Manifold population modeling as a neuro-imaging biomarker: Application to ADNI and ADNI-GO
We propose a framework for feature extraction from learned low-dimensional subspaces that represent inter-subject variability. The manifold subspace is built from data-driven regions of interest (ROI). The regions are learned via sparse regression using the mini-mental state examination (MMSE) score...
        Saved in:
      
    
          | Published in | NeuroImage (Orlando, Fla.) Vol. 94; pp. 275 - 286 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Amsterdam
          Elsevier Inc
    
        01.07.2014
     Elsevier Elsevier Limited  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1053-8119 1095-9572 1095-9572  | 
| DOI | 10.1016/j.neuroimage.2014.03.036 | 
Cover
| Abstract | We propose a framework for feature extraction from learned low-dimensional subspaces that represent inter-subject variability. The manifold subspace is built from data-driven regions of interest (ROI). The regions are learned via sparse regression using the mini-mental state examination (MMSE) score as an independent variable which correlates better with the actual disease stage than a discrete class label. The sparse regression is used to perform variable selection along with a re-sampling scheme to reduce sampling bias. We then use the learned manifold coordinates to perform visualization and classification of the subjects. Results of the proposed approach are shown using the ADNI and ADNI-GO datasets. Three types of classification techniques, including a new MRI Disease-State-Score (MRI-DSS) classifier, are tested in conjunction with two learning strategies. In the first case Alzheimer's Disease (AD) and progressive mild cognitive impairment (pMCI) subjects were grouped together, while cognitive normal (CN) and stable mild cognitive impaired (sMCI) subjects were also grouped together. In the second approach, the classifiers are learned using the original class labels (with no grouping). We show results that are comparable to other state-of-the-art methods. A classification rate of 71%, of arguably the most clinically relevant subjects, sMCI and pMCI, is shown. Additionally, we present classification accuracies between CN and early MCI (eMCI) subjects, from the ADNI-GO dataset, of 65%. To our knowledge this is the first time classification accuracies for eMCI patients have been reported.
•Manifold learning from data-driven regions of interest•Encouraging classification results on ADNI and ADNI-GO datasets•Continuous disease modeling in the manifold using the proposed MRI-DSS biomarker•High MMSE prediction accuracy on the learned subspace | 
    
|---|---|
| AbstractList | We propose a framework for feature extraction from learned low-dimensional subspaces that represent inter-subject variability. The manifold subspace is built from data-driven regions of interest (ROI). The regions are learned via sparse regression using the mini-mental state examination (MMSE) score as an independent variable which correlates better with the actual disease stage than a discrete class label. The sparse regression is used to perform variable selection along with a re-sampling scheme to reduce sampling bias. We then use the learned manifold coordinates to perform visualization and classification of the subjects. Results of the proposed approach are shown using the ADNI and ADNI-GO datasets. Three types of classification techniques, including a new MRI Disease-State-Score (MRI-DSS) classifier, are tested in conjunction with two learning strategies. In the first case Alzheimer's Disease (AD) and progressive mild cognitive impairment (pMCI) subjects were grouped together, while cognitive normal (CN) and stable mild cognitive impaired (sMCI) subjects were also grouped together. In the second approach, the classifiers are learned using the original class labels (with no grouping). We show results that are comparable to other state-of-the-art methods. A classification rate of 71%, of arguably the most clinically relevant subjects, sMCI and pMCI, is shown. Additionally, we present classification accuracies between CN and early MCI (eMCI) subjects, from the ADNI-GO dataset, of 65%. To our knowledge this is the first time classification accuracies for eMCI patients have been reported.
•Manifold learning from data-driven regions of interest•Encouraging classification results on ADNI and ADNI-GO datasets•Continuous disease modeling in the manifold using the proposed MRI-DSS biomarker•High MMSE prediction accuracy on the learned subspace We propose a framework for feature extraction from learned low-dimensional subspaces that represent inter-subject variability. The manifold subspace is built from data-driven regions of interest (ROI). The regions are learned via sparse regression using the mini-mental state examination (MMSE) score as an independent variable which correlates better with the actual disease stage than a discrete class label. The sparse regression is used to perform variable selection along with a re-sampling scheme to reduce sampling bias. We then use the learned manifold coordinates to perform visualization and classification of the subjects. Results of the proposed approach are shown using the ADNI and ADNI-GO datasets. Three types of classification techniques, including a new MRI Disease-State-Score (MRI-DSS) classifier, are tested in conjunction with two learning strategies. In the first case Alzheimer's Disease (AD) and progressive mild cognitive impairment (pMCI) subjects were grouped together, while cognitive normal (CN) and stable mild cognitive impaired (sMCI) subjects were also grouped together. In the second approach, the classifiers are learned using the original class labels (with no grouping). We show results that are comparable to other state-of-the-art methods. A classification rate of 71%, of arguably the most clinically relevant subjects, sMCI and pMCI, is shown. Additionally, we present classification accuracies between CN and early MCI (eMCI) subjects, from the ADNI-GO dataset, of 65%. To our knowledge this is the first time classification accuracies for eMCI patients have been reported. We propose a framework for feature extraction from learned low-dimensional subspaces that represent inter-subject variability. The manifold subspace is built from data-driven regions of interest (ROI). The regions are learned via sparse regression using the mini-mental state examination (MMSE) score as an independent variable which correlates better with the actual disease stage than a discrete class label. The sparse regression is used to perform variable selection along with a re-sampling scheme to reduce sampling bias. We then use the learned manifold coordinates to perform visualization and classification of the subjects. Results of the proposed approach are shown using the ADNI and ADNI-GO datasets. Three types of classification techniques, including a new MRI Disease-State-Score (MRI-DSS) classifier, are tested in conjunction with two learning strategies. In the first case Alzheimer's Disease (AD) and progressive mild cognitive impairment (pMCI) subjects were grouped together, while cognitive normal (CN) and stable mild cognitive impaired (sMCI) subjects were also grouped together. In the second approach, the classifiers are learned using the original class labels (with no grouping). We show results that are comparable to other state-of-the-art methods. A classification rate of 71%, of arguably the most clinically relevant subjects, sMCI and pMCI, is shown. Additionally, we present classification accuracies between CN and early MCI (eMCI) subjects, from the ADNI-GO dataset, of 65%. To our knowledge this is the first time classification accuracies for eMCI patients have been reported.We propose a framework for feature extraction from learned low-dimensional subspaces that represent inter-subject variability. The manifold subspace is built from data-driven regions of interest (ROI). The regions are learned via sparse regression using the mini-mental state examination (MMSE) score as an independent variable which correlates better with the actual disease stage than a discrete class label. The sparse regression is used to perform variable selection along with a re-sampling scheme to reduce sampling bias. We then use the learned manifold coordinates to perform visualization and classification of the subjects. Results of the proposed approach are shown using the ADNI and ADNI-GO datasets. Three types of classification techniques, including a new MRI Disease-State-Score (MRI-DSS) classifier, are tested in conjunction with two learning strategies. In the first case Alzheimer's Disease (AD) and progressive mild cognitive impairment (pMCI) subjects were grouped together, while cognitive normal (CN) and stable mild cognitive impaired (sMCI) subjects were also grouped together. In the second approach, the classifiers are learned using the original class labels (with no grouping). We show results that are comparable to other state-of-the-art methods. A classification rate of 71%, of arguably the most clinically relevant subjects, sMCI and pMCI, is shown. Additionally, we present classification accuracies between CN and early MCI (eMCI) subjects, from the ADNI-GO dataset, of 65%. To our knowledge this is the first time classification accuracies for eMCI patients have been reported.  | 
    
| Author | Guerrero, R. Rueckert, D. Wolz, R. Rao, A.W.  | 
    
| AuthorAffiliation | Department of Computing, Imperial College, London, UK | 
    
| AuthorAffiliation_xml | – name: Department of Computing, Imperial College, London, UK | 
    
| Author_xml | – sequence: 1 givenname: R. surname: Guerrero fullname: Guerrero, R. email: reg09@imperial.ac.uk – sequence: 2 givenname: R. surname: Wolz fullname: Wolz, R. – sequence: 3 givenname: A.W. surname: Rao fullname: Rao, A.W. – sequence: 4 givenname: D. surname: Rueckert fullname: Rueckert, D.  | 
    
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28503431$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/24657351$$D View this record in MEDLINE/PubMed  | 
    
| BookMark | eNqNkk2LFDEQhhtZcT_0L0iDCF56TDpJp9uDOK66LqzuRS9eQk1SvWQ2k7RJt7D_3vTM6MKcBgoSwlNvpeqt8-LEB49FUVKyoIQ2b9cLj1MMdgN3uKgJ5QvCcjRPijNKOlF1QtYn812wqqW0Oy3OU1oTQjrK22fFac0bIZmgZ8Wvb-BtH5wphzBMDkYbfLkJBp31dyWkEsptqWquNT-tbNhAvMf4rlwOg7N6lzKGcvnp-3UJ3mwv1dXt8-JpDy7hi_15Ufz88vnH5dfq5vbq-nJ5U2lR12MFBghvaoLQt1ALQo3sWYe1NPmzspYcNNFgjESQbd9I7A3PnXBkEvhKMHZRvNnpDjH8njCNamOTRufAY5iSoqLuOiGkaI9BOZWsbWf01QG6DlP0uZFMcckob-hc--WemlYbNGqIeU7xQf0bcAZe7wFIGlwfwWubHrlWEMbZzLU7TseQUsT-P0KJmj1Xa_XouZo9V4TlaHLq-4NUbcetK2ME644R-LgTwOzSH4tRJW3RazQ2oh6VCfYYkQ8HIjqvUF4Pd48Px0n8BSTO4g0 | 
    
| CitedBy_id | crossref_primary_10_1038_s41398_024_03073_w crossref_primary_10_1038_s41598_018_29295_9 crossref_primary_10_1016_j_compbiomed_2024_109039 crossref_primary_10_1007_s11042_020_09087_y crossref_primary_10_1177_1550147719826048 crossref_primary_10_3389_fnins_2019_00668 crossref_primary_10_1186_s13195_021_00900_w crossref_primary_10_3389_fnins_2018_00777 crossref_primary_10_1155_2021_5531940 crossref_primary_10_1080_03772063_2023_2205857 crossref_primary_10_3390_s19112645 crossref_primary_10_1016_j_jalz_2016_11_007 crossref_primary_10_1016_j_neuroimage_2018_08_042 crossref_primary_10_1038_s41598_022_04943_3 crossref_primary_10_1177_25424823241290694 crossref_primary_10_1016_j_neuroimage_2016_06_049 crossref_primary_10_1177_1550147719831186 crossref_primary_10_3389_fninf_2017_00016 crossref_primary_10_1016_j_jneumeth_2019_108544 crossref_primary_10_1016_j_patcog_2016_09_023 crossref_primary_10_1016_j_cmpb_2017_03_006 crossref_primary_10_1371_journal_pone_0153040 crossref_primary_10_1007_s00500_022_06762_0 crossref_primary_10_1109_ACCESS_2019_2936415 crossref_primary_10_1371_journal_pone_0179804 crossref_primary_10_1016_j_neuroimage_2014_10_002 crossref_primary_10_1016_j_bspc_2018_02_019 crossref_primary_10_1016_j_nicl_2016_02_019 crossref_primary_10_1109_TBME_2016_2549363 crossref_primary_10_1186_s13195_024_01589_3 crossref_primary_10_1371_journal_pone_0267608 crossref_primary_10_32604_cmc_2022_020866  | 
    
| Cites_doi | 10.1001/archneur.56.3.303 10.1111/j.2517-6161.1996.tb02080.x 10.1016/j.neurobiolaging.2006.09.013 10.1371/journal.pone.0033182 10.1016/j.neuroimage.2009.05.036 10.1080/03081088508817681 10.1016/j.neuroimage.2012.09.058 10.1016/S1474-4422(09)70299-6 10.1016/j.neuroimage.2008.10.031 10.1126/science.290.5500.2323 10.1016/j.neuroimage.2011.10.080 10.1023/B:MACH.0000033120.25363.1e 10.1016/j.patcog.2011.03.019 10.1002/hipo.20626 10.1016/j.neuroimage.2009.09.069 10.1016/j.neuroimage.2011.06.065 10.1038/nrneurol.2009.215 10.1371/journal.pone.0025446 10.1126/science.290.5500.2319 10.1111/j.1467-9868.2005.00503.x 10.1080/01621459.1989.10478797 10.1097/JGP.0b013e3181629971 10.1093/brain/awp105 10.1016/j.media.2010.06.001 10.1109/42.796284 10.1080/10485250306039 10.1016/j.jalz.2010.03.006 10.1016/j.media.2010.05.008 10.1016/j.neuroimage.2011.03.029 10.1016/j.neuroimage.2007.10.031 10.1016/j.neuroimage.2010.06.013 10.1109/TMI.2006.886812 10.1002/(SICI)1522-2594(199912)42:6<1072::AID-MRM11>3.0.CO;2-M 10.1016/j.media.2011.12.003 10.1023/A:1009752403260 10.1016/S0047-259X(03)00079-4 10.1016/j.neurobiolaging.2010.05.023 10.1016/j.neuroimage.2007.09.073 10.1016/j.neuroimage.2009.02.018 10.1038/nrd3115 10.1016/0022-3956(75)90026-6 10.1016/j.neuroimage.2011.09.085 10.1016/j.jalz.2007.04.381  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2014 Elsevier Inc. 2015 INIST-CNRS Copyright © 2014 Elsevier Inc. All rights reserved. Copyright Elsevier Limited Jul 1, 2014  | 
    
| Copyright_xml | – notice: 2014 Elsevier Inc. – notice: 2015 INIST-CNRS – notice: Copyright © 2014 Elsevier Inc. All rights reserved. – notice: Copyright Elsevier Limited Jul 1, 2014  | 
    
| CorporateAuthor | The Alzheimer's Disease Neuroimaging Initiative (ADNI) Alzheimer's Disease Neuroimaging Initiative (ADNI)  | 
    
| CorporateAuthor_xml | – name: The Alzheimer's Disease Neuroimaging Initiative (ADNI) – name: Alzheimer's Disease Neuroimaging Initiative (ADNI)  | 
    
| DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 7QO  | 
    
| DOI | 10.1016/j.neuroimage.2014.03.036 | 
    
| DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database ProQuest Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic Biotechnology Research Abstracts  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic Biotechnology Research Abstracts  | 
    
| DatabaseTitleList | ProQuest One Psychology MEDLINE Engineering Research Database MEDLINE - Academic  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Medicine | 
    
| EISSN | 1095-9572 | 
    
| EndPage | 286 | 
    
| ExternalDocumentID | 3380122291 24657351 28503431 10_1016_j_neuroimage_2014_03_036 S1053811914001839  | 
    
| Genre | Research Support, Non-U.S. Gov't Journal Article  | 
    
| GrantInformation_xml | – fundername: Rabin Enzra trust – fundername: SEP-DGRI – fundername: CONACyT – fundername: European Commission funderid: http://dx.doi.org/10.13039/501100000780 – fundername: Medical Research Council grantid: MC_PC_13034  | 
    
| GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ABXDB ACDAQ ACGFO ACGFS ACIEU ACLOT ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADFRT AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPUW AFRHN AFTJW AFXIZ AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HMCUK IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ Q38 ROL RPZ SAE SCC SDF SDG SDP SES SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 Z5R ZU3 ~G- ~HD 3V. AACTN AADPK AAIAV ABLVK ABYKQ AFKWA AJBFU AJOXV AMFUW C45 HMQ LCYCR RIG SNS ZA5 29N 53G AAFWJ AAQXK AAYXX ACRPL ADFGL ADMUD ADNMO ADVLN ADXHL AFPKN AGHFR AGQPQ AIGII AKRLJ APXCP ASPBG AVWKF AZFZN CAG CITATION COF FEDTE FGOYB G-2 HDW HEI HMK HMO HVGLF HZ~ OK1 PUEGO R2- SEW WUQ XPP ZMT ALIPV IQODW AGCQF AGRNS CGR CUY CVF ECM EIF NPM 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 7QO  | 
    
| ID | FETCH-LOGICAL-c522t-ada04620eaf8a2501d7f39e27d9147274ac0cadd7ea78f67efd40004e37a4b533 | 
    
| IEDL.DBID | BENPR | 
    
| ISSN | 1053-8119 1095-9572  | 
    
| IngestDate | Tue Oct 07 09:29:32 EDT 2025 Mon Sep 29 06:14:10 EDT 2025 Tue Oct 07 06:46:38 EDT 2025 Mon Jul 21 05:53:16 EDT 2025 Wed Apr 02 07:21:44 EDT 2025 Wed Oct 01 02:58:16 EDT 2025 Thu Apr 24 23:06:09 EDT 2025 Fri Feb 23 02:36:03 EST 2024 Tue Oct 14 19:34:55 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Laplacian eigenmaps Mild cognitive impairment (MCI) Classification Alzheimer's disease (AD) Sparse regression Manifold learning Kernel density estimation Nervous system diseases Alzheimer disease Biological marker Density Cerebral disorder Learning Acquisition process Imaging Central nervous system disease Degenerative disease mild cognitive impairment  | 
    
| Language | English | 
    
| License | CC BY 4.0 Copyright © 2014 Elsevier Inc. All rights reserved.  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c522t-ada04620eaf8a2501d7f39e27d9147274ac0cadd7ea78f67efd40004e37a4b533 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Feature-1  | 
    
| PMID | 24657351 | 
    
| PQID | 1547314613 | 
    
| PQPubID | 2031077 | 
    
| PageCount | 12 | 
    
| ParticipantIDs | proquest_miscellaneous_1529955758 proquest_miscellaneous_1524173888 proquest_journals_1547314613 pubmed_primary_24657351 pascalfrancis_primary_28503431 crossref_primary_10_1016_j_neuroimage_2014_03_036 crossref_citationtrail_10_1016_j_neuroimage_2014_03_036 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2014_03_036 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2014_03_036  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2014-07-01 | 
    
| PublicationDateYYYYMMDD | 2014-07-01 | 
    
| PublicationDate_xml | – month: 07 year: 2014 text: 2014-07-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Amsterdam | 
    
| PublicationPlace_xml | – name: Amsterdam – name: United States  | 
    
| PublicationTitle | NeuroImage (Orlando, Fla.) | 
    
| PublicationTitleAlternate | Neuroimage | 
    
| PublicationYear | 2014 | 
    
| Publisher | Elsevier Inc Elsevier Elsevier Limited  | 
    
| Publisher_xml | – name: Elsevier Inc – name: Elsevier – name: Elsevier Limited  | 
    
| References | Anderson, Morley (bb0015) 1985; 18 Davatzikos, Bhatt, Shaw, Batmanghelich, Trojanowski (bb0070) 2011; 32 Rueckert, Sonoda, Hayes, Hill, Leach, Hawkes (bb0200) 1999; 18 Hampel, Frank, Broich, Teipel, Katz, Hardy, Herholz, Bokde, Jessen, Hoessler, Sanhai, Zetterberg, Woodcock, Blennow (bb0125) 2010; 9 Querbes, Aubry, Pariente, Lotterie, Dmonet, Duret, Puel, Berry, Fort, Celsis, Initiative (bb0185) 2009; 132 Ranginwala, Hynan, Weiner, White (bb0190) 2008; 16 Kristan, Leonardis, Skocaj (bb0150) 2011; 44 Baringhaus, Franz (bb0020) 2004; 88 Gerber, Tasdizen, Fletcher, Joshi, Whitaker (bb0110) 2010; 14 Lerch, Pruessner, Zijdenbos, Collins, Teipel, Hampel, Evans (bb0155) 2008; 29 Zou, Hastie (bb0270) 2005; 67 Cho, Seong, Jeong, Shin (bb0040) 2012; 59 Tibshirani (bb0220) 1996; 58 Klein, Loog, van der Lijn, den Heijer, Hammers, de Bruijne, van der Lugt, Duin, Breteler, Niessen (bb0140) 2010 Wolz, Aljabar, Hajnal, Hammers, Rueckert (bb0250) 2010; 49 Cuingnet, Gerardin, Tessieras, Auzias, Lehricy, Habert, Chupin, Benali, Colliot (bb0065) 2011; 56 Hastie, Stuetzle (bb0130) 1989; 84 Leung, Barnes, Modat, Ridgway, Bartlett, Fox, Ourselin (bb0160) 2011 Brookmeyer, Johnson, Ziegler-Graham, Arrighi (bb0035) 2007; 3 van der Maaten, Postma, van den Herik (bb0230) 2009 Wand, Jones (bb0240) 1994 Misra, Fan, Davatzikos (bb0165) 2009; 44 Guerrero, Wolz, Rueckert (bb0115) 2011; vol. 6892 Frisoni, Fox, Jack, Scheltens, Thompson (bb0100) 2010; 6 Fan, Shen, Gur, Gur, Davatzikos (bb0085) 2007; 26 Folstein, Folstein, McHugh (bb0095) 1975; 12 Belkin, Niyogi (bb0025) 2002; vol. 14 Roweis, Saul (bb0195) 2000; 290 Fan, Batmanghelich, Clark, Davatzikos (bb0090) 2008; 39 Belkin, Niyogi (bb0030) 2004; 56 Aljabar, Heckemann, Hammers, Hajnal, Rueckert (bb0010) 2009; 46 Westman, Simmons, Muehlboeck, Mecocci, Vellas, Tsolaki, Koszewska, Soininen, Weiner, Lovestone, Spenger, Wahlund (bb0245) 2011; 58 Duong, Hazelton (bb0075) 2003; 15 Eskildsen, Coupé, García-Lorenzo, Fonov, Pruessner, Collins (bb0080) 2013; 65 Gerardin, Chtelat, Chupin, Cuingnet, Desgranges, Kim, Niethammer, Dubois, Lehricy, Garnero, Eustache, Colliot (bb0105) 2009; 47 Vemuri, Gunter, Senjem, Whitwell, Kantarci, Knopman, Boeve, Petersen, Jack (bb0235) 2008; 39 Nyl, Udupa (bb0170) 1999; 42 Wolz, Julkunen, Koikkalainen, Niskanen, Zhang, Rueckert, Soininen, Ltjnen, the Alzheimer's Disease Neuroimaging Initiative (bb0255) 2011; 6 Scott (bb0210) 1992 Aisen, Petersen, Donohue, Gamst, Raman, Thomas, Walter, Trojanowski, Shaw, Beckett, Clifford, Jagust, Toga, Saykin, Morris, Green, Weiner (bb0005) 2010; 6 Cortes, Vapnik (bb0050) 1995 Koikkalainen, Ltjnen, Thurfjell, Rueckert, Waldemar, Soininen (bb0145) 2011; 56 Zhang, Shen, the Alzheimer's Disease Neuroimaging Initiative (bb0265) 2012; 7 Tenenbaum, Silva, Langford (bb0215) 2000; 290 Chupin, Gérardin, Cuingnet, Boutet, Lemieux, Lehéricy, Benali, Garnero, Colliot (bb0045) 2009; 19 Coupé, Eskildsen, Manjn, Fonov, Collins (bb0055) 2012; 59 Jack, Knopman, Jagust, Shaw, Aisen, Weiner, Petersen, Trojanowski (bb0135) 2010; 9 Pollard (bb0180) 2002 Hamm, Ye, Verma, Davatzikos (bb0120) 2010; 14 Petersen, Smith, Waring, Ivnik, Tangalos, Kokmen (bb0175) 1999; 56 Wolz, Aljabar, Hajnal, Ltjen, Rueckert (bb0260) 2012; 16 Tikhonov, Arsenin (bb0225) 1977 Salzberg, Note (bb0205) 1997; 1 Cox, Cox (bb0060) 1994 Duong (10.1016/j.neuroimage.2014.03.036_bb0075) 2003; 15 Gerber (10.1016/j.neuroimage.2014.03.036_bb0110) 2010; 14 Belkin (10.1016/j.neuroimage.2014.03.036_bb0025) 2002; vol. 14 Tenenbaum (10.1016/j.neuroimage.2014.03.036_bb0215) 2000; 290 Wolz (10.1016/j.neuroimage.2014.03.036_bb0255) 2011; 6 Lerch (10.1016/j.neuroimage.2014.03.036_bb0155) 2008; 29 Pollard (10.1016/j.neuroimage.2014.03.036_bb0180) 2002 van der Maaten (10.1016/j.neuroimage.2014.03.036_bb0230) 2009 Kristan (10.1016/j.neuroimage.2014.03.036_bb0150) 2011; 44 Rueckert (10.1016/j.neuroimage.2014.03.036_bb0200) 1999; 18 Baringhaus (10.1016/j.neuroimage.2014.03.036_bb0020) 2004; 88 Vemuri (10.1016/j.neuroimage.2014.03.036_bb0235) 2008; 39 Aljabar (10.1016/j.neuroimage.2014.03.036_bb0010) 2009; 46 Davatzikos (10.1016/j.neuroimage.2014.03.036_bb0070) 2011; 32 Petersen (10.1016/j.neuroimage.2014.03.036_bb0175) 1999; 56 Eskildsen (10.1016/j.neuroimage.2014.03.036_bb0080) 2013; 65 Hastie (10.1016/j.neuroimage.2014.03.036_bb0130) 1989; 84 Gerardin (10.1016/j.neuroimage.2014.03.036_bb0105) 2009; 47 Koikkalainen (10.1016/j.neuroimage.2014.03.036_bb0145) 2011; 56 Cho (10.1016/j.neuroimage.2014.03.036_bb0040) 2012; 59 Brookmeyer (10.1016/j.neuroimage.2014.03.036_bb0035) 2007; 3 Nyl (10.1016/j.neuroimage.2014.03.036_bb0170) 1999; 42 Querbes (10.1016/j.neuroimage.2014.03.036_bb0185) 2009; 132 Aisen (10.1016/j.neuroimage.2014.03.036_bb0005) 2010; 6 Klein (10.1016/j.neuroimage.2014.03.036_bb0140) 2010 Westman (10.1016/j.neuroimage.2014.03.036_bb0245) 2011; 58 Cortes (10.1016/j.neuroimage.2014.03.036_bb0050) 1995 Frisoni (10.1016/j.neuroimage.2014.03.036_bb0100) 2010; 6 Coupé (10.1016/j.neuroimage.2014.03.036_bb0055) 2012; 59 Chupin (10.1016/j.neuroimage.2014.03.036_bb0045) 2009; 19 Cox (10.1016/j.neuroimage.2014.03.036_bb0060) 1994 Wand (10.1016/j.neuroimage.2014.03.036_bb0240) 1994 Jack (10.1016/j.neuroimage.2014.03.036_bb0135) 2010; 9 Ranginwala (10.1016/j.neuroimage.2014.03.036_bb0190) 2008; 16 Salzberg (10.1016/j.neuroimage.2014.03.036_bb0205) 1997; 1 Belkin (10.1016/j.neuroimage.2014.03.036_bb0030) 2004; 56 Tikhonov (10.1016/j.neuroimage.2014.03.036_bb0225) 1977 Anderson (10.1016/j.neuroimage.2014.03.036_bb0015) 1985; 18 Zhang (10.1016/j.neuroimage.2014.03.036_bb0265) 2012; 7 Cuingnet (10.1016/j.neuroimage.2014.03.036_bb0065) 2011; 56 Misra (10.1016/j.neuroimage.2014.03.036_bb0165) 2009; 44 Folstein (10.1016/j.neuroimage.2014.03.036_bb0095) 1975; 12 Wolz (10.1016/j.neuroimage.2014.03.036_bb0250) 2010; 49 Tibshirani (10.1016/j.neuroimage.2014.03.036_bb0220) 1996; 58 Fan (10.1016/j.neuroimage.2014.03.036_bb0090) 2008; 39 Guerrero (10.1016/j.neuroimage.2014.03.036_bb0115) 2011; vol. 6892 Leung (10.1016/j.neuroimage.2014.03.036_bb0160) 2011 Scott (10.1016/j.neuroimage.2014.03.036_bb0210) 1992 Hampel (10.1016/j.neuroimage.2014.03.036_bb0125) 2010; 9 Fan (10.1016/j.neuroimage.2014.03.036_bb0085) 2007; 26 Wolz (10.1016/j.neuroimage.2014.03.036_bb0260) 2012; 16 Zou (10.1016/j.neuroimage.2014.03.036_bb0270) 2005; 67 Roweis (10.1016/j.neuroimage.2014.03.036_bb0195) 2000; 290 Hamm (10.1016/j.neuroimage.2014.03.036_bb0120) 2010; 14  | 
    
| References_xml | – volume: 59 start-page: 3736 year: 2012 end-page: 3747 ident: bb0055 article-title: Simultaneous segmentation and grading of anatomical structures for patient's classification: application to Alzheimer's disease publication-title: NeuroImage – volume: 39 start-page: 1186 year: 2008 end-page: 1197 ident: bb0235 article-title: Alzheimer's disease diagnosis in individual subjects using structural MR images: validation studies publication-title: NeuroImage – volume: 15 start-page: 17 year: 2003 end-page: 30 ident: bb0075 article-title: Plug-in bandwidth matrices for bivariate kernel density estimation publication-title: J. Nonparametric Stat. – volume: 65 start-page: 511 year: 2013 end-page: 521 ident: bb0080 article-title: Prediction of Alzheimer's disease in subjects with mild cognitive impairment from the ADNI cohort using patterns of cortical thinning publication-title: NeuroImage – volume: 16 start-page: 819 year: 2012 end-page: 830 ident: bb0260 article-title: Nonlinear dimensionality reduction combining MR imaging with non-imaging information publication-title: Med. Image Anal. – volume: 46 start-page: 726 year: 2009 end-page: 738 ident: bb0010 article-title: Multi-atlas based segmentation of brain images: atlas selection and its effect on accuracy publication-title: NeuroImage – year: 1994 ident: bb0240 article-title: Kernel Smoothing (Chapman & Hall/CRC Monographs on Statistics & Applied Probability) – volume: 132 start-page: 2036 year: 2009 end-page: 2047 ident: bb0185 article-title: Early diagnosis of Alzheimer's disease using cortical thickness: impact of cognitive reserve publication-title: Brain – volume: 56 start-page: 1134 year: 2011 end-page: 1144 ident: bb0145 article-title: Multi-template tensor-based morphometry: application to analysis of Alzheimer's disease publication-title: NeuroImage – year: 2002 ident: bb0180 article-title: A User's Guide to Measure Theoretic Probability – volume: 18 start-page: 712 year: 1999 end-page: 721 ident: bb0200 article-title: Nonrigid registration using free-form deformations: application to breast MR images publication-title: IEEE Trans. Med. Imaging – volume: 58 start-page: 818 year: 2011 end-page: 828 ident: bb0245 article-title: AddNeuroMed and ADNI: similar patterns of Alzheimer's atrophy and automated MRI classification accuracy in Europe and North America publication-title: NeuroImage – volume: 3 start-page: 186 year: 2007 end-page: 191 ident: bb0035 article-title: Forecasting the global burden of Alzheimers disease publication-title: Alzheimers Dement. – volume: 56 start-page: 766 year: 2011 end-page: 781 ident: bb0065 article-title: Automatic classification of patients with Alzheimer's disease from structural MRI: a comparison of ten methods using the ADNI database publication-title: NeuroImage – volume: 16 start-page: 384 year: 2008 end-page: 388 ident: bb0190 article-title: Clinical criteria for the diagnosis of Alzheimer disease: still good after all these years publication-title: Am. J. Geriatr. Psychiatry – volume: 88 start-page: 190 year: 2004 end-page: 206 ident: bb0020 article-title: On a new multivariate two-sample test publication-title: J. Multivar. Anal. – volume: 12 start-page: 189 year: 1975 end-page: 198 ident: bb0095 article-title: “Mini-mental state”: a practical method for grading the cognitive state of patients for the clinician publication-title: J. Psychiatr. Res. – volume: 290 start-page: 2323 year: 2000 end-page: 2326 ident: bb0195 article-title: Nonlinear dimensionality reduction by locally linear embedding publication-title: Science – volume: 44 start-page: 2630 year: 2011 end-page: 2642 ident: bb0150 article-title: Multivariate online kernel density estimation with Gaussian kernels publication-title: Pattern Recogn. – volume: vol. 6892 start-page: 566 year: 2011 end-page: 573 ident: bb0115 article-title: Laplacian eigenmaps manifold learning for landmark localization in brain mr images publication-title: Medical Image Computing and Computer-Assisted Intervention (MICCAI) – volume: 9 start-page: 560 year: 2010 end-page: 574 ident: bb0125 article-title: Biomarkers for Alzheimer's disease: academic, industry and regulatory perspectives publication-title: Nat. Rev. Drug Discov. – volume: 7 start-page: e33182 year: 2012 ident: bb0265 article-title: Predicting future clinical changes of MCI patients using longitudinal and multimodal biomarkers publication-title: PLoS ONE – volume: vol. 14 start-page: 585 year: 2002 end-page: 591 ident: bb0025 article-title: Laplacian eigenmaps and spectral techniques for embedding and clustering publication-title: Advances in Neural Information Processing Systems – start-page: 2053 year: 2011 end-page: 2056 ident: bb0160 article-title: Automated brain extraction using Multi-Atlas Propagation and Segmentation (MAPS) publication-title: IEEE International Symposium on Biomedical Imaging (ISBI) – volume: 56 start-page: 209 year: 2004 end-page: 239 ident: bb0030 article-title: Semi-supervised learning on Riemannian manifolds publication-title: Mach. Learn. – volume: 14 start-page: 633 year: 2010 end-page: 642 ident: bb0120 article-title: GRAM: a framework for Geodesic Registration on Anatomical Manifolds publication-title: Med. Image Anal. – volume: 18 start-page: 141 year: 1985 end-page: 145 ident: bb0015 article-title: Eigenvalues of the Laplacian of a graph publication-title: Linear Multilinear Algebra – year: 2009 ident: bb0230 article-title: Dimensionality reduction: a comparative review publication-title: Tech. Rep. TiCC-TR 2009-005 – year: 1977 ident: bb0225 article-title: Solutions of Ill-Posed Problems – volume: 19 start-page: 579 year: 2009 end-page: 587 ident: bb0045 article-title: Fully automatic hippocampus segmentation and classification in Alzheimer's disease and mild cognitive impairment applied on data from ADNI publication-title: Hippocampus – volume: 26 start-page: 93 year: 2007 end-page: 105 ident: bb0085 article-title: COMPARE: classification of morphological patterns using adaptive regional elements publication-title: IEEE Trans. Med. Imaging – volume: 29 start-page: 23 year: 2008 end-page: 30 ident: bb0155 article-title: Automated cortical thickness measurements from MRI can accurately separate Alzheimer's patients from normal elderly controls publication-title: Neurobiol. Aging – volume: 44 start-page: 1415 year: 2009 end-page: 1422 ident: bb0165 article-title: Baseline and longitudinal patterns of brain atrophy in MCI patients, and their use in prediction of short-term conversion to AD: results from ADNI publication-title: NeuroImage – volume: 59 start-page: 2217 year: 2012 end-page: 2230 ident: bb0040 article-title: Individual subject classification for Alzheimer's disease based on incremental learning using a spatial frequency representation of cortical thickness data publication-title: NeuroImage – volume: 49 start-page: 1316 year: 2010 end-page: 1325 ident: bb0250 article-title: LEAP: Learning Embeddings for Atlas Propagation publication-title: NeuroImage – volume: 14 start-page: 643 year: 2010 end-page: 653 ident: bb0110 article-title: Manifold modeling for brain population analysis publication-title: Med. Image Anal. – volume: 6 start-page: 239 year: 2010 end-page: 246 ident: bb0005 article-title: Clinical core of the Alzheimer's Disease Neuroimaging Initiative: progress and plans publication-title: Alzheimers Dement. – volume: 6 start-page: e25446 year: 2011 ident: bb0255 article-title: Multi-method analysis of MRI images in early diagnostics of Alzheimer's disease publication-title: PLoS ONE – volume: 1 start-page: 317 year: 1997 end-page: 328 ident: bb0205 article-title: On comparing classifiers: pitfalls to avoid and a recommended approach publication-title: Data Min. Knowl. Disc. – volume: 58 start-page: 267 year: 1996 end-page: 288 ident: bb0220 article-title: Regression shrinkage and selection via the lasso publication-title: J. R. Stat. Soc. Ser. B Methodol. – volume: 6 start-page: 67 year: 2010 end-page: 77 ident: bb0100 article-title: The clinical use of structural MRI in Alzheimer disease publication-title: Nat. Rev. Neurol. – volume: 47 start-page: 1476 year: 2009 end-page: 1486 ident: bb0105 article-title: Multidimensional classification of hippocampal shape features discriminates Alzheimer's disease and mild cognitive impairment from normal aging publication-title: NeuroImage – volume: 32 start-page: 2322.e19 year: 2011 end-page: 2322.e27 ident: bb0070 article-title: Prediction of MCI to AD conversion, via MRI, CSF biomarkers, and pattern classification publication-title: Neurobiol. Aging – volume: 290 start-page: 2319 year: 2000 end-page: 2323 ident: bb0215 article-title: A global geometric framework for nonlinear dimensionality reduction publication-title: Science – start-page: 273 year: 1995 end-page: 297 ident: bb0050 article-title: Support-vector networks publication-title: Machine Learning – year: 1994 ident: bb0060 article-title: Multidimensional Scaling – volume: 84 start-page: 502 year: 1989 end-page: 516 ident: bb0130 article-title: Principal curves publication-title: J. Am. Stat. Assoc. – volume: 56 start-page: 303 year: 1999 end-page: 308 ident: bb0175 article-title: Mild cognitive impairment: clinical characterization and outcome publication-title: Arch. Neurol. – volume: 67 start-page: 301 year: 2005 end-page: 320 ident: bb0270 article-title: Regularization and variable selection via the elastic net publication-title: J. R. Stat. Soc. Ser. B – volume: 42 start-page: 1072 year: 1999 end-page: 1081 ident: bb0170 article-title: On standardizing the mr image intensity scale publication-title: Magn. Reson. Med. – volume: 9 start-page: 119 year: 2010 end-page: 128 ident: bb0135 article-title: Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade publication-title: Lancet Neurol. – start-page: 249 year: 2010 end-page: 252 ident: bb0140 article-title: Early diagnosis of dementia based on intersubject whole-brain dissimilarities publication-title: IEEE International Symposium on Biomedical Imaging (ISBI) – year: 1992 ident: bb0210 article-title: Multivariate Density Estimation: Theory, Practice, and Visualization publication-title: Wiley Series in Probability and Statistics – volume: 39 start-page: 1731 year: 2008 end-page: 1743 ident: bb0090 article-title: Spatial patterns of brain atrophy in MCI patients, identified via high-dimensional pattern classification, predict subsequent cognitive decline publication-title: NeuroImage – volume: 56 start-page: 303 issue: 3 year: 1999 ident: 10.1016/j.neuroimage.2014.03.036_bb0175 article-title: Mild cognitive impairment: clinical characterization and outcome publication-title: Arch. Neurol. doi: 10.1001/archneur.56.3.303 – volume: 58 start-page: 267 issue: 1 year: 1996 ident: 10.1016/j.neuroimage.2014.03.036_bb0220 article-title: Regression shrinkage and selection via the lasso publication-title: J. R. Stat. Soc. Ser. B Methodol. doi: 10.1111/j.2517-6161.1996.tb02080.x – volume: 29 start-page: 23 issue: 1 year: 2008 ident: 10.1016/j.neuroimage.2014.03.036_bb0155 article-title: Automated cortical thickness measurements from MRI can accurately separate Alzheimer's patients from normal elderly controls publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2006.09.013 – volume: 7 start-page: e33182 issue: 3 year: 2012 ident: 10.1016/j.neuroimage.2014.03.036_bb0265 article-title: Predicting future clinical changes of MCI patients using longitudinal and multimodal biomarkers publication-title: PLoS ONE doi: 10.1371/journal.pone.0033182 – volume: 47 start-page: 1476 issue: 4 year: 2009 ident: 10.1016/j.neuroimage.2014.03.036_bb0105 article-title: Multidimensional classification of hippocampal shape features discriminates Alzheimer's disease and mild cognitive impairment from normal aging publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.05.036 – year: 1992 ident: 10.1016/j.neuroimage.2014.03.036_bb0210 article-title: Multivariate Density Estimation: Theory, Practice, and Visualization – volume: 18 start-page: 141 year: 1985 ident: 10.1016/j.neuroimage.2014.03.036_bb0015 article-title: Eigenvalues of the Laplacian of a graph publication-title: Linear Multilinear Algebra doi: 10.1080/03081088508817681 – volume: 65 start-page: 511 year: 2013 ident: 10.1016/j.neuroimage.2014.03.036_bb0080 article-title: Prediction of Alzheimer's disease in subjects with mild cognitive impairment from the ADNI cohort using patterns of cortical thinning publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.09.058 – volume: 9 start-page: 119 issue: 1 year: 2010 ident: 10.1016/j.neuroimage.2014.03.036_bb0135 article-title: Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(09)70299-6 – volume: 44 start-page: 1415 issue: 4 year: 2009 ident: 10.1016/j.neuroimage.2014.03.036_bb0165 article-title: Baseline and longitudinal patterns of brain atrophy in MCI patients, and their use in prediction of short-term conversion to AD: results from ADNI publication-title: NeuroImage doi: 10.1016/j.neuroimage.2008.10.031 – year: 2002 ident: 10.1016/j.neuroimage.2014.03.036_bb0180 – volume: 290 start-page: 2323 year: 2000 ident: 10.1016/j.neuroimage.2014.03.036_bb0195 article-title: Nonlinear dimensionality reduction by locally linear embedding publication-title: Science doi: 10.1126/science.290.5500.2323 – volume: 59 start-page: 3736 issue: 4 year: 2012 ident: 10.1016/j.neuroimage.2014.03.036_bb0055 article-title: Simultaneous segmentation and grading of anatomical structures for patient's classification: application to Alzheimer's disease publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.10.080 – start-page: 2053 year: 2011 ident: 10.1016/j.neuroimage.2014.03.036_bb0160 article-title: Automated brain extraction using Multi-Atlas Propagation and Segmentation (MAPS) – volume: 56 start-page: 209 issue: 1–3 year: 2004 ident: 10.1016/j.neuroimage.2014.03.036_bb0030 article-title: Semi-supervised learning on Riemannian manifolds publication-title: Mach. Learn. doi: 10.1023/B:MACH.0000033120.25363.1e – volume: 44 start-page: 2630 issue: 10–11 year: 2011 ident: 10.1016/j.neuroimage.2014.03.036_bb0150 article-title: Multivariate online kernel density estimation with Gaussian kernels publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2011.03.019 – volume: vol. 14 start-page: 585 year: 2002 ident: 10.1016/j.neuroimage.2014.03.036_bb0025 article-title: Laplacian eigenmaps and spectral techniques for embedding and clustering – volume: 19 start-page: 579 issue: 6 year: 2009 ident: 10.1016/j.neuroimage.2014.03.036_bb0045 article-title: Fully automatic hippocampus segmentation and classification in Alzheimer's disease and mild cognitive impairment applied on data from ADNI publication-title: Hippocampus doi: 10.1002/hipo.20626 – volume: 49 start-page: 1316 issue: 2 year: 2010 ident: 10.1016/j.neuroimage.2014.03.036_bb0250 article-title: LEAP: Learning Embeddings for Atlas Propagation publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.09.069 – volume: 58 start-page: 818 issue: 3 year: 2011 ident: 10.1016/j.neuroimage.2014.03.036_bb0245 article-title: AddNeuroMed and ADNI: similar patterns of Alzheimer's atrophy and automated MRI classification accuracy in Europe and North America publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.06.065 – volume: 6 start-page: 67 year: 2010 ident: 10.1016/j.neuroimage.2014.03.036_bb0100 article-title: The clinical use of structural MRI in Alzheimer disease publication-title: Nat. Rev. Neurol. doi: 10.1038/nrneurol.2009.215 – volume: 6 start-page: e25446 issue: 10 year: 2011 ident: 10.1016/j.neuroimage.2014.03.036_bb0255 article-title: Multi-method analysis of MRI images in early diagnostics of Alzheimer's disease publication-title: PLoS ONE doi: 10.1371/journal.pone.0025446 – volume: 290 start-page: 2319 issue: 5500 year: 2000 ident: 10.1016/j.neuroimage.2014.03.036_bb0215 article-title: A global geometric framework for nonlinear dimensionality reduction publication-title: Science doi: 10.1126/science.290.5500.2319 – volume: 67 start-page: 301 year: 2005 ident: 10.1016/j.neuroimage.2014.03.036_bb0270 article-title: Regularization and variable selection via the elastic net publication-title: J. R. Stat. Soc. Ser. B doi: 10.1111/j.1467-9868.2005.00503.x – volume: 84 start-page: 502 year: 1989 ident: 10.1016/j.neuroimage.2014.03.036_bb0130 article-title: Principal curves publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1989.10478797 – volume: 16 start-page: 384 year: 2008 ident: 10.1016/j.neuroimage.2014.03.036_bb0190 article-title: Clinical criteria for the diagnosis of Alzheimer disease: still good after all these years publication-title: Am. J. Geriatr. Psychiatry doi: 10.1097/JGP.0b013e3181629971 – volume: 132 start-page: 2036 issue: 8 year: 2009 ident: 10.1016/j.neuroimage.2014.03.036_bb0185 article-title: Early diagnosis of Alzheimer's disease using cortical thickness: impact of cognitive reserve publication-title: Brain doi: 10.1093/brain/awp105 – volume: 14 start-page: 633 issue: 5 year: 2010 ident: 10.1016/j.neuroimage.2014.03.036_bb0120 article-title: GRAM: a framework for Geodesic Registration on Anatomical Manifolds publication-title: Med. Image Anal. doi: 10.1016/j.media.2010.06.001 – volume: 18 start-page: 712 issue: 8 year: 1999 ident: 10.1016/j.neuroimage.2014.03.036_bb0200 article-title: Nonrigid registration using free-form deformations: application to breast MR images publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.796284 – volume: 15 start-page: 17 issue: 1 year: 2003 ident: 10.1016/j.neuroimage.2014.03.036_bb0075 article-title: Plug-in bandwidth matrices for bivariate kernel density estimation publication-title: J. Nonparametric Stat. doi: 10.1080/10485250306039 – year: 1994 ident: 10.1016/j.neuroimage.2014.03.036_bb0060 – volume: 6 start-page: 239 issue: 3 year: 2010 ident: 10.1016/j.neuroimage.2014.03.036_bb0005 article-title: Clinical core of the Alzheimer's Disease Neuroimaging Initiative: progress and plans publication-title: Alzheimers Dement. doi: 10.1016/j.jalz.2010.03.006 – start-page: 273 year: 1995 ident: 10.1016/j.neuroimage.2014.03.036_bb0050 article-title: Support-vector networks – start-page: 249 year: 2010 ident: 10.1016/j.neuroimage.2014.03.036_bb0140 article-title: Early diagnosis of dementia based on intersubject whole-brain dissimilarities – year: 2009 ident: 10.1016/j.neuroimage.2014.03.036_bb0230 article-title: Dimensionality reduction: a comparative review – volume: 14 start-page: 643 issue: 5 year: 2010 ident: 10.1016/j.neuroimage.2014.03.036_bb0110 article-title: Manifold modeling for brain population analysis publication-title: Med. Image Anal. doi: 10.1016/j.media.2010.05.008 – volume: 56 start-page: 1134 issue: 3 year: 2011 ident: 10.1016/j.neuroimage.2014.03.036_bb0145 article-title: Multi-template tensor-based morphometry: application to analysis of Alzheimer's disease publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.03.029 – year: 1977 ident: 10.1016/j.neuroimage.2014.03.036_bb0225 – volume: 39 start-page: 1731 issue: 4 year: 2008 ident: 10.1016/j.neuroimage.2014.03.036_bb0090 article-title: Spatial patterns of brain atrophy in MCI patients, identified via high-dimensional pattern classification, predict subsequent cognitive decline publication-title: NeuroImage doi: 10.1016/j.neuroimage.2007.10.031 – volume: vol. 6892 start-page: 566 year: 2011 ident: 10.1016/j.neuroimage.2014.03.036_bb0115 article-title: Laplacian eigenmaps manifold learning for landmark localization in brain mr images – volume: 56 start-page: 766 issue: 2 year: 2011 ident: 10.1016/j.neuroimage.2014.03.036_bb0065 article-title: Automatic classification of patients with Alzheimer's disease from structural MRI: a comparison of ten methods using the ADNI database publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.06.013 – volume: 26 start-page: 93 issue: 1 year: 2007 ident: 10.1016/j.neuroimage.2014.03.036_bb0085 article-title: COMPARE: classification of morphological patterns using adaptive regional elements publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2006.886812 – volume: 42 start-page: 1072 issue: 6 year: 1999 ident: 10.1016/j.neuroimage.2014.03.036_bb0170 article-title: On standardizing the mr image intensity scale publication-title: Magn. Reson. Med. doi: 10.1002/(SICI)1522-2594(199912)42:6<1072::AID-MRM11>3.0.CO;2-M – volume: 16 start-page: 819 issue: 4 year: 2012 ident: 10.1016/j.neuroimage.2014.03.036_bb0260 article-title: Nonlinear dimensionality reduction combining MR imaging with non-imaging information publication-title: Med. Image Anal. doi: 10.1016/j.media.2011.12.003 – volume: 1 start-page: 317 issue: 3 year: 1997 ident: 10.1016/j.neuroimage.2014.03.036_bb0205 article-title: On comparing classifiers: pitfalls to avoid and a recommended approach publication-title: Data Min. Knowl. Disc. doi: 10.1023/A:1009752403260 – volume: 88 start-page: 190 issue: 1 year: 2004 ident: 10.1016/j.neuroimage.2014.03.036_bb0020 article-title: On a new multivariate two-sample test publication-title: J. Multivar. Anal. doi: 10.1016/S0047-259X(03)00079-4 – year: 1994 ident: 10.1016/j.neuroimage.2014.03.036_bb0240 – volume: 32 start-page: 2322.e19 issue: 12 year: 2011 ident: 10.1016/j.neuroimage.2014.03.036_bb0070 article-title: Prediction of MCI to AD conversion, via MRI, CSF biomarkers, and pattern classification publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2010.05.023 – volume: 39 start-page: 1186 issue: 3 year: 2008 ident: 10.1016/j.neuroimage.2014.03.036_bb0235 article-title: Alzheimer's disease diagnosis in individual subjects using structural MR images: validation studies publication-title: NeuroImage doi: 10.1016/j.neuroimage.2007.09.073 – volume: 46 start-page: 726 issue: 3 year: 2009 ident: 10.1016/j.neuroimage.2014.03.036_bb0010 article-title: Multi-atlas based segmentation of brain images: atlas selection and its effect on accuracy publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.02.018 – volume: 9 start-page: 560 year: 2010 ident: 10.1016/j.neuroimage.2014.03.036_bb0125 article-title: Biomarkers for Alzheimer's disease: academic, industry and regulatory perspectives publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd3115 – volume: 12 start-page: 189 issue: 3 year: 1975 ident: 10.1016/j.neuroimage.2014.03.036_bb0095 article-title: “Mini-mental state”: a practical method for grading the cognitive state of patients for the clinician publication-title: J. Psychiatr. Res. doi: 10.1016/0022-3956(75)90026-6 – volume: 59 start-page: 2217 issue: 3 year: 2012 ident: 10.1016/j.neuroimage.2014.03.036_bb0040 article-title: Individual subject classification for Alzheimer's disease based on incremental learning using a spatial frequency representation of cortical thickness data publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.09.085 – volume: 3 start-page: 186 issue: 3 year: 2007 ident: 10.1016/j.neuroimage.2014.03.036_bb0035 article-title: Forecasting the global burden of Alzheimers disease publication-title: Alzheimers Dement. doi: 10.1016/j.jalz.2007.04.381  | 
    
| SSID | ssj0009148 | 
    
| Score | 2.352983 | 
    
| Snippet | We propose a framework for feature extraction from learned low-dimensional subspaces that represent inter-subject variability. The manifold subspace is built... | 
    
| SourceID | proquest pubmed pascalfrancis crossref elsevier  | 
    
| SourceType | Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 275 | 
    
| SubjectTerms | Adult and adolescent clinical studies Aged Aged, 80 and over Algorithms Alzheimer Disease - diagnosis Alzheimer Disease - epidemiology Alzheimer's disease Alzheimer's disease (AD) Artificial Intelligence Biological and medical sciences Biomarkers Brain - pathology Causality Classification Clinical trials Cognitive Dysfunction - diagnosis Cognitive Dysfunction - epidemiology Comorbidity Computer Simulation Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases Dementia Female Humans Image Enhancement - methods Image Interpretation, Computer-Assisted - methods Kernel density estimation Laplacian eigenmaps Magnetic Resonance Imaging - methods Male Manifold learning Medical imaging Medical sciences Middle Aged Mild cognitive impairment (MCI) Models, Statistical Neuroimaging - methods Neurology Older people Organic mental disorders. Neuropsychology Patients Pattern Recognition, Automated - methods Psychology. Psychoanalysis. Psychiatry Psychopathology. Psychiatry Reproducibility of Results Sensitivity and Specificity Sparse regression Studies  | 
    
| SummonAdditionalLinks | – databaseName: Elsevier SD Freedom Collection dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swEBelD2MwytZtbdYPNOirFjuSLbl9Cv1cId1DVyh9EbIkQ0rmhCZ93d_eO1l2KLQlUMiDY-vgLJ3ufkZ39yPkwOawgXxhmBxUnok08azglWUqzb2yYEPcYYHz6Cq_uBGXt9ntGjlua2EwrTL6_sanB28d7_TjbPZn43H_GpABhBvsT4bMchyL-ISQyGLw6_8yzQMeN-VwGWc4OmbzNDleoWfk-B_sXEzyEqHdaWjW_GKI-jQzc5i4qmG8eB2ShtB09plsRExJh43aX8iarzfJh1E8Nf9K7kamHlfTiaOzjq6LBgociFvUzKmhQUWGOuItrMnHtJ2HQzpcHnDTxZQOT65-U1O7cMHO_3wjN2enf48vWORUYBaQ1oIZZ7AcNfGmUgbgT-pkxQs_kA4mCrCMMDax4POkN1JVufSVE4j7PJdGlIANv5P1elr7bUKdT7E7nS1lCd8kNikSJXyZOFl6-I40rkdkO43axobjyHsx0W1m2b1eLoDGBdAJh1_eI2knOWuabqwgU7QrpduiUnCDGiLDCrJHnewz41tRev-ZYXQqD1SWcABoPbLbWoqOHmKuUyR9RlJ13iM_u8ewt_HAxtR--ohjAF9JrpR6c0xRZAC6YcxWY4VLBUSeSZ6lP971fjvkI_5rcpR3yfri4dHvARJblPthqz0BchIxZA priority: 102 providerName: Elsevier  | 
    
| Title | Manifold population modeling as a neuro-imaging biomarker: Application to ADNI and ADNI-GO | 
    
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811914001839 https://dx.doi.org/10.1016/j.neuroimage.2014.03.036 https://www.ncbi.nlm.nih.gov/pubmed/24657351 https://www.proquest.com/docview/1547314613 https://www.proquest.com/docview/1524173888 https://www.proquest.com/docview/1529955758  | 
    
| Volume | 94 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1095-9572 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1095-9572 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1095-9572 dateEnd: 20191231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: AIKHN dateStart: 19950301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect customDbUrl: eissn: 1095-9572 dateEnd: 20191231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: ACRLP dateStart: 19950301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1095-9572 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: AKRWK dateStart: 19920801 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1095-9572 dateEnd: 20250902 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: 7X7 dateStart: 20020801 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1095-9572 dateEnd: 20250902 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: BENPR dateStart: 19980501 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ta9swED7aBMaglL03Wxc02FdtVmRbdscYWdcu3RavlBXCvhhZkqGltbMm_brfvju_MthKIDjG1sFZOp0eW3f3ALw2IU4gF2uuJrnjvvAcj2VueCRCFxm0IWkpwXmehLNz_8siWGxB0ubCUFhl6xMrR21LQ9_I3woiySUSavlh-YsTaxTtrrYUGrqhVrDvqxJj2zCcUGWsAQw_HiWnZ30ZXuHXyXGBRHVE3MT21BFfVQXJi2ucxxTy5VfFT6vSzf9csHaWeoXdmNf8F_8HqNVCdfwAdhuEyaa1STyELVc8gnvzZg_9Mfyc6-IiL68sW3bkXawixMFVjOkV06xSkZOOdIky9CmI5-aATfvtbrYu2fRTcsJ0YasT_vn7Ezg_PvpxOOMNwwI3iLvWXFtNyame03mkEQwJq3IZu4my2FGIbHxtPIMeUDmtojxULrc-oUAnlfYzRIpPYVCUhdsDZp2gWnUmUxm-oRgv9iLfZZ5VmcOB0HYEqu3G1DTlx4kF4ypt48wu034AUhqA1JP4C0cgOsllXYJjA5m4Ham0TTFFp5jiOrGB7LtOtoEhNbzYUHr8l2F0Kk-iwJMI10aw31pK2viLVdpb9whedbdxptP2jS5ceUttEG0pGUXRnW3iOEAIjm2e1VbYK-CHgZKBeH63Ai_gPj1OHZK8D4P1za17icBrnY1h-81vgUe1UGMYTg_Pvp3S_8nXWTJuZtof_V4xig | 
    
| linkProvider | ProQuest | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fa9RAEF5KCyqI-NvTWlfQx2A2u8lmlSKnbb2zvVOkhdKXdbO7gUpNzt4V8Z_zb3Mm2eQQtNxL4R7CZQc2mdmZb7Mz8xHywmawgLwykUxKHwkW-0jx0kY5y3xuwYa4wwLnyTQbHYmPx-nxGvnd1cJgWmXnExtH7WqL38hfMSTJRRJq_nb2I0LWKDxd7Sg0TKBWcNtNi7FQ2LHvf_2ELdx8e7wD-n6ZJHu7h-9HUWAZiCxgj0VknMECzdibMjcACJiTJVc-kU4xAdFdGBtb8ALSG5mXmfSlE4iEPJdGFCl-EIUQsCG4ULD523i3O_38Zdn2l4m2GC_l8PhMhVyiNsOs6Vh5-h38BqaYiabZatMq-p8B8ubMzEFtZcu38X9A3ATGvdvkVkC0dNia4B2y5qu75NoknNnfIycTU52W9Zmjs54sjDYEPBA1qZlTQ5spRjhH_As7AmDS0PlrOlwer9NFTYc70zE1lWsuog-f7pOjK3nXD8h6VVf-EaHOM-yNZwtZwI7IxirOhS9iJwsPu1jjBkR2r1Hb0O4cWTfOdJfX9k0vFaBRATrm8MsGhPWSs7blxwoyqtOU7kpawQlriEsryL7pZQPsaeHMitJbfxlGP-UkT2MO8HBANjtL0cE_zfVyNQ3I8_42eBY8LjKVry9wDKA7yfM8v3SMUilAfhjzsLXC5QRElkqesseXT-AZuT46nBzog_F0_wm5gY_WpkNvkvXF-YV_CqBvUWyFlUXJ16tezH8Ah0Jp2A | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1baxQxFA6lQhFEvLu11gj6GDqZZCYTRWRxXbvWXX2wsPiSZpIMVOrstrtF_Gv-Os-ZK4KWfSnsw7CTA2fm3L5MzoWQFy4FAwraMhUXgUkeBaZF4VjG05A50CHhscB5OksPj-XHeTLfIr_bWhhMq2x9YuWo_cLhN_IDjkNycQi1OCiatIgvo_Hb5TnDCVJ40tqO06hV5Cj8-gnbt9WbyQhk_TKOx--_vjtkzYQB5gB3rJn1Foszo2CLzAIY4F4VQodYec0lRHZpXeTAA6hgVVakKhReIgoKQlmZJ_gxFNz_DSWExnRCNVd9w18u6zK8RMCDc91kEdW5ZVWvytMf4DEwuUxWbVarJtH_DI23lnYFAivqSRv_h8JVSBzfIbcbLEuHtfLdJVuhvEd2ps1p_X3ybWrL02Jx5umyGxNGq9E7EC-pXVFLKxYZ8oh_YS8ATBe6eEWH_cE6XS_ocDSbUFv66oJ9-PyAHF_Lm35ItstFGR4T6gPHrnguVznshVyko0yGPPIqD7B_tX5AVPsajWsaneO8jTPTZrR9N70ADArARAJ-6YDwjnJZN_vYgEa3kjJtMSu4XwMRaQPa1x1tA3hqILMh9f5fitGxHGdJJAAYDsheqymm8Uwr09vRgDzvboNPwYMiW4bFJa4BXKdElmVXrtE6AbAPax7VWtgzINNEiYTvXs3AM7IDJmw-TWZHT8hNfLI6D3qPbK8vLsNTQHvrfL8yK0pOrtuO_wCf32dy | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Manifold+population+modeling+as+a+neuro-imaging+biomarker%3A+Application+to+ADNI+and+ADNI-GO&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Guerrero%2C+R.&rft.au=Wolz%2C+R.&rft.au=Rao%2C+A.W.&rft.au=Rueckert%2C+D.&rft.date=2014-07-01&rft.issn=1053-8119&rft.volume=94&rft.spage=275&rft.epage=286&rft_id=info:doi/10.1016%2Fj.neuroimage.2014.03.036&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neuroimage_2014_03_036 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |