Defining, Evaluating, and Removing Bias Induced by Linear Imputation in Longitudinal Clinical Trials with MNAR Missing Data
Missing not at random (MNAR) post-dropout missing data from a longitudinal clinical trial result in the collection of "biased data," which leads to biased estimators and tests of corrupted hypotheses. In a full rank linear model analysis the model equation, E[ Y ] = X β, leads to the defin...
        Saved in:
      
    
          | Published in | Journal of biopharmaceutical statistics Vol. 21; no. 2; pp. 226 - 251 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        England
          Taylor & Francis Group
    
        01.03.2011
     Taylor & Francis Ltd  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1054-3406 1520-5711 1520-5711  | 
| DOI | 10.1080/10543406.2011.550097 | 
Cover
| Abstract | Missing not at random (MNAR) post-dropout missing data from a longitudinal clinical trial result in the collection of "biased data," which leads to biased estimators and tests of corrupted hypotheses. In a full rank linear model analysis the model equation, E[
Y
] = X
β, leads to the definition of the primary parameter β = (X′X)
−1
X′E[
Y
], and the definition of linear secondary parameters of the form θ = L
β = L(X′X)
−1
X′E[
Y
], including, for example, a parameter representing a "treatment effect." These parameters depend explicitly on E[
Y
], which raises the questions: What is E[
Y
] when some elements of the incomplete random vector
Y
are not observed and MNAR, or when such a
Y
is "completed" via imputation? We develop a rigorous, readily interpretable definition of E[
Y
] in this context that leads directly to definitions of β,
,
, and the extent of hypothesis corruption. These definitions provide a basis for evaluating, comparing, and removing biases induced by various linear imputation methods for MNAR incomplete data from longitudinal clinical trials. Linear imputation methods use earlier data from a subject to impute values for post-dropout missing values and include "Last Observation Carried Forward" (LOCF) and "Baseline Observation Carried Forward" (BOCF), among others. We illustrate the methods of evaluating, comparing, and removing biases and the effects of testing corresponding corrupted hypotheses via a hypothetical but very realistic longitudinal analgesic clinical trial. | 
    
|---|---|
| AbstractList | Missing not at random (MNAR) post-dropout missing data from a longitudinal clinical trial result in the collection of "biased data," which leads to biased estimators and tests of corrupted hypotheses. In a full rank linear model analysis the model equation, E[Y] = Xβ, leads to the definition of the primary parameter ..., and the definition of linear secondary parameters of the form ..., including, for example, a parameter representing a "treatment effect." These parameters depend explicitly on E[Y], which raises the questions: What is E[Y] when some elements of the incomplete random vector Y are not observed and MNAR, or when such a Y is "completed" via imputation? We develop a rigorous, readily interpretable definition of E[Y] in this context that leads directly to definitions of β, ..., ..., and the extent of hypothesis corruption. These definitions provide a basis for evaluating, comparing, and removing biases induced by various linear imputation methods for MNAR incomplete data from longitudinal clinical trials. Linear imputation methods use earlier data from a subject to impute values for post-dropout missing values and include "Last Observation Carried Forward" (LOCF) and "Baseline Observation Carried Forward" (BOCF), among others. We illustrate the methods of evaluating, comparing, and removing biases and the effects of testing corresponding corrupted hypotheses via a hypothetical but very realistic longitudinal analgesic clinical trial. (ProQuest: ... denotes formulae/symbols omitted.) Missing not at random (MNAR) post-dropout missing data from a longitudinal clinical trial result in the collection of "biased data," which leads to biased estimators and tests of corrupted hypotheses. In a full rank linear model analysis the model equation, E[Y] = Xβ, leads to the definition of the primary parameter β = (X'X)(-1)X'E[Y], and the definition of linear secondary parameters of the form θ = Lβ = L(X'X)(-1)X'E[Y], including, for example, a parameter representing a "treatment effect." These parameters depend explicitly on E[Y], which raises the questions: What is E[Y] when some elements of the incomplete random vector Y are not observed and MNAR, or when such a Y is "completed" via imputation? We develop a rigorous, readily interpretable definition of E[Y] in this context that leads directly to definitions of β, Bias(β) = E[β] - β, Bias(θ) = E[θ] - Lβ, and the extent of hypothesis corruption. These definitions provide a basis for evaluating, comparing, and removing biases induced by various linear imputation methods for MNAR incomplete data from longitudinal clinical trials. Linear imputation methods use earlier data from a subject to impute values for post-dropout missing values and include "Last Observation Carried Forward" (LOCF) and "Baseline Observation Carried Forward" (BOCF), among others. We illustrate the methods of evaluating, comparing, and removing biases and the effects of testing corresponding corrupted hypotheses via a hypothetical but very realistic longitudinal analgesic clinical trial.Missing not at random (MNAR) post-dropout missing data from a longitudinal clinical trial result in the collection of "biased data," which leads to biased estimators and tests of corrupted hypotheses. In a full rank linear model analysis the model equation, E[Y] = Xβ, leads to the definition of the primary parameter β = (X'X)(-1)X'E[Y], and the definition of linear secondary parameters of the form θ = Lβ = L(X'X)(-1)X'E[Y], including, for example, a parameter representing a "treatment effect." These parameters depend explicitly on E[Y], which raises the questions: What is E[Y] when some elements of the incomplete random vector Y are not observed and MNAR, or when such a Y is "completed" via imputation? We develop a rigorous, readily interpretable definition of E[Y] in this context that leads directly to definitions of β, Bias(β) = E[β] - β, Bias(θ) = E[θ] - Lβ, and the extent of hypothesis corruption. These definitions provide a basis for evaluating, comparing, and removing biases induced by various linear imputation methods for MNAR incomplete data from longitudinal clinical trials. Linear imputation methods use earlier data from a subject to impute values for post-dropout missing values and include "Last Observation Carried Forward" (LOCF) and "Baseline Observation Carried Forward" (BOCF), among others. We illustrate the methods of evaluating, comparing, and removing biases and the effects of testing corresponding corrupted hypotheses via a hypothetical but very realistic longitudinal analgesic clinical trial. Missing not at random (MNAR) post-dropout missing data from a longitudinal clinical trial result in the collection of "biased data," which leads to biased estimators and tests of corrupted hypotheses. In a full rank linear model analysis the model equation, E[Y] = Xβ, leads to the definition of the primary parameter β = (X'X)(-1)X'E[Y], and the definition of linear secondary parameters of the form θ = Lβ = L(X'X)(-1)X'E[Y], including, for example, a parameter representing a "treatment effect." These parameters depend explicitly on E[Y], which raises the questions: What is E[Y] when some elements of the incomplete random vector Y are not observed and MNAR, or when such a Y is "completed" via imputation? We develop a rigorous, readily interpretable definition of E[Y] in this context that leads directly to definitions of β, Bias(β) = E[β] - β, Bias(θ) = E[θ] - Lβ, and the extent of hypothesis corruption. These definitions provide a basis for evaluating, comparing, and removing biases induced by various linear imputation methods for MNAR incomplete data from longitudinal clinical trials. Linear imputation methods use earlier data from a subject to impute values for post-dropout missing values and include "Last Observation Carried Forward" (LOCF) and "Baseline Observation Carried Forward" (BOCF), among others. We illustrate the methods of evaluating, comparing, and removing biases and the effects of testing corresponding corrupted hypotheses via a hypothetical but very realistic longitudinal analgesic clinical trial. Missing not at random (MNAR) post-dropout missing data from a longitudinal clinical trial result in the collection of "biased data," which leads to biased estimators and tests of corrupted hypotheses. In a full rank linear model analysis the model equation, E[Y]=X beta , leads to the definition of the primary parameter beta =(X'X)-1X'E[Y], and the definition of linear secondary parameters of the form [thetas]=L beta =L(X'X)-1X'E[ Y], including, for example, a parameter representing a "treatment effect." These parameters depend explicitly on E[Y], which raises the questions: What is E[Y] when some elements of the incomplete random vector Y are not observed and MNAR, or when such a Y is "completed" via imputation? We develop a rigorous, readily interpretable definition of E[Y] in this context that leads directly to definitions of beta , [image omitted], [image omitted], and the extent of hypothesis corruption. These definitions provide a basis for evaluating, comparing, and removing biases induced by various linear imputation methods for MNAR incomplete data from longitudinal clinical trials. Linear imputation methods use earlier data from a subject to impute values for post-dropout missing values and include "Last Observation Carried Forward" (LOCF) and "Baseline Observation Carried Forward" (BOCF), among others. We illustrate the methods of evaluating, comparing, and removing biases and the effects of testing corresponding corrupted hypotheses via a hypothetical but very realistic longitudinal analgesic clinical trial. Missing not at random (MNAR) post-dropout missing data from a longitudinal clinical trial result in the collection of “biased data”, which leads to biased estimators and tests of corrupted hypotheses. In a full rank linear model analysis the model equation, E[Y] = Xβ, leads to the definition of the primary parameter β = (X′X)−1X′E[Y], and the definition of linear secondary parameters of the form θ = Lβ = L(X′X)−1X′E[Y], including for example, a parameter representing a “treatment effect”. These parameters depend explicitly on E[Y], which raises the questions: what is E[Y] when some elements of the incomplete random vector Y are not observed and MNAR, or when such a Y is “completed” via imputation? We develop a rigorous, readily interpretable definition of E[Y] in this context that leads directly to definitions of β,Bias(β^)=E[β^]−β,Bias(θ^)=E[θ^ ]−Lβ, and the extent of hypothesis corruption. These definitions provide a basis for evaluating, comparing, and removing biases induced by various linear imputation methods for MNAR incomplete data from longitudinal clinical trials. Linear imputation methods use earlier data from a subject to impute values for post-dropout missing values and include “Last Observation Carried Forward” (LOCF) and “Baseline Observation Carried Forward” (BOCF), among others. We illustrate the methods of evaluating, comparing, and removing biases and the effects of testing corresponding corrupted hypotheses via a hypothetical, but very realistic longitudinal analgesic clinical trial. Missing not at random (MNAR) post-dropout missing data from a longitudinal clinical trial result in the collection of "biased data," which leads to biased estimators and tests of corrupted hypotheses. In a full rank linear model analysis the model equation, E[ Y ] = X β, leads to the definition of the primary parameter β = (X′X) −1 X′E[ Y ], and the definition of linear secondary parameters of the form θ = L β = L(X′X) −1 X′E[ Y ], including, for example, a parameter representing a "treatment effect." These parameters depend explicitly on E[ Y ], which raises the questions: What is E[ Y ] when some elements of the incomplete random vector Y are not observed and MNAR, or when such a Y is "completed" via imputation? We develop a rigorous, readily interpretable definition of E[ Y ] in this context that leads directly to definitions of β, , , and the extent of hypothesis corruption. These definitions provide a basis for evaluating, comparing, and removing biases induced by various linear imputation methods for MNAR incomplete data from longitudinal clinical trials. Linear imputation methods use earlier data from a subject to impute values for post-dropout missing values and include "Last Observation Carried Forward" (LOCF) and "Baseline Observation Carried Forward" (BOCF), among others. We illustrate the methods of evaluating, comparing, and removing biases and the effects of testing corresponding corrupted hypotheses via a hypothetical but very realistic longitudinal analgesic clinical trial.  | 
    
| Author | Helms, Ronald W. Helms, Russell W. Helms, Mary W. Reece, Laura Helms  | 
    
| AuthorAffiliation | b Department of Biostatistics, University of North Carolina a Rho, Inc., Chapel Hill  | 
    
| AuthorAffiliation_xml | – name: a Rho, Inc., Chapel Hill – name: b Department of Biostatistics, University of North Carolina  | 
    
| Author_xml | – sequence: 1 givenname: Ronald W. surname: Helms fullname: Helms, Ronald W. email: Ron_Helms@RhoWorld.com organization: Department of Biostatistics , University of North Carolina – sequence: 2 givenname: Laura Helms surname: Reece fullname: Reece, Laura Helms organization: Rho, Inc – sequence: 3 givenname: Russell W. surname: Helms fullname: Helms, Russell W. organization: Rho, Inc – sequence: 4 givenname: Mary W. surname: Helms fullname: Helms, Mary W. organization: Rho, Inc  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21390998$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqNkU1v1DAQhiNURD_gHyBkceHSLHYSxw6HorItsNIWpKqcrYnjbF059mInu1r1z-OQlo8eKCePNe_7aOadw2TPOquS5CXBM4I5fkswLfICl7MMEzKjFOOKPUkOCM1wShkhe7GOknTU7CeHIdxgTCjjxbNkPyN5hauKHyS3Z6rVVtvVMTrfgBmg_1mDbdCl6twm_tAHDQEtbDNI1aB6h5baKvBo0a2HPuqdRdqipbMr3Q-NtmDQ3ESmjMWV12AC2ur-Gl18Ob1EFzqEkXkGPTxPnraxq17cvUfJt4_nV_PP6fLrp8X8dJlKmmV9GlcjRVkpnlHJcsUxzxjIum6UIiWraV2XmMqyBd5g1eSFbCVlOcO0rlpgWZEfJXTiDnYNuy0YI9Zed-B3gmAxhinuwxRjmGIKM_pOJt96qDvVSGV7D7-9DrT4u2P1tVi5jcg5LyMtAt7cAbz7PqjQi04HqYwBq9wQBC8rXjBO-ONKWrKyojiPytcPlDdu8DH0EceLuA0fca_-nPzXyPd3j4J3k0B6F4JXrZB6umVcRJvHcikemP8zzveTTdvW-Q62zptG9LAzzrcerNRB5P8k_ACmbuT3 | 
    
| CitedBy_id | crossref_primary_10_1002_pst_1767 | 
    
| Cites_doi | 10.1080/10543400802609797 10.1002/9781119013563  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright 2011, Rho Inc. 2011 Copyright Taylor & Francis Ltd. 2011  | 
    
| Copyright_xml | – notice: Copyright 2011, Rho Inc. 2011 – notice: Copyright Taylor & Francis Ltd. 2011  | 
    
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7SC 8FD JQ2 L7M L~C L~D 5PM ADTOC UNPAY  | 
    
| DOI | 10.1080/10543406.2011.550097 | 
    
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitleList | MEDLINE - Academic MEDLINE Computer and Information Systems Abstracts  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Statistics Pharmacy, Therapeutics, & Pharmacology  | 
    
| EISSN | 1520-5711 | 
    
| EndPage | 251 | 
    
| ExternalDocumentID | oai:pubmedcentral.nih.gov:3886340 PMC3886340 2357075641 21390998 10_1080_10543406_2011_550097 550097  | 
    
| Genre | Evaluation Study Journal Article Research Support, N.I.H., Extramural Feature  | 
    
| GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: 5U01HL078987 – fundername: NHLBI NIH HHS grantid: U01 HL078987 – fundername: NIAID NIH HHS grantid: HHSN272200800029C  | 
    
| GroupedDBID | --- .7F .QJ 0BK 0R~ 29K 30N 36B 4.4 53G 5GY 5VS 8VB AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABDBF ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACTCW ACTIO ACUHS ADCVX ADGTB ADXPE AEISY AEMOZ AENEX AEOZL AEPSL AEYOC AFKVX AFRVT AGCQS AGDLA AGMYJ AHDZW AHQJS AIJEM AIYEW AJWEG AKBVH AKOOK AKVCP ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AQTUD AVBZW AWYRJ BLEHA CAG CCCUG CE4 COF CS3 D-I DGEBU DKSSO DU5 EAP EBC EBD EBR EBS EBU EHE EJD EMB EMK EMOBN EPL EST ESX E~A E~B F5P GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P K1G KYCEM M4Z MK0 ML~ NA5 NY~ O9- P2P PQQKQ QWB RIG RNANH ROSJB RTWRZ S-T SNACF SV3 TASJS TBQAZ TDBHL TEJ TFL TFT TFW TH9 TTHFI TUROJ TUS TWF UT5 UU3 ZGOLN ZL0 ~S~ AAYXX CITATION 07G 1TA AAIKQ AAKBW ACAGQ ACGEE ADYSH AEUMN AGLEN AGROQ AHMOU ALCKM AMEWO AMXXU BCCOT BPLKW C06 CGR CRFIH CUY CVF DMQIW DWIFK ECM EIF IVXBP LJTGL NPM NUSFT QCRFL TAQ TFMCV TOXWX UB9 UU8 V3K V4Q 7X8 7SC 8FD JQ2 L7M L~C L~D 5PM ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c522t-5501469e825c73e80827acbbdee167b5bb605c6fa8d0ed34cfc573705b9fa7243 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 1054-3406 1520-5711  | 
    
| IngestDate | Sun Oct 26 04:10:22 EDT 2025 Tue Sep 30 16:40:40 EDT 2025 Fri Sep 05 12:01:16 EDT 2025 Thu Oct 02 07:07:17 EDT 2025 Sat Jul 26 02:10:20 EDT 2025 Mon Jul 21 06:03:59 EDT 2025 Wed Oct 01 01:45:09 EDT 2025 Thu Apr 24 23:04:34 EDT 2025 Mon Oct 20 23:47:18 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 2 | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c522t-5501469e825c73e80827acbbdee167b5bb605c6fa8d0ed34cfc573705b9fa7243 | 
    
| Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 ObjectType-Undefined-1 ObjectType-Feature-3 content type line 23  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/3886340 | 
    
| PMID | 21390998 | 
    
| PQID | 868410888 | 
    
| PQPubID | 196226 | 
    
| PageCount | 26 | 
    
| ParticipantIDs | crossref_citationtrail_10_1080_10543406_2011_550097 unpaywall_primary_10_1080_10543406_2011_550097 proquest_miscellaneous_869847818 pubmed_primary_21390998 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3886340 proquest_miscellaneous_856769503 proquest_journals_868410888 crossref_primary_10_1080_10543406_2011_550097 informaworld_taylorfrancis_310_1080_10543406_2011_550097  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2011-03-00 | 
    
| PublicationDateYYYYMMDD | 2011-03-01 | 
    
| PublicationDate_xml | – month: 03 year: 2011 text: 2011-03-00  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | England | 
    
| PublicationPlace_xml | – name: England – name: Philadelphia  | 
    
| PublicationTitle | Journal of biopharmaceutical statistics | 
    
| PublicationTitleAlternate | J Biopharm Stat | 
    
| PublicationYear | 2011 | 
    
| Publisher | Taylor & Francis Group Taylor & Francis Ltd  | 
    
| Publisher_xml | – name: Taylor & Francis Group – name: Taylor & Francis Ltd  | 
    
| References | Scheffé H. (CIT0005) 1959 Sen P. K. (CIT0006) 1994 Brown J. R. (CIT0001) 1993 Siddiqui O. (CIT0007) 2009; 19 CIT0003 CIT0002 CIT0004  | 
    
| References_xml | – ident: CIT0003 – volume-title: Large Sample Methods in Statistics: An Introduction with Applications year: 1994 ident: CIT0006 – volume-title: The Analysis of Variance year: 1959 ident: CIT0005 – volume: 19 start-page: 227 issue: 2 year: 2009 ident: CIT0007 publication-title: Journal of Biopharmaceutical Statistics doi: 10.1080/10543400802609797 – ident: CIT0002 – volume-title: The Laboratory of the Mind: Thought Experiments in the Natural Sciences year: 1993 ident: CIT0001 – ident: CIT0004 doi: 10.1002/9781119013563  | 
    
| SSID | ssj0015784 | 
    
| Score | 1.8618068 | 
    
| Snippet | Missing not at random (MNAR) post-dropout missing data from a longitudinal clinical trial result in the collection of "biased data," which leads to biased... Missing not at random (MNAR) post-dropout missing data from a longitudinal clinical trial result in the collection of “biased data”, which leads to biased...  | 
    
| SourceID | unpaywall pubmedcentral proquest pubmed crossref informaworld  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 226 | 
    
| SubjectTerms | Algorithms Bias BOCF Clinical trial Clinical trials Clinical Trials as Topic Collection Computer Simulation Corrupted hypothesis Data analysis Data Interpretation, Statistical Dropout Estimation bias Estimators Humans Hypotheses Imputation Linear equations LOCF Longitudinal Longitudinal Studies MAR Mathematical analysis Mathematical models Medical statistics Missing at random Missing data Missing not at random MNAR Models, Statistical Parameter definition Parameter estimation Patient Dropouts Statistics Vectors (mathematics)  | 
    
| Title | Defining, Evaluating, and Removing Bias Induced by Linear Imputation in Longitudinal Clinical Trials with MNAR Missing Data | 
    
| URI | https://www.tandfonline.com/doi/abs/10.1080/10543406.2011.550097 https://www.ncbi.nlm.nih.gov/pubmed/21390998 https://www.proquest.com/docview/868410888 https://www.proquest.com/docview/856769503 https://www.proquest.com/docview/869847818 https://pubmed.ncbi.nlm.nih.gov/PMC3886340 https://www.ncbi.nlm.nih.gov/pmc/articles/3886340  | 
    
| UnpaywallVersion | submittedVersion | 
    
| Volume | 21 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1520-5711 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0015784 issn: 1520-5711 databaseCode: ABDBF dateStart: 19990101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVLSH databaseName: aylor and Francis Online customDbUrl: mediaType: online eissn: 1520-5711 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015784 issn: 1520-5711 databaseCode: AHDZW dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAWR databaseName: Taylor & Francis Science and Technology Library-DRAA customDbUrl: eissn: 1520-5711 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015784 issn: 1520-5711 databaseCode: 30N dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.tandfonline.com/page/title-lists providerName: Taylor & Francis  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9owFLYqeFhfdulutFvlh6lPBAK-xHlkoxWbBkIItG4vke04GloIqARNbH9-x05CYZu69S3SsSM5-Wx_xz7nOwi9UZwb6ivmKT-hHqVx106p0AsVS2IDG3zXJYUNR3wwox-u2fUR6lS5MC5oX6t5K0sXrWz-1cVWrha6XcWJtYkQnFDw0uucAf2uofpsNO59dreajHpgchlFDNwiFnQ6Vbqc8NvWbs2FcCdQcyf1tLcdHYiV_o1y_hk5-WCTreT2u0zTvW3p6hGaVAMqolG-tTa5aukfv2k93mvEj9HDkqTiXmF6go5MdoIuxoXK9baJp7dJW-smvsDjW_3r7Qk6tgS20H9-in72TeJqUDTxZSksbp9lFuOJWbjjDPx2LtfY1hDRJsZqi8E_hvmH39t6Ew44eJ7hj0tbWWkT2ypeuFQzTfHUzR9sT5PxcNSb4CEAyb6zL3P5DM2uLqfvBl5Z8MHTQANzj9lLTh4a8Fp1QIwAehJIrVRsTIcHiikFzpfmiRSxb2JCdaJZQAKfqTCRQZeS56iWLTPzEmGmgbdQk1CacBqQWIWGiMAYpmPwaBPZQKT675Eu1dBtUY406pSiqRVaIouWqEBLA3m7XqtCDeQf7cU-pKLcncIkRcmUiNzd9ayCX1QuK-tIcEGhhxANhHdWWA_sJY_MzHIDTZgNWmY-uaMJD4XNMIa3vCjgvBtMFxwC8BnAEhwAfdfAqpEfWgCyTpW8RGkDtXZT4r--0el9O5yh4-Jg3wYCvkK1_GZjXgMzzNU5qvcG_S-fzss14RcKm1w7 | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELagHNpLgfIK5eED6ikbbePHeo-Ftkohiaoqlbit1l5bjQibqtkIBf48M_butuFREJyykj1WbM_YM56Zbwh5o6W0PNYi0rHjEedFH0UqjVItXGHhgu_7pLDRWA7O-fuPookmXNRhlWhDuwAU4c9qFG58jG5C4uAXEyJjGRA4QceO0-QuuSdA18ciBiwet44EYEjvWAaKCEma7LnfjLJ2O61hl_5KA_05kHJzWV7mqy_5bHbjljq-T3QzvxCc8qm3rHTPfP0B-vG_FuAB2a51WHoQmO4huWPLHbJ3GkCwV106uc7pWnTpHj29hsde7ZAt1G8DPPQj8u3QOl-iokuPatxx_IZ_Rs_sZ__aQd9O8wXFEiPGFlSvKJjPIJ70BMtReL6i05IO51h4aVlgkS9ag53O6MSLF8XHZjoaH5zREfAZjnmYV_ljcn58NHk3iOp6EJEBLbGKBPpAZWrBqDUJswq0lyQ3WhfW7stEC63BNjPS5aqIbcG4cUYkLImFTl2e9Dl7QjbKeWmfESoMqDXcOs6d5AkrdGqZSqwVpgCD1-Udwho-yEwNlo41O2bZfo2p2mxBhluQhS3okKilugxgIX_or26yWFb5RxoXKqpk7HbS3YYds_rUWWRKKg4USnUIbVvhuEAfUF7a-RK6CIxpFjG7pYtMFSYgwyhPA3u3k-mDvQAmBbQka4zfdkCw8vWWcnrhQcuZUhIm0SG9VkT-ao2e__savSabg8lomA1Pxh92yVbwBmD04AuyUV0t7UtQJyv9yh8Y3wG-MmWe | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdgSLAXPsZXGR9-QHtqqqyxHedx0FUbrFU1ddLeItuxRUVJK5oIFf557uIka_kYCJ4SyT4rju_sO9_d7wh5rYWwLNQ80KFjAWNZH0UqCRLNXWbhgO9XSWGjsTi5YO8u-eVGFj-GVaIN7TxQRLVXo3AvM9dExMET8yFD4QE4QcUOk_gmuSXQKYZJHOG49SMAP1Z-ZaAIkKRJnvvNKFuH0xZ06a8U0J_jKO-U-VKtv6j5fOOQGt4jqpmej0352CsL3TNff0B-_J_53yd3aw2WHnmWe0Bu2HyPHEw8BPa6S6dXGV2rLj2gkytw7PUe2UXt1oNDPyTfBtZVBSq69LhGHcd3-DB6bj9Vdx30zUytKBYYMTajek3BeAbhpKdYjKLiKjrL6dkCyy6VGZb4ojXU6ZxOK-GieNVMR-OjczoCLsMxB6pQj8jF8Hj69iSoq0EEBnTEIuDoARWJBZPWxJGVoLvEymidWXsoYs21BsvMCKdkFtosYsYZHkdxyHXiVNxn0WOyky9y-5RQbkCpYdYx5gSLo0wnNpKxtdxkYO461SFRwwapqaHSsWLHPD2sEVWbJUhxCVK_BB0StFRLDxXyh_5yk8PSorqicb6eShpdT7rfcGNa7zmrVArJgELKDqFtK2wW6AFSuV2U0IVjRDMPo2u6iERi-jGM8sRzdzuZPlgLYFBAS7zF920HhCrfbslnHyrI8khKAZPokF4rIX_1j579-z96RW5PBsP07HT8fp_selcAhg4-JzvF59K-AF2y0C-r7eI7-qdkQg | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLam7oG9cBm3boD8gPbUpEl9ifNY2KaBaFVVrTSeIttxtIo0rWiqqfDnOXaSrgU02FukY0dy8tn-jn3OdxB6rzg3NFDMU0FGPUrTnp1SsRcrlqUGNvieSwobDPnVlH6-ZtcHKGxyYVzQvlYzv8jnfjG7cbGVy7nuNnFiXSIEJxS89EPOgH630OF0OOp_dbeajHpgchlFDNwiFoVhky4ngq61W3Ml3AnU3Ek97WxHe2Klf6Ocf0ZOPloXS7m5lXm-sy1dPkHjZkBVNMo3f10qX__4TevxQSN-ih7XJBX3K9MzdGCKY3Q2qlSuNx08uUvaWnXwGR7d6V9vjtGRJbCV_vNz9PPcZK4GRQdf1MLi9lkWKR6buTvOwB9mcoVtDRFtUqw2GPxjmH_4k6034YCDZwX-srCVldapreKFazXTHE_c_MH2NBkPhv0xHgCQ7DvPZSlfoOnlxeTjlVcXfPA00MDSY_aSk8cGvFYdESOAnkRSK5UaE_JIMaXA-dI8kyINTEqozjSLSBQwFWcy6lHyErWKRWFeI8w08BZqMkozTiOSqtgQERnDdAoebSbbiDT_PdG1GrotypEnYS2a2qAlsWhJKrS0kbfttazUQP7RXuxCKindKUxWlUxJyP1dTxv4JfWyskoEFxR6CNFGeGuF9cBe8sjCLNbQhNmgZRaQe5rwWNgMY3jLqwrO28H0wCEAnwEs0R7Qtw2sGvm-BSDrVMlrlLaRv50S__WNTh7a4RQdVQf7NhDwDWqV39fmLTDDUr2r14JfMMxamg | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Defining%2C+evaluating%2C+and+removing+bias+induced+by+linear+imputation+in+longitudinal+clinical+trials+with+MNAR+missing+data&rft.jtitle=Journal+of+biopharmaceutical+statistics&rft.au=Helms%2C+Ronald+W&rft.au=Reece%2C+Laura+Helms&rft.au=Helms%2C+Russell+W&rft.au=Helms%2C+Mary+W&rft.date=2011-03-01&rft.issn=1520-5711&rft.eissn=1520-5711&rft.volume=21&rft.issue=2&rft.spage=226&rft_id=info:doi/10.1080%2F10543406.2011.550097&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1054-3406&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1054-3406&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1054-3406&client=summon |