Cancer adjuvant chemotherapy prediction model for non-small cell lung cancer

Non-small cell lung cancer (NSCLC) is the most popular and dangerous type of lung cancer. Adjuvant chemotherapy (ACT) is the main treatment after surgery resection to prevent the patient from cancer recurrence. However, ACT could be toxic and unhelpful in some cases. Therefore, it is highly desired...

Full description

Saved in:
Bibliographic Details
Published inIET systems biology Vol. 13; no. 3; pp. 129 - 135
Main Authors Alanni, Russul, Hou, Jingyu, Azzawi, Hasseeb, Xiang, Yong
Format Journal Article
LanguageEnglish
Published England The Institution of Engineering and Technology 01.06.2019
Subjects
Online AccessGet full text
ISSN1751-8849
1751-8857
1751-8857
DOI10.1049/iet-syb.2018.5060

Cover

Abstract Non-small cell lung cancer (NSCLC) is the most popular and dangerous type of lung cancer. Adjuvant chemotherapy (ACT) is the main treatment after surgery resection to prevent the patient from cancer recurrence. However, ACT could be toxic and unhelpful in some cases. Therefore, it is highly desired in clinical applications to predict the treatment outcomes of chemotherapy. Conventional methods of predicting cancer treatment rely solely on histopathology and the results are not reliable in some cases. This study aims at building a predictive model to identify who needs ACT treatment and who should avoid it. To this end, the authors propose an innovative method to identify NSCLC-related prognostic genes from microarray gene-expression datasets. They also propose a new model using gene-expression programming algorithm for ACT classification. The proposed model was evaluated on integrated microarray datasets from four institutes and compared with four representative methods: general regression neural network, decision tree, support vector machine and naive Bayes. Evaluation results demonstrated the effectiveness of the proposed model with accuracy 89.8% which is higher than other representative models. They obtained four probes (four genes) that can get good prediction results. These genes are 204891_s_at (LCK), 208893_s_at (DUSP6), 202454_s_at (ERBB3) and 201076_at (MMD).
AbstractList Non-small cell lung cancer (NSCLC) is the most popular and dangerous type of lung cancer. Adjuvant chemotherapy (ACT) is the main treatment after surgery resection to prevent the patient from cancer recurrence. However, ACT could be toxic and unhelpful in some cases. Therefore, it is highly desired in clinical applications to predict the treatment outcomes of chemotherapy. Conventional methods of predicting cancer treatment rely solely on histopathology and the results are not reliable in some cases. This study aims at building a predictive model to identify who needs ACT treatment and who should avoid it. To this end, the authors propose an innovative method to identify NSCLC-related prognostic genes from microarray gene-expression datasets. They also propose a new model using gene-expression programming algorithm for ACT classification. The proposed model was evaluated on integrated microarray datasets from four institutes and compared with four representative methods: general regression neural network, decision tree, support vector machine and naive Bayes. Evaluation results demonstrated the effectiveness of the proposed model with accuracy 89.8% which is higher than other representative models. They obtained four probes (four genes) that can get good prediction results. These genes are 204891_s_at (LCK), 208893_s_at (DUSP6), 202454_s_at (ERBB3) and 201076_at (MMD).Non-small cell lung cancer (NSCLC) is the most popular and dangerous type of lung cancer. Adjuvant chemotherapy (ACT) is the main treatment after surgery resection to prevent the patient from cancer recurrence. However, ACT could be toxic and unhelpful in some cases. Therefore, it is highly desired in clinical applications to predict the treatment outcomes of chemotherapy. Conventional methods of predicting cancer treatment rely solely on histopathology and the results are not reliable in some cases. This study aims at building a predictive model to identify who needs ACT treatment and who should avoid it. To this end, the authors propose an innovative method to identify NSCLC-related prognostic genes from microarray gene-expression datasets. They also propose a new model using gene-expression programming algorithm for ACT classification. The proposed model was evaluated on integrated microarray datasets from four institutes and compared with four representative methods: general regression neural network, decision tree, support vector machine and naive Bayes. Evaluation results demonstrated the effectiveness of the proposed model with accuracy 89.8% which is higher than other representative models. They obtained four probes (four genes) that can get good prediction results. These genes are 204891_s_at (LCK), 208893_s_at (DUSP6), 202454_s_at (ERBB3) and 201076_at (MMD).
Non‐small cell lung cancer (NSCLC) is the most popular and dangerous type of lung cancer. Adjuvant chemotherapy (ACT) is the main treatment after surgery resection to prevent the patient from cancer recurrence. However, ACT could be toxic and unhelpful in some cases. Therefore, it is highly desired in clinical applications to predict the treatment outcomes of chemotherapy. Conventional methods of predicting cancer treatment rely solely on histopathology and the results are not reliable in some cases. This study aims at building a predictive model to identify who needs ACT treatment and who should avoid it. To this end, the authors propose an innovative method to identify NSCLC‐related prognostic genes from microarray gene‐expression datasets. They also propose a new model using gene‐expression programming algorithm for ACT classification. The proposed model was evaluated on integrated microarray datasets from four institutes and compared with four representative methods: general regression neural network, decision tree, support vector machine and naive Bayes. Evaluation results demonstrated the effectiveness of the proposed model with accuracy 89.8% which is higher than other representative models. They obtained four probes (four genes) that can get good prediction results. These genes are 204891_s_at (LCK), 208893_s_at (DUSP6), 202454_s_at (ERBB3) and 201076_at (MMD).
Author Hou, Jingyu
Azzawi, Hasseeb
Alanni, Russul
Xiang, Yong
AuthorAffiliation 1 School of Information Technology, Deakin University Burwood Australia
AuthorAffiliation_xml – name: 1 School of Information Technology, Deakin University Burwood Australia
Author_xml – sequence: 1
  givenname: Russul
  surname: Alanni
  fullname: Alanni, Russul
  email: ralanni@deakin.edu.au
  organization: School of Information Technology, Deakin University, Burwood, Australia
– sequence: 2
  givenname: Jingyu
  surname: Hou
  fullname: Hou, Jingyu
  organization: School of Information Technology, Deakin University, Burwood, Australia
– sequence: 3
  givenname: Hasseeb
  surname: Azzawi
  fullname: Azzawi, Hasseeb
  organization: School of Information Technology, Deakin University, Burwood, Australia
– sequence: 4
  givenname: Yong
  surname: Xiang
  fullname: Xiang, Yong
  organization: School of Information Technology, Deakin University, Burwood, Australia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31170692$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1u1DAUhS1URH_gAdigLGGR4dqJY4cFUjtqodJILCgLVpbHuelklNjBTlrl7XFIKQWhwsa25POdc318TA6ss0jISworCnn5tsEhDdN2xYDKFYcCnpAjKjhNpeTi4P6cl4fkOIQ9AOcFh2fkMKNUQFGyI7JZa2vQJ7rajzfaDonZYeeGHXrdT0nvsWrM0DibdK7CNqmdT-IQaeh02yYG49KO9joxP1yek6e1bgO-uNtPyJeL86v1x3Tz6cPl-nSTGs4YpJUUTAtaaChyY3iNkHPJWMGRlVtZVyBZmZla60psodIsL3UGgAwzLqWoMTshbPEdba-n2ziK6n3TaT8pCmquRsVqVKxGzdWouZoIvV-gftx2WBm0g9e_QKcb9fuNbXbq2t0oWUhBBYsGr-8MvPs2YhhU14S5Am3RjUHFF8iSA-RFlL56mHUf8rP3KKCLwHgXgsf6vx4g_mBMM-j5c-K4Tfso-W4hb5sWp39Hqc9fz9jZBQBkM5wu8Czbu9Hb-LWPhr35i_7y_Gp2fZDRV3X2HbTk2fY
CitedBy_id crossref_primary_10_1186_s12859_019_3161_2
crossref_primary_10_1039_C9BM01575B
crossref_primary_10_1080_23270012_2020_1811789
Cites_doi 10.1016/j.procs.2012.09.102
10.1016/S0140-6736(03)12775-4
10.1093/nar/gki033
10.1007/978-3-319-69179-4_38
10.1038/s41598-017-13773-7
10.1016/j.artmed.2011.06.008
10.1016/j.procs.2013.09.289
10.1118/1.3679017
10.1158/1078-0432.CCR-12-2321
10.1016/j.compbiomed.2014.02.006
10.1109/ICNC.2011.6022091
10.1016/j.procs.2013.09.285
10.4048/jbc.2012.15.2.230
10.1145/1656274.1656278
10.1109/ICIS.2018.8466448
10.1007/978-3-642-22709-7_27
10.3844/jcssp.2014.2232.2239
10.1109/TNB.2009.2035284
10.1049/iet-syb.2016.0033
10.1049/iet-syb.2015.0082
10.1093/nar/gku1055
10.1007/s11684-013-0272-4
10.1109/72.97934
10.1371/journal.pone.0125517
10.1109/TNB.2005.853657
10.1371/journal.pone.0010312
10.1038/nm.1790
10.1039/C4MB00659C
10.1378/chest.12-2359
10.1016/S0034-4257(03)00132-9
10.1128/AEM.00062-07
10.1186/1745-6150-7-33
ContentType Journal Article
Copyright The Institution of Engineering and Technology
2020 The Institution of Engineering and Technology
Copyright_xml – notice: The Institution of Engineering and Technology
– notice: 2020 The Institution of Engineering and Technology
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ADTOC
UNPAY
DOI 10.1049/iet-syb.2018.5060
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


MEDLINE

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1751-8857
EndPage 135
ExternalDocumentID 10.1049/iet-syb.2018.5060
PMC8687172
31170692
10_1049_iet_syb_2018_5060
SYB2BF00030
Genre article
Journal Article
GroupedDBID -
0R
24P
29I
3V.
4.4
5GY
6IK
7X7
88E
8AL
8FE
8FG
8FH
8FI
8FJ
AAJGR
ABJCF
ABUWG
ACGFS
ACIWK
ACPRK
ADBBV
AENEX
AFKRA
AHMBA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BBAFP
BBNVY
BENPR
BFFAM
BGLVJ
BHPHI
BPHCQ
BVXVI
CS3
DU5
DWQXO
EBS
EJD
F5P
FYUFA
GNUQQ
HCIFZ
HZ
IFIPE
IPLJI
JAVBF
K6V
K7-
L6V
LAI
LK8
LOTEE
LXI
LXU
M0N
M1P
M43
M7P
M7S
NADUK
NXXTH
O9-
OCL
P62
PQEST
PQQKQ
PQUKI
PRINS
PROAC
PSQYO
PTHSS
RIE
RNS
RUI
SJN
UNMZH
UNR
ZZ
---
.DC
0R~
0ZK
1OC
AAHHS
AAHJG
ABMDY
ABQXS
ACCFJ
ACCMX
ACESK
ACGFO
ACXQS
ADEYR
ADZOD
AEEZP
AEGXH
AEQDE
AIWBW
AJBDE
ALIPV
ALUQN
AVUZU
CCPQU
GROUPED_DOAJ
HMCUK
HZ~
IAO
IGS
IHR
ITC
MCNEO
OK1
ROL
RPM
UKHRP
~ZZ
AAMMB
AAYXX
AEFGJ
AFFHD
AGXDD
AIDQK
AIDYY
CITATION
IDLOA
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
WIN
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c5220-d872a716a064cc5fe04582265e29b8fd08293cfaad7b0da249a300e2e35887fe3
IEDL.DBID UNPAY
ISSN 1751-8849
1751-8857
IngestDate Thu Oct 30 05:55:10 EDT 2025
Thu Aug 21 18:25:10 EDT 2025
Wed Oct 01 14:52:34 EDT 2025
Mon Jul 21 05:46:10 EDT 2025
Wed Oct 29 21:25:59 EDT 2025
Thu Apr 24 23:13:05 EDT 2025
Wed Jan 22 16:31:06 EST 2025
Tue Jan 05 21:45:35 EST 2021
Sat Jun 08 12:10:50 EDT 2019
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords adjuvant chemotherapy
cancer treatment
cellular biophysics
integrated microarray datasets
regression analysis
ACT classification
representative models
NSCLC-related prognostic genes
decision tree
genetics
surgery resection
microarray gene-expression datasets
microarray gene-expression technology
NSCLC treatment
support vector machines
nonsmall cell lung cancer
cancer ACT prediction model
lung
support vector machine
survival time
conventional methods
ACT information
cancer recurrence
decision trees
biochemistry
naive Bayes
cancer
Bayes methods
general regression neural network
gene-expression programming algorithm
medical computing
neural nets
surgery
ACT treatment
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5220-d872a716a064cc5fe04582265e29b8fd08293cfaad7b0da249a300e2e35887fe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ietresearch.onlinelibrary.wiley.com/doi/pdfdirect/10.1049/iet-syb.2018.5060
PMID 31170692
PQID 2268950046
PQPubID 23479
PageCount 7
ParticipantIDs wiley_primary_10_1049_iet_syb_2018_5060_SYB2BF00030
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8687172
proquest_miscellaneous_2268950046
unpaywall_primary_10_1049_iet_syb_2018_5060
crossref_citationtrail_10_1049_iet_syb_2018_5060
pubmed_primary_31170692
crossref_primary_10_1049_iet_syb_2018_5060
iet_journals_10_1049_iet_syb_2018_5060
ProviderPackageCode RUI
PublicationCentury 2000
PublicationDate June 2019
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: June 2019
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle IET systems biology
PublicationTitleAlternate IET Syst Biol
PublicationYear 2019
Publisher The Institution of Engineering and Technology
Publisher_xml – name: The Institution of Engineering and Technology
References Azzawi, H.; Hou, J.; Xiang, Y. (C27) 2016; 10
Mundra, P.; Rajapakse, J.C. (C36) 2010; 9
Kim, W.; Kim, K.S.; Lee, J.E. (C22) 2012; 15
Chen, Y.-C.; Ke, W.-C.; Chiu, H.-W. (C17) 2014; 48
Student, S.; Fujarewicz, K. (C13) 2012; 7
Wang, Q.; Garrity, G.M.; Tiedje, J.M. (C45) 2007; 73
Specht, D.F. (C42) 1991; 2
Tang, H.; Xiao, G.; Behrens, C. (C4) 2013; 19
Cortés, Á.A.; Urquizu, L.C.; Cubero, J.H. (C3) 2015; 4
Hou, J.; Aerts, J.; Den Hamer, B. (C9) 2010; 5
Tong, D.L.; Schierz, A.C. (C11) 2011; 53
Campbell, A.S.; Land, W.H.; Margolis, D. (C16) 2013; 20
Wang, X.; Janowczyk, A.; Zhou, Y. (C8) 2017; 7
Duan, K.-B.; Rajapakse, J.C.; Wang, H. (C37) 2005; 4
Win, S.L.; Htike, Z.Z.; Yusof, F. (C19) 2014; 6
Shedden, K.; Taylor, J.M.; Enkemann, S.A. (C40) 2008; 14
Van Laar, R.K. (C5) 2012; 5
Norris, J.; Barns, E.; Schultz, O. (C15) 2013; 20
Zhang, F.; Kaufman, H.L.; Deng, Y. (C10) 2013; 6
Ford, W.; Park, J.W.; Campbell, A.S. (C14) 2012; 12
Brown, G.R.; Hem, V.; Katz, K.S. (C46) 2015; 43
Al-Anni, R.; Hou, J.; Abdu-aljabar, R.D.A. (C28) 2017; 11
Cai, Z.; Xu, D.; Zhang, Q. (C7) 2015; 11
Hamosh, A.; Scott, A.F.; Amberger, J.S. (C39) 2005; 33
Iizuka, N.; Oka, M.; Yamada-Okabe, H. (C18) 2003; 361
Hall, M.; Frank, E.; Holmes, G. (C41) 2009; 11
Yu, Y.; He, J. (C6) 2013; 7
Pal, M.; Mather, P.M. (C43) 2003; 86
Adel, A.; Omar, N.; Al-Shabi, A. (C34) 2014; 10
Kawata, Y.; Niki, N.; Ohmatsu, H. (C21) 2012; 39
Howington, J.A.; Blum, M.G.; Chang, A.C. (C2) 2013; 143
2017; 7
1991; 2
2015; 4
2011
2010
2015; 11
2013; 20
1989; 1989
2011; 53
2016; 10
2008; 14
1998
2014; 48
2008
2012; 39
2013; 143
2007; 73
2012; 15
2013; 7
2012; 12
2013; 6
1999
2013; 19
2009; 11
2017; 11
2015; 43
2005; 4
2018
2017
2015
2012; 7
2010; 5
2012; 5
2014; 6
1992; 1
2005; 33
2003; 86
2019; 791
2014; 10
2010; 9
2003; 361
e_1_2_6_10_1
Cortés Á.A. (e_1_2_6_4_1) 2015; 4
Ferreira C. (e_1_2_6_24_1) 2008
Alanni R. (e_1_2_6_30_1) 2019
e_1_2_6_19_1
Win S.L. (e_1_2_6_20_1) 2014; 6
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_16_1
e_1_2_6_37_1
Joachims T. (e_1_2_6_45_1) 1998
Zhang F. (e_1_2_6_11_1) 2013; 6
e_1_2_6_42_1
R. D. C. Team (e_1_2_6_33_1) 2011
e_1_2_6_43_1
e_1_2_6_21_1
Megchelenbrink W. (e_1_2_6_34_1) 2010
e_1_2_6_41_1
e_1_2_6_40_1
Golberg D.E. (e_1_2_6_32_1) 1989
e_1_2_6_9_1
e_1_2_6_8_1
Van Laar R.K. (e_1_2_6_6_1) 2012; 5
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_25_1
Koza J.R. (e_1_2_6_31_1) 1992
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_26_1
e_1_2_6_47_1
References_xml – volume: 4
  start-page: 228
  year: 2005
  end-page: 234
  ident: C37
  article-title: Multiple SVM-RFE for gene selection in cancer classification with expression data
  publication-title: IEEE Trans. Nanobiosci.
– volume: 7
  start-page: 33
  year: 2012
  ident: C13
  article-title: Stable feature selection and classification algorithms for multiclass microarray data
  publication-title: Biol. Direct
– volume: 11
  start-page: 791
  year: 2015
  end-page: 800
  ident: C7
  article-title: Classification of lung cancer using ensemble-based feature selection and machine learning methods
  publication-title: Mol. BioSyst.
– volume: 43
  start-page: D36
  year: 2015
  end-page: D42
  ident: C46
  article-title: Gene: a gene-centered information resource at NCBI
  publication-title: Nucleic Acids Res.
– volume: 143
  start-page: e278S
  year: 2013
  end-page: e313S
  ident: C2
  article-title: Treatment of stage I and II non-small cell lung cancer: diagnosis and management of lung cancer: American college of chest physicians evidence-based clinical practice guidelines
  publication-title: Chest
– volume: 12
  start-page: 444
  year: 2012
  end-page: 449
  ident: C14
  article-title: Classifying lung cancer recurrence time using novel ensemble method with gene network based input models
  publication-title: Procedia Comput. Sci.
– volume: 5
  start-page: e10312
  year: 2010
  ident: C9
  article-title: Gene expression-based classification of non-small cell lung carcinomas and survival prediction
  publication-title: PLoS One
– volume: 2
  start-page: 568
  year: 1991
  end-page: 576
  ident: C42
  article-title: A general regression neural network
  publication-title: IEEE Trans. Neural Netw.
– volume: 6
  start-page: S4
  year: 2013
  ident: C10
  article-title: Recursive SVM biomarker selection for early detection of breast cancer in peripheral blood
  publication-title: BMC Med. Genet.
– volume: 39
  start-page: 988
  year: 2012
  end-page: 1000
  ident: C21
  article-title: Quantitative classification based on CT histogram analysis of non-small cell lung cancer: correlation with histopathological characteristics and recurrence-free survival
  publication-title: Med. Phys.
– volume: 73
  start-page: 5261
  year: 2007
  end-page: 5267
  ident: C45
  article-title: Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy
  publication-title: Appl. Environ. Microbiol.
– volume: 10
  start-page: 2232
  year: 2014
  end-page: 2239
  ident: C34
  article-title: A comparative study of combined feature selection methods for Arabic text classification
  publication-title: J. Comput. Sci.
– volume: 10
  start-page: 168
  year: 2016
  end-page: 178
  ident: C27
  article-title: Lung cancer prediction from microarray data by gene expression programming
  publication-title: IET Syst. Biol.
– volume: 7
  start-page: 13543
  year: 2017
  ident: C8
  article-title: Prediction of recurrence in early stage non-small cell lung cancer using computer extracted nuclear features from digital H&E images
  publication-title: Sci. Rep.
– volume: 15
  start-page: 230
  year: 2012
  end-page: 238
  ident: C22
  article-title: Development of novel breast cancer recurrence prediction model using support vector machine
  publication-title: J. Breast Cancer
– volume: 53
  start-page: 47
  year: 2011
  end-page: 56
  ident: C11
  article-title: Hybrid genetic algorithm-neural network: feature extraction for unpreprocessed microarray data
  publication-title: Artif. Intell. Med.
– volume: 6
  start-page: 11
  year: 2014
  end-page: 20
  ident: C19
  article-title: Cancer recurrence prediction using machine learning
  publication-title: Int. J. Comput. Sci. Inf. Technol
– volume: 11
  start-page: 77
  year: 2017
  end-page: 85
  ident: C28
  article-title: Prediction of NSCLC recurrence from microarray data with GEP
  publication-title: IET Syst. Biol.
– volume: 20
  start-page: 354
  year: 2013
  end-page: 359
  ident: C15
  article-title: A novel application for combining CASs and datasets to produce increased accuracy in modeling and predicting cancer recurrence
  publication-title: Procedia Comput. Sci.
– volume: 33
  start-page: D514
  year: 2005
  end-page: D517
  ident: C39
  article-title: Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders
  publication-title: Nucleic Acids Res.
– volume: 4
  start-page: 191
  year: 2015
  ident: C3
  article-title: Adjuvant chemotherapy in non-small cell lung cancer: state-of-the-art
  publication-title: Transl. Lung Cancer Res.
– volume: 14
  start-page: 822
  year: 2008
  ident: C40
  article-title: Gene expression-based survival prediction in lung adenocarcinoma: a multi-site, blinded validation study
  publication-title: Nat. Med.
– volume: 48
  start-page: 1
  year: 2014
  end-page: 7
  ident: C17
  article-title: Risk classification of cancer survival using ANN with gene expression data from multiple laboratories
  publication-title: Comput. Biol. Med.
– volume: 11
  start-page: 10
  year: 2009
  end-page: 18
  ident: C41
  article-title: The WEKA data mining software: an update
  publication-title: ACM SIGKDD Explor. Newsl.
– volume: 7
  start-page: 157
  year: 2013
  end-page: 171
  ident: C6
  article-title: Molecular classification of non-small-cell lung cancer: diagnosis, individualized treatment, and prognosis
  publication-title: Front. Med.
– volume: 9
  start-page: 31
  year: 2010
  end-page: 37
  ident: C36
  article-title: SVM-RFE with MRMR filter for gene selection
  publication-title: IEEE Trans. Nanobiosci.
– volume: 5
  start-page: 30
  year: 2012
  ident: C5
  article-title: Genomic signatures for predicting survival and adjuvant chemotherapy benefit in patients with non-small-cell lung cancer
  publication-title: BMC Med. Genet.
– volume: 19
  start-page: 1577
  year: 2013
  end-page: 1586
  ident: C4
  article-title: A 12-gene set predicts survival benefits from adjuvant chemotherapy in non-small cell lung cancer patients
  publication-title: Clin. Cancer Res.
– volume: 361
  start-page: 923
  year: 2003
  end-page: 929
  ident: C18
  article-title: Oligonucleotide microarray for prediction of early intrahepatic recurrence of hepatocellular carcinoma after curative resection
  publication-title: Lancet
– volume: 86
  start-page: 554
  year: 2003
  end-page: 565
  ident: C43
  article-title: An assessment of the effectiveness of decision tree methods for land cover classification
  publication-title: Remote Sens. Environ.
– volume: 20
  start-page: 374
  year: 2013
  end-page: 378
  ident: C16
  article-title: Investigating the GRNN Oracle as a method for combining multiple predictive models of colon cancer recurrence from gene microarrays
  publication-title: Procedia Comput. Sci.
– volume: 20
  start-page: 354
  year: 2013
  end-page: 359
  article-title: A novel application for combining CASs and datasets to produce increased accuracy in modeling and predicting cancer recurrence
  publication-title: Procedia Comput. Sci.
– year: 2011
– volume: 43
  start-page: D36
  year: 2015
  end-page: D42
  article-title: Gene: a gene‐centered information resource at NCBI
  publication-title: Nucleic Acids Res.
– volume: 4
  start-page: 191
  year: 2015
  article-title: Adjuvant chemotherapy in non‐small cell lung cancer: state‐of‐the‐art
  publication-title: Transl. Lung Cancer Res.
– volume: 6
  start-page: S4
  year: 2013
  article-title: Recursive SVM biomarker selection for early detection of breast cancer in peripheral blood
  publication-title: BMC Med. Genet.
– volume: 53
  start-page: 47
  year: 2011
  end-page: 56
  article-title: Hybrid genetic algorithm‐neural network: feature extraction for unpreprocessed microarray data
  publication-title: Artif. Intell. Med.
– volume: 11
  start-page: 10
  year: 2009
  end-page: 18
  article-title: The WEKA data mining software: an update
  publication-title: ACM SIGKDD Explor. Newsl.
– start-page: 541
  year: 2017
  end-page: 553
  article-title: Multiclass lung cancer diagnosis by gene expression programming and microarray datasets
– volume: 14
  start-page: 822
  year: 2008
  article-title: Gene expression‐based survival prediction in lung adenocarcinoma: a multi‐site, blinded validation study
  publication-title: Nat. Med.
– volume: 7
  start-page: 13543
  year: 2017
  article-title: Prediction of recurrence in early stage non‐small cell lung cancer using computer extracted nuclear features from digital H&E images
  publication-title: Sci. Rep.
– volume: 9
  start-page: 31
  year: 2010
  end-page: 37
  article-title: SVM‐RFE with MRMR filter for gene selection
  publication-title: IEEE Trans. Nanobiosci.
– volume: 12
  start-page: 444
  year: 2012
  end-page: 449
  article-title: Classifying lung cancer recurrence time using novel ensemble method with gene network based input models
  publication-title: Procedia Comput. Sci.
– volume: 39
  start-page: 988
  year: 2012
  end-page: 1000
  article-title: Quantitative classification based on CT histogram analysis of non‐small cell lung cancer: correlation with histopathological characteristics and recurrence‐free survival
  publication-title: Med. Phys.
– start-page: 68
  year: 2018
  end-page: 73
– volume: 143
  start-page: e278S
  year: 2013
  end-page: e313S
  article-title: Treatment of stage I and II non‐small cell lung cancer: diagnosis and management of lung cancer: American college of chest physicians evidence‐based clinical practice guidelines
  publication-title: Chest
– volume: 11
  start-page: 791
  year: 2015
  end-page: 800
  article-title: Classification of lung cancer using ensemble‐based feature selection and machine learning methods
  publication-title: Mol. BioSyst.
– volume: 10
  start-page: 2232
  year: 2014
  end-page: 2239
  article-title: A comparative study of combined feature selection methods for Arabic text classification
  publication-title: J. Comput. Sci.
– volume: 5
  start-page: 30
  year: 2012
  article-title: Genomic signatures for predicting survival and adjuvant chemotherapy benefit in patients with non‐small‐cell lung cancer
  publication-title: BMC Med. Genet.
– start-page: 396
  year: 2011
  end-page: 400
  article-title: A dynamic subspace learning method for tumor classification using microarray gene expression data
– year: 2010
– start-page: 137
  year: 1998
  end-page: 142
– volume: 48
  start-page: 1
  year: 2014
  end-page: 7
  article-title: Risk classification of cancer survival using ANN with gene expression data from multiple laboratories
  publication-title: Comput. Biol. Med.
– volume: 6
  start-page: 11
  year: 2014
  end-page: 20
  article-title: Cancer recurrence prediction using machine learning
  publication-title: Int. J. Comput. Sci. Inf. Technol
– volume: 4
  start-page: 228
  year: 2005
  end-page: 234
  article-title: Multiple SVM‐RFE for gene selection in cancer classification with expression data
  publication-title: IEEE Trans. Nanobiosci.
– volume: 33
  start-page: D514
  year: 2005
  end-page: D517
  article-title: Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders
  publication-title: Nucleic Acids Res.
– volume: 15
  start-page: 230
  year: 2012
  end-page: 238
  article-title: Development of novel breast cancer recurrence prediction model using support vector machine
  publication-title: J. Breast Cancer
– volume: 10
  start-page: 168
  year: 2016
  end-page: 178
  article-title: Lung cancer prediction from microarray data by gene expression programming
  publication-title: IET Syst. Biol.
– volume: 86
  start-page: 554
  year: 2003
  end-page: 565
  article-title: An assessment of the effectiveness of decision tree methods for land cover classification
  publication-title: Remote Sens. Environ.
– volume: 7
  start-page: 157
  year: 2013
  end-page: 171
  article-title: Molecular classification of non‐small‐cell lung cancer: diagnosis, individualized treatment, and prognosis
  publication-title: Front. Med.
– volume: 19
  start-page: 1577
  year: 2013
  end-page: 1586
  article-title: A 12‐gene set predicts survival benefits from adjuvant chemotherapy in non‐small cell lung cancer patients
  publication-title: Clin. Cancer Res.
– year: 2008
– volume: 791
  start-page: 17
  year: 2019
  end-page: 31
– volume: 1
  year: 1992
– volume: 2
  start-page: 568
  year: 1991
  end-page: 576
  article-title: A general regression neural network
  publication-title: IEEE Trans. Neural Netw.
– volume: 7
  start-page: 33
  year: 2012
  article-title: Stable feature selection and classification algorithms for multiclass microarray data
  publication-title: Biol. Direct
– volume: 20
  start-page: 374
  year: 2013
  end-page: 378
  article-title: Investigating the GRNN Oracle as a method for combining multiple predictive models of colon cancer recurrence from gene microarrays
  publication-title: Procedia Comput. Sci.
– volume: 11
  start-page: 77
  year: 2017
  end-page: 85
  article-title: Prediction of NSCLC recurrence from microarray data with GEP
  publication-title: IET Syst. Biol.
– start-page: 260
  year: 2011
  end-page: 269
– volume: 5
  year: 2010
  article-title: Gene expression‐based classification of non‐small cell lung carcinomas and survival prediction
  publication-title: PLoS One
– volume: 361
  start-page: 923
  year: 2003
  end-page: 929
  article-title: Oligonucleotide microarray for prediction of early intrahepatic recurrence of hepatocellular carcinoma after curative resection
  publication-title: Lancet
– volume: 1989
  year: 1989
– year: 2015
– volume: 73
  start-page: 5261
  year: 2007
  end-page: 5267
  article-title: Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy
  publication-title: Appl. Environ. Microbiol.
– year: 1999
– ident: e_1_2_6_15_1
  doi: 10.1016/j.procs.2012.09.102
– start-page: 137
  volume-title: Learning with many relevant features
  year: 1998
  ident: e_1_2_6_45_1
– ident: e_1_2_6_19_1
  doi: 10.1016/S0140-6736(03)12775-4
– ident: e_1_2_6_40_1
  doi: 10.1093/nar/gki033
– start-page: 17
  volume-title: Computer and information science. ICIS 2018. Studies in computational intelligence
  year: 2019
  ident: e_1_2_6_30_1
– ident: e_1_2_6_26_1
  doi: 10.1007/978-3-319-69179-4_38
– volume-title: Relief‐based feature selection in bioinformatics: detecting functional specificity residues from multiple sequence alignments
  year: 2010
  ident: e_1_2_6_34_1
– ident: e_1_2_6_9_1
  doi: 10.1038/s41598-017-13773-7
– ident: e_1_2_6_12_1
  doi: 10.1016/j.artmed.2011.06.008
– ident: e_1_2_6_17_1
  doi: 10.1016/j.procs.2013.09.289
– ident: e_1_2_6_22_1
  doi: 10.1118/1.3679017
– ident: e_1_2_6_5_1
  doi: 10.1158/1078-0432.CCR-12-2321
– ident: e_1_2_6_18_1
  doi: 10.1016/j.compbiomed.2014.02.006
– volume: 5
  start-page: 30
  year: 2012
  ident: e_1_2_6_6_1
  article-title: Genomic signatures for predicting survival and adjuvant chemotherapy benefit in patients with non‐small‐cell lung cancer
  publication-title: BMC Med. Genet.
– ident: e_1_2_6_13_1
  doi: 10.1109/ICNC.2011.6022091
– ident: e_1_2_6_16_1
  doi: 10.1016/j.procs.2013.09.285
– ident: e_1_2_6_23_1
  doi: 10.4048/jbc.2012.15.2.230
– volume: 4
  start-page: 191
  year: 2015
  ident: e_1_2_6_4_1
  article-title: Adjuvant chemotherapy in non‐small cell lung cancer: state‐of‐the‐art
  publication-title: Transl. Lung Cancer Res.
– ident: e_1_2_6_42_1
  doi: 10.1145/1656274.1656278
– volume-title: What is gene expression programming
  year: 2008
  ident: e_1_2_6_24_1
– ident: e_1_2_6_25_1
  doi: 10.1109/ICIS.2018.8466448
– ident: e_1_2_6_39_1
– ident: e_1_2_6_36_1
– ident: e_1_2_6_21_1
  doi: 10.1007/978-3-642-22709-7_27
– ident: e_1_2_6_35_1
  doi: 10.3844/jcssp.2014.2232.2239
– ident: e_1_2_6_37_1
  doi: 10.1109/TNB.2009.2035284
– volume: 6
  start-page: S4
  year: 2013
  ident: e_1_2_6_11_1
  article-title: Recursive SVM biomarker selection for early detection of breast cancer in peripheral blood
  publication-title: BMC Med. Genet.
– ident: e_1_2_6_29_1
  doi: 10.1049/iet-syb.2016.0033
– ident: e_1_2_6_28_1
  doi: 10.1049/iet-syb.2015.0082
– volume-title: A language and environment for statistical computing
  year: 2011
  ident: e_1_2_6_33_1
– volume-title: Genetic algorithms in search, optimization, and machine learning
  year: 1989
  ident: e_1_2_6_32_1
– ident: e_1_2_6_2_1
– ident: e_1_2_6_47_1
  doi: 10.1093/nar/gku1055
– ident: e_1_2_6_7_1
  doi: 10.1007/s11684-013-0272-4
– volume: 6
  start-page: 11
  year: 2014
  ident: e_1_2_6_20_1
  article-title: Cancer recurrence prediction using machine learning
  publication-title: Int. J. Comput. Sci. Inf. Technol
– ident: e_1_2_6_43_1
  doi: 10.1109/72.97934
– ident: e_1_2_6_27_1
  doi: 10.1371/journal.pone.0125517
– ident: e_1_2_6_38_1
  doi: 10.1109/TNB.2005.853657
– ident: e_1_2_6_10_1
  doi: 10.1371/journal.pone.0010312
– ident: e_1_2_6_41_1
  doi: 10.1038/nm.1790
– ident: e_1_2_6_8_1
  doi: 10.1039/C4MB00659C
– ident: e_1_2_6_3_1
  doi: 10.1378/chest.12-2359
– ident: e_1_2_6_44_1
  doi: 10.1016/S0034-4257(03)00132-9
– ident: e_1_2_6_46_1
  doi: 10.1128/AEM.00062-07
– volume-title: Genetic programming: on the programming of computers by means of natural selection
  year: 1992
  ident: e_1_2_6_31_1
– ident: e_1_2_6_14_1
  doi: 10.1186/1745-6150-7-33
SSID ssj0055650
Score 2.196885
Snippet Non-small cell lung cancer (NSCLC) is the most popular and dangerous type of lung cancer. Adjuvant chemotherapy (ACT) is the main treatment after surgery...
Non‐small cell lung cancer (NSCLC) is the most popular and dangerous type of lung cancer. Adjuvant chemotherapy (ACT) is the main treatment after surgery...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
wiley
iet
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 129
SubjectTerms ACT classification
ACT information
ACT treatment
adjuvant chemotherapy
Algorithms
Bayes methods
Bayes Theorem
biochemistry
cancer
cancer ACT prediction model
cancer recurrence
cancer treatment
Carcinoma, Non-Small-Cell Lung - drug therapy
Carcinoma, Non-Small-Cell Lung - genetics
cellular biophysics
Chemotherapy, Adjuvant
conventional methods
decision tree
decision trees
Gene Expression Regulation, Neoplastic - drug effects
general regression neural network
genetics
gene‐expression programming algorithm
Humans
integrated microarray datasets
lung
Lung Neoplasms - drug therapy
Lung Neoplasms - genetics
medical computing
microarray gene‐expression datasets
microarray gene‐expression technology
Models, Statistical
naive Bayes
neural nets
nonsmall cell lung cancer
NSCLC treatment
NSCLC‐related prognostic genes
regression analysis
representative models
Research Article
support vector machine
support vector machines
surgery
surgery resection
survival time
Treatment Outcome
SummonAdditionalLinks – databaseName: IET Digital Library Open Access
  dbid: IDLOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZT9wwELZgUdW-VNBzyyFTVX1oZQhOnNiPXCuoaF8KEn2yHB8t1RJWe6jaf9-ZOBsUgYC31WZyzYwn34znIOSTyaW0YU-wOl8nSywsKZ4KZj2YTJ-XXFmMQ37_kZ9cZN8uxeVtebS7-o2zMtgi4obRch8rDzB1G-zwbsPjOJAE8O0uELDJvMQ0LbmD_fKWyQoH75z3yMrp0Rm6WNEyCwAvsUBS7DEpM9Xuct5zkc53ahkO3wdB72ZSPp9VIzP_Z4bDLtqtP1eDVfKywZl0PyrGGlny1SvyLE6enL8mZ4co7TE17u8MsPSUguyum2KsOR2NcfsGRUbrSTkUkC2tbio2uYZbUgz20yFYCWrrq7whF4Pj88MT1gxWYBbgVsKcLLgBR8kAHrGYboa7pYDDhOeqlMFhvW1qgzGuKBNnwEMzaZJ47lMBNin49C3pwU39e0JVSIPITVFYX2Qhc8YlruDBZECspAh9kizYqG3TdRyHXwx1vfudKQ2s1cB5jZzXyPk--dKeMootNx4i_oz_LZTiIcKPHcLT43P989fBLYEeOXja7YWMNSwzZKep_M1sooE7UgmMJvTJuyjz9uFSnN6TK94nRUcbWgJs4d09Ul39qVt5yxwc1gLO_NrqzVPeOa0163FKfEN-MKgd3w9P5dQ6eQG_VcyH2yC96XjmNwF5TcutZkH9ByfTKTc
  priority: 102
  providerName: Institution of Engineering and Technology
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB61RQguqLwXCjIIcQClZJ04sY901VVBokKilcrJcvwQRdt0tQ-hvfET-hv7S5hxskFRUUFc47ETzyuf7fEMwCtTSGnDUCQxXidPLZoUz0RiPbpMX1RcWdqH_HRYHBznH0_EyQaM1ndhmvwQ3YYbWUb012TgpmqqkCCoRSGe-kUyX1UUnSV3KU3eJtwYIp4hNef557U7FohYmluRYphImavuaFO9uzJE7-e0ic1_wp1XwydvLeupWf0wk0kf4sZ_1Hgb7rTgkr1vtOEubPj6Htxsyk2u7sPhiEQ8Y8Z9XyKAXjAU2Fl7A2vFpjM6syE5sVgehyGcZfV5ffnzYn6GL2W0x88m6ByYjeM8gOPx_tHoIGnrKSQWUVaaOFlyg-sjgzDEUpQZHZIi_BKeq0oGR9dsMxuMcWWVOoMLM5Olqec-E-iKgs8ewha-1j8GpkIWRGHK0voyD7kzLnUlDyZHYiVFGEC6ZqS2bbJxqnkx0fHQO1camauR95p4r4n3A3jTdZk2mTauI35Nz1p7m19H-LJH-GH_SH_5uvebQE8dfu2LtZQ1Whex09T-fDnXyB2pBG0iDOBRI_Xu4zIq2lMoPoCypw8dAWXu7rfUp99iBm9Z4Dq1xJ5vO835lzlnUbf-Tkkz5HvjuN598l-9nsJtfK6amLgd2FrMlv4Zoq9F9Txa1y9_tykU
  priority: 102
  providerName: Wiley-Blackwell
Title Cancer adjuvant chemotherapy prediction model for non-small cell lung cancer
URI http://digital-library.theiet.org/content/journals/10.1049/iet-syb.2018.5060
https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-syb.2018.5060
https://www.ncbi.nlm.nih.gov/pubmed/31170692
https://www.proquest.com/docview/2268950046
https://pubmed.ncbi.nlm.nih.gov/PMC8687172
https://ietresearch.onlinelibrary.wiley.com/doi/pdfdirect/10.1049/iet-syb.2018.5060
UnpaywallVersion publishedVersion
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVBHI
  databaseName: IET Digital Library Open Access
  customDbUrl:
  eissn: 1751-8857
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0055650
  issn: 1751-8857
  databaseCode: IDLOA
  dateStart: 20130201
  isFulltext: true
  titleUrlDefault: https://digital-library.theiet.org/content/collections
  providerName: Institution of Engineering and Technology
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1751-8857
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0055650
  issn: 1751-8857
  databaseCode: RPM
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVWIB
  databaseName: KBPluse Wiley Online Library: Open Access
  customDbUrl:
  eissn: 1751-8857
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0055650
  issn: 1751-8857
  databaseCode: AVUZU
  dateStart: 20130201
  isFulltext: true
  titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1751-8857
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0055650
  issn: 1751-8857
  databaseCode: 24P
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB6RRAguvB_mES0IcQA5cm2vH8e0NGoRhErUqOVirde7akvqRoktFE78BH4jv4SZtWNkqApInGLFs7Z3PDP-ZuexAM9EEEVSb3Db5Ov4jkSVcj1uS4UmUwWZG0tah3w7DXYS__UBP2gq60wtjCqbLjdHo7pXRLv4RlpibDcp-zzXtc2vPVA_ppH2cpVRtlY0orZ5PRgEHAF6HwbJdG98aEoj-YYdRQYUN8c8bGOd51yj87Xq4enzgOjv-ZRXqmIuVp_FbNbFvOajNbkO5Xq6da7Kp1FVZiP55ZdOkP-ZHzfgWgNy2biWyptwSRW34HK97eXqNky3SNQWTOQnFQL5kqHgnDaVYCs2X1DsiOSFmW16GMJqVpwV379-W57iXBnFGtgMjRST5jp3IJls72_t2M2-DrZEtOfYeRS6Av00gXBIUrYbBWsRBnLlxlmkcyr39aQWIg8zJxfoIArPcZSrPI4mUSvvLvTxtuo-sFh7mgciDKUKfe3nInfy0NXCR-I44toCZ_3-Utk0Pae9N2apCb77cYpsSpFNKbEpJTZZ8KIdMq87flxE_Jz-a_R-eRHh0w7h7vZ--v5w8ydBim_Qgidr4UpRy4mdolBn1TJF7kQxp8UMC-7VwtY-nEebBwWxa0HYEcOWgDqId88Ux0emk3gUoL8c4siXrcD-zZw9I3t_pqQZupsT43c_-Kd7PISreBzXOXmPoF8uKvUY0V-ZDaHn-ntDGIw_JB8T_N199ebdeNjo-A9HkFzj
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbaIlQuiDfL0yDEAZSSdezEPtLS1RbaFRJbqZwsxw9RtE1X-xDaGz-B38gvYcbJBkVFBXFNxkk845l8Mx7PEPLC5FLa0BdJzNfhqQWVYplIrAeT6fOSKYtxyKNRPjzm70_EyQZ5tz4LU9eHaANuqBnRXqOCY0C6djg5Fsk89YtkvioxPUvuYJ28TXKF5_0cXTDGP67tsQDIUh-LFP1ESq7avU315sIjOn-nTbj9J-B5MX9ye1lNzeqbmUy6GDf-pAY3yPUGXdK39XK4STZ8dYtcrftNrm6T0R7KeEaN-7oEBL2gILGz5gjWik5nuGmDgqKxPw4FPEur8-rn9x_zM3gpxSA_nYB1oDY-5w45HuyP94ZJ01AhsQCz0sTJghlwkAzgEItpZrhLCvhLeKZKGRyes81sMMYVZeoMeGYmS1PPfCbAFgWf3SVb8Fp_n1AVsiByUxTWFzxwZ1zqChYMB2IlReiRdM1IbZtq49j0YqLjrjdXGpirgfcaea-R9z3yqh0yrUttXEb8Eq81Cje_jPB5h_Bgf6w_fd79TaCnDr722VrKGtQL2Wkqf76ca-COVAKjCD1yr5Z6-3EZdu3JFeuRorMeWgIs3d29U51-iSW8ZQ6OagEjX7cr51_mnMW19XdKnCHbHUSH98F_jXpKtofjo0N9eDD68JBcAxpVJ8g9IluL2dI_Bii2KJ9ETfsFe9ssgA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwEB61W3G8IK5CymUQ4gEUSJM4sR97rVqOFRJdVPpiOT5E0TZd7aFq3_gJ_EZ-CTNJNigqKojXZJxjLn9jj2cAnutMCOM3eVjl66SRQZOKEx4ahy7TZUUsDa1Dfhhk-8P07RE_WoHd5VmYuj5Eu-BGllH5azJwN7a-DjhTKpJ54mbhdFFQepZ4TXXyVmEN5_Mo7cHa1ufh8XDpkTmClvpgJN8MhUhlu7sp31x4SGd-WsXbf4KeFzMor83LsV6c69Goi3Kraap_E240-JJt1QpxC1ZceRuu1B0nF3dgsENSnjBtv80RQ88Yyuy0OYS1YOMJbduQqFjVIYchomXlWfnz-4_pKb6U0TI_G6F_YKZ6zl0Y9vcOd_bDpqVCaBBoRaEVeawxRNKIRAwlmtE-KSIw7mJZCG_ppG1ivNY2LyKrMTbTSRS52CUcvZF3yTr08LXuPjDpE88znefG5alPrbaRzWOvUySWgvsAoiUjlWnqjVPbi5Gq9r1TqZC5CnmviPeKeB_Ay3bIuC62cRnxC7rWmNz0MsJnHcKDvUP16cv2bwKFehXA06WUFRoYsVOX7mw-VcgdITmtIwRwr5Z6-3EJ9e3JZBxA3tGHloCKd3fvlCdfqyLeIsNQNceRr1rN-Zd_Tird-jsl_WG83a9C3o3_GvUErn7c7av3B4N3D-A6ksg6Q-4h9GaTuXuEWGxWPG5M7ReZZi3U
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fa9RAEB_sFbEv_rdGrawiPig50iSbbB7b0qMKHoI9aJ-WzWaXqtf0uEuQ88mP0M_YT-LMJpcSLVXBt5DMJtnJzOY3O_8AXqlECG23ue_ideJAo0qFEfe1wSXTJHmYadqH_DBODibx-yN-1GbWuVwYU7VVbk6GTa2IbvONtMSt3aTss8I2a35jgcYZjfQXy5yitcSQyuatwXrCEaAPYH0y_rhz7FIj-bYvhAPF7TFPO1_nFffo_a3W8PJVQPT3eMpbdTlTy29qOu1jXvfTGt2BajXdJlbl67Cu8qH-_kslyP_Mj7twuwW5bKeRyntww5T34WbT9nL5AMZ7JGpzpoovNQL5iqHgnLaZYEs2m5PviOSFuTY9DGE1K8_Kix_ni1OcKyNfA5viIsW0u89DmIz2D_cO_Lavg68R7QV-IdJQoZ2mEA5pinYjZy3CQG7CLBe2oHTfSFulijQPCoUGooqCwIQm4rgkWhM9ggE-1jwGltnI8kSlqTZpbONCFUGRhlbFSJwJbj0IVt9P6rboOfXemErnfI8ziWySyCZJbJLEJg_edENmTcWP64hf07lW7xfXEb7sEb7bP5SfjncvCSR-QQ9erIRLopYTO1VpzuqFRO6IjNNmhgebjbB1LxdR86AkCz1Ie2LYEVAF8f6V8vOJqyQuErSXUxz5thPYv5lz5GTvz5Q0w3B35OzuJ__0jKewgcdZE5P3DAbVvDZbiP6q_HmrzT8BghVYwg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cancer+adjuvant+chemotherapy+prediction+model+for+non%E2%80%90small+cell+lung+cancer&rft.jtitle=IET+systems+biology&rft.au=Alanni%2C+Russul&rft.au=Hou%2C+Jingyu&rft.au=Azzawi%2C+Hasseeb&rft.au=Xiang%2C+Yong&rft.date=2019-06-01&rft.pub=The+Institution+of+Engineering+and+Technology&rft.issn=1751-8849&rft.eissn=1751-8857&rft.volume=13&rft.issue=3&rft.spage=129&rft.epage=135&rft_id=info:doi/10.1049%2Fiet-syb.2018.5060&rft_id=info%3Apmid%2F31170692&rft.externalDocID=PMC8687172
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-8849&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-8849&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-8849&client=summon