
Cites_doi | 10.1093/nar/gky1006 10.3389/fimmu.2022.855976 10.1038/nature22383 10.1126/sciadv.abf5835 10.1038/s42003-021-02610-3 10.1093/bioinformatics/btx286 10.1186/s13073-016-0264-5 10.1093/nar/gkaa379 10.1038/s43018-021-00197-6 10.4049/jimmunol.1700893 10.1093/bib/bbaa318 10.3389/fimmu.2022.893247 10.1007/s00262-017-1978-y 10.1186/s12859-021-03962-7 10.1186/s12859-018-2561-z 10.1007/s00251-008-0341-z 10.3389/fimmu.2021.672356 10.1371/journal.pcbi.1008814 10.1186/s12943-019-1055-6 10.3389/fimmu.2020.01803 10.1038/s41587-019-0055-9 10.3389/fimmu.2019.01392 10.1034/j.1399-0039.2000.550314.x 10.1371/journal.pone.0000796 10.1093/database/baz128 10.1073/pnas.89.22.10915 10.3389/fimmu.2021.644637 10.1093/nar/gkz874 10.1016/j.gpb.2018.06.003 10.1371/journal.pcbi.1003266 10.1186/s13073-015-0238-z 10.1093/database/baaa004 10.1093/bioinformatics/btz614 10.3389/fimmu.2021.664514 10.1038/s41467-021-21879-w 10.1073/pnas.0408677102 10.1186/s13073-016-0288-x 10.3389/fimmu.2019.02820 10.1093/nar/gkx760 10.1038/s42256-021-00383-2 10.1371/journal.pone.0141561 10.1016/j.xcrm.2021.100194 10.1093/bioinformatics/btab294 10.1038/s43588-021-00076-1 |
ContentType | Journal Article |
Copyright | The Author(s) 2023. Published by Oxford University Press. 2023 The Author(s) 2023. Published by Oxford University Press. |
Copyright_xml | – notice: The Author(s) 2023. Published by Oxford University Press. 2023 – notice: The Author(s) 2023. Published by Oxford University Press. |
DBID | TOX AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM ADTOC UNPAY |
DOI | 10.1093/bioinformatics/btad284 |
DatabaseName | Oxford Journals Open Access Collection CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1367-4811 |
ExternalDocumentID | 10.1093/bioinformatics/btad284 PMC10159657 37094220 10_1093_bioinformatics_btad284 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: ; |
GroupedDBID | --- -E4 -~X .-4 .2P .DC .GJ .I3 0R~ 1TH 23N 2WC 4.4 48X 53G 5GY 5WA 70D AAIJN AAIMJ AAJKP AAJQQ AAKPC AAMDB AAMVS AAOGV AAPQZ AAPXW AAUQX AAVAP AAVLN ABEFU ABEJV ABEUO ABGNP ABIXL ABNGD ABNKS ABPQP ABPTD ABQLI ABQTQ ABWST ABXVV ABZBJ ACGFS ACIWK ACPRK ACUFI ACUKT ACUXJ ACYTK ADBBV ADEYI ADEZT ADFTL ADGKP ADGZP ADHKW ADHZD ADMLS ADOCK ADPDF ADRDM ADRTK ADVEK ADYVW ADZTZ ADZXQ AECKG AEGPL AEJOX AEKKA AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFNX AFFZL AFGWE AFIYH AFOFC AFRAH AGINJ AGKEF AGQXC AGSYK AHMBA AHXPO AI. AIJHB AJEEA AJEUX AKHUL AKWXX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC AMNDL APIBT APWMN AQDSO ARIXL ASPBG ATTQO AVWKF AXUDD AYOIW AZFZN AZVOD BAWUL BAYMD BHONS BQDIO BQUQU BSWAC BTQHN C1A C45 CAG CDBKE COF CS3 CZ4 DAKXR DIK DILTD DU5 D~K EBD EBS EE~ EJD ELUNK EMOBN F5P F9B FEDTE FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GROUPED_DOAJ GX1 H13 H5~ HAR HVGLF HW0 HZ~ IOX J21 JXSIZ KAQDR KOP KQ8 KSI KSN M-Z M49 MK~ ML0 N9A NGC NLBLG NMDNZ NOMLY NTWIH NU- NVLIB O0~ O9- OAWHX ODMLO OJQWA OK1 OVD OVEED O~Y P2P PAFKI PB- PEELM PQQKQ Q1. Q5Y R44 RD5 RIG RNI RNS ROL RPM RUSNO RW1 RXO RZF RZO SV3 TEORI TJP TLC TOX TR2 VH1 W8F WOQ X7H YAYTL YKOAZ YXANX ZGI ZKX ~91 ~KM AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM ADTOC AGQPQ UNPAY |
ID | FETCH-LOGICAL-c523t-65c9108d1f692d68d6d7a1526de9b04b77229dc575b25fa2d476e2e469b6d50a3 |
IEDL.DBID | UNPAY |
ISSN | 1367-4811 1367-4803 |
IngestDate | Sun Sep 07 11:18:26 EDT 2025 Thu Aug 21 18:37:25 EDT 2025 Fri Jul 11 15:46:05 EDT 2025 Mon Jul 21 06:02:14 EDT 2025 Tue Jul 01 02:34:01 EDT 2025 Thu Apr 24 23:07:20 EDT 2025 Wed Apr 02 07:05:41 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. https://creativecommons.org/licenses/by/4.0 The Author(s) 2023. Published by Oxford University Press. cc-by |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c523t-65c9108d1f692d68d6d7a1526de9b04b77229dc575b25fa2d476e2e469b6d50a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-6200-3766 0000-0003-3436-3662 0000-0002-8634-0326 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1093/bioinformatics/btad284 |
PMID | 37094220 |
PQID | 2806073757 |
PQPubID | 23479 |
ParticipantIDs | unpaywall_primary_10_1093_bioinformatics_btad284 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10159657 proquest_miscellaneous_2806073757 pubmed_primary_37094220 crossref_citationtrail_10_1093_bioinformatics_btad284 crossref_primary_10_1093_bioinformatics_btad284 oup_primary_10_1093_bioinformatics_btad284 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-05-04 |
PublicationDateYYYYMMDD | 2023-05-04 |
PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-04 day: 04 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Bioinformatics (Oxford, England) |
PublicationTitleAlternate | Bioinformatics |
PublicationYear | 2023 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Robinson (2023050421471541000_btad284-B30) 2000; 55 Peng (2023050421471541000_btad284-B28) 2019; 18 Jurtz (2023050421471541000_btad284-B16) 2017; 199 Olsen (2023050421471541000_btad284-B26) 2017; 66 Zhang (2023050421471541000_btad284-B44) 2021; 22 Klinger (2023050421471541000_btad284-B17) 2015; 10 Hoof (2023050421471541000_btad284-B13) 2009; 61 Robinson (2023050421471541000_btad284-B31) 2020; 48 Springer (2023050421471541000_btad284-B35) 2020; 11 Schmidt (2023050421471541000_btad284-B32) 2021; 2 Shugay (2023050421471541000_btad284-B33) 2018; 46 Hundal (2023050421471541000_btad284-B14) 2016; 8 Tan (2023050421471541000_btad284-B37) 2020; 2020 Atchley (2023050421471541000_btad284-B1) 2005; 102 Garcia-Garijo (2023050421471541000_btad284-B8) 2019; 10 Reynisson (2023050421471541000_btad284-B29) 2020; 48 Boehm (2023050421471541000_btad284-B3) 2019; 20 Gartner (2023050421471541000_btad284-B9) 2021; 2 Gielis (2023050421471541000_btad284-B10) 2018 Gielis (2023050421471541000_btad284-B11) 2019; 10 Henikoff (2023050421471541000_btad284-B12) 1992; 89 Zhang (2023050421471541000_btad284-B46) 2020; 36 Levenshtein (2023050421471541000_btad284-B18) 1966; 10 Lu (2023050421471541000_btad284-B21) 2021; 3 Tickotsky (2023050421471541000_btad284-B38) 2017; 33 Xia (2023050421471541000_btad284-B43) 2021; 12 Zhou (2023050421471541000_btad284-B49) 2019; 2019 Dean (2023050421471541000_btad284-B7) 2015; 7 Pedregosa (2023050421471541000_btad284-B27) 2012 Springer (2023050421471541000_btad284-B36) 2021; 12 Vita (2023050421471541000_btad284-B39) 2019; 47 Zhang (2023050421471541000_btad284-B45) 2019; 37 Lin (2023050421471541000_btad284-B19) 2021; 1 Sidhom (2023050421471541000_btad284-B34) 2021; 12 Zhang (2023050421471541000_btad284-B47) 2021; 7 Calis (2023050421471541000_btad284-B5) 2013; 9 Jokinen (2023050421471541000_btad284-B15) 2021; 17 Nielsen (2023050421471541000_btad284-B25) 2007; 2 Zhang (2023050421471541000_btad284-B48) 2021; 12 Nielsen (2023050421471541000_btad284-B24) 2016; 8 Weber (2023050421471541000_btad284-B40) 2021; 37 Lu (2023050421471541000_btad284-B20) 2022; 13 Wu (2023050421471541000_btad284-B41) 2022 Cai (2023050421471541000_btad284-B4) 2022; 13 Dash (2023050421471541000_btad284-B6) 2017; 547 Wu (2023050421471541000_btad284-B42) 2018; 16 Moris (2023050421471541000_btad284-B23) 2021; 22 Bagaev (2023050421471541000_btad284-B2) 2020; 48 Montemurro (2023050421471541000_btad284-B22) 2021; 4 |
References_xml | – volume: 47 start-page: D339 year: 2019 ident: 2023050421471541000_btad284-B39 article-title: The Immune Epitope Database (IEDB): 2018 update publication-title: Nucleic Acids Res doi: 10.1093/nar/gky1006 – volume: 48 start-page: D948 year: 2020 ident: 2023050421471541000_btad284-B31 article-title: IPD-IMGT/HLA database publication-title: Nucleic Acids Res – volume: 13 start-page: 855976 year: 2022 ident: 2023050421471541000_btad284-B20 article-title: DbPepNeo2.0: a database for human tumor neoantigen peptides from mass spectrometry and TCR recognition publication-title: Front Immunol doi: 10.3389/fimmu.2022.855976 – volume: 547 start-page: 89 year: 2017 ident: 2023050421471541000_btad284-B6 article-title: Quantifiable predictive features define epitope-specific T cell receptor repertoires publication-title: Nature doi: 10.1038/nature22383 – volume: 7 start-page: eabf5835 year: 2021 ident: 2023050421471541000_btad284-B47 article-title: A framework for highly multiplexed dextramer mapping and prediction of T cell receptor sequences to antigen specificity publication-title: Sci Adv doi: 10.1126/sciadv.abf5835 – volume: 4 start-page: 1060 year: 2021 ident: 2023050421471541000_btad284-B22 article-title: NetTCR-2.0 enables accurate prediction of TCR-peptide binding by using paired TCRα and β sequence data publication-title: Commun Biol doi: 10.1038/s42003-021-02610-3 – volume: 33 start-page: 2924 year: 2017 ident: 2023050421471541000_btad284-B38 article-title: McPAS-TCR: a manually curated catalogue of pathology-associated T cell receptor sequences publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx286 – volume: 8 start-page: 11 year: 2016 ident: 2023050421471541000_btad284-B14 article-title: pVAC-Seq: a genome-guided in silico approach to identifying tumor neoantigens publication-title: Genome Med doi: 10.1186/s13073-016-0264-5 – volume: 48 start-page: W449 year: 2020 ident: 2023050421471541000_btad284-B29 article-title: NetMHCpan-4.1 and NetMHCIIpan-4.0: improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand data publication-title: Nucleic Acids Res doi: 10.1093/nar/gkaa379 – volume: 2 start-page: 563 year: 2021 ident: 2023050421471541000_btad284-B9 article-title: A machine learning model for ranking candidate HLA class I neoantigens based on known neoepitopes from multiple human tumor types publication-title: Nat Cancer doi: 10.1038/s43018-021-00197-6 – volume: 199 start-page: 3360 year: 2017 ident: 2023050421471541000_btad284-B16 article-title: NetMHCpan-4.0: improved peptide-MHC class I interaction predictions integrating eluted ligand and peptide binding affinity data publication-title: J Immunol doi: 10.4049/jimmunol.1700893 – year: 2018 ident: 2023050421471541000_btad284-B10 article-title: TCRex: detection of enriched T cell epitope specificity in full T cell receptor sequence repertoires publication-title: bioRxiv – volume: 22 year: 2021 ident: 2023050421471541000_btad284-B23 article-title: Current challenges for unseen-epitope TCR interaction prediction and a new perspective derived from image classification publication-title: Brief Bioinformatics doi: 10.1093/bib/bbaa318 – year: 2012 ident: 2023050421471541000_btad284-B27 article-title: Scikit-learn: machine learning in python publication-title: arXiv [cs.LG – volume: 13 start-page: 893247 year: 2022 ident: 2023050421471541000_btad284-B4 article-title: ATM-TCR: TCR-Epitope binding affinity prediction using a multi-head self-attention model publication-title: Front Immunol doi: 10.3389/fimmu.2022.893247 – volume: 66 start-page: 731 year: 2017 ident: 2023050421471541000_btad284-B26 article-title: TANTIGEN: a comprehensive database of tumor T cell antigens publication-title: Cancer Immunol Immunother doi: 10.1007/s00262-017-1978-y – volume: 22 start-page: 40 year: 2021 ident: 2023050421471541000_btad284-B44 article-title: TANTIGEN 2.0: a knowledge base of tumor T cell antigens and epitopes publication-title: BMC Bioinformatics doi: 10.1186/s12859-021-03962-7 – volume: 20 start-page: 7 year: 2019 ident: 2023050421471541000_btad284-B3 article-title: Predicting peptide presentation by major histocompatibility complex class I: an improved machine learning approach to the immunopeptidome publication-title: BMC Bioinformatics doi: 10.1186/s12859-018-2561-z – volume: 61 start-page: 1 year: 2009 ident: 2023050421471541000_btad284-B13 article-title: NetMHCpan, a method for MHC class I binding prediction beyond humans publication-title: Immunogenetics doi: 10.1007/s00251-008-0341-z – volume: 12 start-page: 672356 year: 2021 ident: 2023050421471541000_btad284-B48 article-title: Neoantigen: a new breakthrough in tumor immunotherapy publication-title: Front Immunol doi: 10.3389/fimmu.2021.672356 – volume: 17 start-page: e1008814 year: 2021 ident: 2023050421471541000_btad284-B15 article-title: Predicting recognition between T cell receptors and epitopes with TCRGP publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1008814 – volume: 18 start-page: 128 year: 2019 ident: 2023050421471541000_btad284-B28 article-title: Neoantigen vaccine: an emerging tumor immunotherapy publication-title: Mol Cancer doi: 10.1186/s12943-019-1055-6 – volume: 11 year: 2020 ident: 2023050421471541000_btad284-B35 article-title: Prediction of specific TCR-peptide binding from large dictionaries of TCR-peptide pairs publication-title: Front Immunol doi: 10.3389/fimmu.2020.01803 – volume: 37 start-page: 367 year: 2019 ident: 2023050421471541000_btad284-B45 article-title: The international cancer genome consortium data portal publication-title: Nat Biotechnol doi: 10.1038/s41587-019-0055-9 – volume: 10 start-page: 1392 year: 2019 ident: 2023050421471541000_btad284-B8 article-title: Determinants for neoantigen identification publication-title: Front Immunol doi: 10.3389/fimmu.2019.01392 – volume: 55 start-page: 280 year: 2000 ident: 2023050421471541000_btad284-B30 article-title: IMGT/HLA database—a sequence database for the human major histocompatibility complex publication-title: Tissue Antigens doi: 10.1034/j.1399-0039.2000.550314.x – volume: 2 start-page: e796 year: 2007 ident: 2023050421471541000_btad284-B25 article-title: NetMHCpan, a method for quantitative predictions of peptide binding to any HLA-A and -B locus protein of known sequence publication-title: PLoS ONE doi: 10.1371/journal.pone.0000796 – volume: 2019 year: 2019 ident: 2023050421471541000_btad284-B49 article-title: NeoPeptide: an immunoinformatic database of T-cell-defined neoantigens publication-title: Database doi: 10.1093/database/baz128 – volume: 89 start-page: 10915 year: 1992 ident: 2023050421471541000_btad284-B12 article-title: Amino acid substitution matrices from protein blocks publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.89.22.10915 – volume: 12 start-page: 644637 year: 2021 ident: 2023050421471541000_btad284-B43 article-title: NEPdb: a database of T-cell experimentally-validated neoantigens and pan-cancer predicted neoepitopes for cancer immunotherapy publication-title: Front Immunol doi: 10.3389/fimmu.2021.644637 – volume: 48 start-page: D1057 year: 2020 ident: 2023050421471541000_btad284-B2 article-title: VDJdb in 2019: database extension, new analysis infrastructure and a T-cell receptor motif compendium publication-title: Nucleic Acids Res doi: 10.1093/nar/gkz874 – volume: 16 start-page: 276 year: 2018 ident: 2023050421471541000_btad284-B42 article-title: TSNAdb: a database for tumor-specific neoantigens from immunogenomics data analysis publication-title: Genom Proteom Bioinform doi: 10.1016/j.gpb.2018.06.003 – volume: 9 start-page: e1003266 year: 2013 ident: 2023050421471541000_btad284-B5 article-title: Properties of MHC class I presented peptides that enhance immunogenicity publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1003266 – volume: 7 start-page: 123 year: 2015 ident: 2023050421471541000_btad284-B7 article-title: Annotation of pseudogenic gene segments by massively parallel sequencing of rearranged lymphocyte receptor loci publication-title: Genome Med doi: 10.1186/s13073-015-0238-z – volume: 2020 year: 2020 ident: 2023050421471541000_btad284-B37 article-title: dbPepNeo: a manually curated database for human tumor neoantigen peptides publication-title: Database doi: 10.1093/database/baaa004 – volume: 36 start-page: 897 year: 2020 ident: 2023050421471541000_btad284-B46 article-title: PIRD: Pan immune repertoire database publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz614 – volume: 12 start-page: 664514 year: 2021 ident: 2023050421471541000_btad284-B36 article-title: Contribution of T cell receptor alpha and beta CDR3, MHC typing, V and J genes to peptide binding prediction publication-title: Front Immunol doi: 10.3389/fimmu.2021.664514 – volume: 12 start-page: 1605 year: 2021 ident: 2023050421471541000_btad284-B34 article-title: DeepTCR is a deep learning framework for revealing sequence concepts within T-cell repertoires publication-title: Nat Commun doi: 10.1038/s41467-021-21879-w – volume: 102 start-page: 6395 year: 2005 ident: 2023050421471541000_btad284-B1 article-title: Solving the protein sequence metric problem publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0408677102 – volume: 8 start-page: 33 year: 2016 ident: 2023050421471541000_btad284-B24 article-title: NetMHCpan-3.0; improved prediction of binding to MHC class I molecules integrating information from multiple receptor and peptide length datasets publication-title: Genome Med doi: 10.1186/s13073-016-0288-x – volume: 10 start-page: 2820 year: 2019 ident: 2023050421471541000_btad284-B11 article-title: Detection of enriched T cell epitope specificity in full T cell receptor sequence repertoires publication-title: Front Immunol doi: 10.3389/fimmu.2019.02820 – volume: 46 start-page: D419 year: 2018 ident: 2023050421471541000_btad284-B33 article-title: VDJdb: a curated database of T-cell receptor sequences with known antigen specificity publication-title: Nucleic Acids Res doi: 10.1093/nar/gkx760 – year: 2022 ident: 2023050421471541000_btad284-B41 – volume: 3 start-page: 864 year: 2021 ident: 2023050421471541000_btad284-B21 article-title: Deep learning-based prediction of the T cell receptor-antigen binding specificity publication-title: Nat Mach Intell doi: 10.1038/s42256-021-00383-2 – volume: 10 start-page: e0141561 year: 2015 ident: 2023050421471541000_btad284-B17 article-title: Multiplex identification of antigen-specific T cell receptors using a combination of immune assays and immune receptor sequencing publication-title: PLoS ONE doi: 10.1371/journal.pone.0141561 – volume: 2 start-page: 100194 year: 2021 ident: 2023050421471541000_btad284-B32 article-title: Prediction of neo-epitope immunogenicity reveals TCR recognition determinants and provides insight into immunoediting publication-title: Cell Rep Med doi: 10.1016/j.xcrm.2021.100194 – volume: 37 start-page: i237 year: 2021 ident: 2023050421471541000_btad284-B40 article-title: TITAN: T-cell receptor specificity prediction with bimodal attention networks publication-title: Bioinformatics doi: 10.1093/bioinformatics/btab294 – volume: 1 start-page: 362 year: 2021 ident: 2023050421471541000_btad284-B19 article-title: Rapid assessment of T-cell receptor specificity of the immune repertoire publication-title: Nat Comput Sci doi: 10.1038/s43588-021-00076-1 – volume: 10 start-page: 707 year: 1966 ident: 2023050421471541000_btad284-B18 article-title: Binary codes capable of correcting deletions, insertions and reversals publication-title: Soviet Phys Dokl |
SSID | ssj0005056 |
Score | 2.5482624 |
Snippet | Abstract
Motivation
Predicting the binding between T-cell receptor (TCR) and peptide presented by human leucocyte antigen molecule is a highly challenging task... Predicting the binding between T-cell receptor (TCR) and peptide presented by human leucocyte antigen molecule is a highly challenging task and a key... |
SourceID | unpaywall pubmedcentral proquest pubmed crossref oup |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
SubjectTerms | Antigens - chemistry Epitopes - chemistry Humans Original Paper Peptides - metabolism Receptors, Antigen, T-Cell - chemistry Systems Biology T-Lymphocytes - metabolism |
Title | epiTCR: a highly sensitive predictor for TCR–peptide binding |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37094220 https://www.proquest.com/docview/2806073757 https://pubmed.ncbi.nlm.nih.gov/PMC10159657 https://doi.org/10.1093/bioinformatics/btad284 |
UnpaywallVersion | publishedVersion |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1367-4811 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: KQ8 dateStart: 19960101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1367-4811 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: DOA dateStart: 20230101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1367-4811 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: ADMLS dateStart: 19980101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1367-4811 dateEnd: 20241003 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: DIK dateStart: 19960101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1367-4811 dateEnd: 20241003 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: GX1 dateStart: 19960101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: Medline (PubMed) customDbUrl: eissn: 1367-4811 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: RPM dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVOVD databaseName: Journals@Ovid LWW All Open Access Journal Collection Rolling customDbUrl: eissn: 1367-4811 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: OVEED dateStart: 20010101 isFulltext: true titleUrlDefault: http://ovidsp.ovid.com/ providerName: Ovid – providerCode: PRVASL databaseName: Oxford Journals Open Access Collection customDbUrl: eissn: 1367-4811 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: TOX dateStart: 19850101 isFulltext: true titleUrlDefault: https://academic.oup.com/journals/ providerName: Oxford University Press |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fa9swED-2lLG9dH-7ptuKCnsauHFsWbb6MCihpQyWjpFA9mR0kkxDg2Nah5I-7TvsG-6T7GQ7oW4Zy15sg3XCkk6nO9_d7wA-9iVyzDR6oc64xxEzT0lhvCCkm6YDya9gF78OxdmYf5lEk8ZQdLkwLf-9DHs4nTcIog61uIelMiRQH8OWcA6lDmyNh9-Of9TJVbHHk6oUcvPc769Sgv_aUes0amW43VE0H8ZLPl3khVreqNnszmF0-hzOV8OoY1AuDxclHurbewiPm4_zBWw3eik7rhnpJTyy-St4UleqXL6Gz7aYjgbfj5hiDuB4tmTXLvLdyUpWXDlnD9nujHpm1Or3z1-FC5YxluG0ypp5A-PTk9HgzGtKL3iaLNPSE5EmPSIx_UzIwIjECBMrOuqFsRJ9jqSTB9Jo0vUwiDIVGB4LG1iytVGYyFfhDnTyeW53gTlCI8guUTLhRKNCjlxqtH6APBSqC9FqCVLd4JK78hiztPaPh2l7btJmbrrQW9MVNTLHPyk-0Qpv3PhgxQgp7TjnRlG5nS-uU-eLJsEYR3EX3taMse4zjMlcJgbvQtJimXUDh-bdfpNPLypUb5KNkRSuU3_NXRt-697_k7yDZwGpa1XoJn8PnfJqYT-QelXifvVbgq6j88l-s7_-AFB-Lz4 |
linkProvider | Unpaywall |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fS9xAEB_aE2lf-kfberWWLfgkxMslm022D4KIIkJtEQ_0KezsbvDokQuaQ65Pfge_oZ_E2SR3GEW8PiWQnSG7Ozs7w8z8BmCzL5FjptELdcY9jph5SgrjBSE9NF1IfgW7-OtYHA740Vl01jiKrhamFb-XYQ-H4wZB1KEW97BUhhTqa1gSLqDUgaXB8Z_d87q4KvZ4UrVCbt77_VlJ8LOMWrdRq8LtgaH5NF_yzSQv1PRajUYPLqOD9_B7No06B-Xv9qTEbf3vEcLj4vP8AO8au5Tt1oL0EV7ZfAWW606V01XYscXwdO_kJ1PMARyPpuzKZb47XcmKSxfsId-dEWdGo-5ubguXLGMsw2FVNfMJBgf7p3uHXtN6wdPkmZaeiDTZEYnpZ0IGRiRGmFjRVS-MlehzJJs8kEaTrYdBlKnA8FjYwJKvjcJEvgo_Qycf53YNmCM0gvwSJRNONCrkyKVG6wfIQ6G6EM22INUNLrlrjzFK6_h4mLbXJm3Wpgu9OV1RI3O8SLFFO7zw4B8zQUjpxLkwisrteHKVulg0KcY4irvwpRaMOc8wJneZBLwLSUtk5gMcmnf7Sz68qFC9STdGUjim_ly6FvzXr_9Psg5vAzLXqtRN_g065eXEbpB5VeL35kzdAyshLS0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=epiTCR%3A+a+highly+sensitive+predictor+for+TCR-peptide+binding&rft.jtitle=Bioinformatics+%28Oxford%2C+England%29&rft.au=Pham%2C+My-Diem+Nguyen&rft.au=Nguyen%2C+Thanh-Nhan&rft.au=Tran%2C+Le+Son&rft.au=Nguyen%2C+Que-Tran+Bui&rft.date=2023-05-04&rft.issn=1367-4811&rft.eissn=1367-4811&rft.volume=39&rft.issue=5&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtad284&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4811&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4811&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4811&client=summon |