Comparison of Machine Learning Algorithms and Hybrid Computational Intelligence Algorithms for Rehabilitation Classification and Prognosis in Reverse Total Shoulder Arthroplasty

Despite the increasing application of machine learning and computational intelligence algorithms in medicine and physiotherapy, accurate classification and prognosis algorithms for postoperative patients in the rehabilitation phase are still lacking. The present study was carried out in two phases....

Full description

Saved in:
Bibliographic Details
Published inBioengineering (Basel) Vol. 12; no. 2; p. 150
Main Authors Vrouva, Sotiria, Koumantakis, George A., Sopidou, Varvara, Tatsios, Petros I., Raptis, Christos, Adamopoulos, Adam
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 01.02.2025
MDPI
Subjects
Online AccessGet full text
ISSN2306-5354
2306-5354
DOI10.3390/bioengineering12020150

Cover

Abstract Despite the increasing application of machine learning and computational intelligence algorithms in medicine and physiotherapy, accurate classification and prognosis algorithms for postoperative patients in the rehabilitation phase are still lacking. The present study was carried out in two phases. In Phase I, classification performance of simple machine learning algorithms applied on data of patients suffering of reverse total shoulder arthroplasty (RTSA), examining algorithms’ classification accuracy and patients’ rehabilitation prognosis. In Phase II, hybrid computational intelligence algorithms were developed and applied in order to search for the minimum possible training set that achieves the maximum classification and prognostic performance. The data included features like age and gender, passive range of available motion of all movements (preoperative and postoperative), visual analog pain scale (preoperative and postoperative), and total rehabilitation time. In Phase I, K-nearest neighbors (ΚΝΝ) classification algorithm and K-means clustering algorithm (GAKmeans) were applied. Also, a genetic algorithm (GA)-based clustering algorithm (GAClust) was also applied. To achieve 100% performance on the test set, KNN used 80% of the data in the training set, whereas K-means and GAClust used 90% and 53.3%, respectively. In Phase II, additional computational intelligence algorithms were developed, namely, GAKNN (Genetic Algorithm K-nearest neighbors), GAKmeans, and GA2Clust (genetic algorithm-based clustering algorithm 2), for genetic algorithm optimization of the training set. Genetic algorithm optimization of the training set using hybrid algorithms in Phase II resulted in 100% performance on the test set by using only 35% of the available data for training. The proposed hybrid algorithms can reliably be used for patients’ rehabilitation prognosis.
AbstractList Despite the increasing application of machine learning and computational intelligence algorithms in medicine and physiotherapy, accurate classification and prognosis algorithms for postoperative patients in the rehabilitation phase are still lacking. The present study was carried out in two phases. In Phase I, classification performance of simple machine learning algorithms applied on data of patients suffering of reverse total shoulder arthroplasty (RTSA), examining algorithms’ classification accuracy and patients’ rehabilitation prognosis. In Phase II, hybrid computational intelligence algorithms were developed and applied in order to search for the minimum possible training set that achieves the maximum classification and prognostic performance. The data included features like age and gender, passive range of available motion of all movements (preoperative and postoperative), visual analog pain scale (preoperative and postoperative), and total rehabilitation time. In Phase I, K-nearest neighbors (ΚΝΝ) classification algorithm and K-means clustering algorithm (GAKmeans) were applied. Also, a genetic algorithm (GA)-based clustering algorithm (GAClust) was also applied. To achieve 100% performance on the test set, KNN used 80% of the data in the training set, whereas K-means and GAClust used 90% and 53.3%, respectively. In Phase II, additional computational intelligence algorithms were developed, namely, GAKNN (Genetic Algorithm K-nearest neighbors), GAKmeans, and GA2Clust (genetic algorithm-based clustering algorithm 2), for genetic algorithm optimization of the training set. Genetic algorithm optimization of the training set using hybrid algorithms in Phase II resulted in 100% performance on the test set by using only 35% of the available data for training. The proposed hybrid algorithms can reliably be used for patients’ rehabilitation prognosis.
Despite the increasing application of machine learning and computational intelligence algorithms in medicine and physiotherapy, accurate classification and prognosis algorithms for postoperative patients in the rehabilitation phase are still lacking. The present study was carried out in two phases. In Phase I, classification performance of simple machine learning algorithms applied on data of patients suffering of reverse total shoulder arthroplasty (RTSA), examining algorithms' classification accuracy and patients' rehabilitation prognosis. In Phase II, hybrid computational intelligence algorithms were developed and applied in order to search for the minimum possible training set that achieves the maximum classification and prognostic performance. The data included features like age and gender, passive range of available motion of all movements (preoperative and postoperative), visual analog pain scale (preoperative and postoperative), and total rehabilitation time. In Phase I, K-nearest neighbors (ΚΝΝ) classification algorithm and K-means clustering algorithm (GAKmeans) were applied. Also, a genetic algorithm (GA)-based clustering algorithm (GAClust) was also applied. To achieve 100% performance on the test set, KNN used 80% of the data in the training set, whereas K-means and GAClust used 90% and 53.3%, respectively. In Phase II, additional computational intelligence algorithms were developed, namely, GAKNN (Genetic Algorithm K-nearest neighbors), GAKmeans, and GA2Clust (genetic algorithm-based clustering algorithm 2), for genetic algorithm optimization of the training set. Genetic algorithm optimization of the training set using hybrid algorithms in Phase II resulted in 100% performance on the test set by using only 35% of the available data for training. The proposed hybrid algorithms can reliably be used for patients' rehabilitation prognosis.Despite the increasing application of machine learning and computational intelligence algorithms in medicine and physiotherapy, accurate classification and prognosis algorithms for postoperative patients in the rehabilitation phase are still lacking. The present study was carried out in two phases. In Phase I, classification performance of simple machine learning algorithms applied on data of patients suffering of reverse total shoulder arthroplasty (RTSA), examining algorithms' classification accuracy and patients' rehabilitation prognosis. In Phase II, hybrid computational intelligence algorithms were developed and applied in order to search for the minimum possible training set that achieves the maximum classification and prognostic performance. The data included features like age and gender, passive range of available motion of all movements (preoperative and postoperative), visual analog pain scale (preoperative and postoperative), and total rehabilitation time. In Phase I, K-nearest neighbors (ΚΝΝ) classification algorithm and K-means clustering algorithm (GAKmeans) were applied. Also, a genetic algorithm (GA)-based clustering algorithm (GAClust) was also applied. To achieve 100% performance on the test set, KNN used 80% of the data in the training set, whereas K-means and GAClust used 90% and 53.3%, respectively. In Phase II, additional computational intelligence algorithms were developed, namely, GAKNN (Genetic Algorithm K-nearest neighbors), GAKmeans, and GA2Clust (genetic algorithm-based clustering algorithm 2), for genetic algorithm optimization of the training set. Genetic algorithm optimization of the training set using hybrid algorithms in Phase II resulted in 100% performance on the test set by using only 35% of the available data for training. The proposed hybrid algorithms can reliably be used for patients' rehabilitation prognosis.
Audience Academic
Author Adamopoulos, Adam
Tatsios, Petros I.
Raptis, Christos
Vrouva, Sotiria
Koumantakis, George A.
Sopidou, Varvara
AuthorAffiliation 2 Department of Physical Therapy, 401 Army General Hospital of Athens, 11525 Athens, Greece
4 Department of Biomedical Sciences, School of Health and Care Sciences, University of West Attica (UNIWA), 12243 Athens, Greece; vsopidou@uniwa.gr
1 Physiotherapy Department, School of Health and Care Sciences, University of West Attica (UNIWA), 12243 Athens, Greece; gkoumantakis@uniwa.gr (G.A.K.); ptatsios@uniwa.gr (P.I.T.)
3 Medical Physics Laboratory, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; craptis@med.duth.gr (C.R.); adam@med.duth.gr (A.A.)
AuthorAffiliation_xml – name: 1 Physiotherapy Department, School of Health and Care Sciences, University of West Attica (UNIWA), 12243 Athens, Greece; gkoumantakis@uniwa.gr (G.A.K.); ptatsios@uniwa.gr (P.I.T.)
– name: 2 Department of Physical Therapy, 401 Army General Hospital of Athens, 11525 Athens, Greece
– name: 4 Department of Biomedical Sciences, School of Health and Care Sciences, University of West Attica (UNIWA), 12243 Athens, Greece; vsopidou@uniwa.gr
– name: 3 Medical Physics Laboratory, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; craptis@med.duth.gr (C.R.); adam@med.duth.gr (A.A.)
Author_xml – sequence: 1
  givenname: Sotiria
  orcidid: 0000-0001-8183-3335
  surname: Vrouva
  fullname: Vrouva, Sotiria
– sequence: 2
  givenname: George A.
  orcidid: 0000-0001-7709-2802
  surname: Koumantakis
  fullname: Koumantakis, George A.
– sequence: 3
  givenname: Varvara
  orcidid: 0000-0001-9143-5023
  surname: Sopidou
  fullname: Sopidou, Varvara
– sequence: 4
  givenname: Petros I.
  orcidid: 0000-0001-5156-3733
  surname: Tatsios
  fullname: Tatsios, Petros I.
– sequence: 5
  givenname: Christos
  surname: Raptis
  fullname: Raptis, Christos
– sequence: 6
  givenname: Adam
  orcidid: 0000-0001-6760-3971
  surname: Adamopoulos
  fullname: Adamopoulos, Adam
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40001670$$D View this record in MEDLINE/PubMed
BookMark eNqNks1u1DAUhSNUREvpK1SW2LCZ4r_EyQqNRoWONAgEZR3d2E7iymMPdlI0j8Ub4jSlmkFdIC_8d85nXx-_zk6cdzrLLgm-YqzC7xvjteuM0zoY1xGKKSY5fpGdUYaLRc5yfnIwPs0uYrzDGBNGc1rwV9kpn2aFwGfZ75Xf7iCY6B3yLfoMsk9ctNEQXGKjpe18MEO_jQicQjf7JhiFJtM4wGC8A4vWbtDWmk47qQ8NrQ_om-6hMdbMYrSyEKNpjZynE_Jr8J3z0URkXJLf6xA1uvVDAn_v_WiVDmgZhj74XTIP-zfZyxZs1BeP_Xn24-P17epmsfnyab1abhYyp2xYcF7hSrKqKlQFIGUrIcesgKLhjeCVErxUIAQULVV5CURVumJlW6q8YRwqzM6z9cxVHu7qXTBbCPvag6kfFnzoagiDkVbXFMsCVKPbXDbpaWmZ8iBUCtFoAjkniSVm1uh2sP8F1j4BCa6nTOvnM03OD7NzNzZbraR2QwB7dJ3jHWf6uvP3NSFlTvKSJsK7R0LwP0cdh3prokyBgdN-jDUjgjBRElYm6dt_pHd-DCniBxWuuMDiQNVBqt241qeD5QStlyUtK85FMR179YwqNaW3Rqb_3Jq0fmS4PKz0qcS_fzUJilkgg48x6PZ_3_AP9QEG-A
Cites_doi 10.1177/24715492221137186
10.3390/a17060236
10.1016/j.jse.2018.01.013
10.1053/j.sart.2020.10.008
10.1016/j.jse.2024.01.033
10.1016/j.jisako.2023.10.015
10.1016/j.csbj.2020.04.005
10.1016/j.jse.2020.07.042
10.1088/1361-6579/aacfd9
10.1177/24715492211038172
10.1186/s40945-021-00121-2
10.1302/2046-3758.127.BJR-2023-0111.R1
10.1016/j.jseint.2022.10.004
10.1109/TIT.1967.1053964
10.1016/j.jse.2017.11.011
10.1007/s12306-023-00811-z
10.1016/j.jse.2012.11.016
10.1016/j.jse.2019.10.005
10.1016/j.jse.2022.06.005
10.4055/cios22084
10.1016/j.jse.2020.03.049
10.1007/s12178-023-09823-5
10.3390/jpm12010109
10.1038/s41598-022-10358-x
10.1016/j.jse.2016.12.073
10.1186/s40634-021-00352-z
10.1016/j.jor.2022.08.020
10.3389/fmedt.2022.1076755
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 by the authors. 2025
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 by the authors. 2025
DBID AAYXX
CITATION
NPM
8FE
8FG
8FH
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
L6V
LK8
M7P
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.3390/bioengineering12020150
DatabaseName CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Engineering Collection
ProQuest Biological Science Collection
Biological Science Database
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic


PubMed
CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physical Therapy
EISSN 2306-5354
ExternalDocumentID oai_doaj_org_article_20c6adbef5cb4002820112c77be1a541
10.3390/bioengineering12020150
PMC11851582
A828944762
40001670
10_3390_bioengineering12020150
Genre Journal Article
GeographicLocations Greece
Thrace
GeographicLocations_xml – name: Greece
– name: Thrace
GroupedDBID 53G
5VS
8FE
8FG
8FH
AAFWJ
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
HYE
IAO
IHR
INH
ITC
KQ8
L6V
LK8
M7P
M7S
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
RPM
NPM
ABUWG
AZQEC
DWQXO
GNUQQ
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
PUEGO
5PM
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c523t-44909c3996d9aaccfca5036a6b4b749d748da77a6f2d58a1d9e938f8d5b34a903
IEDL.DBID DOA
ISSN 2306-5354
IngestDate Fri Oct 03 12:51:44 EDT 2025
Sun Oct 26 04:10:14 EDT 2025
Tue Sep 30 17:07:15 EDT 2025
Thu Sep 04 18:16:31 EDT 2025
Fri Jul 25 11:53:59 EDT 2025
Mon Oct 20 22:45:52 EDT 2025
Mon Oct 20 16:56:44 EDT 2025
Sat Mar 01 01:25:52 EST 2025
Thu Oct 16 04:40:18 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords hybrid machine learning algorithms
reverse total shoulder arthroplasty prognosis
genetic algorithms
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c523t-44909c3996d9aaccfca5036a6b4b749d748da77a6f2d58a1d9e938f8d5b34a903
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7709-2802
0000-0001-8183-3335
0000-0001-9143-5023
0000-0001-6760-3971
0000-0001-5156-3733
OpenAccessLink https://doaj.org/article/20c6adbef5cb4002820112c77be1a541
PMID 40001670
PQID 3170947078
PQPubID 2055440
ParticipantIDs doaj_primary_oai_doaj_org_article_20c6adbef5cb4002820112c77be1a541
unpaywall_primary_10_3390_bioengineering12020150
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11851582
proquest_miscellaneous_3171378138
proquest_journals_3170947078
gale_infotracmisc_A828944762
gale_infotracacademiconefile_A828944762
pubmed_primary_40001670
crossref_primary_10_3390_bioengineering12020150
PublicationCentury 2000
PublicationDate 2025-02-01
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Bioengineering (Basel)
PublicationTitleAlternate Bioengineering (Basel)
PublicationYear 2025
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Kennedy (ref_4) 2021; 11
ref_14
Shi (ref_2) 2022; 6
Kumar (ref_26) 2021; 30
Wagner (ref_6) 2020; 29
Devana (ref_11) 2021; 5
Matsuki (ref_25) 2018; 27
Levin (ref_15) 2024; 33
Galvin (ref_18) 2022; 31
Kohan (ref_30) 2017; 26
Ramkumar (ref_33) 2018; 27
Pereira (ref_28) 2022; 14
Howard (ref_29) 2023; 16
Farley (ref_8) 2021; 6
(ref_19) 2021; 8
Lee (ref_31) 2023; 15
Franceschetti (ref_27) 2024; 108
McLendon (ref_17) 2021; 6
Urban (ref_16) 2020; 18
Powling (ref_9) 2023; 12
ref_24
Burns (ref_32) 2018; 39
ref_23
ref_21
Khoriati (ref_13) 2024; 9
Ek (ref_1) 2013; 22
Hagen (ref_7) 2020; 29
Cover (ref_20) 1967; 13
Ikotun (ref_22) 2023; 629
Kumar (ref_12) 2022; 34
ref_5
Anderson (ref_3) 2021; 31
Gupta (ref_10) 2022; 7
References_xml – volume: 6
  start-page: 24715492221137186
  year: 2022
  ident: ref_2
  article-title: Increasing Rate of Shoulder Arthroplasty for Geriatric Proximal Humerus Fractures in the United States, 2010–2019
  publication-title: J. Shoulder Elb. Arthroplast.
  doi: 10.1177/24715492221137186
– volume: 6
  start-page: e20.00156
  year: 2021
  ident: ref_8
  article-title: Prevalence of Shoulder Arthroplasty in the United States and the Increasing Burden of Revision Shoulder Arthroplasty
  publication-title: JB JS Open Access
– ident: ref_24
  doi: 10.3390/a17060236
– volume: 27
  start-page: 1198
  year: 2018
  ident: ref_33
  article-title: Mobile technology and telemedicine for shoulder range of motion: Validation of a motion-based machine-learning software development kit
  publication-title: J. Shoulder Elb. Surg.
  doi: 10.1016/j.jse.2018.01.013
– volume: 31
  start-page: 81
  year: 2021
  ident: ref_3
  article-title: The relationship between age and short-term complications following reverse total shoulder arthroplasty for proximal humerus fractures
  publication-title: Semin. Arthroplast.
  doi: 10.1053/j.sart.2020.10.008
– volume: 14
  start-page: e23322
  year: 2022
  ident: ref_28
  article-title: Clinical and Functional Results of Reverse Total Shoulder Arthroplasty and Postoperative Rehabilitation Protocol
  publication-title: Cureus
– volume: 33
  start-page: 1633
  year: 2024
  ident: ref_15
  article-title: Artificial intelligence in shoulder and elbow surgery: Overview of current and future applications
  publication-title: J. Shoulder Elb. Surg.
  doi: 10.1016/j.jse.2024.01.033
– volume: 9
  start-page: 227
  year: 2024
  ident: ref_13
  article-title: Artificial intelligence and the orthopaedic surgeon: A review of the literature and potential applications for future practice: Current concepts
  publication-title: J. ISAKOS
  doi: 10.1016/j.jisako.2023.10.015
– volume: 18
  start-page: 967
  year: 2020
  ident: ref_16
  article-title: Classifying shoulder implants in X-ray images using deep learning
  publication-title: Comput. Struct. Biotechnol. J.
  doi: 10.1016/j.csbj.2020.04.005
– volume: 30
  start-page: e225
  year: 2021
  ident: ref_26
  article-title: Using machine learning to predict clinical outcomes after shoulder arthroplasty with a minimal feature set
  publication-title: J. Shoulder Elb. Surg.
  doi: 10.1016/j.jse.2020.07.042
– volume: 39
  start-page: 075007
  year: 2018
  ident: ref_32
  article-title: Shoulder physiotherapy exercise recognition: Machine learning the inertial signals from a smartwatch
  publication-title: Physiol. Meas.
  doi: 10.1088/1361-6579/aacfd9
– volume: 5
  start-page: 24715492211038172
  year: 2021
  ident: ref_11
  article-title: Development of a Machine Learning Algorithm for Prediction of Complications and Unplanned Readmission Following Reverse Total Shoulder Arthroplasty
  publication-title: J. Shoulder Elb. Arthroplast.
  doi: 10.1177/24715492211038172
– volume: 11
  start-page: 28
  year: 2021
  ident: ref_4
  article-title: Protocol for a multicenter, randomised controlled trial of surgeon-directed home therapy vs. outpatient rehabilitation by physical therapists for reverse total shoulder arthroplasty: The SHORT trial
  publication-title: Arch Physiother.
  doi: 10.1186/s40945-021-00121-2
– ident: ref_23
– volume: 629
  start-page: 849
  year: 2023
  ident: ref_22
  article-title: K-means Clustering Algorithms: A Comprehensive Review, Variants Analysis, and Advances in the Era of Big Data
  publication-title: Inf. Sci.
– volume: 12
  start-page: 447
  year: 2023
  ident: ref_9
  article-title: Artificial intelligence in orthopaedic surgery
  publication-title: Bone Jt. Res.
  doi: 10.1302/2046-3758.127.BJR-2023-0111.R1
– volume: 7
  start-page: 158
  year: 2022
  ident: ref_10
  article-title: Research on artificial intelligence in shoulder and elbow surgery is increasing
  publication-title: JSES Int.
  doi: 10.1016/j.jseint.2022.10.004
– volume: 6
  start-page: e20.00128
  year: 2021
  ident: ref_17
  article-title: Machine Learning Can Predict Level of Improvement in Shoulder Arthroplasty
  publication-title: JB JS Open Access
– volume: 13
  start-page: 21
  year: 1967
  ident: ref_20
  article-title: Nearest neighbor pattern classification
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.1967.1053964
– volume: 27
  start-page: 808
  year: 2018
  ident: ref_25
  article-title: Outcomes of reverse shoulder arthroplasty in small- and large-stature patients
  publication-title: J. Shoulder Elb. Surg.
  doi: 10.1016/j.jse.2017.11.011
– volume: 108
  start-page: 163
  year: 2024
  ident: ref_27
  article-title: Machine learning can predict anterior elevation after reverse total shoulder arthroplasty: A new tool for daily outpatient clinic?
  publication-title: Musculoskelet. Surg.
  doi: 10.1007/s12306-023-00811-z
– volume: 22
  start-page: 1199
  year: 2013
  ident: ref_1
  article-title: Reverse total shoulder arthroplasty for massive irreparable rotator cuff tears in patients younger than 65 years old: Results after five to fifteen years
  publication-title: J. Shoulder Elb. Surg.
  doi: 10.1016/j.jse.2012.11.016
– volume: 29
  start-page: 442
  year: 2020
  ident: ref_7
  article-title: A randomized single-blinded trial of early rehabilitation versus immobilization after reverse total shoulder arthroplasty
  publication-title: J Shoulder Elb. Surg.
  doi: 10.1016/j.jse.2019.10.005
– volume: 31
  start-page: e534
  year: 2022
  ident: ref_18
  article-title: Outcomes and complications of primary reverse shoulder arthroplasty with minimum of 2 years’ follow-up: A systematic review and meta-analysis
  publication-title: J. Shoulder Elb. Surg.
  doi: 10.1016/j.jse.2022.06.005
– volume: 15
  start-page: 135
  year: 2023
  ident: ref_31
  article-title: Comparison of Clinical Performance of Inlay versus Onlay Humerus Implants in Reverse Total Shoulder Arthroplasty
  publication-title: Clin. Orthop. Surg.
  doi: 10.4055/cios22084
– volume: 29
  start-page: 2601
  year: 2020
  ident: ref_6
  article-title: The incidence of shoulder arthroplasty: Rise and future projections compared with hip and knee arthroplasty
  publication-title: J. Shoulder Elb. Surg.
  doi: 10.1016/j.jse.2020.03.049
– volume: 16
  start-page: 145
  year: 2023
  ident: ref_29
  article-title: Optimizing Outcomes After Reverse Total Shoulder Arthroplasty: Rehabilitation, Expected Outcomes, and Maximizing Return to Activities
  publication-title: Curr. Rev. Musculoskelet. Med.
  doi: 10.1007/s12178-023-09823-5
– ident: ref_5
  doi: 10.3390/jpm12010109
– ident: ref_21
  doi: 10.1038/s41598-022-10358-x
– volume: 26
  start-page: 1238
  year: 2017
  ident: ref_30
  article-title: Dislocation following reverse total shoulder arthroplasty
  publication-title: J. Shoulder Elb. Surg.
  doi: 10.1016/j.jse.2016.12.073
– volume: 8
  start-page: 37
  year: 2021
  ident: ref_19
  article-title: Evaluation of the inter and intraobserver reproducibility of the GRASP method: A goniometric method to measure the isolated glenohumeral range of motion in the shoulder joint
  publication-title: J. Exp. Orthop.
  doi: 10.1186/s40634-021-00352-z
– volume: 34
  start-page: 201
  year: 2022
  ident: ref_12
  article-title: Current understanding on artificial intelligence and machine learning in orthopaedics—A scoping review
  publication-title: J. Orthop.
  doi: 10.1016/j.jor.2022.08.020
– ident: ref_14
  doi: 10.3389/fmedt.2022.1076755
SSID ssj0001325264
Score 2.290888
Snippet Despite the increasing application of machine learning and computational intelligence algorithms in medicine and physiotherapy, accurate classification and...
SourceID doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 150
SubjectTerms Accuracy
Algorithms
Arthroplasty
Artificial intelligence
Classification
Cluster analysis
Clustering
Comparative analysis
Computer applications
Data mining
Datasets
Genetic algorithms
Genomes
hybrid machine learning algorithms
Intelligence
Joint replacement surgery
Learning algorithms
Machine learning
Optimization
Orthopedics
Patient satisfaction
Physical therapy
Prognosis
Rehabilitation
reverse total shoulder arthroplasty prognosis
Shoulder
Test sets
Therapeutics, Physiological
Vector quantization
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELZG9wA8IH6OjIGMhMRT1MZ24uQBoW7aVJBWTWOT9hbZsdNWKklpU039s_gPuXPSNgGEeExtR77e-XznnL-PkA8yNlwGJvcz2F99oY3wteSJz-zAiFxnyub4RfdyHI1uxde78O6AjLd3YbCscusTnaM2ZYZn5H3Y5yATQWyaz4sfPrJG4dfVLYWGaqgVzCcHMfaAHDJExuqRw9Pz8dX1_tSFsxBCgPqqMId8v69npd0j_wUMwqcAL-G3dikH5v-ny27tWb_XUz5cFwu1uVfzeWuzunhKnjRRJh3WZvGMHNjiOXncwh58QX6e7RgIaZnTS1dUaWmDtzqhw_kExK-m31dUFYaONni1i9YkEM0BIv3SwvNsD4BAmF53IMCpI9_EsqT6EV95tSyxym-2orMCumN9iKU3JWQD9NsUmbftEiVAHgcYXG1ektuL85uzkd_wN_gZpLeVL0QySDKIgCKTKNBQjvQLPFKRFlqKxEgRGyWlinJmwlgFJrEJj_PYhJoLlQz4K9IrysK-JhQiEWsEzyXEf0KC1UmmFIwMITdgQiuP9Lf6Shc1TEcK6Q1qOP27hj1yimrd9UaYbfdDuZykzapN2SCLlNE2DzMtXHoK7pBlUmobqFAEHvmIRpGiMwDNZ6q50wCTRlitdIj5LEw4Yh456fSERZx1m7dmlTZOZJXuTd4j73fNOBIL4wpbrl2fgMs44NDnqLbCnUjCBfQSRI079tmRudtSzKYOYhzSTgh0Y5jXYGfK__nHHv9blDfkEUMKZVf4fkJ61XJt30JcV-l3zWL9BTgrVRI
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdQ9wA8jG8IDGQkJJ6yNbETJ49lYipIGxOs0niK_JU1oiRTm2oq_xX_IXdOGpKB0HhsfVf56vP5fsn5d4S8EYlhIjC5r-F89bky3FeCpX5ox4bnSkub4xvd45N4OuMfz6PzFijiXZje-3sGcPxAFZX9TcwXAFRvIPpOHEHuPSI7s5PTyVfXQQ6gccQi3lwD_ofy4ARyRP1_huPeeXS9VvL2uryUmyu5WPQOoqN75NPWhKb-5Nv-ulb7-sc1dseb23if7LY5KZ00TvSA3LLlQ3K3x1T4iPw87PoV0iqnx64E09KWnfWCThYX1bKo599XVJaGTjd4EYw2LSPax430Q4_9s68AaTP9PCAMp65VJxYxNR_xJ0-XFdYEFitalCCO1SSWnlWAHeiXOfbptku0ALs-gHK9eUxmR-_PDqd-2-3B1wCGa5_zdJxqyJdik0qpdY7NGlgsY8WV4KkRPDFSCBnnoYkSGZjUpizJExMpxmU6Zk_IqKxK-4xQyFus4SwXkC1yAT4qQilBMwIkEXIlPXKw9YDssiH1yAAM4WJkf18Mj7xDR-mkkZTbfQHrmLV7PAvHOpZG2TzSijswC8Ez1EIoG8iIBx55i26WYegAX9KyvQEBk0YSrmyC6BcmHIce2RtIwpbXw-Gto2ZtyFllkAgCVEfyJo-87oZRE8voSlutnUzARBIwkHna-HVnEnfpvwBTk4HHD2wejpTF3BGSA0iFtDiBeY27zXHDP_b5_6u8IHdCbMLsSuf3yKheru1LyAxr9aoNB78AF7BpPA
  priority: 102
  providerName: Unpaywall
Title Comparison of Machine Learning Algorithms and Hybrid Computational Intelligence Algorithms for Rehabilitation Classification and Prognosis in Reverse Total Shoulder Arthroplasty
URI https://www.ncbi.nlm.nih.gov/pubmed/40001670
https://www.proquest.com/docview/3170947078
https://www.proquest.com/docview/3171378138
https://pubmed.ncbi.nlm.nih.gov/PMC11851582
https://doi.org/10.3390/bioengineering12020150
https://doaj.org/article/20c6adbef5cb4002820112c77be1a541
UnpaywallVersion publishedVersion
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2306-5354
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001325264
  issn: 2306-5354
  databaseCode: KQ8
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2306-5354
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001325264
  issn: 2306-5354
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2306-5354
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001325264
  issn: 2306-5354
  databaseCode: ABDBF
  dateStart: 20180301
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2306-5354
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001325264
  issn: 2306-5354
  databaseCode: M~E
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central (PMC)
  customDbUrl:
  eissn: 2306-5354
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001325264
  issn: 2306-5354
  databaseCode: RPM
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2306-5354
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001325264
  issn: 2306-5354
  databaseCode: BENPR
  dateStart: 20140301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2306-5354
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001325264
  issn: 2306-5354
  databaseCode: 8FG
  dateStart: 20140301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZgOQAHxJssS2UkJE7RNrETJ8d02VKQtqqWrbScIr-yjVSSVR9a9WfxD5lxsiUBJDhwihKPK49nHM-Xjr8h5J1IDBOBKXwN-6vPleG-Eiz1Qzs0vFBa2gL_0T2bxpM5_3wZXXZKfWFOWEMP3EwcgHMdS6NsEWnFHUIAjwy1EMoGMnJH1sNhknbAlPu6wsIItvrmSDADXH-sytr-ZPgLAPMj1u_tRo60__dXc2dv-jVv8v62upa7G7lcdjal8WPyqI0madZo8YTcsdVT8rDDMfiMfD_ZVxqkdUHPXPKkpS2v6hXNllf1qtwsvq2prAyd7PAIF22KPbQfCumnDm9ntwMEvPS8R_VNXZFNTD9qbvEnZ6sas_nKNS0rEMc8EEsvaoj66ZcFVti2K9QA6zVA583uOZmPTy9OJn5bp8HXAGM3PufpMNUQ6cQmlVLrAssssFjGiivBUyN4YqQQMi5CEyUyMKlNWVIkJlKMy3TIXpCDqq7sK0Ih4rCGs0JAnMcFeJcIpYSeEWCAkCvpkeNbe-XXDR1HDjAGLZz_2cIeGaFZ99JIp-0egJPlrZPlf3Myj7xHp8hx0YPltWzPLsCgkT4rzxC3woDj0CNHPUlYrLrffOtWefuyWOcQwgHIRtolj7zdN2NPTICrbL11MgETScBA5mXjhXuVuAvcBaia9Pyzp3O_pSoXjkoc4CUEtAmMa7h35X-c2MP_MbGvyYMQCyq7NPgjcrBZbe0biPI2akDuJuOPA3IvG30YjeE6Op3OzgdumcPdfDrLvv4AQfRcfQ
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6V9lA4IN4ECiwSiJMVe3fttQ8VSkurhDZRVVKpN7PrXSeRgh3yUJWfxR_gtzHjOIkNCHHpMdmHdjzjeaxn5iPknQwNl55JnQTsqyO0EY6WPHKYdY1IdaJsil90u72gfSU-X_vXO-TnuhYG0yrXOrFQ1CZP8I68CXYOIhHsTfNx8t1B1Cj8urqG0FAltII5LFqMlYUdZ3Z5AyHc7LDzCfj9nrHTk_5x2ylRBpwEgrC5I0TkRgnY6cBECvZJESSAByrQQksRGSlCo6RUQcqMHyrPRDbiYRoaX3OhIpfDvnfInuAiguBv7-ikd3G5veXhzAeXY1WazHnkNvUot9tOgx4Dd83Dov-KVSzAA_40ERUb-Xv-5v4im6jljRqPK8bx9AG5X3q1tLUSw4dkx2aPyL1Kr8PH5MfxBvGQ5intFkmclpb9XQe0NR7A454Pv82oygxtL7GUjK5AJ8oLS9qp9A-tLgDHm17WWo7TAuwT06BWP3HLi2mOWYWjGR1lMB3zUSzt5xB90C9DRPq2U6QAcSNg8Xz5hFzdCiefkt0sz-xzQsHzsUbwVIK_KSRIuWRKwUofYhEmtGqQ5ppf8WTVFiSGcAo5HP-dww1yhGzdzMa23sUf-XQQl1oiZm4SKKNt6idaFOEwqF-WSKmtp3zhNcgHFIoYlQ9wPlFlDQUcGtt4xS2Mn-HAAWuQg9pMUBpJfXgtVnGptGbx9hVrkLebYVyJiXiZzRfFHI_L0OMw59lKCjckiSKAkEBqWJPPGs31kWw0LFqaQ5gLjnUI53I3ovyfD_bFv0l5Q_bb_e55fN7pnb0kdxnCNxdJ9wdkdz5d2FfgU8716_LFpeTrbeuKX6-8kmo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIvE4IN4ECiwSiJMVe3fttQ8IhZaQUFpV0Eq9mX05iRTskIeq_Cyu_DpmbOdhQIhLj8nuWl7PeB7rme8j5KWMLZeBzTwD_tUT2gpPS554zPlWZNool-EX3aPjqHcmPp6H5zvk56oXBssqVzaxNNS2MHhG3gY_B5kIYtO0s7os4uSg-3by3UMGKfzSuqLTqFTk0C0vIH2bvekfgKxfMdZ9f7rf82qGAc9AAjb3hEj8xICPjmyilDEZEgTwSEVaaCkSK0VslZQqypgNYxXYxCU8zmIbai5U4nO47hVyVSKKO3apdz9sznc4CyHYqJqSOU_8th4VboMxGDAI1AJs99_yhyVtwJ_OYcs7_l65eX2RT9TyQo3HW26xe5vcquNZ2qkU8A7ZcfldcnML5fAe-bG_5jqkRUaPyvJNR2tk1wHtjAfwcOfDbzOqckt7S2wioxXdRH1USftbyKHbCyDkpp8bYOO0pPnEAqjqJ17yZFpgPeFoRkc5TMdKFEdPC8g76Jchcny7Ke4AGSNg8Xx5n5xdihwfkN28yN0jQiHmcVbwTEKkKSTot2RKwcoQshAmtGqR9kpe6aQCBEkhkUIJp3-XcIu8Q7GuZyOgd_lHMR2ktX1ImW8iZbXLQqNFmQiD4WVGSu0CFYqgRV6jUqRodkDyRtXdE3DTCOCVdjBzhhuOWIvsNWaCuTDN4ZVapbW5mqWbl6tFXqyHcSWW4OWuWJRzAi7jgMOch5UWrrckytRBwlbjhn429twcyUfDEswcElwIqWO4L3-tyv_5YB__eyvPyTWwEOmn_vHhE3KDIW9zWW2_R3bn04V7CsHkXD8r31pKvl62mfgFz2CQBA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdQ9wA8jG8IDGQkJJ6yNbETJ49lYipIGxOs0niK_JU1oiRTm2oq_xX_IXdOGpKB0HhsfVf56vP5fsn5d4S8EYlhIjC5r-F89bky3FeCpX5ox4bnSkub4xvd45N4OuMfz6PzFijiXZje-3sGcPxAFZX9TcwXAFRvIPpOHEHuPSI7s5PTyVfXQQ6gccQi3lwD_ofy4ARyRP1_huPeeXS9VvL2uryUmyu5WPQOoqN75NPWhKb-5Nv-ulb7-sc1dseb23if7LY5KZ00TvSA3LLlQ3K3x1T4iPw87PoV0iqnx64E09KWnfWCThYX1bKo599XVJaGTjd4EYw2LSPax430Q4_9s68AaTP9PCAMp65VJxYxNR_xJ0-XFdYEFitalCCO1SSWnlWAHeiXOfbptku0ALs-gHK9eUxmR-_PDqd-2-3B1wCGa5_zdJxqyJdik0qpdY7NGlgsY8WV4KkRPDFSCBnnoYkSGZjUpizJExMpxmU6Zk_IqKxK-4xQyFus4SwXkC1yAT4qQilBMwIkEXIlPXKw9YDssiH1yAAM4WJkf18Mj7xDR-mkkZTbfQHrmLV7PAvHOpZG2TzSijswC8Ez1EIoG8iIBx55i26WYegAX9KyvQEBk0YSrmyC6BcmHIce2RtIwpbXw-Gto2ZtyFllkAgCVEfyJo-87oZRE8voSlutnUzARBIwkHna-HVnEnfpvwBTk4HHD2wejpTF3BGSA0iFtDiBeY27zXHDP_b5_6u8IHdCbMLsSuf3yKheru1LyAxr9aoNB78AF7BpPA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+Machine+Learning+Algorithms+and+Hybrid+Computational+Intelligence+Algorithms+for+Rehabilitation+Classification+and+Prognosis+in+Reverse+Total+Shoulder+Arthroplasty&rft.jtitle=Bioengineering+%28Basel%29&rft.au=Vrouva%2C+Sotiria&rft.au=Koumantakis%2C+George+A&rft.au=Sopidou%2C+Varvara&rft.au=Tatsios%2C+Petros+I&rft.date=2025-02-01&rft.pub=MDPI+AG&rft.issn=2306-5354&rft.eissn=2306-5354&rft.volume=12&rft.issue=2&rft_id=info:doi/10.3390%2Fbioengineering12020150&rft.externalDocID=A828944762
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2306-5354&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2306-5354&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2306-5354&client=summon