Leveraging ECG images for predicting ejection fraction using machine learning algorithms
The capability to accurately predict the ejection fraction (EF) from an electrocardiogram (ECG) holds significant and valuable clinical implications. Various algorithms based on ECG images are currently being evaluated, with most methods requiring raw signal data from ECG devices. In this study, our...
Saved in:
| Published in | Indian heart journal Vol. 77; no. 3; pp. 182 - 187 |
|---|---|
| Main Authors | , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
India
Elsevier, a division of RELX India, Pvt. Ltd
01.05.2025
Elsevier |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0019-4832 2213-3763 2213-3763 |
| DOI | 10.1016/j.ihj.2025.03.009 |
Cover
| Abstract | The capability to accurately predict the ejection fraction (EF) from an electrocardiogram (ECG) holds significant and valuable clinical implications. Various algorithms based on ECG images are currently being evaluated, with most methods requiring raw signal data from ECG devices. In this study, our objective was to train and validate a neural network on a readily available ECG trace image graph to determine the presence or absence of left ventricular dysfunction (LVD).
12-lead ECG trace images paired with their echocardiogram reports performed on the same day were selected. A DenseNet121 model, using ECG images as input, was trained to identify EF <50 %. and then externally validated.
1,19,281 ECG-echocardiogram pairs were used for model development. The model demonstrated comparable performance in both the internal test data and external validation data. The area under receiver operating characteristic and precision–recall curves were 0.92 and 0.78, respectively, for the internal test data and 0.88 and 0.74, respectively, for the external validation data. The model accurately identified more than 85 % of cases with EF <50 % in both datasets.
Actual images of ECGs with simple pre-processing and model architecture can be used as a reliable tool to screen for LVD. The use of images expands the reach of these algorithms to geographies with resource and technological limitations. |
|---|---|
| AbstractList | The capability to accurately predict the ejection fraction (EF) from an electrocardiogram (ECG) holds significant and valuable clinical implications. Various algorithms based on ECG images are currently being evaluated, with most methods requiring raw signal data from ECG devices. In this study, our objective was to train and validate a neural network on a readily available ECG trace image graph to determine the presence or absence of left ventricular dysfunction (LVD).
12-lead ECG trace images paired with their echocardiogram reports performed on the same day were selected. A DenseNet121 model, using ECG images as input, was trained to identify EF <50 %. and then externally validated.
1,19,281 ECG-echocardiogram pairs were used for model development. The model demonstrated comparable performance in both the internal test data and external validation data. The area under receiver operating characteristic and precision-recall curves were 0.92 and 0.78, respectively, for the internal test data and 0.88 and 0.74, respectively, for the external validation data. The model accurately identified more than 85 % of cases with EF <50 % in both datasets.
Actual images of ECGs with simple pre-processing and model architecture can be used as a reliable tool to screen for LVD. The use of images expands the reach of these algorithms to geographies with resource and technological limitations. Introduction: The capability to accurately predict the ejection fraction (EF) from an electrocardiogram (ECG) holds significant and valuable clinical implications. Various algorithms based on ECG images are currently being evaluated, with most methods requiring raw signal data from ECG devices. In this study, our objective was to train and validate a neural network on a readily available ECG trace image graph to determine the presence or absence of left ventricular dysfunction (LVD). Methods: 12-lead ECG trace images paired with their echocardiogram reports performed on the same day were selected. A DenseNet121 model, using ECG images as input, was trained to identify EF <50 %. and then externally validated. Results: 1,19,281 ECG-echocardiogram pairs were used for model development. The model demonstrated comparable performance in both the internal test data and external validation data. The area under receiver operating characteristic and precision–recall curves were 0.92 and 0.78, respectively, for the internal test data and 0.88 and 0.74, respectively, for the external validation data. The model accurately identified more than 85 % of cases with EF <50 % in both datasets. Conclusions: Actual images of ECGs with simple pre-processing and model architecture can be used as a reliable tool to screen for LVD. The use of images expands the reach of these algorithms to geographies with resource and technological limitations. |
| Author | Shetty, Devi Prasad Palani, Santhosh Rathnam Ghorai, Paramita Auddya Narayan, Pradeep Swamy, Abhyuday Kumara Krishnan, Deepak Rajagopal, Vivek Choukhande, Anagha Padmanabhan, Deepak Rupert, Emmanuel |
| Author_xml | – sequence: 1 givenname: Abhyuday Kumara surname: Swamy fullname: Swamy, Abhyuday Kumara organization: Department of Advanced Analytics & AI, India – sequence: 2 givenname: Vivek surname: Rajagopal fullname: Rajagopal, Vivek organization: Department of Advanced Analytics & AI, India – sequence: 3 givenname: Deepak surname: Krishnan fullname: Krishnan, Deepak organization: Department of Advanced Analytics & AI, India – sequence: 4 givenname: Paramita Auddya surname: Ghorai fullname: Ghorai, Paramita Auddya organization: Department of Biostatistics, India – sequence: 5 givenname: Anagha surname: Choukhande fullname: Choukhande, Anagha organization: Department of Advanced Analytics & AI, India – sequence: 6 givenname: Santhosh Rathnam surname: Palani fullname: Palani, Santhosh Rathnam organization: Department of Advanced Analytics & AI, India – sequence: 7 givenname: Deepak surname: Padmanabhan fullname: Padmanabhan, Deepak organization: Department of Electrophysiology, India – sequence: 8 givenname: Emmanuel surname: Rupert fullname: Rupert, Emmanuel organization: Department of Cardiac Anesthesia, India – sequence: 9 givenname: Devi Prasad surname: Shetty fullname: Shetty, Devi Prasad organization: Department of Cardiac Surgery, Narayana Health, India – sequence: 10 givenname: Pradeep orcidid: 0000-0002-3843-1338 surname: Narayan fullname: Narayan, Pradeep email: pradeep.narayan.dr@narayanahealth.org organization: Department of Cardiac Surgery, Narayana Health, India |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40158621$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkc-O0zAQxi20iO0WHoALygs0jO38szggVC3LSpW4gMTNmjjj1CF1Kict6tvjEFixHICTRzPz_fT5mxt25QdPjL3kkHLgxesudfsuFSDyFGQKoJ6wlRBcbmRZyCu2AuBqk1VSXLObcewgLmYKnrHrDHheFYKv2JcdnSlg63yb3G7vEnfAlsbEDiE5BmqcmeYJdRSLwSc24FKcxrl_QLN3npKeMPi5gX07BDftD-Nz9tRiP9KLn--afX5_-2n7YbP7eHe_fbfbmFyIaaM41LwSEsBWgDYvlSIkkrziVBdNBQ3aUhRlUxYKbaFMUWeNocxgqYqqkXLN7hduM2CnjyF-IFz0gE7_aAyh1RgmZ3rSikDaGusYlMwQlbK8odooKWRVmiyPLLGwTv6Il2_Y9w9ADnqOXHc6Rq7nyDVIPZPW7O0iOp7qA0VvfgrYP3LyeOLdXrfDWXMhhMxFFgmvfic8SH9dKS7wZcGEYRwD2f-y9WbRUAz_7Cjo0TjyJt40xGPGdNxf1eoPtemddwb7r3T5h_Y7txrOuA |
| Cites_doi | 10.4070/kcj.2018.0446 10.1038/s41746-023-00869-w 10.1161/circ.148.suppl_1.19045 10.1097/MAT.0000000000001218 10.3390/nu14194051 10.1093/ehjdh/ztac030 10.1038/s41569-021-00605-5 10.1038/s41591-018-0240-2 10.1016/j.cmpb.2022.106890 10.1016/j.ihj.2022.05.001 10.1161/JAHA.117.008081 10.1016/j.amjcard.2023.06.124 10.1007/s40846-021-00632-0 10.1016/j.jcmg.2021.04.020 10.1016/j.jacc.2020.06.061 10.3389/frai.2022.1087370 10.1111/anec.12812 10.3390/jpm12030455 |
| ContentType | Journal Article |
| Copyright | 2025 Cardiological Society of India Copyright © 2025 Cardiological Society of India. Published by Elsevier, a division of RELX India, Pvt. Ltd. All rights reserved. 2025 Cardiological Society of India. Published by Elsevier, a division of RELX India, Pvt. Ltd. 2025 Cardiological Society of India |
| Copyright_xml | – notice: 2025 Cardiological Society of India – notice: Copyright © 2025 Cardiological Society of India. Published by Elsevier, a division of RELX India, Pvt. Ltd. All rights reserved. – notice: 2025 Cardiological Society of India. Published by Elsevier, a division of RELX India, Pvt. Ltd. 2025 Cardiological Society of India |
| DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 5PM ADTOC UNPAY DOA |
| DOI | 10.1016/j.ihj.2025.03.009 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
| DatabaseTitleList | MEDLINE |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 2213-3763 |
| EndPage | 187 |
| ExternalDocumentID | oai_doaj_org_article_9e03fbab00934aa99f1debc932387c45 10.1016/j.ihj.2025.03.009 PMC12223524 40158621 10_1016_j_ihj_2025_03_009 S0019483225000550 |
| Genre | Journal Article |
| GroupedDBID | --- .1- .FO .GJ .~1 0R~ 1P~ 1~. 2WC 4.4 457 4G. 53G 7-5 8P~ AAEDW AAIKJ AALRI AAXUO AAYWO ABBQC ABFRF ABMAC ABXDB ACVFH ADBBV ADCNI ADVLN AEFWE AEKER AEUPX AEVXI AEXQZ AFPUW AFRHN AFTJW AGHFR AGYEJ AIGII AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BAWUL BCNDV C1A DIK E3Z EBS EJD F5P FDB FEDTE FIRID FNPLU GBLVA GROUPED_DOAJ GX1 HVGLF HYE HZ~ M41 MO0 M~E O-L O9- OA~ OK1 OL0 P-8 P-9 PC. Q38 ROL RPM SDF SEL SSZ UNMZH XSB Z5R ~HD 6I. AAFTH AFCTW RIG AAYXX CITATION CGR CUY CVF ECM EIF NPM 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c522t-910b182300f80af5799eaee3181eb6d80daf7267d769af69c6b4dce4ca7968d33 |
| IEDL.DBID | .~1 |
| ISSN | 0019-4832 2213-3763 |
| IngestDate | Fri Oct 03 12:51:13 EDT 2025 Sun Oct 26 03:47:28 EDT 2025 Tue Sep 30 17:02:09 EDT 2025 Sun Jul 06 01:40:34 EDT 2025 Wed Oct 01 05:51:22 EDT 2025 Sat Jul 19 17:10:41 EDT 2025 Tue Oct 14 19:29:42 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Left ventricular dysfunction Artificial intelligence Machine learning |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. Copyright © 2025 Cardiological Society of India. Published by Elsevier, a division of RELX India, Pvt. Ltd. All rights reserved. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c522t-910b182300f80af5799eaee3181eb6d80daf7267d769af69c6b4dce4ca7968d33 |
| ORCID | 0000-0002-3843-1338 |
| OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0019483225000550 |
| PMID | 40158621 |
| PageCount | 6 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_9e03fbab00934aa99f1debc932387c45 unpaywall_primary_10_1016_j_ihj_2025_03_009 pubmedcentral_primary_oai_pubmedcentral_nih_gov_12223524 pubmed_primary_40158621 crossref_primary_10_1016_j_ihj_2025_03_009 elsevier_sciencedirect_doi_10_1016_j_ihj_2025_03_009 elsevier_clinicalkey_doi_10_1016_j_ihj_2025_03_009 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-05-01 |
| PublicationDateYYYYMMDD | 2025-05-01 |
| PublicationDate_xml | – month: 05 year: 2025 text: 2025-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | India |
| PublicationPlace_xml | – name: India |
| PublicationTitle | Indian heart journal |
| PublicationTitleAlternate | Indian Heart J |
| PublicationYear | 2025 |
| Publisher | Elsevier, a division of RELX India, Pvt. Ltd Elsevier |
| Publisher_xml | – name: Elsevier, a division of RELX India, Pvt. Ltd – name: Elsevier |
| References | Krishnan, Geevar, Venugopal (bib17) 2022; 74 Savarese, Stolfo, Sinagra, Lund (bib1) 2022; 19 Huang G, Liu Z, van der Maaten L, Weinberger KQ. Densely Connected Convolutional Networks [Internet]. arXiv; 2018 [cited 2024 Jun 17]. Available from Khunte, Sangha, Oikonomou (bib6) 2023; 6 Kagiyama, Piccirilli, Yanamala (bib7) 2020; 76 Fortune, Coppa, Haq, Patel, Tereshchenko (bib20) 2022; 221 Attia, Dugan, Rideout (bib5) 2022; 3 Mishra, Khatwani, Patil (bib18) 2021; 41 . Kwon, Kim, Jeon (bib15) 2019; 49 Potter, Rodrigues, Ascher, Abhayaratna, Sengupta, Marwick (bib8) 2021; 14 Ao, He (bib19) 2023; 5 Haas, Santos, Cañon-Montañez (bib2) 2023; 204 Chen, Lin, Fang (bib16) 2022; 12 Sangha, Nargesi, Dhingra (bib9) 2023 Panicker, Narula, Albert (bib3) 2021; 26 Liao, Chen, Chung (bib10) 2001; 17 Liu, Yang, Pan, Zhu, Chen (bib4) 2022; 14 Attia, Kapa, Lopez-Jimenez (bib13) 2019; 25 Lin T-Y, Goyal P, Girshick R, He K, Dollár P. Focal Loss for Dense Object Detection [Internet]. arXiv; 2018 [cited 2023 Jul 18]. Available from Cho, Lee, Kwon (bib14) 2021; 67 Ahmad, Lund, Rao (bib21) 2018; 7 Haas (10.1016/j.ihj.2025.03.009_bib2) 2023; 204 Liu (10.1016/j.ihj.2025.03.009_bib4) 2022; 14 Fortune (10.1016/j.ihj.2025.03.009_bib20) 2022; 221 Kagiyama (10.1016/j.ihj.2025.03.009_bib7) 2020; 76 Liao (10.1016/j.ihj.2025.03.009_bib10) 2001; 17 Attia (10.1016/j.ihj.2025.03.009_bib5) 2022; 3 Khunte (10.1016/j.ihj.2025.03.009_bib6) 2023; 6 Chen (10.1016/j.ihj.2025.03.009_bib16) 2022; 12 Krishnan (10.1016/j.ihj.2025.03.009_bib17) 2022; 74 Ahmad (10.1016/j.ihj.2025.03.009_bib21) 2018; 7 Mishra (10.1016/j.ihj.2025.03.009_bib18) 2021; 41 Ao (10.1016/j.ihj.2025.03.009_bib19) 2023; 5 Potter (10.1016/j.ihj.2025.03.009_bib8) 2021; 14 Sangha (10.1016/j.ihj.2025.03.009_bib9) 2023 Cho (10.1016/j.ihj.2025.03.009_bib14) 2021; 67 10.1016/j.ihj.2025.03.009_bib11 Panicker (10.1016/j.ihj.2025.03.009_bib3) 2021; 26 10.1016/j.ihj.2025.03.009_bib12 Attia (10.1016/j.ihj.2025.03.009_bib13) 2019; 25 Savarese (10.1016/j.ihj.2025.03.009_bib1) 2022; 19 Kwon (10.1016/j.ihj.2025.03.009_bib15) 2019; 49 |
| References_xml | – volume: 204 start-page: 215 year: 2023 end-page: 222 ident: bib2 article-title: Associations between coronary Artery calcification and left ventricular global longitudinal strain and diastolic parameters: the ELSA-Brasil study publication-title: Am J Cardiol – volume: 17 year: 2001 ident: bib10 article-title: A fast algorithm for multilevel thresholding publication-title: J Inf Sci Eng – volume: 41 start-page: 422 year: 2021 end-page: 432 ident: bib18 article-title: ECG paper Record digitization and diagnosis using deep learning publication-title: J Med Biol Eng – volume: 25 start-page: 70 year: 2019 end-page: 74 ident: bib13 article-title: Screening for cardiac contractile dysfunction using an artificial intelligence–enabled electrocardiogram publication-title: Nat Med – volume: 12 start-page: 455 year: 2022 ident: bib16 article-title: Artificial intelligence-enabled electrocardiography predicts left ventricular dysfunction and future cardiovascular outcomes: a retrospective analysis publication-title: J Personalized Med – reference: . – volume: 5 year: 2023 ident: bib19 article-title: Image based deep learning in 12-lead ECG diagnosis publication-title: Front Artif Intell – volume: 76 start-page: 930 year: 2020 end-page: 941 ident: bib7 article-title: Machine learning assessment of left ventricular diastolic function based on electrocardiographic features publication-title: J Am Coll Cardiol – volume: 26 year: 2021 ident: bib3 article-title: Validation of electrocardiographic criteria for identifying left ventricular dysfunction in patients with previous myocardial infarction publication-title: Ann Noninvasive Electrocardiol – volume: 49 start-page: 629 year: 2019 end-page: 639 ident: bib15 article-title: Development and validation of deep-learning algorithm for electrocardiography-based heart failure identification publication-title: Korean Circ J – volume: 19 start-page: 100 year: 2022 end-page: 116 ident: bib1 article-title: Heart failure with mid-range or mildly reduced ejection fraction publication-title: Nat Rev Cardiol – volume: 74 start-page: 187 year: 2022 end-page: 193 ident: bib17 article-title: A community-based study on electrocardiographic abnormalities of adult population from South India - findings from a cross sectional survey publication-title: Indian Heart J – volume: 7 year: 2018 ident: bib21 article-title: Machine learning methods improve prognostication, identify clinically distinct phenotypes, and detect heterogeneity in response to therapy in a large cohort of heart failure patients publication-title: J Am Heart Assoc – reference: Huang G, Liu Z, van der Maaten L, Weinberger KQ. Densely Connected Convolutional Networks [Internet]. arXiv; 2018 [cited 2024 Jun 17]. Available from: – volume: 14 start-page: 4051 year: 2022 ident: bib4 article-title: Estimation of left ventricular ejection fraction using cardiovascular hemodynamic parameters and pulse morphological characteristics with machine learning algorithms publication-title: Nutrients – volume: 3 start-page: 373 year: 2022 end-page: 379 ident: bib5 article-title: Automated detection of low ejection fraction from a one-lead electrocardiogram: application of an AI algorithm to an electrocardiogram-enabled Digital Stethoscope publication-title: Eur Heart J Digit Health – volume: 14 start-page: 1904 year: 2021 end-page: 1915 ident: bib8 article-title: Machine learning of ECG waveforms to improve selection for testing for asymptomatic left ventricular dysfunction publication-title: JACC Cardiovasc Imaging – year: 2023 ident: bib9 article-title: Detection of left ventricular systolic dysfunction from electrocardiographic images publication-title: Circulation – volume: 221 year: 2022 ident: bib20 article-title: Digitizing ECG image: a new method and open-source software code publication-title: Comput Methods Progr Biomed – reference: Lin T-Y, Goyal P, Girshick R, He K, Dollár P. Focal Loss for Dense Object Detection [Internet]. arXiv; 2018 [cited 2023 Jul 18]. Available from: – volume: 67 start-page: 314 year: 2021 ident: bib14 article-title: Artificial intelligence algorithm for screening heart failure with reduced ejection fraction using electrocardiography publication-title: ASAIO J – volume: 6 start-page: 124 year: 2023 ident: bib6 article-title: Detection of left ventricular systolic dysfunction from single-lead electrocardiography adapted for portable and wearable devices publication-title: NPJ Digit Med – volume: 49 start-page: 629 year: 2019 ident: 10.1016/j.ihj.2025.03.009_bib15 article-title: Development and validation of deep-learning algorithm for electrocardiography-based heart failure identification publication-title: Korean Circ J doi: 10.4070/kcj.2018.0446 – volume: 6 start-page: 124 year: 2023 ident: 10.1016/j.ihj.2025.03.009_bib6 article-title: Detection of left ventricular systolic dysfunction from single-lead electrocardiography adapted for portable and wearable devices publication-title: NPJ Digit Med doi: 10.1038/s41746-023-00869-w – year: 2023 ident: 10.1016/j.ihj.2025.03.009_bib9 article-title: Detection of left ventricular systolic dysfunction from electrocardiographic images publication-title: Circulation doi: 10.1161/circ.148.suppl_1.19045 – volume: 67 start-page: 314 year: 2021 ident: 10.1016/j.ihj.2025.03.009_bib14 article-title: Artificial intelligence algorithm for screening heart failure with reduced ejection fraction using electrocardiography publication-title: ASAIO J doi: 10.1097/MAT.0000000000001218 – volume: 14 start-page: 4051 year: 2022 ident: 10.1016/j.ihj.2025.03.009_bib4 article-title: Estimation of left ventricular ejection fraction using cardiovascular hemodynamic parameters and pulse morphological characteristics with machine learning algorithms publication-title: Nutrients doi: 10.3390/nu14194051 – volume: 3 start-page: 373 year: 2022 ident: 10.1016/j.ihj.2025.03.009_bib5 article-title: Automated detection of low ejection fraction from a one-lead electrocardiogram: application of an AI algorithm to an electrocardiogram-enabled Digital Stethoscope publication-title: Eur Heart J Digit Health doi: 10.1093/ehjdh/ztac030 – volume: 19 start-page: 100 year: 2022 ident: 10.1016/j.ihj.2025.03.009_bib1 article-title: Heart failure with mid-range or mildly reduced ejection fraction publication-title: Nat Rev Cardiol doi: 10.1038/s41569-021-00605-5 – volume: 25 start-page: 70 year: 2019 ident: 10.1016/j.ihj.2025.03.009_bib13 article-title: Screening for cardiac contractile dysfunction using an artificial intelligence–enabled electrocardiogram publication-title: Nat Med doi: 10.1038/s41591-018-0240-2 – volume: 221 year: 2022 ident: 10.1016/j.ihj.2025.03.009_bib20 article-title: Digitizing ECG image: a new method and open-source software code publication-title: Comput Methods Progr Biomed doi: 10.1016/j.cmpb.2022.106890 – ident: 10.1016/j.ihj.2025.03.009_bib11 – volume: 74 start-page: 187 year: 2022 ident: 10.1016/j.ihj.2025.03.009_bib17 article-title: A community-based study on electrocardiographic abnormalities of adult population from South India - findings from a cross sectional survey publication-title: Indian Heart J doi: 10.1016/j.ihj.2022.05.001 – volume: 7 year: 2018 ident: 10.1016/j.ihj.2025.03.009_bib21 article-title: Machine learning methods improve prognostication, identify clinically distinct phenotypes, and detect heterogeneity in response to therapy in a large cohort of heart failure patients publication-title: J Am Heart Assoc doi: 10.1161/JAHA.117.008081 – ident: 10.1016/j.ihj.2025.03.009_bib12 – volume: 204 start-page: 215 year: 2023 ident: 10.1016/j.ihj.2025.03.009_bib2 article-title: Associations between coronary Artery calcification and left ventricular global longitudinal strain and diastolic parameters: the ELSA-Brasil study publication-title: Am J Cardiol doi: 10.1016/j.amjcard.2023.06.124 – volume: 41 start-page: 422 year: 2021 ident: 10.1016/j.ihj.2025.03.009_bib18 article-title: ECG paper Record digitization and diagnosis using deep learning publication-title: J Med Biol Eng doi: 10.1007/s40846-021-00632-0 – volume: 14 start-page: 1904 year: 2021 ident: 10.1016/j.ihj.2025.03.009_bib8 article-title: Machine learning of ECG waveforms to improve selection for testing for asymptomatic left ventricular dysfunction publication-title: JACC Cardiovasc Imaging doi: 10.1016/j.jcmg.2021.04.020 – volume: 76 start-page: 930 year: 2020 ident: 10.1016/j.ihj.2025.03.009_bib7 article-title: Machine learning assessment of left ventricular diastolic function based on electrocardiographic features publication-title: J Am Coll Cardiol doi: 10.1016/j.jacc.2020.06.061 – volume: 5 year: 2023 ident: 10.1016/j.ihj.2025.03.009_bib19 article-title: Image based deep learning in 12-lead ECG diagnosis publication-title: Front Artif Intell doi: 10.3389/frai.2022.1087370 – volume: 26 year: 2021 ident: 10.1016/j.ihj.2025.03.009_bib3 article-title: Validation of electrocardiographic criteria for identifying left ventricular dysfunction in patients with previous myocardial infarction publication-title: Ann Noninvasive Electrocardiol doi: 10.1111/anec.12812 – volume: 17 year: 2001 ident: 10.1016/j.ihj.2025.03.009_bib10 article-title: A fast algorithm for multilevel thresholding publication-title: J Inf Sci Eng – volume: 12 start-page: 455 year: 2022 ident: 10.1016/j.ihj.2025.03.009_bib16 article-title: Artificial intelligence-enabled electrocardiography predicts left ventricular dysfunction and future cardiovascular outcomes: a retrospective analysis publication-title: J Personalized Med doi: 10.3390/jpm12030455 |
| SSID | ssj0025490 |
| Score | 2.361763 |
| Snippet | The capability to accurately predict the ejection fraction (EF) from an electrocardiogram (ECG) holds significant and valuable clinical implications. Various... Introduction: The capability to accurately predict the ejection fraction (EF) from an electrocardiogram (ECG) holds significant and valuable clinical... |
| SourceID | doaj unpaywall pubmedcentral pubmed crossref elsevier |
| SourceType | Open Website Open Access Repository Index Database Publisher |
| StartPage | 182 |
| SubjectTerms | Algorithms Artificial intelligence Echocardiography Electrocardiography - methods Female Humans Left ventricular dysfunction Machine Learning Male Middle Aged Neural Networks, Computer Original Predictive Value of Tests Retrospective Studies ROC Curve Stroke Volume - physiology Ventricular Dysfunction, Left - diagnosis Ventricular Dysfunction, Left - physiopathology Ventricular Function, Left - physiology |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pb9MwFLbQDsAF8ZtsDPnACRThxL-PY9qYEHBiUm-Wndhtqjaruk5o__2e7aRa0UQvXBPbsV9e7O_Fn7-H0EcuHK1CpcvQKAsBSlOVjnJSBhJoq6TVwSa2xS9xccm-T_jkXqqvyAnL8sDZcF-0JzQ462LozazVOlStdw3ADqpkw5J6KVF6DKaGUAuinnz4BHrBwGnH_czE7OpmcwgMa57VTfXOipSE-x9emP4mTT656Vf29o9dLO6tSOfP0bMBSuKTPIQX6JHvX6LHP4fN8ldo8sODn6YsRPjs9BvuljB3XGNAqXi1jqUi4xn7eSJj9Tis8xkHHKnwU7xMLEuPh7QSU2wX06t1t5ktr1-jy_Oz36cX5ZBIoWwAXm1gQiOuijtqJChiA5dae-vj38_KO9Eq0togayFbKbQNQjfCMRgna6zUQrWUvkEH_VXv3yFslbckaozxmrCmodp5y6PsXeC1lFwU6NNoTLPKehlmJJLNDVjeRMsbQg1YvkBfo7m3BaPUdboADmAGBzD7HKBA9fiyzHiaFOY_aKj715PZttIANTKE2FftbXaCbZchPOUQFFYFUjvusTOm3Tt9N0sy3lWEZrxmBfq89aT9Njv8HzY7Qk9jk5m4-R4dbNY3_hjA1cZ9SN_RHUbiIMc priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9MwGLagk4AL45uwgXzgBMpkx7ETH8e0MSGYOFCpnCzbsduUNqvaVAh-Pf5IqmWaGByT2En8-rX92O_jxwC8pUwRbDFPrS6lm6BonCpCUWqRJVVZSG5lYFtcsPNx_mlCJ51YtN8LM4jfBx5WPZu7aVxGoxYpvwv2GHWwewT2xhdfj7_Hnpb7RTEfMcgyTEKj6SOYN71jMAYFqf6bh6LrNMn722Ylf_2Ui8WVMehsP7K3NkG60FNPfhxtW3Wkf18Tdvyn4j0CDzskCo-j6zwGd0zzBNz70sXan4LJZ-PcPBxiBE9PPsJ66bqeDXQgF67WPpUnTEMzD1yuBtp13CIBPZN-CpeBpGlgdyrFFMrF9HJdt7Pl5hkYn51-OzlPu3MYUu3QWev6Q6SwD8ghWyJpacG5kcYvnmKjWFWiStoiY0VVMC4t45qp3Bkt17LgrKwIeQ5GzWVjXgIoSyORlyijGcq1JlwZSb1qnqVZUVCWgHd9zYhVlNsQPQ9tLpythLeVQEQ4WyXgg6-7XUKvlB1uOAuLruEJbhCxSiq_dJNLybnFlVHawVZSFjqnCcj6mhf9ZlTXfboX1X_7cr7L1CGViEBuy_YietTul93slro5JU5AOfC1QZmGT5p6FlTAsUd2NMsT8H7nlrfb7NV_pT4AD_xVJHgeglG73prXDoS16k3X_P4A_b8qLw priority: 102 providerName: Unpaywall |
| Title | Leveraging ECG images for predicting ejection fraction using machine learning algorithms |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0019483225000550 https://dx.doi.org/10.1016/j.ihj.2025.03.009 https://www.ncbi.nlm.nih.gov/pubmed/40158621 https://pubmed.ncbi.nlm.nih.gov/PMC12223524 https://doi.org/10.1016/j.ihj.2025.03.009 https://doaj.org/article/9e03fbab00934aa99f1debc932387c45 |
| UnpaywallVersion | publishedVersion |
| Volume | 77 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2213-3763 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0025490 issn: 0019-4832 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 2213-3763 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0025490 issn: 0019-4832 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 2213-3763 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0025490 issn: 0019-4832 databaseCode: .~1 dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 2213-3763 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0025490 issn: 0019-4832 databaseCode: DIK dateStart: 19530101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 2213-3763 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0025490 issn: 0019-4832 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2213-3763 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0025490 issn: 0019-4832 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 2213-3763 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0025490 issn: 0019-4832 databaseCode: AKRWK dateStart: 20121201 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2213-3763 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0025490 issn: 0019-4832 databaseCode: RPM dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZWiwRcEG_Co_KBEyisk9hxfFyqXVaIrfZApXKK7MRuU7Vple0KceG3M-M8RBBiJS6R4tjJeDwZz9jfjAl5K1KTRC5SoSsyDQ5KEYUmESx0zCVlJrVy2qMtZunFnH9eiMURmfaxMAir7HR_q9O9tu5KTjpunuyrCmN8wQH3AomGh_fbOZd4isGHnwPMA_2fNgwF6MHa_c6mx3hVqzW4iLFo85yq0dzkU_j_fYr6Ez5576be6x_f9Wbz29x0_pA86IxKetrS_Ygc2foxuXvZbZs_IYsvFiTWn0dEz6afaLUFLXJNwV6l-wZrIfaZ2rWHZdXUNW20A0VQ_JJuPd7S0u6AiSXVm-WuqQ6r7fVTMj8_-zq9CLsjFcICDK0DqDZmItxbYy5j2gmplNUW10Eja9IyY6V2Mk5lKVOlXaqK1HDoJy-0VGlWJskzclzvavuCUJ1ZzTDbmIgZL4pEGasFJsBzIpZSpAF51zMz37eZM_IeUrbOgfM5cj5nSQ6cD8hHZPdQEZNe-4Jds8y7Uc-VZYkz2uAqDNdaKReV1hRggSaZLLgISNwPVt7HlYImhBdV__oyHxqNBO-2Zs9bIRhIBkdVgHsYBSQbiceoT-MndbXyCb0jNNJEzAPyfpCk23n28v8of0Xu410L2nxNjg_NjX0DhtXBTPyfM_HLEnCdXV1OyJ357Or02y-xAyPX |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9wgEEZRKjW9VH3HfXLoqZUbbMA2x3aVdNtuckqkvSHAsOvVrnflbFT10t9eBj9UV1Uj9WrAhmE8zAffDAi95ZmmiUtE7EyhPEAxSawpJ7EjjpZFroRTgW1xkU2v2Nc5nx-gSR8LA7TKzva3Nj1Y6-7JSSfNk11VQYyvB-BBIcHxANx-h_E0BwT24efA8wAA1Mah-A5B9f5oM5C8quXKY8SUt4lOxWhxCjn8_75G_cmfPLqpd-rHd7Ve_7Y4nT1A9zuvEn9sO_4QHdj6Ebp73p2bP0bzmfUqGy4kwqeTz7jaeDNyjb3DincN1ALyM7arwMuqsWvacAcMrPgF3gTCpcXdDRMLrNaLbVPtl5vrJ-jq7PRyMo27OxVi4z2tvbdtRCdwuEZcQZTjuRBWWdgITazOyoKUyuVplpd5JpTLhMk08-NkRuUiK0pKn6LDelvbY4RVYRWBdGM8JcwYKrRVHDLgOZgFnkXoXS9MuWtTZ8ieU7aSXvISJC8JlV7yEfoE4h4qQtbr8GDbLGQ37VJYQp1WGrZhmFJCuKS02ngXlBa5YTxCaT9Zsg8s9abQv6j615fZ0Gikebc1e9YqwdBlj1S5x4dJhIqReozGNC6pq2XI6J2Al8ZTFqH3gybdLrPn_9fzN-hoenk-k7MvF99eoHtQ0jI4X6LDfXNjX3kva69fh7_oF5BgI0k |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9MwGLagk4AL45uwgXzgBMpkx7ETH8e0MSGYOFCpnCzbsduUNqvaVAh-Pf5IqmWaGByT2En8-rX92O_jxwC8pUwRbDFPrS6lm6BonCpCUWqRJVVZSG5lYFtcsPNx_mlCJ51YtN8LM4jfBx5WPZu7aVxGoxYpvwv2GHWwewT2xhdfj7_Hnpb7RTEfMcgyTEKj6SOYN71jMAYFqf6bh6LrNMn722Ylf_2Ui8WVMehsP7K3NkG60FNPfhxtW3Wkf18Tdvyn4j0CDzskCo-j6zwGd0zzBNz70sXan4LJZ-PcPBxiBE9PPsJ66bqeDXQgF67WPpUnTEMzD1yuBtp13CIBPZN-CpeBpGlgdyrFFMrF9HJdt7Pl5hkYn51-OzlPu3MYUu3QWev6Q6SwD8ghWyJpacG5kcYvnmKjWFWiStoiY0VVMC4t45qp3Bkt17LgrKwIeQ5GzWVjXgIoSyORlyijGcq1JlwZSb1qnqVZUVCWgHd9zYhVlNsQPQ9tLpythLeVQEQ4WyXgg6-7XUKvlB1uOAuLruEJbhCxSiq_dJNLybnFlVHawVZSFjqnCcj6mhf9ZlTXfboX1X_7cr7L1CGViEBuy_YietTul93slro5JU5AOfC1QZmGT5p6FlTAsUd2NMsT8H7nlrfb7NV_pT4AD_xVJHgeglG73prXDoS16k3X_P4A_b8qLw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Leveraging+ECG+images+for+predicting+ejection+fraction+using+machine+learning+algorithms&rft.jtitle=Indian+heart+journal&rft.au=Swamy%2C+Abhyuday+Kumara&rft.au=Rajagopal%2C+Vivek&rft.au=Krishnan%2C+Deepak&rft.au=Ghorai%2C+Paramita+Auddya&rft.date=2025-05-01&rft.pub=Elsevier%2C+a+division+of+RELX+India%2C+Pvt.+Ltd&rft.issn=0019-4832&rft.volume=77&rft.issue=3&rft.spage=182&rft.epage=187&rft_id=info:doi/10.1016%2Fj.ihj.2025.03.009&rft.externalDocID=S0019483225000550 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0019-4832&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0019-4832&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0019-4832&client=summon |