Classifier ensemble construction with rotation forest to improve medical diagnosis performance of machine learning algorithms
Improving accuracies of machine learning algorithms is vital in designing high performance computer-aided diagnosis (CADx) systems. Researches have shown that a base classifier performance might be enhanced by ensemble classification strategies. In this study, we construct rotation forest (RF) ensem...
Saved in:
| Published in | Computer methods and programs in biomedicine Vol. 104; no. 3; pp. 443 - 451 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Kidlington
Elsevier Ireland Ltd
01.12.2011
Elsevier |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0169-2607 1872-7565 1872-7565 |
| DOI | 10.1016/j.cmpb.2011.03.018 |
Cover
| Abstract | Improving accuracies of machine learning algorithms is vital in designing high performance computer-aided diagnosis (CADx) systems. Researches have shown that a base classifier performance might be enhanced by ensemble classification strategies. In this study, we construct rotation forest (RF) ensemble classifiers of 30 machine learning algorithms to evaluate their classification performances using Parkinson's, diabetes and heart diseases from literature.
While making experiments, first the feature dimension of three datasets is reduced using correlation based feature selection (CFS) algorithm. Second, classification performances of 30 machine learning algorithms are calculated for three datasets. Third, 30 classifier ensembles are constructed based on RF algorithm to assess performances of respective classifiers with the same disease data. All the experiments are carried out with leave-one-out validation strategy and the performances of the 60 algorithms are evaluated using three metrics; classification accuracy (ACC), kappa error (KE) and area under the receiver operating characteristic (ROC) curve (AUC).
Base classifiers succeeded 72.15%, 77.52% and 84.43% average accuracies for diabetes, heart and Parkinson's datasets, respectively. As for RF classifier ensembles, they produced average accuracies of 74.47%, 80.49% and 87.13% for respective diseases.
RF, a newly proposed classifier ensemble algorithm, might be used to improve accuracy of miscellaneous machine learning algorithms to design advanced CADx systems. |
|---|---|
| AbstractList | Improving accuracies of machine learning algorithms is vital in designing high performance computer-aided diagnosis (CADx) systems. Researches have shown that a base classifier performance might be enhanced by ensemble classification strategies. In this study, we construct rotation forest (RF) ensemble classifiers of 30 machine learning algorithms to evaluate their classification performances using Parkinson's, diabetes and heart diseases from literature.
While making experiments, first the feature dimension of three datasets is reduced using correlation based feature selection (CFS) algorithm. Second, classification performances of 30 machine learning algorithms are calculated for three datasets. Third, 30 classifier ensembles are constructed based on RF algorithm to assess performances of respective classifiers with the same disease data. All the experiments are carried out with leave-one-out validation strategy and the performances of the 60 algorithms are evaluated using three metrics; classification accuracy (ACC), kappa error (KE) and area under the receiver operating characteristic (ROC) curve (AUC).
Base classifiers succeeded 72.15%, 77.52% and 84.43% average accuracies for diabetes, heart and Parkinson's datasets, respectively. As for RF classifier ensembles, they produced average accuracies of 74.47%, 80.49% and 87.13% for respective diseases.
RF, a newly proposed classifier ensemble algorithm, might be used to improve accuracy of miscellaneous machine learning algorithms to design advanced CADx systems. Improving accuracies of machine learning algorithms is vital in designing high performance computer-aided diagnosis (CADx) systems. Researches have shown that a base classifier performance might be enhanced by ensemble classification strategies. In this study, we construct rotation forest (RF) ensemble classifiers of 30 machine learning algorithms to evaluate their classification performances using Parkinson's, diabetes and heart diseases from literature. While making experiments, first the feature dimension of three datasets is reduced using correlation based feature selection (CFS) algorithm. Second, classification performances of 30 machine learning algorithms are calculated for three datasets. Third, 30 classifier ensembles are constructed based on RF algorithm to assess performances of respective classifiers with the same disease data. All the experiments are carried out with leave-one-out validation strategy and the performances of the 60 algorithms are evaluated using three metrics; classification accuracy (ACC), kappa error (KE) and area under the receiver operating characteristic (ROC) curve (AUC). Base classifiers succeeded 72.15%, 77.52% and 84.43% average accuracies for diabetes, heart and Parkinson's datasets, respectively. As for RF classifier ensembles, they produced average accuracies of 74.47%, 80.49% and 87.13% for respective diseases. RF, a newly proposed classifier ensemble algorithm, might be used to improve accuracy of miscellaneous machine learning algorithms to design advanced CADx systems.Improving accuracies of machine learning algorithms is vital in designing high performance computer-aided diagnosis (CADx) systems. Researches have shown that a base classifier performance might be enhanced by ensemble classification strategies. In this study, we construct rotation forest (RF) ensemble classifiers of 30 machine learning algorithms to evaluate their classification performances using Parkinson's, diabetes and heart diseases from literature. While making experiments, first the feature dimension of three datasets is reduced using correlation based feature selection (CFS) algorithm. Second, classification performances of 30 machine learning algorithms are calculated for three datasets. Third, 30 classifier ensembles are constructed based on RF algorithm to assess performances of respective classifiers with the same disease data. All the experiments are carried out with leave-one-out validation strategy and the performances of the 60 algorithms are evaluated using three metrics; classification accuracy (ACC), kappa error (KE) and area under the receiver operating characteristic (ROC) curve (AUC). Base classifiers succeeded 72.15%, 77.52% and 84.43% average accuracies for diabetes, heart and Parkinson's datasets, respectively. As for RF classifier ensembles, they produced average accuracies of 74.47%, 80.49% and 87.13% for respective diseases. RF, a newly proposed classifier ensemble algorithm, might be used to improve accuracy of miscellaneous machine learning algorithms to design advanced CADx systems. Abstract Improving accuracies of machine learning algorithms is vital in designing high performance computer-aided diagnosis (CADx) systems. Researches have shown that a base classifier performance might be enhanced by ensemble classification strategies. In this study, we construct rotation forest (RF) ensemble classifiers of 30 machine learning algorithms to evaluate their classification performances using Parkinson's, diabetes and heart diseases from literature. While making experiments, first the feature dimension of three datasets is reduced using correlation based feature selection (CFS) algorithm. Second, classification performances of 30 machine learning algorithms are calculated for three datasets. Third, 30 classifier ensembles are constructed based on RF algorithm to assess performances of respective classifiers with the same disease data. All the experiments are carried out with leave-one-out validation strategy and the performances of the 60 algorithms are evaluated using three metrics; classification accuracy (ACC), kappa error (KE) and area under the receiver operating characteristic (ROC) curve (AUC). Base classifiers succeeded 72.15%, 77.52% and 84.43% average accuracies for diabetes, heart and Parkinson's datasets, respectively. As for RF classifier ensembles, they produced average accuracies of 74.47%, 80.49% and 87.13% for respective diseases. RF, a newly proposed classifier ensemble algorithm, might be used to improve accuracy of miscellaneous machine learning algorithms to design advanced CADx systems. Improving accuracies of machine learning algorithms is vital in designing high performance computer-aided diagnosis (CADx) systems. Researches have shown that a base classifier performance might be enhanced by ensemble classification strategies. In this study, we construct rotation forest (RF) ensemble classifiers of 30 machine learning algorithms to evaluate their classification performances using Parkinson's, diabetes and heart diseases from literature. While making experiments, first the feature dimension of three datasets is reduced using correlation based feature selection (CFS) algorithm. Second, classification performances of 30 machine learning algorithms are calculated for three datasets. Third, 30 classifier ensembles are constructed based on RF algorithm to assess performances of respective classifiers with the same disease data. All the experiments are carried out with leave-one-out validation strategy and the performances of the 60 algorithms are evaluated using three metrics; classification accuracy (ACC), kappa error (KE) and area under the receiver operating characteristic (ROC) curve (AUC). Base classifiers succeeded 72.15%, 77.52% and 84.43% average accuracies for diabetes, heart and Parkinson's datasets, respectively. As for RF classifier ensembles, they produced average accuracies of 74.47%, 80.49% and 87.13% for respective diseases. RF, a newly proposed classifier ensemble algorithm, might be used to improve accuracy of miscellaneous machine learning algorithms to design advanced CADx systems. |
| Author | Gulten, Arif Ozcift, Akin |
| Author_xml | – sequence: 1 givenname: Akin surname: Ozcift fullname: Ozcift, Akin email: akinozcift@hotmail.com organization: University of Gaziantep, Gaziantep Vocational School of Higher Education, Computer Programming Division, Gaziantep, Turkey – sequence: 2 givenname: Arif surname: Gulten fullname: Gulten, Arif organization: Firat University, Engineering Faculty, Electrical-Electronics Department, Elazig, Turkey |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24746668$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/21531475$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkk-L1DAYh4OsuLOrX8CD5CKepiZpk7QiCzL4DxY8qOeQpm9mM6bJmLQre_C7mzqjwoK7pxJ4fm-a3_OeoZMQAyD0lJKKEipe7ioz7vuKEUorUleEtg_QiraSrSUX_AStCtStmSDyFJ3lvCOEMM7FI3TKKK9pI_kK_dx4nbOzDhKGkGHsPWATQ57SbCYXA_7hpiuc4qR_n2xMkCc8RezGfYrXgEcYnNEeD05vQ8wu4z2kgo06GMDR4lGbKxcAe9ApuLDF2m9jKlPH_Bg9tNpneHL8nqOv795-2XxYX356_3Hz5nJtOKunNTOkbxpeS0qJsS0xwGoYWE-pqE1txQDAGmZ5D4OkdpAd77q-taajjdGcyvocvTjMLb_8fS4PUKPLBrzXAeKcVUckbZu6tHI_yYQUnLSFfHYk5750oPbJjTrdqD_dFuD5EdC5FGRTKcTlf1wjGyHEMogdOJNizgnsX4QStYhWO7WIVotoRWpVRJdQeytk3EHRlLTzd0dfH6JQGr8u4lU2DoqswSUwkxqiuzt-cStuvAvLCnyDG8i7OKdQXCqqMlNEfV6WcNnB4o6U2kQZ8Or_A-67_RfzYu3p |
| CitedBy_id | crossref_primary_10_1016_j_bbe_2020_09_005 crossref_primary_10_1016_j_jksuci_2017_10_011 crossref_primary_10_4018_IJeC_307133 crossref_primary_10_21541_apjes_541637 crossref_primary_10_1007_s44230_022_00003_1 crossref_primary_10_1016_j_bspc_2024_107142 crossref_primary_10_1111_coin_12217 crossref_primary_10_4018_IJDSST_286693 crossref_primary_10_4103_jmss_jmss_4_22 crossref_primary_10_1016_j_imu_2016_02_001 crossref_primary_10_3390_healthcare10102070 crossref_primary_10_4018_IJITSA_290001 crossref_primary_10_17557_tjfc_1511404 crossref_primary_10_31466_kfbd_1512278 crossref_primary_10_1007_s11042_019_7498_3 crossref_primary_10_1007_s12665_023_10840_3 crossref_primary_10_1016_j_chbah_2023_100026 crossref_primary_10_1007_s12652_019_01399_8 crossref_primary_10_1080_08839514_2018_1501914 crossref_primary_10_1155_2016_6837498 crossref_primary_10_1080_19475705_2017_1401560 crossref_primary_10_1080_10106049_2021_1914746 crossref_primary_10_4103_jmss_JMSS_57_18 crossref_primary_10_1155_2017_6209703 crossref_primary_10_1016_j_knosys_2014_10_012 crossref_primary_10_1016_j_jhydrol_2022_127963 crossref_primary_10_32604_cmc_2022_026077 crossref_primary_10_1016_j_compbiolchem_2014_10_002 crossref_primary_10_4108_eetpht_10_5244 crossref_primary_10_1016_j_artmed_2023_102524 crossref_primary_10_3390_su142114238 crossref_primary_10_1109_ACCESS_2017_2741521 crossref_primary_10_31127_tuje_1007508 crossref_primary_10_1038_s41598_024_51600_y crossref_primary_10_21923_jesd_824703 crossref_primary_10_3390_app13010118 crossref_primary_10_1016_j_knosys_2019_104886 crossref_primary_10_1007_s00521_015_2142_2 crossref_primary_10_1007_s10916_016_0651_x crossref_primary_10_1016_j_molstruc_2017_11_093 crossref_primary_10_1108_LHT_08_2019_0171 crossref_primary_10_1007_s41870_020_00569_8 crossref_primary_10_1080_03772063_2022_2028582 crossref_primary_10_1007_s40808_022_01384_9 crossref_primary_10_1016_j_asoc_2017_03_002 crossref_primary_10_1016_j_bbe_2022_07_002 crossref_primary_10_1088_2632_072X_ac5f8d crossref_primary_10_1016_j_jisa_2023_103541 crossref_primary_10_1016_j_obmed_2020_100270 crossref_primary_10_1016_j_heliyon_2024_e25469 crossref_primary_10_1111_exsy_12343 crossref_primary_10_4018_IJEHMC_2020070103 crossref_primary_10_1109_LGRS_2013_2254108 crossref_primary_10_1007_s44174_022_00060_x crossref_primary_10_1007_s10916_016_0477_6 crossref_primary_10_1016_j_cmpb_2016_10_001 crossref_primary_10_3390_app13031639 crossref_primary_10_1007_s00500_019_04022_2 crossref_primary_10_1177_1460458212446096 crossref_primary_10_1155_2018_2396952 crossref_primary_10_1007_s11277_022_09981_8 crossref_primary_10_1111_coin_12396 crossref_primary_10_1016_j_asoc_2021_107136 crossref_primary_10_1186_s12911_020_01215_w crossref_primary_10_1016_j_jbi_2014_02_001 crossref_primary_10_1109_TSMC_2019_2958647 crossref_primary_10_1016_j_scitotenv_2019_136492 crossref_primary_10_35940_ijeat_A3212_1011121 crossref_primary_10_1016_j_ecoinf_2018_05_009 crossref_primary_10_17694_bajece_502156 crossref_primary_10_1007_s11053_019_09465_w crossref_primary_10_1088_1757_899X_533_1_012047 crossref_primary_10_1016_j_bspc_2019_101756 crossref_primary_10_1016_j_csbj_2016_12_005 crossref_primary_10_1016_j_patrec_2017_01_014 crossref_primary_10_1016_j_bspc_2017_06_015 crossref_primary_10_1080_10106049_2021_1948109 crossref_primary_10_1016_j_neucom_2015_07_138 crossref_primary_10_1155_2019_8152713 crossref_primary_10_1109_ACCESS_2024_3524577 crossref_primary_10_1080_10255842_2022_2072683 crossref_primary_10_3390_rs16060988 crossref_primary_10_18034_mjmbr_v7i2_555 crossref_primary_10_1142_S0218126620502606 crossref_primary_10_1109_ACCESS_2019_2945129 crossref_primary_10_1007_s00500_021_05865_4 crossref_primary_10_1007_s11760_025_03851_z crossref_primary_10_1016_j_eswa_2021_115902 crossref_primary_10_1016_j_knosys_2016_09_032 crossref_primary_10_1016_j_compag_2021_106067 crossref_primary_10_1111_exsy_12923 crossref_primary_10_1155_2022_1684017 crossref_primary_10_3233_JIFS_152641 crossref_primary_10_1016_j_jnlest_2022_100170 crossref_primary_10_18466_cbayarfbe_424521 crossref_primary_10_1016_j_atmosenv_2023_120233 crossref_primary_10_1007_s42979_024_02805_5 crossref_primary_10_1007_s10489_021_02426_y crossref_primary_10_1080_10106049_2018_1559885 crossref_primary_10_1080_01431161_2019_1580820 crossref_primary_10_1155_2014_985789 crossref_primary_10_1016_j_smhl_2021_100206 crossref_primary_10_1186_s12870_020_02807_4 crossref_primary_10_1021_acsomega_3c09485 crossref_primary_10_1016_j_cogsys_2018_12_004 crossref_primary_10_1093_comjnl_bxaa006 crossref_primary_10_1016_j_engappai_2016_02_011 crossref_primary_10_1155_2022_8777026 crossref_primary_10_1007_s10489_022_04345_y crossref_primary_10_1089_big_2021_0257 crossref_primary_10_17671_gazibtd_1059378 crossref_primary_10_1186_s12859_018_2505_7 crossref_primary_10_3389_fnagi_2021_633752 crossref_primary_10_1007_s13201_024_02131_4 crossref_primary_10_1002_ima_22670 crossref_primary_10_2139_ssrn_3642877 crossref_primary_10_1142_S0219691323500388 crossref_primary_10_1016_j_cmpb_2014_01_004 crossref_primary_10_1007_s10772_021_09916_x crossref_primary_10_1016_j_eswa_2022_118045 crossref_primary_10_1155_2022_7887908 crossref_primary_10_1177_09544119211060989 crossref_primary_10_1016_j_cmpb_2025_108622 crossref_primary_10_3390_f10020157 crossref_primary_10_1007_s00521_021_05741_0 crossref_primary_10_1016_j_bspc_2013_02_006 crossref_primary_10_1016_j_ijsrc_2017_09_008 crossref_primary_10_1016_j_jhydrol_2021_126846 crossref_primary_10_1016_j_compeleceng_2022_108082 crossref_primary_10_3390_e21020106 crossref_primary_10_1016_j_eja_2025_127617 crossref_primary_10_1260_2040_2295_6_3_281 crossref_primary_10_1016_j_eswa_2012_07_014 crossref_primary_10_35940_ijitee_F8748_0410621 crossref_primary_10_1007_s00477_019_01689_9 crossref_primary_10_1007_s10772_017_9485_2 crossref_primary_10_1007_s12325_020_01605_6 crossref_primary_10_1007_s11045_022_00845_9 crossref_primary_10_1016_j_psychres_2023_115693 crossref_primary_10_1016_j_engappai_2020_103627 crossref_primary_10_1007_s10586_018_2416_4 crossref_primary_10_3233_JIFS_179115 crossref_primary_10_3233_JPD_202476 crossref_primary_10_1016_j_asoc_2023_110782 crossref_primary_10_1016_j_jbi_2019_103231 crossref_primary_10_1155_2022_1051388 crossref_primary_10_3389_fnins_2017_00310 crossref_primary_10_1134_S0361768818060129 crossref_primary_10_1016_j_cmpb_2018_10_017 crossref_primary_10_1016_j_mehy_2020_110072 crossref_primary_10_3389_fgene_2018_00515 crossref_primary_10_1155_2020_9816142 crossref_primary_10_1021_acs_est_8b03328 crossref_primary_10_1016_j_gsf_2021_101154 crossref_primary_10_1155_2022_9209656 crossref_primary_10_1007_s00521_016_2756_z crossref_primary_10_1016_j_cmpb_2017_02_011 |
| Cites_doi | 10.1016/j.eswa.2006.10.022 10.1016/j.inffus.2006.09.003 10.1109/TKDE.2003.1245283 10.1109/TBME.2008.2005954 10.1023/A:1010933404324 10.1016/j.neucom.2006.03.002 10.1118/1.3132304 10.1109/MCAS.2006.1688199 10.1109/TSMCA.2007.904745 10.1016/j.jbi.2005.03.003 10.1016/j.patrec.2005.03.028 10.1016/j.eswa.2007.04.015 10.1016/j.compbiomed.2008.02.007 10.1109/TPAMI.2006.211 |
| ContentType | Journal Article |
| Copyright | 2011 Elsevier Ireland Ltd Elsevier Ireland Ltd 2015 INIST-CNRS Copyright © 2011 Elsevier Ireland Ltd. All rights reserved. |
| Copyright_xml | – notice: 2011 Elsevier Ireland Ltd – notice: Elsevier Ireland Ltd – notice: 2015 INIST-CNRS – notice: Copyright © 2011 Elsevier Ireland Ltd. All rights reserved. |
| DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 7QO 8FD FR3 P64 |
| DOI | 10.1016/j.cmpb.2011.03.018 |
| DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts |
| DatabaseTitleList | MEDLINE - Academic Engineering Research Database MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1872-7565 |
| EndPage | 451 |
| ExternalDocumentID | 21531475 24746668 10_1016_j_cmpb_2011_03_018 S0169260711000836 1_s2_0_S0169260711000836 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M -~X .1- .DC .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABJNI ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACLOT ACNNM ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HMK HMO HVGLF HZ~ IHE J1W KOM LG9 M29 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SBC SDF SDG SEL SES SEW SPC SPCBC SSH SSV SSZ T5K UHS WUQ XPP Z5R ZGI ZY4 ~G- ~HD AFCTW AGCQF AGRNS RIG AACTN AAIAV ABLVK ABTAH ABYKQ AFKWA AJBFU AJOXV AMFUW LCYCR AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 7QO 8FD FR3 P64 |
| ID | FETCH-LOGICAL-c523t-2c0b44537110cf80ce23ed2b1163c3f6dee242f5bed71fd79599b8fc914ca5173 |
| IEDL.DBID | .~1 |
| ISSN | 0169-2607 1872-7565 |
| IngestDate | Tue Oct 07 09:42:17 EDT 2025 Sun Sep 28 10:56:12 EDT 2025 Mon Jul 21 06:05:16 EDT 2025 Mon Jul 21 09:18:34 EDT 2025 Thu Apr 24 22:51:22 EDT 2025 Wed Oct 01 03:20:55 EDT 2025 Fri Feb 23 02:26:01 EST 2024 Fri May 16 00:31:31 EDT 2025 Tue Oct 14 19:30:36 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Parkinson's Cleveland heart Classifier performance Rotation forest Diabetes Computer aided diagnosis Ensemble learning Biomedical engineering |
| Language | English |
| License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 Copyright © 2011 Elsevier Ireland Ltd. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c523t-2c0b44537110cf80ce23ed2b1163c3f6dee242f5bed71fd79599b8fc914ca5173 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 21531475 |
| PQID | 902676508 |
| PQPubID | 23479 |
| PageCount | 9 |
| ParticipantIDs | proquest_miscellaneous_907184315 proquest_miscellaneous_902676508 pubmed_primary_21531475 pascalfrancis_primary_24746668 crossref_primary_10_1016_j_cmpb_2011_03_018 crossref_citationtrail_10_1016_j_cmpb_2011_03_018 elsevier_sciencedirect_doi_10_1016_j_cmpb_2011_03_018 elsevier_clinicalkeyesjournals_1_s2_0_S0169260711000836 elsevier_clinicalkey_doi_10_1016_j_cmpb_2011_03_018 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2011-12-01 |
| PublicationDateYYYYMMDD | 2011-12-01 |
| PublicationDate_xml | – month: 12 year: 2011 text: 2011-12-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Kidlington |
| PublicationPlace_xml | – name: Kidlington – name: Ireland |
| PublicationTitle | Computer methods and programs in biomedicine |
| PublicationTitleAlternate | Comput Methods Programs Biomed |
| PublicationYear | 2011 |
| Publisher | Elsevier Ireland Ltd Elsevier |
| Publisher_xml | – name: Elsevier Ireland Ltd – name: Elsevier |
| References | Polikar (bib0060) 2006; 6 Hall (bib0105) 1999 Breiman (bib0120) 2001; 45 Hall, Holmes (bib0110) 2003; 15 Polikar, Topalis, Parikh, Green, Frymiare, Kounios, Clark (bib0115) 2008; 9 Mendiburu, Miguel-Alonso, Lozano, Ostra, Ubide (bib0030) 2005 Eom, Kim, Zhang (bib0085) 2008; 34 Nigar Sen, Nese, Gunes (bib0065) 2006 Liu, Huang (bib0090) 2008; 38 Rodriguez, Kuncheva, Alonso (bib0130) 2006; 28 Kuncheva, Rodriguez (bib0125) 2007 Michalak, Kwasnicka (bib0025) 2006 Guyon, Elisseeff (bib0010) 2003; 3 Ko, Sabourin, de Souza Britt (bib0095) 2006 Duangsoithong, Windeatt (bib0055) 2009 Lee, Boroczky, Sungur-Stasik, Cann, Borczuk, Kawut, Powell (bib0020) 2008 Ming, Zhi-Hua (bib0005) 2007; 37 Skrypnyk (bib0040) 2002 Loy, Lai, Lim (bib0145) 2006 Zhonghui, Yunze, Ye, Xioaming (bib0070) 2005 Yu, Liu (bib0100) 2003 Abdel-Aal (bib0035) 2005; 38 Mazurowski, Zurada (bib0075) 2009; 36 Ben-David (bib0140) 2008; 34 Little, McSharry, Hunter, Spielman, Ramig (bib0150) 2009; 56 Cheng-San, Li-Yeh, Chao-Hsuan, Cheng-Hong (bib0050) 2008 Demir, Alpaydin (bib0015) 2005; 26 Kim, Cho (bib0080) 2006; 70 Witten, Ian (bib0135) 2005 Karegowda, Jayaram (bib0045) 2009 Karegowda (10.1016/j.cmpb.2011.03.018_bib0045) 2009 Zhonghui (10.1016/j.cmpb.2011.03.018_bib0070) 2005 Yu (10.1016/j.cmpb.2011.03.018_bib0100) 2003 Kuncheva (10.1016/j.cmpb.2011.03.018_bib0125) 2007 Cheng-San (10.1016/j.cmpb.2011.03.018_bib0050) 2008 Mendiburu (10.1016/j.cmpb.2011.03.018_bib0030) 2005 Polikar (10.1016/j.cmpb.2011.03.018_bib0060) 2006; 6 Kim (10.1016/j.cmpb.2011.03.018_bib0080) 2006; 70 Ming (10.1016/j.cmpb.2011.03.018_bib0005) 2007; 37 Duangsoithong (10.1016/j.cmpb.2011.03.018_bib0055) 2009 Demir (10.1016/j.cmpb.2011.03.018_bib0015) 2005; 26 Loy (10.1016/j.cmpb.2011.03.018_bib0145) 2006 Little (10.1016/j.cmpb.2011.03.018_bib0150) 2009; 56 Ko (10.1016/j.cmpb.2011.03.018_bib0095) 2006 Hall (10.1016/j.cmpb.2011.03.018_bib0110) 2003; 15 Rodriguez (10.1016/j.cmpb.2011.03.018_bib0130) 2006; 28 Breiman (10.1016/j.cmpb.2011.03.018_bib0120) 2001; 45 Nigar Sen (10.1016/j.cmpb.2011.03.018_bib0065) 2006 Abdel-Aal (10.1016/j.cmpb.2011.03.018_bib0035) 2005; 38 Guyon (10.1016/j.cmpb.2011.03.018_bib0010) 2003; 3 Michalak (10.1016/j.cmpb.2011.03.018_bib0025) 2006 Mazurowski (10.1016/j.cmpb.2011.03.018_bib0075) 2009; 36 Hall (10.1016/j.cmpb.2011.03.018_bib0105) 1999 Liu (10.1016/j.cmpb.2011.03.018_bib0090) 2008; 38 Polikar (10.1016/j.cmpb.2011.03.018_bib0115) 2008; 9 Lee (10.1016/j.cmpb.2011.03.018_bib0020) 2008 Witten (10.1016/j.cmpb.2011.03.018_bib0135) 2005 Ben-David (10.1016/j.cmpb.2011.03.018_bib0140) 2008; 34 Eom (10.1016/j.cmpb.2011.03.018_bib0085) 2008; 34 Skrypnyk (10.1016/j.cmpb.2011.03.018_bib0040) 2002 |
| References_xml | – volume: 38 start-page: 456 year: 2005 end-page: 468 ident: bib0035 article-title: GMDH-based feature ranking and selection for improved classification of medical data publication-title: J. Biomed. Inform. – volume: 15 start-page: 1437 year: 2003 end-page: 1447 ident: bib0110 article-title: Benchmarking attribute selection techniques for discrete class data mining publication-title: IEEE Trans. Knowl. Data Eng. – volume: 36 start-page: 2976 year: 2009 end-page: 2984 ident: bib0075 article-title: An adaptive incremental approach to constructing ensemble classifiers: application in an information-theoretic computer-aided decision system for detection of masses in mammograms publication-title: Med. Phys. – volume: 3 start-page: 1157 year: 2003 end-page: 1182 ident: bib0010 article-title: An introduction to variable and feature selection publication-title: J. Mach. Learn. Res. – volume: 26 start-page: 2206 year: 2005 end-page: 2214 ident: bib0015 article-title: Cost-conscious classifier ensembles publication-title: Pattern Recogn. Lett. – volume: 6 start-page: 21 year: 2006 end-page: 45 ident: bib0060 article-title: Ensemble based systems in decision making publication-title: IEEE Circuits Syst. Mag. – start-page: 776 year: 2006 end-page: 785 ident: bib0145 article-title: Dimensionality reduction of protein mass spectrometry data using random projection publication-title: Neural Information Processing – year: 1999 ident: bib0105 article-title: Correlation – start-page: 2144 year: 2006 end-page: 2151 ident: bib0095 article-title: Combining diversity and classification accuracy for ensemble selection in random subspaces publication-title: International Joint Conference on Neural Networks, 2006 (IJCNN '06) – volume: 34 start-page: 2465 year: 2008 end-page: 2479 ident: bib0085 article-title: AptaCDSS-E: a classifier ensemble-based clinical decision support system for cardiovascular disease level prediction publication-title: Expert Syst. Appl. – start-page: 1428 year: 2009 end-page: 1431 ident: bib0045 article-title: Cascading GA; CFS for feature subset selection in medical data mining publication-title: IEEE International Advance Computing Conference, 2009 (IACC 2009) – volume: 28 start-page: 1619 year: 2006 end-page: 1630 ident: bib0130 article-title: Rotation forest: a new classifier ensemble method publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 34 start-page: 825 year: 2008 end-page: 832 ident: bib0140 article-title: Comparison of classification accuracy using Cohen's Weighted Kappa publication-title: Expert Syst. Appl. – start-page: 225 year: 2006 end-page: 230 ident: bib0065 article-title: Ensemble classifiers for medical diagnosis of knee osteoarthritis using gait data publication-title: 5th International Conference on Machine Learning and Applications, 2006 (ICMLA '06) – volume: 70 start-page: 187 year: 2006 end-page: 199 ident: bib0080 article-title: Ensemble classifiers based on correlation analysis for DNA microarray classification publication-title: Neurocomputing – start-page: 745 year: 2005 end-page: 749 ident: bib0070 article-title: Support vector machine based ensemble classifier publication-title: Proceedings of the American Control Conference, 2005, vol. 742 – start-page: 596 year: 2005 end-page: 603 ident: bib0030 article-title: Parallel and multi-objective EDAs to create multivariate calibration models for quantitative chemical applications publication-title: Proceedings of the 2005 International Conference on Parallel Processing Workshops, IEEE Computer Society – volume: 37 start-page: 1088 year: 2007 end-page: 1098 ident: bib0005 article-title: Improve computer-aided diagnosis with machine learning techniques using undiagnosed samples publication-title: IEEE Trans. Syst. Man Cybern. A: Syst. Hum. – year: 2009 ident: bib0055 article-title: Relevance and redundancy analysis for ensemble classifiers publication-title: Proceedings of the 6th International Conference on Machine Learning and Data Mining in Pattern Recognition – start-page: 153 year: 2005 end-page: 168 ident: bib0135 article-title: Data mining: practical machine learning tools and techniques publication-title: Morgan Kaufmann Series in Data Management Systems – year: 2007 ident: bib0125 article-title: An experimental study on rotation forest ensembles publication-title: Proceedings of the 7th International Conference on Multiple Classifier Systems – start-page: 741 year: 2006 end-page: 746 ident: bib0025 publication-title: Correlation-based feature selection strategy in neural classification – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: bib0120 article-title: Random forests publication-title: Mach. Learn. – start-page: 231 year: 2002 ident: bib0040 article-title: Comparison of feature selection strategies for hearing impairments diagnostics publication-title: Proceedings of the 15th IEEE Symposium on Computer-Based Medical Systems (CBMS’02), IEEE Computer Society – start-page: 856 year: 2003 end-page: 863 ident: bib0100 article-title: Feature selection for high-dimensional data: a fast correlation-based filter solution publication-title: Proceedings of ICML – volume: 9 start-page: 83 year: 2008 end-page: 95 ident: bib0115 article-title: An ensemble based data fusion approach for early diagnosis of Alzheimer's disease publication-title: Inf. Fusion – volume: 38 start-page: 601 year: 2008 end-page: 610 ident: bib0090 article-title: Cancer classification using rotation forest publication-title: Comput. Biol. Med. – start-page: 159 year: 2008 end-page: 164 ident: bib0050 article-title: A hybrid approach for selecting gene subsets using gene expression data publication-title: IEEE Conference on Soft Computing in Industrial Applications, 2008 (SMCia '08) – start-page: 548 year: 2008 end-page: 553 ident: bib0020 article-title: A two-step approach for feature selection and classifier ensemble construction in computer-aided diagnosis publication-title: 21st IEEE International Symposium on Computer-Based Medical Systems, 2008 (CBMS '08) – volume: 56 start-page: 1015 year: 2009 end-page: 1022 ident: bib0150 article-title: Suitability of dysphonia measurements for telemonitoring of Parkinson's disease publication-title: IEEE Trans. Biomed. Eng. – start-page: 596 year: 2005 ident: 10.1016/j.cmpb.2011.03.018_bib0030 article-title: Parallel and multi-objective EDAs to create multivariate calibration models for quantitative chemical applications – volume: 34 start-page: 825 year: 2008 ident: 10.1016/j.cmpb.2011.03.018_bib0140 article-title: Comparison of classification accuracy using Cohen's Weighted Kappa publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2006.10.022 – start-page: 231 year: 2002 ident: 10.1016/j.cmpb.2011.03.018_bib0040 article-title: Comparison of feature selection strategies for hearing impairments diagnostics – volume: 9 start-page: 83 year: 2008 ident: 10.1016/j.cmpb.2011.03.018_bib0115 article-title: An ensemble based data fusion approach for early diagnosis of Alzheimer's disease publication-title: Inf. Fusion doi: 10.1016/j.inffus.2006.09.003 – volume: 15 start-page: 1437 year: 2003 ident: 10.1016/j.cmpb.2011.03.018_bib0110 article-title: Benchmarking attribute selection techniques for discrete class data mining publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2003.1245283 – start-page: 548 year: 2008 ident: 10.1016/j.cmpb.2011.03.018_bib0020 article-title: A two-step approach for feature selection and classifier ensemble construction in computer-aided diagnosis – start-page: 2144 year: 2006 ident: 10.1016/j.cmpb.2011.03.018_bib0095 article-title: Combining diversity and classification accuracy for ensemble selection in random subspaces – volume: 56 start-page: 1015 year: 2009 ident: 10.1016/j.cmpb.2011.03.018_bib0150 article-title: Suitability of dysphonia measurements for telemonitoring of Parkinson's disease publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2008.2005954 – volume: 45 start-page: 5 year: 2001 ident: 10.1016/j.cmpb.2011.03.018_bib0120 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – year: 2007 ident: 10.1016/j.cmpb.2011.03.018_bib0125 article-title: An experimental study on rotation forest ensembles – start-page: 1428 year: 2009 ident: 10.1016/j.cmpb.2011.03.018_bib0045 article-title: Cascading GA; CFS for feature subset selection in medical data mining – volume: 70 start-page: 187 year: 2006 ident: 10.1016/j.cmpb.2011.03.018_bib0080 article-title: Ensemble classifiers based on correlation analysis for DNA microarray classification publication-title: Neurocomputing doi: 10.1016/j.neucom.2006.03.002 – year: 2009 ident: 10.1016/j.cmpb.2011.03.018_bib0055 article-title: Relevance and redundancy analysis for ensemble classifiers – volume: 36 start-page: 2976 year: 2009 ident: 10.1016/j.cmpb.2011.03.018_bib0075 article-title: An adaptive incremental approach to constructing ensemble classifiers: application in an information-theoretic computer-aided decision system for detection of masses in mammograms publication-title: Med. Phys. doi: 10.1118/1.3132304 – start-page: 776 year: 2006 ident: 10.1016/j.cmpb.2011.03.018_bib0145 article-title: Dimensionality reduction of protein mass spectrometry data using random projection – volume: 6 start-page: 21 year: 2006 ident: 10.1016/j.cmpb.2011.03.018_bib0060 article-title: Ensemble based systems in decision making publication-title: IEEE Circuits Syst. Mag. doi: 10.1109/MCAS.2006.1688199 – start-page: 159 year: 2008 ident: 10.1016/j.cmpb.2011.03.018_bib0050 article-title: A hybrid approach for selecting gene subsets using gene expression data – volume: 37 start-page: 1088 year: 2007 ident: 10.1016/j.cmpb.2011.03.018_bib0005 article-title: Improve computer-aided diagnosis with machine learning techniques using undiagnosed samples publication-title: IEEE Trans. Syst. Man Cybern. A: Syst. Hum. doi: 10.1109/TSMCA.2007.904745 – volume: 38 start-page: 456 year: 2005 ident: 10.1016/j.cmpb.2011.03.018_bib0035 article-title: GMDH-based feature ranking and selection for improved classification of medical data publication-title: J. Biomed. Inform. doi: 10.1016/j.jbi.2005.03.003 – start-page: 153 year: 2005 ident: 10.1016/j.cmpb.2011.03.018_bib0135 article-title: Data mining: practical machine learning tools and techniques – start-page: 741 year: 2006 ident: 10.1016/j.cmpb.2011.03.018_bib0025 – volume: 26 start-page: 2206 year: 2005 ident: 10.1016/j.cmpb.2011.03.018_bib0015 article-title: Cost-conscious classifier ensembles publication-title: Pattern Recogn. Lett. doi: 10.1016/j.patrec.2005.03.028 – start-page: 745 year: 2005 ident: 10.1016/j.cmpb.2011.03.018_bib0070 article-title: Support vector machine based ensemble classifier – start-page: 225 year: 2006 ident: 10.1016/j.cmpb.2011.03.018_bib0065 article-title: Ensemble classifiers for medical diagnosis of knee osteoarthritis using gait data – start-page: 856 year: 2003 ident: 10.1016/j.cmpb.2011.03.018_bib0100 article-title: Feature selection for high-dimensional data: a fast correlation-based filter solution – volume: 34 start-page: 2465 year: 2008 ident: 10.1016/j.cmpb.2011.03.018_bib0085 article-title: AptaCDSS-E: a classifier ensemble-based clinical decision support system for cardiovascular disease level prediction publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2007.04.015 – year: 1999 ident: 10.1016/j.cmpb.2011.03.018_bib0105 – volume: 3 start-page: 1157 year: 2003 ident: 10.1016/j.cmpb.2011.03.018_bib0010 article-title: An introduction to variable and feature selection publication-title: J. Mach. Learn. Res. – volume: 38 start-page: 601 year: 2008 ident: 10.1016/j.cmpb.2011.03.018_bib0090 article-title: Cancer classification using rotation forest publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2008.02.007 – volume: 28 start-page: 1619 year: 2006 ident: 10.1016/j.cmpb.2011.03.018_bib0130 article-title: Rotation forest: a new classifier ensemble method publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2006.211 |
| SSID | ssj0002556 |
| Score | 2.40978 |
| Snippet | Improving accuracies of machine learning algorithms is vital in designing high performance computer-aided diagnosis (CADx) systems. Researches have shown that... Abstract Improving accuracies of machine learning algorithms is vital in designing high performance computer-aided diagnosis (CADx) systems. Researches have... |
| SourceID | proquest pubmed pascalfrancis crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 443 |
| SubjectTerms | Algorithms Artificial Intelligence Biological and medical sciences Classifier performance Cleveland heart Computer aided diagnosis Diabetes Diagnosis Ensemble learning Humans Internal Medicine Medical sciences Other Parkinson's Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects) ROC Curve Rotation forest Sensitivity and Specificity Technology. Biomaterials. Equipments. Material. Instrumentation |
| Title | Classifier ensemble construction with rotation forest to improve medical diagnosis performance of machine learning algorithms |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0169260711000836 https://www.clinicalkey.es/playcontent/1-s2.0-S0169260711000836 https://dx.doi.org/10.1016/j.cmpb.2011.03.018 https://www.ncbi.nlm.nih.gov/pubmed/21531475 https://www.proquest.com/docview/902676508 https://www.proquest.com/docview/907184315 |
| Volume | 104 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-7565 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002556 issn: 0169-2607 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1872-7565 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002556 issn: 0169-2607 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1872-7565 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002556 issn: 0169-2607 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals customDbUrl: eissn: 1872-7565 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002556 issn: 0169-2607 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-7565 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002556 issn: 0169-2607 databaseCode: AKRWK dateStart: 19850501 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9wwEBUhhVIood_dpF106K04K1tSFB9DaNi2JJc2kJuQZCm4rNcm3h6T354ZS94lNN1Cr2Yk29JoZqQZvUfIJwdeCXHZMuZLmYHBs5lRFeZcgwysKljweMH5_OJofim-XcmrHXI63oXBsspk-6NNH6x1ejJLoznr6nr2A3FECoRHy4dAAmG3hVDIYnB4tynzQIitiO9dZiidLs7EGi_XdDbBePJDhsQfjzun553pYchC5Lr4ezA6OKWzF2QvRZP0JH7wS7Ljl6_I0_OUL39NbgfOyzpA9xT2q76xC09du0GNpXgOS2_amJCnEMHC6-iqpfVw2OBpExM5tIoleXVPu81VA9oG2gzVmJ4m-olrahbX7Q302vRvyOXZl5-n8ywRLmQO9qOrrHDMCiE5DqkLx8z5gvuqsDkEbY6Ho8p78OhBWl-pPFRIU17a4-DKXDgjc8Xfkt1lu_TvCVWGB4TKMZwZYZm3SliQLT23IRjrJiQfR1q7hEaOpBgLPZad_dI4OxpnRzOuYXYm5PO6TRexOLZK83EC9XjLFOyiBlextZV6rJXv09Luda77QjP9h_pNiFy3fKDB_3zj9IF2rX-tEErA5hIE6KhuGtY-JnTM0re_e10ifRiG2NtEFDL65HJC3kVN3fQPzi4XSu7_54cfkGfDAftQ2_OB7ILm-o8Qoa3sdFiCU_Lk5Ov3-cU9C0Q8jw |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKkQAJId5dCsUHbihdJ7bXzbGqqBbo9kIr9WbFjl2l2myiZjm2v70zsbOrirJIXKPxI_Z4ZuyZ-YaQLxa0EuKyJczlMgGBZ5JClehz9dKzMmPeYYLz7HQyPRc_LuTFFjkacmEwrDLK_iDTe2kdv4zjao7bqhr_QhyRDOHR0t6QmDwij4XMFN7A9m_XcR6IsRUAvvMEyWPmTAjysnVrIo4n32dY-eNh7fS8LTpYMx-KXfzdGu210vFL8iKak_QwzPgV2XKL1-TJLDrM35Cbvuhl5aF7ChdWV5u5o7ZZw8ZSfIil103wyFMwYWE4umxo1b82OFoHTw4tQ0xe1dF2nWtAG0_rPhzT0Vh_4pIW88vmGnqtu7fk_Pjb2dE0iRUXEgsX0mWSWWaEkBzX1PoDZl3GXZmZFKw2y_2kdA5UupfGlSr1JdYpz82Bt3kqbCFTxd-R7UWzcDuEqoJ7xMopOCuEYc4oYYA2d9x4Xxg7Iumw0tpGOHKsijHXQ9zZlcbd0bg7mnENuzMiX1dt2gDGsZGaDxuohzRTEIwadMXGVuqhVq6LZ7vTqe4yzfQf_DcictXyHgv_c8S9e9y1-rVMKAG3SyCgA7tpOPzo0SkWrvnd6Rzrh6GNvYlEYUmfVI7I-8Cp6_5B26VCyQ__OfHP5On0bHaiT76f_twlz_rX9j7Q5yPZBi52n8BcW5q9_jjeAQOCPiQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classifier+ensemble+construction+with+rotation+forest+to+improve+medical+diagnosis+performance+of+machine+learning+algorithms&rft.jtitle=Computer+methods+and+programs+in+biomedicine&rft.au=OZCIFT%2C+Akin&rft.au=GULTEN%2C+Arif&rft.date=2011-12-01&rft.pub=Elsevier&rft.issn=0169-2607&rft.volume=104&rft.issue=3&rft.spage=443&rft.epage=451&rft_id=info:doi/10.1016%2Fj.cmpb.2011.03.018&rft.externalDBID=n%2Fa&rft.externalDocID=24746668 |
| thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F01692607%2FS0169260711X00123%2Fcov150h.gif |