Can structural MRI aid in clinical classification? A machine learning study in two independent samples of patients with schizophrenia, bipolar disorder and healthy subjects

Although structural magnetic resonance imaging (MRI) has revealed partly non-overlapping brain abnormalities in schizophrenia and bipolar disorder, it is unknown whether structural MRI scans can be used to separate individuals with schizophrenia from those with bipolar disorder. An algorithm capable...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 84; pp. 299 - 306
Main Authors Schnack, Hugo G., Nieuwenhuis, Mireille, van Haren, Neeltje E.M., Abramovic, Lucija, Scheewe, Thomas W., Brouwer, Rachel M., Hulshoff Pol, Hilleke E., Kahn, René S.
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier Inc 01.01.2014
Elsevier
Elsevier Limited
Subjects
Online AccessGet full text
ISSN1053-8119
1095-9572
1095-9572
DOI10.1016/j.neuroimage.2013.08.053

Cover

Abstract Although structural magnetic resonance imaging (MRI) has revealed partly non-overlapping brain abnormalities in schizophrenia and bipolar disorder, it is unknown whether structural MRI scans can be used to separate individuals with schizophrenia from those with bipolar disorder. An algorithm capable of discriminating between these two disorders could become a diagnostic aid for psychiatrists. Here, we scanned 66 schizophrenia patients, 66 patients with bipolar disorder and 66 healthy subjects on a 1.5T MRI scanner. Three support vector machines were trained to separate patients with schizophrenia from healthy subjects, patients with schizophrenia from those with bipolar disorder, and patients with bipolar disorder from healthy subjects, respectively, based on their gray matter density images. The predictive power of the models was tested using cross-validation and in an independent validation set of 46 schizophrenia patients, 47 patients with bipolar disorder and 43 healthy subjects scanned on a 3T MRI scanner. Schizophrenia patients could be separated from healthy subjects with an average accuracy of 90%. Additionally, schizophrenia patients and patients with bipolar disorder could be distinguished with an average accuracy of 88%.The model delineating bipolar patients from healthy subjects was less accurate, correctly classifying 67% of the healthy subjects and only 53% of the patients with bipolar disorder. In the latter group, lithium and antipsychotics use had no influence on the classification results. Application of the 1.5T models on the 3T validation set yielded average classification accuracies of 76% (healthy vs schizophrenia), 66% (bipolar vs schizophrenia) and 61% (healthy vs bipolar). In conclusion, the accurate separation of schizophrenia from bipolar patients on the basis of structural MRI scans, as demonstrated here, could be of added value in the differential diagnosis of these two disorders. The results also suggest that gray matter pathology in schizophrenia and bipolar disorder differs to such an extent that they can be reliably differentiated using machine learning paradigms. •We separated patients with schizophrenia and bipolar disorder based on their sMRI scans.•We trained a support vector machine (SVM) model to do this in a 1.5T ‘discovery set’.•Using cross-validation the model obtained a classification accuracy of >80% in this set.•Applying this model to an independent 3T ‘validation set’ yielded 66% accuracy.•Patterns of brain abnormalities differ between schizophrenia and bipolar disorder.
AbstractList Although structural magnetic resonance imaging (MRI) has revealed partly non-overlapping brain abnormalities in schizophrenia and bipolar disorder, it is unknown whether structural MRI scans can be used to separate individuals with schizophrenia from those with bipolar disorder. An algorithm capable of discriminating between these two disorders could become a diagnostic aid for psychiatrists. Here, we scanned 66 schizophrenia patients, 66 patients with bipolar disorder and 66 healthy subjects on a 1.5T MRI scanner. Three support vector machines were trained to separate patients with schizophrenia from healthy subjects, patients with schizophrenia from those with bipolar disorder, and patients with bipolar disorder from healthy subjects, respectively, based on their gray matter density images. The predictive power of the models was tested using cross-validation and in an independent validation set of 46 schizophrenia patients, 47 patients with bipolar disorder and 43 healthy subjects scanned on a 3T MRI scanner. Schizophrenia patients could be separated from healthy subjects with an average accuracy of 90%. Additionally, schizophrenia patients and patients with bipolar disorder could be distinguished with an average accuracy of 88%.The model delineating bipolar patients from healthy subjects was less accurate, correctly classifying 67% of the healthy subjects and only 53% of the patients with bipolar disorder. In the latter group, lithium and antipsychotics use had no influence on the classification results. Application of the 1.5T models on the 3T validation set yielded average classification accuracies of 76% (healthy vs schizophrenia), 66% (bipolar vs schizophrenia) and 61% (healthy vs bipolar). In conclusion, the accurate separation of schizophrenia from bipolar patients on the basis of structural MRI scans, as demonstrated here, could be of added value in the differential diagnosis of these two disorders. The results also suggest that gray matter pathology in schizophrenia and bipolar disorder differs to such an extent that they can be reliably differentiated using machine learning paradigms.Although structural magnetic resonance imaging (MRI) has revealed partly non-overlapping brain abnormalities in schizophrenia and bipolar disorder, it is unknown whether structural MRI scans can be used to separate individuals with schizophrenia from those with bipolar disorder. An algorithm capable of discriminating between these two disorders could become a diagnostic aid for psychiatrists. Here, we scanned 66 schizophrenia patients, 66 patients with bipolar disorder and 66 healthy subjects on a 1.5T MRI scanner. Three support vector machines were trained to separate patients with schizophrenia from healthy subjects, patients with schizophrenia from those with bipolar disorder, and patients with bipolar disorder from healthy subjects, respectively, based on their gray matter density images. The predictive power of the models was tested using cross-validation and in an independent validation set of 46 schizophrenia patients, 47 patients with bipolar disorder and 43 healthy subjects scanned on a 3T MRI scanner. Schizophrenia patients could be separated from healthy subjects with an average accuracy of 90%. Additionally, schizophrenia patients and patients with bipolar disorder could be distinguished with an average accuracy of 88%.The model delineating bipolar patients from healthy subjects was less accurate, correctly classifying 67% of the healthy subjects and only 53% of the patients with bipolar disorder. In the latter group, lithium and antipsychotics use had no influence on the classification results. Application of the 1.5T models on the 3T validation set yielded average classification accuracies of 76% (healthy vs schizophrenia), 66% (bipolar vs schizophrenia) and 61% (healthy vs bipolar). In conclusion, the accurate separation of schizophrenia from bipolar patients on the basis of structural MRI scans, as demonstrated here, could be of added value in the differential diagnosis of these two disorders. The results also suggest that gray matter pathology in schizophrenia and bipolar disorder differs to such an extent that they can be reliably differentiated using machine learning paradigms.
Although structural magnetic resonance imaging (MRI) has revealed partly non-overlapping brain abnormalities in schizophrenia and bipolar disorder, it is unknown whether structural MRI scans can be used to separate individuals with schizophrenia from those with bipolar disorder. An algorithm capable of discriminating between these two disorders could become a diagnostic aid for psychiatrists. Here, we scanned 66 schizophrenia patients, 66 patients with bipolar disorder and 66 healthy subjects on a 1.5T MRI scanner. Three support vector machines were trained to separate patients with schizophrenia from healthy subjects, patients with schizophrenia from those with bipolar disorder, and patients with bipolar disorder from healthy subjects, respectively, based on their gray matter density images. The predictive power of the models was tested using cross-validation and in an independent validation set of 46 schizophrenia patients, 47 patients with bipolar disorder and 43 healthy subjects scanned on a 3T MRI scanner. Schizophrenia patients could be separated from healthy subjects with an average accuracy of 90%. Additionally, schizophrenia patients and patients with bipolar disorder could be distinguished with an average accuracy of 88%.The model delineating bipolar patients from healthy subjects was less accurate, correctly classifying 67% of the healthy subjects and only 53% of the patients with bipolar disorder. In the latter group, lithium and antipsychotics use had no influence on the classification results. Application of the 1.5T models on the 3T validation set yielded average classification accuracies of 76% (healthyvsschizophrenia), 66% (bipolarvsschizophrenia) and 61% (healthyvsbipolar). In conclusion, the accurate separation of schizophrenia from bipolar patients on the basis of structural MRI scans, as demonstrated here, could be of added value in the differential diagnosis of these two disorders. The results also suggest that gray matter pathology in schizophrenia and bipolar disorder differs to such an extent that they can be reliably differentiated using machine learning paradigms.
Although structural magnetic resonance imaging (MRI) has revealed partly non-overlapping brain abnormalities in schizophrenia and bipolar disorder, it is unknown whether structural MRI scans can be used to separate individuals with schizophrenia from those with bipolar disorder. An algorithm capable of discriminating between these two disorders could become a diagnostic aid for psychiatrists. Here, we scanned 66 schizophrenia patients, 66 patients with bipolar disorder and 66 healthy subjects on a 1.5 T MRI scanner. Three support vector machines were trained to separate patients with schizophrenia from healthy subjects, patients with schizophrenia from those with bipolar disorder, and patients with bipolar disorder from healthy subjects, respectively, based on their gray matter density images. The predictive power of the models was tested using cross-validation and in an independent validation set of 46 schizophrenia patients, 47 patients with bipolar disorder and 43 healthy subjects scanned on a 3 T MRI scanner. Schizophrenia patients could be separated from healthy subjects with an average accuracy of 90%. Additionally, schizophrenia patients and patients with bipolar disorder could be distinguished with an average accuracy of 88%.The model delineating bipolar patients from healthy subjects was less accurate, correctly classifying 67% of the healthy subjects and only 53% of the patients with bipolar disorder. In the latter group, lithium and antipsychotics use had no influence on the classification results. Application of the 1.5 T models on the 3 T validation set yielded average classification accuracies of 76% (healthy vs schizophrenia), 66% (bipolar vs schizophrenia) and 61% (healthy vs bipolar). In conclusion, the accurate separation of schizophrenia from bipolar patients on the basis of structural MRI scans, as demonstrated here, could be of added value in the differential diagnosis of these two disorders. The results also suggest that gray matter pathology in schizophrenia and bipolar disorder differs to such an extent that they can be reliably differentiated using machine learning paradigms.
Although structural magnetic resonance imaging (MRI) has revealed partly non-overlapping brain abnormalities in schizophrenia and bipolar disorder, it is unknown whether structural MRI scans can be used to separate individuals with schizophrenia from those with bipolar disorder. An algorithm capable of discriminating between these two disorders could become a diagnostic aid for psychiatrists. Here, we scanned 66 schizophrenia patients, 66 patients with bipolar disorder and 66 healthy subjects on a 1.5T MRI scanner. Three support vector machines were trained to separate patients with schizophrenia from healthy subjects, patients with schizophrenia from those with bipolar disorder, and patients with bipolar disorder from healthy subjects, respectively, based on their gray matter density images. The predictive power of the models was tested using cross-validation and in an independent validation set of 46 schizophrenia patients, 47 patients with bipolar disorder and 43 healthy subjects scanned on a 3T MRI scanner. Schizophrenia patients could be separated from healthy subjects with an average accuracy of 90%. Additionally, schizophrenia patients and patients with bipolar disorder could be distinguished with an average accuracy of 88%.The model delineating bipolar patients from healthy subjects was less accurate, correctly classifying 67% of the healthy subjects and only 53% of the patients with bipolar disorder. In the latter group, lithium and antipsychotics use had no influence on the classification results. Application of the 1.5T models on the 3T validation set yielded average classification accuracies of 76% (healthy vs schizophrenia), 66% (bipolar vs schizophrenia) and 61% (healthy vs bipolar). In conclusion, the accurate separation of schizophrenia from bipolar patients on the basis of structural MRI scans, as demonstrated here, could be of added value in the differential diagnosis of these two disorders. The results also suggest that gray matter pathology in schizophrenia and bipolar disorder differs to such an extent that they can be reliably differentiated using machine learning paradigms. •We separated patients with schizophrenia and bipolar disorder based on their sMRI scans.•We trained a support vector machine (SVM) model to do this in a 1.5T ‘discovery set’.•Using cross-validation the model obtained a classification accuracy of >80% in this set.•Applying this model to an independent 3T ‘validation set’ yielded 66% accuracy.•Patterns of brain abnormalities differ between schizophrenia and bipolar disorder.
Although structural magnetic resonance imaging (MRI) has revealed partly non-overlapping brain abnormalities in schizophrenia and bipolar disorder, it is unknown whether structural MRI scans can be used to separate individuals with schizophrenia from those with bipolar disorder. An algorithm capable of discriminating between these two disorders could become a diagnostic aid for psychiatrists. Here, we scanned 66 schizophrenia patients, 66 patients with bipolar disorder and 66 healthy subjects on a 1.5T MRI scanner. Three support vector machines were trained to separate patients with schizophrenia from healthy subjects, patients with schizophrenia from those with bipolar disorder, and patients with bipolar disorder from healthy subjects, respectively, based on their gray matter density images. The predictive power of the models was tested using cross-validation and in an independent validation set of 46 schizophrenia patients, 47 patients with bipolar disorder and 43 healthy subjects scanned on a 3T MRI scanner. Schizophrenia patients could be separated from healthy subjects with an average accuracy of 90%. Additionally, schizophrenia patients and patients with bipolar disorder could be distinguished with an average accuracy of 88%.The model delineating bipolar patients from healthy subjects was less accurate, correctly classifying 67% of the healthy subjects and only 53% of the patients with bipolar disorder. In the latter group, lithium and antipsychotics use had no influence on the classification results. Application of the 1.5T models on the 3T validation set yielded average classification accuracies of 76% (healthy vs schizophrenia), 66% (bipolar vs schizophrenia) and 61% (healthy vs bipolar). In conclusion, the accurate separation of schizophrenia from bipolar patients on the basis of structural MRI scans, as demonstrated here, could be of added value in the differential diagnosis of these two disorders. The results also suggest that gray matter pathology in schizophrenia and bipolar disorder differs to such an extent that they can be reliably differentiated using machine learning paradigms.
Author Scheewe, Thomas W.
Nieuwenhuis, Mireille
Schnack, Hugo G.
van Haren, Neeltje E.M.
Abramovic, Lucija
Hulshoff Pol, Hilleke E.
Brouwer, Rachel M.
Kahn, René S.
Author_xml – sequence: 1
  givenname: Hugo G.
  surname: Schnack
  fullname: Schnack, Hugo G.
  email: h.schnack@umcutrecht.nl
– sequence: 2
  givenname: Mireille
  surname: Nieuwenhuis
  fullname: Nieuwenhuis, Mireille
– sequence: 3
  givenname: Neeltje E.M.
  surname: van Haren
  fullname: van Haren, Neeltje E.M.
– sequence: 4
  givenname: Lucija
  surname: Abramovic
  fullname: Abramovic, Lucija
– sequence: 5
  givenname: Thomas W.
  surname: Scheewe
  fullname: Scheewe, Thomas W.
– sequence: 6
  givenname: Rachel M.
  surname: Brouwer
  fullname: Brouwer, Rachel M.
– sequence: 7
  givenname: Hilleke E.
  surname: Hulshoff Pol
  fullname: Hulshoff Pol, Hilleke E.
– sequence: 8
  givenname: René S.
  surname: Kahn
  fullname: Kahn, René S.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28297585$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/24004694$$D View this record in MEDLINE/PubMed
BookMark eNqNkt2KEzEYhgdZcX_0FiQggge2JplkJnOirsWfhRVB9jxkkm-2qWkyJhmXek1epKltWeiJe5KE5PmeYXjf8-rEBw9VhQieE0yaN6u5hykGu1a3MKeY1HMs5pjXj6ozgjs-63hLT7ZnXs8EId1pdZ7SCmPcESaeVKeUYcyajp1VfxbKo5TjpPMUlUNfv18hZQ2yHmlnvdXlTjuVkh3KOdvg36FLtFZ6aT0gByp662-LYTKb7VC-C2UzMEJZfEZJrUcHCYUBjWW8XCV0Z_MSpWL4HcZlBG_Va9TbMTgVkbEpRAMRKW_QEpTLyw1KU78CndPT6vGgXIJn-_2iuvn08WbxZXb97fPV4vJ6pjmledZDP4DqMaWaUNyqnnYccy2gMbQXXLQcs9aA6clQXihWNQycUQWs12rA9UX1aqcdY_g5QcpybZMG55SHMCVJOMZtQ2nb_R9lDWMd7Sgt6IsjdBWm6Mt_FCFra8KIaAr1fE9N_RqMHGMJOW7kIbECvNwDKpVwhqi8tumeE7RrueCFe7vjdAwpRRiktvlfgDkq6yTBclsluZL3VZLbKkksZOlNEYgjweEbDxj9sBuFEtIvC1EmXaLXYGwsOUoT7EMk748kh0L-gM3DFH8BFdUCyw
CitedBy_id crossref_primary_10_1002_hbm_25276
crossref_primary_10_1016_j_schres_2016_08_027
crossref_primary_10_1016_j_dscb_2021_100005
crossref_primary_10_1002_hbm_23410
crossref_primary_10_1016_j_bpsc_2020_05_008
crossref_primary_10_1002_mpr_1818
crossref_primary_10_1038_s41598_024_71316_3
crossref_primary_10_1088_1757_899X_884_1_012003
crossref_primary_10_3389_fpsyt_2022_826111
crossref_primary_10_1016_j_pscychresns_2023_111732
crossref_primary_10_1007_s00702_014_1272_5
crossref_primary_10_1016_j_neuroimage_2016_02_016
crossref_primary_10_1088_1361_6560_ac9d1e
crossref_primary_10_1177_1754073920930784
crossref_primary_10_1016_j_biopsych_2018_12_003
crossref_primary_10_1016_j_neubiorev_2019_01_005
crossref_primary_10_1007_s10278_024_01279_4
crossref_primary_10_1063_1_5003848
crossref_primary_10_1002_brb3_633
crossref_primary_10_1038_s41398_020_0780_3
crossref_primary_10_1007_s11604_018_0794_4
crossref_primary_10_1016_j_neuroimage_2015_12_013
crossref_primary_10_1016_j_media_2021_102304
crossref_primary_10_1002_14651858_CD011021_pub2
crossref_primary_10_3389_fped_2024_1362409
crossref_primary_10_1111_cns_13048
crossref_primary_10_1111_pcn_12502
crossref_primary_10_31887_DCNS_2020_22_1_rparikh
crossref_primary_10_3389_fpsyt_2020_542394
crossref_primary_10_1186_s12888_018_1678_y
crossref_primary_10_1016_j_ajp_2020_101984
crossref_primary_10_31887_DCNS_2018_20_3_pfalkai
crossref_primary_10_1093_cercor_bhx319
crossref_primary_10_3390_diagnostics13132140
crossref_primary_10_3389_fnhum_2017_00232
crossref_primary_10_1111_bdi_12895
crossref_primary_10_1038_s41380_023_01977_5
crossref_primary_10_1177_0004867415601730
crossref_primary_10_1007_s10462_019_09766_9
crossref_primary_10_1016_j_jad_2015_12_053
crossref_primary_10_1016_j_jneumeth_2016_06_017
crossref_primary_10_1016_j_neuroimage_2016_08_066
crossref_primary_10_3389_fpsyt_2016_00050
crossref_primary_10_2147_NDT_S337814
crossref_primary_10_3389_fpsyt_2022_845492
crossref_primary_10_1155_2022_1581958
crossref_primary_10_1371_journal_pone_0175683
crossref_primary_10_1016_j_bpsc_2019_05_018
crossref_primary_10_1016_j_ijpsycho_2016_04_002
crossref_primary_10_1038_s41380_018_0228_9
crossref_primary_10_17816_CP11030
crossref_primary_10_1007_s00115_014_4022_x
crossref_primary_10_1016_j_neuroimage_2016_02_079
crossref_primary_10_1016_j_schres_2018_04_037
crossref_primary_10_1016_j_jad_2021_03_082
crossref_primary_10_1093_schbul_sbu017
crossref_primary_10_1017_S0033291724003295
crossref_primary_10_1186_s12916_023_02941_4
crossref_primary_10_1016_j_schres_2017_06_004
crossref_primary_10_1093_brain_awv111
crossref_primary_10_1038_s41598_018_32290_9
crossref_primary_10_1016_j_psychres_2019_03_048
crossref_primary_10_1186_s40203_016_0017_6
crossref_primary_10_3389_fpsyt_2016_00063
crossref_primary_10_1016_j_pscychresns_2018_03_003
crossref_primary_10_4018_IJRQEH_2018040102
crossref_primary_10_1002_hbm_25323
crossref_primary_10_3389_fninf_2017_00059
crossref_primary_10_1371_journal_pone_0160697
crossref_primary_10_29137_umagd_1232222
crossref_primary_10_1016_j_schres_2018_01_006
crossref_primary_10_1016_j_cell_2014_02_042
crossref_primary_10_1038_s41537_025_00583_4
crossref_primary_10_3389_fncom_2022_915477
crossref_primary_10_3390_healthcare10071256
crossref_primary_10_1016_j_cmpb_2022_107112
crossref_primary_10_1016_j_compbiomed_2022_105956
crossref_primary_10_1016_j_nicl_2017_06_014
crossref_primary_10_1016_j_compbiomed_2022_105554
crossref_primary_10_3389_fpsyg_2017_00156
crossref_primary_10_7759_cureus_71651
crossref_primary_10_1109_ACCESS_2018_2882848
crossref_primary_10_1093_schbul_sbx137
crossref_primary_10_1111_acps_12824
crossref_primary_10_1093_cercor_bhy306
crossref_primary_10_1016_j_bbi_2024_08_013
crossref_primary_10_1002_hbm_24863
crossref_primary_10_1093_schbul_sbu141
crossref_primary_10_1016_j_jad_2024_09_025
crossref_primary_10_3389_fpsyt_2019_00869
crossref_primary_10_1111_pcn_12670
crossref_primary_10_1007_s12021_014_9238_1
crossref_primary_10_3389_fpsyt_2022_807116
crossref_primary_10_3390_ijerph18116099
crossref_primary_10_1109_JPROC_2015_2501814
crossref_primary_10_3389_fnins_2021_697168
crossref_primary_10_1016_j_acra_2024_04_013
crossref_primary_10_1002_wps_20334
crossref_primary_10_1002_jdn_10144
crossref_primary_10_1176_appi_focus_20170046
crossref_primary_10_1016_j_nicl_2018_02_007
crossref_primary_10_1007_s00787_020_01483_x
crossref_primary_10_1016_j_rpsm_2017_06_004
crossref_primary_10_3389_fpsyt_2022_926292
crossref_primary_10_1176_appi_ajp_2019_19080794
crossref_primary_10_1016_j_jad_2019_06_019
crossref_primary_10_1038_s41380_023_02195_9
crossref_primary_10_1038_nm_4190
crossref_primary_10_1002_hbm_26273
crossref_primary_10_1080_14737175_2019_1562338
crossref_primary_10_1093_schbul_sbac158
crossref_primary_10_1038_s41398_018_0225_4
crossref_primary_10_1038_s41380_018_0106_5
crossref_primary_10_30773_pi_2018_12_21_2
crossref_primary_10_1016_j_nicl_2020_102220
crossref_primary_10_3389_fnhum_2017_00157
crossref_primary_10_1016_j_rpsmen_2017_10_005
crossref_primary_10_1002_hbm_23434
crossref_primary_10_1038_npp_2015_22
crossref_primary_10_1016_j_psychres_2019_01_026
crossref_primary_10_1002_hbm_25892
crossref_primary_10_1038_s41537_021_00157_0
crossref_primary_10_1016_j_neubiorev_2022_104552
crossref_primary_10_1007_s40473_018_0155_8
crossref_primary_10_1109_ACCESS_2019_2918251
crossref_primary_10_1002_hbm_25013
crossref_primary_10_1186_s12938_018_0464_x
crossref_primary_10_3389_fnins_2021_682777
crossref_primary_10_1155_2020_6405930
crossref_primary_10_1001_jamanetworkopen_2023_1671
crossref_primary_10_1007_s40998_018_0060_x
crossref_primary_10_1016_j_schres_2017_10_023
crossref_primary_10_1038_s41598_023_38101_0
crossref_primary_10_1016_j_neurad_2020_12_003
crossref_primary_10_1111_bdi_12507
crossref_primary_10_1016_j_pnpbp_2017_06_024
crossref_primary_10_1016_j_compmedimag_2021_101882
crossref_primary_10_33450_fpn_2021_06_003
crossref_primary_10_1080_27706710_2023_2249036
crossref_primary_10_1109_TNB_2017_2751074
crossref_primary_10_1109_JBHI_2019_2941222
crossref_primary_10_1145_3527170
crossref_primary_10_22328_2079_5343_2021_12_2_30_36
crossref_primary_10_1007_s00787_014_0593_0
crossref_primary_10_1080_15622975_2016_1183043
crossref_primary_10_1093_schbul_sbu174
crossref_primary_10_3389_fpsyt_2020_00027
crossref_primary_10_1016_j_expneurol_2021_113608
crossref_primary_10_1016_j_bpsc_2016_01_001
crossref_primary_10_1080_14786451_2021_1890736
crossref_primary_10_1038_s41583_019_0177_6
crossref_primary_10_1049_cit2_12021
crossref_primary_10_3389_fnins_2022_926426
crossref_primary_10_1016_j_nicl_2021_102860
crossref_primary_10_1016_j_neubiorev_2015_08_001
crossref_primary_10_1038_s41398_018_0334_0
crossref_primary_10_1016_j_neubiorev_2017_07_004
crossref_primary_10_1146_annurev_clinpsy_032814_112915
crossref_primary_10_1176_appi_ajp_2015_15070922
crossref_primary_10_3389_fpsyt_2024_1384842
crossref_primary_10_1016_j_bbi_2021_06_002
Cites_doi 10.1016/j.pscychresns.2010.09.016
10.2174/138161209788957456
10.1001/archgenpsychiatry.2010.199
10.1001/archgenpsychiatry.2009.62
10.1001/archpsyc.62.11.1218
10.1016/j.schres.2008.12.011
10.1002/hbm.460030304
10.1016/j.neuroimage.2010.01.005
10.1001/archpsyc.1978.01770300115013
10.1007/s12021-010-9094-6
10.1002/hbm.20444
10.1093/brain/awq236
10.1016/j.schres.2006.05.007
10.1109/72.788640
10.1016/j.neubiorev.2011.12.015
10.1016/j.biopsych.2011.11.026
10.1016/j.euroneuro.2012.08.008
10.1192/bjp.bp.108.059717
10.1016/j.schres.2009.12.022
10.1192/bjp.186.5.369
10.1093/oxfordjournals.schbul.a007087
10.1016/j.neuroimage.2012.03.079
10.1016/j.biopsych.2010.03.036
10.1111/j.1399-5618.2012.01000.x
10.1001/archpsyc.65.9.1017
10.1007/978-3-540-30135-6_48
10.1001/archpsyc.65.7.746
10.1001/archpsyc.1978.01770310043002
10.1016/j.biopsych.2011.01.032
10.1007/978-3-642-02498-6_25
10.1016/j.neuroimage.2009.07.041
10.1371/journal.pone.0021047
10.1111/j.1600-0447.1991.tb03123.x
10.1001/jamapsychiatry.2013.1328
10.1093/schbul/sbs118
10.1001/archpsyc.58.12.1118
10.1016/j.biopsych.2004.06.021
10.1037/0033-2909.86.2.420
10.1001/archgenpsychiatry.2011.1615
10.1016/S0140-6736(00)02793-8
10.1016/S0006-3223(99)00052-9
10.1001/archpsyc.1992.01820080023004
10.1016/j.biopsych.2007.03.015
10.1097/00005053-199506000-00003
ContentType Journal Article
Copyright 2013 Elsevier Inc.
2015 INIST-CNRS
2013 Elsevier Inc. All rights reserved.
Copyright Elsevier Limited Jan 1, 2014
Copyright_xml – notice: 2013 Elsevier Inc.
– notice: 2015 INIST-CNRS
– notice: 2013 Elsevier Inc. All rights reserved.
– notice: Copyright Elsevier Limited Jan 1, 2014
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
7QO
DOI 10.1016/j.neuroimage.2013.08.053
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
ProQuest - Health & Medical Complete保健、医学与药学数据库
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitleList MEDLINE - Academic
ProQuest One Psychology
Engineering Research Database

MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 306
ExternalDocumentID 3380121201
24004694
28297585
10_1016_j_neuroimage_2013_08_053
S1053811913009166
Genre Validation Studies
Comparative Study
Randomized Controlled Trial
Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PUEGO
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
YK3
Z5R
ZU3
~G-
3V.
AACTN
AADPK
AAIAV
ABLVK
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
C45
EFLBG
HMQ
LCYCR
RIG
SNS
ZA5
29N
53G
AAFWJ
AAQXK
AAYXX
ACLOT
ACRPL
ADFGL
ADMUD
ADNMO
ADVLN
ADXHL
AFPKN
AGHFR
AGQPQ
AIGII
AKRLJ
APXCP
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
FEDTE
FGOYB
G-2
HDW
HEI
HMK
HMO
HVGLF
HZ~
OK1
R2-
SEW
WUQ
XPP
ZMT
~HD
6I.
AALMO
AAPBV
ABPIF
ABPTK
ABQIS
ADALY
BBAFP
EFJIC
IPNFZ
IQODW
NCXOZ
PQEST
PQUKI
AGRNS
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PRINS
Q9U
RC3
7X8
7QO
ID FETCH-LOGICAL-c522t-bebfeab022c1207ab29505c8e6d2b85875047dedb1f29520a3ef542ae4bcaf03
IEDL.DBID 7X7
ISSN 1053-8119
1095-9572
IngestDate Sun Sep 28 14:51:26 EDT 2025
Sat Sep 27 18:15:35 EDT 2025
Wed Aug 13 08:09:05 EDT 2025
Mon Jul 21 06:01:24 EDT 2025
Thu Nov 24 18:35:09 EST 2022
Thu Apr 24 23:10:21 EDT 2025
Wed Oct 01 02:58:14 EDT 2025
Fri Feb 23 02:24:27 EST 2024
Tue Aug 26 16:31:40 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Schizophrenia
Bipolar disorder
MRI
Machine learning
Classification
Psychosis
Mood disorder
Learning
Human
Acquisition process
Nuclear magnetic resonance imaging
Language English
License CC BY 4.0
2013 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c522t-bebfeab022c1207ab29505c8e6d2b85875047dedb1f29520a3ef542ae4bcaf03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ObjectType-Undefined-3
PMID 24004694
PQID 1547314186
PQPubID 2031077
PageCount 8
ParticipantIDs proquest_miscellaneous_1500762279
proquest_miscellaneous_1464492922
proquest_journals_1547314186
pubmed_primary_24004694
pascalfrancis_primary_28297585
crossref_citationtrail_10_1016_j_neuroimage_2013_08_053
crossref_primary_10_1016_j_neuroimage_2013_08_053
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2013_08_053
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2013_08_053
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-01-01
2014-01-00
2014
2014-Jan-01
20140101
PublicationDateYYYYMMDD 2014-01-01
PublicationDate_xml – month: 01
  year: 2014
  text: 2014-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
– name: United States
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2014
Publisher Elsevier Inc
Elsevier
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier
– name: Elsevier Limited
References McDonald, Zanelli, Rabe-Hesketh, Ellison-Wright, Sham, Kalidindi (bb0125) 2004; 56
Koutsouleris, Meisenzahl, Davatzikos, Bottlender, Frodl, Scheuerecker (bb0110) 2009; 66
Ellison-Wright, Bullmore (bb0035) 2010; 117
Vapnik (bb0250) 1999; 10
Hulshoff Pol, van Baal, Schnack, Brans, van der Schot, Brouwer (bb0075) 2012; 69
McDonald, Bullmore, Sham, Chitnis, Suckling, MacCabe (bb0130) 2005; 186
Pardo, Georgopoulos, Kenny, Stuve, Findling, Schulz (bb0160) 2006; 87
Koo, Levitt, Salisbury, Nakamura, Shenton, McCarley (bb0105) 2008; 65
Radua, Canales-Rodríguez, Pomarol-Clotet, Salvador (bb0175) 2013
Ho, Andreasen, Ziebell, Pierson, Magnotta (bb0065) 2011; 68
Steiner, Tebes, Sledge, Walker (bb0225) 1995; 183
Ingalhalikar, Kanterakis, Gur, Roberts, Verma (bb0080) 2010; 13
Arnone, Cavanagh, Gerber, Lawrie, Ebmeier, McIntosh (bb0005) 2009; 195
Shrout, Fleiss (bb0205) 1979; 2
Knerr, Personnaz, Dreyfus (bb0100) 1990
Scheewe, van Haren, Sarkisyan, Schnack, Brouwer, de Glint (bb0190) 2012; 23
Kasparek, Thomaz, Sato, Schwarz, Janousova, Marecek (bb0090) 2011; 191
Selvaraj, Arnone, Job, Stanfield, Farrow, Nugent, Scherk, Gruber, Chen, Sachdev, Dickstein, Malhi, Ha, Ha, Phillips, McIntosh (bb0195) 2012; 14
Nakamura, Kawasaki, Suzuki, Hagino, Kurokawa, Takahashi (bb0145) 2004; 30
Davatzikos, Shen, Gur, Wu, Liu, Fan (bb0030) 2005; 62
Chang (bb0015) 2011
Collins, Holmes, Peters, Evans (bb0020) 1995; 3
Olabi, Ellison-Wright, McIntosh, Wood, Bullmore, Lawrie (bb0155) 2011; 70
Hulshoff Pol, Schnack, Mandl, van Haren, Koning, Collins (bb0070) 2001; 58
Kempton, Geddes, Ettinger, Williams, Grasby (bb0095) 2008; 65
Karageorgiou, Schulz, Gollub, Andreasen, Ho, Lauriello (bb0085) 2011; 9
van der Schot, Vonk, Brouwer, van Baal, Brans, van Haren (bb0245) 2010; 133
Fan, Gur, Gur, Wu, Shen, Calkins, Davatzikos (bb0045) 2008; 63
Rimol, Hartberg, Nesvåg, Fennema-Notestine, Hagler, Pung (bb0180) 2010; 68
Shepherd, Laurens, Matheson, Carr, Green (bb0200) 2012; 36
Rimol, Nesvåg, Hagler, Bergmann, Fennema-Notestine, Hartberg (bb0185) 2012; 71
Dashjamts, Yoshiura, Hiwatashi, Togao, Yamashita, Ohyagi, Monji, Kamano, Kawashima, Kira, Honda (bb0025) 2012; 103
Liu, Teverovskiy, Carmichael, Kikinis, Shenton, Carter (bb0120) 2004; 3216
van den Heuvel, Sporns, Collin, Scheewe, Mandl, Cahn, Goñi, Hulshoff Pol, Kahn (bb0240) 2013; 70
Takayanagi, Takahashi, Orikabe, Mozue, Kawasaki, Nakamura (bb0235) 2011; 6
Brouwer, Hulshoff Pol, Schnack (bb0010) 2010; 49
Smieskova, Fusar-Poli, Allen, Bendfeldt, Stieglitz, Drewe (bb0215) 2009; 15
Spitzer, Endicott, Robins (bb0220) 1978; 35
Pohl, Sabuncu (bb0165) 2009; 21
Franke, Ziegler, Kloppel, Gaser (bb0055) 2010; 50
Haijma, Van Haren, Cahn, Koolschijn, Hulshoff Pol, Kahn (bb0060) 2012; 39
Fornito, Yücel, Patti, Wood, Pantelis (bb0050) 2009; 108
Moore, Bebchuk, Wilds, Chen, Manji (bb0135) 2000; 356
Nieuwenhuis, van Haren, Hulshoff Pol, Cahn, Kahn, Schnack (bb0150) 2012; 61
Qiu, Vaillant, Barta, Ratnanather, Miller (bb0170) 2008; 29
Andreasen, Flaum, Arndt (bb0255) 1992; 49
Leonard, Kuldau, Breier, Zuffante, Gautier, Heron (bb0115) 1999; 46
Endicott, Spitzer (bb0040) 1978; 35
Skre, Onstad, Torgersen, Kringlen (bb0210) 1991; 84
Hulshoff Pol (10.1016/j.neuroimage.2013.08.053_bb0075) 2012; 69
Rimol (10.1016/j.neuroimage.2013.08.053_bb0185) 2012; 71
Chang (10.1016/j.neuroimage.2013.08.053_bb0015) 2011
Vapnik (10.1016/j.neuroimage.2013.08.053_bb0250) 1999; 10
Olabi (10.1016/j.neuroimage.2013.08.053_bb0155) 2011; 70
Knerr (10.1016/j.neuroimage.2013.08.053_bb0100) 1990
Ho (10.1016/j.neuroimage.2013.08.053_bb0065) 2011; 68
Nakamura (10.1016/j.neuroimage.2013.08.053_bb0145) 2004; 30
McDonald (10.1016/j.neuroimage.2013.08.053_bb0125) 2004; 56
Fan (10.1016/j.neuroimage.2013.08.053_bb0045) 2008; 63
Takayanagi (10.1016/j.neuroimage.2013.08.053_bb0235) 2011; 6
Haijma (10.1016/j.neuroimage.2013.08.053_bb0060) 2012; 39
Leonard (10.1016/j.neuroimage.2013.08.053_bb0115) 1999; 46
Dashjamts (10.1016/j.neuroimage.2013.08.053_bb0025) 2012; 103
Franke (10.1016/j.neuroimage.2013.08.053_bb0055) 2010; 50
Liu (10.1016/j.neuroimage.2013.08.053_bb0120) 2004; 3216
Nieuwenhuis (10.1016/j.neuroimage.2013.08.053_bb0150) 2012; 61
Karageorgiou (10.1016/j.neuroimage.2013.08.053_bb0085) 2011; 9
Brouwer (10.1016/j.neuroimage.2013.08.053_bb0010) 2010; 49
Steiner (10.1016/j.neuroimage.2013.08.053_bb0225) 1995; 183
Radua (10.1016/j.neuroimage.2013.08.053_bb0175) 2013
Smieskova (10.1016/j.neuroimage.2013.08.053_bb0215) 2009; 15
van den Heuvel (10.1016/j.neuroimage.2013.08.053_bb0240) 2013; 70
Ingalhalikar (10.1016/j.neuroimage.2013.08.053_bb0080) 2010; 13
Collins (10.1016/j.neuroimage.2013.08.053_bb0020) 1995; 3
Fornito (10.1016/j.neuroimage.2013.08.053_bb0050) 2009; 108
Pohl (10.1016/j.neuroimage.2013.08.053_bb0165) 2009; 21
Davatzikos (10.1016/j.neuroimage.2013.08.053_bb0030) 2005; 62
van der Schot (10.1016/j.neuroimage.2013.08.053_bb0245) 2010; 133
Andreasen (10.1016/j.neuroimage.2013.08.053_bb0255) 1992; 49
Selvaraj (10.1016/j.neuroimage.2013.08.053_bb0195) 2012; 14
Pardo (10.1016/j.neuroimage.2013.08.053_bb0160) 2006; 87
Rimol (10.1016/j.neuroimage.2013.08.053_bb0180) 2010; 68
Scheewe (10.1016/j.neuroimage.2013.08.053_bb0190) 2012; 23
Kasparek (10.1016/j.neuroimage.2013.08.053_bb0090) 2011; 191
Qiu (10.1016/j.neuroimage.2013.08.053_bb0170) 2008; 29
Shepherd (10.1016/j.neuroimage.2013.08.053_bb0200) 2012; 36
Ellison-Wright (10.1016/j.neuroimage.2013.08.053_bb0035) 2010; 117
Spitzer (10.1016/j.neuroimage.2013.08.053_bb0220) 1978; 35
Koo (10.1016/j.neuroimage.2013.08.053_bb0105) 2008; 65
Shrout (10.1016/j.neuroimage.2013.08.053_bb0205) 1979; 2
Skre (10.1016/j.neuroimage.2013.08.053_bb0210) 1991; 84
Moore (10.1016/j.neuroimage.2013.08.053_bb0135) 2000; 356
Hulshoff Pol (10.1016/j.neuroimage.2013.08.053_bb0070) 2001; 58
Arnone (10.1016/j.neuroimage.2013.08.053_bb0005) 2009; 195
Koutsouleris (10.1016/j.neuroimage.2013.08.053_bb0110) 2009; 66
Endicott (10.1016/j.neuroimage.2013.08.053_bb0040) 1978; 35
Kempton (10.1016/j.neuroimage.2013.08.053_bb0095) 2008; 65
McDonald (10.1016/j.neuroimage.2013.08.053_bb0130) 2005; 186
References_xml – volume: 186
  start-page: 369
  year: 2005
  end-page: 377
  ident: bb0130
  article-title: Regional volume deviations of brain structure in schizophrenia and psychotic bipolar disorder: computational morphometry study
  publication-title: Br. J. Psychiatry
– volume: 13
  start-page: 558
  year: 2010
  end-page: 565
  ident: bb0080
  article-title: DTI based diagnostic prediction of a disease via pattern classification
  publication-title: Med. Image Comput. Comput. Assist. Interv.
– volume: 65
  start-page: 746
  year: 2008
  end-page: 760
  ident: bb0105
  article-title: A cross-sectional and longitudinal magnetic resonance imaging study of cingulate gyrus gray matter volume abnormalities in first-episode schizophrenia and first-episode affective psychosis
  publication-title: Arch. Gen. Psychiatry
– volume: 133
  start-page: 3080
  year: 2010
  end-page: 3092
  ident: bb0245
  article-title: Genetic and environmental influences on focal brain density in bipolar disorder
  publication-title: Brain
– volume: 46
  start-page: 374
  year: 1999
  end-page: 382
  ident: bb0115
  article-title: Cumulative effect of anatomical risk factors for schizophrenia: an MRI study
  publication-title: Biol. Psychiatry
– volume: 195
  start-page: 194
  year: 2009
  end-page: 201
  ident: bb0005
  article-title: Magnetic resonance imaging studies in bipolar disorder and schizophrenia: meta-analysis
  publication-title: Br. J. Psychiatry
– volume: 117
  start-page: 1
  year: 2010
  end-page: 12
  ident: bb0035
  article-title: Anatomy of bipolar disorder and schizophrenia: a meta-analysis
  publication-title: Schizophr. Res.
– volume: 6
  start-page: e21047
  year: 2011
  ident: bb0235
  article-title: Classification of first-episode schizophrenia patients and healthy subjects by automated MRI measures of regional brain volume and cortical thickness
  publication-title: PLoS One
– volume: 103
  start-page: 59
  year: 2012
  end-page: 69
  ident: bb0025
  article-title: Alzheimer's disease: diagnosis by different methods of voxel-based morphometry
  publication-title: Fukuoka Igaku Zasshi
– volume: 29
  start-page: 973
  year: 2008
  end-page: 985
  ident: bb0170
  article-title: Region-of-interest-based analysis with application of cortical thickness variation of left planum temporale in schizophrenia and psychotic bipolar disorder
  publication-title: Hum. Brain Mapp.
– volume: 84
  start-page: 167
  year: 1991
  end-page: 173
  ident: bb0210
  article-title: High interrater reliability for the Structured Clinical Interview for DSM-III-R Axis I (SCID-I)
  publication-title: Acta Psychiatr. Scand.
– volume: 35
  start-page: 773
  year: 1978
  end-page: 782
  ident: bb0220
  article-title: Research diagnostic criteria: rationale and reliability
  publication-title: Arch. Gen. Psychiatry
– volume: 108
  start-page: 104
  year: 2009
  end-page: 113
  ident: bb0050
  article-title: Mapping grey matter reductions in schizophrenia: an anatomical likelihood estimation analysis of voxel-based morphometry studies
  publication-title: Schizophr. Res.
– volume: 30
  start-page: 393
  year: 2004
  end-page: 404
  ident: bb0145
  article-title: Multiple structural brain measures obtained by three-dimensional magnetic resonance imaging to distinguish between schizophrenia patients and normal subjects
  publication-title: Schizophr. Bull.
– volume: 66
  start-page: 700
  year: 2009
  end-page: 712
  ident: bb0110
  article-title: Use of neuroanatomical pattern classification to identify subjects in at-risk mental states of psychosis and predict disease transition
  publication-title: Arch. Gen. Psychiatry
– volume: 23
  start-page: 675
  year: 2012
  end-page: 685
  ident: bb0190
  article-title: Exercise therapy, cardiorespiratory fitness and their effect on brain volumes: a randomised controlled trial in patients with schizophrenia and healthy controls
  publication-title: Eur. Neuropsychopharmacol.
– volume: 3216
  start-page: 393
  year: 2004
  end-page: 401
  ident: bb0120
  article-title: Discriminative MR image feature analysis for automatic schizophrenia and Alzheimer's disease classification
  publication-title: Lect. Notes Comput. Sci.
– volume: 58
  start-page: 1118
  year: 2001
  end-page: 1125
  ident: bb0070
  article-title: Focal gray matter density changes in schizophrenia
  publication-title: Arch. Gen. Psychiatry
– volume: 36
  start-page: 1342
  year: 2012
  end-page: 1356
  ident: bb0200
  article-title: Systematic meta-review and quality assessment of the structural brain alterations in schizophrenia
  publication-title: Neurosci. Biobehav. Rev.
– volume: 356
  start-page: 1241
  year: 2000
  end-page: 1242
  ident: bb0135
  article-title: Lithium-induced increase in human brain grey matter
  publication-title: Lancet
– volume: 50
  start-page: 883
  year: 2010
  end-page: 892
  ident: bb0055
  article-title: Estimating the age of healthy subjects from T1-weighted MRI scans using kernel methods: exploring the influence of various parameters
  publication-title: NeuroImage
– volume: 39
  start-page: 1129
  year: 2012
  end-page: 1138
  ident: bb0060
  article-title: Brain volumes in schizophrenia: a meta-analysis in over 18 000 subjects
  publication-title: Schizophr. Bull.
– volume: 183
  start-page: 365
  year: 1995
  end-page: 369
  ident: bb0225
  article-title: A comparison of the structured clinical interview for DSM-III-R and clinical diagnoses
  publication-title: J. Nerv. Ment. Dis.
– volume: 49
  start-page: 467
  year: 2010
  end-page: 477
  ident: bb0010
  article-title: Segmentation of MRI brain scans using non-uniform partial volume densities
  publication-title: NeuroImage
– volume: 9
  start-page: 321
  year: 2011
  end-page: 333
  ident: bb0085
  article-title: Neuropsychological testing and structural magnetic resonance imaging as diagnostic biomarkers early in the course of schizophrenia and related psychoses
  publication-title: Neuroinformatics
– volume: 62
  start-page: 1218
  year: 2005
  end-page: 1227
  ident: bb0030
  article-title: Whole-brain morphometric study of schizophrenia revealing a spatially complex set of focal abnormalities
  publication-title: Arch. Gen. Psychiatry
– volume: 191
  start-page: 174
  year: 2011
  end-page: 181
  ident: bb0090
  article-title: Maximum-uncertainty linear discrimination analysis of first-episode schizophrenia subjects
  publication-title: Psychiatry Res.
– volume: 49
  start-page: 615
  year: 1992
  end-page: 623
  ident: bb0255
  article-title: The Comprehensive Assessment of Symptoms and History (CASH). An instrument for assessing diagnosis and psychopathology
  publication-title: Arch. Gen. Psychiatry
– volume: 2
  start-page: 420
  year: 1979
  end-page: 428
  ident: bb0205
  article-title: Intraclass correlations: uses in assessing rater reliability
  publication-title: Psychol. Bull.
– year: 2013
  ident: bb0175
  article-title: Validity of modulation and optimal settings for advanced voxel-based morphometry
  publication-title: NeuroImage
– year: 1990
  ident: bb0100
  article-title: Single-layer learning revisited: a stepwise procedure for building and training a neural network
  publication-title: Neurocomputing: Algorithms, Architectures and Applications, NATO ASI
– volume: 70
  start-page: 88
  year: 2011
  end-page: 96
  ident: bb0155
  article-title: Are there progressive brain changes in schizophrenia? A meta-analysis of structural magnetic resonance imaging studies
  publication-title: Biol. Psychiatry
– volume: 21
  start-page: 300
  year: 2009
  end-page: 313
  ident: bb0165
  article-title: A unified framework for MR based disease classification
  publication-title: Inf. Process. Med. Imaging
– start-page: 1
  year: 2011
  end-page: 27
  ident: bb0015
  article-title: A library for support vector machines
  publication-title: ACM Transactions on Intelligent Systems and Technology
– volume: 70
  start-page: 783
  year: 2013
  end-page: 792
  ident: bb0240
  article-title: Abnormal rich club organization and functional brain dynamics in schizophrenia
  publication-title: JAMA Psychiatry
– volume: 65
  start-page: 1017
  year: 2008
  end-page: 1032
  ident: bb0095
  article-title: Meta-analysis, database, and meta-regression of 98 structural imaging studies in bipolar disorder
  publication-title: Arch. Gen. Psychiatry
– volume: 63
  start-page: 118
  year: 2008
  end-page: 124
  ident: bb0045
  article-title: Unaffected family members and schizophrenia patients share brain structure patterns: a high-dimensional pattern classification study
  publication-title: Biol. Psychiatry
– volume: 69
  start-page: 349
  year: 2012
  end-page: 359
  ident: bb0075
  article-title: Overlapping and segregating structural brain abnormalities in twins with schizophrenia or bipolar disorder
  publication-title: Arch. Gen. Psychiatry
– volume: 15
  start-page: 2535
  year: 2009
  end-page: 2549
  ident: bb0215
  article-title: The effects of antipsychotics on the brain: what have we learnt from structural imaging of schizophrenia? — a systematic review
  publication-title: Curr. Pharm. Des.
– volume: 71
  start-page: 552
  year: 2012
  end-page: 560
  ident: bb0185
  article-title: Cortical volume, surface area, and thickness in schizophrenia and bipolar disorder
  publication-title: Biol. Psychiatry
– volume: 87
  start-page: 297
  year: 2006
  end-page: 306
  ident: bb0160
  article-title: Classification of adolescent psychotic disorders using linear discriminant analysis
  publication-title: Schizophr. Res.
– volume: 68
  start-page: 128
  year: 2011
  end-page: 137
  ident: bb0065
  article-title: Long-term antipsychotic treatment and brain volumes: a longitudinal study of first-episode schizophrenia
  publication-title: Arch. Gen. Psychiatry
– volume: 14
  start-page: 135
  year: 2012
  end-page: 145
  ident: bb0195
  article-title: Grey matter differences in bipolar disorder: a meta-analysis of voxel-based morphometry studies
  publication-title: Bipolar Disord.
– volume: 35
  start-page: 837
  year: 1978
  end-page: 844
  ident: bb0040
  article-title: A diagnostic interview: the schedule for affective disorders and schizophrenia
  publication-title: Arch. Gen. Psychiatry
– volume: 56
  start-page: 411
  year: 2004
  end-page: 417
  ident: bb0125
  article-title: Meta-analysis of magnetic resonance imaging brain morphometry studies in bipolar disorder
  publication-title: Biol. Psychiatry
– volume: 68
  start-page: 41
  year: 2010
  end-page: 50
  ident: bb0180
  article-title: Cortical thickness and subcortical volumes in schizophrenia and bipolar disorder
  publication-title: Biol. Psychiatry
– volume: 3
  start-page: 190
  year: 1995
  end-page: 208
  ident: bb0020
  article-title: Automatic 3-d model-based neuroanatomical segmentation
  publication-title: Hum. Brain Mapp.
– volume: 61
  start-page: 606
  year: 2012
  end-page: 612
  ident: bb0150
  article-title: Classification of schizophrenia patients and healthy controls from structural MRI scans in two large independent samples
  publication-title: NeuroImage
– volume: 10
  start-page: 988
  year: 1999
  end-page: 999
  ident: bb0250
  article-title: An overview of statistical learning theory
  publication-title: IEEE Trans. Neural Netw.
– volume: 13
  start-page: 558
  year: 2010
  ident: 10.1016/j.neuroimage.2013.08.053_bb0080
  article-title: DTI based diagnostic prediction of a disease via pattern classification
  publication-title: Med. Image Comput. Comput. Assist. Interv.
– volume: 191
  start-page: 174
  year: 2011
  ident: 10.1016/j.neuroimage.2013.08.053_bb0090
  article-title: Maximum-uncertainty linear discrimination analysis of first-episode schizophrenia subjects
  publication-title: Psychiatry Res.
  doi: 10.1016/j.pscychresns.2010.09.016
– volume: 15
  start-page: 2535
  year: 2009
  ident: 10.1016/j.neuroimage.2013.08.053_bb0215
  article-title: The effects of antipsychotics on the brain: what have we learnt from structural imaging of schizophrenia? — a systematic review
  publication-title: Curr. Pharm. Des.
  doi: 10.2174/138161209788957456
– volume: 68
  start-page: 128
  year: 2011
  ident: 10.1016/j.neuroimage.2013.08.053_bb0065
  article-title: Long-term antipsychotic treatment and brain volumes: a longitudinal study of first-episode schizophrenia
  publication-title: Arch. Gen. Psychiatry
  doi: 10.1001/archgenpsychiatry.2010.199
– volume: 66
  start-page: 700
  year: 2009
  ident: 10.1016/j.neuroimage.2013.08.053_bb0110
  article-title: Use of neuroanatomical pattern classification to identify subjects in at-risk mental states of psychosis and predict disease transition
  publication-title: Arch. Gen. Psychiatry
  doi: 10.1001/archgenpsychiatry.2009.62
– volume: 62
  start-page: 1218
  year: 2005
  ident: 10.1016/j.neuroimage.2013.08.053_bb0030
  article-title: Whole-brain morphometric study of schizophrenia revealing a spatially complex set of focal abnormalities
  publication-title: Arch. Gen. Psychiatry
  doi: 10.1001/archpsyc.62.11.1218
– volume: 108
  start-page: 104
  year: 2009
  ident: 10.1016/j.neuroimage.2013.08.053_bb0050
  article-title: Mapping grey matter reductions in schizophrenia: an anatomical likelihood estimation analysis of voxel-based morphometry studies
  publication-title: Schizophr. Res.
  doi: 10.1016/j.schres.2008.12.011
– volume: 3
  start-page: 190
  year: 1995
  ident: 10.1016/j.neuroimage.2013.08.053_bb0020
  article-title: Automatic 3-d model-based neuroanatomical segmentation
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.460030304
– volume: 50
  start-page: 883
  year: 2010
  ident: 10.1016/j.neuroimage.2013.08.053_bb0055
  article-title: Estimating the age of healthy subjects from T1-weighted MRI scans using kernel methods: exploring the influence of various parameters
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.01.005
– volume: 35
  start-page: 773
  year: 1978
  ident: 10.1016/j.neuroimage.2013.08.053_bb0220
  article-title: Research diagnostic criteria: rationale and reliability
  publication-title: Arch. Gen. Psychiatry
  doi: 10.1001/archpsyc.1978.01770300115013
– volume: 9
  start-page: 321
  year: 2011
  ident: 10.1016/j.neuroimage.2013.08.053_bb0085
  article-title: Neuropsychological testing and structural magnetic resonance imaging as diagnostic biomarkers early in the course of schizophrenia and related psychoses
  publication-title: Neuroinformatics
  doi: 10.1007/s12021-010-9094-6
– volume: 29
  start-page: 973
  year: 2008
  ident: 10.1016/j.neuroimage.2013.08.053_bb0170
  article-title: Region-of-interest-based analysis with application of cortical thickness variation of left planum temporale in schizophrenia and psychotic bipolar disorder
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.20444
– volume: 133
  start-page: 3080
  year: 2010
  ident: 10.1016/j.neuroimage.2013.08.053_bb0245
  article-title: Genetic and environmental influences on focal brain density in bipolar disorder
  publication-title: Brain
  doi: 10.1093/brain/awq236
– volume: 87
  start-page: 297
  year: 2006
  ident: 10.1016/j.neuroimage.2013.08.053_bb0160
  article-title: Classification of adolescent psychotic disorders using linear discriminant analysis
  publication-title: Schizophr. Res.
  doi: 10.1016/j.schres.2006.05.007
– volume: 10
  start-page: 988
  year: 1999
  ident: 10.1016/j.neuroimage.2013.08.053_bb0250
  article-title: An overview of statistical learning theory
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.788640
– volume: 103
  start-page: 59
  year: 2012
  ident: 10.1016/j.neuroimage.2013.08.053_bb0025
  article-title: Alzheimer's disease: diagnosis by different methods of voxel-based morphometry
  publication-title: Fukuoka Igaku Zasshi
– volume: 36
  start-page: 1342
  year: 2012
  ident: 10.1016/j.neuroimage.2013.08.053_bb0200
  article-title: Systematic meta-review and quality assessment of the structural brain alterations in schizophrenia
  publication-title: Neurosci. Biobehav. Rev.
  doi: 10.1016/j.neubiorev.2011.12.015
– volume: 71
  start-page: 552
  year: 2012
  ident: 10.1016/j.neuroimage.2013.08.053_bb0185
  article-title: Cortical volume, surface area, and thickness in schizophrenia and bipolar disorder
  publication-title: Biol. Psychiatry
  doi: 10.1016/j.biopsych.2011.11.026
– volume: 23
  start-page: 675
  year: 2012
  ident: 10.1016/j.neuroimage.2013.08.053_bb0190
  article-title: Exercise therapy, cardiorespiratory fitness and their effect on brain volumes: a randomised controlled trial in patients with schizophrenia and healthy controls
  publication-title: Eur. Neuropsychopharmacol.
  doi: 10.1016/j.euroneuro.2012.08.008
– year: 1990
  ident: 10.1016/j.neuroimage.2013.08.053_bb0100
  article-title: Single-layer learning revisited: a stepwise procedure for building and training a neural network
– volume: 195
  start-page: 194
  year: 2009
  ident: 10.1016/j.neuroimage.2013.08.053_bb0005
  article-title: Magnetic resonance imaging studies in bipolar disorder and schizophrenia: meta-analysis
  publication-title: Br. J. Psychiatry
  doi: 10.1192/bjp.bp.108.059717
– volume: 117
  start-page: 1
  year: 2010
  ident: 10.1016/j.neuroimage.2013.08.053_bb0035
  article-title: Anatomy of bipolar disorder and schizophrenia: a meta-analysis
  publication-title: Schizophr. Res.
  doi: 10.1016/j.schres.2009.12.022
– volume: 186
  start-page: 369
  year: 2005
  ident: 10.1016/j.neuroimage.2013.08.053_bb0130
  article-title: Regional volume deviations of brain structure in schizophrenia and psychotic bipolar disorder: computational morphometry study
  publication-title: Br. J. Psychiatry
  doi: 10.1192/bjp.186.5.369
– volume: 30
  start-page: 393
  year: 2004
  ident: 10.1016/j.neuroimage.2013.08.053_bb0145
  article-title: Multiple structural brain measures obtained by three-dimensional magnetic resonance imaging to distinguish between schizophrenia patients and normal subjects
  publication-title: Schizophr. Bull.
  doi: 10.1093/oxfordjournals.schbul.a007087
– volume: 61
  start-page: 606
  year: 2012
  ident: 10.1016/j.neuroimage.2013.08.053_bb0150
  article-title: Classification of schizophrenia patients and healthy controls from structural MRI scans in two large independent samples
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.03.079
– volume: 68
  start-page: 41
  year: 2010
  ident: 10.1016/j.neuroimage.2013.08.053_bb0180
  article-title: Cortical thickness and subcortical volumes in schizophrenia and bipolar disorder
  publication-title: Biol. Psychiatry
  doi: 10.1016/j.biopsych.2010.03.036
– volume: 14
  start-page: 135
  year: 2012
  ident: 10.1016/j.neuroimage.2013.08.053_bb0195
  article-title: Grey matter differences in bipolar disorder: a meta-analysis of voxel-based morphometry studies
  publication-title: Bipolar Disord.
  doi: 10.1111/j.1399-5618.2012.01000.x
– volume: 65
  start-page: 1017
  year: 2008
  ident: 10.1016/j.neuroimage.2013.08.053_bb0095
  article-title: Meta-analysis, database, and meta-regression of 98 structural imaging studies in bipolar disorder
  publication-title: Arch. Gen. Psychiatry
  doi: 10.1001/archpsyc.65.9.1017
– volume: 3216
  start-page: 393
  year: 2004
  ident: 10.1016/j.neuroimage.2013.08.053_bb0120
  article-title: Discriminative MR image feature analysis for automatic schizophrenia and Alzheimer's disease classification
  publication-title: Lect. Notes Comput. Sci.
  doi: 10.1007/978-3-540-30135-6_48
– year: 2013
  ident: 10.1016/j.neuroimage.2013.08.053_bb0175
  article-title: Validity of modulation and optimal settings for advanced voxel-based morphometry
  publication-title: NeuroImage
– volume: 65
  start-page: 746
  year: 2008
  ident: 10.1016/j.neuroimage.2013.08.053_bb0105
  article-title: A cross-sectional and longitudinal magnetic resonance imaging study of cingulate gyrus gray matter volume abnormalities in first-episode schizophrenia and first-episode affective psychosis
  publication-title: Arch. Gen. Psychiatry
  doi: 10.1001/archpsyc.65.7.746
– volume: 35
  start-page: 837
  year: 1978
  ident: 10.1016/j.neuroimage.2013.08.053_bb0040
  article-title: A diagnostic interview: the schedule for affective disorders and schizophrenia
  publication-title: Arch. Gen. Psychiatry
  doi: 10.1001/archpsyc.1978.01770310043002
– volume: 70
  start-page: 88
  year: 2011
  ident: 10.1016/j.neuroimage.2013.08.053_bb0155
  article-title: Are there progressive brain changes in schizophrenia? A meta-analysis of structural magnetic resonance imaging studies
  publication-title: Biol. Psychiatry
  doi: 10.1016/j.biopsych.2011.01.032
– volume: 21
  start-page: 300
  year: 2009
  ident: 10.1016/j.neuroimage.2013.08.053_bb0165
  article-title: A unified framework for MR based disease classification
  publication-title: Inf. Process. Med. Imaging
  doi: 10.1007/978-3-642-02498-6_25
– volume: 49
  start-page: 467
  year: 2010
  ident: 10.1016/j.neuroimage.2013.08.053_bb0010
  article-title: Segmentation of MRI brain scans using non-uniform partial volume densities
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.07.041
– volume: 6
  start-page: e21047
  year: 2011
  ident: 10.1016/j.neuroimage.2013.08.053_bb0235
  article-title: Classification of first-episode schizophrenia patients and healthy subjects by automated MRI measures of regional brain volume and cortical thickness
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0021047
– start-page: 1
  year: 2011
  ident: 10.1016/j.neuroimage.2013.08.053_bb0015
  article-title: A library for support vector machines
– volume: 84
  start-page: 167
  year: 1991
  ident: 10.1016/j.neuroimage.2013.08.053_bb0210
  article-title: High interrater reliability for the Structured Clinical Interview for DSM-III-R Axis I (SCID-I)
  publication-title: Acta Psychiatr. Scand.
  doi: 10.1111/j.1600-0447.1991.tb03123.x
– volume: 70
  start-page: 783
  year: 2013
  ident: 10.1016/j.neuroimage.2013.08.053_bb0240
  article-title: Abnormal rich club organization and functional brain dynamics in schizophrenia
  publication-title: JAMA Psychiatry
  doi: 10.1001/jamapsychiatry.2013.1328
– volume: 39
  start-page: 1129
  year: 2012
  ident: 10.1016/j.neuroimage.2013.08.053_bb0060
  article-title: Brain volumes in schizophrenia: a meta-analysis in over 18 000 subjects
  publication-title: Schizophr. Bull.
  doi: 10.1093/schbul/sbs118
– volume: 58
  start-page: 1118
  year: 2001
  ident: 10.1016/j.neuroimage.2013.08.053_bb0070
  article-title: Focal gray matter density changes in schizophrenia
  publication-title: Arch. Gen. Psychiatry
  doi: 10.1001/archpsyc.58.12.1118
– volume: 56
  start-page: 411
  year: 2004
  ident: 10.1016/j.neuroimage.2013.08.053_bb0125
  article-title: Meta-analysis of magnetic resonance imaging brain morphometry studies in bipolar disorder
  publication-title: Biol. Psychiatry
  doi: 10.1016/j.biopsych.2004.06.021
– volume: 2
  start-page: 420
  year: 1979
  ident: 10.1016/j.neuroimage.2013.08.053_bb0205
  article-title: Intraclass correlations: uses in assessing rater reliability
  publication-title: Psychol. Bull.
  doi: 10.1037/0033-2909.86.2.420
– volume: 69
  start-page: 349
  year: 2012
  ident: 10.1016/j.neuroimage.2013.08.053_bb0075
  article-title: Overlapping and segregating structural brain abnormalities in twins with schizophrenia or bipolar disorder
  publication-title: Arch. Gen. Psychiatry
  doi: 10.1001/archgenpsychiatry.2011.1615
– volume: 356
  start-page: 1241
  year: 2000
  ident: 10.1016/j.neuroimage.2013.08.053_bb0135
  article-title: Lithium-induced increase in human brain grey matter
  publication-title: Lancet
  doi: 10.1016/S0140-6736(00)02793-8
– volume: 46
  start-page: 374
  year: 1999
  ident: 10.1016/j.neuroimage.2013.08.053_bb0115
  article-title: Cumulative effect of anatomical risk factors for schizophrenia: an MRI study
  publication-title: Biol. Psychiatry
  doi: 10.1016/S0006-3223(99)00052-9
– volume: 49
  start-page: 615
  year: 1992
  ident: 10.1016/j.neuroimage.2013.08.053_bb0255
  article-title: The Comprehensive Assessment of Symptoms and History (CASH). An instrument for assessing diagnosis and psychopathology
  publication-title: Arch. Gen. Psychiatry
  doi: 10.1001/archpsyc.1992.01820080023004
– volume: 63
  start-page: 118
  year: 2008
  ident: 10.1016/j.neuroimage.2013.08.053_bb0045
  article-title: Unaffected family members and schizophrenia patients share brain structure patterns: a high-dimensional pattern classification study
  publication-title: Biol. Psychiatry
  doi: 10.1016/j.biopsych.2007.03.015
– volume: 183
  start-page: 365
  year: 1995
  ident: 10.1016/j.neuroimage.2013.08.053_bb0225
  article-title: A comparison of the structured clinical interview for DSM-III-R and clinical diagnoses
  publication-title: J. Nerv. Ment. Dis.
  doi: 10.1097/00005053-199506000-00003
SSID ssj0009148
Score 2.516599
Snippet Although structural magnetic resonance imaging (MRI) has revealed partly non-overlapping brain abnormalities in schizophrenia and bipolar disorder, it is...
SourceID proquest
pubmed
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 299
SubjectTerms Adult
Adult and adolescent clinical studies
Age
Algorithms
Artificial Intelligence
Biological and medical sciences
Bipolar disorder
Bipolar Disorder - pathology
Bipolar disorders
Brain - pathology
Classification
Diagnosis, Differential
Diffusion Tensor Imaging - methods
Female
Humans
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Independent sample
Machine learning
Male
Medical sciences
Mood disorders
MRI
NMR
Nuclear magnetic resonance
Pattern Recognition, Automated - methods
Psychiatrists
Psychology. Psychoanalysis. Psychiatry
Psychopathology. Psychiatry
Psychoses
Psychotropic drugs
Reference Values
Reproducibility of Results
Schizophrenia
Schizophrenia - pathology
Sensitivity and Specificity
Studies
SummonAdditionalLinks – databaseName: Elsevier SD Freedom Collection
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYhh1Iope-6TcMUeqy7liw_lh5KWBrSwvbQppCbkSypODTeBW8oueQX9Ud2RpK9zSFloTev5QGtZzzzSZr5hrE3go6KMsdTx4VLJQLcVJVOo0IwXGiM4KWjheLyS3nyXX4-K8722GKshaG0yuj7g0_33jremcW3OVt33ewbIgMMN7jeyBEn8JJot4n9C2363fU2zWPOZSiHK_KUno7ZPCHHy3NGdhf45VKSV-7JPIv8thB1b60GfHEudLy4HZL60HT8gN2PmBKOwrQfsj3bP2J3lvHU_DH7vVA9BKJYItmA5ddPoDoDXQ9jYSReIIqmtCGvqQ9wBBc-zdJC7CvxAzwTLQltfq2gm9rnbmBQRDE8wMpBpGkdgPZ3Yfg7o-8t6G5NC2kwkfETVG8gFGJewXCpaUtoeMJOjz-eLk7S2KUhbRG7bVJttbNKIxZoucgqpcUcUVVb29IIXRc18cdXxhrNHY6ITOXWFVIoK3WrXJY_Zfv9qrfPGRhV5TmOGyW5bFFvSqIhidpV0mSFUQmrRr00bWQwp0YaP5sxVe282Wq0IY021GOzyBPGJ8l1YPHYQWY-qr4ZlYF-tcFQs4Ps-0n2hjXvKH14w9KmKQtfB10XCTsYTa-JLmdoOHWR5pLXZcJeT8PoLOgESPV2dTnQOk9KBMRC_OOZgk5niVgyYc-CWW8nIP1-inzxX__vJbuLv2TYyDpg-2j_9hVCu40-9N_uHxvnUPY
  priority: 102
  providerName: Elsevier
Title Can structural MRI aid in clinical classification? A machine learning study in two independent samples of patients with schizophrenia, bipolar disorder and healthy subjects
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811913009166
https://dx.doi.org/10.1016/j.neuroimage.2013.08.053
https://www.ncbi.nlm.nih.gov/pubmed/24004694
https://www.proquest.com/docview/1547314186
https://www.proquest.com/docview/1464492922
https://www.proquest.com/docview/1500762279
Volume 84
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20191231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: ACRLP
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20191231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: AIKHN
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: AKRWK
  dateStart: 19920801
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20250801
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: 7X7
  dateStart: 20020801
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1095-9572
  dateEnd: 20250801
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: BENPR
  dateStart: 19980501
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3di9QwEA_eHYgg4rfVcxnBR6ubNP04fDjW5Y49dZdjOWHfStIkUvHale4hvvgX-Uc606Zdfbhjn7qQDmQ7k8kvM5PfMPZaUKpo7HjouHChRIAbqsRpVAhuFxp38MTRQXG-SGZf5MdVvPIBt8aXVfY-sXXUpi4oRv6OU5NcLnmWHK9_hNQ1irKrvoXGHjvgCFXIqtNVuiXd5bK7ChdHYYYv-Eqerr6r5YssL3HVUoFX1BJ5xtF129PdtWrwo7mu28X1cLTdlk7vs3seT8KkM4AH7JatHrLbc58xf8T-TFUFHUksEWzAfHkGqjRQVtBfisQfiKCpZKjV0jFM4LItsbTge0p8hZaFloQ2P2soh9a5G2gU0Qs3UDvwFK0NUGwXmn-r-d6ALtd0iAbj2T5BVQa6S5i_oLnSFA5qHrOL05OL6Sz0HRrCAnHbJtRWO6s04oCCi3GqtDhCRFVkNjFCZ3FG3PGpsUZzhyNirCLrYimUlbpQbhw9YftVXdlnDIxKowjHjZJcFqg3JdGIROZSacaxUQFLe73khWcvpyYa3_O-TO1bvtVoThrNqb9mHAWMD5LrjsFjB5mjXvV5rwz0qTluMzvIvh9kPYrp0MmO0qP_LG2YsmjvQGdxwA5708u9u2ny7eII2KthGB0FZX9UZeurhs54UuIaEeKGd2LKzBKpZMCedma9nYBsYyny-c0TeMHu4N-RXZTqkO2jgduXiNs2esT23v7mo3aJjtjBZLr8fE7Ps0-zBT4_nCzOl38BplNLTQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3daxQxEA-1ggoifrta6wj65uImm_04REqpljvb64OccG8h2SRyYvdO9krp_6T_ozOb3Tt9aLmXvh3kZsnym52ZZGZ-w9gbQamixPPYc-FjiQFurHNvEBB0FwY9eO7poDg-yYff5JdpNt1if_peGCqr7G1ia6jtvKI78vechuRyyct8b_ErpqlRlF3tR2gEtThyF-d4ZGs-jj4hvm-FOPw8ORjG3VSBuMJYYxkbZ7zTBn1XxUVSaCMGGAVUpcutMGVWEt95YZ013OOKSHTqfCaFdtJU2icpPvYGuynTRBJVfzEt1hy_XIbOuyyNS84HXeFQKCdr6Slnp2gkqJ4sbXlDs_Qyb3h3oRvEyIfhGpdHv60XPLzP7nXhK-wHfXvAtlz9kN0adwn6R-z3ga4hcNISnweMv45AzyzMauh7MPEHBuxUodQqxR7sw2lb0emgG2HxHVrSWxJans9htprUu4RGE5txA3MPHSNsA3SVDM2_xYPvwMwWdGYH25GLgq4thJ7PC2jODN0-NY_Z5Dqge8K263ntnjGwukhTXLdaclkhblqizorSF9ImmdURK3pcVNWRpdPMjp-qr4r7odaIKkJU0TjPLI0YX0kuAmHIBjKDHnrVg4EmXKFX20D2w0q2C5pCMLSh9O5_mrbasmhbrsssYju96qnOujVq_S1G7PVqGe0SJZt07eZnDR0ppcTYW4gr_pNRIpg4LCP2NKj1egOyvbqRz6_ewCt2ezgZH6vj0cnRC3YHX02GC7Idto3K7l5iyLg0u-2HCkxds2H4Cx-8gwY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1faxQxEA-1QhFE_O9prSPom0s32eztHiKltB496xWRCvcWkk0iJ3bvZK-Ufie_gN_OmU32Th9a7qVvB7lZsvxmZyaZmd8w9kZQqij1PPFc-ERigJvovjcICLoLgx687-mgOD7pH32Tnyb5ZIP96XphqKyys4mtobaziu7IdzkNyeWSl_1dH8sivhwO9-a_EpogRZnWbpxGUJFjd3mBx7fmw-gQsX4rxPDj6cFREicMJBXGHYvEOOOdNujHKi7SQhsxwIigKl3fClPmJXGfF9ZZwz2uiFRnzudSaCdNpX2a4WNvsdtFJjOqJismxYrvl8vQhZdnScn5IBYRhdKylqpyeoYGg2rLspZDNM-u8ox357pBvHwYtHF1JNx6xOF9di-GsrAfdO8B23D1Q7Y1jsn6R-z3ga4h8NMStweMv45ATy1Ma-j6MfEHBu9UrdQqyB7sw1lb3ekgjrP4Di0BLgktLmYwXU7tXUCjidm4gZmHyA7bAF0rQ_NvIeE7MNM5nd_BRqJR0LWF0P95Cc25oZuo5jE7vQnonrDNela7ZwysLrIM162WXFaIm5aov6L0hbRpbnWPFR0uqorE6TS_46fqKuR-qBWiihBVNNozz3qMLyXngTxkDZlBB73qwEBzrtDDrSH7fikbA6gQGK0pvfOfpi23LNr26zLvse1O9VS0dI1afZc99nq5jDaKEk-6drPzho6XUmIcLsQ1_8kpKUx8lj32NKj1agOyvcaRz6_fwCu2hSZBfR6dHL9gd_DNZLgr22abqOvuJUaPC7PTfqfA1A3bhb8Nl4dB
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Can+structural+MRI+aid+in+clinical+classification%3F+A+machine+learning+study+in+two+independent+samples+of+patients+with+schizophrenia%2C+bipolar+disorder+and+healthy+subjects&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=SCHNACK%2C+Hugo+G&rft.au=NIEUWENHUIS%2C+Mireille&rft.au=VAN+HAREN%2C+Neeltje+E.+M&rft.au=ABRAMOVIC%2C+Lucija&rft.date=2014&rft.pub=Elsevier&rft.issn=1053-8119&rft.eissn=1095-9572&rft.volume=84&rft.spage=299&rft.epage=306&rft_id=info:doi/10.1016%2Fj.neuroimage.2013.08.053&rft.externalDBID=n%2Fa&rft.externalDocID=28297585
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon