Leveraging ECG images for predicting ejection fraction using machine learning algorithms

The capability to accurately predict the ejection fraction (EF) from an electrocardiogram (ECG) holds significant and valuable clinical implications. Various algorithms based on ECG images are currently being evaluated, with most methods requiring raw signal data from ECG devices. In this study, our...

Full description

Saved in:
Bibliographic Details
Published inIndian heart journal Vol. 77; no. 3; pp. 182 - 187
Main Authors Swamy, Abhyuday Kumara, Rajagopal, Vivek, Krishnan, Deepak, Ghorai, Paramita Auddya, Choukhande, Anagha, Palani, Santhosh Rathnam, Padmanabhan, Deepak, Rupert, Emmanuel, Shetty, Devi Prasad, Narayan, Pradeep
Format Journal Article
LanguageEnglish
Published India Elsevier, a division of RELX India, Pvt. Ltd 01.05.2025
Elsevier
Subjects
Online AccessGet full text
ISSN0019-4832
2213-3763
2213-3763
DOI10.1016/j.ihj.2025.03.009

Cover

Abstract The capability to accurately predict the ejection fraction (EF) from an electrocardiogram (ECG) holds significant and valuable clinical implications. Various algorithms based on ECG images are currently being evaluated, with most methods requiring raw signal data from ECG devices. In this study, our objective was to train and validate a neural network on a readily available ECG trace image graph to determine the presence or absence of left ventricular dysfunction (LVD). 12-lead ECG trace images paired with their echocardiogram reports performed on the same day were selected. A DenseNet121 model, using ECG images as input, was trained to identify EF <50 %. and then externally validated. 1,19,281 ECG-echocardiogram pairs were used for model development. The model demonstrated comparable performance in both the internal test data and external validation data. The area under receiver operating characteristic and precision–recall curves were 0.92 and 0.78, respectively, for the internal test data and 0.88 and 0.74, respectively, for the external validation data. The model accurately identified more than 85 % of cases with EF <50 % in both datasets. Actual images of ECGs with simple pre-processing and model architecture can be used as a reliable tool to screen for LVD. The use of images expands the reach of these algorithms to geographies with resource and technological limitations.
AbstractList The capability to accurately predict the ejection fraction (EF) from an electrocardiogram (ECG) holds significant and valuable clinical implications. Various algorithms based on ECG images are currently being evaluated, with most methods requiring raw signal data from ECG devices. In this study, our objective was to train and validate a neural network on a readily available ECG trace image graph to determine the presence or absence of left ventricular dysfunction (LVD). 12-lead ECG trace images paired with their echocardiogram reports performed on the same day were selected. A DenseNet121 model, using ECG images as input, was trained to identify EF <50 %. and then externally validated. 1,19,281 ECG-echocardiogram pairs were used for model development. The model demonstrated comparable performance in both the internal test data and external validation data. The area under receiver operating characteristic and precision-recall curves were 0.92 and 0.78, respectively, for the internal test data and 0.88 and 0.74, respectively, for the external validation data. The model accurately identified more than 85 % of cases with EF <50 % in both datasets. Actual images of ECGs with simple pre-processing and model architecture can be used as a reliable tool to screen for LVD. The use of images expands the reach of these algorithms to geographies with resource and technological limitations.
Introduction: The capability to accurately predict the ejection fraction (EF) from an electrocardiogram (ECG) holds significant and valuable clinical implications. Various algorithms based on ECG images are currently being evaluated, with most methods requiring raw signal data from ECG devices. In this study, our objective was to train and validate a neural network on a readily available ECG trace image graph to determine the presence or absence of left ventricular dysfunction (LVD). Methods: 12-lead ECG trace images paired with their echocardiogram reports performed on the same day were selected. A DenseNet121 model, using ECG images as input, was trained to identify EF <50 %. and then externally validated. Results: 1,19,281 ECG-echocardiogram pairs were used for model development. The model demonstrated comparable performance in both the internal test data and external validation data. The area under receiver operating characteristic and precision–recall curves were 0.92 and 0.78, respectively, for the internal test data and 0.88 and 0.74, respectively, for the external validation data. The model accurately identified more than 85 % of cases with EF <50 % in both datasets. Conclusions: Actual images of ECGs with simple pre-processing and model architecture can be used as a reliable tool to screen for LVD. The use of images expands the reach of these algorithms to geographies with resource and technological limitations.
Author Shetty, Devi Prasad
Palani, Santhosh Rathnam
Ghorai, Paramita Auddya
Narayan, Pradeep
Swamy, Abhyuday Kumara
Krishnan, Deepak
Rajagopal, Vivek
Choukhande, Anagha
Padmanabhan, Deepak
Rupert, Emmanuel
Author_xml – sequence: 1
  givenname: Abhyuday Kumara
  surname: Swamy
  fullname: Swamy, Abhyuday Kumara
  organization: Department of Advanced Analytics & AI, India
– sequence: 2
  givenname: Vivek
  surname: Rajagopal
  fullname: Rajagopal, Vivek
  organization: Department of Advanced Analytics & AI, India
– sequence: 3
  givenname: Deepak
  surname: Krishnan
  fullname: Krishnan, Deepak
  organization: Department of Advanced Analytics & AI, India
– sequence: 4
  givenname: Paramita Auddya
  surname: Ghorai
  fullname: Ghorai, Paramita Auddya
  organization: Department of Biostatistics, India
– sequence: 5
  givenname: Anagha
  surname: Choukhande
  fullname: Choukhande, Anagha
  organization: Department of Advanced Analytics & AI, India
– sequence: 6
  givenname: Santhosh Rathnam
  surname: Palani
  fullname: Palani, Santhosh Rathnam
  organization: Department of Advanced Analytics & AI, India
– sequence: 7
  givenname: Deepak
  surname: Padmanabhan
  fullname: Padmanabhan, Deepak
  organization: Department of Electrophysiology, India
– sequence: 8
  givenname: Emmanuel
  surname: Rupert
  fullname: Rupert, Emmanuel
  organization: Department of Cardiac Anesthesia, India
– sequence: 9
  givenname: Devi Prasad
  surname: Shetty
  fullname: Shetty, Devi Prasad
  organization: Department of Cardiac Surgery, Narayana Health, India
– sequence: 10
  givenname: Pradeep
  orcidid: 0000-0002-3843-1338
  surname: Narayan
  fullname: Narayan, Pradeep
  email: pradeep.narayan.dr@narayanahealth.org
  organization: Department of Cardiac Surgery, Narayana Health, India
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40158621$$D View this record in MEDLINE/PubMed
BookMark eNqNkc-O0zAQxi20iO0WHoALygs0jO38szggVC3LSpW4gMTNmjjj1CF1Kict6tvjEFixHICTRzPz_fT5mxt25QdPjL3kkHLgxesudfsuFSDyFGQKoJ6wlRBcbmRZyCu2AuBqk1VSXLObcewgLmYKnrHrDHheFYKv2JcdnSlg63yb3G7vEnfAlsbEDiE5BmqcmeYJdRSLwSc24FKcxrl_QLN3npKeMPi5gX07BDftD-Nz9tRiP9KLn--afX5_-2n7YbP7eHe_fbfbmFyIaaM41LwSEsBWgDYvlSIkkrziVBdNBQ3aUhRlUxYKbaFMUWeNocxgqYqqkXLN7hduM2CnjyF-IFz0gE7_aAyh1RgmZ3rSikDaGusYlMwQlbK8odooKWRVmiyPLLGwTv6Il2_Y9w9ADnqOXHc6Rq7nyDVIPZPW7O0iOp7qA0VvfgrYP3LyeOLdXrfDWXMhhMxFFgmvfic8SH9dKS7wZcGEYRwD2f-y9WbRUAz_7Cjo0TjyJt40xGPGdNxf1eoPtemddwb7r3T5h_Y7txrOuA
Cites_doi 10.4070/kcj.2018.0446
10.1038/s41746-023-00869-w
10.1161/circ.148.suppl_1.19045
10.1097/MAT.0000000000001218
10.3390/nu14194051
10.1093/ehjdh/ztac030
10.1038/s41569-021-00605-5
10.1038/s41591-018-0240-2
10.1016/j.cmpb.2022.106890
10.1016/j.ihj.2022.05.001
10.1161/JAHA.117.008081
10.1016/j.amjcard.2023.06.124
10.1007/s40846-021-00632-0
10.1016/j.jcmg.2021.04.020
10.1016/j.jacc.2020.06.061
10.3389/frai.2022.1087370
10.1111/anec.12812
10.3390/jpm12030455
ContentType Journal Article
Copyright 2025 Cardiological Society of India
Copyright © 2025 Cardiological Society of India. Published by Elsevier, a division of RELX India, Pvt. Ltd. All rights reserved.
2025 Cardiological Society of India. Published by Elsevier, a division of RELX India, Pvt. Ltd. 2025 Cardiological Society of India
Copyright_xml – notice: 2025 Cardiological Society of India
– notice: Copyright © 2025 Cardiological Society of India. Published by Elsevier, a division of RELX India, Pvt. Ltd. All rights reserved.
– notice: 2025 Cardiological Society of India. Published by Elsevier, a division of RELX India, Pvt. Ltd. 2025 Cardiological Society of India
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
5PM
ADTOC
UNPAY
DOA
DOI 10.1016/j.ihj.2025.03.009
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2213-3763
EndPage 187
ExternalDocumentID oai_doaj_org_article_9e03fbab00934aa99f1debc932387c45
10.1016/j.ihj.2025.03.009
PMC12223524
40158621
10_1016_j_ihj_2025_03_009
S0019483225000550
Genre Journal Article
GroupedDBID ---
.1-
.FO
.GJ
.~1
0R~
1P~
1~.
2WC
4.4
457
4G.
53G
7-5
8P~
AAEDW
AAIKJ
AALRI
AAXUO
AAYWO
ABBQC
ABFRF
ABMAC
ABXDB
ACVFH
ADBBV
ADCNI
ADVLN
AEFWE
AEKER
AEUPX
AEVXI
AEXQZ
AFPUW
AFRHN
AFTJW
AGHFR
AGYEJ
AIGII
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BAWUL
BCNDV
C1A
DIK
E3Z
EBS
EJD
F5P
FDB
FEDTE
FIRID
FNPLU
GBLVA
GROUPED_DOAJ
GX1
HVGLF
HYE
HZ~
M41
MO0
M~E
O-L
O9-
OA~
OK1
OL0
P-8
P-9
PC.
Q38
ROL
RPM
SDF
SEL
SSZ
UNMZH
XSB
Z5R
~HD
6I.
AAFTH
AFCTW
RIG
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c522t-910b182300f80af5799eaee3181eb6d80daf7267d769af69c6b4dce4ca7968d33
IEDL.DBID .~1
ISSN 0019-4832
2213-3763
IngestDate Fri Oct 03 12:51:13 EDT 2025
Sun Oct 26 03:47:28 EDT 2025
Tue Sep 30 17:02:09 EDT 2025
Sun Jul 06 01:40:34 EDT 2025
Wed Oct 01 05:51:22 EDT 2025
Sat Jul 19 17:10:41 EDT 2025
Tue Oct 14 19:29:42 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Left ventricular dysfunction
Artificial intelligence
Machine learning
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2025 Cardiological Society of India. Published by Elsevier, a division of RELX India, Pvt. Ltd. All rights reserved.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c522t-910b182300f80af5799eaee3181eb6d80daf7267d769af69c6b4dce4ca7968d33
ORCID 0000-0002-3843-1338
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0019483225000550
PMID 40158621
PageCount 6
ParticipantIDs doaj_primary_oai_doaj_org_article_9e03fbab00934aa99f1debc932387c45
unpaywall_primary_10_1016_j_ihj_2025_03_009
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12223524
pubmed_primary_40158621
crossref_primary_10_1016_j_ihj_2025_03_009
elsevier_sciencedirect_doi_10_1016_j_ihj_2025_03_009
elsevier_clinicalkey_doi_10_1016_j_ihj_2025_03_009
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-05-01
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-01
  day: 01
PublicationDecade 2020
PublicationPlace India
PublicationPlace_xml – name: India
PublicationTitle Indian heart journal
PublicationTitleAlternate Indian Heart J
PublicationYear 2025
Publisher Elsevier, a division of RELX India, Pvt. Ltd
Elsevier
Publisher_xml – name: Elsevier, a division of RELX India, Pvt. Ltd
– name: Elsevier
References Krishnan, Geevar, Venugopal (bib17) 2022; 74
Savarese, Stolfo, Sinagra, Lund (bib1) 2022; 19
Huang G, Liu Z, van der Maaten L, Weinberger KQ. Densely Connected Convolutional Networks [Internet]. arXiv; 2018 [cited 2024 Jun 17]. Available from
Khunte, Sangha, Oikonomou (bib6) 2023; 6
Kagiyama, Piccirilli, Yanamala (bib7) 2020; 76
Fortune, Coppa, Haq, Patel, Tereshchenko (bib20) 2022; 221
Attia, Dugan, Rideout (bib5) 2022; 3
Mishra, Khatwani, Patil (bib18) 2021; 41
.
Kwon, Kim, Jeon (bib15) 2019; 49
Potter, Rodrigues, Ascher, Abhayaratna, Sengupta, Marwick (bib8) 2021; 14
Ao, He (bib19) 2023; 5
Haas, Santos, Cañon-Montañez (bib2) 2023; 204
Chen, Lin, Fang (bib16) 2022; 12
Sangha, Nargesi, Dhingra (bib9) 2023
Panicker, Narula, Albert (bib3) 2021; 26
Liao, Chen, Chung (bib10) 2001; 17
Liu, Yang, Pan, Zhu, Chen (bib4) 2022; 14
Attia, Kapa, Lopez-Jimenez (bib13) 2019; 25
Lin T-Y, Goyal P, Girshick R, He K, Dollár P. Focal Loss for Dense Object Detection [Internet]. arXiv; 2018 [cited 2023 Jul 18]. Available from
Cho, Lee, Kwon (bib14) 2021; 67
Ahmad, Lund, Rao (bib21) 2018; 7
Haas (10.1016/j.ihj.2025.03.009_bib2) 2023; 204
Liu (10.1016/j.ihj.2025.03.009_bib4) 2022; 14
Fortune (10.1016/j.ihj.2025.03.009_bib20) 2022; 221
Kagiyama (10.1016/j.ihj.2025.03.009_bib7) 2020; 76
Liao (10.1016/j.ihj.2025.03.009_bib10) 2001; 17
Attia (10.1016/j.ihj.2025.03.009_bib5) 2022; 3
Khunte (10.1016/j.ihj.2025.03.009_bib6) 2023; 6
Chen (10.1016/j.ihj.2025.03.009_bib16) 2022; 12
Krishnan (10.1016/j.ihj.2025.03.009_bib17) 2022; 74
Ahmad (10.1016/j.ihj.2025.03.009_bib21) 2018; 7
Mishra (10.1016/j.ihj.2025.03.009_bib18) 2021; 41
Ao (10.1016/j.ihj.2025.03.009_bib19) 2023; 5
Potter (10.1016/j.ihj.2025.03.009_bib8) 2021; 14
Sangha (10.1016/j.ihj.2025.03.009_bib9) 2023
Cho (10.1016/j.ihj.2025.03.009_bib14) 2021; 67
10.1016/j.ihj.2025.03.009_bib11
Panicker (10.1016/j.ihj.2025.03.009_bib3) 2021; 26
10.1016/j.ihj.2025.03.009_bib12
Attia (10.1016/j.ihj.2025.03.009_bib13) 2019; 25
Savarese (10.1016/j.ihj.2025.03.009_bib1) 2022; 19
Kwon (10.1016/j.ihj.2025.03.009_bib15) 2019; 49
References_xml – volume: 204
  start-page: 215
  year: 2023
  end-page: 222
  ident: bib2
  article-title: Associations between coronary Artery calcification and left ventricular global longitudinal strain and diastolic parameters: the ELSA-Brasil study
  publication-title: Am J Cardiol
– volume: 17
  year: 2001
  ident: bib10
  article-title: A fast algorithm for multilevel thresholding
  publication-title: J Inf Sci Eng
– volume: 41
  start-page: 422
  year: 2021
  end-page: 432
  ident: bib18
  article-title: ECG paper Record digitization and diagnosis using deep learning
  publication-title: J Med Biol Eng
– volume: 25
  start-page: 70
  year: 2019
  end-page: 74
  ident: bib13
  article-title: Screening for cardiac contractile dysfunction using an artificial intelligence–enabled electrocardiogram
  publication-title: Nat Med
– volume: 12
  start-page: 455
  year: 2022
  ident: bib16
  article-title: Artificial intelligence-enabled electrocardiography predicts left ventricular dysfunction and future cardiovascular outcomes: a retrospective analysis
  publication-title: J Personalized Med
– reference: .
– volume: 5
  year: 2023
  ident: bib19
  article-title: Image based deep learning in 12-lead ECG diagnosis
  publication-title: Front Artif Intell
– volume: 76
  start-page: 930
  year: 2020
  end-page: 941
  ident: bib7
  article-title: Machine learning assessment of left ventricular diastolic function based on electrocardiographic features
  publication-title: J Am Coll Cardiol
– volume: 26
  year: 2021
  ident: bib3
  article-title: Validation of electrocardiographic criteria for identifying left ventricular dysfunction in patients with previous myocardial infarction
  publication-title: Ann Noninvasive Electrocardiol
– volume: 49
  start-page: 629
  year: 2019
  end-page: 639
  ident: bib15
  article-title: Development and validation of deep-learning algorithm for electrocardiography-based heart failure identification
  publication-title: Korean Circ J
– volume: 19
  start-page: 100
  year: 2022
  end-page: 116
  ident: bib1
  article-title: Heart failure with mid-range or mildly reduced ejection fraction
  publication-title: Nat Rev Cardiol
– volume: 74
  start-page: 187
  year: 2022
  end-page: 193
  ident: bib17
  article-title: A community-based study on electrocardiographic abnormalities of adult population from South India - findings from a cross sectional survey
  publication-title: Indian Heart J
– volume: 7
  year: 2018
  ident: bib21
  article-title: Machine learning methods improve prognostication, identify clinically distinct phenotypes, and detect heterogeneity in response to therapy in a large cohort of heart failure patients
  publication-title: J Am Heart Assoc
– reference: Huang G, Liu Z, van der Maaten L, Weinberger KQ. Densely Connected Convolutional Networks [Internet]. arXiv; 2018 [cited 2024 Jun 17]. Available from:
– volume: 14
  start-page: 4051
  year: 2022
  ident: bib4
  article-title: Estimation of left ventricular ejection fraction using cardiovascular hemodynamic parameters and pulse morphological characteristics with machine learning algorithms
  publication-title: Nutrients
– volume: 3
  start-page: 373
  year: 2022
  end-page: 379
  ident: bib5
  article-title: Automated detection of low ejection fraction from a one-lead electrocardiogram: application of an AI algorithm to an electrocardiogram-enabled Digital Stethoscope
  publication-title: Eur Heart J Digit Health
– volume: 14
  start-page: 1904
  year: 2021
  end-page: 1915
  ident: bib8
  article-title: Machine learning of ECG waveforms to improve selection for testing for asymptomatic left ventricular dysfunction
  publication-title: JACC Cardiovasc Imaging
– year: 2023
  ident: bib9
  article-title: Detection of left ventricular systolic dysfunction from electrocardiographic images
  publication-title: Circulation
– volume: 221
  year: 2022
  ident: bib20
  article-title: Digitizing ECG image: a new method and open-source software code
  publication-title: Comput Methods Progr Biomed
– reference: Lin T-Y, Goyal P, Girshick R, He K, Dollár P. Focal Loss for Dense Object Detection [Internet]. arXiv; 2018 [cited 2023 Jul 18]. Available from:
– volume: 67
  start-page: 314
  year: 2021
  ident: bib14
  article-title: Artificial intelligence algorithm for screening heart failure with reduced ejection fraction using electrocardiography
  publication-title: ASAIO J
– volume: 6
  start-page: 124
  year: 2023
  ident: bib6
  article-title: Detection of left ventricular systolic dysfunction from single-lead electrocardiography adapted for portable and wearable devices
  publication-title: NPJ Digit Med
– volume: 49
  start-page: 629
  year: 2019
  ident: 10.1016/j.ihj.2025.03.009_bib15
  article-title: Development and validation of deep-learning algorithm for electrocardiography-based heart failure identification
  publication-title: Korean Circ J
  doi: 10.4070/kcj.2018.0446
– volume: 6
  start-page: 124
  year: 2023
  ident: 10.1016/j.ihj.2025.03.009_bib6
  article-title: Detection of left ventricular systolic dysfunction from single-lead electrocardiography adapted for portable and wearable devices
  publication-title: NPJ Digit Med
  doi: 10.1038/s41746-023-00869-w
– year: 2023
  ident: 10.1016/j.ihj.2025.03.009_bib9
  article-title: Detection of left ventricular systolic dysfunction from electrocardiographic images
  publication-title: Circulation
  doi: 10.1161/circ.148.suppl_1.19045
– volume: 67
  start-page: 314
  year: 2021
  ident: 10.1016/j.ihj.2025.03.009_bib14
  article-title: Artificial intelligence algorithm for screening heart failure with reduced ejection fraction using electrocardiography
  publication-title: ASAIO J
  doi: 10.1097/MAT.0000000000001218
– volume: 14
  start-page: 4051
  year: 2022
  ident: 10.1016/j.ihj.2025.03.009_bib4
  article-title: Estimation of left ventricular ejection fraction using cardiovascular hemodynamic parameters and pulse morphological characteristics with machine learning algorithms
  publication-title: Nutrients
  doi: 10.3390/nu14194051
– volume: 3
  start-page: 373
  year: 2022
  ident: 10.1016/j.ihj.2025.03.009_bib5
  article-title: Automated detection of low ejection fraction from a one-lead electrocardiogram: application of an AI algorithm to an electrocardiogram-enabled Digital Stethoscope
  publication-title: Eur Heart J Digit Health
  doi: 10.1093/ehjdh/ztac030
– volume: 19
  start-page: 100
  year: 2022
  ident: 10.1016/j.ihj.2025.03.009_bib1
  article-title: Heart failure with mid-range or mildly reduced ejection fraction
  publication-title: Nat Rev Cardiol
  doi: 10.1038/s41569-021-00605-5
– volume: 25
  start-page: 70
  year: 2019
  ident: 10.1016/j.ihj.2025.03.009_bib13
  article-title: Screening for cardiac contractile dysfunction using an artificial intelligence–enabled electrocardiogram
  publication-title: Nat Med
  doi: 10.1038/s41591-018-0240-2
– volume: 221
  year: 2022
  ident: 10.1016/j.ihj.2025.03.009_bib20
  article-title: Digitizing ECG image: a new method and open-source software code
  publication-title: Comput Methods Progr Biomed
  doi: 10.1016/j.cmpb.2022.106890
– ident: 10.1016/j.ihj.2025.03.009_bib11
– volume: 74
  start-page: 187
  year: 2022
  ident: 10.1016/j.ihj.2025.03.009_bib17
  article-title: A community-based study on electrocardiographic abnormalities of adult population from South India - findings from a cross sectional survey
  publication-title: Indian Heart J
  doi: 10.1016/j.ihj.2022.05.001
– volume: 7
  year: 2018
  ident: 10.1016/j.ihj.2025.03.009_bib21
  article-title: Machine learning methods improve prognostication, identify clinically distinct phenotypes, and detect heterogeneity in response to therapy in a large cohort of heart failure patients
  publication-title: J Am Heart Assoc
  doi: 10.1161/JAHA.117.008081
– ident: 10.1016/j.ihj.2025.03.009_bib12
– volume: 204
  start-page: 215
  year: 2023
  ident: 10.1016/j.ihj.2025.03.009_bib2
  article-title: Associations between coronary Artery calcification and left ventricular global longitudinal strain and diastolic parameters: the ELSA-Brasil study
  publication-title: Am J Cardiol
  doi: 10.1016/j.amjcard.2023.06.124
– volume: 41
  start-page: 422
  year: 2021
  ident: 10.1016/j.ihj.2025.03.009_bib18
  article-title: ECG paper Record digitization and diagnosis using deep learning
  publication-title: J Med Biol Eng
  doi: 10.1007/s40846-021-00632-0
– volume: 14
  start-page: 1904
  year: 2021
  ident: 10.1016/j.ihj.2025.03.009_bib8
  article-title: Machine learning of ECG waveforms to improve selection for testing for asymptomatic left ventricular dysfunction
  publication-title: JACC Cardiovasc Imaging
  doi: 10.1016/j.jcmg.2021.04.020
– volume: 76
  start-page: 930
  year: 2020
  ident: 10.1016/j.ihj.2025.03.009_bib7
  article-title: Machine learning assessment of left ventricular diastolic function based on electrocardiographic features
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2020.06.061
– volume: 5
  year: 2023
  ident: 10.1016/j.ihj.2025.03.009_bib19
  article-title: Image based deep learning in 12-lead ECG diagnosis
  publication-title: Front Artif Intell
  doi: 10.3389/frai.2022.1087370
– volume: 26
  year: 2021
  ident: 10.1016/j.ihj.2025.03.009_bib3
  article-title: Validation of electrocardiographic criteria for identifying left ventricular dysfunction in patients with previous myocardial infarction
  publication-title: Ann Noninvasive Electrocardiol
  doi: 10.1111/anec.12812
– volume: 17
  year: 2001
  ident: 10.1016/j.ihj.2025.03.009_bib10
  article-title: A fast algorithm for multilevel thresholding
  publication-title: J Inf Sci Eng
– volume: 12
  start-page: 455
  year: 2022
  ident: 10.1016/j.ihj.2025.03.009_bib16
  article-title: Artificial intelligence-enabled electrocardiography predicts left ventricular dysfunction and future cardiovascular outcomes: a retrospective analysis
  publication-title: J Personalized Med
  doi: 10.3390/jpm12030455
SSID ssj0025490
Score 2.361763
Snippet The capability to accurately predict the ejection fraction (EF) from an electrocardiogram (ECG) holds significant and valuable clinical implications. Various...
Introduction: The capability to accurately predict the ejection fraction (EF) from an electrocardiogram (ECG) holds significant and valuable clinical...
SourceID doaj
unpaywall
pubmedcentral
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Index Database
Publisher
StartPage 182
SubjectTerms Algorithms
Artificial intelligence
Echocardiography
Electrocardiography - methods
Female
Humans
Left ventricular dysfunction
Machine Learning
Male
Middle Aged
Neural Networks, Computer
Original
Predictive Value of Tests
Retrospective Studies
ROC Curve
Stroke Volume - physiology
Ventricular Dysfunction, Left - diagnosis
Ventricular Dysfunction, Left - physiopathology
Ventricular Function, Left - physiology
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pb9MwFLbQDsAF8ZtsDPnACRThxL-PY9qYEHBiUm-Wndhtqjaruk5o__2e7aRa0UQvXBPbsV9e7O_Fn7-H0EcuHK1CpcvQKAsBSlOVjnJSBhJoq6TVwSa2xS9xccm-T_jkXqqvyAnL8sDZcF-0JzQ462LozazVOlStdw3ADqpkw5J6KVF6DKaGUAuinnz4BHrBwGnH_czE7OpmcwgMa57VTfXOipSE-x9emP4mTT656Vf29o9dLO6tSOfP0bMBSuKTPIQX6JHvX6LHP4fN8ldo8sODn6YsRPjs9BvuljB3XGNAqXi1jqUi4xn7eSJj9Tis8xkHHKnwU7xMLEuPh7QSU2wX06t1t5ktr1-jy_Oz36cX5ZBIoWwAXm1gQiOuijtqJChiA5dae-vj38_KO9Eq0togayFbKbQNQjfCMRgna6zUQrWUvkEH_VXv3yFslbckaozxmrCmodp5y6PsXeC1lFwU6NNoTLPKehlmJJLNDVjeRMsbQg1YvkBfo7m3BaPUdboADmAGBzD7HKBA9fiyzHiaFOY_aKj715PZttIANTKE2FftbXaCbZchPOUQFFYFUjvusTOm3Tt9N0sy3lWEZrxmBfq89aT9Njv8HzY7Qk9jk5m4-R4dbNY3_hjA1cZ9SN_RHUbiIMc
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9MwGLagk4AL45uwgXzgBMpkx7ETH8e0MSGYOFCpnCzbsduUNqvaVAh-Pf5IqmWaGByT2En8-rX92O_jxwC8pUwRbDFPrS6lm6BonCpCUWqRJVVZSG5lYFtcsPNx_mlCJ51YtN8LM4jfBx5WPZu7aVxGoxYpvwv2GHWwewT2xhdfj7_Hnpb7RTEfMcgyTEKj6SOYN71jMAYFqf6bh6LrNMn722Ylf_2Ui8WVMehsP7K3NkG60FNPfhxtW3Wkf18Tdvyn4j0CDzskCo-j6zwGd0zzBNz70sXan4LJZ-PcPBxiBE9PPsJ66bqeDXQgF67WPpUnTEMzD1yuBtp13CIBPZN-CpeBpGlgdyrFFMrF9HJdt7Pl5hkYn51-OzlPu3MYUu3QWev6Q6SwD8ghWyJpacG5kcYvnmKjWFWiStoiY0VVMC4t45qp3Bkt17LgrKwIeQ5GzWVjXgIoSyORlyijGcq1JlwZSb1qnqVZUVCWgHd9zYhVlNsQPQ9tLpythLeVQEQ4WyXgg6-7XUKvlB1uOAuLruEJbhCxSiq_dJNLybnFlVHawVZSFjqnCcj6mhf9ZlTXfboX1X_7cr7L1CGViEBuy_YietTul93slro5JU5AOfC1QZmGT5p6FlTAsUd2NMsT8H7nlrfb7NV_pT4AD_xVJHgeglG73prXDoS16k3X_P4A_b8qLw
  priority: 102
  providerName: Unpaywall
Title Leveraging ECG images for predicting ejection fraction using machine learning algorithms
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0019483225000550
https://dx.doi.org/10.1016/j.ihj.2025.03.009
https://www.ncbi.nlm.nih.gov/pubmed/40158621
https://pubmed.ncbi.nlm.nih.gov/PMC12223524
https://doi.org/10.1016/j.ihj.2025.03.009
https://doaj.org/article/9e03fbab00934aa99f1debc932387c45
UnpaywallVersion publishedVersion
Volume 77
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2213-3763
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0025490
  issn: 0019-4832
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 2213-3763
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0025490
  issn: 0019-4832
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 2213-3763
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0025490
  issn: 0019-4832
  databaseCode: .~1
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 2213-3763
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0025490
  issn: 0019-4832
  databaseCode: DIK
  dateStart: 19530101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 2213-3763
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0025490
  issn: 0019-4832
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2213-3763
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0025490
  issn: 0019-4832
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 2213-3763
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0025490
  issn: 0019-4832
  databaseCode: AKRWK
  dateStart: 20121201
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2213-3763
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0025490
  issn: 0019-4832
  databaseCode: RPM
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZWiwRcEG_Co_KBEyisk9hxfFyqXVaIrfZApXKK7MRuU7Vple0KceG3M-M8RBBiJS6R4tjJeDwZz9jfjAl5K1KTRC5SoSsyDQ5KEYUmESx0zCVlJrVy2qMtZunFnH9eiMURmfaxMAir7HR_q9O9tu5KTjpunuyrCmN8wQH3AomGh_fbOZd4isGHnwPMA_2fNgwF6MHa_c6mx3hVqzW4iLFo85yq0dzkU_j_fYr6Ez5576be6x_f9Wbz29x0_pA86IxKetrS_Ygc2foxuXvZbZs_IYsvFiTWn0dEz6afaLUFLXJNwV6l-wZrIfaZ2rWHZdXUNW20A0VQ_JJuPd7S0u6AiSXVm-WuqQ6r7fVTMj8_-zq9CLsjFcICDK0DqDZmItxbYy5j2gmplNUW10Eja9IyY6V2Mk5lKVOlXaqK1HDoJy-0VGlWJskzclzvavuCUJ1ZzTDbmIgZL4pEGasFJsBzIpZSpAF51zMz37eZM_IeUrbOgfM5cj5nSQ6cD8hHZPdQEZNe-4Jds8y7Uc-VZYkz2uAqDNdaKReV1hRggSaZLLgISNwPVt7HlYImhBdV__oyHxqNBO-2Zs9bIRhIBkdVgHsYBSQbiceoT-MndbXyCb0jNNJEzAPyfpCk23n28v8of0Xu410L2nxNjg_NjX0DhtXBTPyfM_HLEnCdXV1OyJ357Or02y-xAyPX
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9wgEEZRKjW9VH3HfXLoqZUbbMA2x3aVdNtuckqkvSHAsOvVrnflbFT10t9eBj9UV1Uj9WrAhmE8zAffDAi95ZmmiUtE7EyhPEAxSawpJ7EjjpZFroRTgW1xkU2v2Nc5nx-gSR8LA7TKzva3Nj1Y6-7JSSfNk11VQYyvB-BBIcHxANx-h_E0BwT24efA8wAA1Mah-A5B9f5oM5C8quXKY8SUt4lOxWhxCjn8_75G_cmfPLqpd-rHd7Ve_7Y4nT1A9zuvEn9sO_4QHdj6Ebp73p2bP0bzmfUqGy4kwqeTz7jaeDNyjb3DincN1ALyM7arwMuqsWvacAcMrPgF3gTCpcXdDRMLrNaLbVPtl5vrJ-jq7PRyMo27OxVi4z2tvbdtRCdwuEZcQZTjuRBWWdgITazOyoKUyuVplpd5JpTLhMk08-NkRuUiK0pKn6LDelvbY4RVYRWBdGM8JcwYKrRVHDLgOZgFnkXoXS9MuWtTZ8ieU7aSXvISJC8JlV7yEfoE4h4qQtbr8GDbLGQ37VJYQp1WGrZhmFJCuKS02ngXlBa5YTxCaT9Zsg8s9abQv6j615fZ0Gikebc1e9YqwdBlj1S5x4dJhIqReozGNC6pq2XI6J2Al8ZTFqH3gybdLrPn_9fzN-hoenk-k7MvF99eoHtQ0jI4X6LDfXNjX3kva69fh7_oF5BgI0k
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9MwGLagk4AL45uwgXzgBMpkx7ETH8e0MSGYOFCpnCzbsduUNqvaVAh-Pf5IqmWaGByT2En8-rX92O_jxwC8pUwRbDFPrS6lm6BonCpCUWqRJVVZSG5lYFtcsPNx_mlCJ51YtN8LM4jfBx5WPZu7aVxGoxYpvwv2GHWwewT2xhdfj7_Hnpb7RTEfMcgyTEKj6SOYN71jMAYFqf6bh6LrNMn722Ylf_2Ui8WVMehsP7K3NkG60FNPfhxtW3Wkf18Tdvyn4j0CDzskCo-j6zwGd0zzBNz70sXan4LJZ-PcPBxiBE9PPsJ66bqeDXQgF67WPpUnTEMzD1yuBtp13CIBPZN-CpeBpGlgdyrFFMrF9HJdt7Pl5hkYn51-OzlPu3MYUu3QWev6Q6SwD8ghWyJpacG5kcYvnmKjWFWiStoiY0VVMC4t45qp3Bkt17LgrKwIeQ5GzWVjXgIoSyORlyijGcq1JlwZSb1qnqVZUVCWgHd9zYhVlNsQPQ9tLpythLeVQEQ4WyXgg6-7XUKvlB1uOAuLruEJbhCxSiq_dJNLybnFlVHawVZSFjqnCcj6mhf9ZlTXfboX1X_7cr7L1CGViEBuy_YietTul93slro5JU5AOfC1QZmGT5p6FlTAsUd2NMsT8H7nlrfb7NV_pT4AD_xVJHgeglG73prXDoS16k3X_P4A_b8qLw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Leveraging+ECG+images+for+predicting+ejection+fraction+using+machine+learning+algorithms&rft.jtitle=Indian+heart+journal&rft.au=Swamy%2C+Abhyuday+Kumara&rft.au=Rajagopal%2C+Vivek&rft.au=Krishnan%2C+Deepak&rft.au=Ghorai%2C+Paramita+Auddya&rft.date=2025-05-01&rft.pub=Elsevier%2C+a+division+of+RELX+India%2C+Pvt.+Ltd&rft.issn=0019-4832&rft.volume=77&rft.issue=3&rft.spage=182&rft.epage=187&rft_id=info:doi/10.1016%2Fj.ihj.2025.03.009&rft.externalDocID=S0019483225000550
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0019-4832&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0019-4832&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0019-4832&client=summon