Neuronal Death After Hemorrhagic Stroke In Vitro and In Vivo Shares Features of Ferroptosis and Necroptosis
BACKGROUND AND PURPOSE—Intracerebral hemorrhage leads to disability or death with few established treatments. Adverse outcomes after intracerebral hemorrhage result from irreversible damage to neurons resulting from primary and secondary injury. Secondary injury has been attributed to hemoglobin and...
Saved in:
Published in | Stroke (1970) Vol. 48; no. 4; pp. 1033 - 1043 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Heart Association, Inc
01.04.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 0039-2499 1524-4628 1524-4628 |
DOI | 10.1161/STROKEAHA.116.015609 |
Cover
Abstract | BACKGROUND AND PURPOSE—Intracerebral hemorrhage leads to disability or death with few established treatments. Adverse outcomes after intracerebral hemorrhage result from irreversible damage to neurons resulting from primary and secondary injury. Secondary injury has been attributed to hemoglobin and its oxidized product hemin from lysed red blood cells. The aim of this study was to identify the underlying cell death mechanisms attributable to secondary injury by hemoglobin and hemin to broaden treatment options.
METHODS—We investigated cell death mechanisms in cultured neurons exposed to hemoglobin or hemin. Chemical inhibitors implicated in all known cell death pathways were used. Identified cell death mechanisms were confirmed using molecular markers and electron microscopy.
RESULTS—Chemical inhibitors of ferroptosis and necroptosis protected against hemoglobin- and hemin-induced toxicity. By contrast, inhibitors of caspase-dependent apoptosis, protein or mRNA synthesis, autophagy, mitophagy, or parthanatos had no effect. Accordingly, molecular markers of ferroptosis and necroptosis were increased after intracerebral hemorrhage in vitro and in vivo. Electron microscopy showed that hemin induced a necrotic phenotype. Necroptosis and ferroptosis inhibitors each abrogated death by >80% and had similar therapeutic windows in vitro.
CONCLUSIONS—Experimental intracerebral hemorrhage shares features of ferroptotic and necroptotic cell death, but not caspase-dependent apoptosis or autophagy. We propose that ferroptosis or necroptotic signaling induced by lysed blood is sufficient to reach a threshold of death that leads to neuronal necrosis and that inhibition of either of these pathways can bring cells below that threshold to survival. |
---|---|
AbstractList | BACKGROUND AND PURPOSE—Intracerebral hemorrhage leads to disability or death with few established treatments. Adverse outcomes after intracerebral hemorrhage result from irreversible damage to neurons resulting from primary and secondary injury. Secondary injury has been attributed to hemoglobin and its oxidized product hemin from lysed red blood cells. The aim of this study was to identify the underlying cell death mechanisms attributable to secondary injury by hemoglobin and hemin to broaden treatment options.
METHODS—We investigated cell death mechanisms in cultured neurons exposed to hemoglobin or hemin. Chemical inhibitors implicated in all known cell death pathways were used. Identified cell death mechanisms were confirmed using molecular markers and electron microscopy.
RESULTS—Chemical inhibitors of ferroptosis and necroptosis protected against hemoglobin- and hemin-induced toxicity. By contrast, inhibitors of caspase-dependent apoptosis, protein or mRNA synthesis, autophagy, mitophagy, or parthanatos had no effect. Accordingly, molecular markers of ferroptosis and necroptosis were increased after intracerebral hemorrhage in vitro and in vivo. Electron microscopy showed that hemin induced a necrotic phenotype. Necroptosis and ferroptosis inhibitors each abrogated death by >80% and had similar therapeutic windows in vitro.
CONCLUSIONS—Experimental intracerebral hemorrhage shares features of ferroptotic and necroptotic cell death, but not caspase-dependent apoptosis or autophagy. We propose that ferroptosis or necroptotic signaling induced by lysed blood is sufficient to reach a threshold of death that leads to neuronal necrosis and that inhibition of either of these pathways can bring cells below that threshold to survival. Intracerebral hemorrhage leads to disability or death with few established treatments. Adverse outcomes after intracerebral hemorrhage result from irreversible damage to neurons resulting from primary and secondary injury. Secondary injury has been attributed to hemoglobin and its oxidized product hemin from lysed red blood cells. The aim of this study was to identify the underlying cell death mechanisms attributable to secondary injury by hemoglobin and hemin to broaden treatment options.BACKGROUND AND PURPOSEIntracerebral hemorrhage leads to disability or death with few established treatments. Adverse outcomes after intracerebral hemorrhage result from irreversible damage to neurons resulting from primary and secondary injury. Secondary injury has been attributed to hemoglobin and its oxidized product hemin from lysed red blood cells. The aim of this study was to identify the underlying cell death mechanisms attributable to secondary injury by hemoglobin and hemin to broaden treatment options.We investigated cell death mechanisms in cultured neurons exposed to hemoglobin or hemin. Chemical inhibitors implicated in all known cell death pathways were used. Identified cell death mechanisms were confirmed using molecular markers and electron microscopy.METHODSWe investigated cell death mechanisms in cultured neurons exposed to hemoglobin or hemin. Chemical inhibitors implicated in all known cell death pathways were used. Identified cell death mechanisms were confirmed using molecular markers and electron microscopy.Chemical inhibitors of ferroptosis and necroptosis protected against hemoglobin- and hemin-induced toxicity. By contrast, inhibitors of caspase-dependent apoptosis, protein or mRNA synthesis, autophagy, mitophagy, or parthanatos had no effect. Accordingly, molecular markers of ferroptosis and necroptosis were increased after intracerebral hemorrhage in vitro and in vivo. Electron microscopy showed that hemin induced a necrotic phenotype. Necroptosis and ferroptosis inhibitors each abrogated death by >80% and had similar therapeutic windows in vitro.RESULTSChemical inhibitors of ferroptosis and necroptosis protected against hemoglobin- and hemin-induced toxicity. By contrast, inhibitors of caspase-dependent apoptosis, protein or mRNA synthesis, autophagy, mitophagy, or parthanatos had no effect. Accordingly, molecular markers of ferroptosis and necroptosis were increased after intracerebral hemorrhage in vitro and in vivo. Electron microscopy showed that hemin induced a necrotic phenotype. Necroptosis and ferroptosis inhibitors each abrogated death by >80% and had similar therapeutic windows in vitro.Experimental intracerebral hemorrhage shares features of ferroptotic and necroptotic cell death, but not caspase-dependent apoptosis or autophagy. We propose that ferroptosis or necroptotic signaling induced by lysed blood is sufficient to reach a threshold of death that leads to neuronal necrosis and that inhibition of either of these pathways can bring cells below that threshold to survival.CONCLUSIONSExperimental intracerebral hemorrhage shares features of ferroptotic and necroptotic cell death, but not caspase-dependent apoptosis or autophagy. We propose that ferroptosis or necroptotic signaling induced by lysed blood is sufficient to reach a threshold of death that leads to neuronal necrosis and that inhibition of either of these pathways can bring cells below that threshold to survival. Intracerebral hemorrhage leads to disability or death with few established treatments. Adverse outcomes after intracerebral hemorrhage result from irreversible damage to neurons resulting from primary and secondary injury. Secondary injury has been attributed to hemoglobin and its oxidized product hemin from lysed red blood cells. The aim of this study was to identify the underlying cell death mechanisms attributable to secondary injury by hemoglobin and hemin to broaden treatment options. We investigated cell death mechanisms in cultured neurons exposed to hemoglobin or hemin. Chemical inhibitors implicated in all known cell death pathways were used. Identified cell death mechanisms were confirmed using molecular markers and electron microscopy. Chemical inhibitors of ferroptosis and necroptosis protected against hemoglobin- and hemin-induced toxicity. By contrast, inhibitors of caspase-dependent apoptosis, protein or mRNA synthesis, autophagy, mitophagy, or parthanatos had no effect. Accordingly, molecular markers of ferroptosis and necroptosis were increased after intracerebral hemorrhage in vitro and in vivo. Electron microscopy showed that hemin induced a necrotic phenotype. Necroptosis and ferroptosis inhibitors each abrogated death by >80% and had similar therapeutic windows in vitro. Experimental intracerebral hemorrhage shares features of ferroptotic and necroptotic cell death, but not caspase-dependent apoptosis or autophagy. We propose that ferroptosis or necroptotic signaling induced by lysed blood is sufficient to reach a threshold of death that leads to neuronal necrosis and that inhibition of either of these pathways can bring cells below that threshold to survival. |
Author | Karuppagounder, Saravanan S. Finger, Joshua Jonas, Elizabeth A. Zille, Marietta Milner, Teresa A. Ratan, Rajiv R. Gough, Peter J. Bertin, John Chen, Yingxin |
AuthorAffiliation | From the Burke Medical Research Institute, White Plains, New York (M.Z., S.S.K., Y.C., R.R.R.); Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York (M.Z., S.S.K., Y.C., T.A.M., R.R.R.); Host Defense Discovery Performance Unit, Infectious Diseases Therapy Area Unit (P.J.G.) and Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area (J.B., J.F.), GlaxoSmithKline, Collegeville, PA; Laboratory of Neuroendocrinology, The Rockefeller University, New York (T.A.M.); and Department of Internal Medicine, Section of Endocrinology, Yale University, New Haven, CT (E.A.J.) |
AuthorAffiliation_xml | – name: From the Burke Medical Research Institute, White Plains, New York (M.Z., S.S.K., Y.C., R.R.R.); Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York (M.Z., S.S.K., Y.C., T.A.M., R.R.R.); Host Defense Discovery Performance Unit, Infectious Diseases Therapy Area Unit (P.J.G.) and Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area (J.B., J.F.), GlaxoSmithKline, Collegeville, PA; Laboratory of Neuroendocrinology, The Rockefeller University, New York (T.A.M.); and Department of Internal Medicine, Section of Endocrinology, Yale University, New Haven, CT (E.A.J.) |
Author_xml | – sequence: 1 givenname: Marietta surname: Zille fullname: Zille, Marietta organization: From the Burke Medical Research Institute, White Plains, New York (M.Z., S.S.K., Y.C., R.R.R.); Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York (M.Z., S.S.K., Y.C., T.A.M., R.R.R.); Host Defense Discovery Performance Unit, Infectious Diseases Therapy Area Unit (P.J.G.) and Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area (J.B., J.F.), GlaxoSmithKline, Collegeville, PA; Laboratory of Neuroendocrinology, The Rockefeller University, New York (T.A.M.); and Department of Internal Medicine, Section of Endocrinology, Yale University, New Haven, CT (E.A.J.) – sequence: 2 givenname: Saravanan surname: Karuppagounder middlename: S. fullname: Karuppagounder, Saravanan S. – sequence: 3 givenname: Yingxin surname: Chen fullname: Chen, Yingxin – sequence: 4 givenname: Peter surname: Gough middlename: J. fullname: Gough, Peter J. – sequence: 5 givenname: John surname: Bertin fullname: Bertin, John – sequence: 6 givenname: Joshua surname: Finger fullname: Finger, Joshua – sequence: 7 givenname: Teresa surname: Milner middlename: A. fullname: Milner, Teresa A. – sequence: 8 givenname: Elizabeth surname: Jonas middlename: A. fullname: Jonas, Elizabeth A. – sequence: 9 givenname: Rajiv surname: Ratan middlename: R. fullname: Ratan, Rajiv R. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28250197$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUU1v1DAQtVAR3Rb-AUI5ctlix3HicEBalZatqFqJLVytWWfcmPXGWztpxb_HId0KOMDJ8-T3Yc87Iged75CQ14yeMFayd6ubL9efzxbLxQhPKBMlrZ-RGRN5MS_KXB6QGaW8nudFXR-Soxi_U0pzLsULcpjLXFBWVzOyucIh-A5c9hGhb7OF6TFkS9z6EFq4tTpb9cFvMLvosm82jRl0zQTufbZqIWDMzpN0GAdv0hyC3_U-2viLeoV6j1-S5wZcxFeP5zH5en52c7qcX15_ujhdXM61yNODK1gLWSFw4MiZbpgppTTpSyCpZvW6royBhuZClhoqmmApgAI2IIU21PBj8mHy3Q3rLTYauz6AU7tgtxB-KA9W_XnT2Vbd-nslSsarskgGbx8Ngr8bMPZqa6NG56BDP0TFZMWrnBacJeqb37OeQvYbToT3EyGtIcaARmnbQ2_9GG2dYlSNdaqnOkeopjqTuPhLvPf_j0xOsgfvUp1x44YHDKpFcH37b-lPiGy4BA |
CitedBy_id | crossref_primary_10_3389_fphar_2024_1472813 crossref_primary_10_3390_antiox12111945 crossref_primary_10_1186_s12938_024_01288_y crossref_primary_10_1080_21655979_2021_1951070 crossref_primary_10_1111_cns_14400 crossref_primary_10_1155_2022_8808677 crossref_primary_10_3389_fimmu_2024_1511015 crossref_primary_10_3390_md19100557 crossref_primary_10_1089_ars_2021_0120 crossref_primary_10_1002_smtd_202400304 crossref_primary_10_3390_antiox12030731 crossref_primary_10_1186_s41016_024_00357_4 crossref_primary_10_4103_1673_5374_245480 crossref_primary_10_1155_2022_7906218 crossref_primary_10_3390_ijms22115509 crossref_primary_10_1007_s12035_018_1403_3 crossref_primary_10_1111_jnc_14328 crossref_primary_10_1038_s41392_023_01580_8 crossref_primary_10_1007_s11084_024_09662_5 crossref_primary_10_1038_s41422_020_00441_1 crossref_primary_10_3892_mmr_2024_13252 crossref_primary_10_1080_21655979_2022_2032971 crossref_primary_10_1007_s12035_021_02605_5 crossref_primary_10_3389_fphys_2021_815758 crossref_primary_10_1177_0271678X18762637 crossref_primary_10_3389_fnins_2020_00685 crossref_primary_10_1007_s12975_017_0535_5 crossref_primary_10_1016_j_ebiom_2022_103937 crossref_primary_10_2147_JIR_S427868 crossref_primary_10_17116_neiro20208401186 crossref_primary_10_3389_fimmu_2024_1440309 crossref_primary_10_1186_s12974_024_03099_3 crossref_primary_10_1007_s13311_021_01126_2 crossref_primary_10_1016_j_arr_2024_102489 crossref_primary_10_1111_jcmm_18505 crossref_primary_10_1016_j_drudis_2020_12_020 crossref_primary_10_1016_j_cej_2024_153722 crossref_primary_10_1016_j_hest_2022_07_001 crossref_primary_10_1016_j_fct_2021_112114 crossref_primary_10_1186_s12964_023_01267_1 crossref_primary_10_2174_0109298665333926240927074528 crossref_primary_10_1089_ars_2017_7272 crossref_primary_10_1111_jnc_15785 crossref_primary_10_1155_2022_3999083 crossref_primary_10_3389_fimmu_2022_972753 crossref_primary_10_1089_neu_2021_0499 crossref_primary_10_1007_s12031_020_01770_x crossref_primary_10_1111_joim_12959 crossref_primary_10_1080_07853890_2024_2396568 crossref_primary_10_1177_0271678X20925667 crossref_primary_10_1016_j_biopha_2023_115572 crossref_primary_10_1016_S1875_5364_24_60603_5 crossref_primary_10_1126_sciadv_abl8920 crossref_primary_10_2139_ssrn_4091174 crossref_primary_10_1021_jacs_8b06933 crossref_primary_10_3390_ijms241813793 crossref_primary_10_3389_fnins_2020_00776 crossref_primary_10_1016_j_neuint_2021_105192 crossref_primary_10_1096_fj_201801150R crossref_primary_10_1007_s00011_024_01879_4 crossref_primary_10_1016_j_brainres_2018_09_012 crossref_primary_10_1016_j_brainresbull_2023_110753 crossref_primary_10_1016_j_neuint_2021_105197 crossref_primary_10_1016_j_cbpa_2017_05_007 crossref_primary_10_1038_s41581_023_00689_x crossref_primary_10_3389_fnagi_2021_623751 crossref_primary_10_3390_cimb45060330 crossref_primary_10_1016_j_expneurol_2024_114797 crossref_primary_10_3389_fmolb_2022_985571 crossref_primary_10_1016_j_cell_2017_09_021 crossref_primary_10_1038_s41419_022_04712_0 crossref_primary_10_1590_acb360804 crossref_primary_10_1016_j_neuropharm_2025_110399 crossref_primary_10_1002_jcp_30351 crossref_primary_10_1089_ars_2017_7376 crossref_primary_10_1016_j_cophys_2019_01_002 crossref_primary_10_1002_jbt_23600 crossref_primary_10_1007_s11064_023_03999_5 crossref_primary_10_1002_jcp_30595 crossref_primary_10_1152_ajpcell_00072_2022 crossref_primary_10_3390_antiox11081447 crossref_primary_10_1016_j_biopha_2023_114593 crossref_primary_10_2147_JIR_S351799 crossref_primary_10_3390_cells10102539 crossref_primary_10_1016_j_lfs_2017_10_013 crossref_primary_10_3389_fcell_2021_737971 crossref_primary_10_1016_j_brainresbull_2019_03_012 crossref_primary_10_1016_j_ccr_2020_213645 crossref_primary_10_3389_fnins_2018_00466 crossref_primary_10_3390_cells9030750 crossref_primary_10_1002_biof_2015 crossref_primary_10_1007_s10571_020_00850_1 crossref_primary_10_1016_j_trim_2022_101660 crossref_primary_10_1016_j_ijbiomac_2023_128069 crossref_primary_10_1016_j_bbi_2023_11_023 crossref_primary_10_1038_s41419_021_04469_y crossref_primary_10_1016_j_bbih_2020_100152 crossref_primary_10_1016_j_jointm_2022_11_003 crossref_primary_10_3389_fneur_2021_764718 crossref_primary_10_1016_j_biopha_2024_116761 crossref_primary_10_1159_000538106 crossref_primary_10_1002_ange_202010281 crossref_primary_10_1186_s13041_024_01159_6 crossref_primary_10_1242_dmm_049227 crossref_primary_10_1155_2021_6643382 crossref_primary_10_3390_antiox10101518 crossref_primary_10_1016_j_freeradbiomed_2018_09_033 crossref_primary_10_1016_j_freeradbiomed_2021_08_011 crossref_primary_10_1016_j_hest_2019_05_001 crossref_primary_10_1111_acel_13235 crossref_primary_10_3389_fmolb_2022_966478 crossref_primary_10_2174_1567202619666220321120954 crossref_primary_10_1016_j_expneurol_2021_113762 crossref_primary_10_1016_j_tox_2021_153068 crossref_primary_10_3389_fnagi_2022_905115 crossref_primary_10_31083_j_fbl2812332 crossref_primary_10_1021_acs_chemrev_0c00761 crossref_primary_10_1186_s11658_020_00205_0 crossref_primary_10_1016_j_jstrokecerebrovasdis_2023_107395 crossref_primary_10_1161_STROKEAHA_117_017702 crossref_primary_10_1016_j_jmb_2021_167379 crossref_primary_10_1016_j_heliyon_2024_e24786 crossref_primary_10_1089_dna_2024_0135 crossref_primary_10_1007_s11064_022_03643_8 crossref_primary_10_1161_STROKEAHA_119_025436 crossref_primary_10_1007_s11064_021_03320_2 crossref_primary_10_1038_s41418_020_00654_2 crossref_primary_10_1161_STROKEAHA_117_020544 crossref_primary_10_1111_bpa_13244 crossref_primary_10_1016_j_brainresbull_2019_08_013 crossref_primary_10_1016_j_bcp_2020_113900 crossref_primary_10_23736_S0390_5616_18_04207_8 crossref_primary_10_3389_fnins_2019_00085 crossref_primary_10_1016_j_pneurobio_2019_03_003 crossref_primary_10_1016_j_pneurobio_2020_101890 crossref_primary_10_1080_08830185_2021_2016739 crossref_primary_10_1161_STROKEAHA_117_019539 crossref_primary_10_17116_jnevro20241241117 crossref_primary_10_4103_1673_5374_337049 crossref_primary_10_1016_j_pneurobio_2018_01_001 crossref_primary_10_1177_0271678X221098811 crossref_primary_10_1097_CCM_0000000000003555 crossref_primary_10_1007_s12031_023_02187_y crossref_primary_10_1016_j_freeradbiomed_2022_11_003 crossref_primary_10_1021_acschemneuro_2c00405 crossref_primary_10_1038_s41419_022_04927_1 crossref_primary_10_1111_jnc_15351 crossref_primary_10_3389_fncel_2022_799753 crossref_primary_10_1016_j_expneurol_2023_114633 crossref_primary_10_1038_s41418_019_0338_1 crossref_primary_10_3233_BPL_200104 crossref_primary_10_1007_s10571_023_01353_5 crossref_primary_10_3389_fimmu_2023_1191826 crossref_primary_10_1159_000496922 crossref_primary_10_3390_ijms22010047 crossref_primary_10_1080_15592294_2024_2326868 crossref_primary_10_4103_1673_5374_272612 crossref_primary_10_1186_s13287_022_02965_2 crossref_primary_10_4103_NRR_NRR_D_24_00432 crossref_primary_10_4103_1673_5374_355822 crossref_primary_10_3390_jcm9020327 crossref_primary_10_4103_1673_5374_389362 crossref_primary_10_1039_D4BM00039K crossref_primary_10_1016_j_neuroscience_2020_01_036 crossref_primary_10_1177_0271678X20984565 crossref_primary_10_4103_1673_5374_274344 crossref_primary_10_1016_j_hest_2020_02_002 crossref_primary_10_1139_bcb_2020_0116 crossref_primary_10_3389_fimmu_2022_823999 crossref_primary_10_1016_j_freeradbiomed_2023_02_015 crossref_primary_10_1111_febs_16382 crossref_primary_10_3389_fnins_2020_576389 crossref_primary_10_1161_STROKEAHA_124_046736 crossref_primary_10_3390_ijms22052439 crossref_primary_10_1007_s00018_020_03667_9 crossref_primary_10_1002_ana_25356 crossref_primary_10_1038_s41581_023_00694_0 crossref_primary_10_3389_fphar_2024_1466896 crossref_primary_10_1038_s41467_021_24469_y crossref_primary_10_1016_j_brainresbull_2022_08_005 crossref_primary_10_1111_jnc_15936 crossref_primary_10_1155_2020_6375938 crossref_primary_10_1016_j_nefroe_2020_09_006 crossref_primary_10_1039_D5DT00194C crossref_primary_10_1016_j_biopha_2025_117932 crossref_primary_10_1089_ars_2021_0083 crossref_primary_10_3390_cells11142134 crossref_primary_10_1016_j_cellsig_2023_110594 crossref_primary_10_1016_j_brainres_2024_148988 crossref_primary_10_1089_ars_2022_0013 crossref_primary_10_3390_ijms21218387 crossref_primary_10_1111_jnc_14604 crossref_primary_10_1016_j_ebiom_2022_103880 crossref_primary_10_3390_ijms23126583 crossref_primary_10_1155_2020_6182464 crossref_primary_10_3390_ijms24098320 crossref_primary_10_1016_j_phrs_2022_106200 crossref_primary_10_1038_s41598_023_41635_y crossref_primary_10_3390_cells11182823 crossref_primary_10_1016_j_biopha_2020_110108 crossref_primary_10_1016_j_nbd_2023_106314 crossref_primary_10_3389_fphar_2019_00638 crossref_primary_10_1002_anie_202010281 crossref_primary_10_1089_neu_2022_0034 crossref_primary_10_2174_1570159X21666221117155209 crossref_primary_10_1038_s41392_023_01606_1 crossref_primary_10_1007_s12975_017_0581_z crossref_primary_10_1016_j_ymthe_2021_03_022 crossref_primary_10_1016_j_brainres_2024_148855 crossref_primary_10_1016_j_ejphar_2023_175782 crossref_primary_10_1016_j_neulet_2020_135614 crossref_primary_10_1523_JNEUROSCI_0923_20_2021 crossref_primary_10_1002_jbt_70099 crossref_primary_10_1088_1748_605X_ac058a crossref_primary_10_1016_j_nefro_2020_03_005 crossref_primary_10_1016_j_jstrokecerebrovasdis_2020_105215 crossref_primary_10_1111_1440_1681_13815 crossref_primary_10_1038_s41598_025_92383_0 crossref_primary_10_1016_j_freeradbiomed_2025_01_046 crossref_primary_10_3389_fchem_2019_00850 crossref_primary_10_1007_s11064_024_04150_8 crossref_primary_10_1111_cns_13973 crossref_primary_10_1126_sciadv_adk7329 crossref_primary_10_2174_0113895575277359231210145922 crossref_primary_10_3390_molecules26113364 crossref_primary_10_1007_s12264_020_00620_5 crossref_primary_10_1016_j_bbcan_2021_188591 crossref_primary_10_1016_j_pharmthera_2020_107749 crossref_primary_10_1007_s11064_024_04185_x crossref_primary_10_1016_j_ejphar_2020_173198 crossref_primary_10_1038_s41420_022_00887_9 crossref_primary_10_1016_j_expneurol_2022_114113 crossref_primary_10_1186_s13287_020_01836_y crossref_primary_10_17116_jnevro202312301116 crossref_primary_10_1042_BSR20212433 crossref_primary_10_3389_fnins_2018_00990 crossref_primary_10_1073_pnas_1819728116 crossref_primary_10_1016_j_cell_2019_03_032 crossref_primary_10_1016_j_pharmthera_2017_10_012 crossref_primary_10_1177_0271678X231165653 crossref_primary_10_3389_fncel_2020_603043 crossref_primary_10_1007_s12975_020_00830_z crossref_primary_10_3389_fncel_2022_853589 crossref_primary_10_3390_life14030311 crossref_primary_10_3390_pharmaceutics13030311 crossref_primary_10_1038_s41419_024_06681_y crossref_primary_10_3389_fneur_2021_763419 crossref_primary_10_1021_jacs_8b09913 crossref_primary_10_4103_1673_5374_379019 crossref_primary_10_1016_j_phymed_2023_154756 crossref_primary_10_1016_j_abb_2018_07_022 crossref_primary_10_3389_fnmol_2022_1013076 crossref_primary_10_1016_j_yexcr_2020_111926 crossref_primary_10_1016_j_phrs_2020_104919 crossref_primary_10_1111_cns_13069 crossref_primary_10_12688_f1000research_11913_1 crossref_primary_10_3390_ph12040144 crossref_primary_10_1186_s12943_024_02130_8 crossref_primary_10_3389_fnagi_2020_00196 crossref_primary_10_1016_j_cbi_2022_110216 crossref_primary_10_1016_j_tem_2021_04_010 crossref_primary_10_1111_1440_1681_13801 crossref_primary_10_12688_f1000research_16473_2 crossref_primary_10_3892_ol_2018_8066 crossref_primary_10_1007_s11845_022_03170_z crossref_primary_10_3389_fnagi_2020_615451 crossref_primary_10_1021_acschemneuro_0c00242 crossref_primary_10_1177_0271678X241252110 crossref_primary_10_3389_fphar_2025_1570069 crossref_primary_10_4103_1673_5374_391193 crossref_primary_10_1016_j_brainresbull_2024_111065 crossref_primary_10_3389_fneur_2024_1491189 crossref_primary_10_1002_path_5248 crossref_primary_10_1093_jnen_nlac047 crossref_primary_10_1111_cns_14685 crossref_primary_10_1038_s41598_024_54075_z crossref_primary_10_1039_D0NR06249A crossref_primary_10_1177_0271678X20973609 crossref_primary_10_1002_brb3_2722 crossref_primary_10_2478_aiht_2020_71_3366 crossref_primary_10_3389_fphar_2021_817364 crossref_primary_10_1016_j_pharmthera_2018_05_012 crossref_primary_10_3390_antiox12101811 crossref_primary_10_1016_j_biopha_2022_113806 crossref_primary_10_3389_fneur_2018_00581 crossref_primary_10_3390_ijms22031108 crossref_primary_10_1016_j_neuropharm_2024_110210 crossref_primary_10_3892_ijmm_2024_5457 crossref_primary_10_1038_s41418_024_01303_8 crossref_primary_10_1111_jnc_14889 crossref_primary_10_1038_s41418_020_00685_9 crossref_primary_10_3389_fphar_2019_01079 crossref_primary_10_1021_acsnano_9b05821 crossref_primary_10_1016_j_neuroscience_2020_09_049 crossref_primary_10_1007_s12975_018_0664_5 crossref_primary_10_1016_j_brainres_2021_147507 crossref_primary_10_3389_fnins_2024_1504047 crossref_primary_10_1186_s10020_024_00861_4 crossref_primary_10_1016_j_ebiom_2019_06_012 crossref_primary_10_3389_fncel_2019_00349 crossref_primary_10_1007_s00018_020_03587_8 crossref_primary_10_1016_j_biopha_2021_112423 crossref_primary_10_3389_fnins_2019_00115 crossref_primary_10_3389_fnins_2023_1200061 crossref_primary_10_1021_acscentsci_0c01592 crossref_primary_10_3389_fncel_2020_591874 crossref_primary_10_1523_ENEURO_0263_18_2019 crossref_primary_10_1016_j_freeradbiomed_2021_12_007 crossref_primary_10_3389_fcell_2024_1509877 crossref_primary_10_1038_s41419_018_0568_z crossref_primary_10_1016_j_brainres_2018_10_023 crossref_primary_10_1055_a_2173_3602 crossref_primary_10_1016_j_chembiol_2020_03_013 crossref_primary_10_3389_fonc_2022_948389 crossref_primary_10_1161_STROKEAHA_120_031911 crossref_primary_10_1007_s12035_023_03279_x crossref_primary_10_3892_mmr_2018_9631 crossref_primary_10_1007_s12031_018_1155_6 crossref_primary_10_1016_j_chembiol_2020_03_011 crossref_primary_10_1002_adma_201704007 crossref_primary_10_1096_fj_202400863RR crossref_primary_10_3389_fimmu_2022_844163 crossref_primary_10_1007_s12975_021_00897_2 crossref_primary_10_1038_s41420_022_00821_z crossref_primary_10_1161_STROKEAHA_117_019253 crossref_primary_10_1016_j_expneurol_2023_114476 crossref_primary_10_1016_j_expneurol_2023_114475 crossref_primary_10_3389_fnins_2020_589042 crossref_primary_10_1016_j_jhazmat_2023_131217 crossref_primary_10_1016_j_bmc_2023_117564 crossref_primary_10_1038_s41598_019_42370_z crossref_primary_10_1155_2021_9916328 crossref_primary_10_3389_fphar_2022_963179 crossref_primary_10_1007_s12035_023_03267_1 crossref_primary_10_1016_j_chembiol_2020_03_007 crossref_primary_10_1007_s00210_020_01963_6 crossref_primary_10_1161_STROKEAHA_122_037155 crossref_primary_10_1523_JNEUROSCI_2212_19_2020 crossref_primary_10_2174_1567202618666210923150251 crossref_primary_10_1016_j_brainresbull_2021_11_014 crossref_primary_10_1111_jcmm_18240 crossref_primary_10_1165_rcmb_2019_0337TR crossref_primary_10_3389_fneur_2022_881809 crossref_primary_10_1007_s11011_021_00828_y crossref_primary_10_1016_j_biopha_2022_112747 crossref_primary_10_1155_2022_1274550 crossref_primary_10_1016_j_nbd_2020_105145 crossref_primary_10_3389_fncel_2022_898497 crossref_primary_10_1016_j_bios_2025_117290 crossref_primary_10_1007_s00432_018_2699_0 crossref_primary_10_1186_s12974_019_1485_5 crossref_primary_10_1172_jci_insight_126747 crossref_primary_10_1016_j_heliyon_2024_e25251 crossref_primary_10_3389_fimmu_2024_1485523 crossref_primary_10_3390_ijms22158115 crossref_primary_10_1016_j_cmpb_2020_105728 crossref_primary_10_1038_s41598_021_81741_3 crossref_primary_10_1007_s12035_024_04216_2 crossref_primary_10_1186_s13041_022_00942_7 crossref_primary_10_1161_STROKEAHA_117_018293 |
Cites_doi | 10.1016/S1474-4422(09)70025-0 10.4049/jimmunol.1400499 10.1007/s11064-015-1561-x 10.1002/ana.24159 10.1161/01.str.0000020121.41527.5d 10.1038/jcbfm.2011.150 10.1016/j.freeradbiomed.2015.09.016 10.1038/nchembio711 10.1126/scitranslmed.aac6008 10.1016/j.cell.2009.07.006 10.1523/JNEUROSCI.3776-09.2009 10.1111/nan.12177 10.14800/ttnd.474 10.1016/S1474-4422(12)70104-7 10.1016/S0006-8993(02)03268-7 10.1016/j.freeradbiomed.2008.07.003 10.1002/acn3.54 10.1002/glia.21055 10.1038/sj.jcbfm.9600578 10.1186/s12974-016-0490-1 10.1002/jnr.10633 10.1007/s11064-014-1510-0 10.1016/0304-3940(93)90326-G 10.7554/eLife.02523 10.1016/j.chom.2015.01.003 10.1038/ni.3206 10.1097/00003246-200101000-00030 10.1007/s12031-013-0132-3 10.1161/STROKEAHA.111.635672 10.1083/jcb.200809060 10.1159/000434631 10.1161/STROKEAHA.109.569830 10.1016/0022-1759(83)90303-4 10.1161/01.STR.30.11.2472 10.1038/cdd.2008.150 10.1046/j.1471-4159.1994.62010376.x 10.1038/nchembio.83 10.1007/978-3-7091-0693-8_17 10.1007/978-1-61779-328-8_3 10.1007/978-3-7091-0693-8_16 10.1146/annurev-physiol-021113-170259 10.1016/S1474-4422(09)70340-0 10.1016/j.cell.2012.03.042 10.1038/nature05859 10.3171/jns.2002.96.2.0287 10.1046/j.1471-4159.2001.00590.x |
ContentType | Journal Article |
Copyright | 2017 American Heart Association, Inc. |
Copyright_xml | – notice: 2017 American Heart Association, Inc. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1161/STROKEAHA.116.015609 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1524-4628 |
EndPage | 1043 |
ExternalDocumentID | PMC5613764 28250197 10_1161_STROKEAHA_116_015609 10.1161/STROKEAHA.116.015609 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIA NIH HHS grantid: P01 AG014930 – fundername: NHLBI NIH HHS grantid: R01 HL098351 – fundername: NIDA NIH HHS grantid: R01 DA008259 |
GroupedDBID | --- .3C .55 .GJ .XZ .Z2 01R 0R~ 123 1J1 2WC 3O- 40H 4Q1 4Q2 4Q3 53G 5RE 5VS 6PF 71W 77Y 7O~ A9M AAAAV AAAXR AAGIX AAHPQ AAIQE AAJCS AAMOA AAMTA AAQKA AAQQT AARTV AASCR AASOK AAUEB AAXQO AAYEP AAYJJ ABASU ABBUW ABDIG ABJNI ABPXF ABQRW ABVCZ ABXVJ ABXYN ABZAD ABZZY ACCJW ACDDN ACDOF ACEWG ACGFS ACGOD ACILI ACLDA ACWDW ACWRI ACXJB ACXNZ ACZKN ADBBV ADFPA ADGGA ADHPY ADNKB AE3 AE6 AEBDS AEETU AENEX AFBFQ AFDTB AFEXH AFFNX AFMBP AFNMH AFSOK AFUWQ AGINI AHMBA AHOMT AHQNM AHQVU AHRYX AHVBC AIJEX AINUH AJCLO AJIOK AJNWD AJNYG AJZMW AKCTQ AKULP ALKUP ALMA_UNASSIGNED_HOLDINGS ALMTX AMJPA AMKUR AMNEI AOHHW AOQMC AYCSE BAWUL BCGUY BOYCO BQLVK BS7 C45 CS3 DIK DIWNM DU5 DUNZO E.X E3Z EBS EEVPB EJD ERAAH EX3 F2K F2L F2M F2N F5P FCALG FL- FW0 GNXGY GQDEL GX1 H0~ H13 HLJTE HZ~ IKREB IKYAY IN~ IPNFZ J5H JF9 JG8 JK3 JK8 K8S KD2 KMI KQ8 L-C L7B M18 N4W N9A N~7 N~B N~M O9- OAG OAH OB3 OCUKA ODA ODMTH OGROG OHYEH OK1 OL1 OLG OLH OLU OLV OLY OLZ OPUJH ORVUJ OUVQU OVD OVDNE OVIDH OVLEI OVOZU OWBYB OWU OWV OWW OWX OWY OWZ OXXIT P-K P2P PQQKQ R58 RAH RIG RLZ S4R S4S T8P TEORI TSPGW V2I VVN W3M W8F WH7 WOQ WOW X3V X3W X7M XXN XYM YFH YHZ YQJ YYP ZB8 ZGI ZZMQN AAYXX ADGHP CITATION CGR CUY CVF ECM EIF NPM 7X8 ADKSD ADSXY 5PM |
ID | FETCH-LOGICAL-c5239-7ab587ea3a3e31cd1f688f462a80c19b97ffad02586ca7097f65a0aeda85cf0f3 |
ISSN | 0039-2499 1524-4628 |
IngestDate | Thu Aug 21 13:41:02 EDT 2025 Mon Sep 08 15:07:12 EDT 2025 Mon Jul 21 06:03:44 EDT 2025 Tue Jul 01 03:31:50 EDT 2025 Thu Apr 24 23:01:53 EDT 2025 Fri May 16 03:42:54 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | intracerebral hemorrhage apoptosis ferroptosis cell death necrosis |
Language | English |
License | 2017 American Heart Association, Inc. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c5239-7ab587ea3a3e31cd1f688f462a80c19b97ffad02586ca7097f65a0aeda85cf0f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.ahajournals.org/doi/pdf/10.1161/STROKEAHA.116.015609 |
PMID | 28250197 |
PQID | 1873720431 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5613764 proquest_miscellaneous_1873720431 pubmed_primary_28250197 crossref_citationtrail_10_1161_STROKEAHA_116_015609 crossref_primary_10_1161_STROKEAHA_116_015609 wolterskluwer_health_10_1161_STROKEAHA_116_015609 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-April |
PublicationDateYYYYMMDD | 2017-04-01 |
PublicationDate_xml | – month: 04 year: 2017 text: 2017-April |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Stroke (1970) |
PublicationTitleAlternate | Stroke |
PublicationYear | 2017 |
Publisher | American Heart Association, Inc |
Publisher_xml | – name: American Heart Association, Inc |
References | e_1_3_4_3_2 e_1_3_4_2_2 e_1_3_4_9_2 e_1_3_4_8_2 e_1_3_4_7_2 e_1_3_4_41_2 e_1_3_4_6_2 e_1_3_4_40_2 e_1_3_4_5_2 e_1_3_4_4_2 e_1_3_4_22_2 e_1_3_4_45_2 e_1_3_4_23_2 e_1_3_4_44_2 e_1_3_4_20_2 e_1_3_4_43_2 e_1_3_4_21_2 e_1_3_4_42_2 e_1_3_4_26_2 Zhang Q (e_1_3_4_46_2) 2015; 8 e_1_3_4_49_2 e_1_3_4_27_2 e_1_3_4_48_2 e_1_3_4_24_2 e_1_3_4_47_2 e_1_3_4_25_2 Qureshi AI (e_1_3_4_17_2) 2003; 52 e_1_3_4_28_2 e_1_3_4_29_2 e_1_3_4_30_2 e_1_3_4_11_2 e_1_3_4_34_2 e_1_3_4_12_2 e_1_3_4_33_2 e_1_3_4_32_2 e_1_3_4_10_2 e_1_3_4_31_2 e_1_3_4_15_2 e_1_3_4_38_2 e_1_3_4_16_2 e_1_3_4_37_2 e_1_3_4_13_2 e_1_3_4_36_2 e_1_3_4_14_2 e_1_3_4_35_2 e_1_3_4_19_2 e_1_3_4_18_2 e_1_3_4_39_2 |
References_xml | – ident: e_1_3_4_2_2 doi: 10.1016/S1474-4422(09)70025-0 – ident: e_1_3_4_34_2 doi: 10.4049/jimmunol.1400499 – ident: e_1_3_4_45_2 doi: 10.1007/s11064-015-1561-x – ident: e_1_3_4_5_2 doi: 10.1002/ana.24159 – ident: e_1_3_4_44_2 doi: 10.1161/01.str.0000020121.41527.5d – ident: e_1_3_4_19_2 doi: 10.1038/jcbfm.2011.150 – ident: e_1_3_4_10_2 doi: 10.1016/j.freeradbiomed.2015.09.016 – ident: e_1_3_4_20_2 doi: 10.1038/nchembio711 – ident: e_1_3_4_22_2 doi: 10.1126/scitranslmed.aac6008 – ident: e_1_3_4_31_2 doi: 10.1016/j.cell.2009.07.006 – ident: e_1_3_4_12_2 doi: 10.1523/JNEUROSCI.3776-09.2009 – ident: e_1_3_4_47_2 doi: 10.1111/nan.12177 – ident: e_1_3_4_27_2 doi: 10.14800/ttnd.474 – volume: 52 start-page: 1041 year: 2003 ident: e_1_3_4_17_2 article-title: Apoptosis as a form of cell death in intracerebral hemorrhage. publication-title: Neurosurgery – ident: e_1_3_4_4_2 doi: 10.1016/S1474-4422(12)70104-7 – ident: e_1_3_4_6_2 doi: 10.1016/S0006-8993(02)03268-7 – ident: e_1_3_4_38_2 doi: 10.1016/j.freeradbiomed.2008.07.003 – ident: e_1_3_4_36_2 doi: 10.1002/acn3.54 – ident: e_1_3_4_42_2 doi: 10.1002/glia.21055 – ident: e_1_3_4_48_2 doi: 10.1038/sj.jcbfm.9600578 – ident: e_1_3_4_13_2 doi: 10.1186/s12974-016-0490-1 – ident: e_1_3_4_43_2 doi: 10.1002/jnr.10633 – ident: e_1_3_4_40_2 doi: 10.1007/s11064-014-1510-0 – ident: e_1_3_4_8_2 doi: 10.1016/0304-3940(93)90326-G – ident: e_1_3_4_28_2 doi: 10.7554/eLife.02523 – ident: e_1_3_4_35_2 doi: 10.1016/j.chom.2015.01.003 – ident: e_1_3_4_33_2 doi: 10.1038/ni.3206 – ident: e_1_3_4_15_2 doi: 10.1097/00003246-200101000-00030 – ident: e_1_3_4_39_2 doi: 10.1007/s12031-013-0132-3 – ident: e_1_3_4_41_2 doi: 10.1161/STROKEAHA.111.635672 – ident: e_1_3_4_26_2 doi: 10.1083/jcb.200809060 – ident: e_1_3_4_16_2 doi: 10.1159/000434631 – ident: e_1_3_4_49_2 doi: 10.1161/STROKEAHA.109.569830 – ident: e_1_3_4_24_2 doi: 10.1016/0022-1759(83)90303-4 – volume: 8 start-page: 5371 year: 2015 ident: e_1_3_4_46_2 article-title: Effects of intracerebral hemorrhage and subsequent minimally invasive hematoma aspiration on expression of apoptosisrelated genes in rats. publication-title: Int J Clin Exp Pathol – ident: e_1_3_4_14_2 doi: 10.1161/01.STR.30.11.2472 – ident: e_1_3_4_18_2 doi: 10.1038/cdd.2008.150 – ident: e_1_3_4_23_2 doi: 10.1046/j.1471-4159.1994.62010376.x – ident: e_1_3_4_30_2 doi: 10.1038/nchembio.83 – ident: e_1_3_4_11_2 doi: 10.1007/978-3-7091-0693-8_17 – ident: e_1_3_4_25_2 doi: 10.1007/978-1-61779-328-8_3 – ident: e_1_3_4_9_2 doi: 10.1007/978-3-7091-0693-8_16 – ident: e_1_3_4_32_2 doi: 10.1146/annurev-physiol-021113-170259 – ident: e_1_3_4_3_2 doi: 10.1016/S1474-4422(09)70340-0 – ident: e_1_3_4_21_2 doi: 10.1016/j.cell.2012.03.042 – ident: e_1_3_4_29_2 doi: 10.1038/nature05859 – ident: e_1_3_4_7_2 doi: 10.3171/jns.2002.96.2.0287 – ident: e_1_3_4_37_2 doi: 10.1046/j.1471-4159.2001.00590.x |
SSID | ssj0002385 |
Score | 2.664836 |
Snippet | BACKGROUND AND PURPOSE—Intracerebral hemorrhage leads to disability or death with few established treatments. Adverse outcomes after intracerebral hemorrhage... Intracerebral hemorrhage leads to disability or death with few established treatments. Adverse outcomes after intracerebral hemorrhage result from irreversible... |
SourceID | pubmedcentral proquest pubmed crossref wolterskluwer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1033 |
SubjectTerms | Animals Apoptosis Cells, Cultured Cerebral Hemorrhage - metabolism Disease Models, Animal Hemin - metabolism Hemoglobins - metabolism Male Mice Mice, Inbred C57BL Necrosis - metabolism Neurons - metabolism |
Title | Neuronal Death After Hemorrhagic Stroke In Vitro and In Vivo Shares Features of Ferroptosis and Necroptosis |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28250197 https://www.proquest.com/docview/1873720431 https://pubmed.ncbi.nlm.nih.gov/PMC5613764 |
Volume | 48 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKkBASQtwpNxmJtyqlqXNxH6uxUTZ13DY0eIkcx9GqQlKl6UD8Hf4o59hO6moVl71Ecermdr6c89k-F0JesDAFq56NvBTYtxeILPTE0M88zgTgK-Mq0nO606NochIcnIannc4vx2tpVad9-XNrXMllpArHQK4YJfsfkm1PCgdgH-QLW5AwbP9JxjqzBtLJV0jkemNd73uCvrPVmQCVhmvO5Ry9I3ufZrBrnX-hcV7qVM1q2UMOuKpM6tl9VVXloi4xSQl2PVKyabsk1p4VUzyN4oEzl_AFAwttBNBM1XWr8g9FtVqA6sIaTrbSl6gE1nMG7dJfuxgYHfgZzOmPWYva11hIqPUl7h303ZkKsH5rBxerfRmu5piCSH1lFe4w8DA-1tXIAXeQFzjq1R-YrBnWVMNQkm03AxGagY_HH94e7o0nYzzQ1zHjI7c7CHPxTUMDA3iB68Zro9i6Kr6b7uIYK46CK-TqMAaChiv_79cp6YHzmDIZ9uFsfCbcwsttN4DZp-3VNqnQhfHNRTfdG99LdKFYznUEhcODjm-Rm3YAQ8cGjbdJRxV3yLWpddG4S-YNKKkGJdWgpA4oqYEPfVNQDUoKSDON85IaUNIGlLTMqQNK3dUB5T1ysr93vDvxbEUPT4ZDeD-xSEMeK8EEzr3LzM8jznMQv-AD6Y_SUZznIgMaziMJugKaUSgGQmWChzIf5Ow-2SnKQj0kFJRJJoUMcxYEAZJ8FvOIyzjjGUtZGHcJa15uIm26e6y68jXRw97IT1rpYDMx0ukSr_3XwqR7-Uv_543cEtDLuNgmClWulonPTQEo5nfJAyPH9owNALok3pBw2wFzvm_-UszOdO53i8Uu8TewkJio6T_e66NLX-0xub7-np-QnbpaqafAxev0mf4WfgM7z9wn |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neuronal+Death+After+Hemorrhagic+Stroke+In+Vitro+and+In+Vivo+Shares+Features+of+Ferroptosis+and+Necroptosis&rft.jtitle=Stroke+%281970%29&rft.au=Zille%2C+Marietta&rft.au=Karuppagounder%2C+Saravanan+S.&rft.au=Chen%2C+Yingxin&rft.au=Gough%2C+Peter+J.&rft.date=2017-04-01&rft.issn=0039-2499&rft.eissn=1524-4628&rft.volume=48&rft.issue=4&rft.spage=1033&rft.epage=1043&rft_id=info:doi/10.1161%2FSTROKEAHA.116.015609&rft_id=info%3Apmid%2F28250197&rft.externalDocID=PMC5613764 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0039-2499&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0039-2499&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0039-2499&client=summon |