epiTCR: a highly sensitive predictor for TCR–peptide binding

Abstract Motivation Predicting the binding between T-cell receptor (TCR) and peptide presented by human leucocyte antigen molecule is a highly challenging task and a key bottleneck in the development of immunotherapy. Existing prediction tools, despite exhibiting good performance on the datasets the...

Full description

Saved in:
Bibliographic Details
Published inBioinformatics (Oxford, England) Vol. 39; no. 5
Main Authors Pham, My-Diem Nguyen, Nguyen, Thanh-Nhan, Tran, Le Son, Nguyen, Que-Tran Bui, Nguyen, Thien-Phuc Hoang, Pham, Thi Mong Quynh, Nguyen, Hoai-Nghia, Giang, Hoa, Phan, Minh-Duy, Nguyen, Vy
Format Journal Article
LanguageEnglish
Published England Oxford University Press 04.05.2023
Subjects
Online AccessGet full text
ISSN1367-4811
1367-4803
1367-4811
DOI10.1093/bioinformatics/btad284

Cover

Abstract Abstract Motivation Predicting the binding between T-cell receptor (TCR) and peptide presented by human leucocyte antigen molecule is a highly challenging task and a key bottleneck in the development of immunotherapy. Existing prediction tools, despite exhibiting good performance on the datasets they were built with, suffer from low true positive rates when used to predict epitopes capable of eliciting T-cell responses in patients. Therefore, an improved tool for TCR–peptide prediction built upon a large dataset combining existing publicly available data is still needed. Results We collected data from five public databases (IEDB, TBAdb, VDJdb, McPAS-TCR, and 10X) to form a dataset of >3 million TCR–peptide pairs, 3.27% of which were binding interactions. We proposed epiTCR, a Random Forest-based method dedicated to predicting the TCR–peptide interactions. epiTCR used simple input of TCR CDR3β sequences and antigen sequences, which are encoded by flattened BLOSUM62. epiTCR performed with area under the curve (0.98) and higher sensitivity (0.94) than other existing tools (NetTCR, Imrex, ATM-TCR, and pMTnet), while maintaining comparable prediction specificity (0.9). We identified seven epitopes that contributed to 98.67% of false positives predicted by epiTCR and exerted similar effects on other tools. We also demonstrated a considerable influence of peptide sequences on prediction, highlighting the need for more diverse peptides in a more balanced dataset. In conclusion, epiTCR is among the most well-performing tools, thanks to the use of combined data from public sources and its use will contribute to the quest in identifying neoantigens for precision cancer immunotherapy. Availability and implementation epiTCR is available on GitHub (https://github.com/ddiem-ri-4D/epiTCR).
AbstractList Abstract Motivation Predicting the binding between T-cell receptor (TCR) and peptide presented by human leucocyte antigen molecule is a highly challenging task and a key bottleneck in the development of immunotherapy. Existing prediction tools, despite exhibiting good performance on the datasets they were built with, suffer from low true positive rates when used to predict epitopes capable of eliciting T-cell responses in patients. Therefore, an improved tool for TCR–peptide prediction built upon a large dataset combining existing publicly available data is still needed. Results We collected data from five public databases (IEDB, TBAdb, VDJdb, McPAS-TCR, and 10X) to form a dataset of >3 million TCR–peptide pairs, 3.27% of which were binding interactions. We proposed epiTCR, a Random Forest-based method dedicated to predicting the TCR–peptide interactions. epiTCR used simple input of TCR CDR3β sequences and antigen sequences, which are encoded by flattened BLOSUM62. epiTCR performed with area under the curve (0.98) and higher sensitivity (0.94) than other existing tools (NetTCR, Imrex, ATM-TCR, and pMTnet), while maintaining comparable prediction specificity (0.9). We identified seven epitopes that contributed to 98.67% of false positives predicted by epiTCR and exerted similar effects on other tools. We also demonstrated a considerable influence of peptide sequences on prediction, highlighting the need for more diverse peptides in a more balanced dataset. In conclusion, epiTCR is among the most well-performing tools, thanks to the use of combined data from public sources and its use will contribute to the quest in identifying neoantigens for precision cancer immunotherapy. Availability and implementation epiTCR is available on GitHub (https://github.com/ddiem-ri-4D/epiTCR).
Predicting the binding between T-cell receptor (TCR) and peptide presented by human leucocyte antigen molecule is a highly challenging task and a key bottleneck in the development of immunotherapy. Existing prediction tools, despite exhibiting good performance on the datasets they were built with, suffer from low true positive rates when used to predict epitopes capable of eliciting T-cell responses in patients. Therefore, an improved tool for TCR-peptide prediction built upon a large dataset combining existing publicly available data is still needed.MOTIVATIONPredicting the binding between T-cell receptor (TCR) and peptide presented by human leucocyte antigen molecule is a highly challenging task and a key bottleneck in the development of immunotherapy. Existing prediction tools, despite exhibiting good performance on the datasets they were built with, suffer from low true positive rates when used to predict epitopes capable of eliciting T-cell responses in patients. Therefore, an improved tool for TCR-peptide prediction built upon a large dataset combining existing publicly available data is still needed.We collected data from five public databases (IEDB, TBAdb, VDJdb, McPAS-TCR, and 10X) to form a dataset of >3 million TCR-peptide pairs, 3.27% of which were binding interactions. We proposed epiTCR, a Random Forest-based method dedicated to predicting the TCR-peptide interactions. epiTCR used simple input of TCR CDR3β sequences and antigen sequences, which are encoded by flattened BLOSUM62. epiTCR performed with area under the curve (0.98) and higher sensitivity (0.94) than other existing tools (NetTCR, Imrex, ATM-TCR, and pMTnet), while maintaining comparable prediction specificity (0.9). We identified seven epitopes that contributed to 98.67% of false positives predicted by epiTCR and exerted similar effects on other tools. We also demonstrated a considerable influence of peptide sequences on prediction, highlighting the need for more diverse peptides in a more balanced dataset. In conclusion, epiTCR is among the most well-performing tools, thanks to the use of combined data from public sources and its use will contribute to the quest in identifying neoantigens for precision cancer immunotherapy.RESULTSWe collected data from five public databases (IEDB, TBAdb, VDJdb, McPAS-TCR, and 10X) to form a dataset of >3 million TCR-peptide pairs, 3.27% of which were binding interactions. We proposed epiTCR, a Random Forest-based method dedicated to predicting the TCR-peptide interactions. epiTCR used simple input of TCR CDR3β sequences and antigen sequences, which are encoded by flattened BLOSUM62. epiTCR performed with area under the curve (0.98) and higher sensitivity (0.94) than other existing tools (NetTCR, Imrex, ATM-TCR, and pMTnet), while maintaining comparable prediction specificity (0.9). We identified seven epitopes that contributed to 98.67% of false positives predicted by epiTCR and exerted similar effects on other tools. We also demonstrated a considerable influence of peptide sequences on prediction, highlighting the need for more diverse peptides in a more balanced dataset. In conclusion, epiTCR is among the most well-performing tools, thanks to the use of combined data from public sources and its use will contribute to the quest in identifying neoantigens for precision cancer immunotherapy.epiTCR is available on GitHub (https://github.com/ddiem-ri-4D/epiTCR).AVAILABILITY AND IMPLEMENTATIONepiTCR is available on GitHub (https://github.com/ddiem-ri-4D/epiTCR).
Predicting the binding between T-cell receptor (TCR) and peptide presented by human leucocyte antigen molecule is a highly challenging task and a key bottleneck in the development of immunotherapy. Existing prediction tools, despite exhibiting good performance on the datasets they were built with, suffer from low true positive rates when used to predict epitopes capable of eliciting T-cell responses in patients. Therefore, an improved tool for TCR-peptide prediction built upon a large dataset combining existing publicly available data is still needed. We collected data from five public databases (IEDB, TBAdb, VDJdb, McPAS-TCR, and 10X) to form a dataset of >3 million TCR-peptide pairs, 3.27% of which were binding interactions. We proposed epiTCR, a Random Forest-based method dedicated to predicting the TCR-peptide interactions. epiTCR used simple input of TCR CDR3β sequences and antigen sequences, which are encoded by flattened BLOSUM62. epiTCR performed with area under the curve (0.98) and higher sensitivity (0.94) than other existing tools (NetTCR, Imrex, ATM-TCR, and pMTnet), while maintaining comparable prediction specificity (0.9). We identified seven epitopes that contributed to 98.67% of false positives predicted by epiTCR and exerted similar effects on other tools. We also demonstrated a considerable influence of peptide sequences on prediction, highlighting the need for more diverse peptides in a more balanced dataset. In conclusion, epiTCR is among the most well-performing tools, thanks to the use of combined data from public sources and its use will contribute to the quest in identifying neoantigens for precision cancer immunotherapy. epiTCR is available on GitHub (https://github.com/ddiem-ri-4D/epiTCR).
Author Giang, Hoa
Nguyen, Thien-Phuc Hoang
Phan, Minh-Duy
Nguyen, Hoai-Nghia
Pham, My-Diem Nguyen
Nguyen, Thanh-Nhan
Nguyen, Que-Tran Bui
Pham, Thi Mong Quynh
Tran, Le Son
Nguyen, Vy
Author_xml – sequence: 1
  givenname: My-Diem Nguyen
  orcidid: 0000-0001-6200-3766
  surname: Pham
  fullname: Pham, My-Diem Nguyen
– sequence: 2
  givenname: Thanh-Nhan
  surname: Nguyen
  fullname: Nguyen, Thanh-Nhan
– sequence: 3
  givenname: Le Son
  surname: Tran
  fullname: Tran, Le Son
– sequence: 4
  givenname: Que-Tran Bui
  surname: Nguyen
  fullname: Nguyen, Que-Tran Bui
– sequence: 5
  givenname: Thien-Phuc Hoang
  orcidid: 0000-0002-8634-0326
  surname: Nguyen
  fullname: Nguyen, Thien-Phuc Hoang
– sequence: 6
  givenname: Thi Mong Quynh
  surname: Pham
  fullname: Pham, Thi Mong Quynh
– sequence: 7
  givenname: Hoai-Nghia
  surname: Nguyen
  fullname: Nguyen, Hoai-Nghia
– sequence: 8
  givenname: Hoa
  surname: Giang
  fullname: Giang, Hoa
– sequence: 9
  givenname: Minh-Duy
  surname: Phan
  fullname: Phan, Minh-Duy
  email: pmduy@yahoo.com
– sequence: 10
  givenname: Vy
  orcidid: 0000-0003-3436-3662
  surname: Nguyen
  fullname: Nguyen, Vy
  email: nttv.2002@gmail.com
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37094220$$D View this record in MEDLINE/PubMed
BookMark eNqNkM1O3DAUha2Kqvy0r4Cy7GaK7cR2ghAIjaCthFSpomvLsW9mLsrYqe1Qza7v0DfkSQidaQtsyupauuc75_rskx0fPBByyOgHRpvyqMWAvgtxZTLadNRm43hdvSJ7rJRqVtWM7Tx675L9lG4opYIK-Ybsloo2Fed0j5zCgNfzr8eFKZa4WPbrIoFPmPEWiiGCQ5tDLKagYlLd_fw1wJDRQdGid-gXb8nrzvQJ3m3nAfl2eXE9_zS7-vLx8_z8amYFL_NMCtswWjvWyYY7WTvplGGCSwdNS6tWKc4bZ4USLRed4a5SEjhUsmmlE9SUB0RtfEc_mPUP0_d6iLgyca0Z1Q-N6KeN6G0jE3m2IYexXYGz4HM0_-hgUD_deFzqRbidTJlopFCTw_utQwzfR0hZrzBZ6HvjIYxJ85pKqkr1W3r4OOxvyp--J8HJRmBjSClCpy3m6eDwkI39_z8jn-EvboFtwDAOL2XuAVkzxVA
CitedBy_id crossref_primary_10_1007_s12033_024_01144_3
crossref_primary_10_3390_vaccines12070717
crossref_primary_10_1093_bib_bbae210
crossref_primary_10_1126_sciadv_adk2298
crossref_primary_10_34133_bmr_0080
crossref_primary_10_1016_j_immuno_2024_100040
crossref_primary_10_1016_j_tips_2024_10_013
crossref_primary_10_3389_fimmu_2025_1550252
crossref_primary_10_1038_s41392_023_01674_3
crossref_primary_10_1109_TCBBIO_2024_3504235
crossref_primary_10_1093_bioinformatics_btad743
crossref_primary_10_2198_electroph_68_53
crossref_primary_10_3390_vaccines11081304
crossref_primary_10_3389_fimmu_2024_1426173
crossref_primary_10_3389_fimmu_2023_1251603
crossref_primary_10_1093_bioadv_vbae190
crossref_primary_10_1016_j_cels_2024_12_006
crossref_primary_10_1002_imo2_43
crossref_primary_10_1093_bioinformatics_btae472
crossref_primary_10_3389_fgene_2024_1346784
crossref_primary_10_1093_bib_bbae602
crossref_primary_10_3389_fimmu_2023_1228873
crossref_primary_10_3389_fimmu_2024_1394003
Cites_doi 10.1093/nar/gky1006
10.3389/fimmu.2022.855976
10.1038/nature22383
10.1126/sciadv.abf5835
10.1038/s42003-021-02610-3
10.1093/bioinformatics/btx286
10.1186/s13073-016-0264-5
10.1093/nar/gkaa379
10.1038/s43018-021-00197-6
10.4049/jimmunol.1700893
10.1093/bib/bbaa318
10.3389/fimmu.2022.893247
10.1007/s00262-017-1978-y
10.1186/s12859-021-03962-7
10.1186/s12859-018-2561-z
10.1007/s00251-008-0341-z
10.3389/fimmu.2021.672356
10.1371/journal.pcbi.1008814
10.1186/s12943-019-1055-6
10.3389/fimmu.2020.01803
10.1038/s41587-019-0055-9
10.3389/fimmu.2019.01392
10.1034/j.1399-0039.2000.550314.x
10.1371/journal.pone.0000796
10.1093/database/baz128
10.1073/pnas.89.22.10915
10.3389/fimmu.2021.644637
10.1093/nar/gkz874
10.1016/j.gpb.2018.06.003
10.1371/journal.pcbi.1003266
10.1186/s13073-015-0238-z
10.1093/database/baaa004
10.1093/bioinformatics/btz614
10.3389/fimmu.2021.664514
10.1038/s41467-021-21879-w
10.1073/pnas.0408677102
10.1186/s13073-016-0288-x
10.3389/fimmu.2019.02820
10.1093/nar/gkx760
10.1038/s42256-021-00383-2
10.1371/journal.pone.0141561
10.1016/j.xcrm.2021.100194
10.1093/bioinformatics/btab294
10.1038/s43588-021-00076-1
ContentType Journal Article
Copyright The Author(s) 2023. Published by Oxford University Press. 2023
The Author(s) 2023. Published by Oxford University Press.
Copyright_xml – notice: The Author(s) 2023. Published by Oxford University Press. 2023
– notice: The Author(s) 2023. Published by Oxford University Press.
DBID TOX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ADTOC
UNPAY
DOI 10.1093/bioinformatics/btad284
DatabaseName Oxford Journals Open Access Collection
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1367-4811
ExternalDocumentID 10.1093/bioinformatics/btad284
PMC10159657
37094220
10_1093_bioinformatics_btad284
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: ;
GroupedDBID ---
-E4
-~X
.-4
.2P
.DC
.GJ
.I3
0R~
1TH
23N
2WC
4.4
48X
53G
5GY
5WA
70D
AAIJN
AAIMJ
AAJKP
AAJQQ
AAKPC
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AAUQX
AAVAP
AAVLN
ABEFU
ABEJV
ABEUO
ABGNP
ABIXL
ABNGD
ABNKS
ABPQP
ABPTD
ABQLI
ABQTQ
ABWST
ABXVV
ABZBJ
ACGFS
ACIWK
ACPRK
ACUFI
ACUKT
ACUXJ
ACYTK
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADMLS
ADOCK
ADPDF
ADRDM
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFNX
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHXPO
AI.
AIJHB
AJEEA
AJEUX
AKHUL
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
AMNDL
APIBT
APWMN
AQDSO
ARIXL
ASPBG
ATTQO
AVWKF
AXUDD
AYOIW
AZFZN
AZVOD
BAWUL
BAYMD
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C1A
C45
CAG
CDBKE
COF
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
EBD
EBS
EE~
EJD
ELUNK
EMOBN
F5P
F9B
FEDTE
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
H5~
HAR
HVGLF
HW0
HZ~
IOX
J21
JXSIZ
KAQDR
KOP
KQ8
KSI
KSN
M-Z
M49
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NTWIH
NU-
NVLIB
O0~
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
O~Y
P2P
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
RIG
RNI
RNS
ROL
RPM
RUSNO
RW1
RXO
RZF
RZO
SV3
TEORI
TJP
TLC
TOX
TR2
VH1
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZGI
ZKX
~91
~KM
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ADTOC
AGQPQ
UNPAY
ID FETCH-LOGICAL-c523t-65c9108d1f692d68d6d7a1526de9b04b77229dc575b25fa2d476e2e469b6d50a3
IEDL.DBID UNPAY
ISSN 1367-4811
1367-4803
IngestDate Sun Sep 07 11:18:26 EDT 2025
Thu Aug 21 18:37:25 EDT 2025
Fri Jul 11 15:46:05 EDT 2025
Mon Jul 21 06:02:14 EDT 2025
Tue Jul 01 02:34:01 EDT 2025
Thu Apr 24 23:07:20 EDT 2025
Wed Apr 02 07:05:41 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
The Author(s) 2023. Published by Oxford University Press.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c523t-65c9108d1f692d68d6d7a1526de9b04b77229dc575b25fa2d476e2e469b6d50a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6200-3766
0000-0003-3436-3662
0000-0002-8634-0326
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1093/bioinformatics/btad284
PMID 37094220
PQID 2806073757
PQPubID 23479
ParticipantIDs unpaywall_primary_10_1093_bioinformatics_btad284
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10159657
proquest_miscellaneous_2806073757
pubmed_primary_37094220
crossref_citationtrail_10_1093_bioinformatics_btad284
crossref_primary_10_1093_bioinformatics_btad284
oup_primary_10_1093_bioinformatics_btad284
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-05-04
PublicationDateYYYYMMDD 2023-05-04
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-04
  day: 04
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Bioinformatics (Oxford, England)
PublicationTitleAlternate Bioinformatics
PublicationYear 2023
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Robinson (2023050421471541000_btad284-B30) 2000; 55
Peng (2023050421471541000_btad284-B28) 2019; 18
Jurtz (2023050421471541000_btad284-B16) 2017; 199
Olsen (2023050421471541000_btad284-B26) 2017; 66
Zhang (2023050421471541000_btad284-B44) 2021; 22
Klinger (2023050421471541000_btad284-B17) 2015; 10
Hoof (2023050421471541000_btad284-B13) 2009; 61
Robinson (2023050421471541000_btad284-B31) 2020; 48
Springer (2023050421471541000_btad284-B35) 2020; 11
Schmidt (2023050421471541000_btad284-B32) 2021; 2
Shugay (2023050421471541000_btad284-B33) 2018; 46
Hundal (2023050421471541000_btad284-B14) 2016; 8
Tan (2023050421471541000_btad284-B37) 2020; 2020
Atchley (2023050421471541000_btad284-B1) 2005; 102
Garcia-Garijo (2023050421471541000_btad284-B8) 2019; 10
Reynisson (2023050421471541000_btad284-B29) 2020; 48
Boehm (2023050421471541000_btad284-B3) 2019; 20
Gartner (2023050421471541000_btad284-B9) 2021; 2
Gielis (2023050421471541000_btad284-B10) 2018
Gielis (2023050421471541000_btad284-B11) 2019; 10
Henikoff (2023050421471541000_btad284-B12) 1992; 89
Zhang (2023050421471541000_btad284-B46) 2020; 36
Levenshtein (2023050421471541000_btad284-B18) 1966; 10
Lu (2023050421471541000_btad284-B21) 2021; 3
Tickotsky (2023050421471541000_btad284-B38) 2017; 33
Xia (2023050421471541000_btad284-B43) 2021; 12
Zhou (2023050421471541000_btad284-B49) 2019; 2019
Dean (2023050421471541000_btad284-B7) 2015; 7
Pedregosa (2023050421471541000_btad284-B27) 2012
Springer (2023050421471541000_btad284-B36) 2021; 12
Vita (2023050421471541000_btad284-B39) 2019; 47
Zhang (2023050421471541000_btad284-B45) 2019; 37
Lin (2023050421471541000_btad284-B19) 2021; 1
Sidhom (2023050421471541000_btad284-B34) 2021; 12
Zhang (2023050421471541000_btad284-B47) 2021; 7
Calis (2023050421471541000_btad284-B5) 2013; 9
Jokinen (2023050421471541000_btad284-B15) 2021; 17
Nielsen (2023050421471541000_btad284-B25) 2007; 2
Zhang (2023050421471541000_btad284-B48) 2021; 12
Nielsen (2023050421471541000_btad284-B24) 2016; 8
Weber (2023050421471541000_btad284-B40) 2021; 37
Lu (2023050421471541000_btad284-B20) 2022; 13
Wu (2023050421471541000_btad284-B41) 2022
Cai (2023050421471541000_btad284-B4) 2022; 13
Dash (2023050421471541000_btad284-B6) 2017; 547
Wu (2023050421471541000_btad284-B42) 2018; 16
Moris (2023050421471541000_btad284-B23) 2021; 22
Bagaev (2023050421471541000_btad284-B2) 2020; 48
Montemurro (2023050421471541000_btad284-B22) 2021; 4
References_xml – volume: 47
  start-page: D339
  year: 2019
  ident: 2023050421471541000_btad284-B39
  article-title: The Immune Epitope Database (IEDB): 2018 update
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gky1006
– volume: 48
  start-page: D948
  year: 2020
  ident: 2023050421471541000_btad284-B31
  article-title: IPD-IMGT/HLA database
  publication-title: Nucleic Acids Res
– volume: 13
  start-page: 855976
  year: 2022
  ident: 2023050421471541000_btad284-B20
  article-title: DbPepNeo2.0: a database for human tumor neoantigen peptides from mass spectrometry and TCR recognition
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2022.855976
– volume: 547
  start-page: 89
  year: 2017
  ident: 2023050421471541000_btad284-B6
  article-title: Quantifiable predictive features define epitope-specific T cell receptor repertoires
  publication-title: Nature
  doi: 10.1038/nature22383
– volume: 7
  start-page: eabf5835
  year: 2021
  ident: 2023050421471541000_btad284-B47
  article-title: A framework for highly multiplexed dextramer mapping and prediction of T cell receptor sequences to antigen specificity
  publication-title: Sci Adv
  doi: 10.1126/sciadv.abf5835
– volume: 4
  start-page: 1060
  year: 2021
  ident: 2023050421471541000_btad284-B22
  article-title: NetTCR-2.0 enables accurate prediction of TCR-peptide binding by using paired TCRα and β sequence data
  publication-title: Commun Biol
  doi: 10.1038/s42003-021-02610-3
– volume: 33
  start-page: 2924
  year: 2017
  ident: 2023050421471541000_btad284-B38
  article-title: McPAS-TCR: a manually curated catalogue of pathology-associated T cell receptor sequences
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx286
– volume: 8
  start-page: 11
  year: 2016
  ident: 2023050421471541000_btad284-B14
  article-title: pVAC-Seq: a genome-guided in silico approach to identifying tumor neoantigens
  publication-title: Genome Med
  doi: 10.1186/s13073-016-0264-5
– volume: 48
  start-page: W449
  year: 2020
  ident: 2023050421471541000_btad284-B29
  article-title: NetMHCpan-4.1 and NetMHCIIpan-4.0: improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand data
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkaa379
– volume: 2
  start-page: 563
  year: 2021
  ident: 2023050421471541000_btad284-B9
  article-title: A machine learning model for ranking candidate HLA class I neoantigens based on known neoepitopes from multiple human tumor types
  publication-title: Nat Cancer
  doi: 10.1038/s43018-021-00197-6
– volume: 199
  start-page: 3360
  year: 2017
  ident: 2023050421471541000_btad284-B16
  article-title: NetMHCpan-4.0: improved peptide-MHC class I interaction predictions integrating eluted ligand and peptide binding affinity data
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1700893
– year: 2018
  ident: 2023050421471541000_btad284-B10
  article-title: TCRex: detection of enriched T cell epitope specificity in full T cell receptor sequence repertoires
  publication-title: bioRxiv
– volume: 22
  year: 2021
  ident: 2023050421471541000_btad284-B23
  article-title: Current challenges for unseen-epitope TCR interaction prediction and a new perspective derived from image classification
  publication-title: Brief Bioinformatics
  doi: 10.1093/bib/bbaa318
– year: 2012
  ident: 2023050421471541000_btad284-B27
  article-title: Scikit-learn: machine learning in python
  publication-title: arXiv [cs.LG
– volume: 13
  start-page: 893247
  year: 2022
  ident: 2023050421471541000_btad284-B4
  article-title: ATM-TCR: TCR-Epitope binding affinity prediction using a multi-head self-attention model
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2022.893247
– volume: 66
  start-page: 731
  year: 2017
  ident: 2023050421471541000_btad284-B26
  article-title: TANTIGEN: a comprehensive database of tumor T cell antigens
  publication-title: Cancer Immunol Immunother
  doi: 10.1007/s00262-017-1978-y
– volume: 22
  start-page: 40
  year: 2021
  ident: 2023050421471541000_btad284-B44
  article-title: TANTIGEN 2.0: a knowledge base of tumor T cell antigens and epitopes
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-021-03962-7
– volume: 20
  start-page: 7
  year: 2019
  ident: 2023050421471541000_btad284-B3
  article-title: Predicting peptide presentation by major histocompatibility complex class I: an improved machine learning approach to the immunopeptidome
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-018-2561-z
– volume: 61
  start-page: 1
  year: 2009
  ident: 2023050421471541000_btad284-B13
  article-title: NetMHCpan, a method for MHC class I binding prediction beyond humans
  publication-title: Immunogenetics
  doi: 10.1007/s00251-008-0341-z
– volume: 12
  start-page: 672356
  year: 2021
  ident: 2023050421471541000_btad284-B48
  article-title: Neoantigen: a new breakthrough in tumor immunotherapy
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2021.672356
– volume: 17
  start-page: e1008814
  year: 2021
  ident: 2023050421471541000_btad284-B15
  article-title: Predicting recognition between T cell receptors and epitopes with TCRGP
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1008814
– volume: 18
  start-page: 128
  year: 2019
  ident: 2023050421471541000_btad284-B28
  article-title: Neoantigen vaccine: an emerging tumor immunotherapy
  publication-title: Mol Cancer
  doi: 10.1186/s12943-019-1055-6
– volume: 11
  year: 2020
  ident: 2023050421471541000_btad284-B35
  article-title: Prediction of specific TCR-peptide binding from large dictionaries of TCR-peptide pairs
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2020.01803
– volume: 37
  start-page: 367
  year: 2019
  ident: 2023050421471541000_btad284-B45
  article-title: The international cancer genome consortium data portal
  publication-title: Nat Biotechnol
  doi: 10.1038/s41587-019-0055-9
– volume: 10
  start-page: 1392
  year: 2019
  ident: 2023050421471541000_btad284-B8
  article-title: Determinants for neoantigen identification
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2019.01392
– volume: 55
  start-page: 280
  year: 2000
  ident: 2023050421471541000_btad284-B30
  article-title: IMGT/HLA database—a sequence database for the human major histocompatibility complex
  publication-title: Tissue Antigens
  doi: 10.1034/j.1399-0039.2000.550314.x
– volume: 2
  start-page: e796
  year: 2007
  ident: 2023050421471541000_btad284-B25
  article-title: NetMHCpan, a method for quantitative predictions of peptide binding to any HLA-A and -B locus protein of known sequence
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0000796
– volume: 2019
  year: 2019
  ident: 2023050421471541000_btad284-B49
  article-title: NeoPeptide: an immunoinformatic database of T-cell-defined neoantigens
  publication-title: Database
  doi: 10.1093/database/baz128
– volume: 89
  start-page: 10915
  year: 1992
  ident: 2023050421471541000_btad284-B12
  article-title: Amino acid substitution matrices from protein blocks
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.89.22.10915
– volume: 12
  start-page: 644637
  year: 2021
  ident: 2023050421471541000_btad284-B43
  article-title: NEPdb: a database of T-cell experimentally-validated neoantigens and pan-cancer predicted neoepitopes for cancer immunotherapy
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2021.644637
– volume: 48
  start-page: D1057
  year: 2020
  ident: 2023050421471541000_btad284-B2
  article-title: VDJdb in 2019: database extension, new analysis infrastructure and a T-cell receptor motif compendium
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkz874
– volume: 16
  start-page: 276
  year: 2018
  ident: 2023050421471541000_btad284-B42
  article-title: TSNAdb: a database for tumor-specific neoantigens from immunogenomics data analysis
  publication-title: Genom Proteom Bioinform
  doi: 10.1016/j.gpb.2018.06.003
– volume: 9
  start-page: e1003266
  year: 2013
  ident: 2023050421471541000_btad284-B5
  article-title: Properties of MHC class I presented peptides that enhance immunogenicity
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1003266
– volume: 7
  start-page: 123
  year: 2015
  ident: 2023050421471541000_btad284-B7
  article-title: Annotation of pseudogenic gene segments by massively parallel sequencing of rearranged lymphocyte receptor loci
  publication-title: Genome Med
  doi: 10.1186/s13073-015-0238-z
– volume: 2020
  year: 2020
  ident: 2023050421471541000_btad284-B37
  article-title: dbPepNeo: a manually curated database for human tumor neoantigen peptides
  publication-title: Database
  doi: 10.1093/database/baaa004
– volume: 36
  start-page: 897
  year: 2020
  ident: 2023050421471541000_btad284-B46
  article-title: PIRD: Pan immune repertoire database
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz614
– volume: 12
  start-page: 664514
  year: 2021
  ident: 2023050421471541000_btad284-B36
  article-title: Contribution of T cell receptor alpha and beta CDR3, MHC typing, V and J genes to peptide binding prediction
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2021.664514
– volume: 12
  start-page: 1605
  year: 2021
  ident: 2023050421471541000_btad284-B34
  article-title: DeepTCR is a deep learning framework for revealing sequence concepts within T-cell repertoires
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-21879-w
– volume: 102
  start-page: 6395
  year: 2005
  ident: 2023050421471541000_btad284-B1
  article-title: Solving the protein sequence metric problem
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0408677102
– volume: 8
  start-page: 33
  year: 2016
  ident: 2023050421471541000_btad284-B24
  article-title: NetMHCpan-3.0; improved prediction of binding to MHC class I molecules integrating information from multiple receptor and peptide length datasets
  publication-title: Genome Med
  doi: 10.1186/s13073-016-0288-x
– volume: 10
  start-page: 2820
  year: 2019
  ident: 2023050421471541000_btad284-B11
  article-title: Detection of enriched T cell epitope specificity in full T cell receptor sequence repertoires
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2019.02820
– volume: 46
  start-page: D419
  year: 2018
  ident: 2023050421471541000_btad284-B33
  article-title: VDJdb: a curated database of T-cell receptor sequences with known antigen specificity
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkx760
– year: 2022
  ident: 2023050421471541000_btad284-B41
– volume: 3
  start-page: 864
  year: 2021
  ident: 2023050421471541000_btad284-B21
  article-title: Deep learning-based prediction of the T cell receptor-antigen binding specificity
  publication-title: Nat Mach Intell
  doi: 10.1038/s42256-021-00383-2
– volume: 10
  start-page: e0141561
  year: 2015
  ident: 2023050421471541000_btad284-B17
  article-title: Multiplex identification of antigen-specific T cell receptors using a combination of immune assays and immune receptor sequencing
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0141561
– volume: 2
  start-page: 100194
  year: 2021
  ident: 2023050421471541000_btad284-B32
  article-title: Prediction of neo-epitope immunogenicity reveals TCR recognition determinants and provides insight into immunoediting
  publication-title: Cell Rep Med
  doi: 10.1016/j.xcrm.2021.100194
– volume: 37
  start-page: i237
  year: 2021
  ident: 2023050421471541000_btad284-B40
  article-title: TITAN: T-cell receptor specificity prediction with bimodal attention networks
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btab294
– volume: 1
  start-page: 362
  year: 2021
  ident: 2023050421471541000_btad284-B19
  article-title: Rapid assessment of T-cell receptor specificity of the immune repertoire
  publication-title: Nat Comput Sci
  doi: 10.1038/s43588-021-00076-1
– volume: 10
  start-page: 707
  year: 1966
  ident: 2023050421471541000_btad284-B18
  article-title: Binary codes capable of correcting deletions, insertions and reversals
  publication-title: Soviet Phys Dokl
SSID ssj0005056
Score 2.5482624
Snippet Abstract Motivation Predicting the binding between T-cell receptor (TCR) and peptide presented by human leucocyte antigen molecule is a highly challenging task...
Predicting the binding between T-cell receptor (TCR) and peptide presented by human leucocyte antigen molecule is a highly challenging task and a key...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
SubjectTerms Antigens - chemistry
Epitopes - chemistry
Humans
Original Paper
Peptides - metabolism
Receptors, Antigen, T-Cell - chemistry
Systems Biology
T-Lymphocytes - metabolism
Title epiTCR: a highly sensitive predictor for TCR–peptide binding
URI https://www.ncbi.nlm.nih.gov/pubmed/37094220
https://www.proquest.com/docview/2806073757
https://pubmed.ncbi.nlm.nih.gov/PMC10159657
https://doi.org/10.1093/bioinformatics/btad284
UnpaywallVersion publishedVersion
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: KQ8
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: DOA
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: ADMLS
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 20241003
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: DIK
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 20241003
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: GX1
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: Medline (PubMed)
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: RPM
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVOVD
  databaseName: Journals@Ovid LWW All Open Access Journal Collection Rolling
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: OVEED
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://ovidsp.ovid.com/
  providerName: Ovid
– providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: TOX
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fa9swED-2lLG9dH-7ptuKCnsauHFsWbb6MCihpQyWjpFA9mR0kkxDg2Nah5I-7TvsG-6T7GQ7oW4Zy15sg3XCkk6nO9_d7wA-9iVyzDR6oc64xxEzT0lhvCCkm6YDya9gF78OxdmYf5lEk8ZQdLkwLf-9DHs4nTcIog61uIelMiRQH8OWcA6lDmyNh9-Of9TJVbHHk6oUcvPc769Sgv_aUes0amW43VE0H8ZLPl3khVreqNnszmF0-hzOV8OoY1AuDxclHurbewiPm4_zBWw3eik7rhnpJTyy-St4UleqXL6Gz7aYjgbfj5hiDuB4tmTXLvLdyUpWXDlnD9nujHpm1Or3z1-FC5YxluG0ypp5A-PTk9HgzGtKL3iaLNPSE5EmPSIx_UzIwIjECBMrOuqFsRJ9jqSTB9Jo0vUwiDIVGB4LG1iytVGYyFfhDnTyeW53gTlCI8guUTLhRKNCjlxqtH6APBSqC9FqCVLd4JK78hiztPaPh2l7btJmbrrQW9MVNTLHPyk-0Qpv3PhgxQgp7TjnRlG5nS-uU-eLJsEYR3EX3taMse4zjMlcJgbvQtJimXUDh-bdfpNPLypUb5KNkRSuU3_NXRt-697_k7yDZwGpa1XoJn8PnfJqYT-QelXifvVbgq6j88l-s7_-AFB-Lz4
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fS9xAEB_aE2lf-kfberWWLfgkxMslm022D4KIIkJtEQ_0KezsbvDokQuaQ65Pfge_oZ_E2SR3GEW8PiWQnSG7Ozs7w8z8BmCzL5FjptELdcY9jph5SgrjBSE9NF1IfgW7-OtYHA740Vl01jiKrhamFb-XYQ-H4wZB1KEW97BUhhTqa1gSLqDUgaXB8Z_d87q4KvZ4UrVCbt77_VlJ8LOMWrdRq8LtgaH5NF_yzSQv1PRajUYPLqOD9_B7No06B-Xv9qTEbf3vEcLj4vP8AO8au5Tt1oL0EV7ZfAWW606V01XYscXwdO_kJ1PMARyPpuzKZb47XcmKSxfsId-dEWdGo-5ubguXLGMsw2FVNfMJBgf7p3uHXtN6wdPkmZaeiDTZEYnpZ0IGRiRGmFjRVS-MlehzJJs8kEaTrYdBlKnA8FjYwJKvjcJEvgo_Qycf53YNmCM0gvwSJRNONCrkyKVG6wfIQ6G6EM22INUNLrlrjzFK6_h4mLbXJm3Wpgu9OV1RI3O8SLFFO7zw4B8zQUjpxLkwisrteHKVulg0KcY4irvwpRaMOc8wJneZBLwLSUtk5gMcmnf7Sz68qFC9STdGUjim_ly6FvzXr_9Psg5vAzLXqtRN_g065eXEbpB5VeL35kzdAyshLS0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=epiTCR%3A+a+highly+sensitive+predictor+for+TCR-peptide+binding&rft.jtitle=Bioinformatics+%28Oxford%2C+England%29&rft.au=Pham%2C+My-Diem+Nguyen&rft.au=Nguyen%2C+Thanh-Nhan&rft.au=Tran%2C+Le+Son&rft.au=Nguyen%2C+Que-Tran+Bui&rft.date=2023-05-04&rft.issn=1367-4811&rft.eissn=1367-4811&rft.volume=39&rft.issue=5&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtad284&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4811&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4811&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4811&client=summon