Classifier ensemble construction with rotation forest to improve medical diagnosis performance of machine learning algorithms

Improving accuracies of machine learning algorithms is vital in designing high performance computer-aided diagnosis (CADx) systems. Researches have shown that a base classifier performance might be enhanced by ensemble classification strategies. In this study, we construct rotation forest (RF) ensem...

Full description

Saved in:
Bibliographic Details
Published inComputer methods and programs in biomedicine Vol. 104; no. 3; pp. 443 - 451
Main Authors Ozcift, Akin, Gulten, Arif
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ireland Ltd 01.12.2011
Elsevier
Subjects
Online AccessGet full text
ISSN0169-2607
1872-7565
1872-7565
DOI10.1016/j.cmpb.2011.03.018

Cover

Abstract Improving accuracies of machine learning algorithms is vital in designing high performance computer-aided diagnosis (CADx) systems. Researches have shown that a base classifier performance might be enhanced by ensemble classification strategies. In this study, we construct rotation forest (RF) ensemble classifiers of 30 machine learning algorithms to evaluate their classification performances using Parkinson's, diabetes and heart diseases from literature. While making experiments, first the feature dimension of three datasets is reduced using correlation based feature selection (CFS) algorithm. Second, classification performances of 30 machine learning algorithms are calculated for three datasets. Third, 30 classifier ensembles are constructed based on RF algorithm to assess performances of respective classifiers with the same disease data. All the experiments are carried out with leave-one-out validation strategy and the performances of the 60 algorithms are evaluated using three metrics; classification accuracy (ACC), kappa error (KE) and area under the receiver operating characteristic (ROC) curve (AUC). Base classifiers succeeded 72.15%, 77.52% and 84.43% average accuracies for diabetes, heart and Parkinson's datasets, respectively. As for RF classifier ensembles, they produced average accuracies of 74.47%, 80.49% and 87.13% for respective diseases. RF, a newly proposed classifier ensemble algorithm, might be used to improve accuracy of miscellaneous machine learning algorithms to design advanced CADx systems.
AbstractList Improving accuracies of machine learning algorithms is vital in designing high performance computer-aided diagnosis (CADx) systems. Researches have shown that a base classifier performance might be enhanced by ensemble classification strategies. In this study, we construct rotation forest (RF) ensemble classifiers of 30 machine learning algorithms to evaluate their classification performances using Parkinson's, diabetes and heart diseases from literature. While making experiments, first the feature dimension of three datasets is reduced using correlation based feature selection (CFS) algorithm. Second, classification performances of 30 machine learning algorithms are calculated for three datasets. Third, 30 classifier ensembles are constructed based on RF algorithm to assess performances of respective classifiers with the same disease data. All the experiments are carried out with leave-one-out validation strategy and the performances of the 60 algorithms are evaluated using three metrics; classification accuracy (ACC), kappa error (KE) and area under the receiver operating characteristic (ROC) curve (AUC). Base classifiers succeeded 72.15%, 77.52% and 84.43% average accuracies for diabetes, heart and Parkinson's datasets, respectively. As for RF classifier ensembles, they produced average accuracies of 74.47%, 80.49% and 87.13% for respective diseases. RF, a newly proposed classifier ensemble algorithm, might be used to improve accuracy of miscellaneous machine learning algorithms to design advanced CADx systems.
Improving accuracies of machine learning algorithms is vital in designing high performance computer-aided diagnosis (CADx) systems. Researches have shown that a base classifier performance might be enhanced by ensemble classification strategies. In this study, we construct rotation forest (RF) ensemble classifiers of 30 machine learning algorithms to evaluate their classification performances using Parkinson's, diabetes and heart diseases from literature. While making experiments, first the feature dimension of three datasets is reduced using correlation based feature selection (CFS) algorithm. Second, classification performances of 30 machine learning algorithms are calculated for three datasets. Third, 30 classifier ensembles are constructed based on RF algorithm to assess performances of respective classifiers with the same disease data. All the experiments are carried out with leave-one-out validation strategy and the performances of the 60 algorithms are evaluated using three metrics; classification accuracy (ACC), kappa error (KE) and area under the receiver operating characteristic (ROC) curve (AUC). Base classifiers succeeded 72.15%, 77.52% and 84.43% average accuracies for diabetes, heart and Parkinson's datasets, respectively. As for RF classifier ensembles, they produced average accuracies of 74.47%, 80.49% and 87.13% for respective diseases. RF, a newly proposed classifier ensemble algorithm, might be used to improve accuracy of miscellaneous machine learning algorithms to design advanced CADx systems.Improving accuracies of machine learning algorithms is vital in designing high performance computer-aided diagnosis (CADx) systems. Researches have shown that a base classifier performance might be enhanced by ensemble classification strategies. In this study, we construct rotation forest (RF) ensemble classifiers of 30 machine learning algorithms to evaluate their classification performances using Parkinson's, diabetes and heart diseases from literature. While making experiments, first the feature dimension of three datasets is reduced using correlation based feature selection (CFS) algorithm. Second, classification performances of 30 machine learning algorithms are calculated for three datasets. Third, 30 classifier ensembles are constructed based on RF algorithm to assess performances of respective classifiers with the same disease data. All the experiments are carried out with leave-one-out validation strategy and the performances of the 60 algorithms are evaluated using three metrics; classification accuracy (ACC), kappa error (KE) and area under the receiver operating characteristic (ROC) curve (AUC). Base classifiers succeeded 72.15%, 77.52% and 84.43% average accuracies for diabetes, heart and Parkinson's datasets, respectively. As for RF classifier ensembles, they produced average accuracies of 74.47%, 80.49% and 87.13% for respective diseases. RF, a newly proposed classifier ensemble algorithm, might be used to improve accuracy of miscellaneous machine learning algorithms to design advanced CADx systems.
Abstract Improving accuracies of machine learning algorithms is vital in designing high performance computer-aided diagnosis (CADx) systems. Researches have shown that a base classifier performance might be enhanced by ensemble classification strategies. In this study, we construct rotation forest (RF) ensemble classifiers of 30 machine learning algorithms to evaluate their classification performances using Parkinson's, diabetes and heart diseases from literature. While making experiments, first the feature dimension of three datasets is reduced using correlation based feature selection (CFS) algorithm. Second, classification performances of 30 machine learning algorithms are calculated for three datasets. Third, 30 classifier ensembles are constructed based on RF algorithm to assess performances of respective classifiers with the same disease data. All the experiments are carried out with leave-one-out validation strategy and the performances of the 60 algorithms are evaluated using three metrics; classification accuracy (ACC), kappa error (KE) and area under the receiver operating characteristic (ROC) curve (AUC). Base classifiers succeeded 72.15%, 77.52% and 84.43% average accuracies for diabetes, heart and Parkinson's datasets, respectively. As for RF classifier ensembles, they produced average accuracies of 74.47%, 80.49% and 87.13% for respective diseases. RF, a newly proposed classifier ensemble algorithm, might be used to improve accuracy of miscellaneous machine learning algorithms to design advanced CADx systems.
Improving accuracies of machine learning algorithms is vital in designing high performance computer-aided diagnosis (CADx) systems. Researches have shown that a base classifier performance might be enhanced by ensemble classification strategies. In this study, we construct rotation forest (RF) ensemble classifiers of 30 machine learning algorithms to evaluate their classification performances using Parkinson's, diabetes and heart diseases from literature. While making experiments, first the feature dimension of three datasets is reduced using correlation based feature selection (CFS) algorithm. Second, classification performances of 30 machine learning algorithms are calculated for three datasets. Third, 30 classifier ensembles are constructed based on RF algorithm to assess performances of respective classifiers with the same disease data. All the experiments are carried out with leave-one-out validation strategy and the performances of the 60 algorithms are evaluated using three metrics; classification accuracy (ACC), kappa error (KE) and area under the receiver operating characteristic (ROC) curve (AUC). Base classifiers succeeded 72.15%, 77.52% and 84.43% average accuracies for diabetes, heart and Parkinson's datasets, respectively. As for RF classifier ensembles, they produced average accuracies of 74.47%, 80.49% and 87.13% for respective diseases. RF, a newly proposed classifier ensemble algorithm, might be used to improve accuracy of miscellaneous machine learning algorithms to design advanced CADx systems.
Author Gulten, Arif
Ozcift, Akin
Author_xml – sequence: 1
  givenname: Akin
  surname: Ozcift
  fullname: Ozcift, Akin
  email: akinozcift@hotmail.com
  organization: University of Gaziantep, Gaziantep Vocational School of Higher Education, Computer Programming Division, Gaziantep, Turkey
– sequence: 2
  givenname: Arif
  surname: Gulten
  fullname: Gulten, Arif
  organization: Firat University, Engineering Faculty, Electrical-Electronics Department, Elazig, Turkey
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24746668$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/21531475$$D View this record in MEDLINE/PubMed
BookMark eNqFkk-L1DAYh4OsuLOrX8CD5CKepiZpk7QiCzL4DxY8qOeQpm9mM6bJmLQre_C7mzqjwoK7pxJ4fm-a3_OeoZMQAyD0lJKKEipe7ioz7vuKEUorUleEtg_QiraSrSUX_AStCtStmSDyFJ3lvCOEMM7FI3TKKK9pI_kK_dx4nbOzDhKGkGHsPWATQ57SbCYXA_7hpiuc4qR_n2xMkCc8RezGfYrXgEcYnNEeD05vQ8wu4z2kgo06GMDR4lGbKxcAe9ApuLDF2m9jKlPH_Bg9tNpneHL8nqOv795-2XxYX356_3Hz5nJtOKunNTOkbxpeS0qJsS0xwGoYWE-pqE1txQDAGmZ5D4OkdpAd77q-taajjdGcyvocvTjMLb_8fS4PUKPLBrzXAeKcVUckbZu6tHI_yYQUnLSFfHYk5750oPbJjTrdqD_dFuD5EdC5FGRTKcTlf1wjGyHEMogdOJNizgnsX4QStYhWO7WIVotoRWpVRJdQeytk3EHRlLTzd0dfH6JQGr8u4lU2DoqswSUwkxqiuzt-cStuvAvLCnyDG8i7OKdQXCqqMlNEfV6WcNnB4o6U2kQZ8Or_A-67_RfzYu3p
CitedBy_id crossref_primary_10_1016_j_bbe_2020_09_005
crossref_primary_10_1016_j_jksuci_2017_10_011
crossref_primary_10_4018_IJeC_307133
crossref_primary_10_21541_apjes_541637
crossref_primary_10_1007_s44230_022_00003_1
crossref_primary_10_1016_j_bspc_2024_107142
crossref_primary_10_1111_coin_12217
crossref_primary_10_4018_IJDSST_286693
crossref_primary_10_4103_jmss_jmss_4_22
crossref_primary_10_1016_j_imu_2016_02_001
crossref_primary_10_3390_healthcare10102070
crossref_primary_10_4018_IJITSA_290001
crossref_primary_10_17557_tjfc_1511404
crossref_primary_10_31466_kfbd_1512278
crossref_primary_10_1007_s11042_019_7498_3
crossref_primary_10_1007_s12665_023_10840_3
crossref_primary_10_1016_j_chbah_2023_100026
crossref_primary_10_1007_s12652_019_01399_8
crossref_primary_10_1080_08839514_2018_1501914
crossref_primary_10_1155_2016_6837498
crossref_primary_10_1080_19475705_2017_1401560
crossref_primary_10_1080_10106049_2021_1914746
crossref_primary_10_4103_jmss_JMSS_57_18
crossref_primary_10_1155_2017_6209703
crossref_primary_10_1016_j_knosys_2014_10_012
crossref_primary_10_1016_j_jhydrol_2022_127963
crossref_primary_10_32604_cmc_2022_026077
crossref_primary_10_1016_j_compbiolchem_2014_10_002
crossref_primary_10_4108_eetpht_10_5244
crossref_primary_10_1016_j_artmed_2023_102524
crossref_primary_10_3390_su142114238
crossref_primary_10_1109_ACCESS_2017_2741521
crossref_primary_10_31127_tuje_1007508
crossref_primary_10_1038_s41598_024_51600_y
crossref_primary_10_21923_jesd_824703
crossref_primary_10_3390_app13010118
crossref_primary_10_1016_j_knosys_2019_104886
crossref_primary_10_1007_s00521_015_2142_2
crossref_primary_10_1007_s10916_016_0651_x
crossref_primary_10_1016_j_molstruc_2017_11_093
crossref_primary_10_1108_LHT_08_2019_0171
crossref_primary_10_1007_s41870_020_00569_8
crossref_primary_10_1080_03772063_2022_2028582
crossref_primary_10_1007_s40808_022_01384_9
crossref_primary_10_1016_j_asoc_2017_03_002
crossref_primary_10_1016_j_bbe_2022_07_002
crossref_primary_10_1088_2632_072X_ac5f8d
crossref_primary_10_1016_j_jisa_2023_103541
crossref_primary_10_1016_j_obmed_2020_100270
crossref_primary_10_1016_j_heliyon_2024_e25469
crossref_primary_10_1111_exsy_12343
crossref_primary_10_4018_IJEHMC_2020070103
crossref_primary_10_1109_LGRS_2013_2254108
crossref_primary_10_1007_s44174_022_00060_x
crossref_primary_10_1007_s10916_016_0477_6
crossref_primary_10_1016_j_cmpb_2016_10_001
crossref_primary_10_3390_app13031639
crossref_primary_10_1007_s00500_019_04022_2
crossref_primary_10_1177_1460458212446096
crossref_primary_10_1155_2018_2396952
crossref_primary_10_1007_s11277_022_09981_8
crossref_primary_10_1111_coin_12396
crossref_primary_10_1016_j_asoc_2021_107136
crossref_primary_10_1186_s12911_020_01215_w
crossref_primary_10_1016_j_jbi_2014_02_001
crossref_primary_10_1109_TSMC_2019_2958647
crossref_primary_10_1016_j_scitotenv_2019_136492
crossref_primary_10_35940_ijeat_A3212_1011121
crossref_primary_10_1016_j_ecoinf_2018_05_009
crossref_primary_10_17694_bajece_502156
crossref_primary_10_1007_s11053_019_09465_w
crossref_primary_10_1088_1757_899X_533_1_012047
crossref_primary_10_1016_j_bspc_2019_101756
crossref_primary_10_1016_j_csbj_2016_12_005
crossref_primary_10_1016_j_patrec_2017_01_014
crossref_primary_10_1016_j_bspc_2017_06_015
crossref_primary_10_1080_10106049_2021_1948109
crossref_primary_10_1016_j_neucom_2015_07_138
crossref_primary_10_1155_2019_8152713
crossref_primary_10_1109_ACCESS_2024_3524577
crossref_primary_10_1080_10255842_2022_2072683
crossref_primary_10_3390_rs16060988
crossref_primary_10_18034_mjmbr_v7i2_555
crossref_primary_10_1142_S0218126620502606
crossref_primary_10_1109_ACCESS_2019_2945129
crossref_primary_10_1007_s00500_021_05865_4
crossref_primary_10_1007_s11760_025_03851_z
crossref_primary_10_1016_j_eswa_2021_115902
crossref_primary_10_1016_j_knosys_2016_09_032
crossref_primary_10_1016_j_compag_2021_106067
crossref_primary_10_1111_exsy_12923
crossref_primary_10_1155_2022_1684017
crossref_primary_10_3233_JIFS_152641
crossref_primary_10_1016_j_jnlest_2022_100170
crossref_primary_10_18466_cbayarfbe_424521
crossref_primary_10_1016_j_atmosenv_2023_120233
crossref_primary_10_1007_s42979_024_02805_5
crossref_primary_10_1007_s10489_021_02426_y
crossref_primary_10_1080_10106049_2018_1559885
crossref_primary_10_1080_01431161_2019_1580820
crossref_primary_10_1155_2014_985789
crossref_primary_10_1016_j_smhl_2021_100206
crossref_primary_10_1186_s12870_020_02807_4
crossref_primary_10_1021_acsomega_3c09485
crossref_primary_10_1016_j_cogsys_2018_12_004
crossref_primary_10_1093_comjnl_bxaa006
crossref_primary_10_1016_j_engappai_2016_02_011
crossref_primary_10_1155_2022_8777026
crossref_primary_10_1007_s10489_022_04345_y
crossref_primary_10_1089_big_2021_0257
crossref_primary_10_17671_gazibtd_1059378
crossref_primary_10_1186_s12859_018_2505_7
crossref_primary_10_3389_fnagi_2021_633752
crossref_primary_10_1007_s13201_024_02131_4
crossref_primary_10_1002_ima_22670
crossref_primary_10_2139_ssrn_3642877
crossref_primary_10_1142_S0219691323500388
crossref_primary_10_1016_j_cmpb_2014_01_004
crossref_primary_10_1007_s10772_021_09916_x
crossref_primary_10_1016_j_eswa_2022_118045
crossref_primary_10_1155_2022_7887908
crossref_primary_10_1177_09544119211060989
crossref_primary_10_1016_j_cmpb_2025_108622
crossref_primary_10_3390_f10020157
crossref_primary_10_1007_s00521_021_05741_0
crossref_primary_10_1016_j_bspc_2013_02_006
crossref_primary_10_1016_j_ijsrc_2017_09_008
crossref_primary_10_1016_j_jhydrol_2021_126846
crossref_primary_10_1016_j_compeleceng_2022_108082
crossref_primary_10_3390_e21020106
crossref_primary_10_1016_j_eja_2025_127617
crossref_primary_10_1260_2040_2295_6_3_281
crossref_primary_10_1016_j_eswa_2012_07_014
crossref_primary_10_35940_ijitee_F8748_0410621
crossref_primary_10_1007_s00477_019_01689_9
crossref_primary_10_1007_s10772_017_9485_2
crossref_primary_10_1007_s12325_020_01605_6
crossref_primary_10_1007_s11045_022_00845_9
crossref_primary_10_1016_j_psychres_2023_115693
crossref_primary_10_1016_j_engappai_2020_103627
crossref_primary_10_1007_s10586_018_2416_4
crossref_primary_10_3233_JIFS_179115
crossref_primary_10_3233_JPD_202476
crossref_primary_10_1016_j_asoc_2023_110782
crossref_primary_10_1016_j_jbi_2019_103231
crossref_primary_10_1155_2022_1051388
crossref_primary_10_3389_fnins_2017_00310
crossref_primary_10_1134_S0361768818060129
crossref_primary_10_1016_j_cmpb_2018_10_017
crossref_primary_10_1016_j_mehy_2020_110072
crossref_primary_10_3389_fgene_2018_00515
crossref_primary_10_1155_2020_9816142
crossref_primary_10_1021_acs_est_8b03328
crossref_primary_10_1016_j_gsf_2021_101154
crossref_primary_10_1155_2022_9209656
crossref_primary_10_1007_s00521_016_2756_z
crossref_primary_10_1016_j_cmpb_2017_02_011
Cites_doi 10.1016/j.eswa.2006.10.022
10.1016/j.inffus.2006.09.003
10.1109/TKDE.2003.1245283
10.1109/TBME.2008.2005954
10.1023/A:1010933404324
10.1016/j.neucom.2006.03.002
10.1118/1.3132304
10.1109/MCAS.2006.1688199
10.1109/TSMCA.2007.904745
10.1016/j.jbi.2005.03.003
10.1016/j.patrec.2005.03.028
10.1016/j.eswa.2007.04.015
10.1016/j.compbiomed.2008.02.007
10.1109/TPAMI.2006.211
ContentType Journal Article
Copyright 2011 Elsevier Ireland Ltd
Elsevier Ireland Ltd
2015 INIST-CNRS
Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Copyright_xml – notice: 2011 Elsevier Ireland Ltd
– notice: Elsevier Ireland Ltd
– notice: 2015 INIST-CNRS
– notice: Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
8FD
FR3
P64
DOI 10.1016/j.cmpb.2011.03.018
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitleList
MEDLINE - Academic

Engineering Research Database

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1872-7565
EndPage 451
ExternalDocumentID 21531475
24746668
10_1016_j_cmpb_2011_03_018
S0169260711000836
1_s2_0_S0169260711000836
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.1-
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
LG9
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SBC
SDF
SDG
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
T5K
UHS
WUQ
XPP
Z5R
ZGI
ZY4
~G-
~HD
AFCTW
AGCQF
AGRNS
RIG
AACTN
AAIAV
ABLVK
ABTAH
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
LCYCR
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
8FD
FR3
P64
ID FETCH-LOGICAL-c523t-2c0b44537110cf80ce23ed2b1163c3f6dee242f5bed71fd79599b8fc914ca5173
IEDL.DBID .~1
ISSN 0169-2607
1872-7565
IngestDate Tue Oct 07 09:42:17 EDT 2025
Sun Sep 28 10:56:12 EDT 2025
Mon Jul 21 06:05:16 EDT 2025
Mon Jul 21 09:18:34 EDT 2025
Thu Apr 24 22:51:22 EDT 2025
Wed Oct 01 03:20:55 EDT 2025
Fri Feb 23 02:26:01 EST 2024
Fri May 16 00:31:31 EDT 2025
Tue Oct 14 19:30:36 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Parkinson's
Cleveland heart
Classifier performance
Rotation forest
Diabetes
Computer aided diagnosis
Ensemble learning
Biomedical engineering
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c523t-2c0b44537110cf80ce23ed2b1163c3f6dee242f5bed71fd79599b8fc914ca5173
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 21531475
PQID 902676508
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_907184315
proquest_miscellaneous_902676508
pubmed_primary_21531475
pascalfrancis_primary_24746668
crossref_primary_10_1016_j_cmpb_2011_03_018
crossref_citationtrail_10_1016_j_cmpb_2011_03_018
elsevier_sciencedirect_doi_10_1016_j_cmpb_2011_03_018
elsevier_clinicalkeyesjournals_1_s2_0_S0169260711000836
elsevier_clinicalkey_doi_10_1016_j_cmpb_2011_03_018
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-12-01
PublicationDateYYYYMMDD 2011-12-01
PublicationDate_xml – month: 12
  year: 2011
  text: 2011-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
– name: Ireland
PublicationTitle Computer methods and programs in biomedicine
PublicationTitleAlternate Comput Methods Programs Biomed
PublicationYear 2011
Publisher Elsevier Ireland Ltd
Elsevier
Publisher_xml – name: Elsevier Ireland Ltd
– name: Elsevier
References Polikar (bib0060) 2006; 6
Hall (bib0105) 1999
Breiman (bib0120) 2001; 45
Hall, Holmes (bib0110) 2003; 15
Polikar, Topalis, Parikh, Green, Frymiare, Kounios, Clark (bib0115) 2008; 9
Mendiburu, Miguel-Alonso, Lozano, Ostra, Ubide (bib0030) 2005
Eom, Kim, Zhang (bib0085) 2008; 34
Nigar Sen, Nese, Gunes (bib0065) 2006
Liu, Huang (bib0090) 2008; 38
Rodriguez, Kuncheva, Alonso (bib0130) 2006; 28
Kuncheva, Rodriguez (bib0125) 2007
Michalak, Kwasnicka (bib0025) 2006
Guyon, Elisseeff (bib0010) 2003; 3
Ko, Sabourin, de Souza Britt (bib0095) 2006
Duangsoithong, Windeatt (bib0055) 2009
Lee, Boroczky, Sungur-Stasik, Cann, Borczuk, Kawut, Powell (bib0020) 2008
Ming, Zhi-Hua (bib0005) 2007; 37
Skrypnyk (bib0040) 2002
Loy, Lai, Lim (bib0145) 2006
Zhonghui, Yunze, Ye, Xioaming (bib0070) 2005
Yu, Liu (bib0100) 2003
Abdel-Aal (bib0035) 2005; 38
Mazurowski, Zurada (bib0075) 2009; 36
Ben-David (bib0140) 2008; 34
Little, McSharry, Hunter, Spielman, Ramig (bib0150) 2009; 56
Cheng-San, Li-Yeh, Chao-Hsuan, Cheng-Hong (bib0050) 2008
Demir, Alpaydin (bib0015) 2005; 26
Kim, Cho (bib0080) 2006; 70
Witten, Ian (bib0135) 2005
Karegowda, Jayaram (bib0045) 2009
Karegowda (10.1016/j.cmpb.2011.03.018_bib0045) 2009
Zhonghui (10.1016/j.cmpb.2011.03.018_bib0070) 2005
Yu (10.1016/j.cmpb.2011.03.018_bib0100) 2003
Kuncheva (10.1016/j.cmpb.2011.03.018_bib0125) 2007
Cheng-San (10.1016/j.cmpb.2011.03.018_bib0050) 2008
Mendiburu (10.1016/j.cmpb.2011.03.018_bib0030) 2005
Polikar (10.1016/j.cmpb.2011.03.018_bib0060) 2006; 6
Kim (10.1016/j.cmpb.2011.03.018_bib0080) 2006; 70
Ming (10.1016/j.cmpb.2011.03.018_bib0005) 2007; 37
Duangsoithong (10.1016/j.cmpb.2011.03.018_bib0055) 2009
Demir (10.1016/j.cmpb.2011.03.018_bib0015) 2005; 26
Loy (10.1016/j.cmpb.2011.03.018_bib0145) 2006
Little (10.1016/j.cmpb.2011.03.018_bib0150) 2009; 56
Ko (10.1016/j.cmpb.2011.03.018_bib0095) 2006
Hall (10.1016/j.cmpb.2011.03.018_bib0110) 2003; 15
Rodriguez (10.1016/j.cmpb.2011.03.018_bib0130) 2006; 28
Breiman (10.1016/j.cmpb.2011.03.018_bib0120) 2001; 45
Nigar Sen (10.1016/j.cmpb.2011.03.018_bib0065) 2006
Abdel-Aal (10.1016/j.cmpb.2011.03.018_bib0035) 2005; 38
Guyon (10.1016/j.cmpb.2011.03.018_bib0010) 2003; 3
Michalak (10.1016/j.cmpb.2011.03.018_bib0025) 2006
Mazurowski (10.1016/j.cmpb.2011.03.018_bib0075) 2009; 36
Hall (10.1016/j.cmpb.2011.03.018_bib0105) 1999
Liu (10.1016/j.cmpb.2011.03.018_bib0090) 2008; 38
Polikar (10.1016/j.cmpb.2011.03.018_bib0115) 2008; 9
Lee (10.1016/j.cmpb.2011.03.018_bib0020) 2008
Witten (10.1016/j.cmpb.2011.03.018_bib0135) 2005
Ben-David (10.1016/j.cmpb.2011.03.018_bib0140) 2008; 34
Eom (10.1016/j.cmpb.2011.03.018_bib0085) 2008; 34
Skrypnyk (10.1016/j.cmpb.2011.03.018_bib0040) 2002
References_xml – volume: 38
  start-page: 456
  year: 2005
  end-page: 468
  ident: bib0035
  article-title: GMDH-based feature ranking and selection for improved classification of medical data
  publication-title: J. Biomed. Inform.
– volume: 15
  start-page: 1437
  year: 2003
  end-page: 1447
  ident: bib0110
  article-title: Benchmarking attribute selection techniques for discrete class data mining
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 36
  start-page: 2976
  year: 2009
  end-page: 2984
  ident: bib0075
  article-title: An adaptive incremental approach to constructing ensemble classifiers: application in an information-theoretic computer-aided decision system for detection of masses in mammograms
  publication-title: Med. Phys.
– volume: 3
  start-page: 1157
  year: 2003
  end-page: 1182
  ident: bib0010
  article-title: An introduction to variable and feature selection
  publication-title: J. Mach. Learn. Res.
– volume: 26
  start-page: 2206
  year: 2005
  end-page: 2214
  ident: bib0015
  article-title: Cost-conscious classifier ensembles
  publication-title: Pattern Recogn. Lett.
– volume: 6
  start-page: 21
  year: 2006
  end-page: 45
  ident: bib0060
  article-title: Ensemble based systems in decision making
  publication-title: IEEE Circuits Syst. Mag.
– start-page: 776
  year: 2006
  end-page: 785
  ident: bib0145
  article-title: Dimensionality reduction of protein mass spectrometry data using random projection
  publication-title: Neural Information Processing
– year: 1999
  ident: bib0105
  article-title: Correlation
– start-page: 2144
  year: 2006
  end-page: 2151
  ident: bib0095
  article-title: Combining diversity and classification accuracy for ensemble selection in random subspaces
  publication-title: International Joint Conference on Neural Networks, 2006 (IJCNN '06)
– volume: 34
  start-page: 2465
  year: 2008
  end-page: 2479
  ident: bib0085
  article-title: AptaCDSS-E: a classifier ensemble-based clinical decision support system for cardiovascular disease level prediction
  publication-title: Expert Syst. Appl.
– start-page: 1428
  year: 2009
  end-page: 1431
  ident: bib0045
  article-title: Cascading GA; CFS for feature subset selection in medical data mining
  publication-title: IEEE International Advance Computing Conference, 2009 (IACC 2009)
– volume: 28
  start-page: 1619
  year: 2006
  end-page: 1630
  ident: bib0130
  article-title: Rotation forest: a new classifier ensemble method
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 34
  start-page: 825
  year: 2008
  end-page: 832
  ident: bib0140
  article-title: Comparison of classification accuracy using Cohen's Weighted Kappa
  publication-title: Expert Syst. Appl.
– start-page: 225
  year: 2006
  end-page: 230
  ident: bib0065
  article-title: Ensemble classifiers for medical diagnosis of knee osteoarthritis using gait data
  publication-title: 5th International Conference on Machine Learning and Applications, 2006 (ICMLA '06)
– volume: 70
  start-page: 187
  year: 2006
  end-page: 199
  ident: bib0080
  article-title: Ensemble classifiers based on correlation analysis for DNA microarray classification
  publication-title: Neurocomputing
– start-page: 745
  year: 2005
  end-page: 749
  ident: bib0070
  article-title: Support vector machine based ensemble classifier
  publication-title: Proceedings of the American Control Conference, 2005, vol. 742
– start-page: 596
  year: 2005
  end-page: 603
  ident: bib0030
  article-title: Parallel and multi-objective EDAs to create multivariate calibration models for quantitative chemical applications
  publication-title: Proceedings of the 2005 International Conference on Parallel Processing Workshops, IEEE Computer Society
– volume: 37
  start-page: 1088
  year: 2007
  end-page: 1098
  ident: bib0005
  article-title: Improve computer-aided diagnosis with machine learning techniques using undiagnosed samples
  publication-title: IEEE Trans. Syst. Man Cybern. A: Syst. Hum.
– year: 2009
  ident: bib0055
  article-title: Relevance and redundancy analysis for ensemble classifiers
  publication-title: Proceedings of the 6th International Conference on Machine Learning and Data Mining in Pattern Recognition
– start-page: 153
  year: 2005
  end-page: 168
  ident: bib0135
  article-title: Data mining: practical machine learning tools and techniques
  publication-title: Morgan Kaufmann Series in Data Management Systems
– year: 2007
  ident: bib0125
  article-title: An experimental study on rotation forest ensembles
  publication-title: Proceedings of the 7th International Conference on Multiple Classifier Systems
– start-page: 741
  year: 2006
  end-page: 746
  ident: bib0025
  publication-title: Correlation-based feature selection strategy in neural classification
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: bib0120
  article-title: Random forests
  publication-title: Mach. Learn.
– start-page: 231
  year: 2002
  ident: bib0040
  article-title: Comparison of feature selection strategies for hearing impairments diagnostics
  publication-title: Proceedings of the 15th IEEE Symposium on Computer-Based Medical Systems (CBMS’02), IEEE Computer Society
– start-page: 856
  year: 2003
  end-page: 863
  ident: bib0100
  article-title: Feature selection for high-dimensional data: a fast correlation-based filter solution
  publication-title: Proceedings of ICML
– volume: 9
  start-page: 83
  year: 2008
  end-page: 95
  ident: bib0115
  article-title: An ensemble based data fusion approach for early diagnosis of Alzheimer's disease
  publication-title: Inf. Fusion
– volume: 38
  start-page: 601
  year: 2008
  end-page: 610
  ident: bib0090
  article-title: Cancer classification using rotation forest
  publication-title: Comput. Biol. Med.
– start-page: 159
  year: 2008
  end-page: 164
  ident: bib0050
  article-title: A hybrid approach for selecting gene subsets using gene expression data
  publication-title: IEEE Conference on Soft Computing in Industrial Applications, 2008 (SMCia '08)
– start-page: 548
  year: 2008
  end-page: 553
  ident: bib0020
  article-title: A two-step approach for feature selection and classifier ensemble construction in computer-aided diagnosis
  publication-title: 21st IEEE International Symposium on Computer-Based Medical Systems, 2008 (CBMS '08)
– volume: 56
  start-page: 1015
  year: 2009
  end-page: 1022
  ident: bib0150
  article-title: Suitability of dysphonia measurements for telemonitoring of Parkinson's disease
  publication-title: IEEE Trans. Biomed. Eng.
– start-page: 596
  year: 2005
  ident: 10.1016/j.cmpb.2011.03.018_bib0030
  article-title: Parallel and multi-objective EDAs to create multivariate calibration models for quantitative chemical applications
– volume: 34
  start-page: 825
  year: 2008
  ident: 10.1016/j.cmpb.2011.03.018_bib0140
  article-title: Comparison of classification accuracy using Cohen's Weighted Kappa
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2006.10.022
– start-page: 231
  year: 2002
  ident: 10.1016/j.cmpb.2011.03.018_bib0040
  article-title: Comparison of feature selection strategies for hearing impairments diagnostics
– volume: 9
  start-page: 83
  year: 2008
  ident: 10.1016/j.cmpb.2011.03.018_bib0115
  article-title: An ensemble based data fusion approach for early diagnosis of Alzheimer's disease
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2006.09.003
– volume: 15
  start-page: 1437
  year: 2003
  ident: 10.1016/j.cmpb.2011.03.018_bib0110
  article-title: Benchmarking attribute selection techniques for discrete class data mining
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2003.1245283
– start-page: 548
  year: 2008
  ident: 10.1016/j.cmpb.2011.03.018_bib0020
  article-title: A two-step approach for feature selection and classifier ensemble construction in computer-aided diagnosis
– start-page: 2144
  year: 2006
  ident: 10.1016/j.cmpb.2011.03.018_bib0095
  article-title: Combining diversity and classification accuracy for ensemble selection in random subspaces
– volume: 56
  start-page: 1015
  year: 2009
  ident: 10.1016/j.cmpb.2011.03.018_bib0150
  article-title: Suitability of dysphonia measurements for telemonitoring of Parkinson's disease
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2008.2005954
– volume: 45
  start-page: 5
  year: 2001
  ident: 10.1016/j.cmpb.2011.03.018_bib0120
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– year: 2007
  ident: 10.1016/j.cmpb.2011.03.018_bib0125
  article-title: An experimental study on rotation forest ensembles
– start-page: 1428
  year: 2009
  ident: 10.1016/j.cmpb.2011.03.018_bib0045
  article-title: Cascading GA; CFS for feature subset selection in medical data mining
– volume: 70
  start-page: 187
  year: 2006
  ident: 10.1016/j.cmpb.2011.03.018_bib0080
  article-title: Ensemble classifiers based on correlation analysis for DNA microarray classification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2006.03.002
– year: 2009
  ident: 10.1016/j.cmpb.2011.03.018_bib0055
  article-title: Relevance and redundancy analysis for ensemble classifiers
– volume: 36
  start-page: 2976
  year: 2009
  ident: 10.1016/j.cmpb.2011.03.018_bib0075
  article-title: An adaptive incremental approach to constructing ensemble classifiers: application in an information-theoretic computer-aided decision system for detection of masses in mammograms
  publication-title: Med. Phys.
  doi: 10.1118/1.3132304
– start-page: 776
  year: 2006
  ident: 10.1016/j.cmpb.2011.03.018_bib0145
  article-title: Dimensionality reduction of protein mass spectrometry data using random projection
– volume: 6
  start-page: 21
  year: 2006
  ident: 10.1016/j.cmpb.2011.03.018_bib0060
  article-title: Ensemble based systems in decision making
  publication-title: IEEE Circuits Syst. Mag.
  doi: 10.1109/MCAS.2006.1688199
– start-page: 159
  year: 2008
  ident: 10.1016/j.cmpb.2011.03.018_bib0050
  article-title: A hybrid approach for selecting gene subsets using gene expression data
– volume: 37
  start-page: 1088
  year: 2007
  ident: 10.1016/j.cmpb.2011.03.018_bib0005
  article-title: Improve computer-aided diagnosis with machine learning techniques using undiagnosed samples
  publication-title: IEEE Trans. Syst. Man Cybern. A: Syst. Hum.
  doi: 10.1109/TSMCA.2007.904745
– volume: 38
  start-page: 456
  year: 2005
  ident: 10.1016/j.cmpb.2011.03.018_bib0035
  article-title: GMDH-based feature ranking and selection for improved classification of medical data
  publication-title: J. Biomed. Inform.
  doi: 10.1016/j.jbi.2005.03.003
– start-page: 153
  year: 2005
  ident: 10.1016/j.cmpb.2011.03.018_bib0135
  article-title: Data mining: practical machine learning tools and techniques
– start-page: 741
  year: 2006
  ident: 10.1016/j.cmpb.2011.03.018_bib0025
– volume: 26
  start-page: 2206
  year: 2005
  ident: 10.1016/j.cmpb.2011.03.018_bib0015
  article-title: Cost-conscious classifier ensembles
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2005.03.028
– start-page: 745
  year: 2005
  ident: 10.1016/j.cmpb.2011.03.018_bib0070
  article-title: Support vector machine based ensemble classifier
– start-page: 225
  year: 2006
  ident: 10.1016/j.cmpb.2011.03.018_bib0065
  article-title: Ensemble classifiers for medical diagnosis of knee osteoarthritis using gait data
– start-page: 856
  year: 2003
  ident: 10.1016/j.cmpb.2011.03.018_bib0100
  article-title: Feature selection for high-dimensional data: a fast correlation-based filter solution
– volume: 34
  start-page: 2465
  year: 2008
  ident: 10.1016/j.cmpb.2011.03.018_bib0085
  article-title: AptaCDSS-E: a classifier ensemble-based clinical decision support system for cardiovascular disease level prediction
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2007.04.015
– year: 1999
  ident: 10.1016/j.cmpb.2011.03.018_bib0105
– volume: 3
  start-page: 1157
  year: 2003
  ident: 10.1016/j.cmpb.2011.03.018_bib0010
  article-title: An introduction to variable and feature selection
  publication-title: J. Mach. Learn. Res.
– volume: 38
  start-page: 601
  year: 2008
  ident: 10.1016/j.cmpb.2011.03.018_bib0090
  article-title: Cancer classification using rotation forest
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2008.02.007
– volume: 28
  start-page: 1619
  year: 2006
  ident: 10.1016/j.cmpb.2011.03.018_bib0130
  article-title: Rotation forest: a new classifier ensemble method
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2006.211
SSID ssj0002556
Score 2.40978
Snippet Improving accuracies of machine learning algorithms is vital in designing high performance computer-aided diagnosis (CADx) systems. Researches have shown that...
Abstract Improving accuracies of machine learning algorithms is vital in designing high performance computer-aided diagnosis (CADx) systems. Researches have...
SourceID proquest
pubmed
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 443
SubjectTerms Algorithms
Artificial Intelligence
Biological and medical sciences
Classifier performance
Cleveland heart
Computer aided diagnosis
Diabetes
Diagnosis
Ensemble learning
Humans
Internal Medicine
Medical sciences
Other
Parkinson's
Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects)
ROC Curve
Rotation forest
Sensitivity and Specificity
Technology. Biomaterials. Equipments. Material. Instrumentation
Title Classifier ensemble construction with rotation forest to improve medical diagnosis performance of machine learning algorithms
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0169260711000836
https://www.clinicalkey.es/playcontent/1-s2.0-S0169260711000836
https://dx.doi.org/10.1016/j.cmpb.2011.03.018
https://www.ncbi.nlm.nih.gov/pubmed/21531475
https://www.proquest.com/docview/902676508
https://www.proquest.com/docview/907184315
Volume 104
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-7565
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002556
  issn: 0169-2607
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1872-7565
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002556
  issn: 0169-2607
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1872-7565
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002556
  issn: 0169-2607
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals
  customDbUrl:
  eissn: 1872-7565
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002556
  issn: 0169-2607
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-7565
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002556
  issn: 0169-2607
  databaseCode: AKRWK
  dateStart: 19850501
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9wwEBUhhVIood_dpF106K04K1tSFB9DaNi2JJc2kJuQZCm4rNcm3h6T354ZS94lNN1Cr2Yk29JoZqQZvUfIJwdeCXHZMuZLmYHBs5lRFeZcgwysKljweMH5_OJofim-XcmrHXI63oXBsspk-6NNH6x1ejJLoznr6nr2A3FECoRHy4dAAmG3hVDIYnB4tynzQIitiO9dZiidLs7EGi_XdDbBePJDhsQfjzun553pYchC5Lr4ezA6OKWzF2QvRZP0JH7wS7Ljl6_I0_OUL39NbgfOyzpA9xT2q76xC09du0GNpXgOS2_amJCnEMHC6-iqpfVw2OBpExM5tIoleXVPu81VA9oG2gzVmJ4m-olrahbX7Q302vRvyOXZl5-n8ywRLmQO9qOrrHDMCiE5DqkLx8z5gvuqsDkEbY6Ho8p78OhBWl-pPFRIU17a4-DKXDgjc8Xfkt1lu_TvCVWGB4TKMZwZYZm3SliQLT23IRjrJiQfR1q7hEaOpBgLPZad_dI4OxpnRzOuYXYm5PO6TRexOLZK83EC9XjLFOyiBlextZV6rJXv09Luda77QjP9h_pNiFy3fKDB_3zj9IF2rX-tEErA5hIE6KhuGtY-JnTM0re_e10ifRiG2NtEFDL65HJC3kVN3fQPzi4XSu7_54cfkGfDAftQ2_OB7ILm-o8Qoa3sdFiCU_Lk5Ov3-cU9C0Q8jw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKkQAJId5dCsUHbihdJ7bXzbGqqBbo9kIr9WbFjl2l2myiZjm2v70zsbOrirJIXKPxI_Z4ZuyZ-YaQLxa0EuKyJczlMgGBZ5JClehz9dKzMmPeYYLz7HQyPRc_LuTFFjkacmEwrDLK_iDTe2kdv4zjao7bqhr_QhyRDOHR0t6QmDwij4XMFN7A9m_XcR6IsRUAvvMEyWPmTAjysnVrIo4n32dY-eNh7fS8LTpYMx-KXfzdGu210vFL8iKak_QwzPgV2XKL1-TJLDrM35Cbvuhl5aF7ChdWV5u5o7ZZw8ZSfIil103wyFMwYWE4umxo1b82OFoHTw4tQ0xe1dF2nWtAG0_rPhzT0Vh_4pIW88vmGnqtu7fk_Pjb2dE0iRUXEgsX0mWSWWaEkBzX1PoDZl3GXZmZFKw2y_2kdA5UupfGlSr1JdYpz82Bt3kqbCFTxd-R7UWzcDuEqoJ7xMopOCuEYc4oYYA2d9x4Xxg7Iumw0tpGOHKsijHXQ9zZlcbd0bg7mnENuzMiX1dt2gDGsZGaDxuohzRTEIwadMXGVuqhVq6LZ7vTqe4yzfQf_DcictXyHgv_c8S9e9y1-rVMKAG3SyCgA7tpOPzo0SkWrvnd6Rzrh6GNvYlEYUmfVI7I-8Cp6_5B26VCyQ__OfHP5On0bHaiT76f_twlz_rX9j7Q5yPZBi52n8BcW5q9_jjeAQOCPiQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classifier+ensemble+construction+with+rotation+forest+to+improve+medical+diagnosis+performance+of+machine+learning+algorithms&rft.jtitle=Computer+methods+and+programs+in+biomedicine&rft.au=OZCIFT%2C+Akin&rft.au=GULTEN%2C+Arif&rft.date=2011-12-01&rft.pub=Elsevier&rft.issn=0169-2607&rft.volume=104&rft.issue=3&rft.spage=443&rft.epage=451&rft_id=info:doi/10.1016%2Fj.cmpb.2011.03.018&rft.externalDBID=n%2Fa&rft.externalDocID=24746668
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F01692607%2FS0169260711X00123%2Fcov150h.gif