Defining, Evaluating, and Removing Bias Induced by Linear Imputation in Longitudinal Clinical Trials with MNAR Missing Data

Missing not at random (MNAR) post-dropout missing data from a longitudinal clinical trial result in the collection of "biased data," which leads to biased estimators and tests of corrupted hypotheses. In a full rank linear model analysis the model equation, E[ Y ] = X β, leads to the defin...

Full description

Saved in:
Bibliographic Details
Published inJournal of biopharmaceutical statistics Vol. 21; no. 2; pp. 226 - 251
Main Authors Helms, Ronald W., Reece, Laura Helms, Helms, Russell W., Helms, Mary W.
Format Journal Article
LanguageEnglish
Published England Taylor & Francis Group 01.03.2011
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN1054-3406
1520-5711
1520-5711
DOI10.1080/10543406.2011.550097

Cover

Abstract Missing not at random (MNAR) post-dropout missing data from a longitudinal clinical trial result in the collection of "biased data," which leads to biased estimators and tests of corrupted hypotheses. In a full rank linear model analysis the model equation, E[ Y ] = X β, leads to the definition of the primary parameter β = (X′X) −1 X′E[ Y ], and the definition of linear secondary parameters of the form θ = L β = L(X′X) −1 X′E[ Y ], including, for example, a parameter representing a "treatment effect." These parameters depend explicitly on E[ Y ], which raises the questions: What is E[ Y ] when some elements of the incomplete random vector Y are not observed and MNAR, or when such a Y is "completed" via imputation? We develop a rigorous, readily interpretable definition of E[ Y ] in this context that leads directly to definitions of β, , , and the extent of hypothesis corruption. These definitions provide a basis for evaluating, comparing, and removing biases induced by various linear imputation methods for MNAR incomplete data from longitudinal clinical trials. Linear imputation methods use earlier data from a subject to impute values for post-dropout missing values and include "Last Observation Carried Forward" (LOCF) and "Baseline Observation Carried Forward" (BOCF), among others. We illustrate the methods of evaluating, comparing, and removing biases and the effects of testing corresponding corrupted hypotheses via a hypothetical but very realistic longitudinal analgesic clinical trial.
AbstractList Missing not at random (MNAR) post-dropout missing data from a longitudinal clinical trial result in the collection of "biased data," which leads to biased estimators and tests of corrupted hypotheses. In a full rank linear model analysis the model equation, E[Y] = Xβ, leads to the definition of the primary parameter ..., and the definition of linear secondary parameters of the form ..., including, for example, a parameter representing a "treatment effect." These parameters depend explicitly on E[Y], which raises the questions: What is E[Y] when some elements of the incomplete random vector Y are not observed and MNAR, or when such a Y is "completed" via imputation? We develop a rigorous, readily interpretable definition of E[Y] in this context that leads directly to definitions of β, ..., ..., and the extent of hypothesis corruption. These definitions provide a basis for evaluating, comparing, and removing biases induced by various linear imputation methods for MNAR incomplete data from longitudinal clinical trials. Linear imputation methods use earlier data from a subject to impute values for post-dropout missing values and include "Last Observation Carried Forward" (LOCF) and "Baseline Observation Carried Forward" (BOCF), among others. We illustrate the methods of evaluating, comparing, and removing biases and the effects of testing corresponding corrupted hypotheses via a hypothetical but very realistic longitudinal analgesic clinical trial. (ProQuest: ... denotes formulae/symbols omitted.)
Missing not at random (MNAR) post-dropout missing data from a longitudinal clinical trial result in the collection of "biased data," which leads to biased estimators and tests of corrupted hypotheses. In a full rank linear model analysis the model equation, E[Y] = Xβ, leads to the definition of the primary parameter β = (X'X)(-1)X'E[Y], and the definition of linear secondary parameters of the form θ = Lβ = L(X'X)(-1)X'E[Y], including, for example, a parameter representing a "treatment effect." These parameters depend explicitly on E[Y], which raises the questions: What is E[Y] when some elements of the incomplete random vector Y are not observed and MNAR, or when such a Y is "completed" via imputation? We develop a rigorous, readily interpretable definition of E[Y] in this context that leads directly to definitions of β, Bias(β) = E[β] - β, Bias(θ) = E[θ] - Lβ, and the extent of hypothesis corruption. These definitions provide a basis for evaluating, comparing, and removing biases induced by various linear imputation methods for MNAR incomplete data from longitudinal clinical trials. Linear imputation methods use earlier data from a subject to impute values for post-dropout missing values and include "Last Observation Carried Forward" (LOCF) and "Baseline Observation Carried Forward" (BOCF), among others. We illustrate the methods of evaluating, comparing, and removing biases and the effects of testing corresponding corrupted hypotheses via a hypothetical but very realistic longitudinal analgesic clinical trial.Missing not at random (MNAR) post-dropout missing data from a longitudinal clinical trial result in the collection of "biased data," which leads to biased estimators and tests of corrupted hypotheses. In a full rank linear model analysis the model equation, E[Y] = Xβ, leads to the definition of the primary parameter β = (X'X)(-1)X'E[Y], and the definition of linear secondary parameters of the form θ = Lβ = L(X'X)(-1)X'E[Y], including, for example, a parameter representing a "treatment effect." These parameters depend explicitly on E[Y], which raises the questions: What is E[Y] when some elements of the incomplete random vector Y are not observed and MNAR, or when such a Y is "completed" via imputation? We develop a rigorous, readily interpretable definition of E[Y] in this context that leads directly to definitions of β, Bias(β) = E[β] - β, Bias(θ) = E[θ] - Lβ, and the extent of hypothesis corruption. These definitions provide a basis for evaluating, comparing, and removing biases induced by various linear imputation methods for MNAR incomplete data from longitudinal clinical trials. Linear imputation methods use earlier data from a subject to impute values for post-dropout missing values and include "Last Observation Carried Forward" (LOCF) and "Baseline Observation Carried Forward" (BOCF), among others. We illustrate the methods of evaluating, comparing, and removing biases and the effects of testing corresponding corrupted hypotheses via a hypothetical but very realistic longitudinal analgesic clinical trial.
Missing not at random (MNAR) post-dropout missing data from a longitudinal clinical trial result in the collection of "biased data," which leads to biased estimators and tests of corrupted hypotheses. In a full rank linear model analysis the model equation, E[Y] = Xβ, leads to the definition of the primary parameter β = (X'X)(-1)X'E[Y], and the definition of linear secondary parameters of the form θ = Lβ = L(X'X)(-1)X'E[Y], including, for example, a parameter representing a "treatment effect." These parameters depend explicitly on E[Y], which raises the questions: What is E[Y] when some elements of the incomplete random vector Y are not observed and MNAR, or when such a Y is "completed" via imputation? We develop a rigorous, readily interpretable definition of E[Y] in this context that leads directly to definitions of β, Bias(β) = E[β] - β, Bias(θ) = E[θ] - Lβ, and the extent of hypothesis corruption. These definitions provide a basis for evaluating, comparing, and removing biases induced by various linear imputation methods for MNAR incomplete data from longitudinal clinical trials. Linear imputation methods use earlier data from a subject to impute values for post-dropout missing values and include "Last Observation Carried Forward" (LOCF) and "Baseline Observation Carried Forward" (BOCF), among others. We illustrate the methods of evaluating, comparing, and removing biases and the effects of testing corresponding corrupted hypotheses via a hypothetical but very realistic longitudinal analgesic clinical trial.
Missing not at random (MNAR) post-dropout missing data from a longitudinal clinical trial result in the collection of "biased data," which leads to biased estimators and tests of corrupted hypotheses. In a full rank linear model analysis the model equation, E[Y]=X beta , leads to the definition of the primary parameter beta =(X'X)-1X'E[Y], and the definition of linear secondary parameters of the form [thetas]=L beta =L(X'X)-1X'E[ Y], including, for example, a parameter representing a "treatment effect." These parameters depend explicitly on E[Y], which raises the questions: What is E[Y] when some elements of the incomplete random vector Y are not observed and MNAR, or when such a Y is "completed" via imputation? We develop a rigorous, readily interpretable definition of E[Y] in this context that leads directly to definitions of beta , [image omitted], [image omitted], and the extent of hypothesis corruption. These definitions provide a basis for evaluating, comparing, and removing biases induced by various linear imputation methods for MNAR incomplete data from longitudinal clinical trials. Linear imputation methods use earlier data from a subject to impute values for post-dropout missing values and include "Last Observation Carried Forward" (LOCF) and "Baseline Observation Carried Forward" (BOCF), among others. We illustrate the methods of evaluating, comparing, and removing biases and the effects of testing corresponding corrupted hypotheses via a hypothetical but very realistic longitudinal analgesic clinical trial.
Missing not at random (MNAR) post-dropout missing data from a longitudinal clinical trial result in the collection of “biased data”, which leads to biased estimators and tests of corrupted hypotheses. In a full rank linear model analysis the model equation, E[Y] = Xβ, leads to the definition of the primary parameter β = (X′X)−1X′E[Y], and the definition of linear secondary parameters of the form θ = Lβ = L(X′X)−1X′E[Y], including for example, a parameter representing a “treatment effect”. These parameters depend explicitly on E[Y], which raises the questions: what is E[Y] when some elements of the incomplete random vector Y are not observed and MNAR, or when such a Y is “completed” via imputation? We develop a rigorous, readily interpretable definition of E[Y] in this context that leads directly to definitions of β,Bias(β^)=E[β^]−β,Bias(θ^)=E[θ^ ]−Lβ, and the extent of hypothesis corruption. These definitions provide a basis for evaluating, comparing, and removing biases induced by various linear imputation methods for MNAR incomplete data from longitudinal clinical trials. Linear imputation methods use earlier data from a subject to impute values for post-dropout missing values and include “Last Observation Carried Forward” (LOCF) and “Baseline Observation Carried Forward” (BOCF), among others. We illustrate the methods of evaluating, comparing, and removing biases and the effects of testing corresponding corrupted hypotheses via a hypothetical, but very realistic longitudinal analgesic clinical trial.
Missing not at random (MNAR) post-dropout missing data from a longitudinal clinical trial result in the collection of "biased data," which leads to biased estimators and tests of corrupted hypotheses. In a full rank linear model analysis the model equation, E[ Y ] = X β, leads to the definition of the primary parameter β = (X′X) −1 X′E[ Y ], and the definition of linear secondary parameters of the form θ = L β = L(X′X) −1 X′E[ Y ], including, for example, a parameter representing a "treatment effect." These parameters depend explicitly on E[ Y ], which raises the questions: What is E[ Y ] when some elements of the incomplete random vector Y are not observed and MNAR, or when such a Y is "completed" via imputation? We develop a rigorous, readily interpretable definition of E[ Y ] in this context that leads directly to definitions of β, , , and the extent of hypothesis corruption. These definitions provide a basis for evaluating, comparing, and removing biases induced by various linear imputation methods for MNAR incomplete data from longitudinal clinical trials. Linear imputation methods use earlier data from a subject to impute values for post-dropout missing values and include "Last Observation Carried Forward" (LOCF) and "Baseline Observation Carried Forward" (BOCF), among others. We illustrate the methods of evaluating, comparing, and removing biases and the effects of testing corresponding corrupted hypotheses via a hypothetical but very realistic longitudinal analgesic clinical trial.
Author Helms, Ronald W.
Helms, Russell W.
Helms, Mary W.
Reece, Laura Helms
AuthorAffiliation b Department of Biostatistics, University of North Carolina
a Rho, Inc., Chapel Hill
AuthorAffiliation_xml – name: a Rho, Inc., Chapel Hill
– name: b Department of Biostatistics, University of North Carolina
Author_xml – sequence: 1
  givenname: Ronald W.
  surname: Helms
  fullname: Helms, Ronald W.
  email: Ron_Helms@RhoWorld.com
  organization: Department of Biostatistics , University of North Carolina
– sequence: 2
  givenname: Laura Helms
  surname: Reece
  fullname: Reece, Laura Helms
  organization: Rho, Inc
– sequence: 3
  givenname: Russell W.
  surname: Helms
  fullname: Helms, Russell W.
  organization: Rho, Inc
– sequence: 4
  givenname: Mary W.
  surname: Helms
  fullname: Helms, Mary W.
  organization: Rho, Inc
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21390998$$D View this record in MEDLINE/PubMed
BookMark eNqNkU1v1DAQhiNURD_gHyBkceHSLHYSxw6HorItsNIWpKqcrYnjbF059mInu1r1z-OQlo8eKCePNe_7aOadw2TPOquS5CXBM4I5fkswLfICl7MMEzKjFOOKPUkOCM1wShkhe7GOknTU7CeHIdxgTCjjxbNkPyN5hauKHyS3Z6rVVtvVMTrfgBmg_1mDbdCl6twm_tAHDQEtbDNI1aB6h5baKvBo0a2HPuqdRdqipbMr3Q-NtmDQ3ESmjMWV12AC2ur-Gl18Ob1EFzqEkXkGPTxPnraxq17cvUfJt4_nV_PP6fLrp8X8dJlKmmV9GlcjRVkpnlHJcsUxzxjIum6UIiWraV2XmMqyBd5g1eSFbCVlOcO0rlpgWZEfJXTiDnYNuy0YI9Zed-B3gmAxhinuwxRjmGIKM_pOJt96qDvVSGV7D7-9DrT4u2P1tVi5jcg5LyMtAt7cAbz7PqjQi04HqYwBq9wQBC8rXjBO-ONKWrKyojiPytcPlDdu8DH0EceLuA0fca_-nPzXyPd3j4J3k0B6F4JXrZB6umVcRJvHcikemP8zzveTTdvW-Q62zptG9LAzzrcerNRB5P8k_ACmbuT3
CitedBy_id crossref_primary_10_1002_pst_1767
Cites_doi 10.1080/10543400802609797
10.1002/9781119013563
ContentType Journal Article
Copyright Copyright 2011, Rho Inc. 2011
Copyright Taylor & Francis Ltd. 2011
Copyright_xml – notice: Copyright 2011, Rho Inc. 2011
– notice: Copyright Taylor & Francis Ltd. 2011
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7SC
8FD
JQ2
L7M
L~C
L~D
5PM
ADTOC
UNPAY
DOI 10.1080/10543406.2011.550097
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Computer and Information Systems Abstracts


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Pharmacy, Therapeutics, & Pharmacology
EISSN 1520-5711
EndPage 251
ExternalDocumentID oai:pubmedcentral.nih.gov:3886340
PMC3886340
2357075641
21390998
10_1080_10543406_2011_550097
550097
Genre Evaluation Study
Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: 5U01HL078987
– fundername: NHLBI NIH HHS
  grantid: U01 HL078987
– fundername: NIAID NIH HHS
  grantid: HHSN272200800029C
GroupedDBID ---
.7F
.QJ
0BK
0R~
29K
30N
36B
4.4
53G
5GY
5VS
8VB
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABDBF
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACTCW
ACTIO
ACUHS
ADCVX
ADGTB
ADXPE
AEISY
AEMOZ
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGCQS
AGDLA
AGMYJ
AHDZW
AHQJS
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CAG
CCCUG
CE4
COF
CS3
D-I
DGEBU
DKSSO
DU5
EAP
EBC
EBD
EBR
EBS
EBU
EHE
EJD
EMB
EMK
EMOBN
EPL
EST
ESX
E~A
E~B
F5P
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
K1G
KYCEM
M4Z
MK0
ML~
NA5
NY~
O9-
P2P
PQQKQ
QWB
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
SV3
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TH9
TTHFI
TUROJ
TUS
TWF
UT5
UU3
ZGOLN
ZL0
~S~
AAYXX
CITATION
07G
1TA
AAIKQ
AAKBW
ACAGQ
ACGEE
ADYSH
AEUMN
AGLEN
AGROQ
AHMOU
ALCKM
AMEWO
AMXXU
BCCOT
BPLKW
C06
CGR
CRFIH
CUY
CVF
DMQIW
DWIFK
ECM
EIF
IVXBP
LJTGL
NPM
NUSFT
QCRFL
TAQ
TFMCV
TOXWX
UB9
UU8
V3K
V4Q
7X8
7SC
8FD
JQ2
L7M
L~C
L~D
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c522t-5501469e825c73e80827acbbdee167b5bb605c6fa8d0ed34cfc573705b9fa7243
IEDL.DBID UNPAY
ISSN 1054-3406
1520-5711
IngestDate Sun Oct 26 04:10:22 EDT 2025
Tue Sep 30 16:40:40 EDT 2025
Fri Sep 05 12:01:16 EDT 2025
Thu Oct 02 07:07:17 EDT 2025
Sat Jul 26 02:10:20 EDT 2025
Mon Jul 21 06:03:59 EDT 2025
Wed Oct 01 01:45:09 EDT 2025
Thu Apr 24 23:04:34 EDT 2025
Mon Oct 20 23:47:18 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c522t-5501469e825c73e80827acbbdee167b5bb605c6fa8d0ed34cfc573705b9fa7243
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
ObjectType-Undefined-1
ObjectType-Feature-3
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/3886340
PMID 21390998
PQID 868410888
PQPubID 196226
PageCount 26
ParticipantIDs crossref_citationtrail_10_1080_10543406_2011_550097
unpaywall_primary_10_1080_10543406_2011_550097
proquest_miscellaneous_869847818
pubmed_primary_21390998
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3886340
proquest_miscellaneous_856769503
proquest_journals_868410888
crossref_primary_10_1080_10543406_2011_550097
informaworld_taylorfrancis_310_1080_10543406_2011_550097
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-03-00
PublicationDateYYYYMMDD 2011-03-01
PublicationDate_xml – month: 03
  year: 2011
  text: 2011-03-00
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Philadelphia
PublicationTitle Journal of biopharmaceutical statistics
PublicationTitleAlternate J Biopharm Stat
PublicationYear 2011
Publisher Taylor & Francis Group
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis Group
– name: Taylor & Francis Ltd
References Scheffé H. (CIT0005) 1959
Sen P. K. (CIT0006) 1994
Brown J. R. (CIT0001) 1993
Siddiqui O. (CIT0007) 2009; 19
CIT0003
CIT0002
CIT0004
References_xml – ident: CIT0003
– volume-title: Large Sample Methods in Statistics: An Introduction with Applications
  year: 1994
  ident: CIT0006
– volume-title: The Analysis of Variance
  year: 1959
  ident: CIT0005
– volume: 19
  start-page: 227
  issue: 2
  year: 2009
  ident: CIT0007
  publication-title: Journal of Biopharmaceutical Statistics
  doi: 10.1080/10543400802609797
– ident: CIT0002
– volume-title: The Laboratory of the Mind: Thought Experiments in the Natural Sciences
  year: 1993
  ident: CIT0001
– ident: CIT0004
  doi: 10.1002/9781119013563
SSID ssj0015784
Score 1.8618068
Snippet Missing not at random (MNAR) post-dropout missing data from a longitudinal clinical trial result in the collection of "biased data," which leads to biased...
Missing not at random (MNAR) post-dropout missing data from a longitudinal clinical trial result in the collection of “biased data”, which leads to biased...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
informaworld
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 226
SubjectTerms Algorithms
Bias
BOCF
Clinical trial
Clinical trials
Clinical Trials as Topic
Collection
Computer Simulation
Corrupted hypothesis
Data analysis
Data Interpretation, Statistical
Dropout
Estimation bias
Estimators
Humans
Hypotheses
Imputation
Linear equations
LOCF
Longitudinal
Longitudinal Studies
MAR
Mathematical analysis
Mathematical models
Medical statistics
Missing at random
Missing data
Missing not at random
MNAR
Models, Statistical
Parameter definition
Parameter estimation
Patient Dropouts
Statistics
Vectors (mathematics)
Title Defining, Evaluating, and Removing Bias Induced by Linear Imputation in Longitudinal Clinical Trials with MNAR Missing Data
URI https://www.tandfonline.com/doi/abs/10.1080/10543406.2011.550097
https://www.ncbi.nlm.nih.gov/pubmed/21390998
https://www.proquest.com/docview/868410888
https://www.proquest.com/docview/856769503
https://www.proquest.com/docview/869847818
https://pubmed.ncbi.nlm.nih.gov/PMC3886340
https://www.ncbi.nlm.nih.gov/pmc/articles/3886340
UnpaywallVersion submittedVersion
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1520-5711
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0015784
  issn: 1520-5711
  databaseCode: ABDBF
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: aylor and Francis Online
  customDbUrl:
  mediaType: online
  eissn: 1520-5711
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015784
  issn: 1520-5711
  databaseCode: AHDZW
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAWR
  databaseName: Taylor & Francis Science and Technology Library-DRAA
  customDbUrl:
  eissn: 1520-5711
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015784
  issn: 1520-5711
  databaseCode: 30N
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.tandfonline.com/page/title-lists
  providerName: Taylor & Francis
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9owFLYqeFhfdulutFvlh6lPBAK-xHlkoxWbBkIItG4vke04GloIqARNbH9-x05CYZu69S3SsSM5-Wx_xz7nOwi9UZwb6ivmKT-hHqVx106p0AsVS2IDG3zXJYUNR3wwox-u2fUR6lS5MC5oX6t5K0sXrWz-1cVWrha6XcWJtYkQnFDw0uucAf2uofpsNO59dreajHpgchlFDNwiFnQ6Vbqc8NvWbs2FcCdQcyf1tLcdHYiV_o1y_hk5-WCTreT2u0zTvW3p6hGaVAMqolG-tTa5aukfv2k93mvEj9HDkqTiXmF6go5MdoIuxoXK9baJp7dJW-smvsDjW_3r7Qk6tgS20H9-in72TeJqUDTxZSksbp9lFuOJWbjjDPx2LtfY1hDRJsZqi8E_hvmH39t6Ew44eJ7hj0tbWWkT2ypeuFQzTfHUzR9sT5PxcNSb4CEAyb6zL3P5DM2uLqfvBl5Z8MHTQANzj9lLTh4a8Fp1QIwAehJIrVRsTIcHiikFzpfmiRSxb2JCdaJZQAKfqTCRQZeS56iWLTPzEmGmgbdQk1CacBqQWIWGiMAYpmPwaBPZQKT675Eu1dBtUY406pSiqRVaIouWqEBLA3m7XqtCDeQf7cU-pKLcncIkRcmUiNzd9ayCX1QuK-tIcEGhhxANhHdWWA_sJY_MzHIDTZgNWmY-uaMJD4XNMIa3vCjgvBtMFxwC8BnAEhwAfdfAqpEfWgCyTpW8RGkDtXZT4r--0el9O5yh4-Jg3wYCvkK1_GZjXgMzzNU5qvcG_S-fzss14RcKm1w7
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELagHNpLgfIK5eED6ikbbePHeo-Ftkohiaoqlbit1l5bjQibqtkIBf48M_butuFREJyykj1WbM_YM56Zbwh5o6W0PNYi0rHjEedFH0UqjVItXGHhgu_7pLDRWA7O-fuPookmXNRhlWhDuwAU4c9qFG58jG5C4uAXEyJjGRA4QceO0-QuuSdA18ciBiwet44EYEjvWAaKCEma7LnfjLJ2O61hl_5KA_05kHJzWV7mqy_5bHbjljq-T3QzvxCc8qm3rHTPfP0B-vG_FuAB2a51WHoQmO4huWPLHbJ3GkCwV106uc7pWnTpHj29hsde7ZAt1G8DPPQj8u3QOl-iokuPatxx_IZ_Rs_sZ__aQd9O8wXFEiPGFlSvKJjPIJ70BMtReL6i05IO51h4aVlgkS9ag53O6MSLF8XHZjoaH5zREfAZjnmYV_ljcn58NHk3iOp6EJEBLbGKBPpAZWrBqDUJswq0lyQ3WhfW7stEC63BNjPS5aqIbcG4cUYkLImFTl2e9Dl7QjbKeWmfESoMqDXcOs6d5AkrdGqZSqwVpgCD1-Udwho-yEwNlo41O2bZfo2p2mxBhluQhS3okKilugxgIX_or26yWFb5RxoXKqpk7HbS3YYds_rUWWRKKg4USnUIbVvhuEAfUF7a-RK6CIxpFjG7pYtMFSYgwyhPA3u3k-mDvQAmBbQka4zfdkCw8vWWcnrhQcuZUhIm0SG9VkT-ao2e__savSabg8lomA1Pxh92yVbwBmD04AuyUV0t7UtQJyv9yh8Y3wG-MmWe
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdgSLAXPsZXGR9-QHtqqqyxHedx0FUbrFU1ddLeItuxRUVJK5oIFf557uIka_kYCJ4SyT4rju_sO9_d7wh5rYWwLNQ80KFjAWNZH0UqCRLNXWbhgO9XSWGjsTi5YO8u-eVGFj-GVaIN7TxQRLVXo3AvM9dExMET8yFD4QE4QcUOk_gmuSXQKYZJHOG49SMAP1Z-ZaAIkKRJnvvNKFuH0xZ06a8U0J_jKO-U-VKtv6j5fOOQGt4jqpmej0352CsL3TNff0B-_J_53yd3aw2WHnmWe0Bu2HyPHEw8BPa6S6dXGV2rLj2gkytw7PUe2UXt1oNDPyTfBtZVBSq69LhGHcd3-DB6bj9Vdx30zUytKBYYMTajek3BeAbhpKdYjKLiKjrL6dkCyy6VGZb4ojXU6ZxOK-GieNVMR-OjczoCLsMxB6pQj8jF8Hj69iSoq0EEBnTEIuDoARWJBZPWxJGVoLvEymidWXsoYs21BsvMCKdkFtosYsYZHkdxyHXiVNxn0WOyky9y-5RQbkCpYdYx5gSLo0wnNpKxtdxkYO461SFRwwapqaHSsWLHPD2sEVWbJUhxCVK_BB0StFRLDxXyh_5yk8PSorqicb6eShpdT7rfcGNa7zmrVArJgELKDqFtK2wW6AFSuV2U0IVjRDMPo2u6iERi-jGM8sRzdzuZPlgLYFBAS7zF920HhCrfbslnHyrI8khKAZPokF4rIX_1j579-z96RW5PBsP07HT8fp_selcAhg4-JzvF59K-AF2y0C-r7eI7-qdkQg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLam7oG9cBm3boD8gPbUpEl9ifNY2KaBaFVVrTSeIttxtIo0rWiqqfDnOXaSrgU02FukY0dy8tn-jn3OdxB6rzg3NFDMU0FGPUrTnp1SsRcrlqUGNvieSwobDPnVlH6-ZtcHKGxyYVzQvlYzv8jnfjG7cbGVy7nuNnFiXSIEJxS89EPOgH630OF0OOp_dbeajHpgchlFDNwiFoVhky4ngq61W3Ml3AnU3Ek97WxHe2Klf6Ocf0ZOPloXS7m5lXm-sy1dPkHjZkBVNMo3f10qX__4TevxQSN-ih7XJBX3K9MzdGCKY3Q2qlSuNx08uUvaWnXwGR7d6V9vjtGRJbCV_vNz9PPcZK4GRQdf1MLi9lkWKR6buTvOwB9mcoVtDRFtUqw2GPxjmH_4k6034YCDZwX-srCVldapreKFazXTHE_c_MH2NBkPhv0xHgCQ7DvPZSlfoOnlxeTjlVcXfPA00MDSY_aSk8cGvFYdESOAnkRSK5UaE_JIMaXA-dI8kyINTEqozjSLSBQwFWcy6lHyErWKRWFeI8w08BZqMkozTiOSqtgQERnDdAoebSbbiDT_PdG1GrotypEnYS2a2qAlsWhJKrS0kbfttazUQP7RXuxCKindKUxWlUxJyP1dTxv4JfWyskoEFxR6CNFGeGuF9cBe8sjCLNbQhNmgZRaQe5rwWNgMY3jLqwrO28H0wCEAnwEs0R7Qtw2sGvm-BSDrVMlrlLaRv50S__WNTh7a4RQdVQf7NhDwDWqV39fmLTDDUr2r14JfMMxamg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Defining%2C+evaluating%2C+and+removing+bias+induced+by+linear+imputation+in+longitudinal+clinical+trials+with+MNAR+missing+data&rft.jtitle=Journal+of+biopharmaceutical+statistics&rft.au=Helms%2C+Ronald+W&rft.au=Reece%2C+Laura+Helms&rft.au=Helms%2C+Russell+W&rft.au=Helms%2C+Mary+W&rft.date=2011-03-01&rft.issn=1520-5711&rft.eissn=1520-5711&rft.volume=21&rft.issue=2&rft.spage=226&rft_id=info:doi/10.1080%2F10543406.2011.550097&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1054-3406&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1054-3406&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1054-3406&client=summon