Discrepancy Sets for Combined Least Squares Projection and Tikhonov Regularization

To solve a linear ill-posed problem, a combination of the finite dimensional least squares projection method and the Tikhonov regularization is considered. The dimension of the projection is treated as the second parameter of regularization. A two-parameter discrepancy principle defines a discrepanc...

Full description

Saved in:
Bibliographic Details
Published inMathematical modelling and analysis Vol. 22; no. 2; pp. 202 - 212
Main Author Reginska, Teresa
Format Journal Article
LanguageEnglish
Published Taylor & Francis 04.03.2017
Vilnius Gediminas Technical University
Subjects
Online AccessGet full text
ISSN1392-6292
1648-3510
1648-3510
DOI10.3846/13926292.2017.1289987

Cover

Abstract To solve a linear ill-posed problem, a combination of the finite dimensional least squares projection method and the Tikhonov regularization is considered. The dimension of the projection is treated as the second parameter of regularization. A two-parameter discrepancy principle defines a discrepancy set for any data error bound. The aim of the paper is to describe this set and to indicate its subset such that for regularization parameters from this subset the related regularized solution has the same order of accuracy as the Tikhonov regularization with the standard discrepancy principle but without any discretization.
AbstractList To solve a linear ill-posed problem, a combination of the finite dimensional least squares projection method and the Tikhonov regularization is considered. The dimension of the projection is treated as the second parameter of regularization. A two-parameter discrepancy principle defines a discrepancy set for any data error bound. The aim of the paper is to describe this set and to indicate its subset such that for regularization parameters from this subset the related regularized solution has the same order of accuracy as the Tikhonov regularization with the standard discrepancy principle but without any discretization.
To solve a linear ill-posed problem, a combination of the finite dimensional least squares projection method and the Tikhonov regularization is considered. The dimension of the projection is treated as the second parameter of regularization. A two-parameter discrepancy principle defines a discrepancy set for any data error bound. The aim of the paper is to describe this set and to indicate its subset such that for regularization parameters from this subset the related regularized solution has the same order of accuracy as the Tikhonov regularization with the standard discrepancy principle but without any discretization.Keywords: linear ill-posed problem, discrepancy principle, LSQ projection, Tikhonov regularization.AMS Subject Classification: 65J20; 47A52; 65F22.
Audience Academic
Author Regińska, Teresa
Author_xml – sequence: 1
  givenname: Teresa
  surname: Reginska
  fullname: Reginska, Teresa
  organization: Institute of Mathematics, Polish Academy of Sciences, Sniadeckich 8, 00-656 Warsaw, Poland
BookMark eNqNkk1v3CAQhq0qlZqk_QmVLPXSy27BGAPqpdH2K9JKrZL0jMZ8bNmysAE70fbXF8dJDjm0FQfQ8L7DzDOcVEchBlNVrzFaEt527zARTdeIZtkgzJa44UJw9qw6xl3LF4RidFTORbOYRC-qk5y3CFHacHRcXXx0WSWzh6AO9aUZcm1jqldx17tgdL02kIf68nqEZHL9PcWtUYOLoYag6yv362cM8aa-MJvRQ3K_Ybp7WT234LN5db-fVj8-f7pafV2sv305X52tF4o2ZFg0oIwxrOmAaasZEkwT0ERjhlowrUWsE71tW0xJzwRhqueKWqF03_Kea0JOq_M5r46wlfvkdpAOMoKTd4GYNhLS4JQ3UgjoCwjbWdy2nKIeWc6o6hTHVGBlSq5uzjWGPRxuwfvHhBjJibJ8oCwnyvKecjG-nY37FK9Hkwe5K0CN9xBMHLPEArVYCCJokS5n6QZKSS7YOCRQZWmzc6qM1LoSP6MM0Q4h1hTD-9mgUsw5GSuVG-4QF6Pz_6yMPnH_b0dvZt-N88GVFrZxTKEM8pEm56KoPsyqqY-0g9uYvJYDHHxMNpXf5LIkf3_oD28704w
CitedBy_id crossref_primary_10_1142_S0219876221500080
Cites_doi 10.1088/0266-5611/16/5/322
10.1080/00036810701858185
10.3846/13926292.2002.9637196
10.1515/JIIP.2010.030
10.3934/ipi.2016.10.1
10.1515/9783112313930-005
10.3176/phys.math.1993.2.01
10.1007/BF01386397
10.1515/jiip.2007.029
10.1007/BF01389972
10.1007/978-94-009-1740-8
10.1088/0266-5611/32/3/035004
10.1080/01630560008816993
10.1515/jip-2012-0089
ContentType Journal Article
Copyright Vilnius Gediminas Technical University, 2017 2017
Copyright (c) 2017 The Author(s). Published by Vilnius Gediminas Technical University.
COPYRIGHT 2017 Vilnius Gediminas Technical University
Copyright_xml – notice: Vilnius Gediminas Technical University, 2017 2017
– notice: Copyright (c) 2017 The Author(s). Published by Vilnius Gediminas Technical University.
– notice: COPYRIGHT 2017 Vilnius Gediminas Technical University
DBID ABJBJ
AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ADTOC
UNPAY
DOA
DOI 10.3846/13926292.2017.1289987
DatabaseName VILNIUS TECH Press Open Access Scientific Journals
CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
CrossRef


Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1648-3510
EndPage 212
ExternalDocumentID oai_doaj_org_article_99ab351f6f144850b0f875c6c81591ce
10.3846/13926292.2017.1289987
A570560072
10_3846_13926292_2017_1289987
oai:ojs2.journals.vilniustech.lt:article/889
1289987
Genre Article
GroupedDBID .7F
.QJ
4.4
5GY
AAENE
ABCCY
ABDBF
ABFIM
ABJBJ
ABJNI
ABPEM
ABTAI
ACGFO
ACGFS
ACIPV
ACIWK
ACUHS
ADBBV
ADCVX
AENEX
AGMYJ
AIJEM
ALMA_UNASSIGNED_HOLDINGS
AMVHM
AQTUD
AVBZW
BCNDV
CE4
CS3
DU5
EBS
EJD
EN8
ESX
E~A
E~B
GROUPED_DOAJ
GTTXZ
H13
HF~
HZ~
H~P
I-F
IAO
ITC
J.P
M4Z
NA5
NY~
O9-
OK1
P2P
S-T
TDBHL
TFL
TFW
TR2
TUS
UT5
UU3
~8M
~S~
AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
07G
8FE
8FG
8G5
AAIKQ
ABJCF
ABUWG
ADIYS
ADTOC
AFKRA
AGROQ
AMXXU
ARAPS
AZQEC
BCCOT
BENPR
BGLVJ
BPHCQ
BPLKW
C06
CCPQU
CRFIH
DMQIW
DWIFK
DWQXO
GNUQQ
GUQSH
HCIFZ
K6V
K7-
L6V
M2O
M7S
NUSFT
PADUT
PHGZM
PHGZT
PQGLB
PQQKQ
PTHSS
QCRFL
TFMCV
UB9
UNPAY
V3K
ID FETCH-LOGICAL-c523t-2aceee726a7dfd7097d3ad3d1704ae4f0769bf44153b7937cb8c5f9cdb48b8d33
IEDL.DBID UNPAY
ISSN 1392-6292
1648-3510
IngestDate Fri Oct 03 12:23:17 EDT 2025
Tue Aug 19 15:03:32 EDT 2025
Fri Jul 11 10:10:14 EDT 2025
Mon Oct 20 16:35:38 EDT 2025
Thu Apr 24 22:52:21 EDT 2025
Tue Jul 01 04:16:25 EDT 2025
Tue Aug 12 21:21:57 EDT 2025
Mon Oct 20 23:34:34 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords discrepancy principle
Tikhonov regularization
LSQ projection
linear ill-posed problem
Language English
License http://creativecommons.org/licenses/by/4.0
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c523t-2aceee726a7dfd7097d3ad3d1704ae4f0769bf44153b7937cb8c5f9cdb48b8d33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://journals.vgtu.lt/index.php/MMA/article/download/889/669
PQID 1904199395
PQPubID 23500
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_99ab351f6f144850b0f875c6c81591ce
informaworld_taylorfrancis_310_3846_13926292_2017_1289987
unpaywall_primary_10_3846_13926292_2017_1289987
crossref_citationtrail_10_3846_13926292_2017_1289987
gale_infotracacademiconefile_A570560072
crossref_primary_10_3846_13926292_2017_1289987
proquest_miscellaneous_1904199395
vilnius_journals_article_889
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-03-04
PublicationDateYYYYMMDD 2017-03-04
PublicationDate_xml – month: 03
  year: 2017
  text: 2017-03-04
  day: 04
PublicationDecade 2010
PublicationTitle Mathematical modelling and analysis
PublicationTitleAbbrev MMA
PublicationYear 2017
Publisher Taylor & Francis
Vilnius Gediminas Technical University
Publisher_xml – name: Taylor & Francis
– name: Vilnius Gediminas Technical University
References Vainikko G.M. (CIT0020) 1986
Vainikko G. (CIT0019) 1985; 29
CIT0010
CIT0001
Groetsch C.W. (CIT0003) 1984
Hämarik U. (CIT0004) 1992
CIT0011
Morozov V.A. (CIT0012) 1966; 7
Tikhonov A.N. (CIT0017) 1977
Hämarik U. (CIT0005) 1993; 42
Tikhonov A.N. (CIT0018) 1995
Hämarik U. (CIT0006) 2002; 7
CIT0014
CIT0002
CIT0013
CIT0016
CIT0015
CIT0007
CIT0009
CIT0008
References_xml – ident: CIT0009
  doi: 10.1088/0266-5611/16/5/322
– ident: CIT0011
  doi: 10.1080/00036810701858185
– volume: 7
  start-page: 241
  issue: 2
  year: 2002
  ident: CIT0006
  publication-title: Math. Model. Anal.
  doi: 10.3846/13926292.2002.9637196
– ident: CIT0010
  doi: 10.1515/JIIP.2010.030
– ident: CIT0001
  doi: 10.3934/ipi.2016.10.1
– volume: 7
  start-page: 414
  year: 1966
  ident: CIT0012
  publication-title: Soviet Math. Dokl.
– start-page: 24
  volume-title: Ill-Posed Problems in Natural Sciences
  year: 1992
  ident: CIT0004
  doi: 10.1515/9783112313930-005
– year: 1986
  ident: CIT0020
  publication-title: Iteration Procedures in Ill-Posed Problems (in Russian)
– volume: 42
  start-page: 133
  issue: 2
  year: 1993
  ident: CIT0005
  publication-title: Proc. Estonian Acad. Sci. Phys. Math.
  doi: 10.3176/phys.math.1993.2.01
– ident: CIT0015
  doi: 10.1007/BF01386397
– ident: CIT0008
  doi: 10.1515/jiip.2007.029
– ident: CIT0013
  doi: 10.1007/BF01389972
– ident: CIT0002
  doi: 10.1007/978-94-009-1740-8
– ident: CIT0007
  doi: 10.1088/0266-5611/32/3/035004
– volume: 29
  start-page: 1
  year: 1985
  ident: CIT0019
  publication-title: Sov. Math.
– volume-title: Nonlinear ill-posed problems. (Nelinejnye nekorrektnye zadachi.)
  year: 1995
  ident: CIT0018
– volume-title: The theory of Tikhonov regularization for Fredholm equations of the first kind
  year: 1984
  ident: CIT0003
– ident: CIT0014
  doi: 10.1080/01630560008816993
– ident: CIT0016
  doi: 10.1515/jip-2012-0089
– volume-title: Solution of Ill-Posed Problems
  year: 1977
  ident: CIT0017
SSID ssj0055280
Score 2.0394633
Snippet To solve a linear ill-posed problem, a combination of the finite dimensional least squares projection method and the Tikhonov regularization is considered. The...
SourceID doaj
unpaywall
proquest
gale
crossref
vilnius
informaworld
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 202
SubjectTerms discrepancy principle
Discretization
Least squares
Least squares method
linear ill-posed problem
LSQ projection
Mathematical analysis
Mathematical models
Mathematical research
Parameters
Projection
Regularization
Set theory
Tikhonov regularization
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Jb9QwFLZQL8ABsYqBgoyExCmdJHZi-1iWqkKAUBepN8urGDHKlE5SxL_nvdgTzZyGA1crkZfv-S223_cIeduClQkqVIUTrSm4Mq6Q3lZFxUAZRiZrqzAb-eu39vSSf75qrrZKfeGbsEQPnBZurpSxrKliG8H1l01pywgutmudBENcuYDat5RqE0wlHdw0tUz5waou2lrVKXeHgbGdYxs24bMucVSNAYfYsUojef-koncYTHf80LtDd23-_DbLJTjPt4tltxjWW8bp5CF5kL1Kepxm84jcCd1jcn-La_AJOfu4AA0Bxge0KT0P_ZpCfxTUAYTGwdMvWMOHnv8aMB-Jfk_nM4AZNZ2nF4ufP1bd6paejZXrb3Lu5lNyefLp4sNpkQsqFA7izb6oDZjEIOrWCB-9KJXwzHjmK1FyE3gsRatsxAiLWeTNc1a6JirnLZdWesaekYNu1YXnhLLaxFL60liuOMBhPYCNV3Bt4xSv6hnhmwXVLrONY9GLpYaoA3HQGxw04qAzDjNyNP12neg29v3wHtGaPka27LEBZEhnGdL7ZGhG3iHWGpGGQTqTUxNgqsiOpY8bUaJnKGBaalscdD8eq8RUA0WzPUN9s5EdDXsYL2ZMF1bDWoNTxvEhpWpmZD4J1b8uwGEWPZ21z3qat5Tqxf9Yn5fkHnY5Pr3jh-SgvxnCK_DFevt63HZ_Ad63J8I
  priority: 102
  providerName: Directory of Open Access Journals
Title Discrepancy Sets for Combined Least Squares Projection and Tikhonov Regularization
URI https://www.tandfonline.com/doi/abs/10.3846/13926292.2017.1289987
https://journals.vilniustech.lt/index.php/MMA/article/view/889
https://www.proquest.com/docview/1904199395
https://journals.vgtu.lt/index.php/MMA/article/download/889/669
https://doaj.org/article/99ab351f6f144850b0f875c6c81591ce
UnpaywallVersion publishedVersion
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Academic Search Ultimate - eBooks
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1648-3510
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0055280
  issn: 1392-6292
  databaseCode: ABDBF
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bj9JAFJ4oPKgP3o3oSmpi4lPv7bTzWKAIuhRCwezuyziXdrORlM3SrtFf75xSCPiyGh_phfTM-TrnO9Mz30HoA1ZRJiOZrYsAM90jTOih5LZuu2oyzN3Q4QR2I08SPFp6n8_8s6bPKeyFaUZwY9xelpWxKs1aNBCUIszJJDKb4TQlKMmvmTTDkJgYk_uojX1FxluovUxm0XmdZhFHx07dFlnlBCHUrFvbPTyuCromnIfTUN4VGHadeARH0akW8d9P1UdKpkd89EFVXLOfP9hqpUj07dWquKo2B0Fq-AR925m3rU35blQlN8SvP5Qf_8P-p-hxQ2C1aHvJM3QvK56jRweyhi_QfDBO-_N4FiX9cy2NF6mmUk2tP530xkk80E7jKF1oKXDpONVm8yl0XFFTuhYlA20x_jKaJtOv2jz-tDyN5uOLehHtJVoO40V_pDe9G3ShUttSd5iKvlngYBbIXAYWCaTLpCvtwPJY5uVWgAnPIZlzOUj0CR4KPydCci_koXTdV6hVrIvsNdJch-VWKC3GPeL5AnOpcAVf-7AviGc7HeTtfEZFI2wO_TVWVCU44Gq6czUFV9PG1R1k7G-73ip73HVDDwCxvxiEuesD65tL2jiGEsK4AlqOc5Wphr7FrVxlhAKLUPFGW2Qd9BHgRAFM6iEFa3ZBKFNBiItGfmABCQ2UWeQQcbSsV3DybbsV6t7xqO938KRquoBvQKzI1tWGKv7nQc0m8TvI3OP2bwfgpEE33cF0b7fC4Zt__sO36CH8rEv6vBPUKm-q7J3ieCXvonbUG_SG3XqNpNu81b8BM9tCXQ
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF5BegAOvBGBgoyExMnxe-09uolLAo1TxQlquSz7sKuKyKkauwh-PTOOEyVcCuLopzw7n3fms2e_IeQ9hSiTs9wxVUiF6TOhzEhLx3Q8mAwLL3Ilw9XI45QO5_6ns-Cs7XOKa2HaEVz1bi6qureorEY0EJUirPE4ttrhtDQqyS-FtqKIWZSyu-SABpCMd8jBPD2NzxuaxVyTuk1bZOAEEdas2-s1PB4EXQuP42Es7wp7TkM8wr3o1Ij4b6fqPSXTvXz0Xl1eiZ8_xGIBSfTN5aK8rFc7Qer4Efm2MW9dm_K9V1eyp379ofz4H_Y_Jg_bBNaI16c8IXfy8il5sCNr-IxMB6OsP01O47R_bmTJLDOAahr9yfholCYD4ySJs5mRYS6dZMbpdIIdV2BKN-J0YMxGn4eTdPLFmCYf5yfxdPS1-Yj2nMyPk1l_aLa9G0wF1LYyXQHRNw9dKkJd6NBmofaE9rQT2r7I_cIOKZMFkjlPokSfkpEKCqa09CMZac97QTrlssxfEsNzRWFH2hbSZ36gqNSAK_zbRwPFfMftEn_jM65aYXPsr7HgQHDQ1Xzjao6u5q2ru6S3vexqrexx2wVHCIjtySjM3exYXl_w1jGcMSEBaAUtgKlGgS3tAhihoiqCvNFReZd8QDhxBBM8pBLtKggwFYW4eByENiahIZjFdhHHq-YLTrFut8K9Wx713QaeHKYL_AckynxZrzjkfz7WbLKgS6wtbv92AA5bdPMNTLd2Aw5f_fMNX5P7uNmU9PmHpFNd1_kbyPEq-bZ9j38DqIs_9g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Discrepancy+Sets+for+Combined+Least+Squares+Projection+and+Tikhonov+Regularization&rft.jtitle=Mathematical+modelling+and+analysis&rft.au=Reginska%2C+Teresa&rft.date=2017-03-04&rft.pub=Vilnius+Gediminas+Technical+University&rft.issn=1392-6292&rft.volume=22&rft.issue=2&rft.spage=202&rft_id=info:doi/10.3846%2F13926292.2017.1289987&rft.externalDocID=A570560072
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1392-6292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1392-6292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1392-6292&client=summon