Cancer adjuvant chemotherapy prediction model for non-small cell lung cancer
Non-small cell lung cancer (NSCLC) is the most popular and dangerous type of lung cancer. Adjuvant chemotherapy (ACT) is the main treatment after surgery resection to prevent the patient from cancer recurrence. However, ACT could be toxic and unhelpful in some cases. Therefore, it is highly desired...
Saved in:
| Published in | IET systems biology Vol. 13; no. 3; pp. 129 - 135 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
England
The Institution of Engineering and Technology
01.06.2019
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1751-8849 1751-8857 1751-8857 |
| DOI | 10.1049/iet-syb.2018.5060 |
Cover
| Abstract | Non-small cell lung cancer (NSCLC) is the most popular and dangerous type of lung cancer. Adjuvant chemotherapy (ACT) is the main treatment after surgery resection to prevent the patient from cancer recurrence. However, ACT could be toxic and unhelpful in some cases. Therefore, it is highly desired in clinical applications to predict the treatment outcomes of chemotherapy. Conventional methods of predicting cancer treatment rely solely on histopathology and the results are not reliable in some cases. This study aims at building a predictive model to identify who needs ACT treatment and who should avoid it. To this end, the authors propose an innovative method to identify NSCLC-related prognostic genes from microarray gene-expression datasets. They also propose a new model using gene-expression programming algorithm for ACT classification. The proposed model was evaluated on integrated microarray datasets from four institutes and compared with four representative methods: general regression neural network, decision tree, support vector machine and naive Bayes. Evaluation results demonstrated the effectiveness of the proposed model with accuracy 89.8% which is higher than other representative models. They obtained four probes (four genes) that can get good prediction results. These genes are 204891_s_at (LCK), 208893_s_at (DUSP6), 202454_s_at (ERBB3) and 201076_at (MMD). |
|---|---|
| AbstractList | Non-small cell lung cancer (NSCLC) is the most popular and dangerous type of lung cancer. Adjuvant chemotherapy (ACT) is the main treatment after surgery resection to prevent the patient from cancer recurrence. However, ACT could be toxic and unhelpful in some cases. Therefore, it is highly desired in clinical applications to predict the treatment outcomes of chemotherapy. Conventional methods of predicting cancer treatment rely solely on histopathology and the results are not reliable in some cases. This study aims at building a predictive model to identify who needs ACT treatment and who should avoid it. To this end, the authors propose an innovative method to identify NSCLC-related prognostic genes from microarray gene-expression datasets. They also propose a new model using gene-expression programming algorithm for ACT classification. The proposed model was evaluated on integrated microarray datasets from four institutes and compared with four representative methods: general regression neural network, decision tree, support vector machine and naive Bayes. Evaluation results demonstrated the effectiveness of the proposed model with accuracy 89.8% which is higher than other representative models. They obtained four probes (four genes) that can get good prediction results. These genes are 204891_s_at (LCK), 208893_s_at (DUSP6), 202454_s_at (ERBB3) and 201076_at (MMD).Non-small cell lung cancer (NSCLC) is the most popular and dangerous type of lung cancer. Adjuvant chemotherapy (ACT) is the main treatment after surgery resection to prevent the patient from cancer recurrence. However, ACT could be toxic and unhelpful in some cases. Therefore, it is highly desired in clinical applications to predict the treatment outcomes of chemotherapy. Conventional methods of predicting cancer treatment rely solely on histopathology and the results are not reliable in some cases. This study aims at building a predictive model to identify who needs ACT treatment and who should avoid it. To this end, the authors propose an innovative method to identify NSCLC-related prognostic genes from microarray gene-expression datasets. They also propose a new model using gene-expression programming algorithm for ACT classification. The proposed model was evaluated on integrated microarray datasets from four institutes and compared with four representative methods: general regression neural network, decision tree, support vector machine and naive Bayes. Evaluation results demonstrated the effectiveness of the proposed model with accuracy 89.8% which is higher than other representative models. They obtained four probes (four genes) that can get good prediction results. These genes are 204891_s_at (LCK), 208893_s_at (DUSP6), 202454_s_at (ERBB3) and 201076_at (MMD). Non‐small cell lung cancer (NSCLC) is the most popular and dangerous type of lung cancer. Adjuvant chemotherapy (ACT) is the main treatment after surgery resection to prevent the patient from cancer recurrence. However, ACT could be toxic and unhelpful in some cases. Therefore, it is highly desired in clinical applications to predict the treatment outcomes of chemotherapy. Conventional methods of predicting cancer treatment rely solely on histopathology and the results are not reliable in some cases. This study aims at building a predictive model to identify who needs ACT treatment and who should avoid it. To this end, the authors propose an innovative method to identify NSCLC‐related prognostic genes from microarray gene‐expression datasets. They also propose a new model using gene‐expression programming algorithm for ACT classification. The proposed model was evaluated on integrated microarray datasets from four institutes and compared with four representative methods: general regression neural network, decision tree, support vector machine and naive Bayes. Evaluation results demonstrated the effectiveness of the proposed model with accuracy 89.8% which is higher than other representative models. They obtained four probes (four genes) that can get good prediction results. These genes are 204891_s_at (LCK), 208893_s_at (DUSP6), 202454_s_at (ERBB3) and 201076_at (MMD). |
| Author | Hou, Jingyu Azzawi, Hasseeb Alanni, Russul Xiang, Yong |
| AuthorAffiliation | 1 School of Information Technology, Deakin University Burwood Australia |
| AuthorAffiliation_xml | – name: 1 School of Information Technology, Deakin University Burwood Australia |
| Author_xml | – sequence: 1 givenname: Russul surname: Alanni fullname: Alanni, Russul email: ralanni@deakin.edu.au organization: School of Information Technology, Deakin University, Burwood, Australia – sequence: 2 givenname: Jingyu surname: Hou fullname: Hou, Jingyu organization: School of Information Technology, Deakin University, Burwood, Australia – sequence: 3 givenname: Hasseeb surname: Azzawi fullname: Azzawi, Hasseeb organization: School of Information Technology, Deakin University, Burwood, Australia – sequence: 4 givenname: Yong surname: Xiang fullname: Xiang, Yong organization: School of Information Technology, Deakin University, Burwood, Australia |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31170692$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkc1u1DAUhS1URH_gAdigLGGR4dqJY4cFUjtqodJILCgLVpbHuelklNjBTlrl7XFIKQWhwsa25POdc318TA6ss0jISworCnn5tsEhDdN2xYDKFYcCnpAjKjhNpeTi4P6cl4fkOIQ9AOcFh2fkMKNUQFGyI7JZa2vQJ7rajzfaDonZYeeGHXrdT0nvsWrM0DibdK7CNqmdT-IQaeh02yYG49KO9joxP1yek6e1bgO-uNtPyJeL86v1x3Tz6cPl-nSTGs4YpJUUTAtaaChyY3iNkHPJWMGRlVtZVyBZmZla60psodIsL3UGgAwzLqWoMTshbPEdba-n2ziK6n3TaT8pCmquRsVqVKxGzdWouZoIvV-gftx2WBm0g9e_QKcb9fuNbXbq2t0oWUhBBYsGr-8MvPs2YhhU14S5Am3RjUHFF8iSA-RFlL56mHUf8rP3KKCLwHgXgsf6vx4g_mBMM-j5c-K4Tfso-W4hb5sWp39Hqc9fz9jZBQBkM5wu8Czbu9Hb-LWPhr35i_7y_Gp2fZDRV3X2HbTk2fY |
| CitedBy_id | crossref_primary_10_1186_s12859_019_3161_2 crossref_primary_10_1039_C9BM01575B crossref_primary_10_1080_23270012_2020_1811789 |
| Cites_doi | 10.1016/j.procs.2012.09.102 10.1016/S0140-6736(03)12775-4 10.1093/nar/gki033 10.1007/978-3-319-69179-4_38 10.1038/s41598-017-13773-7 10.1016/j.artmed.2011.06.008 10.1016/j.procs.2013.09.289 10.1118/1.3679017 10.1158/1078-0432.CCR-12-2321 10.1016/j.compbiomed.2014.02.006 10.1109/ICNC.2011.6022091 10.1016/j.procs.2013.09.285 10.4048/jbc.2012.15.2.230 10.1145/1656274.1656278 10.1109/ICIS.2018.8466448 10.1007/978-3-642-22709-7_27 10.3844/jcssp.2014.2232.2239 10.1109/TNB.2009.2035284 10.1049/iet-syb.2016.0033 10.1049/iet-syb.2015.0082 10.1093/nar/gku1055 10.1007/s11684-013-0272-4 10.1109/72.97934 10.1371/journal.pone.0125517 10.1109/TNB.2005.853657 10.1371/journal.pone.0010312 10.1038/nm.1790 10.1039/C4MB00659C 10.1378/chest.12-2359 10.1016/S0034-4257(03)00132-9 10.1128/AEM.00062-07 10.1186/1745-6150-7-33 |
| ContentType | Journal Article |
| Copyright | The Institution of Engineering and Technology 2020 The Institution of Engineering and Technology |
| Copyright_xml | – notice: The Institution of Engineering and Technology – notice: 2020 The Institution of Engineering and Technology |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM ADTOC UNPAY |
| DOI | 10.1049/iet-syb.2018.5060 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1751-8857 |
| EndPage | 135 |
| ExternalDocumentID | 10.1049/iet-syb.2018.5060 PMC8687172 31170692 10_1049_iet_syb_2018_5060 SYB2BF00030 |
| Genre | article Journal Article |
| GroupedDBID | - 0R 24P 29I 3V. 4.4 5GY 6IK 7X7 88E 8AL 8FE 8FG 8FH 8FI 8FJ AAJGR ABJCF ABUWG ACGFS ACIWK ACPRK ADBBV AENEX AFKRA AHMBA ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BBAFP BBNVY BENPR BFFAM BGLVJ BHPHI BPHCQ BVXVI CS3 DU5 DWQXO EBS EJD F5P FYUFA GNUQQ HCIFZ HZ IFIPE IPLJI JAVBF K6V K7- L6V LAI LK8 LOTEE LXI LXU M0N M1P M43 M7P M7S NADUK NXXTH O9- OCL P62 PQEST PQQKQ PQUKI PRINS PROAC PSQYO PTHSS RIE RNS RUI SJN UNMZH UNR ZZ --- .DC 0R~ 0ZK 1OC AAHHS AAHJG ABMDY ABQXS ACCFJ ACCMX ACESK ACGFO ACXQS ADEYR ADZOD AEEZP AEGXH AEQDE AIWBW AJBDE ALIPV ALUQN AVUZU CCPQU GROUPED_DOAJ HMCUK HZ~ IAO IGS IHR ITC MCNEO OK1 ROL RPM UKHRP ~ZZ AAMMB AAYXX AEFGJ AFFHD AGXDD AIDQK AIDYY CITATION IDLOA PHGZM PHGZT PJZUB PPXIY PQGLB WIN CGR CUY CVF ECM EIF NPM 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c5220-d872a716a064cc5fe04582265e29b8fd08293cfaad7b0da249a300e2e35887fe3 |
| IEDL.DBID | UNPAY |
| ISSN | 1751-8849 1751-8857 |
| IngestDate | Thu Oct 30 05:55:10 EDT 2025 Thu Aug 21 18:25:10 EDT 2025 Wed Oct 01 14:52:34 EDT 2025 Mon Jul 21 05:46:10 EDT 2025 Wed Oct 29 21:25:59 EDT 2025 Thu Apr 24 23:13:05 EDT 2025 Wed Jan 22 16:31:06 EST 2025 Tue Jan 05 21:45:35 EST 2021 Sat Jun 08 12:10:50 EDT 2019 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | adjuvant chemotherapy cancer treatment cellular biophysics integrated microarray datasets regression analysis ACT classification representative models NSCLC-related prognostic genes decision tree genetics surgery resection microarray gene-expression datasets microarray gene-expression technology NSCLC treatment support vector machines nonsmall cell lung cancer cancer ACT prediction model lung support vector machine survival time conventional methods ACT information cancer recurrence decision trees biochemistry naive Bayes cancer Bayes methods general regression neural network gene-expression programming algorithm medical computing neural nets surgery ACT treatment |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5220-d872a716a064cc5fe04582265e29b8fd08293cfaad7b0da249a300e2e35887fe3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ietresearch.onlinelibrary.wiley.com/doi/pdfdirect/10.1049/iet-syb.2018.5060 |
| PMID | 31170692 |
| PQID | 2268950046 |
| PQPubID | 23479 |
| PageCount | 7 |
| ParticipantIDs | wiley_primary_10_1049_iet_syb_2018_5060_SYB2BF00030 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8687172 proquest_miscellaneous_2268950046 unpaywall_primary_10_1049_iet_syb_2018_5060 crossref_citationtrail_10_1049_iet_syb_2018_5060 pubmed_primary_31170692 crossref_primary_10_1049_iet_syb_2018_5060 iet_journals_10_1049_iet_syb_2018_5060 |
| ProviderPackageCode | RUI |
| PublicationCentury | 2000 |
| PublicationDate | June 2019 |
| PublicationDateYYYYMMDD | 2019-06-01 |
| PublicationDate_xml | – month: 06 year: 2019 text: June 2019 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | IET systems biology |
| PublicationTitleAlternate | IET Syst Biol |
| PublicationYear | 2019 |
| Publisher | The Institution of Engineering and Technology |
| Publisher_xml | – name: The Institution of Engineering and Technology |
| References | Azzawi, H.; Hou, J.; Xiang, Y. (C27) 2016; 10 Mundra, P.; Rajapakse, J.C. (C36) 2010; 9 Kim, W.; Kim, K.S.; Lee, J.E. (C22) 2012; 15 Chen, Y.-C.; Ke, W.-C.; Chiu, H.-W. (C17) 2014; 48 Student, S.; Fujarewicz, K. (C13) 2012; 7 Wang, Q.; Garrity, G.M.; Tiedje, J.M. (C45) 2007; 73 Specht, D.F. (C42) 1991; 2 Tang, H.; Xiao, G.; Behrens, C. (C4) 2013; 19 Cortés, Á.A.; Urquizu, L.C.; Cubero, J.H. (C3) 2015; 4 Hou, J.; Aerts, J.; Den Hamer, B. (C9) 2010; 5 Tong, D.L.; Schierz, A.C. (C11) 2011; 53 Campbell, A.S.; Land, W.H.; Margolis, D. (C16) 2013; 20 Wang, X.; Janowczyk, A.; Zhou, Y. (C8) 2017; 7 Duan, K.-B.; Rajapakse, J.C.; Wang, H. (C37) 2005; 4 Win, S.L.; Htike, Z.Z.; Yusof, F. (C19) 2014; 6 Shedden, K.; Taylor, J.M.; Enkemann, S.A. (C40) 2008; 14 Van Laar, R.K. (C5) 2012; 5 Norris, J.; Barns, E.; Schultz, O. (C15) 2013; 20 Zhang, F.; Kaufman, H.L.; Deng, Y. (C10) 2013; 6 Ford, W.; Park, J.W.; Campbell, A.S. (C14) 2012; 12 Brown, G.R.; Hem, V.; Katz, K.S. (C46) 2015; 43 Al-Anni, R.; Hou, J.; Abdu-aljabar, R.D.A. (C28) 2017; 11 Cai, Z.; Xu, D.; Zhang, Q. (C7) 2015; 11 Hamosh, A.; Scott, A.F.; Amberger, J.S. (C39) 2005; 33 Iizuka, N.; Oka, M.; Yamada-Okabe, H. (C18) 2003; 361 Hall, M.; Frank, E.; Holmes, G. (C41) 2009; 11 Yu, Y.; He, J. (C6) 2013; 7 Pal, M.; Mather, P.M. (C43) 2003; 86 Adel, A.; Omar, N.; Al-Shabi, A. (C34) 2014; 10 Kawata, Y.; Niki, N.; Ohmatsu, H. (C21) 2012; 39 Howington, J.A.; Blum, M.G.; Chang, A.C. (C2) 2013; 143 2017; 7 1991; 2 2015; 4 2011 2010 2015; 11 2013; 20 1989; 1989 2011; 53 2016; 10 2008; 14 1998 2014; 48 2008 2012; 39 2013; 143 2007; 73 2012; 15 2013; 7 2012; 12 2013; 6 1999 2013; 19 2009; 11 2017; 11 2015; 43 2005; 4 2018 2017 2015 2012; 7 2010; 5 2012; 5 2014; 6 1992; 1 2005; 33 2003; 86 2019; 791 2014; 10 2010; 9 2003; 361 e_1_2_6_10_1 Cortés Á.A. (e_1_2_6_4_1) 2015; 4 Ferreira C. (e_1_2_6_24_1) 2008 Alanni R. (e_1_2_6_30_1) 2019 e_1_2_6_19_1 Win S.L. (e_1_2_6_20_1) 2014; 6 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_16_1 e_1_2_6_37_1 Joachims T. (e_1_2_6_45_1) 1998 Zhang F. (e_1_2_6_11_1) 2013; 6 e_1_2_6_42_1 R. D. C. Team (e_1_2_6_33_1) 2011 e_1_2_6_43_1 e_1_2_6_21_1 Megchelenbrink W. (e_1_2_6_34_1) 2010 e_1_2_6_41_1 e_1_2_6_40_1 Golberg D.E. (e_1_2_6_32_1) 1989 e_1_2_6_9_1 e_1_2_6_8_1 Van Laar R.K. (e_1_2_6_6_1) 2012; 5 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_25_1 Koza J.R. (e_1_2_6_31_1) 1992 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_28_1 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_26_1 e_1_2_6_47_1 |
| References_xml | – volume: 4 start-page: 228 year: 2005 end-page: 234 ident: C37 article-title: Multiple SVM-RFE for gene selection in cancer classification with expression data publication-title: IEEE Trans. Nanobiosci. – volume: 7 start-page: 33 year: 2012 ident: C13 article-title: Stable feature selection and classification algorithms for multiclass microarray data publication-title: Biol. Direct – volume: 11 start-page: 791 year: 2015 end-page: 800 ident: C7 article-title: Classification of lung cancer using ensemble-based feature selection and machine learning methods publication-title: Mol. BioSyst. – volume: 43 start-page: D36 year: 2015 end-page: D42 ident: C46 article-title: Gene: a gene-centered information resource at NCBI publication-title: Nucleic Acids Res. – volume: 143 start-page: e278S year: 2013 end-page: e313S ident: C2 article-title: Treatment of stage I and II non-small cell lung cancer: diagnosis and management of lung cancer: American college of chest physicians evidence-based clinical practice guidelines publication-title: Chest – volume: 12 start-page: 444 year: 2012 end-page: 449 ident: C14 article-title: Classifying lung cancer recurrence time using novel ensemble method with gene network based input models publication-title: Procedia Comput. Sci. – volume: 5 start-page: e10312 year: 2010 ident: C9 article-title: Gene expression-based classification of non-small cell lung carcinomas and survival prediction publication-title: PLoS One – volume: 2 start-page: 568 year: 1991 end-page: 576 ident: C42 article-title: A general regression neural network publication-title: IEEE Trans. Neural Netw. – volume: 6 start-page: S4 year: 2013 ident: C10 article-title: Recursive SVM biomarker selection for early detection of breast cancer in peripheral blood publication-title: BMC Med. Genet. – volume: 39 start-page: 988 year: 2012 end-page: 1000 ident: C21 article-title: Quantitative classification based on CT histogram analysis of non-small cell lung cancer: correlation with histopathological characteristics and recurrence-free survival publication-title: Med. Phys. – volume: 73 start-page: 5261 year: 2007 end-page: 5267 ident: C45 article-title: Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy publication-title: Appl. Environ. Microbiol. – volume: 10 start-page: 2232 year: 2014 end-page: 2239 ident: C34 article-title: A comparative study of combined feature selection methods for Arabic text classification publication-title: J. Comput. Sci. – volume: 10 start-page: 168 year: 2016 end-page: 178 ident: C27 article-title: Lung cancer prediction from microarray data by gene expression programming publication-title: IET Syst. Biol. – volume: 7 start-page: 13543 year: 2017 ident: C8 article-title: Prediction of recurrence in early stage non-small cell lung cancer using computer extracted nuclear features from digital H&E images publication-title: Sci. Rep. – volume: 15 start-page: 230 year: 2012 end-page: 238 ident: C22 article-title: Development of novel breast cancer recurrence prediction model using support vector machine publication-title: J. Breast Cancer – volume: 53 start-page: 47 year: 2011 end-page: 56 ident: C11 article-title: Hybrid genetic algorithm-neural network: feature extraction for unpreprocessed microarray data publication-title: Artif. Intell. Med. – volume: 6 start-page: 11 year: 2014 end-page: 20 ident: C19 article-title: Cancer recurrence prediction using machine learning publication-title: Int. J. Comput. Sci. Inf. Technol – volume: 11 start-page: 77 year: 2017 end-page: 85 ident: C28 article-title: Prediction of NSCLC recurrence from microarray data with GEP publication-title: IET Syst. Biol. – volume: 20 start-page: 354 year: 2013 end-page: 359 ident: C15 article-title: A novel application for combining CASs and datasets to produce increased accuracy in modeling and predicting cancer recurrence publication-title: Procedia Comput. Sci. – volume: 33 start-page: D514 year: 2005 end-page: D517 ident: C39 article-title: Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders publication-title: Nucleic Acids Res. – volume: 4 start-page: 191 year: 2015 ident: C3 article-title: Adjuvant chemotherapy in non-small cell lung cancer: state-of-the-art publication-title: Transl. Lung Cancer Res. – volume: 14 start-page: 822 year: 2008 ident: C40 article-title: Gene expression-based survival prediction in lung adenocarcinoma: a multi-site, blinded validation study publication-title: Nat. Med. – volume: 48 start-page: 1 year: 2014 end-page: 7 ident: C17 article-title: Risk classification of cancer survival using ANN with gene expression data from multiple laboratories publication-title: Comput. Biol. Med. – volume: 11 start-page: 10 year: 2009 end-page: 18 ident: C41 article-title: The WEKA data mining software: an update publication-title: ACM SIGKDD Explor. Newsl. – volume: 7 start-page: 157 year: 2013 end-page: 171 ident: C6 article-title: Molecular classification of non-small-cell lung cancer: diagnosis, individualized treatment, and prognosis publication-title: Front. Med. – volume: 9 start-page: 31 year: 2010 end-page: 37 ident: C36 article-title: SVM-RFE with MRMR filter for gene selection publication-title: IEEE Trans. Nanobiosci. – volume: 5 start-page: 30 year: 2012 ident: C5 article-title: Genomic signatures for predicting survival and adjuvant chemotherapy benefit in patients with non-small-cell lung cancer publication-title: BMC Med. Genet. – volume: 19 start-page: 1577 year: 2013 end-page: 1586 ident: C4 article-title: A 12-gene set predicts survival benefits from adjuvant chemotherapy in non-small cell lung cancer patients publication-title: Clin. Cancer Res. – volume: 361 start-page: 923 year: 2003 end-page: 929 ident: C18 article-title: Oligonucleotide microarray for prediction of early intrahepatic recurrence of hepatocellular carcinoma after curative resection publication-title: Lancet – volume: 86 start-page: 554 year: 2003 end-page: 565 ident: C43 article-title: An assessment of the effectiveness of decision tree methods for land cover classification publication-title: Remote Sens. Environ. – volume: 20 start-page: 374 year: 2013 end-page: 378 ident: C16 article-title: Investigating the GRNN Oracle as a method for combining multiple predictive models of colon cancer recurrence from gene microarrays publication-title: Procedia Comput. Sci. – volume: 20 start-page: 354 year: 2013 end-page: 359 article-title: A novel application for combining CASs and datasets to produce increased accuracy in modeling and predicting cancer recurrence publication-title: Procedia Comput. Sci. – year: 2011 – volume: 43 start-page: D36 year: 2015 end-page: D42 article-title: Gene: a gene‐centered information resource at NCBI publication-title: Nucleic Acids Res. – volume: 4 start-page: 191 year: 2015 article-title: Adjuvant chemotherapy in non‐small cell lung cancer: state‐of‐the‐art publication-title: Transl. Lung Cancer Res. – volume: 6 start-page: S4 year: 2013 article-title: Recursive SVM biomarker selection for early detection of breast cancer in peripheral blood publication-title: BMC Med. Genet. – volume: 53 start-page: 47 year: 2011 end-page: 56 article-title: Hybrid genetic algorithm‐neural network: feature extraction for unpreprocessed microarray data publication-title: Artif. Intell. Med. – volume: 11 start-page: 10 year: 2009 end-page: 18 article-title: The WEKA data mining software: an update publication-title: ACM SIGKDD Explor. Newsl. – start-page: 541 year: 2017 end-page: 553 article-title: Multiclass lung cancer diagnosis by gene expression programming and microarray datasets – volume: 14 start-page: 822 year: 2008 article-title: Gene expression‐based survival prediction in lung adenocarcinoma: a multi‐site, blinded validation study publication-title: Nat. Med. – volume: 7 start-page: 13543 year: 2017 article-title: Prediction of recurrence in early stage non‐small cell lung cancer using computer extracted nuclear features from digital H&E images publication-title: Sci. Rep. – volume: 9 start-page: 31 year: 2010 end-page: 37 article-title: SVM‐RFE with MRMR filter for gene selection publication-title: IEEE Trans. Nanobiosci. – volume: 12 start-page: 444 year: 2012 end-page: 449 article-title: Classifying lung cancer recurrence time using novel ensemble method with gene network based input models publication-title: Procedia Comput. Sci. – volume: 39 start-page: 988 year: 2012 end-page: 1000 article-title: Quantitative classification based on CT histogram analysis of non‐small cell lung cancer: correlation with histopathological characteristics and recurrence‐free survival publication-title: Med. Phys. – start-page: 68 year: 2018 end-page: 73 – volume: 143 start-page: e278S year: 2013 end-page: e313S article-title: Treatment of stage I and II non‐small cell lung cancer: diagnosis and management of lung cancer: American college of chest physicians evidence‐based clinical practice guidelines publication-title: Chest – volume: 11 start-page: 791 year: 2015 end-page: 800 article-title: Classification of lung cancer using ensemble‐based feature selection and machine learning methods publication-title: Mol. BioSyst. – volume: 10 start-page: 2232 year: 2014 end-page: 2239 article-title: A comparative study of combined feature selection methods for Arabic text classification publication-title: J. Comput. Sci. – volume: 5 start-page: 30 year: 2012 article-title: Genomic signatures for predicting survival and adjuvant chemotherapy benefit in patients with non‐small‐cell lung cancer publication-title: BMC Med. Genet. – start-page: 396 year: 2011 end-page: 400 article-title: A dynamic subspace learning method for tumor classification using microarray gene expression data – year: 2010 – start-page: 137 year: 1998 end-page: 142 – volume: 48 start-page: 1 year: 2014 end-page: 7 article-title: Risk classification of cancer survival using ANN with gene expression data from multiple laboratories publication-title: Comput. Biol. Med. – volume: 6 start-page: 11 year: 2014 end-page: 20 article-title: Cancer recurrence prediction using machine learning publication-title: Int. J. Comput. Sci. Inf. Technol – volume: 4 start-page: 228 year: 2005 end-page: 234 article-title: Multiple SVM‐RFE for gene selection in cancer classification with expression data publication-title: IEEE Trans. Nanobiosci. – volume: 33 start-page: D514 year: 2005 end-page: D517 article-title: Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders publication-title: Nucleic Acids Res. – volume: 15 start-page: 230 year: 2012 end-page: 238 article-title: Development of novel breast cancer recurrence prediction model using support vector machine publication-title: J. Breast Cancer – volume: 10 start-page: 168 year: 2016 end-page: 178 article-title: Lung cancer prediction from microarray data by gene expression programming publication-title: IET Syst. Biol. – volume: 86 start-page: 554 year: 2003 end-page: 565 article-title: An assessment of the effectiveness of decision tree methods for land cover classification publication-title: Remote Sens. Environ. – volume: 7 start-page: 157 year: 2013 end-page: 171 article-title: Molecular classification of non‐small‐cell lung cancer: diagnosis, individualized treatment, and prognosis publication-title: Front. Med. – volume: 19 start-page: 1577 year: 2013 end-page: 1586 article-title: A 12‐gene set predicts survival benefits from adjuvant chemotherapy in non‐small cell lung cancer patients publication-title: Clin. Cancer Res. – year: 2008 – volume: 791 start-page: 17 year: 2019 end-page: 31 – volume: 1 year: 1992 – volume: 2 start-page: 568 year: 1991 end-page: 576 article-title: A general regression neural network publication-title: IEEE Trans. Neural Netw. – volume: 7 start-page: 33 year: 2012 article-title: Stable feature selection and classification algorithms for multiclass microarray data publication-title: Biol. Direct – volume: 20 start-page: 374 year: 2013 end-page: 378 article-title: Investigating the GRNN Oracle as a method for combining multiple predictive models of colon cancer recurrence from gene microarrays publication-title: Procedia Comput. Sci. – volume: 11 start-page: 77 year: 2017 end-page: 85 article-title: Prediction of NSCLC recurrence from microarray data with GEP publication-title: IET Syst. Biol. – start-page: 260 year: 2011 end-page: 269 – volume: 5 year: 2010 article-title: Gene expression‐based classification of non‐small cell lung carcinomas and survival prediction publication-title: PLoS One – volume: 361 start-page: 923 year: 2003 end-page: 929 article-title: Oligonucleotide microarray for prediction of early intrahepatic recurrence of hepatocellular carcinoma after curative resection publication-title: Lancet – volume: 1989 year: 1989 – year: 2015 – volume: 73 start-page: 5261 year: 2007 end-page: 5267 article-title: Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy publication-title: Appl. Environ. Microbiol. – year: 1999 – ident: e_1_2_6_15_1 doi: 10.1016/j.procs.2012.09.102 – start-page: 137 volume-title: Learning with many relevant features year: 1998 ident: e_1_2_6_45_1 – ident: e_1_2_6_19_1 doi: 10.1016/S0140-6736(03)12775-4 – ident: e_1_2_6_40_1 doi: 10.1093/nar/gki033 – start-page: 17 volume-title: Computer and information science. ICIS 2018. Studies in computational intelligence year: 2019 ident: e_1_2_6_30_1 – ident: e_1_2_6_26_1 doi: 10.1007/978-3-319-69179-4_38 – volume-title: Relief‐based feature selection in bioinformatics: detecting functional specificity residues from multiple sequence alignments year: 2010 ident: e_1_2_6_34_1 – ident: e_1_2_6_9_1 doi: 10.1038/s41598-017-13773-7 – ident: e_1_2_6_12_1 doi: 10.1016/j.artmed.2011.06.008 – ident: e_1_2_6_17_1 doi: 10.1016/j.procs.2013.09.289 – ident: e_1_2_6_22_1 doi: 10.1118/1.3679017 – ident: e_1_2_6_5_1 doi: 10.1158/1078-0432.CCR-12-2321 – ident: e_1_2_6_18_1 doi: 10.1016/j.compbiomed.2014.02.006 – volume: 5 start-page: 30 year: 2012 ident: e_1_2_6_6_1 article-title: Genomic signatures for predicting survival and adjuvant chemotherapy benefit in patients with non‐small‐cell lung cancer publication-title: BMC Med. Genet. – ident: e_1_2_6_13_1 doi: 10.1109/ICNC.2011.6022091 – ident: e_1_2_6_16_1 doi: 10.1016/j.procs.2013.09.285 – ident: e_1_2_6_23_1 doi: 10.4048/jbc.2012.15.2.230 – volume: 4 start-page: 191 year: 2015 ident: e_1_2_6_4_1 article-title: Adjuvant chemotherapy in non‐small cell lung cancer: state‐of‐the‐art publication-title: Transl. Lung Cancer Res. – ident: e_1_2_6_42_1 doi: 10.1145/1656274.1656278 – volume-title: What is gene expression programming year: 2008 ident: e_1_2_6_24_1 – ident: e_1_2_6_25_1 doi: 10.1109/ICIS.2018.8466448 – ident: e_1_2_6_39_1 – ident: e_1_2_6_36_1 – ident: e_1_2_6_21_1 doi: 10.1007/978-3-642-22709-7_27 – ident: e_1_2_6_35_1 doi: 10.3844/jcssp.2014.2232.2239 – ident: e_1_2_6_37_1 doi: 10.1109/TNB.2009.2035284 – volume: 6 start-page: S4 year: 2013 ident: e_1_2_6_11_1 article-title: Recursive SVM biomarker selection for early detection of breast cancer in peripheral blood publication-title: BMC Med. Genet. – ident: e_1_2_6_29_1 doi: 10.1049/iet-syb.2016.0033 – ident: e_1_2_6_28_1 doi: 10.1049/iet-syb.2015.0082 – volume-title: A language and environment for statistical computing year: 2011 ident: e_1_2_6_33_1 – volume-title: Genetic algorithms in search, optimization, and machine learning year: 1989 ident: e_1_2_6_32_1 – ident: e_1_2_6_2_1 – ident: e_1_2_6_47_1 doi: 10.1093/nar/gku1055 – ident: e_1_2_6_7_1 doi: 10.1007/s11684-013-0272-4 – volume: 6 start-page: 11 year: 2014 ident: e_1_2_6_20_1 article-title: Cancer recurrence prediction using machine learning publication-title: Int. J. Comput. Sci. Inf. Technol – ident: e_1_2_6_43_1 doi: 10.1109/72.97934 – ident: e_1_2_6_27_1 doi: 10.1371/journal.pone.0125517 – ident: e_1_2_6_38_1 doi: 10.1109/TNB.2005.853657 – ident: e_1_2_6_10_1 doi: 10.1371/journal.pone.0010312 – ident: e_1_2_6_41_1 doi: 10.1038/nm.1790 – ident: e_1_2_6_8_1 doi: 10.1039/C4MB00659C – ident: e_1_2_6_3_1 doi: 10.1378/chest.12-2359 – ident: e_1_2_6_44_1 doi: 10.1016/S0034-4257(03)00132-9 – ident: e_1_2_6_46_1 doi: 10.1128/AEM.00062-07 – volume-title: Genetic programming: on the programming of computers by means of natural selection year: 1992 ident: e_1_2_6_31_1 – ident: e_1_2_6_14_1 doi: 10.1186/1745-6150-7-33 |
| SSID | ssj0055650 |
| Score | 2.196885 |
| Snippet | Non-small cell lung cancer (NSCLC) is the most popular and dangerous type of lung cancer. Adjuvant chemotherapy (ACT) is the main treatment after surgery... Non‐small cell lung cancer (NSCLC) is the most popular and dangerous type of lung cancer. Adjuvant chemotherapy (ACT) is the main treatment after surgery... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref wiley iet |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 129 |
| SubjectTerms | ACT classification ACT information ACT treatment adjuvant chemotherapy Algorithms Bayes methods Bayes Theorem biochemistry cancer cancer ACT prediction model cancer recurrence cancer treatment Carcinoma, Non-Small-Cell Lung - drug therapy Carcinoma, Non-Small-Cell Lung - genetics cellular biophysics Chemotherapy, Adjuvant conventional methods decision tree decision trees Gene Expression Regulation, Neoplastic - drug effects general regression neural network genetics gene‐expression programming algorithm Humans integrated microarray datasets lung Lung Neoplasms - drug therapy Lung Neoplasms - genetics medical computing microarray gene‐expression datasets microarray gene‐expression technology Models, Statistical naive Bayes neural nets nonsmall cell lung cancer NSCLC treatment NSCLC‐related prognostic genes regression analysis representative models Research Article support vector machine support vector machines surgery surgery resection survival time Treatment Outcome |
| SummonAdditionalLinks | – databaseName: IET Digital Library Open Access dbid: IDLOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZT9wwELZgUdW-VNBzyyFTVX1oZQhOnNiPXCuoaF8KEn2yHB8t1RJWe6jaf9-ZOBsUgYC31WZyzYwn34znIOSTyaW0YU-wOl8nSywsKZ4KZj2YTJ-XXFmMQ37_kZ9cZN8uxeVtebS7-o2zMtgi4obRch8rDzB1G-zwbsPjOJAE8O0uELDJvMQ0LbmD_fKWyQoH75z3yMrp0Rm6WNEyCwAvsUBS7DEpM9Xuct5zkc53ahkO3wdB72ZSPp9VIzP_Z4bDLtqtP1eDVfKywZl0PyrGGlny1SvyLE6enL8mZ4co7TE17u8MsPSUguyum2KsOR2NcfsGRUbrSTkUkC2tbio2uYZbUgz20yFYCWrrq7whF4Pj88MT1gxWYBbgVsKcLLgBR8kAHrGYboa7pYDDhOeqlMFhvW1qgzGuKBNnwEMzaZJ47lMBNin49C3pwU39e0JVSIPITVFYX2Qhc8YlruDBZECspAh9kizYqG3TdRyHXwx1vfudKQ2s1cB5jZzXyPk--dKeMootNx4i_oz_LZTiIcKPHcLT43P989fBLYEeOXja7YWMNSwzZKep_M1sooE7UgmMJvTJuyjz9uFSnN6TK94nRUcbWgJs4d09Ul39qVt5yxwc1gLO_NrqzVPeOa0163FKfEN-MKgd3w9P5dQ6eQG_VcyH2yC96XjmNwF5TcutZkH9ByfTKTc priority: 102 providerName: Institution of Engineering and Technology – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB61RQguqLwXCjIIcQClZJ04sY901VVBokKilcrJcvwQRdt0tQ-hvfET-hv7S5hxskFRUUFc47ETzyuf7fEMwCtTSGnDUCQxXidPLZoUz0RiPbpMX1RcWdqH_HRYHBznH0_EyQaM1ndhmvwQ3YYbWUb012TgpmqqkCCoRSGe-kUyX1UUnSV3KU3eJtwYIp4hNef557U7FohYmluRYphImavuaFO9uzJE7-e0ic1_wp1XwydvLeupWf0wk0kf4sZ_1Hgb7rTgkr1vtOEubPj6Htxsyk2u7sPhiEQ8Y8Z9XyKAXjAU2Fl7A2vFpjM6syE5sVgehyGcZfV5ffnzYn6GL2W0x88m6ByYjeM8gOPx_tHoIGnrKSQWUVaaOFlyg-sjgzDEUpQZHZIi_BKeq0oGR9dsMxuMcWWVOoMLM5Olqec-E-iKgs8ewha-1j8GpkIWRGHK0voyD7kzLnUlDyZHYiVFGEC6ZqS2bbJxqnkx0fHQO1camauR95p4r4n3A3jTdZk2mTauI35Nz1p7m19H-LJH-GH_SH_5uvebQE8dfu2LtZQ1Whex09T-fDnXyB2pBG0iDOBRI_Xu4zIq2lMoPoCypw8dAWXu7rfUp99iBm9Z4Dq1xJ5vO835lzlnUbf-Tkkz5HvjuN598l-9nsJtfK6amLgd2FrMlv4Zoq9F9Txa1y9_tykU priority: 102 providerName: Wiley-Blackwell |
| Title | Cancer adjuvant chemotherapy prediction model for non-small cell lung cancer |
| URI | http://digital-library.theiet.org/content/journals/10.1049/iet-syb.2018.5060 https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-syb.2018.5060 https://www.ncbi.nlm.nih.gov/pubmed/31170692 https://www.proquest.com/docview/2268950046 https://pubmed.ncbi.nlm.nih.gov/PMC8687172 https://ietresearch.onlinelibrary.wiley.com/doi/pdfdirect/10.1049/iet-syb.2018.5060 |
| UnpaywallVersion | publishedVersion |
| Volume | 13 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVBHI databaseName: IET Digital Library Open Access customDbUrl: eissn: 1751-8857 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0055650 issn: 1751-8857 databaseCode: IDLOA dateStart: 20130201 isFulltext: true titleUrlDefault: https://digital-library.theiet.org/content/collections providerName: Institution of Engineering and Technology – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1751-8857 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0055650 issn: 1751-8857 databaseCode: RPM dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVWIB databaseName: KBPluse Wiley Online Library: Open Access customDbUrl: eissn: 1751-8857 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0055650 issn: 1751-8857 databaseCode: AVUZU dateStart: 20130201 isFulltext: true titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559 providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1751-8857 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0055650 issn: 1751-8857 databaseCode: 24P dateStart: 20130101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB6RRAguvB_mES0IcQA5cm2vH8e0NGoRhErUqOVirde7akvqRoktFE78BH4jv4SZtWNkqApInGLFs7Z3PDP-ZuexAM9EEEVSb3Db5Ov4jkSVcj1uS4UmUwWZG0tah3w7DXYS__UBP2gq60wtjCqbLjdHo7pXRLv4RlpibDcp-zzXtc2vPVA_ppH2cpVRtlY0orZ5PRgEHAF6HwbJdG98aEoj-YYdRQYUN8c8bGOd51yj87Xq4enzgOjv-ZRXqmIuVp_FbNbFvOajNbkO5Xq6da7Kp1FVZiP55ZdOkP-ZHzfgWgNy2biWyptwSRW34HK97eXqNky3SNQWTOQnFQL5kqHgnDaVYCs2X1DsiOSFmW16GMJqVpwV379-W57iXBnFGtgMjRST5jp3IJls72_t2M2-DrZEtOfYeRS6Av00gXBIUrYbBWsRBnLlxlmkcyr39aQWIg8zJxfoIArPcZSrPI4mUSvvLvTxtuo-sFh7mgciDKUKfe3nInfy0NXCR-I44toCZ_3-Utk0Pae9N2apCb77cYpsSpFNKbEpJTZZ8KIdMq87flxE_Jz-a_R-eRHh0w7h7vZ--v5w8ydBim_Qgidr4UpRy4mdolBn1TJF7kQxp8UMC-7VwtY-nEebBwWxa0HYEcOWgDqId88Ux0emk3gUoL8c4siXrcD-zZw9I3t_pqQZupsT43c_-Kd7PISreBzXOXmPoF8uKvUY0V-ZDaHn-ntDGIw_JB8T_N199ebdeNjo-A9HkFzj |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbaIlQuiDfL0yDEAZSSdezEPtLS1RbaFRJbqZwsxw9RtE1X-xDaGz-B38gvYcbJBkVFBXFNxkk845l8Mx7PEPLC5FLa0BdJzNfhqQWVYplIrAeT6fOSKYtxyKNRPjzm70_EyQZ5tz4LU9eHaANuqBnRXqOCY0C6djg5Fsk89YtkvioxPUvuYJ28TXKF5_0cXTDGP67tsQDIUh-LFP1ESq7avU315sIjOn-nTbj9J-B5MX9ye1lNzeqbmUy6GDf-pAY3yPUGXdK39XK4STZ8dYtcrftNrm6T0R7KeEaN-7oEBL2gILGz5gjWik5nuGmDgqKxPw4FPEur8-rn9x_zM3gpxSA_nYB1oDY-5w45HuyP94ZJ01AhsQCz0sTJghlwkAzgEItpZrhLCvhLeKZKGRyes81sMMYVZeoMeGYmS1PPfCbAFgWf3SVb8Fp_n1AVsiByUxTWFzxwZ1zqChYMB2IlReiRdM1IbZtq49j0YqLjrjdXGpirgfcaea-R9z3yqh0yrUttXEb8Eq81Cje_jPB5h_Bgf6w_fd79TaCnDr722VrKGtQL2Wkqf76ca-COVAKjCD1yr5Z6-3EZdu3JFeuRorMeWgIs3d29U51-iSW8ZQ6OagEjX7cr51_mnMW19XdKnCHbHUSH98F_jXpKtofjo0N9eDD68JBcAxpVJ8g9IluL2dI_Bii2KJ9ETfsFe9ssgA |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwEB61W3G8IK5CymUQ4gEUSJM4sR97rVqOFRJdVPpiOT5E0TZd7aFq3_gJ_EZ-CTNJNigqKojXZJxjLn9jj2cAnutMCOM3eVjl66SRQZOKEx4ahy7TZUUsDa1Dfhhk-8P07RE_WoHd5VmYuj5Eu-BGllH5azJwN7a-DjhTKpJ54mbhdFFQepZ4TXXyVmEN5_Mo7cHa1ufh8XDpkTmClvpgJN8MhUhlu7sp31x4SGd-WsXbf4KeFzMor83LsV6c69Goi3Kraap_E240-JJt1QpxC1ZceRuu1B0nF3dgsENSnjBtv80RQ88Yyuy0OYS1YOMJbduQqFjVIYchomXlWfnz-4_pKb6U0TI_G6F_YKZ6zl0Y9vcOd_bDpqVCaBBoRaEVeawxRNKIRAwlmtE-KSIw7mJZCG_ppG1ivNY2LyKrMTbTSRS52CUcvZF3yTr08LXuPjDpE88znefG5alPrbaRzWOvUySWgvsAoiUjlWnqjVPbi5Gq9r1TqZC5CnmviPeKeB_Ay3bIuC62cRnxC7rWmNz0MsJnHcKDvUP16cv2bwKFehXA06WUFRoYsVOX7mw-VcgdITmtIwRwr5Z6-3EJ9e3JZBxA3tGHloCKd3fvlCdfqyLeIsNQNceRr1rN-Zd_Tird-jsl_WG83a9C3o3_GvUErn7c7av3B4N3D-A6ksg6Q-4h9GaTuXuEWGxWPG5M7ReZZi3U |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fa9RAEB_sFbEv_rdGrawiPig50iSbbB7b0qMKHoI9aJ-WzWaXqtf0uEuQ88mP0M_YT-LMJpcSLVXBt5DMJtnJzOY3O_8AXqlECG23ue_ideJAo0qFEfe1wSXTJHmYadqH_DBODibx-yN-1GbWuVwYU7VVbk6GTa2IbvONtMSt3aTss8I2a35jgcYZjfQXy5yitcSQyuatwXrCEaAPYH0y_rhz7FIj-bYvhAPF7TFPO1_nFffo_a3W8PJVQPT3eMpbdTlTy29qOu1jXvfTGt2BajXdJlbl67Cu8qH-_kslyP_Mj7twuwW5bKeRyntww5T34WbT9nL5AMZ7JGpzpoovNQL5iqHgnLaZYEs2m5PviOSFuTY9DGE1K8_Kix_ni1OcKyNfA5viIsW0u89DmIz2D_cO_Lavg68R7QV-IdJQoZ2mEA5pinYjZy3CQG7CLBe2oHTfSFulijQPCoUGooqCwIQm4rgkWhM9ggE-1jwGltnI8kSlqTZpbONCFUGRhlbFSJwJbj0IVt9P6rboOfXemErnfI8ziWySyCZJbJLEJg_edENmTcWP64hf07lW7xfXEb7sEb7bP5SfjncvCSR-QQ9erIRLopYTO1VpzuqFRO6IjNNmhgebjbB1LxdR86AkCz1Ie2LYEVAF8f6V8vOJqyQuErSXUxz5thPYv5lz5GTvz5Q0w3B35OzuJ__0jKewgcdZE5P3DAbVvDZbiP6q_HmrzT8BghVYwg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cancer+adjuvant+chemotherapy+prediction+model+for+non%E2%80%90small+cell+lung+cancer&rft.jtitle=IET+systems+biology&rft.au=Alanni%2C+Russul&rft.au=Hou%2C+Jingyu&rft.au=Azzawi%2C+Hasseeb&rft.au=Xiang%2C+Yong&rft.date=2019-06-01&rft.pub=The+Institution+of+Engineering+and+Technology&rft.issn=1751-8849&rft.eissn=1751-8857&rft.volume=13&rft.issue=3&rft.spage=129&rft.epage=135&rft_id=info:doi/10.1049%2Fiet-syb.2018.5060&rft_id=info%3Apmid%2F31170692&rft.externalDocID=PMC8687172 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-8849&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-8849&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-8849&client=summon |