Manifold population modeling as a neuro-imaging biomarker: Application to ADNI and ADNI-GO

We propose a framework for feature extraction from learned low-dimensional subspaces that represent inter-subject variability. The manifold subspace is built from data-driven regions of interest (ROI). The regions are learned via sparse regression using the mini-mental state examination (MMSE) score...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 94; pp. 275 - 286
Main Authors Guerrero, R., Wolz, R., Rao, A.W., Rueckert, D.
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier Inc 01.07.2014
Elsevier
Elsevier Limited
Subjects
Online AccessGet full text
ISSN1053-8119
1095-9572
1095-9572
DOI10.1016/j.neuroimage.2014.03.036

Cover

Abstract We propose a framework for feature extraction from learned low-dimensional subspaces that represent inter-subject variability. The manifold subspace is built from data-driven regions of interest (ROI). The regions are learned via sparse regression using the mini-mental state examination (MMSE) score as an independent variable which correlates better with the actual disease stage than a discrete class label. The sparse regression is used to perform variable selection along with a re-sampling scheme to reduce sampling bias. We then use the learned manifold coordinates to perform visualization and classification of the subjects. Results of the proposed approach are shown using the ADNI and ADNI-GO datasets. Three types of classification techniques, including a new MRI Disease-State-Score (MRI-DSS) classifier, are tested in conjunction with two learning strategies. In the first case Alzheimer's Disease (AD) and progressive mild cognitive impairment (pMCI) subjects were grouped together, while cognitive normal (CN) and stable mild cognitive impaired (sMCI) subjects were also grouped together. In the second approach, the classifiers are learned using the original class labels (with no grouping). We show results that are comparable to other state-of-the-art methods. A classification rate of 71%, of arguably the most clinically relevant subjects, sMCI and pMCI, is shown. Additionally, we present classification accuracies between CN and early MCI (eMCI) subjects, from the ADNI-GO dataset, of 65%. To our knowledge this is the first time classification accuracies for eMCI patients have been reported. •Manifold learning from data-driven regions of interest•Encouraging classification results on ADNI and ADNI-GO datasets•Continuous disease modeling in the manifold using the proposed MRI-DSS biomarker•High MMSE prediction accuracy on the learned subspace
AbstractList We propose a framework for feature extraction from learned low-dimensional subspaces that represent inter-subject variability. The manifold subspace is built from data-driven regions of interest (ROI). The regions are learned via sparse regression using the mini-mental state examination (MMSE) score as an independent variable which correlates better with the actual disease stage than a discrete class label. The sparse regression is used to perform variable selection along with a re-sampling scheme to reduce sampling bias. We then use the learned manifold coordinates to perform visualization and classification of the subjects. Results of the proposed approach are shown using the ADNI and ADNI-GO datasets. Three types of classification techniques, including a new MRI Disease-State-Score (MRI-DSS) classifier, are tested in conjunction with two learning strategies. In the first case Alzheimer's Disease (AD) and progressive mild cognitive impairment (pMCI) subjects were grouped together, while cognitive normal (CN) and stable mild cognitive impaired (sMCI) subjects were also grouped together. In the second approach, the classifiers are learned using the original class labels (with no grouping). We show results that are comparable to other state-of-the-art methods. A classification rate of 71%, of arguably the most clinically relevant subjects, sMCI and pMCI, is shown. Additionally, we present classification accuracies between CN and early MCI (eMCI) subjects, from the ADNI-GO dataset, of 65%. To our knowledge this is the first time classification accuracies for eMCI patients have been reported. •Manifold learning from data-driven regions of interest•Encouraging classification results on ADNI and ADNI-GO datasets•Continuous disease modeling in the manifold using the proposed MRI-DSS biomarker•High MMSE prediction accuracy on the learned subspace
We propose a framework for feature extraction from learned low-dimensional subspaces that represent inter-subject variability. The manifold subspace is built from data-driven regions of interest (ROI). The regions are learned via sparse regression using the mini-mental state examination (MMSE) score as an independent variable which correlates better with the actual disease stage than a discrete class label. The sparse regression is used to perform variable selection along with a re-sampling scheme to reduce sampling bias. We then use the learned manifold coordinates to perform visualization and classification of the subjects. Results of the proposed approach are shown using the ADNI and ADNI-GO datasets. Three types of classification techniques, including a new MRI Disease-State-Score (MRI-DSS) classifier, are tested in conjunction with two learning strategies. In the first case Alzheimer's Disease (AD) and progressive mild cognitive impairment (pMCI) subjects were grouped together, while cognitive normal (CN) and stable mild cognitive impaired (sMCI) subjects were also grouped together. In the second approach, the classifiers are learned using the original class labels (with no grouping). We show results that are comparable to other state-of-the-art methods. A classification rate of 71%, of arguably the most clinically relevant subjects, sMCI and pMCI, is shown. Additionally, we present classification accuracies between CN and early MCI (eMCI) subjects, from the ADNI-GO dataset, of 65%. To our knowledge this is the first time classification accuracies for eMCI patients have been reported.
We propose a framework for feature extraction from learned low-dimensional subspaces that represent inter-subject variability. The manifold subspace is built from data-driven regions of interest (ROI). The regions are learned via sparse regression using the mini-mental state examination (MMSE) score as an independent variable which correlates better with the actual disease stage than a discrete class label. The sparse regression is used to perform variable selection along with a re-sampling scheme to reduce sampling bias. We then use the learned manifold coordinates to perform visualization and classification of the subjects. Results of the proposed approach are shown using the ADNI and ADNI-GO datasets. Three types of classification techniques, including a new MRI Disease-State-Score (MRI-DSS) classifier, are tested in conjunction with two learning strategies. In the first case Alzheimer's Disease (AD) and progressive mild cognitive impairment (pMCI) subjects were grouped together, while cognitive normal (CN) and stable mild cognitive impaired (sMCI) subjects were also grouped together. In the second approach, the classifiers are learned using the original class labels (with no grouping). We show results that are comparable to other state-of-the-art methods. A classification rate of 71%, of arguably the most clinically relevant subjects, sMCI and pMCI, is shown. Additionally, we present classification accuracies between CN and early MCI (eMCI) subjects, from the ADNI-GO dataset, of 65%. To our knowledge this is the first time classification accuracies for eMCI patients have been reported.We propose a framework for feature extraction from learned low-dimensional subspaces that represent inter-subject variability. The manifold subspace is built from data-driven regions of interest (ROI). The regions are learned via sparse regression using the mini-mental state examination (MMSE) score as an independent variable which correlates better with the actual disease stage than a discrete class label. The sparse regression is used to perform variable selection along with a re-sampling scheme to reduce sampling bias. We then use the learned manifold coordinates to perform visualization and classification of the subjects. Results of the proposed approach are shown using the ADNI and ADNI-GO datasets. Three types of classification techniques, including a new MRI Disease-State-Score (MRI-DSS) classifier, are tested in conjunction with two learning strategies. In the first case Alzheimer's Disease (AD) and progressive mild cognitive impairment (pMCI) subjects were grouped together, while cognitive normal (CN) and stable mild cognitive impaired (sMCI) subjects were also grouped together. In the second approach, the classifiers are learned using the original class labels (with no grouping). We show results that are comparable to other state-of-the-art methods. A classification rate of 71%, of arguably the most clinically relevant subjects, sMCI and pMCI, is shown. Additionally, we present classification accuracies between CN and early MCI (eMCI) subjects, from the ADNI-GO dataset, of 65%. To our knowledge this is the first time classification accuracies for eMCI patients have been reported.
Author Guerrero, R.
Rueckert, D.
Wolz, R.
Rao, A.W.
AuthorAffiliation Department of Computing, Imperial College, London, UK
AuthorAffiliation_xml – name: Department of Computing, Imperial College, London, UK
Author_xml – sequence: 1
  givenname: R.
  surname: Guerrero
  fullname: Guerrero, R.
  email: reg09@imperial.ac.uk
– sequence: 2
  givenname: R.
  surname: Wolz
  fullname: Wolz, R.
– sequence: 3
  givenname: A.W.
  surname: Rao
  fullname: Rao, A.W.
– sequence: 4
  givenname: D.
  surname: Rueckert
  fullname: Rueckert, D.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28503431$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/24657351$$D View this record in MEDLINE/PubMed
BookMark eNqNkk2LFDEQhhtZcT_0L0iDCF56TDpJp9uDOK66LqzuRS9eQk1SvWQ2k7RJt7D_3vTM6MKcBgoSwlNvpeqt8-LEB49FUVKyoIQ2b9cLj1MMdgN3uKgJ5QvCcjRPijNKOlF1QtYn812wqqW0Oy3OU1oTQjrK22fFac0bIZmgZ8Wvb-BtH5wphzBMDkYbfLkJBp31dyWkEsptqWquNT-tbNhAvMf4rlwOg7N6lzKGcvnp-3UJ3mwv1dXt8-JpDy7hi_15Ufz88vnH5dfq5vbq-nJ5U2lR12MFBghvaoLQt1ALQo3sWYe1NPmzspYcNNFgjESQbd9I7A3PnXBkEvhKMHZRvNnpDjH8njCNamOTRufAY5iSoqLuOiGkaI9BOZWsbWf01QG6DlP0uZFMcckob-hc--WemlYbNGqIeU7xQf0bcAZe7wFIGlwfwWubHrlWEMbZzLU7TseQUsT-P0KJmj1Xa_XouZo9V4TlaHLq-4NUbcetK2ME644R-LgTwOzSH4tRJW3RazQ2oh6VCfYYkQ8HIjqvUF4Pd48Px0n8BSTO4g0
CitedBy_id crossref_primary_10_1038_s41398_024_03073_w
crossref_primary_10_1038_s41598_018_29295_9
crossref_primary_10_1016_j_compbiomed_2024_109039
crossref_primary_10_1007_s11042_020_09087_y
crossref_primary_10_1177_1550147719826048
crossref_primary_10_3389_fnins_2019_00668
crossref_primary_10_1186_s13195_021_00900_w
crossref_primary_10_3389_fnins_2018_00777
crossref_primary_10_1155_2021_5531940
crossref_primary_10_1080_03772063_2023_2205857
crossref_primary_10_3390_s19112645
crossref_primary_10_1016_j_jalz_2016_11_007
crossref_primary_10_1016_j_neuroimage_2018_08_042
crossref_primary_10_1038_s41598_022_04943_3
crossref_primary_10_1177_25424823241290694
crossref_primary_10_1016_j_neuroimage_2016_06_049
crossref_primary_10_1177_1550147719831186
crossref_primary_10_3389_fninf_2017_00016
crossref_primary_10_1016_j_jneumeth_2019_108544
crossref_primary_10_1016_j_patcog_2016_09_023
crossref_primary_10_1016_j_cmpb_2017_03_006
crossref_primary_10_1371_journal_pone_0153040
crossref_primary_10_1007_s00500_022_06762_0
crossref_primary_10_1109_ACCESS_2019_2936415
crossref_primary_10_1371_journal_pone_0179804
crossref_primary_10_1016_j_neuroimage_2014_10_002
crossref_primary_10_1016_j_bspc_2018_02_019
crossref_primary_10_1016_j_nicl_2016_02_019
crossref_primary_10_1109_TBME_2016_2549363
crossref_primary_10_1186_s13195_024_01589_3
crossref_primary_10_1371_journal_pone_0267608
crossref_primary_10_32604_cmc_2022_020866
Cites_doi 10.1001/archneur.56.3.303
10.1111/j.2517-6161.1996.tb02080.x
10.1016/j.neurobiolaging.2006.09.013
10.1371/journal.pone.0033182
10.1016/j.neuroimage.2009.05.036
10.1080/03081088508817681
10.1016/j.neuroimage.2012.09.058
10.1016/S1474-4422(09)70299-6
10.1016/j.neuroimage.2008.10.031
10.1126/science.290.5500.2323
10.1016/j.neuroimage.2011.10.080
10.1023/B:MACH.0000033120.25363.1e
10.1016/j.patcog.2011.03.019
10.1002/hipo.20626
10.1016/j.neuroimage.2009.09.069
10.1016/j.neuroimage.2011.06.065
10.1038/nrneurol.2009.215
10.1371/journal.pone.0025446
10.1126/science.290.5500.2319
10.1111/j.1467-9868.2005.00503.x
10.1080/01621459.1989.10478797
10.1097/JGP.0b013e3181629971
10.1093/brain/awp105
10.1016/j.media.2010.06.001
10.1109/42.796284
10.1080/10485250306039
10.1016/j.jalz.2010.03.006
10.1016/j.media.2010.05.008
10.1016/j.neuroimage.2011.03.029
10.1016/j.neuroimage.2007.10.031
10.1016/j.neuroimage.2010.06.013
10.1109/TMI.2006.886812
10.1002/(SICI)1522-2594(199912)42:6<1072::AID-MRM11>3.0.CO;2-M
10.1016/j.media.2011.12.003
10.1023/A:1009752403260
10.1016/S0047-259X(03)00079-4
10.1016/j.neurobiolaging.2010.05.023
10.1016/j.neuroimage.2007.09.073
10.1016/j.neuroimage.2009.02.018
10.1038/nrd3115
10.1016/0022-3956(75)90026-6
10.1016/j.neuroimage.2011.09.085
10.1016/j.jalz.2007.04.381
ContentType Journal Article
Copyright 2014 Elsevier Inc.
2015 INIST-CNRS
Copyright © 2014 Elsevier Inc. All rights reserved.
Copyright Elsevier Limited Jul 1, 2014
Copyright_xml – notice: 2014 Elsevier Inc.
– notice: 2015 INIST-CNRS
– notice: Copyright © 2014 Elsevier Inc. All rights reserved.
– notice: Copyright Elsevier Limited Jul 1, 2014
CorporateAuthor The Alzheimer's Disease Neuroimaging Initiative (ADNI)
Alzheimer's Disease Neuroimaging Initiative (ADNI)
CorporateAuthor_xml – name: The Alzheimer's Disease Neuroimaging Initiative (ADNI)
– name: Alzheimer's Disease Neuroimaging Initiative (ADNI)
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
7QO
DOI 10.1016/j.neuroimage.2014.03.036
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database ProQuest
Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitleList
ProQuest One Psychology
MEDLINE

Engineering Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 286
ExternalDocumentID 3380122291
24657351
28503431
10_1016_j_neuroimage_2014_03_036
S1053811914001839
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Rabin Enzra trust
– fundername: SEP-DGRI
– fundername: CONACyT
– fundername: European Commission
  funderid: http://dx.doi.org/10.13039/501100000780
– fundername: Medical Research Council
  grantid: MC_PC_13034
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACLOT
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPUW
AFRHN
AFTJW
AFXIZ
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
YK3
Z5R
ZU3
~G-
~HD
3V.
AACTN
AADPK
AAIAV
ABLVK
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
C45
HMQ
LCYCR
RIG
SNS
ZA5
29N
53G
AAFWJ
AAQXK
AAYXX
ACRPL
ADFGL
ADMUD
ADNMO
ADVLN
ADXHL
AFPKN
AGHFR
AGQPQ
AIGII
AKRLJ
APXCP
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
FEDTE
FGOYB
G-2
HDW
HEI
HMK
HMO
HVGLF
HZ~
OK1
PUEGO
R2-
SEW
WUQ
XPP
ZMT
ALIPV
IQODW
AGCQF
AGRNS
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
7QO
ID FETCH-LOGICAL-c522t-ada04620eaf8a2501d7f39e27d9147274ac0cadd7ea78f67efd40004e37a4b533
IEDL.DBID BENPR
ISSN 1053-8119
1095-9572
IngestDate Tue Oct 07 09:29:32 EDT 2025
Mon Sep 29 06:14:10 EDT 2025
Tue Oct 07 06:46:38 EDT 2025
Mon Jul 21 05:53:16 EDT 2025
Wed Apr 02 07:21:44 EDT 2025
Wed Oct 01 02:58:16 EDT 2025
Thu Apr 24 23:06:09 EDT 2025
Fri Feb 23 02:36:03 EST 2024
Tue Oct 14 19:34:55 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Laplacian eigenmaps
Mild cognitive impairment (MCI)
Classification
Alzheimer's disease (AD)
Sparse regression
Manifold learning
Kernel density estimation
Nervous system diseases
Alzheimer disease
Biological marker
Density
Cerebral disorder
Learning
Acquisition process
Imaging
Central nervous system disease
Degenerative disease
mild cognitive impairment
Language English
License CC BY 4.0
Copyright © 2014 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c522t-ada04620eaf8a2501d7f39e27d9147274ac0cadd7ea78f67efd40004e37a4b533
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PMID 24657351
PQID 1547314613
PQPubID 2031077
PageCount 12
ParticipantIDs proquest_miscellaneous_1529955758
proquest_miscellaneous_1524173888
proquest_journals_1547314613
pubmed_primary_24657351
pascalfrancis_primary_28503431
crossref_primary_10_1016_j_neuroimage_2014_03_036
crossref_citationtrail_10_1016_j_neuroimage_2014_03_036
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2014_03_036
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2014_03_036
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-07-01
PublicationDateYYYYMMDD 2014-07-01
PublicationDate_xml – month: 07
  year: 2014
  text: 2014-07-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
– name: United States
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2014
Publisher Elsevier Inc
Elsevier
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier
– name: Elsevier Limited
References Anderson, Morley (bb0015) 1985; 18
Davatzikos, Bhatt, Shaw, Batmanghelich, Trojanowski (bb0070) 2011; 32
Rueckert, Sonoda, Hayes, Hill, Leach, Hawkes (bb0200) 1999; 18
Hampel, Frank, Broich, Teipel, Katz, Hardy, Herholz, Bokde, Jessen, Hoessler, Sanhai, Zetterberg, Woodcock, Blennow (bb0125) 2010; 9
Querbes, Aubry, Pariente, Lotterie, Dmonet, Duret, Puel, Berry, Fort, Celsis, Initiative (bb0185) 2009; 132
Ranginwala, Hynan, Weiner, White (bb0190) 2008; 16
Kristan, Leonardis, Skocaj (bb0150) 2011; 44
Baringhaus, Franz (bb0020) 2004; 88
Gerber, Tasdizen, Fletcher, Joshi, Whitaker (bb0110) 2010; 14
Lerch, Pruessner, Zijdenbos, Collins, Teipel, Hampel, Evans (bb0155) 2008; 29
Zou, Hastie (bb0270) 2005; 67
Cho, Seong, Jeong, Shin (bb0040) 2012; 59
Tibshirani (bb0220) 1996; 58
Klein, Loog, van der Lijn, den Heijer, Hammers, de Bruijne, van der Lugt, Duin, Breteler, Niessen (bb0140) 2010
Wolz, Aljabar, Hajnal, Hammers, Rueckert (bb0250) 2010; 49
Cuingnet, Gerardin, Tessieras, Auzias, Lehricy, Habert, Chupin, Benali, Colliot (bb0065) 2011; 56
Hastie, Stuetzle (bb0130) 1989; 84
Leung, Barnes, Modat, Ridgway, Bartlett, Fox, Ourselin (bb0160) 2011
Brookmeyer, Johnson, Ziegler-Graham, Arrighi (bb0035) 2007; 3
van der Maaten, Postma, van den Herik (bb0230) 2009
Wand, Jones (bb0240) 1994
Misra, Fan, Davatzikos (bb0165) 2009; 44
Guerrero, Wolz, Rueckert (bb0115) 2011; vol. 6892
Frisoni, Fox, Jack, Scheltens, Thompson (bb0100) 2010; 6
Fan, Shen, Gur, Gur, Davatzikos (bb0085) 2007; 26
Folstein, Folstein, McHugh (bb0095) 1975; 12
Belkin, Niyogi (bb0025) 2002; vol. 14
Roweis, Saul (bb0195) 2000; 290
Fan, Batmanghelich, Clark, Davatzikos (bb0090) 2008; 39
Belkin, Niyogi (bb0030) 2004; 56
Aljabar, Heckemann, Hammers, Hajnal, Rueckert (bb0010) 2009; 46
Westman, Simmons, Muehlboeck, Mecocci, Vellas, Tsolaki, Koszewska, Soininen, Weiner, Lovestone, Spenger, Wahlund (bb0245) 2011; 58
Duong, Hazelton (bb0075) 2003; 15
Eskildsen, Coupé, García-Lorenzo, Fonov, Pruessner, Collins (bb0080) 2013; 65
Gerardin, Chtelat, Chupin, Cuingnet, Desgranges, Kim, Niethammer, Dubois, Lehricy, Garnero, Eustache, Colliot (bb0105) 2009; 47
Vemuri, Gunter, Senjem, Whitwell, Kantarci, Knopman, Boeve, Petersen, Jack (bb0235) 2008; 39
Nyl, Udupa (bb0170) 1999; 42
Wolz, Julkunen, Koikkalainen, Niskanen, Zhang, Rueckert, Soininen, Ltjnen, the Alzheimer's Disease Neuroimaging Initiative (bb0255) 2011; 6
Scott (bb0210) 1992
Aisen, Petersen, Donohue, Gamst, Raman, Thomas, Walter, Trojanowski, Shaw, Beckett, Clifford, Jagust, Toga, Saykin, Morris, Green, Weiner (bb0005) 2010; 6
Cortes, Vapnik (bb0050) 1995
Koikkalainen, Ltjnen, Thurfjell, Rueckert, Waldemar, Soininen (bb0145) 2011; 56
Zhang, Shen, the Alzheimer's Disease Neuroimaging Initiative (bb0265) 2012; 7
Tenenbaum, Silva, Langford (bb0215) 2000; 290
Chupin, Gérardin, Cuingnet, Boutet, Lemieux, Lehéricy, Benali, Garnero, Colliot (bb0045) 2009; 19
Coupé, Eskildsen, Manjn, Fonov, Collins (bb0055) 2012; 59
Jack, Knopman, Jagust, Shaw, Aisen, Weiner, Petersen, Trojanowski (bb0135) 2010; 9
Pollard (bb0180) 2002
Hamm, Ye, Verma, Davatzikos (bb0120) 2010; 14
Petersen, Smith, Waring, Ivnik, Tangalos, Kokmen (bb0175) 1999; 56
Wolz, Aljabar, Hajnal, Ltjen, Rueckert (bb0260) 2012; 16
Tikhonov, Arsenin (bb0225) 1977
Salzberg, Note (bb0205) 1997; 1
Cox, Cox (bb0060) 1994
Duong (10.1016/j.neuroimage.2014.03.036_bb0075) 2003; 15
Gerber (10.1016/j.neuroimage.2014.03.036_bb0110) 2010; 14
Belkin (10.1016/j.neuroimage.2014.03.036_bb0025) 2002; vol. 14
Tenenbaum (10.1016/j.neuroimage.2014.03.036_bb0215) 2000; 290
Wolz (10.1016/j.neuroimage.2014.03.036_bb0255) 2011; 6
Lerch (10.1016/j.neuroimage.2014.03.036_bb0155) 2008; 29
Pollard (10.1016/j.neuroimage.2014.03.036_bb0180) 2002
van der Maaten (10.1016/j.neuroimage.2014.03.036_bb0230) 2009
Kristan (10.1016/j.neuroimage.2014.03.036_bb0150) 2011; 44
Rueckert (10.1016/j.neuroimage.2014.03.036_bb0200) 1999; 18
Baringhaus (10.1016/j.neuroimage.2014.03.036_bb0020) 2004; 88
Vemuri (10.1016/j.neuroimage.2014.03.036_bb0235) 2008; 39
Aljabar (10.1016/j.neuroimage.2014.03.036_bb0010) 2009; 46
Davatzikos (10.1016/j.neuroimage.2014.03.036_bb0070) 2011; 32
Petersen (10.1016/j.neuroimage.2014.03.036_bb0175) 1999; 56
Eskildsen (10.1016/j.neuroimage.2014.03.036_bb0080) 2013; 65
Hastie (10.1016/j.neuroimage.2014.03.036_bb0130) 1989; 84
Gerardin (10.1016/j.neuroimage.2014.03.036_bb0105) 2009; 47
Koikkalainen (10.1016/j.neuroimage.2014.03.036_bb0145) 2011; 56
Cho (10.1016/j.neuroimage.2014.03.036_bb0040) 2012; 59
Brookmeyer (10.1016/j.neuroimage.2014.03.036_bb0035) 2007; 3
Nyl (10.1016/j.neuroimage.2014.03.036_bb0170) 1999; 42
Querbes (10.1016/j.neuroimage.2014.03.036_bb0185) 2009; 132
Aisen (10.1016/j.neuroimage.2014.03.036_bb0005) 2010; 6
Klein (10.1016/j.neuroimage.2014.03.036_bb0140) 2010
Westman (10.1016/j.neuroimage.2014.03.036_bb0245) 2011; 58
Cortes (10.1016/j.neuroimage.2014.03.036_bb0050) 1995
Frisoni (10.1016/j.neuroimage.2014.03.036_bb0100) 2010; 6
Coupé (10.1016/j.neuroimage.2014.03.036_bb0055) 2012; 59
Chupin (10.1016/j.neuroimage.2014.03.036_bb0045) 2009; 19
Cox (10.1016/j.neuroimage.2014.03.036_bb0060) 1994
Wand (10.1016/j.neuroimage.2014.03.036_bb0240) 1994
Jack (10.1016/j.neuroimage.2014.03.036_bb0135) 2010; 9
Ranginwala (10.1016/j.neuroimage.2014.03.036_bb0190) 2008; 16
Salzberg (10.1016/j.neuroimage.2014.03.036_bb0205) 1997; 1
Belkin (10.1016/j.neuroimage.2014.03.036_bb0030) 2004; 56
Tikhonov (10.1016/j.neuroimage.2014.03.036_bb0225) 1977
Anderson (10.1016/j.neuroimage.2014.03.036_bb0015) 1985; 18
Zhang (10.1016/j.neuroimage.2014.03.036_bb0265) 2012; 7
Cuingnet (10.1016/j.neuroimage.2014.03.036_bb0065) 2011; 56
Misra (10.1016/j.neuroimage.2014.03.036_bb0165) 2009; 44
Folstein (10.1016/j.neuroimage.2014.03.036_bb0095) 1975; 12
Wolz (10.1016/j.neuroimage.2014.03.036_bb0250) 2010; 49
Tibshirani (10.1016/j.neuroimage.2014.03.036_bb0220) 1996; 58
Fan (10.1016/j.neuroimage.2014.03.036_bb0090) 2008; 39
Guerrero (10.1016/j.neuroimage.2014.03.036_bb0115) 2011; vol. 6892
Leung (10.1016/j.neuroimage.2014.03.036_bb0160) 2011
Scott (10.1016/j.neuroimage.2014.03.036_bb0210) 1992
Hampel (10.1016/j.neuroimage.2014.03.036_bb0125) 2010; 9
Fan (10.1016/j.neuroimage.2014.03.036_bb0085) 2007; 26
Wolz (10.1016/j.neuroimage.2014.03.036_bb0260) 2012; 16
Zou (10.1016/j.neuroimage.2014.03.036_bb0270) 2005; 67
Roweis (10.1016/j.neuroimage.2014.03.036_bb0195) 2000; 290
Hamm (10.1016/j.neuroimage.2014.03.036_bb0120) 2010; 14
References_xml – volume: 59
  start-page: 3736
  year: 2012
  end-page: 3747
  ident: bb0055
  article-title: Simultaneous segmentation and grading of anatomical structures for patient's classification: application to Alzheimer's disease
  publication-title: NeuroImage
– volume: 39
  start-page: 1186
  year: 2008
  end-page: 1197
  ident: bb0235
  article-title: Alzheimer's disease diagnosis in individual subjects using structural MR images: validation studies
  publication-title: NeuroImage
– volume: 15
  start-page: 17
  year: 2003
  end-page: 30
  ident: bb0075
  article-title: Plug-in bandwidth matrices for bivariate kernel density estimation
  publication-title: J. Nonparametric Stat.
– volume: 65
  start-page: 511
  year: 2013
  end-page: 521
  ident: bb0080
  article-title: Prediction of Alzheimer's disease in subjects with mild cognitive impairment from the ADNI cohort using patterns of cortical thinning
  publication-title: NeuroImage
– volume: 16
  start-page: 819
  year: 2012
  end-page: 830
  ident: bb0260
  article-title: Nonlinear dimensionality reduction combining MR imaging with non-imaging information
  publication-title: Med. Image Anal.
– volume: 46
  start-page: 726
  year: 2009
  end-page: 738
  ident: bb0010
  article-title: Multi-atlas based segmentation of brain images: atlas selection and its effect on accuracy
  publication-title: NeuroImage
– year: 1994
  ident: bb0240
  article-title: Kernel Smoothing (Chapman & Hall/CRC Monographs on Statistics & Applied Probability)
– volume: 132
  start-page: 2036
  year: 2009
  end-page: 2047
  ident: bb0185
  article-title: Early diagnosis of Alzheimer's disease using cortical thickness: impact of cognitive reserve
  publication-title: Brain
– volume: 56
  start-page: 1134
  year: 2011
  end-page: 1144
  ident: bb0145
  article-title: Multi-template tensor-based morphometry: application to analysis of Alzheimer's disease
  publication-title: NeuroImage
– year: 2002
  ident: bb0180
  article-title: A User's Guide to Measure Theoretic Probability
– volume: 18
  start-page: 712
  year: 1999
  end-page: 721
  ident: bb0200
  article-title: Nonrigid registration using free-form deformations: application to breast MR images
  publication-title: IEEE Trans. Med. Imaging
– volume: 58
  start-page: 818
  year: 2011
  end-page: 828
  ident: bb0245
  article-title: AddNeuroMed and ADNI: similar patterns of Alzheimer's atrophy and automated MRI classification accuracy in Europe and North America
  publication-title: NeuroImage
– volume: 3
  start-page: 186
  year: 2007
  end-page: 191
  ident: bb0035
  article-title: Forecasting the global burden of Alzheimers disease
  publication-title: Alzheimers Dement.
– volume: 56
  start-page: 766
  year: 2011
  end-page: 781
  ident: bb0065
  article-title: Automatic classification of patients with Alzheimer's disease from structural MRI: a comparison of ten methods using the ADNI database
  publication-title: NeuroImage
– volume: 16
  start-page: 384
  year: 2008
  end-page: 388
  ident: bb0190
  article-title: Clinical criteria for the diagnosis of Alzheimer disease: still good after all these years
  publication-title: Am. J. Geriatr. Psychiatry
– volume: 88
  start-page: 190
  year: 2004
  end-page: 206
  ident: bb0020
  article-title: On a new multivariate two-sample test
  publication-title: J. Multivar. Anal.
– volume: 12
  start-page: 189
  year: 1975
  end-page: 198
  ident: bb0095
  article-title: “Mini-mental state”: a practical method for grading the cognitive state of patients for the clinician
  publication-title: J. Psychiatr. Res.
– volume: 290
  start-page: 2323
  year: 2000
  end-page: 2326
  ident: bb0195
  article-title: Nonlinear dimensionality reduction by locally linear embedding
  publication-title: Science
– volume: 44
  start-page: 2630
  year: 2011
  end-page: 2642
  ident: bb0150
  article-title: Multivariate online kernel density estimation with Gaussian kernels
  publication-title: Pattern Recogn.
– volume: vol. 6892
  start-page: 566
  year: 2011
  end-page: 573
  ident: bb0115
  article-title: Laplacian eigenmaps manifold learning for landmark localization in brain mr images
  publication-title: Medical Image Computing and Computer-Assisted Intervention (MICCAI)
– volume: 9
  start-page: 560
  year: 2010
  end-page: 574
  ident: bb0125
  article-title: Biomarkers for Alzheimer's disease: academic, industry and regulatory perspectives
  publication-title: Nat. Rev. Drug Discov.
– volume: 7
  start-page: e33182
  year: 2012
  ident: bb0265
  article-title: Predicting future clinical changes of MCI patients using longitudinal and multimodal biomarkers
  publication-title: PLoS ONE
– volume: vol. 14
  start-page: 585
  year: 2002
  end-page: 591
  ident: bb0025
  article-title: Laplacian eigenmaps and spectral techniques for embedding and clustering
  publication-title: Advances in Neural Information Processing Systems
– start-page: 2053
  year: 2011
  end-page: 2056
  ident: bb0160
  article-title: Automated brain extraction using Multi-Atlas Propagation and Segmentation (MAPS)
  publication-title: IEEE International Symposium on Biomedical Imaging (ISBI)
– volume: 56
  start-page: 209
  year: 2004
  end-page: 239
  ident: bb0030
  article-title: Semi-supervised learning on Riemannian manifolds
  publication-title: Mach. Learn.
– volume: 14
  start-page: 633
  year: 2010
  end-page: 642
  ident: bb0120
  article-title: GRAM: a framework for Geodesic Registration on Anatomical Manifolds
  publication-title: Med. Image Anal.
– volume: 18
  start-page: 141
  year: 1985
  end-page: 145
  ident: bb0015
  article-title: Eigenvalues of the Laplacian of a graph
  publication-title: Linear Multilinear Algebra
– year: 2009
  ident: bb0230
  article-title: Dimensionality reduction: a comparative review
  publication-title: Tech. Rep. TiCC-TR 2009-005
– year: 1977
  ident: bb0225
  article-title: Solutions of Ill-Posed Problems
– volume: 19
  start-page: 579
  year: 2009
  end-page: 587
  ident: bb0045
  article-title: Fully automatic hippocampus segmentation and classification in Alzheimer's disease and mild cognitive impairment applied on data from ADNI
  publication-title: Hippocampus
– volume: 26
  start-page: 93
  year: 2007
  end-page: 105
  ident: bb0085
  article-title: COMPARE: classification of morphological patterns using adaptive regional elements
  publication-title: IEEE Trans. Med. Imaging
– volume: 29
  start-page: 23
  year: 2008
  end-page: 30
  ident: bb0155
  article-title: Automated cortical thickness measurements from MRI can accurately separate Alzheimer's patients from normal elderly controls
  publication-title: Neurobiol. Aging
– volume: 44
  start-page: 1415
  year: 2009
  end-page: 1422
  ident: bb0165
  article-title: Baseline and longitudinal patterns of brain atrophy in MCI patients, and their use in prediction of short-term conversion to AD: results from ADNI
  publication-title: NeuroImage
– volume: 59
  start-page: 2217
  year: 2012
  end-page: 2230
  ident: bb0040
  article-title: Individual subject classification for Alzheimer's disease based on incremental learning using a spatial frequency representation of cortical thickness data
  publication-title: NeuroImage
– volume: 49
  start-page: 1316
  year: 2010
  end-page: 1325
  ident: bb0250
  article-title: LEAP: Learning Embeddings for Atlas Propagation
  publication-title: NeuroImage
– volume: 14
  start-page: 643
  year: 2010
  end-page: 653
  ident: bb0110
  article-title: Manifold modeling for brain population analysis
  publication-title: Med. Image Anal.
– volume: 6
  start-page: 239
  year: 2010
  end-page: 246
  ident: bb0005
  article-title: Clinical core of the Alzheimer's Disease Neuroimaging Initiative: progress and plans
  publication-title: Alzheimers Dement.
– volume: 6
  start-page: e25446
  year: 2011
  ident: bb0255
  article-title: Multi-method analysis of MRI images in early diagnostics of Alzheimer's disease
  publication-title: PLoS ONE
– volume: 1
  start-page: 317
  year: 1997
  end-page: 328
  ident: bb0205
  article-title: On comparing classifiers: pitfalls to avoid and a recommended approach
  publication-title: Data Min. Knowl. Disc.
– volume: 58
  start-page: 267
  year: 1996
  end-page: 288
  ident: bb0220
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J. R. Stat. Soc. Ser. B Methodol.
– volume: 6
  start-page: 67
  year: 2010
  end-page: 77
  ident: bb0100
  article-title: The clinical use of structural MRI in Alzheimer disease
  publication-title: Nat. Rev. Neurol.
– volume: 47
  start-page: 1476
  year: 2009
  end-page: 1486
  ident: bb0105
  article-title: Multidimensional classification of hippocampal shape features discriminates Alzheimer's disease and mild cognitive impairment from normal aging
  publication-title: NeuroImage
– volume: 32
  start-page: 2322.e19
  year: 2011
  end-page: 2322.e27
  ident: bb0070
  article-title: Prediction of MCI to AD conversion, via MRI, CSF biomarkers, and pattern classification
  publication-title: Neurobiol. Aging
– volume: 290
  start-page: 2319
  year: 2000
  end-page: 2323
  ident: bb0215
  article-title: A global geometric framework for nonlinear dimensionality reduction
  publication-title: Science
– start-page: 273
  year: 1995
  end-page: 297
  ident: bb0050
  article-title: Support-vector networks
  publication-title: Machine Learning
– year: 1994
  ident: bb0060
  article-title: Multidimensional Scaling
– volume: 84
  start-page: 502
  year: 1989
  end-page: 516
  ident: bb0130
  article-title: Principal curves
  publication-title: J. Am. Stat. Assoc.
– volume: 56
  start-page: 303
  year: 1999
  end-page: 308
  ident: bb0175
  article-title: Mild cognitive impairment: clinical characterization and outcome
  publication-title: Arch. Neurol.
– volume: 67
  start-page: 301
  year: 2005
  end-page: 320
  ident: bb0270
  article-title: Regularization and variable selection via the elastic net
  publication-title: J. R. Stat. Soc. Ser. B
– volume: 42
  start-page: 1072
  year: 1999
  end-page: 1081
  ident: bb0170
  article-title: On standardizing the mr image intensity scale
  publication-title: Magn. Reson. Med.
– volume: 9
  start-page: 119
  year: 2010
  end-page: 128
  ident: bb0135
  article-title: Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade
  publication-title: Lancet Neurol.
– start-page: 249
  year: 2010
  end-page: 252
  ident: bb0140
  article-title: Early diagnosis of dementia based on intersubject whole-brain dissimilarities
  publication-title: IEEE International Symposium on Biomedical Imaging (ISBI)
– year: 1992
  ident: bb0210
  article-title: Multivariate Density Estimation: Theory, Practice, and Visualization
  publication-title: Wiley Series in Probability and Statistics
– volume: 39
  start-page: 1731
  year: 2008
  end-page: 1743
  ident: bb0090
  article-title: Spatial patterns of brain atrophy in MCI patients, identified via high-dimensional pattern classification, predict subsequent cognitive decline
  publication-title: NeuroImage
– volume: 56
  start-page: 303
  issue: 3
  year: 1999
  ident: 10.1016/j.neuroimage.2014.03.036_bb0175
  article-title: Mild cognitive impairment: clinical characterization and outcome
  publication-title: Arch. Neurol.
  doi: 10.1001/archneur.56.3.303
– volume: 58
  start-page: 267
  issue: 1
  year: 1996
  ident: 10.1016/j.neuroimage.2014.03.036_bb0220
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J. R. Stat. Soc. Ser. B Methodol.
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume: 29
  start-page: 23
  issue: 1
  year: 2008
  ident: 10.1016/j.neuroimage.2014.03.036_bb0155
  article-title: Automated cortical thickness measurements from MRI can accurately separate Alzheimer's patients from normal elderly controls
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2006.09.013
– volume: 7
  start-page: e33182
  issue: 3
  year: 2012
  ident: 10.1016/j.neuroimage.2014.03.036_bb0265
  article-title: Predicting future clinical changes of MCI patients using longitudinal and multimodal biomarkers
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0033182
– volume: 47
  start-page: 1476
  issue: 4
  year: 2009
  ident: 10.1016/j.neuroimage.2014.03.036_bb0105
  article-title: Multidimensional classification of hippocampal shape features discriminates Alzheimer's disease and mild cognitive impairment from normal aging
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.05.036
– year: 1992
  ident: 10.1016/j.neuroimage.2014.03.036_bb0210
  article-title: Multivariate Density Estimation: Theory, Practice, and Visualization
– volume: 18
  start-page: 141
  year: 1985
  ident: 10.1016/j.neuroimage.2014.03.036_bb0015
  article-title: Eigenvalues of the Laplacian of a graph
  publication-title: Linear Multilinear Algebra
  doi: 10.1080/03081088508817681
– volume: 65
  start-page: 511
  year: 2013
  ident: 10.1016/j.neuroimage.2014.03.036_bb0080
  article-title: Prediction of Alzheimer's disease in subjects with mild cognitive impairment from the ADNI cohort using patterns of cortical thinning
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.09.058
– volume: 9
  start-page: 119
  issue: 1
  year: 2010
  ident: 10.1016/j.neuroimage.2014.03.036_bb0135
  article-title: Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(09)70299-6
– volume: 44
  start-page: 1415
  issue: 4
  year: 2009
  ident: 10.1016/j.neuroimage.2014.03.036_bb0165
  article-title: Baseline and longitudinal patterns of brain atrophy in MCI patients, and their use in prediction of short-term conversion to AD: results from ADNI
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2008.10.031
– year: 2002
  ident: 10.1016/j.neuroimage.2014.03.036_bb0180
– volume: 290
  start-page: 2323
  year: 2000
  ident: 10.1016/j.neuroimage.2014.03.036_bb0195
  article-title: Nonlinear dimensionality reduction by locally linear embedding
  publication-title: Science
  doi: 10.1126/science.290.5500.2323
– volume: 59
  start-page: 3736
  issue: 4
  year: 2012
  ident: 10.1016/j.neuroimage.2014.03.036_bb0055
  article-title: Simultaneous segmentation and grading of anatomical structures for patient's classification: application to Alzheimer's disease
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.10.080
– start-page: 2053
  year: 2011
  ident: 10.1016/j.neuroimage.2014.03.036_bb0160
  article-title: Automated brain extraction using Multi-Atlas Propagation and Segmentation (MAPS)
– volume: 56
  start-page: 209
  issue: 1–3
  year: 2004
  ident: 10.1016/j.neuroimage.2014.03.036_bb0030
  article-title: Semi-supervised learning on Riemannian manifolds
  publication-title: Mach. Learn.
  doi: 10.1023/B:MACH.0000033120.25363.1e
– volume: 44
  start-page: 2630
  issue: 10–11
  year: 2011
  ident: 10.1016/j.neuroimage.2014.03.036_bb0150
  article-title: Multivariate online kernel density estimation with Gaussian kernels
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2011.03.019
– volume: vol. 14
  start-page: 585
  year: 2002
  ident: 10.1016/j.neuroimage.2014.03.036_bb0025
  article-title: Laplacian eigenmaps and spectral techniques for embedding and clustering
– volume: 19
  start-page: 579
  issue: 6
  year: 2009
  ident: 10.1016/j.neuroimage.2014.03.036_bb0045
  article-title: Fully automatic hippocampus segmentation and classification in Alzheimer's disease and mild cognitive impairment applied on data from ADNI
  publication-title: Hippocampus
  doi: 10.1002/hipo.20626
– volume: 49
  start-page: 1316
  issue: 2
  year: 2010
  ident: 10.1016/j.neuroimage.2014.03.036_bb0250
  article-title: LEAP: Learning Embeddings for Atlas Propagation
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.09.069
– volume: 58
  start-page: 818
  issue: 3
  year: 2011
  ident: 10.1016/j.neuroimage.2014.03.036_bb0245
  article-title: AddNeuroMed and ADNI: similar patterns of Alzheimer's atrophy and automated MRI classification accuracy in Europe and North America
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.06.065
– volume: 6
  start-page: 67
  year: 2010
  ident: 10.1016/j.neuroimage.2014.03.036_bb0100
  article-title: The clinical use of structural MRI in Alzheimer disease
  publication-title: Nat. Rev. Neurol.
  doi: 10.1038/nrneurol.2009.215
– volume: 6
  start-page: e25446
  issue: 10
  year: 2011
  ident: 10.1016/j.neuroimage.2014.03.036_bb0255
  article-title: Multi-method analysis of MRI images in early diagnostics of Alzheimer's disease
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0025446
– volume: 290
  start-page: 2319
  issue: 5500
  year: 2000
  ident: 10.1016/j.neuroimage.2014.03.036_bb0215
  article-title: A global geometric framework for nonlinear dimensionality reduction
  publication-title: Science
  doi: 10.1126/science.290.5500.2319
– volume: 67
  start-page: 301
  year: 2005
  ident: 10.1016/j.neuroimage.2014.03.036_bb0270
  article-title: Regularization and variable selection via the elastic net
  publication-title: J. R. Stat. Soc. Ser. B
  doi: 10.1111/j.1467-9868.2005.00503.x
– volume: 84
  start-page: 502
  year: 1989
  ident: 10.1016/j.neuroimage.2014.03.036_bb0130
  article-title: Principal curves
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1989.10478797
– volume: 16
  start-page: 384
  year: 2008
  ident: 10.1016/j.neuroimage.2014.03.036_bb0190
  article-title: Clinical criteria for the diagnosis of Alzheimer disease: still good after all these years
  publication-title: Am. J. Geriatr. Psychiatry
  doi: 10.1097/JGP.0b013e3181629971
– volume: 132
  start-page: 2036
  issue: 8
  year: 2009
  ident: 10.1016/j.neuroimage.2014.03.036_bb0185
  article-title: Early diagnosis of Alzheimer's disease using cortical thickness: impact of cognitive reserve
  publication-title: Brain
  doi: 10.1093/brain/awp105
– volume: 14
  start-page: 633
  issue: 5
  year: 2010
  ident: 10.1016/j.neuroimage.2014.03.036_bb0120
  article-title: GRAM: a framework for Geodesic Registration on Anatomical Manifolds
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2010.06.001
– volume: 18
  start-page: 712
  issue: 8
  year: 1999
  ident: 10.1016/j.neuroimage.2014.03.036_bb0200
  article-title: Nonrigid registration using free-form deformations: application to breast MR images
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.796284
– volume: 15
  start-page: 17
  issue: 1
  year: 2003
  ident: 10.1016/j.neuroimage.2014.03.036_bb0075
  article-title: Plug-in bandwidth matrices for bivariate kernel density estimation
  publication-title: J. Nonparametric Stat.
  doi: 10.1080/10485250306039
– year: 1994
  ident: 10.1016/j.neuroimage.2014.03.036_bb0060
– volume: 6
  start-page: 239
  issue: 3
  year: 2010
  ident: 10.1016/j.neuroimage.2014.03.036_bb0005
  article-title: Clinical core of the Alzheimer's Disease Neuroimaging Initiative: progress and plans
  publication-title: Alzheimers Dement.
  doi: 10.1016/j.jalz.2010.03.006
– start-page: 273
  year: 1995
  ident: 10.1016/j.neuroimage.2014.03.036_bb0050
  article-title: Support-vector networks
– start-page: 249
  year: 2010
  ident: 10.1016/j.neuroimage.2014.03.036_bb0140
  article-title: Early diagnosis of dementia based on intersubject whole-brain dissimilarities
– year: 2009
  ident: 10.1016/j.neuroimage.2014.03.036_bb0230
  article-title: Dimensionality reduction: a comparative review
– volume: 14
  start-page: 643
  issue: 5
  year: 2010
  ident: 10.1016/j.neuroimage.2014.03.036_bb0110
  article-title: Manifold modeling for brain population analysis
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2010.05.008
– volume: 56
  start-page: 1134
  issue: 3
  year: 2011
  ident: 10.1016/j.neuroimage.2014.03.036_bb0145
  article-title: Multi-template tensor-based morphometry: application to analysis of Alzheimer's disease
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.03.029
– year: 1977
  ident: 10.1016/j.neuroimage.2014.03.036_bb0225
– volume: 39
  start-page: 1731
  issue: 4
  year: 2008
  ident: 10.1016/j.neuroimage.2014.03.036_bb0090
  article-title: Spatial patterns of brain atrophy in MCI patients, identified via high-dimensional pattern classification, predict subsequent cognitive decline
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2007.10.031
– volume: vol. 6892
  start-page: 566
  year: 2011
  ident: 10.1016/j.neuroimage.2014.03.036_bb0115
  article-title: Laplacian eigenmaps manifold learning for landmark localization in brain mr images
– volume: 56
  start-page: 766
  issue: 2
  year: 2011
  ident: 10.1016/j.neuroimage.2014.03.036_bb0065
  article-title: Automatic classification of patients with Alzheimer's disease from structural MRI: a comparison of ten methods using the ADNI database
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.06.013
– volume: 26
  start-page: 93
  issue: 1
  year: 2007
  ident: 10.1016/j.neuroimage.2014.03.036_bb0085
  article-title: COMPARE: classification of morphological patterns using adaptive regional elements
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2006.886812
– volume: 42
  start-page: 1072
  issue: 6
  year: 1999
  ident: 10.1016/j.neuroimage.2014.03.036_bb0170
  article-title: On standardizing the mr image intensity scale
  publication-title: Magn. Reson. Med.
  doi: 10.1002/(SICI)1522-2594(199912)42:6<1072::AID-MRM11>3.0.CO;2-M
– volume: 16
  start-page: 819
  issue: 4
  year: 2012
  ident: 10.1016/j.neuroimage.2014.03.036_bb0260
  article-title: Nonlinear dimensionality reduction combining MR imaging with non-imaging information
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2011.12.003
– volume: 1
  start-page: 317
  issue: 3
  year: 1997
  ident: 10.1016/j.neuroimage.2014.03.036_bb0205
  article-title: On comparing classifiers: pitfalls to avoid and a recommended approach
  publication-title: Data Min. Knowl. Disc.
  doi: 10.1023/A:1009752403260
– volume: 88
  start-page: 190
  issue: 1
  year: 2004
  ident: 10.1016/j.neuroimage.2014.03.036_bb0020
  article-title: On a new multivariate two-sample test
  publication-title: J. Multivar. Anal.
  doi: 10.1016/S0047-259X(03)00079-4
– year: 1994
  ident: 10.1016/j.neuroimage.2014.03.036_bb0240
– volume: 32
  start-page: 2322.e19
  issue: 12
  year: 2011
  ident: 10.1016/j.neuroimage.2014.03.036_bb0070
  article-title: Prediction of MCI to AD conversion, via MRI, CSF biomarkers, and pattern classification
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2010.05.023
– volume: 39
  start-page: 1186
  issue: 3
  year: 2008
  ident: 10.1016/j.neuroimage.2014.03.036_bb0235
  article-title: Alzheimer's disease diagnosis in individual subjects using structural MR images: validation studies
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2007.09.073
– volume: 46
  start-page: 726
  issue: 3
  year: 2009
  ident: 10.1016/j.neuroimage.2014.03.036_bb0010
  article-title: Multi-atlas based segmentation of brain images: atlas selection and its effect on accuracy
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.02.018
– volume: 9
  start-page: 560
  year: 2010
  ident: 10.1016/j.neuroimage.2014.03.036_bb0125
  article-title: Biomarkers for Alzheimer's disease: academic, industry and regulatory perspectives
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd3115
– volume: 12
  start-page: 189
  issue: 3
  year: 1975
  ident: 10.1016/j.neuroimage.2014.03.036_bb0095
  article-title: “Mini-mental state”: a practical method for grading the cognitive state of patients for the clinician
  publication-title: J. Psychiatr. Res.
  doi: 10.1016/0022-3956(75)90026-6
– volume: 59
  start-page: 2217
  issue: 3
  year: 2012
  ident: 10.1016/j.neuroimage.2014.03.036_bb0040
  article-title: Individual subject classification for Alzheimer's disease based on incremental learning using a spatial frequency representation of cortical thickness data
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.09.085
– volume: 3
  start-page: 186
  issue: 3
  year: 2007
  ident: 10.1016/j.neuroimage.2014.03.036_bb0035
  article-title: Forecasting the global burden of Alzheimers disease
  publication-title: Alzheimers Dement.
  doi: 10.1016/j.jalz.2007.04.381
SSID ssj0009148
Score 2.352983
Snippet We propose a framework for feature extraction from learned low-dimensional subspaces that represent inter-subject variability. The manifold subspace is built...
SourceID proquest
pubmed
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 275
SubjectTerms Adult and adolescent clinical studies
Aged
Aged, 80 and over
Algorithms
Alzheimer Disease - diagnosis
Alzheimer Disease - epidemiology
Alzheimer's disease
Alzheimer's disease (AD)
Artificial Intelligence
Biological and medical sciences
Biomarkers
Brain - pathology
Causality
Classification
Clinical trials
Cognitive Dysfunction - diagnosis
Cognitive Dysfunction - epidemiology
Comorbidity
Computer Simulation
Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases
Dementia
Female
Humans
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Kernel density estimation
Laplacian eigenmaps
Magnetic Resonance Imaging - methods
Male
Manifold learning
Medical imaging
Medical sciences
Middle Aged
Mild cognitive impairment (MCI)
Models, Statistical
Neuroimaging - methods
Neurology
Older people
Organic mental disorders. Neuropsychology
Patients
Pattern Recognition, Automated - methods
Psychology. Psychoanalysis. Psychiatry
Psychopathology. Psychiatry
Reproducibility of Results
Sensitivity and Specificity
Sparse regression
Studies
SummonAdditionalLinks – databaseName: Elsevier SD Freedom Collection
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swEBelD2MwytZtbdYPNOirFjuSLbl9Cv1cId1DVyh9EbIkQ0rmhCZ93d_eO1l2KLQlUMiDY-vgLJ3ufkZ39yPkwOawgXxhmBxUnok08azglWUqzb2yYEPcYYHz6Cq_uBGXt9ntGjlua2EwrTL6_sanB28d7_TjbPZn43H_GpABhBvsT4bMchyL-ISQyGLw6_8yzQMeN-VwGWc4OmbzNDleoWfk-B_sXEzyEqHdaWjW_GKI-jQzc5i4qmG8eB2ShtB09plsRExJh43aX8iarzfJh1E8Nf9K7kamHlfTiaOzjq6LBgociFvUzKmhQUWGOuItrMnHtJ2HQzpcHnDTxZQOT65-U1O7cMHO_3wjN2enf48vWORUYBaQ1oIZZ7AcNfGmUgbgT-pkxQs_kA4mCrCMMDax4POkN1JVufSVE4j7PJdGlIANv5P1elr7bUKdT7E7nS1lCd8kNikSJXyZOFl6-I40rkdkO43axobjyHsx0W1m2b1eLoDGBdAJh1_eI2knOWuabqwgU7QrpduiUnCDGiLDCrJHnewz41tRev-ZYXQqD1SWcABoPbLbWoqOHmKuUyR9RlJ13iM_u8ewt_HAxtR--ohjAF9JrpR6c0xRZAC6YcxWY4VLBUSeSZ6lP971fjvkI_5rcpR3yfri4dHvARJblPthqz0BchIxZA
  priority: 102
  providerName: Elsevier
Title Manifold population modeling as a neuro-imaging biomarker: Application to ADNI and ADNI-GO
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811914001839
https://dx.doi.org/10.1016/j.neuroimage.2014.03.036
https://www.ncbi.nlm.nih.gov/pubmed/24657351
https://www.proquest.com/docview/1547314613
https://www.proquest.com/docview/1524173888
https://www.proquest.com/docview/1529955758
Volume 94
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20191231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: AIKHN
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20191231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: ACRLP
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: AKRWK
  dateStart: 19920801
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20250902
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: 7X7
  dateStart: 20020801
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1095-9572
  dateEnd: 20250902
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: BENPR
  dateStart: 19980501
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ta9swED7aBMaglL03Wxc02FdtVmRbdscYWdcu3RavlBXCvhhZkqGltbMm_brfvju_MthKIDjG1sFZOp0eW3f3ALw2IU4gF2uuJrnjvvAcj2VueCRCFxm0IWkpwXmehLNz_8siWGxB0ubCUFhl6xMrR21LQ9_I3woiySUSavlh-YsTaxTtrrYUGrqhVrDvqxJj2zCcUGWsAQw_HiWnZ30ZXuHXyXGBRHVE3MT21BFfVQXJi2ucxxTy5VfFT6vSzf9csHaWeoXdmNf8F_8HqNVCdfwAdhuEyaa1STyELVc8gnvzZg_9Mfyc6-IiL68sW3bkXawixMFVjOkV06xSkZOOdIky9CmI5-aATfvtbrYu2fRTcsJ0YasT_vn7Ezg_PvpxOOMNwwI3iLvWXFtNyame03mkEQwJq3IZu4my2FGIbHxtPIMeUDmtojxULrc-oUAnlfYzRIpPYVCUhdsDZp2gWnUmUxm-oRgv9iLfZZ5VmcOB0HYEqu3G1DTlx4kF4ypt48wu034AUhqA1JP4C0cgOsllXYJjA5m4Ham0TTFFp5jiOrGB7LtOtoEhNbzYUHr8l2F0Kk-iwJMI10aw31pK2viLVdpb9whedbdxptP2jS5ceUttEG0pGUXRnW3iOEAIjm2e1VbYK-CHgZKBeH63Ai_gPj1OHZK8D4P1za17icBrnY1h-81vgUe1UGMYTg_Pvp3S_8nXWTJuZtof_V4xig
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fa9RAEF5KCyqI-NvTWlfQx2A2u8lmlSKnbb2zvVOkhdKXdbO7gUpNzt4V8Z_zb3Mm2eQQtNxL4R7CZQc2mdmZb7Mz8xHywmawgLwykUxKHwkW-0jx0kY5y3xuwYa4wwLnyTQbHYmPx-nxGvnd1cJgWmXnExtH7WqL38hfMSTJRRJq_nb2I0LWKDxd7Sg0TKBWcNtNi7FQ2LHvf_2ELdx8e7wD-n6ZJHu7h-9HUWAZiCxgj0VknMECzdibMjcACJiTJVc-kU4xAdFdGBtb8ALSG5mXmfSlE4iEPJdGFCl-EIUQsCG4ULD523i3O_38Zdn2l4m2GC_l8PhMhVyiNsOs6Vh5-h38BqaYiabZatMq-p8B8ubMzEFtZcu38X9A3ATGvdvkVkC0dNia4B2y5qu75NoknNnfIycTU52W9Zmjs54sjDYEPBA1qZlTQ5spRjhH_As7AmDS0PlrOlwer9NFTYc70zE1lWsuog-f7pOjK3nXD8h6VVf-EaHOM-yNZwtZwI7IxirOhS9iJwsPu1jjBkR2r1Hb0O4cWTfOdJfX9k0vFaBRATrm8MsGhPWSs7blxwoyqtOU7kpawQlriEsryL7pZQPsaeHMitJbfxlGP-UkT2MO8HBANjtL0cE_zfVyNQ3I8_42eBY8LjKVry9wDKA7yfM8v3SMUilAfhjzsLXC5QRElkqesseXT-AZuT46nBzog_F0_wm5gY_WpkNvkvXF-YV_CqBvUWyFlUXJ16tezH8Ah0Jp2A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1baxQxFA6lQhFEvLu11gj6GDqZZCYTRWRxXbvWXX2wsPiSZpIMVOrstrtF_Gv-Os-ZK4KWfSnsw7CTA2fm3L5MzoWQFy4FAwraMhUXgUkeBaZF4VjG05A50CHhscB5OksPj-XHeTLfIr_bWhhMq2x9YuWo_cLhN_IDjkNycQi1OCiatIgvo_Hb5TnDCVJ40tqO06hV5Cj8-gnbt9WbyQhk_TKOx--_vjtkzYQB5gB3rJn1Foszo2CLzAIY4F4VQodYec0lRHZpXeTAA6hgVVakKhReIgoKQlmZJ_gxFNz_DSWExnRCNVd9w18u6zK8RMCDc91kEdW5ZVWvytMf4DEwuUxWbVarJtH_DI23lnYFAivqSRv_h8JVSBzfIbcbLEuHtfLdJVuhvEd2ps1p_X3ybWrL02Jx5umyGxNGq9E7EC-pXVFLKxYZ8oh_YS8ATBe6eEWH_cE6XS_ocDSbUFv66oJ9-PyAHF_Lm35ItstFGR4T6gPHrnguVznshVyko0yGPPIqD7B_tX5AVPsajWsaneO8jTPTZrR9N70ADArARAJ-6YDwjnJZN_vYgEa3kjJtMSu4XwMRaQPa1x1tA3hqILMh9f5fitGxHGdJJAAYDsheqymm8Uwr09vRgDzvboNPwYMiW4bFJa4BXKdElmVXrtE6AbAPax7VWtgzINNEiYTvXs3AM7IDJmw-TWZHT8hNfLI6D3qPbK8vLsNTQHvrfL8yK0pOrtuO_wCf32dy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Manifold+population+modeling+as+a+neuro-imaging+biomarker%3A+Application+to+ADNI+and+ADNI-GO&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Guerrero%2C+R.&rft.au=Wolz%2C+R.&rft.au=Rao%2C+A.W.&rft.au=Rueckert%2C+D.&rft.date=2014-07-01&rft.issn=1053-8119&rft.volume=94&rft.spage=275&rft.epage=286&rft_id=info:doi/10.1016%2Fj.neuroimage.2014.03.036&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neuroimage_2014_03_036
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon