Can language models be used for real-world urban-delivery route optimization?

Language models have contributed to breakthroughs in interdisciplinary research, such as protein design and molecular dynamics understanding. In this study, we reveal that beyond language, representations of other entities, such as human behaviors, that are mappable to learnable sequences can be lea...

Full description

Saved in:
Bibliographic Details
Published inInnovation (New York, NY) Vol. 4; no. 6; p. 100520
Main Authors Liu, Yang, Wu, Fanyou, Liu, Zhiyuan, Wang, Kai, Wang, Feiyue, Qu, Xiaobo
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 13.11.2023
Elsevier
Online AccessGet full text
ISSN2666-6758
2666-6758
DOI10.1016/j.xinn.2023.100520

Cover

Abstract Language models have contributed to breakthroughs in interdisciplinary research, such as protein design and molecular dynamics understanding. In this study, we reveal that beyond language, representations of other entities, such as human behaviors, that are mappable to learnable sequences can be learned by language models. One compelling example is the real-world delivery route optimization problem. We here propose a novel approach based on the language model to optimize delivery routes on the basis of drivers’ historical experiences. Although a broad range of optimization-based approaches have been designed to optimize delivery routes, they do not capture the implicit knowledge of complex delivery operating environments. The model we propose integrates this knowledge in the route optimization process by learning from driving behaviors in experienced drivers. A real-world delivery route that preserves drivers’ implicit behavioral patterns is first analogized to a sentence in natural language. Through unsupervised learning, we then learn the vector representations of words and infer the drivers’ delivery chains on the basis of the tailored chain-reaction-based algorithm. We also provide insights into the fusion of language models and operations research methods. In our approach, language models are applied to learn drivers’ delivery behaviors and infer new deliveries at the delivery zone level, while the classic traveling salesman problem (TSP) model is embedded into the hybrid framework for intra-zone optimization. Numerical experiments performed on real-world data from Amazon’s delivery service demonstrate that the proposed approach outperforms pure optimization, supporting the effectiveness, efficiency, and extensibility of our model. As a versatile approach, the proposed framework can easily be extended to various disciplines in which the data follow certain grammar rules. We anticipate that our work will serve as a stepping stone toward the understanding and application of language models in tackling interdisciplinary research problems. ▪ •Revealing that language models can learn human behavioral sequences.•Integrating the implicit knowledge of drivers in the route optimization process.•A novel algorithm to optimize delivery routes emulating real-world driving behaviors.•Broadening the scope of language models to diverse domains with certain grammar rules.
AbstractList Language models have contributed to breakthroughs in interdisciplinary research, such as protein design and molecular dynamics understanding. In this study, we reveal that beyond language, representations of other entities, such as human behaviors, that are mappable to learnable sequences can be learned by language models. One compelling example is the real-world delivery route optimization problem. We here propose a novel approach based on the language model to optimize delivery routes on the basis of drivers’ historical experiences. Although a broad range of optimization-based approaches have been designed to optimize delivery routes, they do not capture the implicit knowledge of complex delivery operating environments. The model we propose integrates this knowledge in the route optimization process by learning from driving behaviors in experienced drivers. A real-world delivery route that preserves drivers’ implicit behavioral patterns is first analogized to a sentence in natural language. Through unsupervised learning, we then learn the vector representations of words and infer the drivers’ delivery chains on the basis of the tailored chain-reaction-based algorithm. We also provide insights into the fusion of language models and operations research methods. In our approach, language models are applied to learn drivers’ delivery behaviors and infer new deliveries at the delivery zone level, while the classic traveling salesman problem (TSP) model is embedded into the hybrid framework for intra-zone optimization. Numerical experiments performed on real-world data from Amazon’s delivery service demonstrate that the proposed approach outperforms pure optimization, supporting the effectiveness, efficiency, and extensibility of our model. As a versatile approach, the proposed framework can easily be extended to various disciplines in which the data follow certain grammar rules. We anticipate that our work will serve as a stepping stone toward the understanding and application of language models in tackling interdisciplinary research problems.
Language models have contributed to breakthroughs in interdisciplinary research, such as protein design and molecular dynamics understanding. In this study, we reveal that beyond language, representations of other entities, such as human behaviors, that are mappable to learnable sequences can be learned by language models. One compelling example is the real-world delivery route optimization problem. We here propose a novel approach based on the language model to optimize delivery routes on the basis of drivers’ historical experiences. Although a broad range of optimization-based approaches have been designed to optimize delivery routes, they do not capture the implicit knowledge of complex delivery operating environments. The model we propose integrates this knowledge in the route optimization process by learning from driving behaviors in experienced drivers. A real-world delivery route that preserves drivers’ implicit behavioral patterns is first analogized to a sentence in natural language. Through unsupervised learning, we then learn the vector representations of words and infer the drivers’ delivery chains on the basis of the tailored chain-reaction-based algorithm. We also provide insights into the fusion of language models and operations research methods. In our approach, language models are applied to learn drivers’ delivery behaviors and infer new deliveries at the delivery zone level, while the classic traveling salesman problem (TSP) model is embedded into the hybrid framework for intra-zone optimization. Numerical experiments performed on real-world data from Amazon’s delivery service demonstrate that the proposed approach outperforms pure optimization, supporting the effectiveness, efficiency, and extensibility of our model. As a versatile approach, the proposed framework can easily be extended to various disciplines in which the data follow certain grammar rules. We anticipate that our work will serve as a stepping stone toward the understanding and application of language models in tackling interdisciplinary research problems. ▪ •Revealing that language models can learn human behavioral sequences.•Integrating the implicit knowledge of drivers in the route optimization process.•A novel algorithm to optimize delivery routes emulating real-world driving behaviors.•Broadening the scope of language models to diverse domains with certain grammar rules.
Language models have contributed to breakthroughs in interdisciplinary research, such as protein design and molecular dynamics understanding. In this study, we reveal that beyond language, representations of other entities, such as human behaviors, that are mappable to learnable sequences can be learned by language models. One compelling example is the real-world delivery route optimization problem. We here propose a novel approach based on the language model to optimize delivery routes on the basis of drivers’ historical experiences. Although a broad range of optimization-based approaches have been designed to optimize delivery routes, they do not capture the implicit knowledge of complex delivery operating environments. The model we propose integrates this knowledge in the route optimization process by learning from driving behaviors in experienced drivers. A real-world delivery route that preserves drivers’ implicit behavioral patterns is first analogized to a sentence in natural language. Through unsupervised learning, we then learn the vector representations of words and infer the drivers’ delivery chains on the basis of the tailored chain-reaction-based algorithm. We also provide insights into the fusion of language models and operations research methods. In our approach, language models are applied to learn drivers’ delivery behaviors and infer new deliveries at the delivery zone level, while the classic traveling salesman problem (TSP) model is embedded into the hybrid framework for intra-zone optimization. Numerical experiments performed on real-world data from Amazon’s delivery service demonstrate that the proposed approach outperforms pure optimization, supporting the effectiveness, efficiency, and extensibility of our model. As a versatile approach, the proposed framework can easily be extended to various disciplines in which the data follow certain grammar rules. We anticipate that our work will serve as a stepping stone toward the understanding and application of language models in tackling interdisciplinary research problems. • Revealing that language models can learn human behavioral sequences. • Integrating the implicit knowledge of drivers in the route optimization process. • A novel algorithm to optimize delivery routes emulating real-world driving behaviors. • Broadening the scope of language models to diverse domains with certain grammar rules.
Language models have contributed to breakthroughs in interdisciplinary research, such as protein design and molecular dynamics understanding. In this study, we reveal that beyond language, representations of other entities, such as human behaviors, that are mappable to learnable sequences can be learned by language models. One compelling example is the real-world delivery route optimization problem. We here propose a novel approach based on the language model to optimize delivery routes on the basis of drivers' historical experiences. Although a broad range of optimization-based approaches have been designed to optimize delivery routes, they do not capture the implicit knowledge of complex delivery operating environments. The model we propose integrates this knowledge in the route optimization process by learning from driving behaviors in experienced drivers. A real-world delivery route that preserves drivers' implicit behavioral patterns is first analogized to a sentence in natural language. Through unsupervised learning, we then learn the vector representations of words and infer the drivers' delivery chains on the basis of the tailored chain-reaction-based algorithm. We also provide insights into the fusion of language models and operations research methods. In our approach, language models are applied to learn drivers' delivery behaviors and infer new deliveries at the delivery zone level, while the classic traveling salesman problem (TSP) model is embedded into the hybrid framework for intra-zone optimization. Numerical experiments performed on real-world data from Amazon's delivery service demonstrate that the proposed approach outperforms pure optimization, supporting the effectiveness, efficiency, and extensibility of our model. As a versatile approach, the proposed framework can easily be extended to various disciplines in which the data follow certain grammar rules. We anticipate that our work will serve as a stepping stone toward the understanding and application of language models in tackling interdisciplinary research problems.Language models have contributed to breakthroughs in interdisciplinary research, such as protein design and molecular dynamics understanding. In this study, we reveal that beyond language, representations of other entities, such as human behaviors, that are mappable to learnable sequences can be learned by language models. One compelling example is the real-world delivery route optimization problem. We here propose a novel approach based on the language model to optimize delivery routes on the basis of drivers' historical experiences. Although a broad range of optimization-based approaches have been designed to optimize delivery routes, they do not capture the implicit knowledge of complex delivery operating environments. The model we propose integrates this knowledge in the route optimization process by learning from driving behaviors in experienced drivers. A real-world delivery route that preserves drivers' implicit behavioral patterns is first analogized to a sentence in natural language. Through unsupervised learning, we then learn the vector representations of words and infer the drivers' delivery chains on the basis of the tailored chain-reaction-based algorithm. We also provide insights into the fusion of language models and operations research methods. In our approach, language models are applied to learn drivers' delivery behaviors and infer new deliveries at the delivery zone level, while the classic traveling salesman problem (TSP) model is embedded into the hybrid framework for intra-zone optimization. Numerical experiments performed on real-world data from Amazon's delivery service demonstrate that the proposed approach outperforms pure optimization, supporting the effectiveness, efficiency, and extensibility of our model. As a versatile approach, the proposed framework can easily be extended to various disciplines in which the data follow certain grammar rules. We anticipate that our work will serve as a stepping stone toward the understanding and application of language models in tackling interdisciplinary research problems.
ArticleNumber 100520
Author Liu, Yang
Qu, Xiaobo
Wu, Fanyou
Wang, Feiyue
Wang, Kai
Liu, Zhiyuan
Author_xml – sequence: 1
  givenname: Yang
  surname: Liu
  fullname: Liu, Yang
  organization: State Key Laboratory of Intelligent Green Vehicle and Mobility, Tsinghua University, Beijing 100084, China
– sequence: 2
  givenname: Fanyou
  surname: Wu
  fullname: Wu, Fanyou
  organization: State Key Laboratory of Intelligent Green Vehicle and Mobility, Tsinghua University, Beijing 100084, China
– sequence: 3
  givenname: Zhiyuan
  surname: Liu
  fullname: Liu, Zhiyuan
  organization: Jiangsu Key Laboratory of Urban ITS, Jiangsu Province Collaborative Innovation Center of Modern Urban Traffic Technologies, School of Transportation, Southeast University, Nanjing 211189, China
– sequence: 4
  givenname: Kai
  surname: Wang
  fullname: Wang, Kai
  organization: School of Vehicle and Mobility, Tsinghua University, Beijing 100084, China
– sequence: 5
  givenname: Feiyue
  surname: Wang
  fullname: Wang, Feiyue
  organization: Institute of Automation, State Key Laboratory for Management and Control of Complex Systems, Chinese Academy of Sciences, Beijing 100190, China
– sequence: 6
  givenname: Xiaobo
  orcidid: 0000-0003-0973-3756
  surname: Qu
  fullname: Qu, Xiaobo
  email: xiaobo@tsinghua.edu.cn
  organization: School of Vehicle and Mobility, Tsinghua University, Beijing 100084, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37869471$$D View this record in MEDLINE/PubMed
BookMark eNqNUstu1DAUtVARfdAfYIGyZJPBdhLbkZAqNIJSqYgNrC3Hvh488tiDnUw7fD2eplQti4qVo5vz8D3Hp-goxAAIvSF4QTBh79eLWxfCgmLalAHuKH6BTihjrGa8E0ePvo_Rec5rjDHtCG0Je4WOGy5Y33Jygr4uVai8CqtJraDaRAM-VwNUUwZT2ZiqBMrXNzF5U01pUKEuCLeDtK9SnEao4nZ0G_dbjS6Gi9fopVU-w_n9eYZ-fP70ffmlvv52ebX8eF3rjtKx5qTHljNh2lYMmhOicCesYIYaTXnBKFxGvRo6AmborabE9qwh1mLaQwvNGbqadU1Ua7lNbqPSXkbl5N0gppVUaXTag1Ra6Z5r2vY9a60uOrRrrRIChkZw0RStZtaawlbtb5T3D4IEy0PWci0PWctD1nLOurAuZtZ2GjZgNIQxKf_kKk__BPdTruKu8DvByy5F4d29Qoq_Jsij3LiswZcyIE5ZUiGwoC1lB7O3j80eXP7WWABiBugUc05gpXbjXSXF2_nnF6H_UP9r-w8zqbwW2DlIMmsHQYNxCfRYWnDP0f8Ag3TZ0g
CitedBy_id crossref_primary_10_1109_TCYB_2024_3518697
crossref_primary_10_1109_TITS_2023_3346832
crossref_primary_10_1016_j_tra_2024_104264
crossref_primary_10_1016_j_tre_2024_103426
crossref_primary_10_1016_j_tre_2024_103503
crossref_primary_10_26599_JICV_2023_9210023
crossref_primary_10_26599_JICV_2023_9210022
crossref_primary_10_26599_JICV_2023_9210025
crossref_primary_10_26599_JICV_2023_9210024
crossref_primary_10_3934_era_2023346
crossref_primary_10_1016_j_physa_2024_129791
crossref_primary_10_26599_JICV_2023_9210029
crossref_primary_10_1109_TTE_2024_3401209
crossref_primary_10_1016_j_rtbm_2024_101126
crossref_primary_10_1111_mice_13134
crossref_primary_10_1016_j_eswa_2024_124138
crossref_primary_10_1016_j_jsr_2025_02_018
crossref_primary_10_26599_JICV_2023_9210021
crossref_primary_10_1007_s41965_024_00172_x
crossref_primary_10_1109_MITS_2023_3317081
crossref_primary_10_1111_mice_13179
crossref_primary_10_1016_j_tre_2023_103322
crossref_primary_10_1016_j_tre_2024_103656
crossref_primary_10_1007_s42524_024_0298_0
crossref_primary_10_1016_j_tre_2024_103815
crossref_primary_10_26599_JICV_2023_9210012
crossref_primary_10_3934_era_2024026
crossref_primary_10_1177_03611981241275561
crossref_primary_10_1016_j_trc_2024_104606
crossref_primary_10_1016_j_tre_2024_103881
crossref_primary_10_1016_j_trd_2025_104603
crossref_primary_10_1016_j_tre_2024_103565
crossref_primary_10_1016_j_tre_2024_103489
crossref_primary_10_1016_j_tre_2024_103644
crossref_primary_10_23919_CHAIN_2024_100003
crossref_primary_10_1016_j_trc_2024_104689
crossref_primary_10_3934_mbe_2024014
crossref_primary_10_1016_j_apenergy_2024_124548
crossref_primary_10_1080_19427867_2024_2305018
crossref_primary_10_1016_j_tre_2024_103606
crossref_primary_10_1109_TVT_2024_3373533
crossref_primary_10_1016_j_tre_2024_103607
crossref_primary_10_1016_j_eswa_2024_125053
crossref_primary_10_1109_TIV_2023_3332860
crossref_primary_10_26599_JICV_2023_9210047
crossref_primary_10_1016_j_tbs_2024_100943
crossref_primary_10_1109_TSMC_2024_3403859
crossref_primary_10_26599_JICV_2023_9210041
crossref_primary_10_1016_j_tra_2023_103949
crossref_primary_10_26599_JICV_2023_9210042
crossref_primary_10_1016_j_tre_2024_103795
crossref_primary_10_1016_j_tre_2024_103678
crossref_primary_10_1038_s41598_025_93179_y
crossref_primary_10_1016_j_tre_2024_103636
crossref_primary_10_1007_s42524_024_0297_1
crossref_primary_10_26599_JICV_2023_9210033
crossref_primary_10_26599_JICV_2023_9210036
crossref_primary_10_26599_JICV_2023_9210039
Cites_doi 10.1038/s42256-019-0036-1
10.1109/TIV.2023.3298903
10.1038/s41467-023-39868-6
10.1038/s43588-023-00399-1
10.1109/TITS.2021.3078229
10.1038/s41467-022-35692-6
10.1109/JAS.2022.105950
10.1038/s41467-020-18959-8
10.1126/science.153.3731.34
10.1038/s41467-020-16956-5
10.1109/JAS.2023.123744
10.1108/JICV-01-2022-0001
10.1016/j.ejor.2020.07.063
10.1038/s41467-020-18073-9
10.1038/s41467-022-32007-7
10.1038/s42256-022-00580-7
10.1038/s42256-022-00458-8
10.1038/s41467-022-29083-0
10.1016/j.trc.2021.103070
10.1038/s41593-020-0608-8
10.1016/j.commtr.2021.100010
10.1109/JAS.2021.1004275
10.1038/s41746-020-0267-x
10.1016/j.trb.2013.05.002
10.1038/s42256-022-00499-z
10.1038/s42256-023-00639-z
10.1109/TIV.2023.3246045
10.1038/s41587-023-01763-2
10.1287/trsc.2022.1173
10.1016/0191-2615(85)90003-7
10.1038/s42256-021-00418-8
10.1108/JICV-07-2021-0010
ContentType Journal Article
Copyright 2023 The Author(s)
2023 The Author(s).
2023 The Author(s) 2023
Copyright_xml – notice: 2023 The Author(s)
– notice: 2023 The Author(s).
– notice: 2023 The Author(s) 2023
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1016/j.xinn.2023.100520
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList


PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2666-6758
ExternalDocumentID oai_doaj_org_article_acac97c249964fcf96254fa88eb38783
10.1016/j.xinn.2023.100520
PMC10587631
37869471
10_1016_j_xinn_2023_100520
S2666675823001480
Genre Journal Article
GroupedDBID 6I.
AAEDW
AAFTH
AAXUO
AEXQZ
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
EBS
FDB
GROUPED_DOAJ
M41
M~E
OK1
ROL
RPM
0R~
AALRI
AAMRU
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AITUG
AKBMS
AKYEP
APXCP
CITATION
NPM
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c522t-7190f768d448bc711a058f86d2dc27c52a01a09ab51edb9fc21f9631ff029e4e3
IEDL.DBID DOA
ISSN 2666-6758
IngestDate Fri Oct 03 12:52:06 EDT 2025
Sun Oct 26 04:16:48 EDT 2025
Tue Sep 30 17:11:16 EDT 2025
Fri Jul 11 16:22:32 EDT 2025
Mon Jul 21 06:17:37 EDT 2025
Tue Jul 01 03:48:44 EDT 2025
Thu Apr 24 23:10:21 EDT 2025
Sat Oct 28 16:09:03 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License This is an open access article under the CC BY-NC-ND license.
2023 The Author(s).
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c522t-7190f768d448bc711a058f86d2dc27c52a01a09ab51edb9fc21f9631ff029e4e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0973-3756
OpenAccessLink https://doaj.org/article/acac97c249964fcf96254fa88eb38783
PMID 37869471
PQID 2880824260
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_acac97c249964fcf96254fa88eb38783
unpaywall_primary_10_1016_j_xinn_2023_100520
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10587631
proquest_miscellaneous_2880824260
pubmed_primary_37869471
crossref_citationtrail_10_1016_j_xinn_2023_100520
crossref_primary_10_1016_j_xinn_2023_100520
elsevier_sciencedirect_doi_10_1016_j_xinn_2023_100520
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-11-13
PublicationDateYYYYMMDD 2023-11-13
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-13
  day: 13
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Innovation (New York, NY)
PublicationTitleAlternate Innovation (Camb)
PublicationYear 2023
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Brandes, Goldman, Wang (bib29) 2023
Ross, Belgodere, Chenthamarakshan (bib24) 2022; 4
Bengio, Ducharme, Vincent (bib32) 2003; 3
Mikolov, Sutskever, Chen (bib35) 2013; 26
Liu, Lyu, Liu (bib11) 2021; 126
Makin, Moses, Chang (bib4) 2020; 23
Jiang, Fang, Wang (bib27) 2023; 4
Ortuzar (bib42) 2021; 1
Mikolov, Chen, Corrado (bib34) 2013
Manica, Mathis, Cadow (bib30) 2019; 1
Huang, Li (bib9) 2023; 4
Ferruz, Höcker (bib8) 2022; 4
Olovsson, Svensson, Wu (bib47) 2022; 2
Yin, Li, Mourelatos (bib16) 2023
Atz, Grisoni, Schneider (bib19) 2021; 3
Bengio, Lodi, Prouvost (bib31) 2021; 290
Markov, Markov, Levin (bib33) 1960
Hie, Shanker, Xu (bib28) 2023
Laidler, Keith (bib38) 1965
Lin, Hu, Chen (bib45) 2023; 8
HGomaa, A Fahmy (bib37) 2013; 68
Merchán, Arora, Pachon (bib41) 2022
Sutton, Barto (bib40) 2018
Webb, Holyoak, Lu (bib7) 2023
Yue, Fan (bib13) 2022; 9
Kuenneth, Ramprasad (bib25) 2023; 14
Ferruz, Schmidt, Höcker (bib26) 2022; 13
Tsai, Kuo, Tiwary (bib20) 2020; 11
Bellman (bib39) 1966; 153
Schramowski, Turan, Andersen (bib5) 2022; 4
Zhang, Wang, Meng (bib12) 2022; 9
Zhang, Zhao, Xu (bib15) 2021; 1
Ben-Akiva, Lerman (bib36) 1985
Lin, Liu, Li (bib43) 2023; 10
Zhao, Ma, Yang (bib14) 2022; 5
Xu, Li, Wang (bib46) 2022; 5
Liao, Arentze, Timmermans (bib17) 2013; 55
Moret, Pachon Angona, Cotos (bib23) 2023; 14
Easa (bib18) 1985; 19
Ive, Viani, Kam (bib6) 2020; 3
Lu, Tian, Cheng (bib2) 2022; 13
Sun, Hu, Zhang (bib44) 2023; 8
Hovsepyan, Olasagasti, Giraud (bib1) 2020; 11
Pan (bib21) 2023; 3
Born, Manica (bib22) 2023; 5
Popel, Tomkova, Tomek (bib3) 2020; 11
Liu, Wu, Lyu (bib10) 2022; 23
Ortúzar (10.1016/j.xinn.2023.100520_bib42) 2021; 1
Mikolov (10.1016/j.xinn.2023.100520_bib34) 2013
Ben-Akiva (10.1016/j.xinn.2023.100520_bib36) 1985
Laidler (10.1016/j.xinn.2023.100520_bib38) 1965
Olovsson (10.1016/j.xinn.2023.100520_bib47) 2022; 2
Liu (10.1016/j.xinn.2023.100520_bib11) 2021; 126
Ross (10.1016/j.xinn.2023.100520_bib24) 2022; 4
Manica (10.1016/j.xinn.2023.100520_bib30) 2019; 1
Lin (10.1016/j.xinn.2023.100520_bib43) 2023; 10
Makin (10.1016/j.xinn.2023.100520_bib4) 2020; 23
Ferruz (10.1016/j.xinn.2023.100520_bib8) 2022; 4
Zhao (10.1016/j.xinn.2023.100520_bib14) 2022; 5
Jiang (10.1016/j.xinn.2023.100520_bib27) 2023; 4
Popel (10.1016/j.xinn.2023.100520_bib3) 2020; 11
Liu (10.1016/j.xinn.2023.100520_bib10) 2022; 23
Tsai (10.1016/j.xinn.2023.100520_bib20) 2020; 11
Zhang (10.1016/j.xinn.2023.100520_bib12) 2022; 9
Bellman (10.1016/j.xinn.2023.100520_bib39) 1966; 153
Kuenneth (10.1016/j.xinn.2023.100520_bib25) 2023; 14
Bengio (10.1016/j.xinn.2023.100520_bib31) 2021; 290
Liao (10.1016/j.xinn.2023.100520_bib17) 2013; 55
Moret (10.1016/j.xinn.2023.100520_bib23) 2023; 14
Pan (10.1016/j.xinn.2023.100520_bib21) 2023; 3
Huang (10.1016/j.xinn.2023.100520_bib9) 2023; 4
Markov (10.1016/j.xinn.2023.100520_bib33) 1960
Mikolov (10.1016/j.xinn.2023.100520_bib35) 2013; 26
Yin (10.1016/j.xinn.2023.100520_bib16) 2023
Sun (10.1016/j.xinn.2023.100520_bib44) 2023; 8
Sutton (10.1016/j.xinn.2023.100520_bib40) 2018
Lin (10.1016/j.xinn.2023.100520_bib45) 2023; 8
Brandes (10.1016/j.xinn.2023.100520_bib29) 2023
Born (10.1016/j.xinn.2023.100520_bib22) 2023; 5
Ive (10.1016/j.xinn.2023.100520_bib6) 2020; 3
Easa (10.1016/j.xinn.2023.100520_bib18) 1985; 19
Ferruz (10.1016/j.xinn.2023.100520_bib26) 2022; 13
Hie (10.1016/j.xinn.2023.100520_bib28) 2023
Bengio (10.1016/j.xinn.2023.100520_bib32) 2003; 3
Hovsepyan (10.1016/j.xinn.2023.100520_bib1) 2020; 11
Zhang (10.1016/j.xinn.2023.100520_bib15) 2021; 1
Xu (10.1016/j.xinn.2023.100520_bib46) 2022; 5
Webb (10.1016/j.xinn.2023.100520_bib7) 2023
Yue (10.1016/j.xinn.2023.100520_bib13) 2022; 9
Merchán (10.1016/j.xinn.2023.100520_bib41) 2022
Lu (10.1016/j.xinn.2023.100520_bib2) 2022; 13
Schramowski (10.1016/j.xinn.2023.100520_bib5) 2022; 4
Atz (10.1016/j.xinn.2023.100520_bib19) 2021; 3
HGomaa (10.1016/j.xinn.2023.100520_bib37) 2013; 68
References_xml – volume: 26
  year: 2013
  ident: bib35
  article-title: Distributed representations of words and phrases and their compositionality
  publication-title: NeurIPS
– year: 2022
  ident: bib41
  article-title: 2021 Amazon last mile routing research challenge: Data set
  publication-title: Transport. Sci.
– volume: 1
  start-page: e100010
  year: 2021
  ident: bib42
  article-title: Future transportation: Sustainability, complexity and individualization of choices
  publication-title: Commun. Trans. Res.
– volume: 4
  year: 2023
  ident: bib9
  article-title: Current progress, challenges, and future perspectives of language models for protein representation and protein design
  publication-title: Innovation
– volume: 13
  start-page: 4348
  year: 2022
  ident: bib26
  article-title: ProtGPT2 is a deep unsupervised language model for protein design
  publication-title: Nat. Commun.
– volume: 1
  year: 2021
  ident: bib15
  article-title: Optimal operating strategy of short turning lines for the battery electric bus system
  publication-title: Commun. Trans. Res.
– year: 2023
  ident: bib28
  article-title: Efficient evolution of human antibodies from general protein language models
  publication-title: Nat. Biotechnol.
– start-page: 1
  year: 2023
  end-page: 16
  ident: bib7
  article-title: Emergent analogical reasoning in large language models
  publication-title: Nat. Human Behav.
– year: 1960
  ident: bib33
  article-title: The Theory of Algorithms
– volume: 8
  start-page: 3767
  year: 2023
  end-page: 3770
  ident: bib45
  article-title: City 5.0: Towards Spatial Symbiotic Intelligence via DAOs and Parallel Systems
  publication-title: IEEE Trans. Intell. Veh.
– volume: 4
  start-page: 521
  year: 2022
  end-page: 532
  ident: bib8
  article-title: Controllable protein design with language models
  publication-title: Nat. Mach. Intell.
– volume: 290
  start-page: 405
  year: 2021
  end-page: 421
  ident: bib31
  article-title: Machine learning for combinatorial optimization: a methodological tour d’horizon
  publication-title: Eur. J. Oper. Res.
– volume: 14
  start-page: 4099
  year: 2023
  ident: bib25
  article-title: polyBERT: a chemical language model to enable fully machine-driven ultrafast polymer informatics
  publication-title: Nat. Commun.
– volume: 23
  start-page: 8346
  year: 2022
  end-page: 8355
  ident: bib10
  article-title: Behavior2vector: Embedding users’ personalized travel behavior to Vector
  publication-title: IEEE Trans. Intell. Transport. Syst.
– volume: 3
  start-page: 1023
  year: 2021
  end-page: 1032
  ident: bib19
  article-title: Geometric deep learning on molecular representations
  publication-title: Nat. Mach. Intell.
– volume: 4
  start-page: 1256
  year: 2022
  end-page: 1264
  ident: bib24
  article-title: Large-scale chemical language representations capture molecular structure and properties
  publication-title: Nat. Mach. Intell.
– year: 2018
  ident: bib40
  article-title: Reinforcement Learning: An Introduction
– volume: 3
  start-page: 5
  year: 2023
  ident: bib21
  article-title: Large language model for molecular chemistry
  publication-title: Nat. Comput. Sci.
– volume: 23
  start-page: 575
  year: 2020
  end-page: 582
  ident: bib4
  article-title: Machine translation of cortical activity to text with an encoder–decoder framework
  publication-title: Nat. Neurosci.
– volume: 4
  year: 2023
  ident: bib27
  article-title: Deciphering “the language of nature”: A transformer-based language model for deleterious mutations in proteins
  publication-title: Innovation
– start-page: 1
  year: 2023
  end-page: 14
  ident: bib16
  article-title: Reliable Global Path Planning of Off-Road Autonomous Ground Vehicles Under Uncertain Terrain Conditions
  publication-title: IEEE Trans. Intell. Veh.
– volume: 10
  start-page: 1781
  year: 2023
  end-page: 1796
  ident: bib43
  article-title: How generative adversarial networks promote the development of intelligent transportation systems: A survey
  publication-title: IEEE/CAA J. Autom. Sinica
– volume: 8
  start-page: 1017
  year: 2023
  end-page: 1020
  ident: bib44
  article-title: A parallel emission regulatory framework for intelligent transportation systems and smart cities
  publication-title: IEEE Trans. Intell. Veh.
– year: 1965
  ident: bib38
  article-title: Chemical Kinetics
– volume: 4
  start-page: 258
  year: 2022
  end-page: 268
  ident: bib5
  article-title: Large pre-trained language models contain human-like biases of what is right and wrong to do
  publication-title: Nat. Mach. Intell.
– volume: 3
  start-page: 69
  year: 2020
  ident: bib6
  article-title: Generation and evaluation of artificial mental health records for natural language processing
  publication-title: NPJ Digit. Med.
– volume: 11
  start-page: 4381
  year: 2020
  ident: bib3
  article-title: Transforming machine translation: a deep learning system reaches news translation quality comparable to human professionals
  publication-title: Nat. Commun.
– volume: 13
  start-page: 1401
  year: 2022
  ident: bib2
  article-title: Decoding lip language using triboelectric sensors with deep learning
  publication-title: Nat. Commun.
– volume: 153
  start-page: 34
  year: 1966
  end-page: 37
  ident: bib39
  article-title: Dynamic programming
  publication-title: Science
– volume: 2
  year: 2022
  ident: bib47
  article-title: Future connected vehicles: Communications demands, privacy and cyber-security
  publication-title: Commun. Trans. Res.
– volume: 9
  start-page: 64
  year: 2022
  end-page: 74
  ident: bib12
  article-title: Generative adversarial network based heuristics for sampling-based path planning
  publication-title: IEEE/CAA J. Autom. Sinica
– volume: 126
  year: 2021
  ident: bib11
  article-title: Exploring a large-scale multi-modal transportation recommendation system
  publication-title: Transport. Res. C Emerg. Technol.
– year: 2013
  ident: bib34
  article-title: Efficient estimation of word representations in vector space
  publication-title: arXiv
– volume: 5
  start-page: 432
  year: 2023
  end-page: 444
  ident: bib22
  article-title: Regression Transformer enables concurrent sequence regression and generation for molecular language modelling
  publication-title: Nat. Mach. Intell.
– volume: 68
  start-page: 13
  year: 2013
  end-page: 18
  ident: bib37
  article-title: A survey of text similarity approaches
  publication-title: Int. J. Comput. Appl.
– volume: 5
  start-page: 250
  year: 2022
  end-page: 259
  ident: bib14
  article-title: Global path planning of unmanned vehicle based on fusion of A∗ algorithm and Voronoi field
  publication-title: J. intell. connect. veh.
– year: 1985
  ident: bib36
  article-title: Discrete Choice Analysis: Theory and Application to Travel Demand
– start-page: 1
  year: 2023
  end-page: 11
  ident: bib29
  article-title: Genome-wide prediction of disease variant effects with a deep protein language model
  publication-title: Nat. Genet.
– volume: 1
  start-page: 181
  year: 2019
  end-page: 190
  ident: bib30
  article-title: Context-specific interaction networks from vector representation of words
  publication-title: Nat. Mach. Intell.
– volume: 11
  start-page: 3117
  year: 2020
  ident: bib1
  article-title: Combining predictive coding and neural oscillations enables online syllable recognition in natural speech
  publication-title: Nat. Commun.
– volume: 19
  start-page: 197
  year: 1985
  end-page: 208
  ident: bib18
  article-title: Shortest route algorithm with movement prohibitions
  publication-title: Transp. Res. Part B Methodol.
– volume: 14
  start-page: 114
  year: 2023
  ident: bib23
  article-title: Leveraging molecular structure and bioactivity with chemical language models for
  publication-title: Nat. Commun.
– volume: 3
  start-page: 1137
  year: 2003
  end-page: 1155
  ident: bib32
  article-title: A Neural Probabilistic Language Model
  publication-title: J. Mach. Learn. Res.
– volume: 5
  start-page: 1
  year: 2022
  end-page: 7
  ident: bib46
  article-title: The status, challenges, and trends: an interpretation of technology roadmap of intelligent and connected vehicles in China (2020)
  publication-title: J. intell. connect. veh.
– volume: 55
  start-page: 41
  year: 2013
  end-page: 58
  ident: bib17
  article-title: Incorporating space–time constraints and activity-travel time profiles in a multi-state supernetwork approach to individual activity-travel scheduling
  publication-title: Transp. Res. Part B Methodol.
– volume: 11
  start-page: 5115
  year: 2020
  ident: bib20
  article-title: Learning molecular dynamics with simple language model built upon long short-term memory neural network
  publication-title: Nat. Commun.
– volume: 9
  start-page: 2005
  year: 2022
  end-page: 2019
  ident: bib13
  article-title: Dynamic scheduling and path planning of automated guided vehicles in automatic container terminal
  publication-title: IEEE/CAA J. Autom. Sinica
– volume: 1
  start-page: 181
  year: 2019
  ident: 10.1016/j.xinn.2023.100520_bib30
  article-title: Context-specific interaction networks from vector representation of words
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-019-0036-1
– volume: 8
  start-page: 3767
  year: 2023
  ident: 10.1016/j.xinn.2023.100520_bib45
  article-title: City 5.0: Towards Spatial Symbiotic Intelligence via DAOs and Parallel Systems
  publication-title: IEEE Trans. Intell. Veh.
  doi: 10.1109/TIV.2023.3298903
– volume: 14
  start-page: 4099
  year: 2023
  ident: 10.1016/j.xinn.2023.100520_bib25
  article-title: polyBERT: a chemical language model to enable fully machine-driven ultrafast polymer informatics
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-39868-6
– volume: 3
  start-page: 5
  year: 2023
  ident: 10.1016/j.xinn.2023.100520_bib21
  article-title: Large language model for molecular chemistry
  publication-title: Nat. Comput. Sci.
  doi: 10.1038/s43588-023-00399-1
– volume: 23
  start-page: 8346
  year: 2022
  ident: 10.1016/j.xinn.2023.100520_bib10
  article-title: Behavior2vector: Embedding users’ personalized travel behavior to Vector
  publication-title: IEEE Trans. Intell. Transport. Syst.
  doi: 10.1109/TITS.2021.3078229
– volume: 14
  start-page: 114
  year: 2023
  ident: 10.1016/j.xinn.2023.100520_bib23
  article-title: Leveraging molecular structure and bioactivity with chemical language models for de novo drug design
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-35692-6
– volume: 9
  start-page: 2005
  year: 2022
  ident: 10.1016/j.xinn.2023.100520_bib13
  article-title: Dynamic scheduling and path planning of automated guided vehicles in automatic container terminal
  publication-title: IEEE/CAA J. Autom. Sinica
  doi: 10.1109/JAS.2022.105950
– year: 2013
  ident: 10.1016/j.xinn.2023.100520_bib34
  article-title: Efficient estimation of word representations in vector space
  publication-title: arXiv
– year: 1960
  ident: 10.1016/j.xinn.2023.100520_bib33
– volume: 11
  start-page: 5115
  year: 2020
  ident: 10.1016/j.xinn.2023.100520_bib20
  article-title: Learning molecular dynamics with simple language model built upon long short-term memory neural network
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-18959-8
– volume: 153
  start-page: 34
  year: 1966
  ident: 10.1016/j.xinn.2023.100520_bib39
  article-title: Dynamic programming
  publication-title: Science
  doi: 10.1126/science.153.3731.34
– volume: 11
  start-page: 3117
  year: 2020
  ident: 10.1016/j.xinn.2023.100520_bib1
  article-title: Combining predictive coding and neural oscillations enables online syllable recognition in natural speech
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-16956-5
– volume: 4
  year: 2023
  ident: 10.1016/j.xinn.2023.100520_bib9
  article-title: Current progress, challenges, and future perspectives of language models for protein representation and protein design
  publication-title: Innovation
– start-page: 1
  year: 2023
  ident: 10.1016/j.xinn.2023.100520_bib16
  article-title: Reliable Global Path Planning of Off-Road Autonomous Ground Vehicles Under Uncertain Terrain Conditions
  publication-title: IEEE Trans. Intell. Veh.
– year: 1985
  ident: 10.1016/j.xinn.2023.100520_bib36
– volume: 10
  start-page: 1781
  year: 2023
  ident: 10.1016/j.xinn.2023.100520_bib43
  article-title: How generative adversarial networks promote the development of intelligent transportation systems: A survey
  publication-title: IEEE/CAA J. Autom. Sinica
  doi: 10.1109/JAS.2023.123744
– volume: 5
  start-page: 250
  year: 2022
  ident: 10.1016/j.xinn.2023.100520_bib14
  article-title: Global path planning of unmanned vehicle based on fusion of A∗ algorithm and Voronoi field
  publication-title: J. intell. connect. veh.
  doi: 10.1108/JICV-01-2022-0001
– volume: 290
  start-page: 405
  year: 2021
  ident: 10.1016/j.xinn.2023.100520_bib31
  article-title: Machine learning for combinatorial optimization: a methodological tour d’horizon
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2020.07.063
– volume: 11
  start-page: 4381
  year: 2020
  ident: 10.1016/j.xinn.2023.100520_bib3
  article-title: Transforming machine translation: a deep learning system reaches news translation quality comparable to human professionals
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-18073-9
– start-page: 1
  year: 2023
  ident: 10.1016/j.xinn.2023.100520_bib29
  article-title: Genome-wide prediction of disease variant effects with a deep protein language model
  publication-title: Nat. Genet.
– volume: 13
  start-page: 4348
  year: 2022
  ident: 10.1016/j.xinn.2023.100520_bib26
  article-title: ProtGPT2 is a deep unsupervised language model for protein design
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-32007-7
– volume: 4
  start-page: 1256
  year: 2022
  ident: 10.1016/j.xinn.2023.100520_bib24
  article-title: Large-scale chemical language representations capture molecular structure and properties
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-022-00580-7
– volume: 4
  start-page: 258
  year: 2022
  ident: 10.1016/j.xinn.2023.100520_bib5
  article-title: Large pre-trained language models contain human-like biases of what is right and wrong to do
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-022-00458-8
– volume: 1
  year: 2021
  ident: 10.1016/j.xinn.2023.100520_bib15
  article-title: Optimal operating strategy of short turning lines for the battery electric bus system
  publication-title: Commun. Trans. Res.
– volume: 13
  start-page: 1401
  year: 2022
  ident: 10.1016/j.xinn.2023.100520_bib2
  article-title: Decoding lip language using triboelectric sensors with deep learning
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-29083-0
– volume: 126
  year: 2021
  ident: 10.1016/j.xinn.2023.100520_bib11
  article-title: Exploring a large-scale multi-modal transportation recommendation system
  publication-title: Transport. Res. C Emerg. Technol.
  doi: 10.1016/j.trc.2021.103070
– year: 2018
  ident: 10.1016/j.xinn.2023.100520_bib40
– volume: 23
  start-page: 575
  year: 2020
  ident: 10.1016/j.xinn.2023.100520_bib4
  article-title: Machine translation of cortical activity to text with an encoder–decoder framework
  publication-title: Nat. Neurosci.
  doi: 10.1038/s41593-020-0608-8
– volume: 1
  start-page: e100010
  year: 2021
  ident: 10.1016/j.xinn.2023.100520_bib42
  article-title: Future transportation: Sustainability, complexity and individualization of choices
  publication-title: Commun. Trans. Res.
  doi: 10.1016/j.commtr.2021.100010
– volume: 9
  start-page: 64
  year: 2022
  ident: 10.1016/j.xinn.2023.100520_bib12
  article-title: Generative adversarial network based heuristics for sampling-based path planning
  publication-title: IEEE/CAA J. Autom. Sinica
  doi: 10.1109/JAS.2021.1004275
– volume: 4
  year: 2023
  ident: 10.1016/j.xinn.2023.100520_bib27
  article-title: Deciphering “the language of nature”: A transformer-based language model for deleterious mutations in proteins
  publication-title: Innovation
– volume: 26
  year: 2013
  ident: 10.1016/j.xinn.2023.100520_bib35
  article-title: Distributed representations of words and phrases and their compositionality
  publication-title: NeurIPS
– year: 1965
  ident: 10.1016/j.xinn.2023.100520_bib38
– volume: 3
  start-page: 69
  year: 2020
  ident: 10.1016/j.xinn.2023.100520_bib6
  article-title: Generation and evaluation of artificial mental health records for natural language processing
  publication-title: NPJ Digit. Med.
  doi: 10.1038/s41746-020-0267-x
– volume: 55
  start-page: 41
  year: 2013
  ident: 10.1016/j.xinn.2023.100520_bib17
  article-title: Incorporating space–time constraints and activity-travel time profiles in a multi-state supernetwork approach to individual activity-travel scheduling
  publication-title: Transp. Res. Part B Methodol.
  doi: 10.1016/j.trb.2013.05.002
– start-page: 1
  year: 2023
  ident: 10.1016/j.xinn.2023.100520_bib7
  article-title: Emergent analogical reasoning in large language models
  publication-title: Nat. Human Behav.
– volume: 4
  start-page: 521
  year: 2022
  ident: 10.1016/j.xinn.2023.100520_bib8
  article-title: Controllable protein design with language models
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-022-00499-z
– volume: 5
  start-page: 432
  year: 2023
  ident: 10.1016/j.xinn.2023.100520_bib22
  article-title: Regression Transformer enables concurrent sequence regression and generation for molecular language modelling
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-023-00639-z
– volume: 8
  start-page: 1017
  year: 2023
  ident: 10.1016/j.xinn.2023.100520_bib44
  article-title: A parallel emission regulatory framework for intelligent transportation systems and smart cities
  publication-title: IEEE Trans. Intell. Veh.
  doi: 10.1109/TIV.2023.3246045
– volume: 68
  start-page: 13
  year: 2013
  ident: 10.1016/j.xinn.2023.100520_bib37
  article-title: A survey of text similarity approaches
  publication-title: Int. J. Comput. Appl.
– year: 2023
  ident: 10.1016/j.xinn.2023.100520_bib28
  article-title: Efficient evolution of human antibodies from general protein language models
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-023-01763-2
– year: 2022
  ident: 10.1016/j.xinn.2023.100520_bib41
  article-title: 2021 Amazon last mile routing research challenge: Data set
  publication-title: Transport. Sci.
  doi: 10.1287/trsc.2022.1173
– volume: 2
  year: 2022
  ident: 10.1016/j.xinn.2023.100520_bib47
  article-title: Future connected vehicles: Communications demands, privacy and cyber-security
  publication-title: Commun. Trans. Res.
– volume: 3
  start-page: 1137
  year: 2003
  ident: 10.1016/j.xinn.2023.100520_bib32
  article-title: A Neural Probabilistic Language Model
  publication-title: J. Mach. Learn. Res.
– volume: 19
  start-page: 197
  year: 1985
  ident: 10.1016/j.xinn.2023.100520_bib18
  article-title: Shortest route algorithm with movement prohibitions
  publication-title: Transp. Res. Part B Methodol.
  doi: 10.1016/0191-2615(85)90003-7
– volume: 3
  start-page: 1023
  year: 2021
  ident: 10.1016/j.xinn.2023.100520_bib19
  article-title: Geometric deep learning on molecular representations
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-021-00418-8
– volume: 5
  start-page: 1
  year: 2022
  ident: 10.1016/j.xinn.2023.100520_bib46
  article-title: The status, challenges, and trends: an interpretation of technology roadmap of intelligent and connected vehicles in China (2020)
  publication-title: J. intell. connect. veh.
  doi: 10.1108/JICV-07-2021-0010
SSID ssj0002512416
Score 2.5943735
Snippet Language models have contributed to breakthroughs in interdisciplinary research, such as protein design and molecular dynamics understanding. In this study, we...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 100520
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELXQ9gAXaPlcCpWROIAg1caJ4_iESkVVIVFxYKVysmzHVhcWb7VJBOXXM5M4K9KiqhyTjJPYnonfxDNvCHnpqtxxgKqJKPQsyTGJS3OtE5FLX2jHUme7aIuT4niefzzlp5EmB3NhRvv3XRzWr0VAnlKW4YY-Z-CebxUccPeEbM1PPh98xepxgMETRL4xK-bfDUcrT0fQP1qArgLMq3GSt9twri9-6uXyr0Xo6F5fzajuuAsx9uT7ftuYffv7ErPjzfq3Te5GLEoPeuXZIbdcuE92orXX9FWkpH79gHw61IEOvzZpVz2npsbRtnYVBdhLAXouk459lbZro0MCEhjxcUHXq7ZxdAVfph8x5fPdQzI_-vDl8DiJhRgSC_CsSQSgBg9-SQW-nLEiTfWMl74sKlZZJkBGz-CU1IanrjLSW5Z6MOzU-xmTLnfZIzIJq-CeEMrA_ZKFyzk3PneCGS6lyFzKhbfojk5JOkySspGlHItlLNUQjvZN4YgpHDHVj9iUvNm0Oe85Oq6Vfo9zv5FEfu3uBEyLiuaqtNVWCgu-qSxyb6E34Eh7XZbOZKUosynhg-aoCFV6CAK3Wlz78BeDmimwY9yc0cGt2lox-JCWiJdA5nGvdptXzERZSEARU1KOFHLUh_GVsDjruMIBPiPnIDR9u9HdGwzS0_8T3yV38AhzNNPsGZk069Y9B7DWmL1opX8AmxY45g
  priority: 102
  providerName: Unpaywall
Title Can language models be used for real-world urban-delivery route optimization?
URI https://dx.doi.org/10.1016/j.xinn.2023.100520
https://www.ncbi.nlm.nih.gov/pubmed/37869471
https://www.proquest.com/docview/2880824260
https://pubmed.ncbi.nlm.nih.gov/PMC10587631
https://doi.org/10.1016/j.xinn.2023.100520
https://doaj.org/article/acac97c249964fcf96254fa88eb38783
UnpaywallVersion publishedVersion
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2666-6758
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002512416
  issn: 2666-6758
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2666-6758
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002512416
  issn: 2666-6758
  databaseCode: M~E
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2666-6758
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002512416
  issn: 2666-6758
  databaseCode: RPM
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELbQcoALYnmWR2UkDiCISBw7tk9oWbFaIbHiQKXlZDmOLYqKu2obwf57ZhynarXSwoFrMnnNjD3fOONvCHnpO-4FQNVCNrYsOG7issLaQnIdGutZ5V2qtjhrTmf807k432n1hTVhAz3woLh31lmnpYMsQTc8uKABsPNglYIsUEmVeD5LpXeSKZyDMWoD1Mi7ZIaCrt_ziISnrMbKAIENvnciUSLs3wtIVwHn1brJW328sJe_7GKxE5RO7pI7GU3So-ErDskNH--Rwzxe1_RVJpV-fZ98PraRjouTNPW_WdPW037tOwrAlQJ4XBSJP5X2q9bGAiSwZuOSrpb9xtMlzC0_86bN9w_I7OTj1-PTIrdSKBwArE0hIe4HyCw6yMZaJ6vKlkIF1XSsc0yCjC3hkLatqHzX6uBYBZquqxBKpj339UNyEJfRPyaUQQKlG8-FaAP3krVCa1n7SsjgMKGckGpUq3GZZxzbXSzMWFD2w6ApDJrCDKaYkDfbay4Glo1rpT-gtbaSyJCdDoDfmOw35m9-MyFitLXJYGMAEXCr-bUPfzE6hoGRiL9XbPTLfm0YTIUKEQ_IPBocZfuKtVSNBhwwIWrPhfa-Yf9MnH9PbN8AgJE1EC59u_W2f1DSk_-hpKfkNt4S915W9TNysFn1_jmAsE07TeNtmlbHpuTm7OzL0bc_aiwxUw
linkProvider Directory of Open Access Journals
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELXQ9gAXaPlcCpWROIAg1caJ4_iESkVVIVFxYKVysmzHVhcWb7VJBOXXM5M4K9KiqhyTjJPYnonfxDNvCHnpqtxxgKqJKPQsyTGJS3OtE5FLX2jHUme7aIuT4niefzzlp5EmB3NhRvv3XRzWr0VAnlKW4YY-Z-CebxUccPeEbM1PPh98xepxgMETRL4xK-bfDUcrT0fQP1qArgLMq3GSt9twri9-6uXyr0Xo6F5fzajuuAsx9uT7ftuYffv7ErPjzfq3Te5GLEoPeuXZIbdcuE92orXX9FWkpH79gHw61IEOvzZpVz2npsbRtnYVBdhLAXouk459lbZro0MCEhjxcUHXq7ZxdAVfph8x5fPdQzI_-vDl8DiJhRgSC_CsSQSgBg9-SQW-nLEiTfWMl74sKlZZJkBGz-CU1IanrjLSW5Z6MOzU-xmTLnfZIzIJq-CeEMrA_ZKFyzk3PneCGS6lyFzKhbfojk5JOkySspGlHItlLNUQjvZN4YgpHDHVj9iUvNm0Oe85Oq6Vfo9zv5FEfu3uBEyLiuaqtNVWCgu-qSxyb6E34Eh7XZbOZKUosynhg-aoCFV6CAK3Wlz78BeDmimwY9yc0cGt2lox-JCWiJdA5nGvdptXzERZSEARU1KOFHLUh_GVsDjruMIBPiPnIDR9u9HdGwzS0_8T3yV38AhzNNPsGZk069Y9B7DWmL1opX8AmxY45g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Can+language+models+be+used+for+real-world+urban-delivery+route+optimization%3F&rft.jtitle=Innovation+%28New+York%2C+NY%29&rft.au=Liu%2C+Yang&rft.au=Wu%2C+Fanyou&rft.au=Liu%2C+Zhiyuan&rft.au=Wang%2C+Kai&rft.date=2023-11-13&rft.issn=2666-6758&rft.eissn=2666-6758&rft.volume=4&rft.issue=6&rft.spage=100520&rft_id=info:doi/10.1016%2Fj.xinn.2023.100520&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_xinn_2023_100520
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2666-6758&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2666-6758&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2666-6758&client=summon