Can structural MRI aid in clinical classification? A machine learning study in two independent samples of patients with schizophrenia, bipolar disorder and healthy subjects
Although structural magnetic resonance imaging (MRI) has revealed partly non-overlapping brain abnormalities in schizophrenia and bipolar disorder, it is unknown whether structural MRI scans can be used to separate individuals with schizophrenia from those with bipolar disorder. An algorithm capable...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 84; pp. 299 - 306 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier Inc
01.01.2014
Elsevier Elsevier Limited |
Subjects | |
Online Access | Get full text |
ISSN | 1053-8119 1095-9572 1095-9572 |
DOI | 10.1016/j.neuroimage.2013.08.053 |
Cover
Abstract | Although structural magnetic resonance imaging (MRI) has revealed partly non-overlapping brain abnormalities in schizophrenia and bipolar disorder, it is unknown whether structural MRI scans can be used to separate individuals with schizophrenia from those with bipolar disorder. An algorithm capable of discriminating between these two disorders could become a diagnostic aid for psychiatrists. Here, we scanned 66 schizophrenia patients, 66 patients with bipolar disorder and 66 healthy subjects on a 1.5T MRI scanner. Three support vector machines were trained to separate patients with schizophrenia from healthy subjects, patients with schizophrenia from those with bipolar disorder, and patients with bipolar disorder from healthy subjects, respectively, based on their gray matter density images. The predictive power of the models was tested using cross-validation and in an independent validation set of 46 schizophrenia patients, 47 patients with bipolar disorder and 43 healthy subjects scanned on a 3T MRI scanner. Schizophrenia patients could be separated from healthy subjects with an average accuracy of 90%. Additionally, schizophrenia patients and patients with bipolar disorder could be distinguished with an average accuracy of 88%.The model delineating bipolar patients from healthy subjects was less accurate, correctly classifying 67% of the healthy subjects and only 53% of the patients with bipolar disorder. In the latter group, lithium and antipsychotics use had no influence on the classification results. Application of the 1.5T models on the 3T validation set yielded average classification accuracies of 76% (healthy vs schizophrenia), 66% (bipolar vs schizophrenia) and 61% (healthy vs bipolar). In conclusion, the accurate separation of schizophrenia from bipolar patients on the basis of structural MRI scans, as demonstrated here, could be of added value in the differential diagnosis of these two disorders. The results also suggest that gray matter pathology in schizophrenia and bipolar disorder differs to such an extent that they can be reliably differentiated using machine learning paradigms.
•We separated patients with schizophrenia and bipolar disorder based on their sMRI scans.•We trained a support vector machine (SVM) model to do this in a 1.5T ‘discovery set’.•Using cross-validation the model obtained a classification accuracy of >80% in this set.•Applying this model to an independent 3T ‘validation set’ yielded 66% accuracy.•Patterns of brain abnormalities differ between schizophrenia and bipolar disorder. |
---|---|
AbstractList | Although structural magnetic resonance imaging (MRI) has revealed partly non-overlapping brain abnormalities in schizophrenia and bipolar disorder, it is unknown whether structural MRI scans can be used to separate individuals with schizophrenia from those with bipolar disorder. An algorithm capable of discriminating between these two disorders could become a diagnostic aid for psychiatrists. Here, we scanned 66 schizophrenia patients, 66 patients with bipolar disorder and 66 healthy subjects on a 1.5T MRI scanner. Three support vector machines were trained to separate patients with schizophrenia from healthy subjects, patients with schizophrenia from those with bipolar disorder, and patients with bipolar disorder from healthy subjects, respectively, based on their gray matter density images. The predictive power of the models was tested using cross-validation and in an independent validation set of 46 schizophrenia patients, 47 patients with bipolar disorder and 43 healthy subjects scanned on a 3T MRI scanner. Schizophrenia patients could be separated from healthy subjects with an average accuracy of 90%. Additionally, schizophrenia patients and patients with bipolar disorder could be distinguished with an average accuracy of 88%.The model delineating bipolar patients from healthy subjects was less accurate, correctly classifying 67% of the healthy subjects and only 53% of the patients with bipolar disorder. In the latter group, lithium and antipsychotics use had no influence on the classification results. Application of the 1.5T models on the 3T validation set yielded average classification accuracies of 76% (healthy vs schizophrenia), 66% (bipolar vs schizophrenia) and 61% (healthy vs bipolar). In conclusion, the accurate separation of schizophrenia from bipolar patients on the basis of structural MRI scans, as demonstrated here, could be of added value in the differential diagnosis of these two disorders. The results also suggest that gray matter pathology in schizophrenia and bipolar disorder differs to such an extent that they can be reliably differentiated using machine learning paradigms.Although structural magnetic resonance imaging (MRI) has revealed partly non-overlapping brain abnormalities in schizophrenia and bipolar disorder, it is unknown whether structural MRI scans can be used to separate individuals with schizophrenia from those with bipolar disorder. An algorithm capable of discriminating between these two disorders could become a diagnostic aid for psychiatrists. Here, we scanned 66 schizophrenia patients, 66 patients with bipolar disorder and 66 healthy subjects on a 1.5T MRI scanner. Three support vector machines were trained to separate patients with schizophrenia from healthy subjects, patients with schizophrenia from those with bipolar disorder, and patients with bipolar disorder from healthy subjects, respectively, based on their gray matter density images. The predictive power of the models was tested using cross-validation and in an independent validation set of 46 schizophrenia patients, 47 patients with bipolar disorder and 43 healthy subjects scanned on a 3T MRI scanner. Schizophrenia patients could be separated from healthy subjects with an average accuracy of 90%. Additionally, schizophrenia patients and patients with bipolar disorder could be distinguished with an average accuracy of 88%.The model delineating bipolar patients from healthy subjects was less accurate, correctly classifying 67% of the healthy subjects and only 53% of the patients with bipolar disorder. In the latter group, lithium and antipsychotics use had no influence on the classification results. Application of the 1.5T models on the 3T validation set yielded average classification accuracies of 76% (healthy vs schizophrenia), 66% (bipolar vs schizophrenia) and 61% (healthy vs bipolar). In conclusion, the accurate separation of schizophrenia from bipolar patients on the basis of structural MRI scans, as demonstrated here, could be of added value in the differential diagnosis of these two disorders. The results also suggest that gray matter pathology in schizophrenia and bipolar disorder differs to such an extent that they can be reliably differentiated using machine learning paradigms. Although structural magnetic resonance imaging (MRI) has revealed partly non-overlapping brain abnormalities in schizophrenia and bipolar disorder, it is unknown whether structural MRI scans can be used to separate individuals with schizophrenia from those with bipolar disorder. An algorithm capable of discriminating between these two disorders could become a diagnostic aid for psychiatrists. Here, we scanned 66 schizophrenia patients, 66 patients with bipolar disorder and 66 healthy subjects on a 1.5T MRI scanner. Three support vector machines were trained to separate patients with schizophrenia from healthy subjects, patients with schizophrenia from those with bipolar disorder, and patients with bipolar disorder from healthy subjects, respectively, based on their gray matter density images. The predictive power of the models was tested using cross-validation and in an independent validation set of 46 schizophrenia patients, 47 patients with bipolar disorder and 43 healthy subjects scanned on a 3T MRI scanner. Schizophrenia patients could be separated from healthy subjects with an average accuracy of 90%. Additionally, schizophrenia patients and patients with bipolar disorder could be distinguished with an average accuracy of 88%.The model delineating bipolar patients from healthy subjects was less accurate, correctly classifying 67% of the healthy subjects and only 53% of the patients with bipolar disorder. In the latter group, lithium and antipsychotics use had no influence on the classification results. Application of the 1.5T models on the 3T validation set yielded average classification accuracies of 76% (healthyvsschizophrenia), 66% (bipolarvsschizophrenia) and 61% (healthyvsbipolar). In conclusion, the accurate separation of schizophrenia from bipolar patients on the basis of structural MRI scans, as demonstrated here, could be of added value in the differential diagnosis of these two disorders. The results also suggest that gray matter pathology in schizophrenia and bipolar disorder differs to such an extent that they can be reliably differentiated using machine learning paradigms. Although structural magnetic resonance imaging (MRI) has revealed partly non-overlapping brain abnormalities in schizophrenia and bipolar disorder, it is unknown whether structural MRI scans can be used to separate individuals with schizophrenia from those with bipolar disorder. An algorithm capable of discriminating between these two disorders could become a diagnostic aid for psychiatrists. Here, we scanned 66 schizophrenia patients, 66 patients with bipolar disorder and 66 healthy subjects on a 1.5 T MRI scanner. Three support vector machines were trained to separate patients with schizophrenia from healthy subjects, patients with schizophrenia from those with bipolar disorder, and patients with bipolar disorder from healthy subjects, respectively, based on their gray matter density images. The predictive power of the models was tested using cross-validation and in an independent validation set of 46 schizophrenia patients, 47 patients with bipolar disorder and 43 healthy subjects scanned on a 3 T MRI scanner. Schizophrenia patients could be separated from healthy subjects with an average accuracy of 90%. Additionally, schizophrenia patients and patients with bipolar disorder could be distinguished with an average accuracy of 88%.The model delineating bipolar patients from healthy subjects was less accurate, correctly classifying 67% of the healthy subjects and only 53% of the patients with bipolar disorder. In the latter group, lithium and antipsychotics use had no influence on the classification results. Application of the 1.5 T models on the 3 T validation set yielded average classification accuracies of 76% (healthy vs schizophrenia), 66% (bipolar vs schizophrenia) and 61% (healthy vs bipolar). In conclusion, the accurate separation of schizophrenia from bipolar patients on the basis of structural MRI scans, as demonstrated here, could be of added value in the differential diagnosis of these two disorders. The results also suggest that gray matter pathology in schizophrenia and bipolar disorder differs to such an extent that they can be reliably differentiated using machine learning paradigms. Although structural magnetic resonance imaging (MRI) has revealed partly non-overlapping brain abnormalities in schizophrenia and bipolar disorder, it is unknown whether structural MRI scans can be used to separate individuals with schizophrenia from those with bipolar disorder. An algorithm capable of discriminating between these two disorders could become a diagnostic aid for psychiatrists. Here, we scanned 66 schizophrenia patients, 66 patients with bipolar disorder and 66 healthy subjects on a 1.5T MRI scanner. Three support vector machines were trained to separate patients with schizophrenia from healthy subjects, patients with schizophrenia from those with bipolar disorder, and patients with bipolar disorder from healthy subjects, respectively, based on their gray matter density images. The predictive power of the models was tested using cross-validation and in an independent validation set of 46 schizophrenia patients, 47 patients with bipolar disorder and 43 healthy subjects scanned on a 3T MRI scanner. Schizophrenia patients could be separated from healthy subjects with an average accuracy of 90%. Additionally, schizophrenia patients and patients with bipolar disorder could be distinguished with an average accuracy of 88%.The model delineating bipolar patients from healthy subjects was less accurate, correctly classifying 67% of the healthy subjects and only 53% of the patients with bipolar disorder. In the latter group, lithium and antipsychotics use had no influence on the classification results. Application of the 1.5T models on the 3T validation set yielded average classification accuracies of 76% (healthy vs schizophrenia), 66% (bipolar vs schizophrenia) and 61% (healthy vs bipolar). In conclusion, the accurate separation of schizophrenia from bipolar patients on the basis of structural MRI scans, as demonstrated here, could be of added value in the differential diagnosis of these two disorders. The results also suggest that gray matter pathology in schizophrenia and bipolar disorder differs to such an extent that they can be reliably differentiated using machine learning paradigms. •We separated patients with schizophrenia and bipolar disorder based on their sMRI scans.•We trained a support vector machine (SVM) model to do this in a 1.5T ‘discovery set’.•Using cross-validation the model obtained a classification accuracy of >80% in this set.•Applying this model to an independent 3T ‘validation set’ yielded 66% accuracy.•Patterns of brain abnormalities differ between schizophrenia and bipolar disorder. Although structural magnetic resonance imaging (MRI) has revealed partly non-overlapping brain abnormalities in schizophrenia and bipolar disorder, it is unknown whether structural MRI scans can be used to separate individuals with schizophrenia from those with bipolar disorder. An algorithm capable of discriminating between these two disorders could become a diagnostic aid for psychiatrists. Here, we scanned 66 schizophrenia patients, 66 patients with bipolar disorder and 66 healthy subjects on a 1.5T MRI scanner. Three support vector machines were trained to separate patients with schizophrenia from healthy subjects, patients with schizophrenia from those with bipolar disorder, and patients with bipolar disorder from healthy subjects, respectively, based on their gray matter density images. The predictive power of the models was tested using cross-validation and in an independent validation set of 46 schizophrenia patients, 47 patients with bipolar disorder and 43 healthy subjects scanned on a 3T MRI scanner. Schizophrenia patients could be separated from healthy subjects with an average accuracy of 90%. Additionally, schizophrenia patients and patients with bipolar disorder could be distinguished with an average accuracy of 88%.The model delineating bipolar patients from healthy subjects was less accurate, correctly classifying 67% of the healthy subjects and only 53% of the patients with bipolar disorder. In the latter group, lithium and antipsychotics use had no influence on the classification results. Application of the 1.5T models on the 3T validation set yielded average classification accuracies of 76% (healthy vs schizophrenia), 66% (bipolar vs schizophrenia) and 61% (healthy vs bipolar). In conclusion, the accurate separation of schizophrenia from bipolar patients on the basis of structural MRI scans, as demonstrated here, could be of added value in the differential diagnosis of these two disorders. The results also suggest that gray matter pathology in schizophrenia and bipolar disorder differs to such an extent that they can be reliably differentiated using machine learning paradigms. |
Author | Scheewe, Thomas W. Nieuwenhuis, Mireille Schnack, Hugo G. van Haren, Neeltje E.M. Abramovic, Lucija Hulshoff Pol, Hilleke E. Brouwer, Rachel M. Kahn, René S. |
Author_xml | – sequence: 1 givenname: Hugo G. surname: Schnack fullname: Schnack, Hugo G. email: h.schnack@umcutrecht.nl – sequence: 2 givenname: Mireille surname: Nieuwenhuis fullname: Nieuwenhuis, Mireille – sequence: 3 givenname: Neeltje E.M. surname: van Haren fullname: van Haren, Neeltje E.M. – sequence: 4 givenname: Lucija surname: Abramovic fullname: Abramovic, Lucija – sequence: 5 givenname: Thomas W. surname: Scheewe fullname: Scheewe, Thomas W. – sequence: 6 givenname: Rachel M. surname: Brouwer fullname: Brouwer, Rachel M. – sequence: 7 givenname: Hilleke E. surname: Hulshoff Pol fullname: Hulshoff Pol, Hilleke E. – sequence: 8 givenname: René S. surname: Kahn fullname: Kahn, René S. |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28297585$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/24004694$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkt2KEzEYhgdZcX_0FiQggge2JplkJnOirsWfhRVB9jxkkm-2qWkyJhmXek1epKltWeiJe5KE5PmeYXjf8-rEBw9VhQieE0yaN6u5hykGu1a3MKeY1HMs5pjXj6ozgjs-63hLT7ZnXs8EId1pdZ7SCmPcESaeVKeUYcyajp1VfxbKo5TjpPMUlUNfv18hZQ2yHmlnvdXlTjuVkh3KOdvg36FLtFZ6aT0gByp662-LYTKb7VC-C2UzMEJZfEZJrUcHCYUBjWW8XCV0Z_MSpWL4HcZlBG_Va9TbMTgVkbEpRAMRKW_QEpTLyw1KU78CndPT6vGgXIJn-_2iuvn08WbxZXb97fPV4vJ6pjmledZDP4DqMaWaUNyqnnYccy2gMbQXXLQcs9aA6clQXihWNQycUQWs12rA9UX1aqcdY_g5QcpybZMG55SHMCVJOMZtQ2nb_R9lDWMd7Sgt6IsjdBWm6Mt_FCFra8KIaAr1fE9N_RqMHGMJOW7kIbECvNwDKpVwhqi8tumeE7RrueCFe7vjdAwpRRiktvlfgDkq6yTBclsluZL3VZLbKkksZOlNEYgjweEbDxj9sBuFEtIvC1EmXaLXYGwsOUoT7EMk748kh0L-gM3DFH8BFdUCyw |
CitedBy_id | crossref_primary_10_1002_hbm_25276 crossref_primary_10_1016_j_schres_2016_08_027 crossref_primary_10_1016_j_dscb_2021_100005 crossref_primary_10_1002_hbm_23410 crossref_primary_10_1016_j_bpsc_2020_05_008 crossref_primary_10_1002_mpr_1818 crossref_primary_10_1038_s41598_024_71316_3 crossref_primary_10_1088_1757_899X_884_1_012003 crossref_primary_10_3389_fpsyt_2022_826111 crossref_primary_10_1016_j_pscychresns_2023_111732 crossref_primary_10_1007_s00702_014_1272_5 crossref_primary_10_1016_j_neuroimage_2016_02_016 crossref_primary_10_1088_1361_6560_ac9d1e crossref_primary_10_1177_1754073920930784 crossref_primary_10_1016_j_biopsych_2018_12_003 crossref_primary_10_1016_j_neubiorev_2019_01_005 crossref_primary_10_1007_s10278_024_01279_4 crossref_primary_10_1063_1_5003848 crossref_primary_10_1002_brb3_633 crossref_primary_10_1038_s41398_020_0780_3 crossref_primary_10_1007_s11604_018_0794_4 crossref_primary_10_1016_j_neuroimage_2015_12_013 crossref_primary_10_1016_j_media_2021_102304 crossref_primary_10_1002_14651858_CD011021_pub2 crossref_primary_10_3389_fped_2024_1362409 crossref_primary_10_1111_cns_13048 crossref_primary_10_1111_pcn_12502 crossref_primary_10_31887_DCNS_2020_22_1_rparikh crossref_primary_10_3389_fpsyt_2020_542394 crossref_primary_10_1186_s12888_018_1678_y crossref_primary_10_1016_j_ajp_2020_101984 crossref_primary_10_31887_DCNS_2018_20_3_pfalkai crossref_primary_10_1093_cercor_bhx319 crossref_primary_10_3390_diagnostics13132140 crossref_primary_10_3389_fnhum_2017_00232 crossref_primary_10_1111_bdi_12895 crossref_primary_10_1038_s41380_023_01977_5 crossref_primary_10_1177_0004867415601730 crossref_primary_10_1007_s10462_019_09766_9 crossref_primary_10_1016_j_jad_2015_12_053 crossref_primary_10_1016_j_jneumeth_2016_06_017 crossref_primary_10_1016_j_neuroimage_2016_08_066 crossref_primary_10_3389_fpsyt_2016_00050 crossref_primary_10_2147_NDT_S337814 crossref_primary_10_3389_fpsyt_2022_845492 crossref_primary_10_1155_2022_1581958 crossref_primary_10_1371_journal_pone_0175683 crossref_primary_10_1016_j_bpsc_2019_05_018 crossref_primary_10_1016_j_ijpsycho_2016_04_002 crossref_primary_10_1038_s41380_018_0228_9 crossref_primary_10_17816_CP11030 crossref_primary_10_1007_s00115_014_4022_x crossref_primary_10_1016_j_neuroimage_2016_02_079 crossref_primary_10_1016_j_schres_2018_04_037 crossref_primary_10_1016_j_jad_2021_03_082 crossref_primary_10_1093_schbul_sbu017 crossref_primary_10_1017_S0033291724003295 crossref_primary_10_1186_s12916_023_02941_4 crossref_primary_10_1016_j_schres_2017_06_004 crossref_primary_10_1093_brain_awv111 crossref_primary_10_1038_s41598_018_32290_9 crossref_primary_10_1016_j_psychres_2019_03_048 crossref_primary_10_1186_s40203_016_0017_6 crossref_primary_10_3389_fpsyt_2016_00063 crossref_primary_10_1016_j_pscychresns_2018_03_003 crossref_primary_10_4018_IJRQEH_2018040102 crossref_primary_10_1002_hbm_25323 crossref_primary_10_3389_fninf_2017_00059 crossref_primary_10_1371_journal_pone_0160697 crossref_primary_10_29137_umagd_1232222 crossref_primary_10_1016_j_schres_2018_01_006 crossref_primary_10_1016_j_cell_2014_02_042 crossref_primary_10_1038_s41537_025_00583_4 crossref_primary_10_3389_fncom_2022_915477 crossref_primary_10_3390_healthcare10071256 crossref_primary_10_1016_j_cmpb_2022_107112 crossref_primary_10_1016_j_compbiomed_2022_105956 crossref_primary_10_1016_j_nicl_2017_06_014 crossref_primary_10_1016_j_compbiomed_2022_105554 crossref_primary_10_3389_fpsyg_2017_00156 crossref_primary_10_7759_cureus_71651 crossref_primary_10_1109_ACCESS_2018_2882848 crossref_primary_10_1093_schbul_sbx137 crossref_primary_10_1111_acps_12824 crossref_primary_10_1093_cercor_bhy306 crossref_primary_10_1016_j_bbi_2024_08_013 crossref_primary_10_1002_hbm_24863 crossref_primary_10_1093_schbul_sbu141 crossref_primary_10_1016_j_jad_2024_09_025 crossref_primary_10_3389_fpsyt_2019_00869 crossref_primary_10_1111_pcn_12670 crossref_primary_10_1007_s12021_014_9238_1 crossref_primary_10_3389_fpsyt_2022_807116 crossref_primary_10_3390_ijerph18116099 crossref_primary_10_1109_JPROC_2015_2501814 crossref_primary_10_3389_fnins_2021_697168 crossref_primary_10_1016_j_acra_2024_04_013 crossref_primary_10_1002_wps_20334 crossref_primary_10_1002_jdn_10144 crossref_primary_10_1176_appi_focus_20170046 crossref_primary_10_1016_j_nicl_2018_02_007 crossref_primary_10_1007_s00787_020_01483_x crossref_primary_10_1016_j_rpsm_2017_06_004 crossref_primary_10_3389_fpsyt_2022_926292 crossref_primary_10_1176_appi_ajp_2019_19080794 crossref_primary_10_1016_j_jad_2019_06_019 crossref_primary_10_1038_s41380_023_02195_9 crossref_primary_10_1038_nm_4190 crossref_primary_10_1002_hbm_26273 crossref_primary_10_1080_14737175_2019_1562338 crossref_primary_10_1093_schbul_sbac158 crossref_primary_10_1038_s41398_018_0225_4 crossref_primary_10_1038_s41380_018_0106_5 crossref_primary_10_30773_pi_2018_12_21_2 crossref_primary_10_1016_j_nicl_2020_102220 crossref_primary_10_3389_fnhum_2017_00157 crossref_primary_10_1016_j_rpsmen_2017_10_005 crossref_primary_10_1002_hbm_23434 crossref_primary_10_1038_npp_2015_22 crossref_primary_10_1016_j_psychres_2019_01_026 crossref_primary_10_1002_hbm_25892 crossref_primary_10_1038_s41537_021_00157_0 crossref_primary_10_1016_j_neubiorev_2022_104552 crossref_primary_10_1007_s40473_018_0155_8 crossref_primary_10_1109_ACCESS_2019_2918251 crossref_primary_10_1002_hbm_25013 crossref_primary_10_1186_s12938_018_0464_x crossref_primary_10_3389_fnins_2021_682777 crossref_primary_10_1155_2020_6405930 crossref_primary_10_1001_jamanetworkopen_2023_1671 crossref_primary_10_1007_s40998_018_0060_x crossref_primary_10_1016_j_schres_2017_10_023 crossref_primary_10_1038_s41598_023_38101_0 crossref_primary_10_1016_j_neurad_2020_12_003 crossref_primary_10_1111_bdi_12507 crossref_primary_10_1016_j_pnpbp_2017_06_024 crossref_primary_10_1016_j_compmedimag_2021_101882 crossref_primary_10_33450_fpn_2021_06_003 crossref_primary_10_1080_27706710_2023_2249036 crossref_primary_10_1109_TNB_2017_2751074 crossref_primary_10_1109_JBHI_2019_2941222 crossref_primary_10_1145_3527170 crossref_primary_10_22328_2079_5343_2021_12_2_30_36 crossref_primary_10_1007_s00787_014_0593_0 crossref_primary_10_1080_15622975_2016_1183043 crossref_primary_10_1093_schbul_sbu174 crossref_primary_10_3389_fpsyt_2020_00027 crossref_primary_10_1016_j_expneurol_2021_113608 crossref_primary_10_1016_j_bpsc_2016_01_001 crossref_primary_10_1080_14786451_2021_1890736 crossref_primary_10_1038_s41583_019_0177_6 crossref_primary_10_1049_cit2_12021 crossref_primary_10_3389_fnins_2022_926426 crossref_primary_10_1016_j_nicl_2021_102860 crossref_primary_10_1016_j_neubiorev_2015_08_001 crossref_primary_10_1038_s41398_018_0334_0 crossref_primary_10_1016_j_neubiorev_2017_07_004 crossref_primary_10_1146_annurev_clinpsy_032814_112915 crossref_primary_10_1176_appi_ajp_2015_15070922 crossref_primary_10_3389_fpsyt_2024_1384842 crossref_primary_10_1016_j_bbi_2021_06_002 |
Cites_doi | 10.1016/j.pscychresns.2010.09.016 10.2174/138161209788957456 10.1001/archgenpsychiatry.2010.199 10.1001/archgenpsychiatry.2009.62 10.1001/archpsyc.62.11.1218 10.1016/j.schres.2008.12.011 10.1002/hbm.460030304 10.1016/j.neuroimage.2010.01.005 10.1001/archpsyc.1978.01770300115013 10.1007/s12021-010-9094-6 10.1002/hbm.20444 10.1093/brain/awq236 10.1016/j.schres.2006.05.007 10.1109/72.788640 10.1016/j.neubiorev.2011.12.015 10.1016/j.biopsych.2011.11.026 10.1016/j.euroneuro.2012.08.008 10.1192/bjp.bp.108.059717 10.1016/j.schres.2009.12.022 10.1192/bjp.186.5.369 10.1093/oxfordjournals.schbul.a007087 10.1016/j.neuroimage.2012.03.079 10.1016/j.biopsych.2010.03.036 10.1111/j.1399-5618.2012.01000.x 10.1001/archpsyc.65.9.1017 10.1007/978-3-540-30135-6_48 10.1001/archpsyc.65.7.746 10.1001/archpsyc.1978.01770310043002 10.1016/j.biopsych.2011.01.032 10.1007/978-3-642-02498-6_25 10.1016/j.neuroimage.2009.07.041 10.1371/journal.pone.0021047 10.1111/j.1600-0447.1991.tb03123.x 10.1001/jamapsychiatry.2013.1328 10.1093/schbul/sbs118 10.1001/archpsyc.58.12.1118 10.1016/j.biopsych.2004.06.021 10.1037/0033-2909.86.2.420 10.1001/archgenpsychiatry.2011.1615 10.1016/S0140-6736(00)02793-8 10.1016/S0006-3223(99)00052-9 10.1001/archpsyc.1992.01820080023004 10.1016/j.biopsych.2007.03.015 10.1097/00005053-199506000-00003 |
ContentType | Journal Article |
Copyright | 2013 Elsevier Inc. 2015 INIST-CNRS 2013 Elsevier Inc. All rights reserved. Copyright Elsevier Limited Jan 1, 2014 |
Copyright_xml | – notice: 2013 Elsevier Inc. – notice: 2015 INIST-CNRS – notice: 2013 Elsevier Inc. All rights reserved. – notice: Copyright Elsevier Limited Jan 1, 2014 |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 7QO |
DOI | 10.1016/j.neuroimage.2013.08.053 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts ProQuest - Health & Medical Complete保健、医学与药学数据库 ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic Biotechnology Research Abstracts |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic Biotechnology Research Abstracts |
DatabaseTitleList | MEDLINE - Academic ProQuest One Psychology Engineering Research Database MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1095-9572 |
EndPage | 306 |
ExternalDocumentID | 3380121201 24004694 28297585 10_1016_j_neuroimage_2013_08_053 S1053811913009166 |
Genre | Validation Studies Comparative Study Randomized Controlled Trial Journal Article |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ABXDB ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADFRT AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPUW AFRHN AFTJW AFXIZ AGCQF AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HMCUK IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 ROL RPZ SAE SCC SDF SDG SDP SES SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 Z5R ZU3 ~G- 3V. AACTN AADPK AAIAV ABLVK ABYKQ AFKWA AJBFU AJOXV AMFUW C45 EFLBG HMQ LCYCR RIG SNS ZA5 29N 53G AAFWJ AAQXK AAYXX ACLOT ACRPL ADFGL ADMUD ADNMO ADVLN ADXHL AFPKN AGHFR AGQPQ AIGII AKRLJ APXCP ASPBG AVWKF AZFZN CAG CITATION COF FEDTE FGOYB G-2 HDW HEI HMK HMO HVGLF HZ~ OK1 R2- SEW WUQ XPP ZMT ~HD 6I. AALMO AAPBV ABPIF ABPTK ABQIS ADALY BBAFP EFJIC IPNFZ IQODW NCXOZ PQEST PQUKI AGRNS ALIPV CGR CUY CVF ECM EIF NPM 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PRINS Q9U RC3 7X8 7QO |
ID | FETCH-LOGICAL-c522t-bebfeab022c1207ab29505c8e6d2b85875047dedb1f29520a3ef542ae4bcaf03 |
IEDL.DBID | 7X7 |
ISSN | 1053-8119 1095-9572 |
IngestDate | Sun Sep 28 14:51:26 EDT 2025 Sat Sep 27 18:15:35 EDT 2025 Wed Aug 13 08:09:05 EDT 2025 Mon Jul 21 06:01:24 EDT 2025 Thu Nov 24 18:35:09 EST 2022 Thu Apr 24 23:10:21 EDT 2025 Wed Oct 01 02:58:14 EDT 2025 Fri Feb 23 02:24:27 EST 2024 Tue Aug 26 16:31:40 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Schizophrenia Bipolar disorder MRI Machine learning Classification Psychosis Mood disorder Learning Human Acquisition process Nuclear magnetic resonance imaging |
Language | English |
License | CC BY 4.0 2013 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c522t-bebfeab022c1207ab29505c8e6d2b85875047dedb1f29520a3ef542ae4bcaf03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 ObjectType-Undefined-3 |
PMID | 24004694 |
PQID | 1547314186 |
PQPubID | 2031077 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1500762279 proquest_miscellaneous_1464492922 proquest_journals_1547314186 pubmed_primary_24004694 pascalfrancis_primary_28297585 crossref_citationtrail_10_1016_j_neuroimage_2013_08_053 crossref_primary_10_1016_j_neuroimage_2013_08_053 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2013_08_053 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2013_08_053 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-01-01 2014-01-00 2014 2014-Jan-01 20140101 |
PublicationDateYYYYMMDD | 2014-01-01 |
PublicationDate_xml | – month: 01 year: 2014 text: 2014-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam – name: United States |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2014 |
Publisher | Elsevier Inc Elsevier Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Elsevier – name: Elsevier Limited |
References | McDonald, Zanelli, Rabe-Hesketh, Ellison-Wright, Sham, Kalidindi (bb0125) 2004; 56 Koutsouleris, Meisenzahl, Davatzikos, Bottlender, Frodl, Scheuerecker (bb0110) 2009; 66 Ellison-Wright, Bullmore (bb0035) 2010; 117 Vapnik (bb0250) 1999; 10 Hulshoff Pol, van Baal, Schnack, Brans, van der Schot, Brouwer (bb0075) 2012; 69 McDonald, Bullmore, Sham, Chitnis, Suckling, MacCabe (bb0130) 2005; 186 Pardo, Georgopoulos, Kenny, Stuve, Findling, Schulz (bb0160) 2006; 87 Koo, Levitt, Salisbury, Nakamura, Shenton, McCarley (bb0105) 2008; 65 Radua, Canales-Rodríguez, Pomarol-Clotet, Salvador (bb0175) 2013 Ho, Andreasen, Ziebell, Pierson, Magnotta (bb0065) 2011; 68 Steiner, Tebes, Sledge, Walker (bb0225) 1995; 183 Ingalhalikar, Kanterakis, Gur, Roberts, Verma (bb0080) 2010; 13 Arnone, Cavanagh, Gerber, Lawrie, Ebmeier, McIntosh (bb0005) 2009; 195 Shrout, Fleiss (bb0205) 1979; 2 Knerr, Personnaz, Dreyfus (bb0100) 1990 Scheewe, van Haren, Sarkisyan, Schnack, Brouwer, de Glint (bb0190) 2012; 23 Kasparek, Thomaz, Sato, Schwarz, Janousova, Marecek (bb0090) 2011; 191 Selvaraj, Arnone, Job, Stanfield, Farrow, Nugent, Scherk, Gruber, Chen, Sachdev, Dickstein, Malhi, Ha, Ha, Phillips, McIntosh (bb0195) 2012; 14 Nakamura, Kawasaki, Suzuki, Hagino, Kurokawa, Takahashi (bb0145) 2004; 30 Davatzikos, Shen, Gur, Wu, Liu, Fan (bb0030) 2005; 62 Chang (bb0015) 2011 Collins, Holmes, Peters, Evans (bb0020) 1995; 3 Olabi, Ellison-Wright, McIntosh, Wood, Bullmore, Lawrie (bb0155) 2011; 70 Hulshoff Pol, Schnack, Mandl, van Haren, Koning, Collins (bb0070) 2001; 58 Kempton, Geddes, Ettinger, Williams, Grasby (bb0095) 2008; 65 Karageorgiou, Schulz, Gollub, Andreasen, Ho, Lauriello (bb0085) 2011; 9 van der Schot, Vonk, Brouwer, van Baal, Brans, van Haren (bb0245) 2010; 133 Fan, Gur, Gur, Wu, Shen, Calkins, Davatzikos (bb0045) 2008; 63 Rimol, Hartberg, Nesvåg, Fennema-Notestine, Hagler, Pung (bb0180) 2010; 68 Shepherd, Laurens, Matheson, Carr, Green (bb0200) 2012; 36 Rimol, Nesvåg, Hagler, Bergmann, Fennema-Notestine, Hartberg (bb0185) 2012; 71 Dashjamts, Yoshiura, Hiwatashi, Togao, Yamashita, Ohyagi, Monji, Kamano, Kawashima, Kira, Honda (bb0025) 2012; 103 Liu, Teverovskiy, Carmichael, Kikinis, Shenton, Carter (bb0120) 2004; 3216 van den Heuvel, Sporns, Collin, Scheewe, Mandl, Cahn, Goñi, Hulshoff Pol, Kahn (bb0240) 2013; 70 Takayanagi, Takahashi, Orikabe, Mozue, Kawasaki, Nakamura (bb0235) 2011; 6 Brouwer, Hulshoff Pol, Schnack (bb0010) 2010; 49 Smieskova, Fusar-Poli, Allen, Bendfeldt, Stieglitz, Drewe (bb0215) 2009; 15 Spitzer, Endicott, Robins (bb0220) 1978; 35 Pohl, Sabuncu (bb0165) 2009; 21 Franke, Ziegler, Kloppel, Gaser (bb0055) 2010; 50 Haijma, Van Haren, Cahn, Koolschijn, Hulshoff Pol, Kahn (bb0060) 2012; 39 Fornito, Yücel, Patti, Wood, Pantelis (bb0050) 2009; 108 Moore, Bebchuk, Wilds, Chen, Manji (bb0135) 2000; 356 Nieuwenhuis, van Haren, Hulshoff Pol, Cahn, Kahn, Schnack (bb0150) 2012; 61 Qiu, Vaillant, Barta, Ratnanather, Miller (bb0170) 2008; 29 Andreasen, Flaum, Arndt (bb0255) 1992; 49 Leonard, Kuldau, Breier, Zuffante, Gautier, Heron (bb0115) 1999; 46 Endicott, Spitzer (bb0040) 1978; 35 Skre, Onstad, Torgersen, Kringlen (bb0210) 1991; 84 Hulshoff Pol (10.1016/j.neuroimage.2013.08.053_bb0075) 2012; 69 Rimol (10.1016/j.neuroimage.2013.08.053_bb0185) 2012; 71 Chang (10.1016/j.neuroimage.2013.08.053_bb0015) 2011 Vapnik (10.1016/j.neuroimage.2013.08.053_bb0250) 1999; 10 Olabi (10.1016/j.neuroimage.2013.08.053_bb0155) 2011; 70 Knerr (10.1016/j.neuroimage.2013.08.053_bb0100) 1990 Ho (10.1016/j.neuroimage.2013.08.053_bb0065) 2011; 68 Nakamura (10.1016/j.neuroimage.2013.08.053_bb0145) 2004; 30 McDonald (10.1016/j.neuroimage.2013.08.053_bb0125) 2004; 56 Fan (10.1016/j.neuroimage.2013.08.053_bb0045) 2008; 63 Takayanagi (10.1016/j.neuroimage.2013.08.053_bb0235) 2011; 6 Haijma (10.1016/j.neuroimage.2013.08.053_bb0060) 2012; 39 Leonard (10.1016/j.neuroimage.2013.08.053_bb0115) 1999; 46 Dashjamts (10.1016/j.neuroimage.2013.08.053_bb0025) 2012; 103 Franke (10.1016/j.neuroimage.2013.08.053_bb0055) 2010; 50 Liu (10.1016/j.neuroimage.2013.08.053_bb0120) 2004; 3216 Nieuwenhuis (10.1016/j.neuroimage.2013.08.053_bb0150) 2012; 61 Karageorgiou (10.1016/j.neuroimage.2013.08.053_bb0085) 2011; 9 Brouwer (10.1016/j.neuroimage.2013.08.053_bb0010) 2010; 49 Steiner (10.1016/j.neuroimage.2013.08.053_bb0225) 1995; 183 Radua (10.1016/j.neuroimage.2013.08.053_bb0175) 2013 Smieskova (10.1016/j.neuroimage.2013.08.053_bb0215) 2009; 15 van den Heuvel (10.1016/j.neuroimage.2013.08.053_bb0240) 2013; 70 Ingalhalikar (10.1016/j.neuroimage.2013.08.053_bb0080) 2010; 13 Collins (10.1016/j.neuroimage.2013.08.053_bb0020) 1995; 3 Fornito (10.1016/j.neuroimage.2013.08.053_bb0050) 2009; 108 Pohl (10.1016/j.neuroimage.2013.08.053_bb0165) 2009; 21 Davatzikos (10.1016/j.neuroimage.2013.08.053_bb0030) 2005; 62 van der Schot (10.1016/j.neuroimage.2013.08.053_bb0245) 2010; 133 Andreasen (10.1016/j.neuroimage.2013.08.053_bb0255) 1992; 49 Selvaraj (10.1016/j.neuroimage.2013.08.053_bb0195) 2012; 14 Pardo (10.1016/j.neuroimage.2013.08.053_bb0160) 2006; 87 Rimol (10.1016/j.neuroimage.2013.08.053_bb0180) 2010; 68 Scheewe (10.1016/j.neuroimage.2013.08.053_bb0190) 2012; 23 Kasparek (10.1016/j.neuroimage.2013.08.053_bb0090) 2011; 191 Qiu (10.1016/j.neuroimage.2013.08.053_bb0170) 2008; 29 Shepherd (10.1016/j.neuroimage.2013.08.053_bb0200) 2012; 36 Ellison-Wright (10.1016/j.neuroimage.2013.08.053_bb0035) 2010; 117 Spitzer (10.1016/j.neuroimage.2013.08.053_bb0220) 1978; 35 Koo (10.1016/j.neuroimage.2013.08.053_bb0105) 2008; 65 Shrout (10.1016/j.neuroimage.2013.08.053_bb0205) 1979; 2 Skre (10.1016/j.neuroimage.2013.08.053_bb0210) 1991; 84 Moore (10.1016/j.neuroimage.2013.08.053_bb0135) 2000; 356 Hulshoff Pol (10.1016/j.neuroimage.2013.08.053_bb0070) 2001; 58 Arnone (10.1016/j.neuroimage.2013.08.053_bb0005) 2009; 195 Koutsouleris (10.1016/j.neuroimage.2013.08.053_bb0110) 2009; 66 Endicott (10.1016/j.neuroimage.2013.08.053_bb0040) 1978; 35 Kempton (10.1016/j.neuroimage.2013.08.053_bb0095) 2008; 65 McDonald (10.1016/j.neuroimage.2013.08.053_bb0130) 2005; 186 |
References_xml | – volume: 186 start-page: 369 year: 2005 end-page: 377 ident: bb0130 article-title: Regional volume deviations of brain structure in schizophrenia and psychotic bipolar disorder: computational morphometry study publication-title: Br. J. Psychiatry – volume: 13 start-page: 558 year: 2010 end-page: 565 ident: bb0080 article-title: DTI based diagnostic prediction of a disease via pattern classification publication-title: Med. Image Comput. Comput. Assist. Interv. – volume: 65 start-page: 746 year: 2008 end-page: 760 ident: bb0105 article-title: A cross-sectional and longitudinal magnetic resonance imaging study of cingulate gyrus gray matter volume abnormalities in first-episode schizophrenia and first-episode affective psychosis publication-title: Arch. Gen. Psychiatry – volume: 133 start-page: 3080 year: 2010 end-page: 3092 ident: bb0245 article-title: Genetic and environmental influences on focal brain density in bipolar disorder publication-title: Brain – volume: 46 start-page: 374 year: 1999 end-page: 382 ident: bb0115 article-title: Cumulative effect of anatomical risk factors for schizophrenia: an MRI study publication-title: Biol. Psychiatry – volume: 195 start-page: 194 year: 2009 end-page: 201 ident: bb0005 article-title: Magnetic resonance imaging studies in bipolar disorder and schizophrenia: meta-analysis publication-title: Br. J. Psychiatry – volume: 117 start-page: 1 year: 2010 end-page: 12 ident: bb0035 article-title: Anatomy of bipolar disorder and schizophrenia: a meta-analysis publication-title: Schizophr. Res. – volume: 6 start-page: e21047 year: 2011 ident: bb0235 article-title: Classification of first-episode schizophrenia patients and healthy subjects by automated MRI measures of regional brain volume and cortical thickness publication-title: PLoS One – volume: 103 start-page: 59 year: 2012 end-page: 69 ident: bb0025 article-title: Alzheimer's disease: diagnosis by different methods of voxel-based morphometry publication-title: Fukuoka Igaku Zasshi – volume: 29 start-page: 973 year: 2008 end-page: 985 ident: bb0170 article-title: Region-of-interest-based analysis with application of cortical thickness variation of left planum temporale in schizophrenia and psychotic bipolar disorder publication-title: Hum. Brain Mapp. – volume: 84 start-page: 167 year: 1991 end-page: 173 ident: bb0210 article-title: High interrater reliability for the Structured Clinical Interview for DSM-III-R Axis I (SCID-I) publication-title: Acta Psychiatr. Scand. – volume: 35 start-page: 773 year: 1978 end-page: 782 ident: bb0220 article-title: Research diagnostic criteria: rationale and reliability publication-title: Arch. Gen. Psychiatry – volume: 108 start-page: 104 year: 2009 end-page: 113 ident: bb0050 article-title: Mapping grey matter reductions in schizophrenia: an anatomical likelihood estimation analysis of voxel-based morphometry studies publication-title: Schizophr. Res. – volume: 30 start-page: 393 year: 2004 end-page: 404 ident: bb0145 article-title: Multiple structural brain measures obtained by three-dimensional magnetic resonance imaging to distinguish between schizophrenia patients and normal subjects publication-title: Schizophr. Bull. – volume: 66 start-page: 700 year: 2009 end-page: 712 ident: bb0110 article-title: Use of neuroanatomical pattern classification to identify subjects in at-risk mental states of psychosis and predict disease transition publication-title: Arch. Gen. Psychiatry – volume: 23 start-page: 675 year: 2012 end-page: 685 ident: bb0190 article-title: Exercise therapy, cardiorespiratory fitness and their effect on brain volumes: a randomised controlled trial in patients with schizophrenia and healthy controls publication-title: Eur. Neuropsychopharmacol. – volume: 3216 start-page: 393 year: 2004 end-page: 401 ident: bb0120 article-title: Discriminative MR image feature analysis for automatic schizophrenia and Alzheimer's disease classification publication-title: Lect. Notes Comput. Sci. – volume: 58 start-page: 1118 year: 2001 end-page: 1125 ident: bb0070 article-title: Focal gray matter density changes in schizophrenia publication-title: Arch. Gen. Psychiatry – volume: 36 start-page: 1342 year: 2012 end-page: 1356 ident: bb0200 article-title: Systematic meta-review and quality assessment of the structural brain alterations in schizophrenia publication-title: Neurosci. Biobehav. Rev. – volume: 356 start-page: 1241 year: 2000 end-page: 1242 ident: bb0135 article-title: Lithium-induced increase in human brain grey matter publication-title: Lancet – volume: 50 start-page: 883 year: 2010 end-page: 892 ident: bb0055 article-title: Estimating the age of healthy subjects from T1-weighted MRI scans using kernel methods: exploring the influence of various parameters publication-title: NeuroImage – volume: 39 start-page: 1129 year: 2012 end-page: 1138 ident: bb0060 article-title: Brain volumes in schizophrenia: a meta-analysis in over 18 000 subjects publication-title: Schizophr. Bull. – volume: 183 start-page: 365 year: 1995 end-page: 369 ident: bb0225 article-title: A comparison of the structured clinical interview for DSM-III-R and clinical diagnoses publication-title: J. Nerv. Ment. Dis. – volume: 49 start-page: 467 year: 2010 end-page: 477 ident: bb0010 article-title: Segmentation of MRI brain scans using non-uniform partial volume densities publication-title: NeuroImage – volume: 9 start-page: 321 year: 2011 end-page: 333 ident: bb0085 article-title: Neuropsychological testing and structural magnetic resonance imaging as diagnostic biomarkers early in the course of schizophrenia and related psychoses publication-title: Neuroinformatics – volume: 62 start-page: 1218 year: 2005 end-page: 1227 ident: bb0030 article-title: Whole-brain morphometric study of schizophrenia revealing a spatially complex set of focal abnormalities publication-title: Arch. Gen. Psychiatry – volume: 191 start-page: 174 year: 2011 end-page: 181 ident: bb0090 article-title: Maximum-uncertainty linear discrimination analysis of first-episode schizophrenia subjects publication-title: Psychiatry Res. – volume: 49 start-page: 615 year: 1992 end-page: 623 ident: bb0255 article-title: The Comprehensive Assessment of Symptoms and History (CASH). An instrument for assessing diagnosis and psychopathology publication-title: Arch. Gen. Psychiatry – volume: 2 start-page: 420 year: 1979 end-page: 428 ident: bb0205 article-title: Intraclass correlations: uses in assessing rater reliability publication-title: Psychol. Bull. – year: 2013 ident: bb0175 article-title: Validity of modulation and optimal settings for advanced voxel-based morphometry publication-title: NeuroImage – year: 1990 ident: bb0100 article-title: Single-layer learning revisited: a stepwise procedure for building and training a neural network publication-title: Neurocomputing: Algorithms, Architectures and Applications, NATO ASI – volume: 70 start-page: 88 year: 2011 end-page: 96 ident: bb0155 article-title: Are there progressive brain changes in schizophrenia? A meta-analysis of structural magnetic resonance imaging studies publication-title: Biol. Psychiatry – volume: 21 start-page: 300 year: 2009 end-page: 313 ident: bb0165 article-title: A unified framework for MR based disease classification publication-title: Inf. Process. Med. Imaging – start-page: 1 year: 2011 end-page: 27 ident: bb0015 article-title: A library for support vector machines publication-title: ACM Transactions on Intelligent Systems and Technology – volume: 70 start-page: 783 year: 2013 end-page: 792 ident: bb0240 article-title: Abnormal rich club organization and functional brain dynamics in schizophrenia publication-title: JAMA Psychiatry – volume: 65 start-page: 1017 year: 2008 end-page: 1032 ident: bb0095 article-title: Meta-analysis, database, and meta-regression of 98 structural imaging studies in bipolar disorder publication-title: Arch. Gen. Psychiatry – volume: 63 start-page: 118 year: 2008 end-page: 124 ident: bb0045 article-title: Unaffected family members and schizophrenia patients share brain structure patterns: a high-dimensional pattern classification study publication-title: Biol. Psychiatry – volume: 69 start-page: 349 year: 2012 end-page: 359 ident: bb0075 article-title: Overlapping and segregating structural brain abnormalities in twins with schizophrenia or bipolar disorder publication-title: Arch. Gen. Psychiatry – volume: 15 start-page: 2535 year: 2009 end-page: 2549 ident: bb0215 article-title: The effects of antipsychotics on the brain: what have we learnt from structural imaging of schizophrenia? — a systematic review publication-title: Curr. Pharm. Des. – volume: 71 start-page: 552 year: 2012 end-page: 560 ident: bb0185 article-title: Cortical volume, surface area, and thickness in schizophrenia and bipolar disorder publication-title: Biol. Psychiatry – volume: 87 start-page: 297 year: 2006 end-page: 306 ident: bb0160 article-title: Classification of adolescent psychotic disorders using linear discriminant analysis publication-title: Schizophr. Res. – volume: 68 start-page: 128 year: 2011 end-page: 137 ident: bb0065 article-title: Long-term antipsychotic treatment and brain volumes: a longitudinal study of first-episode schizophrenia publication-title: Arch. Gen. Psychiatry – volume: 14 start-page: 135 year: 2012 end-page: 145 ident: bb0195 article-title: Grey matter differences in bipolar disorder: a meta-analysis of voxel-based morphometry studies publication-title: Bipolar Disord. – volume: 35 start-page: 837 year: 1978 end-page: 844 ident: bb0040 article-title: A diagnostic interview: the schedule for affective disorders and schizophrenia publication-title: Arch. Gen. Psychiatry – volume: 56 start-page: 411 year: 2004 end-page: 417 ident: bb0125 article-title: Meta-analysis of magnetic resonance imaging brain morphometry studies in bipolar disorder publication-title: Biol. Psychiatry – volume: 68 start-page: 41 year: 2010 end-page: 50 ident: bb0180 article-title: Cortical thickness and subcortical volumes in schizophrenia and bipolar disorder publication-title: Biol. Psychiatry – volume: 3 start-page: 190 year: 1995 end-page: 208 ident: bb0020 article-title: Automatic 3-d model-based neuroanatomical segmentation publication-title: Hum. Brain Mapp. – volume: 61 start-page: 606 year: 2012 end-page: 612 ident: bb0150 article-title: Classification of schizophrenia patients and healthy controls from structural MRI scans in two large independent samples publication-title: NeuroImage – volume: 10 start-page: 988 year: 1999 end-page: 999 ident: bb0250 article-title: An overview of statistical learning theory publication-title: IEEE Trans. Neural Netw. – volume: 13 start-page: 558 year: 2010 ident: 10.1016/j.neuroimage.2013.08.053_bb0080 article-title: DTI based diagnostic prediction of a disease via pattern classification publication-title: Med. Image Comput. Comput. Assist. Interv. – volume: 191 start-page: 174 year: 2011 ident: 10.1016/j.neuroimage.2013.08.053_bb0090 article-title: Maximum-uncertainty linear discrimination analysis of first-episode schizophrenia subjects publication-title: Psychiatry Res. doi: 10.1016/j.pscychresns.2010.09.016 – volume: 15 start-page: 2535 year: 2009 ident: 10.1016/j.neuroimage.2013.08.053_bb0215 article-title: The effects of antipsychotics on the brain: what have we learnt from structural imaging of schizophrenia? — a systematic review publication-title: Curr. Pharm. Des. doi: 10.2174/138161209788957456 – volume: 68 start-page: 128 year: 2011 ident: 10.1016/j.neuroimage.2013.08.053_bb0065 article-title: Long-term antipsychotic treatment and brain volumes: a longitudinal study of first-episode schizophrenia publication-title: Arch. Gen. Psychiatry doi: 10.1001/archgenpsychiatry.2010.199 – volume: 66 start-page: 700 year: 2009 ident: 10.1016/j.neuroimage.2013.08.053_bb0110 article-title: Use of neuroanatomical pattern classification to identify subjects in at-risk mental states of psychosis and predict disease transition publication-title: Arch. Gen. Psychiatry doi: 10.1001/archgenpsychiatry.2009.62 – volume: 62 start-page: 1218 year: 2005 ident: 10.1016/j.neuroimage.2013.08.053_bb0030 article-title: Whole-brain morphometric study of schizophrenia revealing a spatially complex set of focal abnormalities publication-title: Arch. Gen. Psychiatry doi: 10.1001/archpsyc.62.11.1218 – volume: 108 start-page: 104 year: 2009 ident: 10.1016/j.neuroimage.2013.08.053_bb0050 article-title: Mapping grey matter reductions in schizophrenia: an anatomical likelihood estimation analysis of voxel-based morphometry studies publication-title: Schizophr. Res. doi: 10.1016/j.schres.2008.12.011 – volume: 3 start-page: 190 year: 1995 ident: 10.1016/j.neuroimage.2013.08.053_bb0020 article-title: Automatic 3-d model-based neuroanatomical segmentation publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.460030304 – volume: 50 start-page: 883 year: 2010 ident: 10.1016/j.neuroimage.2013.08.053_bb0055 article-title: Estimating the age of healthy subjects from T1-weighted MRI scans using kernel methods: exploring the influence of various parameters publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.01.005 – volume: 35 start-page: 773 year: 1978 ident: 10.1016/j.neuroimage.2013.08.053_bb0220 article-title: Research diagnostic criteria: rationale and reliability publication-title: Arch. Gen. Psychiatry doi: 10.1001/archpsyc.1978.01770300115013 – volume: 9 start-page: 321 year: 2011 ident: 10.1016/j.neuroimage.2013.08.053_bb0085 article-title: Neuropsychological testing and structural magnetic resonance imaging as diagnostic biomarkers early in the course of schizophrenia and related psychoses publication-title: Neuroinformatics doi: 10.1007/s12021-010-9094-6 – volume: 29 start-page: 973 year: 2008 ident: 10.1016/j.neuroimage.2013.08.053_bb0170 article-title: Region-of-interest-based analysis with application of cortical thickness variation of left planum temporale in schizophrenia and psychotic bipolar disorder publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20444 – volume: 133 start-page: 3080 year: 2010 ident: 10.1016/j.neuroimage.2013.08.053_bb0245 article-title: Genetic and environmental influences on focal brain density in bipolar disorder publication-title: Brain doi: 10.1093/brain/awq236 – volume: 87 start-page: 297 year: 2006 ident: 10.1016/j.neuroimage.2013.08.053_bb0160 article-title: Classification of adolescent psychotic disorders using linear discriminant analysis publication-title: Schizophr. Res. doi: 10.1016/j.schres.2006.05.007 – volume: 10 start-page: 988 year: 1999 ident: 10.1016/j.neuroimage.2013.08.053_bb0250 article-title: An overview of statistical learning theory publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.788640 – volume: 103 start-page: 59 year: 2012 ident: 10.1016/j.neuroimage.2013.08.053_bb0025 article-title: Alzheimer's disease: diagnosis by different methods of voxel-based morphometry publication-title: Fukuoka Igaku Zasshi – volume: 36 start-page: 1342 year: 2012 ident: 10.1016/j.neuroimage.2013.08.053_bb0200 article-title: Systematic meta-review and quality assessment of the structural brain alterations in schizophrenia publication-title: Neurosci. Biobehav. Rev. doi: 10.1016/j.neubiorev.2011.12.015 – volume: 71 start-page: 552 year: 2012 ident: 10.1016/j.neuroimage.2013.08.053_bb0185 article-title: Cortical volume, surface area, and thickness in schizophrenia and bipolar disorder publication-title: Biol. Psychiatry doi: 10.1016/j.biopsych.2011.11.026 – volume: 23 start-page: 675 year: 2012 ident: 10.1016/j.neuroimage.2013.08.053_bb0190 article-title: Exercise therapy, cardiorespiratory fitness and their effect on brain volumes: a randomised controlled trial in patients with schizophrenia and healthy controls publication-title: Eur. Neuropsychopharmacol. doi: 10.1016/j.euroneuro.2012.08.008 – year: 1990 ident: 10.1016/j.neuroimage.2013.08.053_bb0100 article-title: Single-layer learning revisited: a stepwise procedure for building and training a neural network – volume: 195 start-page: 194 year: 2009 ident: 10.1016/j.neuroimage.2013.08.053_bb0005 article-title: Magnetic resonance imaging studies in bipolar disorder and schizophrenia: meta-analysis publication-title: Br. J. Psychiatry doi: 10.1192/bjp.bp.108.059717 – volume: 117 start-page: 1 year: 2010 ident: 10.1016/j.neuroimage.2013.08.053_bb0035 article-title: Anatomy of bipolar disorder and schizophrenia: a meta-analysis publication-title: Schizophr. Res. doi: 10.1016/j.schres.2009.12.022 – volume: 186 start-page: 369 year: 2005 ident: 10.1016/j.neuroimage.2013.08.053_bb0130 article-title: Regional volume deviations of brain structure in schizophrenia and psychotic bipolar disorder: computational morphometry study publication-title: Br. J. Psychiatry doi: 10.1192/bjp.186.5.369 – volume: 30 start-page: 393 year: 2004 ident: 10.1016/j.neuroimage.2013.08.053_bb0145 article-title: Multiple structural brain measures obtained by three-dimensional magnetic resonance imaging to distinguish between schizophrenia patients and normal subjects publication-title: Schizophr. Bull. doi: 10.1093/oxfordjournals.schbul.a007087 – volume: 61 start-page: 606 year: 2012 ident: 10.1016/j.neuroimage.2013.08.053_bb0150 article-title: Classification of schizophrenia patients and healthy controls from structural MRI scans in two large independent samples publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.03.079 – volume: 68 start-page: 41 year: 2010 ident: 10.1016/j.neuroimage.2013.08.053_bb0180 article-title: Cortical thickness and subcortical volumes in schizophrenia and bipolar disorder publication-title: Biol. Psychiatry doi: 10.1016/j.biopsych.2010.03.036 – volume: 14 start-page: 135 year: 2012 ident: 10.1016/j.neuroimage.2013.08.053_bb0195 article-title: Grey matter differences in bipolar disorder: a meta-analysis of voxel-based morphometry studies publication-title: Bipolar Disord. doi: 10.1111/j.1399-5618.2012.01000.x – volume: 65 start-page: 1017 year: 2008 ident: 10.1016/j.neuroimage.2013.08.053_bb0095 article-title: Meta-analysis, database, and meta-regression of 98 structural imaging studies in bipolar disorder publication-title: Arch. Gen. Psychiatry doi: 10.1001/archpsyc.65.9.1017 – volume: 3216 start-page: 393 year: 2004 ident: 10.1016/j.neuroimage.2013.08.053_bb0120 article-title: Discriminative MR image feature analysis for automatic schizophrenia and Alzheimer's disease classification publication-title: Lect. Notes Comput. Sci. doi: 10.1007/978-3-540-30135-6_48 – year: 2013 ident: 10.1016/j.neuroimage.2013.08.053_bb0175 article-title: Validity of modulation and optimal settings for advanced voxel-based morphometry publication-title: NeuroImage – volume: 65 start-page: 746 year: 2008 ident: 10.1016/j.neuroimage.2013.08.053_bb0105 article-title: A cross-sectional and longitudinal magnetic resonance imaging study of cingulate gyrus gray matter volume abnormalities in first-episode schizophrenia and first-episode affective psychosis publication-title: Arch. Gen. Psychiatry doi: 10.1001/archpsyc.65.7.746 – volume: 35 start-page: 837 year: 1978 ident: 10.1016/j.neuroimage.2013.08.053_bb0040 article-title: A diagnostic interview: the schedule for affective disorders and schizophrenia publication-title: Arch. Gen. Psychiatry doi: 10.1001/archpsyc.1978.01770310043002 – volume: 70 start-page: 88 year: 2011 ident: 10.1016/j.neuroimage.2013.08.053_bb0155 article-title: Are there progressive brain changes in schizophrenia? A meta-analysis of structural magnetic resonance imaging studies publication-title: Biol. Psychiatry doi: 10.1016/j.biopsych.2011.01.032 – volume: 21 start-page: 300 year: 2009 ident: 10.1016/j.neuroimage.2013.08.053_bb0165 article-title: A unified framework for MR based disease classification publication-title: Inf. Process. Med. Imaging doi: 10.1007/978-3-642-02498-6_25 – volume: 49 start-page: 467 year: 2010 ident: 10.1016/j.neuroimage.2013.08.053_bb0010 article-title: Segmentation of MRI brain scans using non-uniform partial volume densities publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.07.041 – volume: 6 start-page: e21047 year: 2011 ident: 10.1016/j.neuroimage.2013.08.053_bb0235 article-title: Classification of first-episode schizophrenia patients and healthy subjects by automated MRI measures of regional brain volume and cortical thickness publication-title: PLoS One doi: 10.1371/journal.pone.0021047 – start-page: 1 year: 2011 ident: 10.1016/j.neuroimage.2013.08.053_bb0015 article-title: A library for support vector machines – volume: 84 start-page: 167 year: 1991 ident: 10.1016/j.neuroimage.2013.08.053_bb0210 article-title: High interrater reliability for the Structured Clinical Interview for DSM-III-R Axis I (SCID-I) publication-title: Acta Psychiatr. Scand. doi: 10.1111/j.1600-0447.1991.tb03123.x – volume: 70 start-page: 783 year: 2013 ident: 10.1016/j.neuroimage.2013.08.053_bb0240 article-title: Abnormal rich club organization and functional brain dynamics in schizophrenia publication-title: JAMA Psychiatry doi: 10.1001/jamapsychiatry.2013.1328 – volume: 39 start-page: 1129 year: 2012 ident: 10.1016/j.neuroimage.2013.08.053_bb0060 article-title: Brain volumes in schizophrenia: a meta-analysis in over 18 000 subjects publication-title: Schizophr. Bull. doi: 10.1093/schbul/sbs118 – volume: 58 start-page: 1118 year: 2001 ident: 10.1016/j.neuroimage.2013.08.053_bb0070 article-title: Focal gray matter density changes in schizophrenia publication-title: Arch. Gen. Psychiatry doi: 10.1001/archpsyc.58.12.1118 – volume: 56 start-page: 411 year: 2004 ident: 10.1016/j.neuroimage.2013.08.053_bb0125 article-title: Meta-analysis of magnetic resonance imaging brain morphometry studies in bipolar disorder publication-title: Biol. Psychiatry doi: 10.1016/j.biopsych.2004.06.021 – volume: 2 start-page: 420 year: 1979 ident: 10.1016/j.neuroimage.2013.08.053_bb0205 article-title: Intraclass correlations: uses in assessing rater reliability publication-title: Psychol. Bull. doi: 10.1037/0033-2909.86.2.420 – volume: 69 start-page: 349 year: 2012 ident: 10.1016/j.neuroimage.2013.08.053_bb0075 article-title: Overlapping and segregating structural brain abnormalities in twins with schizophrenia or bipolar disorder publication-title: Arch. Gen. Psychiatry doi: 10.1001/archgenpsychiatry.2011.1615 – volume: 356 start-page: 1241 year: 2000 ident: 10.1016/j.neuroimage.2013.08.053_bb0135 article-title: Lithium-induced increase in human brain grey matter publication-title: Lancet doi: 10.1016/S0140-6736(00)02793-8 – volume: 46 start-page: 374 year: 1999 ident: 10.1016/j.neuroimage.2013.08.053_bb0115 article-title: Cumulative effect of anatomical risk factors for schizophrenia: an MRI study publication-title: Biol. Psychiatry doi: 10.1016/S0006-3223(99)00052-9 – volume: 49 start-page: 615 year: 1992 ident: 10.1016/j.neuroimage.2013.08.053_bb0255 article-title: The Comprehensive Assessment of Symptoms and History (CASH). An instrument for assessing diagnosis and psychopathology publication-title: Arch. Gen. Psychiatry doi: 10.1001/archpsyc.1992.01820080023004 – volume: 63 start-page: 118 year: 2008 ident: 10.1016/j.neuroimage.2013.08.053_bb0045 article-title: Unaffected family members and schizophrenia patients share brain structure patterns: a high-dimensional pattern classification study publication-title: Biol. Psychiatry doi: 10.1016/j.biopsych.2007.03.015 – volume: 183 start-page: 365 year: 1995 ident: 10.1016/j.neuroimage.2013.08.053_bb0225 article-title: A comparison of the structured clinical interview for DSM-III-R and clinical diagnoses publication-title: J. Nerv. Ment. Dis. doi: 10.1097/00005053-199506000-00003 |
SSID | ssj0009148 |
Score | 2.516599 |
Snippet | Although structural magnetic resonance imaging (MRI) has revealed partly non-overlapping brain abnormalities in schizophrenia and bipolar disorder, it is... |
SourceID | proquest pubmed pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 299 |
SubjectTerms | Adult Adult and adolescent clinical studies Age Algorithms Artificial Intelligence Biological and medical sciences Bipolar disorder Bipolar Disorder - pathology Bipolar disorders Brain - pathology Classification Diagnosis, Differential Diffusion Tensor Imaging - methods Female Humans Image Enhancement - methods Image Interpretation, Computer-Assisted - methods Independent sample Machine learning Male Medical sciences Mood disorders MRI NMR Nuclear magnetic resonance Pattern Recognition, Automated - methods Psychiatrists Psychology. Psychoanalysis. Psychiatry Psychopathology. Psychiatry Psychoses Psychotropic drugs Reference Values Reproducibility of Results Schizophrenia Schizophrenia - pathology Sensitivity and Specificity Studies |
SummonAdditionalLinks | – databaseName: Elsevier SD Freedom Collection dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYhh1Iope-6TcMUeqy7liw_lh5KWBrSwvbQppCbkSypODTeBW8oueQX9Ud2RpK9zSFloTev5QGtZzzzSZr5hrE3go6KMsdTx4VLJQLcVJVOo0IwXGiM4KWjheLyS3nyXX4-K8722GKshaG0yuj7g0_33jremcW3OVt33ewbIgMMN7jeyBEn8JJot4n9C2363fU2zWPOZSiHK_KUno7ZPCHHy3NGdhf45VKSV-7JPIv8thB1b60GfHEudLy4HZL60HT8gN2PmBKOwrQfsj3bP2J3lvHU_DH7vVA9BKJYItmA5ddPoDoDXQ9jYSReIIqmtCGvqQ9wBBc-zdJC7CvxAzwTLQltfq2gm9rnbmBQRDE8wMpBpGkdgPZ3Yfg7o-8t6G5NC2kwkfETVG8gFGJewXCpaUtoeMJOjz-eLk7S2KUhbRG7bVJttbNKIxZoucgqpcUcUVVb29IIXRc18cdXxhrNHY6ITOXWFVIoK3WrXJY_Zfv9qrfPGRhV5TmOGyW5bFFvSqIhidpV0mSFUQmrRr00bWQwp0YaP5sxVe282Wq0IY021GOzyBPGJ8l1YPHYQWY-qr4ZlYF-tcFQs4Ps-0n2hjXvKH14w9KmKQtfB10XCTsYTa-JLmdoOHWR5pLXZcJeT8PoLOgESPV2dTnQOk9KBMRC_OOZgk5niVgyYc-CWW8nIP1-inzxX__vJbuLv2TYyDpg-2j_9hVCu40-9N_uHxvnUPY priority: 102 providerName: Elsevier |
Title | Can structural MRI aid in clinical classification? A machine learning study in two independent samples of patients with schizophrenia, bipolar disorder and healthy subjects |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811913009166 https://dx.doi.org/10.1016/j.neuroimage.2013.08.053 https://www.ncbi.nlm.nih.gov/pubmed/24004694 https://www.proquest.com/docview/1547314186 https://www.proquest.com/docview/1464492922 https://www.proquest.com/docview/1500762279 |
Volume | 84 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1095-9572 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1095-9572 dateEnd: 20191231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: ACRLP dateStart: 19950301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1095-9572 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1095-9572 dateEnd: 20191231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: AIKHN dateStart: 19950301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1095-9572 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: AKRWK dateStart: 19920801 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1095-9572 dateEnd: 20250801 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: 7X7 dateStart: 20020801 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1095-9572 dateEnd: 20250801 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: BENPR dateStart: 19980501 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3di9QwEA_eHYgg4rfVcxnBR6ubNP04fDjW5Y49dZdjOWHfStIkUvHale4hvvgX-Uc606Zdfbhjn7qQDmQ7k8kvM5PfMPZaUKpo7HjouHChRIAbqsRpVAhuFxp38MTRQXG-SGZf5MdVvPIBt8aXVfY-sXXUpi4oRv6OU5NcLnmWHK9_hNQ1irKrvoXGHjvgCFXIqtNVuiXd5bK7ChdHYYYv-Eqerr6r5YssL3HVUoFX1BJ5xtF129PdtWrwo7mu28X1cLTdlk7vs3seT8KkM4AH7JatHrLbc58xf8T-TFUFHUksEWzAfHkGqjRQVtBfisQfiKCpZKjV0jFM4LItsbTge0p8hZaFloQ2P2soh9a5G2gU0Qs3UDvwFK0NUGwXmn-r-d6ALtd0iAbj2T5BVQa6S5i_oLnSFA5qHrOL05OL6Sz0HRrCAnHbJtRWO6s04oCCi3GqtDhCRFVkNjFCZ3FG3PGpsUZzhyNirCLrYimUlbpQbhw9YftVXdlnDIxKowjHjZJcFqg3JdGIROZSacaxUQFLe73khWcvpyYa3_O-TO1bvtVoThrNqb9mHAWMD5LrjsFjB5mjXvV5rwz0qTluMzvIvh9kPYrp0MmO0qP_LG2YsmjvQGdxwA5708u9u2ny7eII2KthGB0FZX9UZeurhs54UuIaEeKGd2LKzBKpZMCedma9nYBsYyny-c0TeMHu4N-RXZTqkO2jgduXiNs2esT23v7mo3aJjtjBZLr8fE7Ps0-zBT4_nCzOl38BplNLTQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3daxQxEA-1ggoifrta6wj65uImm_04REqpljvb64OccG8h2SRyYvdO9krp_6T_ozOb3Tt9aLmXvh3kZsnym52ZZGZ-w9gbQamixPPYc-FjiQFurHNvEBB0FwY9eO7poDg-yYff5JdpNt1if_peGCqr7G1ia6jtvKI78vechuRyyct8b_ErpqlRlF3tR2gEtThyF-d4ZGs-jj4hvm-FOPw8ORjG3VSBuMJYYxkbZ7zTBn1XxUVSaCMGGAVUpcutMGVWEt95YZ013OOKSHTqfCaFdtJU2icpPvYGuynTRBJVfzEt1hy_XIbOuyyNS84HXeFQKCdr6Slnp2gkqJ4sbXlDs_Qyb3h3oRvEyIfhGpdHv60XPLzP7nXhK-wHfXvAtlz9kN0adwn6R-z3ga4hcNISnweMv45AzyzMauh7MPEHBuxUodQqxR7sw2lb0emgG2HxHVrSWxJans9htprUu4RGE5txA3MPHSNsA3SVDM2_xYPvwMwWdGYH25GLgq4thJ7PC2jODN0-NY_Z5Dqge8K263ntnjGwukhTXLdaclkhblqizorSF9ImmdURK3pcVNWRpdPMjp-qr4r7odaIKkJU0TjPLI0YX0kuAmHIBjKDHnrVg4EmXKFX20D2w0q2C5pCMLSh9O5_mrbasmhbrsssYju96qnOujVq_S1G7PVqGe0SJZt07eZnDR0ppcTYW4gr_pNRIpg4LCP2NKj1egOyvbqRz6_ewCt2ezgZH6vj0cnRC3YHX02GC7Idto3K7l5iyLg0u-2HCkxds2H4Cx-8gwY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1faxQxEA-1QhFE_O9prSPom0s32eztHiKltB496xWRCvcWkk0iJ3bvZK-Ufie_gN_OmU32Th9a7qVvB7lZsvxmZyaZmd8w9kZQqij1PPFc-ERigJvovjcICLoLgx687-mgOD7pH32Tnyb5ZIP96XphqKyys4mtobaziu7IdzkNyeWSl_1dH8sivhwO9-a_EpogRZnWbpxGUJFjd3mBx7fmw-gQsX4rxPDj6cFREicMJBXGHYvEOOOdNujHKi7SQhsxwIigKl3fClPmJXGfF9ZZwz2uiFRnzudSaCdNpX2a4WNvsdtFJjOqJismxYrvl8vQhZdnScn5IBYRhdKylqpyeoYGg2rLspZDNM-u8ox357pBvHwYtHF1JNx6xOF9di-GsrAfdO8B23D1Q7Y1jsn6R-z3ga4h8NMStweMv45ATy1Ma-j6MfEHBu9UrdQqyB7sw1lb3ekgjrP4Di0BLgktLmYwXU7tXUCjidm4gZmHyA7bAF0rQ_NvIeE7MNM5nd_BRqJR0LWF0P95Cc25oZuo5jE7vQnonrDNela7ZwysLrIM162WXFaIm5aov6L0hbRpbnWPFR0uqorE6TS_46fqKuR-qBWiihBVNNozz3qMLyXngTxkDZlBB73qwEBzrtDDrSH7fikbA6gQGK0pvfOfpi23LNr26zLvse1O9VS0dI1afZc99nq5jDaKEk-6drPzho6XUmIcLsQ1_8kpKUx8lj32NKj1agOyvcaRz6_fwCu2hSZBfR6dHL9gd_DNZLgr22abqOvuJUaPC7PTfqfA1A3bhb8Nl4dB |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Can+structural+MRI+aid+in+clinical+classification%3F+A+machine+learning+study+in+two+independent+samples+of+patients+with+schizophrenia%2C+bipolar+disorder+and+healthy+subjects&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=SCHNACK%2C+Hugo+G&rft.au=NIEUWENHUIS%2C+Mireille&rft.au=VAN+HAREN%2C+Neeltje+E.+M&rft.au=ABRAMOVIC%2C+Lucija&rft.date=2014&rft.pub=Elsevier&rft.issn=1053-8119&rft.eissn=1095-9572&rft.volume=84&rft.spage=299&rft.epage=306&rft_id=info:doi/10.1016%2Fj.neuroimage.2013.08.053&rft.externalDBID=n%2Fa&rft.externalDocID=28297585 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |