Neuronal Death After Hemorrhagic Stroke In Vitro and In Vivo Shares Features of Ferroptosis and Necroptosis

BACKGROUND AND PURPOSE—Intracerebral hemorrhage leads to disability or death with few established treatments. Adverse outcomes after intracerebral hemorrhage result from irreversible damage to neurons resulting from primary and secondary injury. Secondary injury has been attributed to hemoglobin and...

Full description

Saved in:
Bibliographic Details
Published inStroke (1970) Vol. 48; no. 4; pp. 1033 - 1043
Main Authors Zille, Marietta, Karuppagounder, Saravanan S., Chen, Yingxin, Gough, Peter J., Bertin, John, Finger, Joshua, Milner, Teresa A., Jonas, Elizabeth A., Ratan, Rajiv R.
Format Journal Article
LanguageEnglish
Published United States American Heart Association, Inc 01.04.2017
Subjects
Online AccessGet full text
ISSN0039-2499
1524-4628
1524-4628
DOI10.1161/STROKEAHA.116.015609

Cover

Abstract BACKGROUND AND PURPOSE—Intracerebral hemorrhage leads to disability or death with few established treatments. Adverse outcomes after intracerebral hemorrhage result from irreversible damage to neurons resulting from primary and secondary injury. Secondary injury has been attributed to hemoglobin and its oxidized product hemin from lysed red blood cells. The aim of this study was to identify the underlying cell death mechanisms attributable to secondary injury by hemoglobin and hemin to broaden treatment options. METHODS—We investigated cell death mechanisms in cultured neurons exposed to hemoglobin or hemin. Chemical inhibitors implicated in all known cell death pathways were used. Identified cell death mechanisms were confirmed using molecular markers and electron microscopy. RESULTS—Chemical inhibitors of ferroptosis and necroptosis protected against hemoglobin- and hemin-induced toxicity. By contrast, inhibitors of caspase-dependent apoptosis, protein or mRNA synthesis, autophagy, mitophagy, or parthanatos had no effect. Accordingly, molecular markers of ferroptosis and necroptosis were increased after intracerebral hemorrhage in vitro and in vivo. Electron microscopy showed that hemin induced a necrotic phenotype. Necroptosis and ferroptosis inhibitors each abrogated death by >80% and had similar therapeutic windows in vitro. CONCLUSIONS—Experimental intracerebral hemorrhage shares features of ferroptotic and necroptotic cell death, but not caspase-dependent apoptosis or autophagy. We propose that ferroptosis or necroptotic signaling induced by lysed blood is sufficient to reach a threshold of death that leads to neuronal necrosis and that inhibition of either of these pathways can bring cells below that threshold to survival.
AbstractList BACKGROUND AND PURPOSE—Intracerebral hemorrhage leads to disability or death with few established treatments. Adverse outcomes after intracerebral hemorrhage result from irreversible damage to neurons resulting from primary and secondary injury. Secondary injury has been attributed to hemoglobin and its oxidized product hemin from lysed red blood cells. The aim of this study was to identify the underlying cell death mechanisms attributable to secondary injury by hemoglobin and hemin to broaden treatment options. METHODS—We investigated cell death mechanisms in cultured neurons exposed to hemoglobin or hemin. Chemical inhibitors implicated in all known cell death pathways were used. Identified cell death mechanisms were confirmed using molecular markers and electron microscopy. RESULTS—Chemical inhibitors of ferroptosis and necroptosis protected against hemoglobin- and hemin-induced toxicity. By contrast, inhibitors of caspase-dependent apoptosis, protein or mRNA synthesis, autophagy, mitophagy, or parthanatos had no effect. Accordingly, molecular markers of ferroptosis and necroptosis were increased after intracerebral hemorrhage in vitro and in vivo. Electron microscopy showed that hemin induced a necrotic phenotype. Necroptosis and ferroptosis inhibitors each abrogated death by >80% and had similar therapeutic windows in vitro. CONCLUSIONS—Experimental intracerebral hemorrhage shares features of ferroptotic and necroptotic cell death, but not caspase-dependent apoptosis or autophagy. We propose that ferroptosis or necroptotic signaling induced by lysed blood is sufficient to reach a threshold of death that leads to neuronal necrosis and that inhibition of either of these pathways can bring cells below that threshold to survival.
Intracerebral hemorrhage leads to disability or death with few established treatments. Adverse outcomes after intracerebral hemorrhage result from irreversible damage to neurons resulting from primary and secondary injury. Secondary injury has been attributed to hemoglobin and its oxidized product hemin from lysed red blood cells. The aim of this study was to identify the underlying cell death mechanisms attributable to secondary injury by hemoglobin and hemin to broaden treatment options.BACKGROUND AND PURPOSEIntracerebral hemorrhage leads to disability or death with few established treatments. Adverse outcomes after intracerebral hemorrhage result from irreversible damage to neurons resulting from primary and secondary injury. Secondary injury has been attributed to hemoglobin and its oxidized product hemin from lysed red blood cells. The aim of this study was to identify the underlying cell death mechanisms attributable to secondary injury by hemoglobin and hemin to broaden treatment options.We investigated cell death mechanisms in cultured neurons exposed to hemoglobin or hemin. Chemical inhibitors implicated in all known cell death pathways were used. Identified cell death mechanisms were confirmed using molecular markers and electron microscopy.METHODSWe investigated cell death mechanisms in cultured neurons exposed to hemoglobin or hemin. Chemical inhibitors implicated in all known cell death pathways were used. Identified cell death mechanisms were confirmed using molecular markers and electron microscopy.Chemical inhibitors of ferroptosis and necroptosis protected against hemoglobin- and hemin-induced toxicity. By contrast, inhibitors of caspase-dependent apoptosis, protein or mRNA synthesis, autophagy, mitophagy, or parthanatos had no effect. Accordingly, molecular markers of ferroptosis and necroptosis were increased after intracerebral hemorrhage in vitro and in vivo. Electron microscopy showed that hemin induced a necrotic phenotype. Necroptosis and ferroptosis inhibitors each abrogated death by >80% and had similar therapeutic windows in vitro.RESULTSChemical inhibitors of ferroptosis and necroptosis protected against hemoglobin- and hemin-induced toxicity. By contrast, inhibitors of caspase-dependent apoptosis, protein or mRNA synthesis, autophagy, mitophagy, or parthanatos had no effect. Accordingly, molecular markers of ferroptosis and necroptosis were increased after intracerebral hemorrhage in vitro and in vivo. Electron microscopy showed that hemin induced a necrotic phenotype. Necroptosis and ferroptosis inhibitors each abrogated death by >80% and had similar therapeutic windows in vitro.Experimental intracerebral hemorrhage shares features of ferroptotic and necroptotic cell death, but not caspase-dependent apoptosis or autophagy. We propose that ferroptosis or necroptotic signaling induced by lysed blood is sufficient to reach a threshold of death that leads to neuronal necrosis and that inhibition of either of these pathways can bring cells below that threshold to survival.CONCLUSIONSExperimental intracerebral hemorrhage shares features of ferroptotic and necroptotic cell death, but not caspase-dependent apoptosis or autophagy. We propose that ferroptosis or necroptotic signaling induced by lysed blood is sufficient to reach a threshold of death that leads to neuronal necrosis and that inhibition of either of these pathways can bring cells below that threshold to survival.
Intracerebral hemorrhage leads to disability or death with few established treatments. Adverse outcomes after intracerebral hemorrhage result from irreversible damage to neurons resulting from primary and secondary injury. Secondary injury has been attributed to hemoglobin and its oxidized product hemin from lysed red blood cells. The aim of this study was to identify the underlying cell death mechanisms attributable to secondary injury by hemoglobin and hemin to broaden treatment options. We investigated cell death mechanisms in cultured neurons exposed to hemoglobin or hemin. Chemical inhibitors implicated in all known cell death pathways were used. Identified cell death mechanisms were confirmed using molecular markers and electron microscopy. Chemical inhibitors of ferroptosis and necroptosis protected against hemoglobin- and hemin-induced toxicity. By contrast, inhibitors of caspase-dependent apoptosis, protein or mRNA synthesis, autophagy, mitophagy, or parthanatos had no effect. Accordingly, molecular markers of ferroptosis and necroptosis were increased after intracerebral hemorrhage in vitro and in vivo. Electron microscopy showed that hemin induced a necrotic phenotype. Necroptosis and ferroptosis inhibitors each abrogated death by >80% and had similar therapeutic windows in vitro. Experimental intracerebral hemorrhage shares features of ferroptotic and necroptotic cell death, but not caspase-dependent apoptosis or autophagy. We propose that ferroptosis or necroptotic signaling induced by lysed blood is sufficient to reach a threshold of death that leads to neuronal necrosis and that inhibition of either of these pathways can bring cells below that threshold to survival.
Author Karuppagounder, Saravanan S.
Finger, Joshua
Jonas, Elizabeth A.
Zille, Marietta
Milner, Teresa A.
Ratan, Rajiv R.
Gough, Peter J.
Bertin, John
Chen, Yingxin
AuthorAffiliation From the Burke Medical Research Institute, White Plains, New York (M.Z., S.S.K., Y.C., R.R.R.); Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York (M.Z., S.S.K., Y.C., T.A.M., R.R.R.); Host Defense Discovery Performance Unit, Infectious Diseases Therapy Area Unit (P.J.G.) and Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area (J.B., J.F.), GlaxoSmithKline, Collegeville, PA; Laboratory of Neuroendocrinology, The Rockefeller University, New York (T.A.M.); and Department of Internal Medicine, Section of Endocrinology, Yale University, New Haven, CT (E.A.J.)
AuthorAffiliation_xml – name: From the Burke Medical Research Institute, White Plains, New York (M.Z., S.S.K., Y.C., R.R.R.); Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York (M.Z., S.S.K., Y.C., T.A.M., R.R.R.); Host Defense Discovery Performance Unit, Infectious Diseases Therapy Area Unit (P.J.G.) and Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area (J.B., J.F.), GlaxoSmithKline, Collegeville, PA; Laboratory of Neuroendocrinology, The Rockefeller University, New York (T.A.M.); and Department of Internal Medicine, Section of Endocrinology, Yale University, New Haven, CT (E.A.J.)
Author_xml – sequence: 1
  givenname: Marietta
  surname: Zille
  fullname: Zille, Marietta
  organization: From the Burke Medical Research Institute, White Plains, New York (M.Z., S.S.K., Y.C., R.R.R.); Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York (M.Z., S.S.K., Y.C., T.A.M., R.R.R.); Host Defense Discovery Performance Unit, Infectious Diseases Therapy Area Unit (P.J.G.) and Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area (J.B., J.F.), GlaxoSmithKline, Collegeville, PA; Laboratory of Neuroendocrinology, The Rockefeller University, New York (T.A.M.); and Department of Internal Medicine, Section of Endocrinology, Yale University, New Haven, CT (E.A.J.)
– sequence: 2
  givenname: Saravanan
  surname: Karuppagounder
  middlename: S.
  fullname: Karuppagounder, Saravanan S.
– sequence: 3
  givenname: Yingxin
  surname: Chen
  fullname: Chen, Yingxin
– sequence: 4
  givenname: Peter
  surname: Gough
  middlename: J.
  fullname: Gough, Peter J.
– sequence: 5
  givenname: John
  surname: Bertin
  fullname: Bertin, John
– sequence: 6
  givenname: Joshua
  surname: Finger
  fullname: Finger, Joshua
– sequence: 7
  givenname: Teresa
  surname: Milner
  middlename: A.
  fullname: Milner, Teresa A.
– sequence: 8
  givenname: Elizabeth
  surname: Jonas
  middlename: A.
  fullname: Jonas, Elizabeth A.
– sequence: 9
  givenname: Rajiv
  surname: Ratan
  middlename: R.
  fullname: Ratan, Rajiv R.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28250197$$D View this record in MEDLINE/PubMed
BookMark eNqFUU1v1DAQtVAR3Rb-AUI5ctlix3HicEBalZatqFqJLVytWWfcmPXGWztpxb_HId0KOMDJ8-T3Yc87Iged75CQ14yeMFayd6ubL9efzxbLxQhPKBMlrZ-RGRN5MS_KXB6QGaW8nudFXR-Soxi_U0pzLsULcpjLXFBWVzOyucIh-A5c9hGhb7OF6TFkS9z6EFq4tTpb9cFvMLvosm82jRl0zQTufbZqIWDMzpN0GAdv0hyC3_U-2viLeoV6j1-S5wZcxFeP5zH5en52c7qcX15_ujhdXM61yNODK1gLWSFw4MiZbpgppTTpSyCpZvW6royBhuZClhoqmmApgAI2IIU21PBj8mHy3Q3rLTYauz6AU7tgtxB-KA9W_XnT2Vbd-nslSsarskgGbx8Ngr8bMPZqa6NG56BDP0TFZMWrnBacJeqb37OeQvYbToT3EyGtIcaARmnbQ2_9GG2dYlSNdaqnOkeopjqTuPhLvPf_j0xOsgfvUp1x44YHDKpFcH37b-lPiGy4BA
CitedBy_id crossref_primary_10_3389_fphar_2024_1472813
crossref_primary_10_3390_antiox12111945
crossref_primary_10_1186_s12938_024_01288_y
crossref_primary_10_1080_21655979_2021_1951070
crossref_primary_10_1111_cns_14400
crossref_primary_10_1155_2022_8808677
crossref_primary_10_3389_fimmu_2024_1511015
crossref_primary_10_3390_md19100557
crossref_primary_10_1089_ars_2021_0120
crossref_primary_10_1002_smtd_202400304
crossref_primary_10_3390_antiox12030731
crossref_primary_10_1186_s41016_024_00357_4
crossref_primary_10_4103_1673_5374_245480
crossref_primary_10_1155_2022_7906218
crossref_primary_10_3390_ijms22115509
crossref_primary_10_1007_s12035_018_1403_3
crossref_primary_10_1111_jnc_14328
crossref_primary_10_1038_s41392_023_01580_8
crossref_primary_10_1007_s11084_024_09662_5
crossref_primary_10_1038_s41422_020_00441_1
crossref_primary_10_3892_mmr_2024_13252
crossref_primary_10_1080_21655979_2022_2032971
crossref_primary_10_1007_s12035_021_02605_5
crossref_primary_10_3389_fphys_2021_815758
crossref_primary_10_1177_0271678X18762637
crossref_primary_10_3389_fnins_2020_00685
crossref_primary_10_1007_s12975_017_0535_5
crossref_primary_10_1016_j_ebiom_2022_103937
crossref_primary_10_2147_JIR_S427868
crossref_primary_10_17116_neiro20208401186
crossref_primary_10_3389_fimmu_2024_1440309
crossref_primary_10_1186_s12974_024_03099_3
crossref_primary_10_1007_s13311_021_01126_2
crossref_primary_10_1016_j_arr_2024_102489
crossref_primary_10_1111_jcmm_18505
crossref_primary_10_1016_j_drudis_2020_12_020
crossref_primary_10_1016_j_cej_2024_153722
crossref_primary_10_1016_j_hest_2022_07_001
crossref_primary_10_1016_j_fct_2021_112114
crossref_primary_10_1186_s12964_023_01267_1
crossref_primary_10_2174_0109298665333926240927074528
crossref_primary_10_1089_ars_2017_7272
crossref_primary_10_1111_jnc_15785
crossref_primary_10_1155_2022_3999083
crossref_primary_10_3389_fimmu_2022_972753
crossref_primary_10_1089_neu_2021_0499
crossref_primary_10_1007_s12031_020_01770_x
crossref_primary_10_1111_joim_12959
crossref_primary_10_1080_07853890_2024_2396568
crossref_primary_10_1177_0271678X20925667
crossref_primary_10_1016_j_biopha_2023_115572
crossref_primary_10_1016_S1875_5364_24_60603_5
crossref_primary_10_1126_sciadv_abl8920
crossref_primary_10_2139_ssrn_4091174
crossref_primary_10_1021_jacs_8b06933
crossref_primary_10_3390_ijms241813793
crossref_primary_10_3389_fnins_2020_00776
crossref_primary_10_1016_j_neuint_2021_105192
crossref_primary_10_1096_fj_201801150R
crossref_primary_10_1007_s00011_024_01879_4
crossref_primary_10_1016_j_brainres_2018_09_012
crossref_primary_10_1016_j_brainresbull_2023_110753
crossref_primary_10_1016_j_neuint_2021_105197
crossref_primary_10_1016_j_cbpa_2017_05_007
crossref_primary_10_1038_s41581_023_00689_x
crossref_primary_10_3389_fnagi_2021_623751
crossref_primary_10_3390_cimb45060330
crossref_primary_10_1016_j_expneurol_2024_114797
crossref_primary_10_3389_fmolb_2022_985571
crossref_primary_10_1016_j_cell_2017_09_021
crossref_primary_10_1038_s41419_022_04712_0
crossref_primary_10_1590_acb360804
crossref_primary_10_1016_j_neuropharm_2025_110399
crossref_primary_10_1002_jcp_30351
crossref_primary_10_1089_ars_2017_7376
crossref_primary_10_1016_j_cophys_2019_01_002
crossref_primary_10_1002_jbt_23600
crossref_primary_10_1007_s11064_023_03999_5
crossref_primary_10_1002_jcp_30595
crossref_primary_10_1152_ajpcell_00072_2022
crossref_primary_10_3390_antiox11081447
crossref_primary_10_1016_j_biopha_2023_114593
crossref_primary_10_2147_JIR_S351799
crossref_primary_10_3390_cells10102539
crossref_primary_10_1016_j_lfs_2017_10_013
crossref_primary_10_3389_fcell_2021_737971
crossref_primary_10_1016_j_brainresbull_2019_03_012
crossref_primary_10_1016_j_ccr_2020_213645
crossref_primary_10_3389_fnins_2018_00466
crossref_primary_10_3390_cells9030750
crossref_primary_10_1002_biof_2015
crossref_primary_10_1007_s10571_020_00850_1
crossref_primary_10_1016_j_trim_2022_101660
crossref_primary_10_1016_j_ijbiomac_2023_128069
crossref_primary_10_1016_j_bbi_2023_11_023
crossref_primary_10_1038_s41419_021_04469_y
crossref_primary_10_1016_j_bbih_2020_100152
crossref_primary_10_1016_j_jointm_2022_11_003
crossref_primary_10_3389_fneur_2021_764718
crossref_primary_10_1016_j_biopha_2024_116761
crossref_primary_10_1159_000538106
crossref_primary_10_1002_ange_202010281
crossref_primary_10_1186_s13041_024_01159_6
crossref_primary_10_1242_dmm_049227
crossref_primary_10_1155_2021_6643382
crossref_primary_10_3390_antiox10101518
crossref_primary_10_1016_j_freeradbiomed_2018_09_033
crossref_primary_10_1016_j_freeradbiomed_2021_08_011
crossref_primary_10_1016_j_hest_2019_05_001
crossref_primary_10_1111_acel_13235
crossref_primary_10_3389_fmolb_2022_966478
crossref_primary_10_2174_1567202619666220321120954
crossref_primary_10_1016_j_expneurol_2021_113762
crossref_primary_10_1016_j_tox_2021_153068
crossref_primary_10_3389_fnagi_2022_905115
crossref_primary_10_31083_j_fbl2812332
crossref_primary_10_1021_acs_chemrev_0c00761
crossref_primary_10_1186_s11658_020_00205_0
crossref_primary_10_1016_j_jstrokecerebrovasdis_2023_107395
crossref_primary_10_1161_STROKEAHA_117_017702
crossref_primary_10_1016_j_jmb_2021_167379
crossref_primary_10_1016_j_heliyon_2024_e24786
crossref_primary_10_1089_dna_2024_0135
crossref_primary_10_1007_s11064_022_03643_8
crossref_primary_10_1161_STROKEAHA_119_025436
crossref_primary_10_1007_s11064_021_03320_2
crossref_primary_10_1038_s41418_020_00654_2
crossref_primary_10_1161_STROKEAHA_117_020544
crossref_primary_10_1111_bpa_13244
crossref_primary_10_1016_j_brainresbull_2019_08_013
crossref_primary_10_1016_j_bcp_2020_113900
crossref_primary_10_23736_S0390_5616_18_04207_8
crossref_primary_10_3389_fnins_2019_00085
crossref_primary_10_1016_j_pneurobio_2019_03_003
crossref_primary_10_1016_j_pneurobio_2020_101890
crossref_primary_10_1080_08830185_2021_2016739
crossref_primary_10_1161_STROKEAHA_117_019539
crossref_primary_10_17116_jnevro20241241117
crossref_primary_10_4103_1673_5374_337049
crossref_primary_10_1016_j_pneurobio_2018_01_001
crossref_primary_10_1177_0271678X221098811
crossref_primary_10_1097_CCM_0000000000003555
crossref_primary_10_1007_s12031_023_02187_y
crossref_primary_10_1016_j_freeradbiomed_2022_11_003
crossref_primary_10_1021_acschemneuro_2c00405
crossref_primary_10_1038_s41419_022_04927_1
crossref_primary_10_1111_jnc_15351
crossref_primary_10_3389_fncel_2022_799753
crossref_primary_10_1016_j_expneurol_2023_114633
crossref_primary_10_1038_s41418_019_0338_1
crossref_primary_10_3233_BPL_200104
crossref_primary_10_1007_s10571_023_01353_5
crossref_primary_10_3389_fimmu_2023_1191826
crossref_primary_10_1159_000496922
crossref_primary_10_3390_ijms22010047
crossref_primary_10_1080_15592294_2024_2326868
crossref_primary_10_4103_1673_5374_272612
crossref_primary_10_1186_s13287_022_02965_2
crossref_primary_10_4103_NRR_NRR_D_24_00432
crossref_primary_10_4103_1673_5374_355822
crossref_primary_10_3390_jcm9020327
crossref_primary_10_4103_1673_5374_389362
crossref_primary_10_1039_D4BM00039K
crossref_primary_10_1016_j_neuroscience_2020_01_036
crossref_primary_10_1177_0271678X20984565
crossref_primary_10_4103_1673_5374_274344
crossref_primary_10_1016_j_hest_2020_02_002
crossref_primary_10_1139_bcb_2020_0116
crossref_primary_10_3389_fimmu_2022_823999
crossref_primary_10_1016_j_freeradbiomed_2023_02_015
crossref_primary_10_1111_febs_16382
crossref_primary_10_3389_fnins_2020_576389
crossref_primary_10_1161_STROKEAHA_124_046736
crossref_primary_10_3390_ijms22052439
crossref_primary_10_1007_s00018_020_03667_9
crossref_primary_10_1002_ana_25356
crossref_primary_10_1038_s41581_023_00694_0
crossref_primary_10_3389_fphar_2024_1466896
crossref_primary_10_1038_s41467_021_24469_y
crossref_primary_10_1016_j_brainresbull_2022_08_005
crossref_primary_10_1111_jnc_15936
crossref_primary_10_1155_2020_6375938
crossref_primary_10_1016_j_nefroe_2020_09_006
crossref_primary_10_1039_D5DT00194C
crossref_primary_10_1016_j_biopha_2025_117932
crossref_primary_10_1089_ars_2021_0083
crossref_primary_10_3390_cells11142134
crossref_primary_10_1016_j_cellsig_2023_110594
crossref_primary_10_1016_j_brainres_2024_148988
crossref_primary_10_1089_ars_2022_0013
crossref_primary_10_3390_ijms21218387
crossref_primary_10_1111_jnc_14604
crossref_primary_10_1016_j_ebiom_2022_103880
crossref_primary_10_3390_ijms23126583
crossref_primary_10_1155_2020_6182464
crossref_primary_10_3390_ijms24098320
crossref_primary_10_1016_j_phrs_2022_106200
crossref_primary_10_1038_s41598_023_41635_y
crossref_primary_10_3390_cells11182823
crossref_primary_10_1016_j_biopha_2020_110108
crossref_primary_10_1016_j_nbd_2023_106314
crossref_primary_10_3389_fphar_2019_00638
crossref_primary_10_1002_anie_202010281
crossref_primary_10_1089_neu_2022_0034
crossref_primary_10_2174_1570159X21666221117155209
crossref_primary_10_1038_s41392_023_01606_1
crossref_primary_10_1007_s12975_017_0581_z
crossref_primary_10_1016_j_ymthe_2021_03_022
crossref_primary_10_1016_j_brainres_2024_148855
crossref_primary_10_1016_j_ejphar_2023_175782
crossref_primary_10_1016_j_neulet_2020_135614
crossref_primary_10_1523_JNEUROSCI_0923_20_2021
crossref_primary_10_1002_jbt_70099
crossref_primary_10_1088_1748_605X_ac058a
crossref_primary_10_1016_j_nefro_2020_03_005
crossref_primary_10_1016_j_jstrokecerebrovasdis_2020_105215
crossref_primary_10_1111_1440_1681_13815
crossref_primary_10_1038_s41598_025_92383_0
crossref_primary_10_1016_j_freeradbiomed_2025_01_046
crossref_primary_10_3389_fchem_2019_00850
crossref_primary_10_1007_s11064_024_04150_8
crossref_primary_10_1111_cns_13973
crossref_primary_10_1126_sciadv_adk7329
crossref_primary_10_2174_0113895575277359231210145922
crossref_primary_10_3390_molecules26113364
crossref_primary_10_1007_s12264_020_00620_5
crossref_primary_10_1016_j_bbcan_2021_188591
crossref_primary_10_1016_j_pharmthera_2020_107749
crossref_primary_10_1007_s11064_024_04185_x
crossref_primary_10_1016_j_ejphar_2020_173198
crossref_primary_10_1038_s41420_022_00887_9
crossref_primary_10_1016_j_expneurol_2022_114113
crossref_primary_10_1186_s13287_020_01836_y
crossref_primary_10_17116_jnevro202312301116
crossref_primary_10_1042_BSR20212433
crossref_primary_10_3389_fnins_2018_00990
crossref_primary_10_1073_pnas_1819728116
crossref_primary_10_1016_j_cell_2019_03_032
crossref_primary_10_1016_j_pharmthera_2017_10_012
crossref_primary_10_1177_0271678X231165653
crossref_primary_10_3389_fncel_2020_603043
crossref_primary_10_1007_s12975_020_00830_z
crossref_primary_10_3389_fncel_2022_853589
crossref_primary_10_3390_life14030311
crossref_primary_10_3390_pharmaceutics13030311
crossref_primary_10_1038_s41419_024_06681_y
crossref_primary_10_3389_fneur_2021_763419
crossref_primary_10_1021_jacs_8b09913
crossref_primary_10_4103_1673_5374_379019
crossref_primary_10_1016_j_phymed_2023_154756
crossref_primary_10_1016_j_abb_2018_07_022
crossref_primary_10_3389_fnmol_2022_1013076
crossref_primary_10_1016_j_yexcr_2020_111926
crossref_primary_10_1016_j_phrs_2020_104919
crossref_primary_10_1111_cns_13069
crossref_primary_10_12688_f1000research_11913_1
crossref_primary_10_3390_ph12040144
crossref_primary_10_1186_s12943_024_02130_8
crossref_primary_10_3389_fnagi_2020_00196
crossref_primary_10_1016_j_cbi_2022_110216
crossref_primary_10_1016_j_tem_2021_04_010
crossref_primary_10_1111_1440_1681_13801
crossref_primary_10_12688_f1000research_16473_2
crossref_primary_10_3892_ol_2018_8066
crossref_primary_10_1007_s11845_022_03170_z
crossref_primary_10_3389_fnagi_2020_615451
crossref_primary_10_1021_acschemneuro_0c00242
crossref_primary_10_1177_0271678X241252110
crossref_primary_10_3389_fphar_2025_1570069
crossref_primary_10_4103_1673_5374_391193
crossref_primary_10_1016_j_brainresbull_2024_111065
crossref_primary_10_3389_fneur_2024_1491189
crossref_primary_10_1002_path_5248
crossref_primary_10_1093_jnen_nlac047
crossref_primary_10_1111_cns_14685
crossref_primary_10_1038_s41598_024_54075_z
crossref_primary_10_1039_D0NR06249A
crossref_primary_10_1177_0271678X20973609
crossref_primary_10_1002_brb3_2722
crossref_primary_10_2478_aiht_2020_71_3366
crossref_primary_10_3389_fphar_2021_817364
crossref_primary_10_1016_j_pharmthera_2018_05_012
crossref_primary_10_3390_antiox12101811
crossref_primary_10_1016_j_biopha_2022_113806
crossref_primary_10_3389_fneur_2018_00581
crossref_primary_10_3390_ijms22031108
crossref_primary_10_1016_j_neuropharm_2024_110210
crossref_primary_10_3892_ijmm_2024_5457
crossref_primary_10_1038_s41418_024_01303_8
crossref_primary_10_1111_jnc_14889
crossref_primary_10_1038_s41418_020_00685_9
crossref_primary_10_3389_fphar_2019_01079
crossref_primary_10_1021_acsnano_9b05821
crossref_primary_10_1016_j_neuroscience_2020_09_049
crossref_primary_10_1007_s12975_018_0664_5
crossref_primary_10_1016_j_brainres_2021_147507
crossref_primary_10_3389_fnins_2024_1504047
crossref_primary_10_1186_s10020_024_00861_4
crossref_primary_10_1016_j_ebiom_2019_06_012
crossref_primary_10_3389_fncel_2019_00349
crossref_primary_10_1007_s00018_020_03587_8
crossref_primary_10_1016_j_biopha_2021_112423
crossref_primary_10_3389_fnins_2019_00115
crossref_primary_10_3389_fnins_2023_1200061
crossref_primary_10_1021_acscentsci_0c01592
crossref_primary_10_3389_fncel_2020_591874
crossref_primary_10_1523_ENEURO_0263_18_2019
crossref_primary_10_1016_j_freeradbiomed_2021_12_007
crossref_primary_10_3389_fcell_2024_1509877
crossref_primary_10_1038_s41419_018_0568_z
crossref_primary_10_1016_j_brainres_2018_10_023
crossref_primary_10_1055_a_2173_3602
crossref_primary_10_1016_j_chembiol_2020_03_013
crossref_primary_10_3389_fonc_2022_948389
crossref_primary_10_1161_STROKEAHA_120_031911
crossref_primary_10_1007_s12035_023_03279_x
crossref_primary_10_3892_mmr_2018_9631
crossref_primary_10_1007_s12031_018_1155_6
crossref_primary_10_1016_j_chembiol_2020_03_011
crossref_primary_10_1002_adma_201704007
crossref_primary_10_1096_fj_202400863RR
crossref_primary_10_3389_fimmu_2022_844163
crossref_primary_10_1007_s12975_021_00897_2
crossref_primary_10_1038_s41420_022_00821_z
crossref_primary_10_1161_STROKEAHA_117_019253
crossref_primary_10_1016_j_expneurol_2023_114476
crossref_primary_10_1016_j_expneurol_2023_114475
crossref_primary_10_3389_fnins_2020_589042
crossref_primary_10_1016_j_jhazmat_2023_131217
crossref_primary_10_1016_j_bmc_2023_117564
crossref_primary_10_1038_s41598_019_42370_z
crossref_primary_10_1155_2021_9916328
crossref_primary_10_3389_fphar_2022_963179
crossref_primary_10_1007_s12035_023_03267_1
crossref_primary_10_1016_j_chembiol_2020_03_007
crossref_primary_10_1007_s00210_020_01963_6
crossref_primary_10_1161_STROKEAHA_122_037155
crossref_primary_10_1523_JNEUROSCI_2212_19_2020
crossref_primary_10_2174_1567202618666210923150251
crossref_primary_10_1016_j_brainresbull_2021_11_014
crossref_primary_10_1111_jcmm_18240
crossref_primary_10_1165_rcmb_2019_0337TR
crossref_primary_10_3389_fneur_2022_881809
crossref_primary_10_1007_s11011_021_00828_y
crossref_primary_10_1016_j_biopha_2022_112747
crossref_primary_10_1155_2022_1274550
crossref_primary_10_1016_j_nbd_2020_105145
crossref_primary_10_3389_fncel_2022_898497
crossref_primary_10_1016_j_bios_2025_117290
crossref_primary_10_1007_s00432_018_2699_0
crossref_primary_10_1186_s12974_019_1485_5
crossref_primary_10_1172_jci_insight_126747
crossref_primary_10_1016_j_heliyon_2024_e25251
crossref_primary_10_3389_fimmu_2024_1485523
crossref_primary_10_3390_ijms22158115
crossref_primary_10_1016_j_cmpb_2020_105728
crossref_primary_10_1038_s41598_021_81741_3
crossref_primary_10_1007_s12035_024_04216_2
crossref_primary_10_1186_s13041_022_00942_7
crossref_primary_10_1161_STROKEAHA_117_018293
Cites_doi 10.1016/S1474-4422(09)70025-0
10.4049/jimmunol.1400499
10.1007/s11064-015-1561-x
10.1002/ana.24159
10.1161/01.str.0000020121.41527.5d
10.1038/jcbfm.2011.150
10.1016/j.freeradbiomed.2015.09.016
10.1038/nchembio711
10.1126/scitranslmed.aac6008
10.1016/j.cell.2009.07.006
10.1523/JNEUROSCI.3776-09.2009
10.1111/nan.12177
10.14800/ttnd.474
10.1016/S1474-4422(12)70104-7
10.1016/S0006-8993(02)03268-7
10.1016/j.freeradbiomed.2008.07.003
10.1002/acn3.54
10.1002/glia.21055
10.1038/sj.jcbfm.9600578
10.1186/s12974-016-0490-1
10.1002/jnr.10633
10.1007/s11064-014-1510-0
10.1016/0304-3940(93)90326-G
10.7554/eLife.02523
10.1016/j.chom.2015.01.003
10.1038/ni.3206
10.1097/00003246-200101000-00030
10.1007/s12031-013-0132-3
10.1161/STROKEAHA.111.635672
10.1083/jcb.200809060
10.1159/000434631
10.1161/STROKEAHA.109.569830
10.1016/0022-1759(83)90303-4
10.1161/01.STR.30.11.2472
10.1038/cdd.2008.150
10.1046/j.1471-4159.1994.62010376.x
10.1038/nchembio.83
10.1007/978-3-7091-0693-8_17
10.1007/978-1-61779-328-8_3
10.1007/978-3-7091-0693-8_16
10.1146/annurev-physiol-021113-170259
10.1016/S1474-4422(09)70340-0
10.1016/j.cell.2012.03.042
10.1038/nature05859
10.3171/jns.2002.96.2.0287
10.1046/j.1471-4159.2001.00590.x
ContentType Journal Article
Copyright 2017 American Heart Association, Inc.
Copyright_xml – notice: 2017 American Heart Association, Inc.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1161/STROKEAHA.116.015609
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1524-4628
EndPage 1043
ExternalDocumentID PMC5613764
28250197
10_1161_STROKEAHA_116_015609
10.1161/STROKEAHA.116.015609
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIA NIH HHS
  grantid: P01 AG014930
– fundername: NHLBI NIH HHS
  grantid: R01 HL098351
– fundername: NIDA NIH HHS
  grantid: R01 DA008259
GroupedDBID ---
.3C
.55
.GJ
.XZ
.Z2
01R
0R~
123
1J1
2WC
3O-
40H
4Q1
4Q2
4Q3
53G
5RE
5VS
6PF
71W
77Y
7O~
A9M
AAAAV
AAAXR
AAGIX
AAHPQ
AAIQE
AAJCS
AAMOA
AAMTA
AAQKA
AAQQT
AARTV
AASCR
AASOK
AAUEB
AAXQO
AAYEP
AAYJJ
ABASU
ABBUW
ABDIG
ABJNI
ABPXF
ABQRW
ABVCZ
ABXVJ
ABXYN
ABZAD
ABZZY
ACCJW
ACDDN
ACDOF
ACEWG
ACGFS
ACGOD
ACILI
ACLDA
ACWDW
ACWRI
ACXJB
ACXNZ
ACZKN
ADBBV
ADFPA
ADGGA
ADHPY
ADNKB
AE3
AE6
AEBDS
AEETU
AENEX
AFBFQ
AFDTB
AFEXH
AFFNX
AFMBP
AFNMH
AFSOK
AFUWQ
AGINI
AHMBA
AHOMT
AHQNM
AHQVU
AHRYX
AHVBC
AIJEX
AINUH
AJCLO
AJIOK
AJNWD
AJNYG
AJZMW
AKCTQ
AKULP
ALKUP
ALMA_UNASSIGNED_HOLDINGS
ALMTX
AMJPA
AMKUR
AMNEI
AOHHW
AOQMC
AYCSE
BAWUL
BCGUY
BOYCO
BQLVK
BS7
C45
CS3
DIK
DIWNM
DU5
DUNZO
E.X
E3Z
EBS
EEVPB
EJD
ERAAH
EX3
F2K
F2L
F2M
F2N
F5P
FCALG
FL-
FW0
GNXGY
GQDEL
GX1
H0~
H13
HLJTE
HZ~
IKREB
IKYAY
IN~
IPNFZ
J5H
JF9
JG8
JK3
JK8
K8S
KD2
KMI
KQ8
L-C
L7B
M18
N4W
N9A
N~7
N~B
N~M
O9-
OAG
OAH
OB3
OCUKA
ODA
ODMTH
OGROG
OHYEH
OK1
OL1
OLG
OLH
OLU
OLV
OLY
OLZ
OPUJH
ORVUJ
OUVQU
OVD
OVDNE
OVIDH
OVLEI
OVOZU
OWBYB
OWU
OWV
OWW
OWX
OWY
OWZ
OXXIT
P-K
P2P
PQQKQ
R58
RAH
RIG
RLZ
S4R
S4S
T8P
TEORI
TSPGW
V2I
VVN
W3M
W8F
WH7
WOQ
WOW
X3V
X3W
X7M
XXN
XYM
YFH
YHZ
YQJ
YYP
ZB8
ZGI
ZZMQN
AAYXX
ADGHP
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ADKSD
ADSXY
5PM
ID FETCH-LOGICAL-c5239-7ab587ea3a3e31cd1f688f462a80c19b97ffad02586ca7097f65a0aeda85cf0f3
ISSN 0039-2499
1524-4628
IngestDate Thu Aug 21 13:41:02 EDT 2025
Mon Sep 08 15:07:12 EDT 2025
Mon Jul 21 06:03:44 EDT 2025
Tue Jul 01 03:31:50 EDT 2025
Thu Apr 24 23:01:53 EDT 2025
Fri May 16 03:42:54 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords intracerebral hemorrhage
apoptosis
ferroptosis
cell death
necrosis
Language English
License 2017 American Heart Association, Inc.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c5239-7ab587ea3a3e31cd1f688f462a80c19b97ffad02586ca7097f65a0aeda85cf0f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ahajournals.org/doi/pdf/10.1161/STROKEAHA.116.015609
PMID 28250197
PQID 1873720431
PQPubID 23479
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5613764
proquest_miscellaneous_1873720431
pubmed_primary_28250197
crossref_citationtrail_10_1161_STROKEAHA_116_015609
crossref_primary_10_1161_STROKEAHA_116_015609
wolterskluwer_health_10_1161_STROKEAHA_116_015609
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-April
PublicationDateYYYYMMDD 2017-04-01
PublicationDate_xml – month: 04
  year: 2017
  text: 2017-April
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Stroke (1970)
PublicationTitleAlternate Stroke
PublicationYear 2017
Publisher American Heart Association, Inc
Publisher_xml – name: American Heart Association, Inc
References e_1_3_4_3_2
e_1_3_4_2_2
e_1_3_4_9_2
e_1_3_4_8_2
e_1_3_4_7_2
e_1_3_4_41_2
e_1_3_4_6_2
e_1_3_4_40_2
e_1_3_4_5_2
e_1_3_4_4_2
e_1_3_4_22_2
e_1_3_4_45_2
e_1_3_4_23_2
e_1_3_4_44_2
e_1_3_4_20_2
e_1_3_4_43_2
e_1_3_4_21_2
e_1_3_4_42_2
e_1_3_4_26_2
Zhang Q (e_1_3_4_46_2) 2015; 8
e_1_3_4_49_2
e_1_3_4_27_2
e_1_3_4_48_2
e_1_3_4_24_2
e_1_3_4_47_2
e_1_3_4_25_2
Qureshi AI (e_1_3_4_17_2) 2003; 52
e_1_3_4_28_2
e_1_3_4_29_2
e_1_3_4_30_2
e_1_3_4_11_2
e_1_3_4_34_2
e_1_3_4_12_2
e_1_3_4_33_2
e_1_3_4_32_2
e_1_3_4_10_2
e_1_3_4_31_2
e_1_3_4_15_2
e_1_3_4_38_2
e_1_3_4_16_2
e_1_3_4_37_2
e_1_3_4_13_2
e_1_3_4_36_2
e_1_3_4_14_2
e_1_3_4_35_2
e_1_3_4_19_2
e_1_3_4_18_2
e_1_3_4_39_2
References_xml – ident: e_1_3_4_2_2
  doi: 10.1016/S1474-4422(09)70025-0
– ident: e_1_3_4_34_2
  doi: 10.4049/jimmunol.1400499
– ident: e_1_3_4_45_2
  doi: 10.1007/s11064-015-1561-x
– ident: e_1_3_4_5_2
  doi: 10.1002/ana.24159
– ident: e_1_3_4_44_2
  doi: 10.1161/01.str.0000020121.41527.5d
– ident: e_1_3_4_19_2
  doi: 10.1038/jcbfm.2011.150
– ident: e_1_3_4_10_2
  doi: 10.1016/j.freeradbiomed.2015.09.016
– ident: e_1_3_4_20_2
  doi: 10.1038/nchembio711
– ident: e_1_3_4_22_2
  doi: 10.1126/scitranslmed.aac6008
– ident: e_1_3_4_31_2
  doi: 10.1016/j.cell.2009.07.006
– ident: e_1_3_4_12_2
  doi: 10.1523/JNEUROSCI.3776-09.2009
– ident: e_1_3_4_47_2
  doi: 10.1111/nan.12177
– ident: e_1_3_4_27_2
  doi: 10.14800/ttnd.474
– volume: 52
  start-page: 1041
  year: 2003
  ident: e_1_3_4_17_2
  article-title: Apoptosis as a form of cell death in intracerebral hemorrhage.
  publication-title: Neurosurgery
– ident: e_1_3_4_4_2
  doi: 10.1016/S1474-4422(12)70104-7
– ident: e_1_3_4_6_2
  doi: 10.1016/S0006-8993(02)03268-7
– ident: e_1_3_4_38_2
  doi: 10.1016/j.freeradbiomed.2008.07.003
– ident: e_1_3_4_36_2
  doi: 10.1002/acn3.54
– ident: e_1_3_4_42_2
  doi: 10.1002/glia.21055
– ident: e_1_3_4_48_2
  doi: 10.1038/sj.jcbfm.9600578
– ident: e_1_3_4_13_2
  doi: 10.1186/s12974-016-0490-1
– ident: e_1_3_4_43_2
  doi: 10.1002/jnr.10633
– ident: e_1_3_4_40_2
  doi: 10.1007/s11064-014-1510-0
– ident: e_1_3_4_8_2
  doi: 10.1016/0304-3940(93)90326-G
– ident: e_1_3_4_28_2
  doi: 10.7554/eLife.02523
– ident: e_1_3_4_35_2
  doi: 10.1016/j.chom.2015.01.003
– ident: e_1_3_4_33_2
  doi: 10.1038/ni.3206
– ident: e_1_3_4_15_2
  doi: 10.1097/00003246-200101000-00030
– ident: e_1_3_4_39_2
  doi: 10.1007/s12031-013-0132-3
– ident: e_1_3_4_41_2
  doi: 10.1161/STROKEAHA.111.635672
– ident: e_1_3_4_26_2
  doi: 10.1083/jcb.200809060
– ident: e_1_3_4_16_2
  doi: 10.1159/000434631
– ident: e_1_3_4_49_2
  doi: 10.1161/STROKEAHA.109.569830
– ident: e_1_3_4_24_2
  doi: 10.1016/0022-1759(83)90303-4
– volume: 8
  start-page: 5371
  year: 2015
  ident: e_1_3_4_46_2
  article-title: Effects of intracerebral hemorrhage and subsequent minimally invasive hematoma aspiration on expression of apoptosisrelated genes in rats.
  publication-title: Int J Clin Exp Pathol
– ident: e_1_3_4_14_2
  doi: 10.1161/01.STR.30.11.2472
– ident: e_1_3_4_18_2
  doi: 10.1038/cdd.2008.150
– ident: e_1_3_4_23_2
  doi: 10.1046/j.1471-4159.1994.62010376.x
– ident: e_1_3_4_30_2
  doi: 10.1038/nchembio.83
– ident: e_1_3_4_11_2
  doi: 10.1007/978-3-7091-0693-8_17
– ident: e_1_3_4_25_2
  doi: 10.1007/978-1-61779-328-8_3
– ident: e_1_3_4_9_2
  doi: 10.1007/978-3-7091-0693-8_16
– ident: e_1_3_4_32_2
  doi: 10.1146/annurev-physiol-021113-170259
– ident: e_1_3_4_3_2
  doi: 10.1016/S1474-4422(09)70340-0
– ident: e_1_3_4_21_2
  doi: 10.1016/j.cell.2012.03.042
– ident: e_1_3_4_29_2
  doi: 10.1038/nature05859
– ident: e_1_3_4_7_2
  doi: 10.3171/jns.2002.96.2.0287
– ident: e_1_3_4_37_2
  doi: 10.1046/j.1471-4159.2001.00590.x
SSID ssj0002385
Score 2.664836
Snippet BACKGROUND AND PURPOSE—Intracerebral hemorrhage leads to disability or death with few established treatments. Adverse outcomes after intracerebral hemorrhage...
Intracerebral hemorrhage leads to disability or death with few established treatments. Adverse outcomes after intracerebral hemorrhage result from irreversible...
SourceID pubmedcentral
proquest
pubmed
crossref
wolterskluwer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1033
SubjectTerms Animals
Apoptosis
Cells, Cultured
Cerebral Hemorrhage - metabolism
Disease Models, Animal
Hemin - metabolism
Hemoglobins - metabolism
Male
Mice
Mice, Inbred C57BL
Necrosis - metabolism
Neurons - metabolism
Title Neuronal Death After Hemorrhagic Stroke In Vitro and In Vivo Shares Features of Ferroptosis and Necroptosis
URI https://www.ncbi.nlm.nih.gov/pubmed/28250197
https://www.proquest.com/docview/1873720431
https://pubmed.ncbi.nlm.nih.gov/PMC5613764
Volume 48
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKkBASQtwpNxmJtyqlqXNxH6uxUTZ13DY0eIkcx9GqQlKl6UD8Hf4o59hO6moVl71Ecermdr6c89k-F0JesDAFq56NvBTYtxeILPTE0M88zgTgK-Mq0nO606NochIcnIannc4vx2tpVad9-XNrXMllpArHQK4YJfsfkm1PCgdgH-QLW5AwbP9JxjqzBtLJV0jkemNd73uCvrPVmQCVhmvO5Ry9I3ufZrBrnX-hcV7qVM1q2UMOuKpM6tl9VVXloi4xSQl2PVKyabsk1p4VUzyN4oEzl_AFAwttBNBM1XWr8g9FtVqA6sIaTrbSl6gE1nMG7dJfuxgYHfgZzOmPWYva11hIqPUl7h303ZkKsH5rBxerfRmu5piCSH1lFe4w8DA-1tXIAXeQFzjq1R-YrBnWVMNQkm03AxGagY_HH94e7o0nYzzQ1zHjI7c7CHPxTUMDA3iB68Zro9i6Kr6b7uIYK46CK-TqMAaChiv_79cp6YHzmDIZ9uFsfCbcwsttN4DZp-3VNqnQhfHNRTfdG99LdKFYznUEhcODjm-Rm3YAQ8cGjbdJRxV3yLWpddG4S-YNKKkGJdWgpA4oqYEPfVNQDUoKSDON85IaUNIGlLTMqQNK3dUB5T1ysr93vDvxbEUPT4ZDeD-xSEMeK8EEzr3LzM8jznMQv-AD6Y_SUZznIgMaziMJugKaUSgGQmWChzIf5Ow-2SnKQj0kFJRJJoUMcxYEAZJ8FvOIyzjjGUtZGHcJa15uIm26e6y68jXRw97IT1rpYDMx0ukSr_3XwqR7-Uv_543cEtDLuNgmClWulonPTQEo5nfJAyPH9owNALok3pBw2wFzvm_-UszOdO53i8Uu8TewkJio6T_e66NLX-0xub7-np-QnbpaqafAxev0mf4WfgM7z9wn
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neuronal+Death+After+Hemorrhagic+Stroke+In+Vitro+and+In+Vivo+Shares+Features+of+Ferroptosis+and+Necroptosis&rft.jtitle=Stroke+%281970%29&rft.au=Zille%2C+Marietta&rft.au=Karuppagounder%2C+Saravanan+S.&rft.au=Chen%2C+Yingxin&rft.au=Gough%2C+Peter+J.&rft.date=2017-04-01&rft.issn=0039-2499&rft.eissn=1524-4628&rft.volume=48&rft.issue=4&rft.spage=1033&rft.epage=1043&rft_id=info:doi/10.1161%2FSTROKEAHA.116.015609&rft_id=info%3Apmid%2F28250197&rft.externalDocID=PMC5613764
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0039-2499&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0039-2499&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0039-2499&client=summon