A competitive and cooperative co-evolutionary approach to multi-objective particle swarm optimization algorithm design

Multi-objective particle swarm optimization (MOPSO) is an optimization technique inspired by bird flocking, which has been steadily gaining attention from the research community because of its high convergence speed. On the other hand, in the face of increasing complexity and dimensionality of today...

Full description

Saved in:
Bibliographic Details
Published inEuropean journal of operational research Vol. 202; no. 1; pp. 42 - 54
Main Authors Goh, C.K., Tan, K.C., Liu, D.S., Chiam, S.C.
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.04.2010
Elsevier
Elsevier Sequoia S.A
SeriesEuropean Journal of Operational Research
Subjects
Online AccessGet full text
ISSN0377-2217
1872-6860
1872-6860
DOI10.1016/j.ejor.2009.05.005

Cover

Abstract Multi-objective particle swarm optimization (MOPSO) is an optimization technique inspired by bird flocking, which has been steadily gaining attention from the research community because of its high convergence speed. On the other hand, in the face of increasing complexity and dimensionality of today’s application coupled with its tendency of premature convergence due to the high convergence speeds, there is a need to improve the efficiency and effectiveness of MOPSO. In this paper a competitive and cooperative co-evolutionary approach is adapted for multi-objective particle swarm optimization algorithm design, which appears to have considerable potential for solving complex optimization problems by explicitly modeling the co-evolution of competing and cooperating species. The competitive and cooperative co-evolution model helps to produce the reasonable problem decompositions by exploiting any correlation, interdependency between components of the problem. The proposed competitive and cooperative co-evolutionary multi-objective particle swarm optimization algorithm (CCPSO) is validated through comparisons with existing state-of-the-art multi-objective algorithms using established benchmarks and metrics. Simulation results demonstrated that CCPSO shows competitive, if not better, performance as compared to the other algorithms.
AbstractList Multi-objective particle swarm optimization (MOPSO) is an optimization technique inspired by bird flocking, which has been steadily gaining attention from the research community because of its high convergence speed. On the other hand, in the face of increasing complexity and dimensionality of today's application coupled with its tendency of premature convergence due to the high convergence speeds, there is a need to improve the efficiency and effectiveness of MOPSO. In this paper a competitive and cooperative co-evolutionary approach is adapted for multi-objective particle swarm optimization algorithm design, which appears to have considerable potential for solving complex optimization problems by explicitly modeling the co-evolution of competing and cooperating species. The competitive and cooperative co-evolution model helps to produce the reasonable problem decompositions by exploiting any correlation, interdependency between components of the problem. The proposed competitive and cooperative co-evolutionary multi-objective particle swarm optimization algorithm (CCPSO) is validated through comparisons with existing state-of-the-art multi-objective algorithms using established benchmarks and metrics. Simulation results demonstrated that CCPSO shows competitive, if not better, performance as compared to the other algorithms.
Multi-objective particle swarm optimization (MOPSO) is an optimization technique inspired by bird flocking, which has been steadily gaining attention from the research community because of its high convergence speed. On the other hand, in the face of increasing complexity and dimensionality of today's application coupled with its tendency of premature convergence due to the high convergence speeds, there is a need to improve the efficiency and effectiveness of MOPSO. In this paper a competitive and cooperative co-evolutionary approach is adapted for multi-objective particle swarm optimization algorithm design, which appears to have considerable potential for solving complex optimization problems by explicitly modeling the co-evolution of competing and cooperating species. The competitive and cooperative co-evolution model helps to produce the reasonable problem decompositions by exploiting any correlation, interdependency between components of the problem. The proposed competitive and cooperative co-evolutionary multi-objective particle swarm optimization algorithm (CCPSO) is validated through comparisons with existing state-of-the-art multi-objective algorithms using established benchmarks and metrics. Simulation results demonstrated that CCPSO shows competitive, if not better, performance as compared to the other algorithms. [PUBLICATION ABSTRACT]
Author Chiam, S.C.
Liu, D.S.
Tan, K.C.
Goh, C.K.
Author_xml – sequence: 1
  givenname: C.K.
  surname: Goh
  fullname: Goh, C.K.
  organization: Advanced Technology Centre, Rolls-Royce Singapore Pte Ltd, 50 Nanyang Avenue, Blk N2 B3C-05, Singapore 639798, Singapore
– sequence: 2
  givenname: K.C.
  surname: Tan
  fullname: Tan, K.C.
  email: eletankc@nus.edu.sg
  organization: Department of Electrical and Computer Engineering, National University of Singapore, 4, Engineering Drive 3, Singapore 117576, Singapore
– sequence: 3
  givenname: D.S.
  surname: Liu
  fullname: Liu, D.S.
  organization: Department of Electrical and Computer Engineering, National University of Singapore, 4, Engineering Drive 3, Singapore 117576, Singapore
– sequence: 4
  givenname: S.C.
  surname: Chiam
  fullname: Chiam, S.C.
  organization: Department of Electrical and Computer Engineering, National University of Singapore, 4, Engineering Drive 3, Singapore 117576, Singapore
BackLink http://www.econis.eu/PPNSET?PPN=625318897$$DView this record in ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften
http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22505587$$DView record in Pascal Francis
http://econpapers.repec.org/article/eeeejores/v_3a202_3ay_3a2010_3ai_3a1_3ap_3a42-54.htm$$DView record in RePEc
BookMark eNqNkk1r3DAQhk1JoZu0f6CXmkKP3o6k1dqGXkLoRyDQS3sWY3mclbElV9Ju2P76yuslhBxCBaMPeN53NCNdZhfWWcqy9wzWDNj2c7-m3vk1B6jXINcA8lW2YlXJi221hYtsBaIsC85Z-Sa7DKEHACaZXGWH61y7caJoojlQjrZNZzeRx9NZu4IObthH4yz6Y47T5B3qXR5dPu6HaArX9KRP7IQ-Gj1QHh7Qj7mbohnNX5ylOQ73zpu4G_OWgrm3b7PXHQ6B3p3Xq-z3t6-_bn4Udz-_395c3xVach4LxoRshRB1y4FqaoRssNuwWrAOUNYIYoMNo6rWQmDZIRN112BZNk3aIzFxlYnFd28nPD7gMKjJmzGVohiouXWqV3Pr1Nw6BVKl1iXVx0WViv2zpxBV7_beposmbMMkQAkJul0gTxPpR1tKI_lRUAclkANP8_G0SwkFmhQsxZRiw5XcqF0ck9enc0IMGofOo9UmPHpyLkHKqkzch4Uj7ewTYMulYFVVzwRfCO1dCJ66_6u3eibSJp4eLno0w8vSL-cbpVc8GPIqaENWU2t8-heqdeYl-T_9VdxL
CODEN EJORDT
CitedBy_id crossref_primary_10_32604_cmes_2023_026231
crossref_primary_10_1016_j_est_2022_106432
crossref_primary_10_1007_s00521_011_0736_x
crossref_primary_10_1080_19427867_2016_1204512
crossref_primary_10_3390_math11214406
crossref_primary_10_1109_TCYB_2018_2834466
crossref_primary_10_1109_TEVC_2018_2879078
crossref_primary_10_1109_TFUZZ_2015_2476516
crossref_primary_10_1007_s40031_018_0323_y
crossref_primary_10_1155_2010_838596
crossref_primary_10_3390_electronics12224639
crossref_primary_10_1007_s00500_016_2121_2
crossref_primary_10_1007_s13349_022_00575_3
crossref_primary_10_1007_s12293_015_0170_1
crossref_primary_10_1109_ACCESS_2020_2982251
crossref_primary_10_1155_2014_906147
crossref_primary_10_1016_j_ejor_2015_06_071
crossref_primary_10_17352_gje_000070
crossref_primary_10_1109_TEVC_2014_2301794
crossref_primary_10_3233_IDT_170288
crossref_primary_10_1016_j_asoc_2017_07_024
crossref_primary_10_1109_ACCESS_2020_3027008
crossref_primary_10_1002_er_3820
crossref_primary_10_1016_j_asoc_2013_07_029
crossref_primary_10_1016_j_ejor_2017_03_048
crossref_primary_10_1016_j_energy_2018_12_062
crossref_primary_10_1109_TEVC_2022_3144684
crossref_primary_10_1109_TSMCB_2012_2209115
crossref_primary_10_1016_j_asoc_2017_05_060
crossref_primary_10_1016_j_ejor_2016_01_043
crossref_primary_10_1007_s10489_014_0555_8
crossref_primary_10_1080_08839514_2014_862772
crossref_primary_10_3846_jcem_2020_12641
crossref_primary_10_1007_s00170_012_4014_6
crossref_primary_10_1016_j_asoc_2018_06_022
crossref_primary_10_1002_qua_25672
crossref_primary_10_1016_j_egyr_2021_07_015
crossref_primary_10_1016_j_ins_2010_07_013
crossref_primary_10_3390_a15100380
crossref_primary_10_3390_jmse10030420
crossref_primary_10_1016_j_enconman_2020_113661
crossref_primary_10_1109_TEVC_2014_2353672
crossref_primary_10_1109_TEVC_2022_3154057
crossref_primary_10_1162_EVCO_a_00066
crossref_primary_10_1016_j_neucom_2012_09_019
crossref_primary_10_1007_s42452_020_1972_4
crossref_primary_10_1016_j_engappai_2011_05_010
crossref_primary_10_1109_TSMC_2020_3034180
crossref_primary_10_1109_TCYB_2020_2986600
crossref_primary_10_3390_aerospace10090820
crossref_primary_10_1007_s10462_016_9463_0
crossref_primary_10_1016_j_ins_2012_12_013
crossref_primary_10_3390_app122111296
crossref_primary_10_1016_j_asoc_2014_04_042
crossref_primary_10_1109_TEVC_2020_2968743
crossref_primary_10_1016_j_ejor_2021_10_033
crossref_primary_10_1177_1748301816654020
crossref_primary_10_1007_s12652_020_02195_5
crossref_primary_10_1109_TCBB_2017_2652453
crossref_primary_10_1142_S0218001415590016
crossref_primary_10_1007_s40314_020_1131_y
crossref_primary_10_1016_j_eswa_2022_117029
crossref_primary_10_1016_j_ins_2014_09_010
crossref_primary_10_1371_journal_pone_0127833
crossref_primary_10_3390_mca27020023
crossref_primary_10_3390_su141912790
crossref_primary_10_1109_TII_2017_2676000
crossref_primary_10_1177_0142331211406603
crossref_primary_10_1016_j_rinp_2018_01_007
crossref_primary_10_1016_j_asoc_2018_01_028
crossref_primary_10_1109_TEVC_2012_2185702
crossref_primary_10_1002_spe_2784
crossref_primary_10_1007_s00170_015_7012_7
crossref_primary_10_1109_TEVC_2017_2767023
crossref_primary_10_1007_s00500_014_1346_1
crossref_primary_10_1016_j_eswa_2023_119554
crossref_primary_10_1016_j_knosys_2013_03_008
crossref_primary_10_3390_math10091384
crossref_primary_10_1109_ACCESS_2020_3001685
crossref_primary_10_1007_s10489_012_0405_5
crossref_primary_10_3390_app11188387
crossref_primary_10_1109_TEVC_2015_2433672
crossref_primary_10_1155_2015_904713
crossref_primary_10_2166_hydro_2017_040
crossref_primary_10_1007_s10732_018_9382_0
crossref_primary_10_1016_j_seta_2014_09_002
crossref_primary_10_4028_www_scientific_net_AMR_694_697_3526
crossref_primary_10_1016_j_asoc_2017_01_019
crossref_primary_10_1016_j_asoc_2019_105718
crossref_primary_10_1080_02533839_2018_1534559
crossref_primary_10_1016_j_swevo_2013_09_001
crossref_primary_10_3389_fchem_2019_00485
crossref_primary_10_1016_j_asoc_2015_04_002
crossref_primary_10_1016_j_eswa_2022_119145
crossref_primary_10_1080_0305215X_2018_1429602
crossref_primary_10_1016_j_cherd_2010_12_015
crossref_primary_10_1260_1748_3018_9_2_143
crossref_primary_10_1155_2015_126404
crossref_primary_10_1007_s00158_023_03639_0
crossref_primary_10_1109_TEVC_2016_2567648
crossref_primary_10_1109_TEVC_2018_2868770
crossref_primary_10_1007_s00170_012_4572_7
crossref_primary_10_1016_j_swevo_2013_02_002
crossref_primary_10_1016_j_asoc_2015_03_050
crossref_primary_10_1016_j_ins_2023_03_142
crossref_primary_10_1016_j_swevo_2011_03_001
crossref_primary_10_1155_2017_5193013
crossref_primary_10_1016_j_cie_2015_10_005
crossref_primary_10_1177_1077546314532116
crossref_primary_10_1177_0165551514550142
crossref_primary_10_1109_TCYB_2018_2836388
crossref_primary_10_1007_s00170_013_5267_4
crossref_primary_10_1061__ASCE_WR_1943_5452_0000824
crossref_primary_10_1109_TCYB_2020_3025577
crossref_primary_10_1038_s41598_023_41855_2
crossref_primary_10_1007_s10898_012_9973_5
crossref_primary_10_1109_TNNLS_2015_2404823
crossref_primary_10_1016_j_asoc_2016_12_011
crossref_primary_10_1080_0305215X_2010_508522
crossref_primary_10_3390_su14159156
crossref_primary_10_1007_s12469_017_0169_8
crossref_primary_10_1016_j_ins_2022_05_123
crossref_primary_10_1016_j_asoc_2014_08_069
crossref_primary_10_1016_j_isatra_2018_02_003
crossref_primary_10_2166_h2oj_2020_128
crossref_primary_10_1057_jors_2014_80
crossref_primary_10_1109_TCYB_2015_2490669
crossref_primary_10_1080_00207543_2021_1919780
crossref_primary_10_1016_j_engappai_2017_05_008
crossref_primary_10_1007_s00500_018_3509_y
crossref_primary_10_1007_s11276_018_01921_4
crossref_primary_10_1016_j_eswa_2021_116118
crossref_primary_10_1016_j_eswa_2022_118834
crossref_primary_10_1002_cjce_22353
crossref_primary_10_1016_j_asoc_2013_07_004
crossref_primary_10_1007_s00500_015_1637_1
crossref_primary_10_1117_1_JEI_28_2_021003
Cites_doi 10.1007/978-3-540-30217-9_78
10.1162/evco.1997.5.1.1
10.1016/j.ejor.2007.02.047
10.1016/j.ejor.2007.04.007
10.1162/106365600568086
10.1016/j.ejor.2007.05.036
10.1016/j.ejor.2006.08.005
10.1007/BFb0040810
10.1016/j.ejor.2007.06.032
10.1007/s10462-004-2902-3
10.1162/evco.1999.7.3.205
10.1007/3-540-36970-8_27
10.1007/978-3-540-24854-5_56
10.1109/TSMCB.2006.883270
10.1109/TEVC.2003.810733
10.1109/TEVC.2005.860762
10.1109/TEVC.2004.826069
10.1109/4235.974840
10.1016/j.ejor.2007.08.030
10.1613/jair.842
10.1016/j.ejor.2004.11.019
10.2514/6.1996-1535
10.1162/106365600568167
10.1109/4235.996017
10.1109/TEVC.2006.882428
10.1109/TEVC.2004.826067
10.1016/j.ejor.2005.12.029
10.1109/TEVC.2008.920671
ContentType Journal Article
Copyright 2009 Elsevier B.V.
2015 INIST-CNRS
Copyright Elsevier Sequoia S.A. Apr 1, 2010
Copyright_xml – notice: 2009 Elsevier B.V.
– notice: 2015 INIST-CNRS
– notice: Copyright Elsevier Sequoia S.A. Apr 1, 2010
DBID AAYXX
CITATION
OQ6
IQODW
DKI
X2L
7SC
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
DOI 10.1016/j.ejor.2009.05.005
DatabaseName CrossRef
ECONIS
Pascal-Francis
RePEc IDEAS
RePEc
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database

Database_xml – sequence: 1
  dbid: DKI
  name: RePEc IDEAS
  url: http://ideas.repec.org/
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Business
Applied Sciences
EISSN 1872-6860
EndPage 54
ExternalDocumentID oai:scholarbank.nus.edu.sg:10635/81848
1878944911
eeeejores_v_3a202_3ay_3a2010_3ai_3a1_3ap_3a42_54_htm
22505587
625318897
10_1016_j_ejor_2009_05_005
S0377221709003166
Genre Feature
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29G
4.4
41~
457
4G.
5GY
5VS
6OB
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
AAYOK
ABAOU
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADIYS
ADJOM
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AI.
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BKOMP
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HVGLF
HZ~
IHE
J1W
KOM
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
RXW
SCC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SSV
SSW
SSZ
T5K
TAE
TN5
U5U
VH1
WUQ
XPP
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
OQ6
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
02
08R
0R
1
41
6XO
8P
AAPBV
ABFLS
ADALY
DKI
G-
HZ
IPNFZ
K
M
MS
PQEST
STF
X
X2L
7SC
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
ID FETCH-LOGICAL-c522t-1135d3339d20e9eb35baf41931f0a59a034ab1e89c33a7fa139fba77bbfa1ae13
IEDL.DBID UNPAY
ISSN 0377-2217
1872-6860
IngestDate Tue Aug 26 13:33:02 EDT 2025
Fri Jul 25 05:50:30 EDT 2025
Wed Aug 18 03:50:56 EDT 2021
Mon Jul 21 09:14:20 EDT 2025
Sat Mar 08 16:20:37 EST 2025
Wed Oct 01 00:56:53 EDT 2025
Thu Apr 24 23:08:38 EDT 2025
Fri Feb 23 02:27:50 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Particle swarm optimization
Multi-objective optimization
Competitive–cooperative co-evolution
Dimensionality
Evolutionary algorithm
Multiobjective programming
Evolution equation
Modeling
Convergence speed
Vertebrata
Competitive-cooperative co-evolution
High speed
Problem solving
Swarm intelligence
Metric
Aves
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c522t-1135d3339d20e9eb35baf41931f0a59a034ab1e89c33a7fa139fba77bbfa1ae13
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
OpenAccessLink https://proxy.k.utb.cz/login?url=http://scholarbank.nus.edu.sg/handle/10635/81848
PQID 204150070
PQPubID 45678
PageCount 13
ParticipantIDs unpaywall_primary_10_1016_j_ejor_2009_05_005
proquest_journals_204150070
repec_primary_eeeejores_v_3a202_3ay_3a2010_3ai_3a1_3ap_3a42_54_htm
pascalfrancis_primary_22505587
econis_primary_625318897
crossref_primary_10_1016_j_ejor_2009_05_005
crossref_citationtrail_10_1016_j_ejor_2009_05_005
elsevier_sciencedirect_doi_10_1016_j_ejor_2009_05_005
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-04-01
PublicationDateYYYYMMDD 2010-04-01
PublicationDate_xml – month: 04
  year: 2010
  text: 2010-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationSeriesTitle European Journal of Operational Research
PublicationTitle European journal of operational research
PublicationYear 2010
Publisher Elsevier B.V
Elsevier
Elsevier Sequoia S.A
Publisher_xml – name: Elsevier B.V
– name: Elsevier
– name: Elsevier Sequoia S.A
References Liu, Tan, Huang, Goh, Ho (bib17) 2008; 190
Liu, Tan, Goh, Ho (bib16) 2007; 37
G. Venter, R.T. Haftka, A two species genetic algorithm for designing composite laminates subjected to uncertainty, in: Proceedings of 37th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 1996, pp. 1848–1857.
Goh, Tan (bib7) 2009; 13
C.A.C. Coello, M.R. Sierra, A co-evolutionary multi-objective evolutionary algorithm, in: Proceedings of 2003 Congress on Evolutionary Computation, vol. 1, 2003, pp. 482–489.
J.R. Scott, Fault tolerant design using single and multi-criteria genetic algorithms, Masters Thesis, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, 1995.
Fieldsend, Everson, Singh (bib5) 2003; 7
Tan, Lee, Khor (bib29) 2001; 5
Goh, Tan (bib6) 2007; 11
van den Bergh, Engelbrecht (bib30) 2004; 8
Neumann (bib36) 2007; 181
K. Maneeratana, K. Boonlong, N. Chaiyaratana, Multi-objective optimisation by co-operative co-evolution, in: Proceedings of Eighth International Conference on Parallel Problem Solving from Nature, 2004, pp. 772–781.
Rosin, Belew (bib22) 1997; 5
Tan, Chew, Lee (bib26) 2006; 172
Potter, De Jong (bib20) 2000; 8
J. Lohn, W.F. Kraus, G.L. Haith, Comparing a co-evolutionary genetic algorithm for multi-objective optimization, in: Proceedings of 2002 Congress on Evolutionary Computation, 2002, pp. 1157–1162.
Ishibuchi, Narukawa, Tsukamoto, Nojima (bib35) 2008; 188
Tan, Goh, Mamun, Ei (bib24) 2008; 187
Tan, Khor, Lee, Sathikannan (bib28) 2003; 18
Knowles, Corne (bib13) 2000; 8
Tan, Cheong, Goh (bib25) 2007; 177
A. Iorio, X. Li, A cooperative co-evolutionary multi-objective algorithm using non-dominated sorting, in: Proceedings of Genetic and Evolutionary Computation Conference 2004, Lecture Notes in Computer Science, 2004, pp. 537–548.
Tan, Yang, Goh (bib27) 2006; 10
S. Mostaghim, J. Teich, Strategies for finding good local guides in multi-objective particle swarm optimization (MOPSO), in: Proceedings of 2003 IEEE Swarm Intelligence Symposium, 2003, pp. 26–33.
Deb (bib3) 1999; 7
N. Keerativuttitumrong, N. Chaiyaratana, V. Varavithya, Multi-objective cooperative co-evolutionary genetic algorithm, in: Proceedings of Parallel Problem Solving From Nature VII, Lecture.
Tseng, Liao (bib33) 2008; 191
Coello, Lechuga (bib2) 2004; 8
V. Khare, X. Yao, K. Deb, Performance scaling of multi-objective evolutionary algorithms, in: Proceedings of the Second International Conference on Evolutionary Multi-criterion Optimization, 2003, pp. 376–390.
Lee, Chew, Teng, Chen (bib34) 2008; 189
E. Zitzler, M. Laumanns, L. Thiele, SPEA2: Improving the strength pareto evolutionary algorithm, Technical Report 103, Gloriastrasse 35, CH-8092 Zurich, Switzerland, 2001.
Deb, Pratap, Agarwal, Meyarivan (bib4) 2002; 6
Khor, Tan, Lee, Goh (bib12) 2005; 23
E.J. Hughes, Evolutionary many-objective optimisation: Many once or one many? in: Proceedings of 2005 IEEE Congress on Evolutionary Computation, vol. 1, 2005, pp. 222–227.
M.A. Potter, The design and analysis of a computational model of cooperative co-evolution, Ph.D. Thesis, George Mason University, 1997.
Y. Shi, R. Eberhart, Parameter selection in particle swarm optimization, in: Proceedings of the Seventh Annual Conference on Evolutionary Programming, 1998, pp. 591–601.
10.1016/j.ejor.2009.05.005_bib1
10.1016/j.ejor.2009.05.005_bib31
Deb (10.1016/j.ejor.2009.05.005_bib3) 1999; 7
10.1016/j.ejor.2009.05.005_bib8
Lee (10.1016/j.ejor.2009.05.005_bib34) 2008; 189
10.1016/j.ejor.2009.05.005_bib14
10.1016/j.ejor.2009.05.005_bib15
Ishibuchi (10.1016/j.ejor.2009.05.005_bib35) 2008; 188
Rosin (10.1016/j.ejor.2009.05.005_bib22) 1997; 5
10.1016/j.ejor.2009.05.005_bib10
10.1016/j.ejor.2009.05.005_bib32
10.1016/j.ejor.2009.05.005_bib11
Khor (10.1016/j.ejor.2009.05.005_bib12) 2005; 23
10.1016/j.ejor.2009.05.005_bib18
Knowles (10.1016/j.ejor.2009.05.005_bib13) 2000; 8
10.1016/j.ejor.2009.05.005_bib19
Tan (10.1016/j.ejor.2009.05.005_bib25) 2007; 177
Tseng (10.1016/j.ejor.2009.05.005_bib33) 2008; 191
Tan (10.1016/j.ejor.2009.05.005_bib27) 2006; 10
10.1016/j.ejor.2009.05.005_bib9
Tan (10.1016/j.ejor.2009.05.005_bib29) 2001; 5
Tan (10.1016/j.ejor.2009.05.005_bib26) 2006; 172
Deb (10.1016/j.ejor.2009.05.005_bib4) 2002; 6
Goh (10.1016/j.ejor.2009.05.005_bib7) 2009; 13
Tan (10.1016/j.ejor.2009.05.005_bib28) 2003; 18
Neumann (10.1016/j.ejor.2009.05.005_bib36) 2007; 181
Coello (10.1016/j.ejor.2009.05.005_bib2) 2004; 8
Tan (10.1016/j.ejor.2009.05.005_bib24) 2008; 187
Goh (10.1016/j.ejor.2009.05.005_bib6) 2007; 11
10.1016/j.ejor.2009.05.005_bib21
10.1016/j.ejor.2009.05.005_bib23
Liu (10.1016/j.ejor.2009.05.005_bib17) 2008; 190
Fieldsend (10.1016/j.ejor.2009.05.005_bib5) 2003; 7
Liu (10.1016/j.ejor.2009.05.005_bib16) 2007; 37
Potter (10.1016/j.ejor.2009.05.005_bib20) 2000; 8
van den Bergh (10.1016/j.ejor.2009.05.005_bib30) 2004; 8
References_xml – volume: 11
  start-page: 354
  year: 2007
  end-page: 381
  ident: bib6
  article-title: An investigation on noisy environments in evolutionary multiobjective optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– reference: Y. Shi, R. Eberhart, Parameter selection in particle swarm optimization, in: Proceedings of the Seventh Annual Conference on Evolutionary Programming, 1998, pp. 591–601.
– volume: 8
  start-page: 1
  year: 2000
  end-page: 29
  ident: bib20
  article-title: Cooperative co-evolution: An architecture for evolving coadapted subcomponents
  publication-title: Evolutionary Computation
– reference: A. Iorio, X. Li, A cooperative co-evolutionary multi-objective algorithm using non-dominated sorting, in: Proceedings of Genetic and Evolutionary Computation Conference 2004, Lecture Notes in Computer Science, 2004, pp. 537–548.
– reference: C.A.C. Coello, M.R. Sierra, A co-evolutionary multi-objective evolutionary algorithm, in: Proceedings of 2003 Congress on Evolutionary Computation, vol. 1, 2003, pp. 482–489.
– reference: E. Zitzler, M. Laumanns, L. Thiele, SPEA2: Improving the strength pareto evolutionary algorithm, Technical Report 103, Gloriastrasse 35, CH-8092 Zurich, Switzerland, 2001.
– reference: E.J. Hughes, Evolutionary many-objective optimisation: Many once or one many? in: Proceedings of 2005 IEEE Congress on Evolutionary Computation, vol. 1, 2005, pp. 222–227.
– volume: 188
  start-page: 57
  year: 2008
  end-page: 75
  ident: bib35
  article-title: An empirical study on similarity-based mating for evolutionary multiobjective combinatorial optimization
  publication-title: European Journal of Operational Research
– volume: 8
  start-page: 149
  year: 2000
  end-page: 172
  ident: bib13
  article-title: Approximating the nondominated front using Pareto archived evolutionary strategy
  publication-title: Evolutionary Computation
– volume: 172
  start-page: 855
  year: 2006
  end-page: 885
  ident: bib26
  article-title: A hybrid multiobjective evolutionary algorithm for solving truck and trailer vehicle routing problems
  publication-title: European Journal of Operational Research
– volume: 5
  start-page: 1
  year: 1997
  end-page: 29
  ident: bib22
  article-title: New methods for competitive co-evolution
  publication-title: Evolutionary Computation
– volume: 181
  start-page: 1620
  year: 2007
  end-page: 1629
  ident: bib36
  article-title: Expected runtimes of a simple evolutionary algorithm for the multi-objective minimum spanning tree problem
  publication-title: European Journal of Operational Research
– reference: V. Khare, X. Yao, K. Deb, Performance scaling of multi-objective evolutionary algorithms, in: Proceedings of the Second International Conference on Evolutionary Multi-criterion Optimization, 2003, pp. 376–390.
– reference: S. Mostaghim, J. Teich, Strategies for finding good local guides in multi-objective particle swarm optimization (MOPSO), in: Proceedings of 2003 IEEE Swarm Intelligence Symposium, 2003, pp. 26–33.
– reference: M.A. Potter, The design and analysis of a computational model of cooperative co-evolution, Ph.D. Thesis, George Mason University, 1997.
– volume: 177
  start-page: 813
  year: 2007
  end-page: 839
  ident: bib25
  article-title: Solving multiobjective vehicle routing problem with stochastic demand via evolutionary computation
  publication-title: European Journal of Operational Research
– volume: 13
  start-page: 103
  year: 2009
  end-page: 127
  ident: bib7
  article-title: A competitive–cooperative coevolutionary paradigm for dynamic multi-objective optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 37
  start-page: 42
  year: 2007
  end-page: 50
  ident: bib16
  article-title: A multiobjective memetic algorithm based on particle swarm optimization
  publication-title: IEEE Transactions on Systems, Man and Cybernetics: Part B (Cybernetics)
– volume: 190
  start-page: 357
  year: 2008
  end-page: 382
  ident: bib17
  article-title: On solving multiobjective bin packing problems using evolutionary particle swarm optimization
  publication-title: European Journal of Operational Research
– volume: 191
  start-page: 360
  year: 2008
  end-page: 373
  ident: bib33
  article-title: A discrete particle swarm optimization for lot-streaming flowshop scheduling problem
  publication-title: European Journal of Operational Research
– volume: 10
  start-page: 527
  year: 2006
  end-page: 549
  ident: bib27
  article-title: A distributed cooperative co-evolutionary algorithm for multi-objective optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 23
  start-page: 31
  year: 2005
  end-page: 56
  ident: bib12
  article-title: A study on distribution preservation mechanism in evolutionary multi-objective optimization
  publication-title: Artificial Intelligence Review
– volume: 5
  start-page: 565
  year: 2001
  end-page: 588
  ident: bib29
  article-title: Evolutionary algorithms with dynamic population and local exploration for multiobjective optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– reference: J. Lohn, W.F. Kraus, G.L. Haith, Comparing a co-evolutionary genetic algorithm for multi-objective optimization, in: Proceedings of 2002 Congress on Evolutionary Computation, 2002, pp. 1157–1162.
– volume: 7
  start-page: 305
  year: 2003
  end-page: 323
  ident: bib5
  article-title: Using unconstrained elite archives for multiobjective optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– reference: G. Venter, R.T. Haftka, A two species genetic algorithm for designing composite laminates subjected to uncertainty, in: Proceedings of 37th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 1996, pp. 1848–1857.
– volume: 18
  start-page: 183
  year: 2003
  end-page: 215
  ident: bib28
  article-title: An evolutionary algorithm with advanced goal and priority specification for multiobjective optimization
  publication-title: Journal of Artificial Intelligence Research
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: bib4
  article-title: A fast and elitist multi-objective genetic algorithm: NSGA-II
  publication-title: IEEE Transactions on Evolutionary Computation
– reference: N. Keerativuttitumrong, N. Chaiyaratana, V. Varavithya, Multi-objective cooperative co-evolutionary genetic algorithm, in: Proceedings of Parallel Problem Solving From Nature VII, Lecture.
– reference: J.R. Scott, Fault tolerant design using single and multi-criteria genetic algorithms, Masters Thesis, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, 1995.
– volume: 7
  start-page: 205
  year: 1999
  end-page: 230
  ident: bib3
  article-title: Multi-objective genetic algorithms: Problem difficulties and construction of test problem
  publication-title: Evolutionary Computation
– volume: 189
  start-page: 476
  year: 2008
  end-page: 491
  ident: bib34
  article-title: Multi-objective simulation-based evolutionary algorithm for an aircraft spare parts allocation problem
  publication-title: European Journal of Operational Research
– volume: 8
  start-page: 225
  year: 2004
  end-page: 239
  ident: bib30
  article-title: A cooperative approach to particle swarm optimization
  publication-title: IEEE Transaction on Evolutionary Computation
– volume: 8
  start-page: 256
  year: 2004
  end-page: 279
  ident: bib2
  article-title: Handling multiple objectives with particle swarm optimization
  publication-title: IEEE Transaction on Evolutionary Computation
– volume: 187
  start-page: 371
  year: 2008
  end-page: 392
  ident: bib24
  article-title: An evolutionary artificial immune system for multi-objective optimization
  publication-title: European Journal of Operational Research
– reference: K. Maneeratana, K. Boonlong, N. Chaiyaratana, Multi-objective optimisation by co-operative co-evolution, in: Proceedings of Eighth International Conference on Parallel Problem Solving from Nature, 2004, pp. 772–781.
– ident: 10.1016/j.ejor.2009.05.005_bib18
  doi: 10.1007/978-3-540-30217-9_78
– volume: 5
  start-page: 1
  issue: 1
  year: 1997
  ident: 10.1016/j.ejor.2009.05.005_bib22
  article-title: New methods for competitive co-evolution
  publication-title: Evolutionary Computation
  doi: 10.1162/evco.1997.5.1.1
– volume: 187
  start-page: 371
  issue: 2
  year: 2008
  ident: 10.1016/j.ejor.2009.05.005_bib24
  article-title: An evolutionary artificial immune system for multi-objective optimization
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2007.02.047
– volume: 188
  start-page: 57
  issue: 1
  year: 2008
  ident: 10.1016/j.ejor.2009.05.005_bib35
  article-title: An empirical study on similarity-based mating for evolutionary multiobjective combinatorial optimization
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2007.04.007
– volume: 8
  start-page: 1
  issue: 1
  year: 2000
  ident: 10.1016/j.ejor.2009.05.005_bib20
  article-title: Cooperative co-evolution: An architecture for evolving coadapted subcomponents
  publication-title: Evolutionary Computation
  doi: 10.1162/106365600568086
– volume: 189
  start-page: 476
  issue: 2
  year: 2008
  ident: 10.1016/j.ejor.2009.05.005_bib34
  article-title: Multi-objective simulation-based evolutionary algorithm for an aircraft spare parts allocation problem
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2007.05.036
– volume: 181
  start-page: 1620
  issue: 3
  year: 2007
  ident: 10.1016/j.ejor.2009.05.005_bib36
  article-title: Expected runtimes of a simple evolutionary algorithm for the multi-objective minimum spanning tree problem
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2006.08.005
– ident: 10.1016/j.ejor.2009.05.005_bib23
  doi: 10.1007/BFb0040810
– volume: 190
  start-page: 357
  issue: 2
  year: 2008
  ident: 10.1016/j.ejor.2009.05.005_bib17
  article-title: On solving multiobjective bin packing problems using evolutionary particle swarm optimization
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2007.06.032
– ident: 10.1016/j.ejor.2009.05.005_bib32
– volume: 23
  start-page: 31
  issue: 1
  year: 2005
  ident: 10.1016/j.ejor.2009.05.005_bib12
  article-title: A study on distribution preservation mechanism in evolutionary multi-objective optimization
  publication-title: Artificial Intelligence Review
  doi: 10.1007/s10462-004-2902-3
– volume: 7
  start-page: 205
  issue: 3
  year: 1999
  ident: 10.1016/j.ejor.2009.05.005_bib3
  article-title: Multi-objective genetic algorithms: Problem difficulties and construction of test problem
  publication-title: Evolutionary Computation
  doi: 10.1162/evco.1999.7.3.205
– ident: 10.1016/j.ejor.2009.05.005_bib11
  doi: 10.1007/3-540-36970-8_27
– ident: 10.1016/j.ejor.2009.05.005_bib9
  doi: 10.1007/978-3-540-24854-5_56
– volume: 37
  start-page: 42
  issue: 1
  year: 2007
  ident: 10.1016/j.ejor.2009.05.005_bib16
  article-title: A multiobjective memetic algorithm based on particle swarm optimization
  publication-title: IEEE Transactions on Systems, Man and Cybernetics: Part B (Cybernetics)
  doi: 10.1109/TSMCB.2006.883270
– ident: 10.1016/j.ejor.2009.05.005_bib15
– ident: 10.1016/j.ejor.2009.05.005_bib1
– volume: 7
  start-page: 305
  issue: 3
  year: 2003
  ident: 10.1016/j.ejor.2009.05.005_bib5
  article-title: Using unconstrained elite archives for multiobjective optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2003.810733
– volume: 10
  start-page: 527
  issue: 5
  year: 2006
  ident: 10.1016/j.ejor.2009.05.005_bib27
  article-title: A distributed cooperative co-evolutionary algorithm for multi-objective optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2005.860762
– volume: 8
  start-page: 225
  issue: 3
  year: 2004
  ident: 10.1016/j.ejor.2009.05.005_bib30
  article-title: A cooperative approach to particle swarm optimization
  publication-title: IEEE Transaction on Evolutionary Computation
  doi: 10.1109/TEVC.2004.826069
– ident: 10.1016/j.ejor.2009.05.005_bib19
– volume: 5
  start-page: 565
  issue: 6
  year: 2001
  ident: 10.1016/j.ejor.2009.05.005_bib29
  article-title: Evolutionary algorithms with dynamic population and local exploration for multiobjective optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/4235.974840
– volume: 191
  start-page: 360
  issue: 2
  year: 2008
  ident: 10.1016/j.ejor.2009.05.005_bib33
  article-title: A discrete particle swarm optimization for lot-streaming flowshop scheduling problem
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2007.08.030
– volume: 18
  start-page: 183
  year: 2003
  ident: 10.1016/j.ejor.2009.05.005_bib28
  article-title: An evolutionary algorithm with advanced goal and priority specification for multiobjective optimization
  publication-title: Journal of Artificial Intelligence Research
  doi: 10.1613/jair.842
– volume: 172
  start-page: 855
  year: 2006
  ident: 10.1016/j.ejor.2009.05.005_bib26
  article-title: A hybrid multiobjective evolutionary algorithm for solving truck and trailer vehicle routing problems
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2004.11.019
– ident: 10.1016/j.ejor.2009.05.005_bib31
  doi: 10.2514/6.1996-1535
– ident: 10.1016/j.ejor.2009.05.005_bib21
– ident: 10.1016/j.ejor.2009.05.005_bib8
– volume: 8
  start-page: 149
  issue: 2
  year: 2000
  ident: 10.1016/j.ejor.2009.05.005_bib13
  article-title: Approximating the nondominated front using Pareto archived evolutionary strategy
  publication-title: Evolutionary Computation
  doi: 10.1162/106365600568167
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 10.1016/j.ejor.2009.05.005_bib4
  article-title: A fast and elitist multi-objective genetic algorithm: NSGA-II
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/4235.996017
– volume: 11
  start-page: 354
  issue: 3
  year: 2007
  ident: 10.1016/j.ejor.2009.05.005_bib6
  article-title: An investigation on noisy environments in evolutionary multiobjective optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2006.882428
– ident: 10.1016/j.ejor.2009.05.005_bib14
– volume: 8
  start-page: 256
  issue: 3
  year: 2004
  ident: 10.1016/j.ejor.2009.05.005_bib2
  article-title: Handling multiple objectives with particle swarm optimization
  publication-title: IEEE Transaction on Evolutionary Computation
  doi: 10.1109/TEVC.2004.826067
– volume: 177
  start-page: 813
  year: 2007
  ident: 10.1016/j.ejor.2009.05.005_bib25
  article-title: Solving multiobjective vehicle routing problem with stochastic demand via evolutionary computation
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2005.12.029
– volume: 13
  start-page: 103
  issue: 1
  year: 2009
  ident: 10.1016/j.ejor.2009.05.005_bib7
  article-title: A competitive–cooperative coevolutionary paradigm for dynamic multi-objective optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2008.920671
– ident: 10.1016/j.ejor.2009.05.005_bib10
SSID ssj0001515
Score 2.4527268
Snippet Multi-objective particle swarm optimization (MOPSO) is an optimization technique inspired by bird flocking, which has been steadily gaining attention from the...
SourceID unpaywall
proquest
repec
pascalfrancis
econis
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 42
SubjectTerms Applied sciences
Competition
Competitive–cooperative co-evolution
Cooperation
Decision theory. Utility theory
Efficiency
Exact sciences and technology
Multi-objective optimization
Multi-objective optimization Particle swarm optimization Competitive-cooperative co-evolution
Operational research and scientific management
Operational research. Management science
Optimization algorithms
Optimization techniques
Particle swarm optimization
Simulation
Studies
SummonAdditionalLinks – databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  dbid: AIKHN
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db5swED91ybStmvaRtSrrVvlhbxsKYMzHY1atyjatL1ulvlk2mDZRAghoqvz3O4NB5aWaFsmRE2ETfMfd78jPdwCfROrLNJSovJT6tq8YtYWMpJ0EkctUKLw007uRf10Gyyv_xzW7PoDzfi-MplUa29_Z9NZam2_mZjXn5Wo1_-1QRIaIqB39MM4NgicwRf8TRROYLr7_XF4OBln77PbPhDC09QCzd6ajeal1UZm0lfrpChv5p6c6KF3VI0f1shQ1Ll_W1b0YAdNppUqVHMLzu7wU-3ux2TzwVRdv4JUBmWTRXcdbOFD5DJ71HPcZvO5rORBza8_g8EFiwnewW5CkBdQts4iIPMXPRam6NOHYt9XO6Kyo9qRPTE6agrQMRbuQ686SktKsJqnvRbUlBZqordn7ScTmpqhWze2WpC2R5AiuLr79OV_apkKDnSBua2zXpSxFKcep56gY43ImReYjJnQzR7BYONQX0lVRnFAqwkwg3MykCEMpsS-US49hkhe5OgGiI8cYsY3UCWSkdKRyAs_HYUHmpRhIW-D2cuGJSV-uq2hseM9TW3MtS11XM-YO4yhLCz4PY8ouecejR5904h6OxdgQTV4UhxawXgH4SDs5Op5Hpzwbacsws6eRJ4tw4tNefbgxHjVOgKhK52Gy4GurUcMwhS88har5jlPhOR6-79se_gYqVthcbCU23-PM57fN1oIvgzr-wyq8_89LPYUXHbFCk5o-wKSp7tRHxGuNPDP341-LLz6e
  priority: 102
  providerName: Elsevier
Title A competitive and cooperative co-evolutionary approach to multi-objective particle swarm optimization algorithm design
URI https://dx.doi.org/10.1016/j.ejor.2009.05.005
http://www.econis.eu/PPNSET?PPN=625318897
http://econpapers.repec.org/article/eeeejores/v_3a202_3ay_3a2010_3ai_3a1_3ap_3a42-54.htm
https://www.proquest.com/docview/204150070
http://scholarbank.nus.edu.sg/handle/10635/81848
UnpaywallVersion submittedVersion
Volume 202
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1872-6860
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001515
  issn: 0377-2217
  databaseCode: ACRLP
  dateStart: 19950105
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1872-6860
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001515
  issn: 0377-2217
  databaseCode: AIKHN
  dateStart: 19950105
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1872-6860
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001515
  issn: 0377-2217
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-6860
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001515
  issn: 0377-2217
  databaseCode: AKRWK
  dateStart: 19770101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFD7aWgRMiEEBrQwqP_AG6XJzLo_lMnVMVCBRaTxZduJs7dokStJO5YHfzknsVKuQplHJlSPZTpt-Oec76fF3AN7x2BWxLxC8juMarqSOwUUgjMgLLCp9bsdJvRv528QbT92vF_RiD9oiiDqiEzy9HqYrpSRYXp4oxQG8w9E9nqCLcYN96HoU2XcHutPJ99Gv5s8C3zdsuymyawW-bXiBZ-p9MiqlS86zQktU1k9S6I4velAHoLNyxyk9yXmJlypRNS52SGi3kLmMDuDRKs355oYvFrf80ukh_Gh396h0lOvhqhLD6Pe_Yo_3_srP4KkmqWSkUPUc9mTag4dtjnwPDttaEESbhh4c3BI2fAHrEYkaQt5kJhE8CR5nuVQy49g35Fpjnhcb0gqbkyojTYajkYm5ssQk19gm5Q0vliRDE7fUe0cJX1xmxay6WpK4SUR5CdPTLz8_jQ1d4cGIkPdVhmU5NEaUhLFtyhDjeip44iKntBKT05CbjsuFJYMwchzuJxzpaiK47wuBfS4t5xV00iyVR0DqyDNEbiRqARohTCFNz3ZxmpfYMQbifbDa35pFWv68rsKxYG2e25zV-KjrcobMpAzx0Yf32zm5Ev-4c_SRgtB2LMaWaDKD0O8DbUHFNLNRjIWh47pzycEOArcr2zVzpQEufNxCkmnjU-ICyMpqHac-fGxQup0m8YWnkCVbM4fbpo3vm6aHn8HhM2wWthybazPqsqtq2YcPW4jf4yq8_r_hx_BY5WPUuVBvoFMVK_kWaV4lBrA__GMNoDs6Ox9P8Ojz-dlA3-1_AednU_g
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NDTEmxEcBLQyGH3iD0CSO8_E4JqYC217YpL1ZduKwVG0SJVmnvvC3c06csL5MiEqunMh2Gvty97v05zuADyL1ZRpKFF5KfdtXjNpCRtJOgshlKhRemundyGfnwezS_37FrrbgeNgLo2mVRvf3Or3T1ubM1MzmtMrz6U-HIjJERO3ol3FuEDyAHZ95ofbAPv_-y_PQFrv7KyEMbd3c7JzpSV5qXtYmaKV-t8I2rNND7ZLmzYaZelKJBicv67NebMDSnVpVKtmD3ZuiEutbsVjcsVQnz-GpgZjkqL-LF7Cligk8GhjuE3g2ZHIg5sGewN6dsIQvYXVEkg5Od7wiIooUj8tK9UHCsW6rlZFYUa_JEJactCXp-Il2Kee9HiWVmUvS3Ip6SUpUUEuz85OIxa-yztvrJUk7GskruDz5enE8s01-BjtB1NbarktZimscp56jYvTKmRSZj4jQzRzBYuFQX0hXRXFCqQgzgWAzkyIMpcS6UC59DdtFWah9INpvjBHZSB0-RkpHKifwfOwWZF6KbrQF7rAuPDHBy3UOjQUfWGpzrtdSZ9WMucM4rqUFH8c-VR-6497W-_1yj23RM0SFF8WhBWwQAL4hmxzNzr1DHm5Iyziyp3Eni3Dgg0F8uFEdDQ6AmEpHYbLgSydRYzeFH7yEaviKU-E5Hn6vuxr-BipyLC6WCovvcebz63ZpwadRHP9hFt78562-h93ZxdkpP_12_uMAHvcUC01vegvbbX2j3iFya-Vh92T-AbbwQGQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED6NFgETYtCBFgaTH3iDdPnl_HgsiGlCYgKJSuPJshNna9cmUZJ2Kn8959ipViFNo5IrR7KdNvly9117_g7gA88CkUUCwev7gR1I6ttcxMJOw9ilMuJelqvdyN8vwvNp8O2SXu5BXwTRRHSCFzfjYqWVBJurU604gE84usdTdDFB_AiGIUX2PYDh9OLH5Hf3Z0EU2Z7XFdl148izwzh0zD4ZndIl52VtJCrVLyl0xxc9VgHorNlxSs8r3uClynWNix0SOqxlJdN9eLoqKr655YvFHb90dgA_-909Oh3lZrxqxTj986_Y44O_8kt4YUgqmWhUvYI9WYzgSZ8jP4KDvhYEMaZhBPt3hA0PYT0haUfIu8wkgifB47KSWmYc-7ZcG8zzekN6YXPSlqTLcLRLMdeWmFQG26S55fWSlGjilmbvKOGLq7KetddLknWJKK9hevb115dz21R4sFPkfa3tuj7NECVJ5jkywbieCp4HyCnd3OE04Y4fcOHKOEl9n0c5R7qaCx5FQmCfS9d_A4OiLOQREBV5JsiNhBKgEcIR0gm9AKeFuZdhIG6B299rlhr5c1WFY8H6PLc5U_hQdTkT5lCG-LDg43ZOpcU_7h19pCG0HYuxJZrMOIksoD2omGE2mrEwdFz3Lnmyg8Dtyp5irjTGhY97SDJjfBpcAFmZ0nGy4HOH0u00iS88hWzYmvncczx833Q9_Aw-n2FzsVXYAo_RgF23Sws-bSH-gKvw9v-GH8MznY-hcqHewaCtV_I90rxWnJgn-y-CWVBz
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+competitive+and+cooperative+co-evolutionary+approach+to+multi-objective+particle+swarm+optimization+algorithm+design&rft.jtitle=European+journal+of+operational+research&rft.au=Chiam%2C+S.C&rft.au=Tan%2C+K.C&rft.au=Goh%2C+C.K&rft.au=Liu%2C+D.S&rft.series=European+Journal+of+Operational+Research&rft.date=2010-04-01&rft.pub=Elsevier&rft.issn=0377-2217&rft.eissn=1872-6860&rft.volume=202&rft.issue=1&rft.spage=42&rft.epage=54&rft_id=info:doi/10.1016%2Fj.ejor.2009.05.005&rft.externalDocID=eeeejores_v_3a202_3ay_3a2010_3ai_3a1_3ap_3a42_54_htm
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-2217&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-2217&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-2217&client=summon