On the role of the tricarboxylic acid cycle in plant productivity
The tricarboxylic acid (TCA) cycle is one of the canonical energy pathways of living systems, as well as being an example of a pathway in which dynamic enzyme assemblies, or metabolons, are well characterized. The role of the enzymes have been the subject of saturated transgenesis approaches, whereb...
Saved in:
| Published in | Journal of integrative plant biology Vol. 60; no. 12; pp. 1199 - 1216 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
China (Republic : 1949- )
Wiley Subscription Services, Inc
01.12.2018
Center of Plant System Biology and Biotechnology, 4000 Plovdiv, Bulgaria Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1672-9072 1744-7909 1744-7909 |
| DOI | 10.1111/jipb.12690 |
Cover
| Abstract | The tricarboxylic acid (TCA) cycle is one of the canonical energy pathways of living systems, as well as being an example of a pathway in which dynamic enzyme assemblies, or metabolons, are well characterized. The role of the enzymes have been the subject of saturated transgenesis approaches, whereby the expression of the constituent enzymes were reduced or knocked out in order to ascertain their in vivo function. Some of the resultant plants exhibited improved photosynthesis and plant growth, under controlled greenhouse conditions. In addition, overexpression of the endogenous genes, or heterologous forms of a number of the enzymes, has been carried out in tomato fruit and the roots of a range of species, and in some instances improvement in fruit yield and postharvest properties and plant performance, under nutrient limitation, have been reported, respectively. Given a number of variants, in nature, we discuss possible synthetic approaches involving introducing these variants, or at least a subset of them, into plants. We additionally discuss the likely consequences of introducing synthetic metabolons, wherein certain pairs of reactions are artificially permanently assembled into plants, and speculate as to future strategies to further improve plant productivity by manipulation of the core metabolic pathway.
The tricarboxylic acid (TCA) cycle is one of the canonical energy pathways of living systems as well as being an example of a pathway in which dynamic enzyme assemblies or metabolons are well characterized. Given that a number of its variants in nature, here we discuss possible synthetic approaches involving introducing these variants, or at least a subset of them, into plants. |
|---|---|
| AbstractList | The tricarboxylic acid (TCA) cycle is one of the canonical energy pathways of living systems, as well as being an example of a pathway in which dynamic enzyme assemblies, or metabolons, are well characterized. The role of the enzymes have been the subject of saturated transgenesis approaches, whereby the expression of the constituent enzymes were reduced or knocked out in order to ascertain their in vivo function. Some of the resultant plants exhibited improved photosynthesis and plant growth, under controlled greenhouse conditions. In addition, overexpression of the endogenous genes, or heterologous forms of a number of the enzymes, has been carried out in tomato fruit and the roots of a range of species, and in some instances improvement in fruit yield and postharvest properties and plant performance, under nutrient limitation, have been reported, respectively. Given a number of variants, in nature, we discuss possible synthetic approaches involving introducing these variants, or at least a subset of them, into plants. We additionally discuss the likely consequences of introducing synthetic metabolons, wherein certain pairs of reactions are artificially permanently assembled into plants, and speculate as to future strategies to further improve plant productivity by manipulation of the core metabolic pathway.The tricarboxylic acid (TCA) cycle is one of the canonical energy pathways of living systems, as well as being an example of a pathway in which dynamic enzyme assemblies, or metabolons, are well characterized. The role of the enzymes have been the subject of saturated transgenesis approaches, whereby the expression of the constituent enzymes were reduced or knocked out in order to ascertain their in vivo function. Some of the resultant plants exhibited improved photosynthesis and plant growth, under controlled greenhouse conditions. In addition, overexpression of the endogenous genes, or heterologous forms of a number of the enzymes, has been carried out in tomato fruit and the roots of a range of species, and in some instances improvement in fruit yield and postharvest properties and plant performance, under nutrient limitation, have been reported, respectively. Given a number of variants, in nature, we discuss possible synthetic approaches involving introducing these variants, or at least a subset of them, into plants. We additionally discuss the likely consequences of introducing synthetic metabolons, wherein certain pairs of reactions are artificially permanently assembled into plants, and speculate as to future strategies to further improve plant productivity by manipulation of the core metabolic pathway. The tricarboxylic acid (TCA) cycle is one of the canonical energy pathways of living systems, as well as being an example of a pathway in which dynamic enzyme assemblies, or metabolons, are well character-ized. The role of the enzymes have been the subject of saturated transgenesis approaches, whereby the ex-pression of the constituent enzymes were reduced or knocked out in order to ascertain their in vivo function. Some of the resultant plants exhibited improved photosynthesis and plant growth, under controlled greenhouse conditions. In addition, overexpression of the endogenous genes, or heterologous forms of a number of the enzymes, has been carried out in tomato fruit and the roots of a range of species, and in some instances improvement in fruit yield and postharvest properties and plant performance, under nutrient limitation, have been reported, respectively. Given a number of variants, in nature, we discuss possible synthetic approaches involving introducing these var-iants, or at least a subset of them, into plants. We additionally discuss the likely consequences of intro-ducing synthetic metabolons, wherein certain pairs of reactions are artificially permanently assembled into plants, and speculate as to future strategies to further improve plant productivity by manipulation of the core metabolic pathway. The tricarboxylic acid (TCA) cycle is one of the canonical energy pathways of living systems, as well as being an example of a pathway in which dynamic enzyme assemblies, or metabolons, are well characterized. The role of the enzymes have been the subject of saturated transgenesis approaches, whereby the expression of the constituent enzymes were reduced or knocked out in order to ascertain their in vivo function. Some of the resultant plants exhibited improved photosynthesis and plant growth, under controlled greenhouse conditions. In addition, overexpression of the endogenous genes, or heterologous forms of a number of the enzymes, has been carried out in tomato fruit and the roots of a range of species, and in some instances improvement in fruit yield and postharvest properties and plant performance, under nutrient limitation, have been reported, respectively. Given a number of variants, in nature, we discuss possible synthetic approaches involving introducing these variants, or at least a subset of them, into plants. We additionally discuss the likely consequences of introducing synthetic metabolons, wherein certain pairs of reactions are artificially permanently assembled into plants, and speculate as to future strategies to further improve plant productivity by manipulation of the core metabolic pathway. The tricarboxylic acid (TCA) cycle is one of the canonical energy pathways of living systems, as well as being an example of a pathway in which dynamic enzyme assemblies, or metabolons, are well characterized. The role of the enzymes have been the subject of saturated transgenesis approaches, whereby the expression of the constituent enzymes were reduced or knocked out in order to ascertain their in vivo function. Some of the resultant plants exhibited improved photosynthesis and plant growth, under controlled greenhouse conditions. In addition, overexpression of the endogenous genes, or heterologous forms of a number of the enzymes, has been carried out in tomato fruit and the roots of a range of species, and in some instances improvement in fruit yield and postharvest properties and plant performance, under nutrient limitation, have been reported, respectively. Given a number of variants, in nature, we discuss possible synthetic approaches involving introducing these variants, or at least a subset of them, into plants. We additionally discuss the likely consequences of introducing synthetic metabolons, wherein certain pairs of reactions are artificially permanently assembled into plants, and speculate as to future strategies to further improve plant productivity by manipulation of the core metabolic pathway. The tricarboxylic acid (TCA) cycle is one of the canonical energy pathways of living systems as well as being an example of a pathway in which dynamic enzyme assemblies or metabolons are well characterized. Given that a number of its variants in nature, here we discuss possible synthetic approaches involving introducing these variants, or at least a subset of them, into plants. |
| Author | Fernie, Alisdair R. Zhang, Youjun |
| AuthorAffiliation | Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany;Center of Plant System Biology and Biotechnology, 4000 Plovdiv, Bulgaria |
| AuthorAffiliation_xml | – name: Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany;Center of Plant System Biology and Biotechnology, 4000 Plovdiv, Bulgaria |
| Author_xml | – sequence: 1 givenname: Youjun surname: Zhang fullname: Zhang, Youjun organization: Center of Plant System Biology and Biotechnology – sequence: 2 givenname: Alisdair R. surname: Fernie fullname: Fernie, Alisdair R. email: fernie@mpimp-golm.mpg.de organization: Center of Plant System Biology and Biotechnology |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29917310$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkV1rFTEQhoNU7Ife-ANkQQqibDuZ_cjuZS1VK4V6Ua9DNptoDjnJms16uv765nSPvShSA0MG8sxk3ncOyZ7zThHymsIJTed0ZYbuhGLdwjNyQFlZ5qyFdi_lNcO8BYb75HAcVwBFAzW-IPvYtpQVFA7I2bXL4k-VBW9V5vV9HoORInT-drZGZkKaPpOzTO_GZYMVLmZD8P0ko_lt4vySPNfCjurV7j4i3z9d3Jx_ya-uP1-en13lskKEvJFlpTTKAmRNi5JBh7Kvq75pNFQNiopB3Tda6K7VQhUl9D2TKTpJBaZhiyPyYek7uUHMG2EtH4JZizBzCnxrBN8awe-NSPTxQm-E08L94Cs_BZfm4382tx0CbSgCVIl7t3BJ0q9JjZGvzSiVTTKVn0aOiDRhiM3_UagYTX0rmtC3j9CH75FWDbCC4VbRmx01dWvVP8j5u50EwALI4McxKM2liSIa72IQxv5b9_tHJU-aRHcmGavmJ0j-9fLbx6XmDvC_vN0 |
| CitedBy_id | crossref_primary_10_3390_plants13050659 crossref_primary_10_1016_j_envexpbot_2020_104187 crossref_primary_10_1371_journal_pone_0262671 crossref_primary_10_1016_j_jfca_2024_106654 crossref_primary_10_1007_s11120_024_01106_5 crossref_primary_10_1007_s11738_020_03194_x crossref_primary_10_1111_pce_14436 crossref_primary_10_1111_ppl_13711 crossref_primary_10_1021_acs_jafc_2c08647 crossref_primary_10_3389_fsci_2024_1407410 crossref_primary_10_1093_jxb_erae519 crossref_primary_10_3390_ijms24119628 crossref_primary_10_1016_j_envexpbot_2020_104338 crossref_primary_10_1080_10409238_2023_2201945 crossref_primary_10_1007_s40626_020_00175_w crossref_primary_10_3390_metabo13050610 crossref_primary_10_3390_metabo12030247 crossref_primary_10_1038_s41598_023_40006_x crossref_primary_10_1186_s12870_024_05668_3 crossref_primary_10_1016_j_plantsci_2023_111706 crossref_primary_10_1016_j_scienta_2023_112394 crossref_primary_10_3390_plants11223153 crossref_primary_10_1039_D3EN00257H crossref_primary_10_1016_j_fochx_2024_101717 crossref_primary_10_1016_j_scienta_2024_113266 crossref_primary_10_1007_s10725_023_00990_6 crossref_primary_10_3389_fpls_2023_1182105 crossref_primary_10_1016_j_jgg_2024_12_016 crossref_primary_10_3389_fpls_2022_885051 crossref_primary_10_1007_s11104_024_06594_x crossref_primary_10_1016_j_jssas_2024_06_002 crossref_primary_10_1186_s12870_018_1409_z crossref_primary_10_1016_j_plaphy_2024_109337 crossref_primary_10_1016_j_plaphy_2024_109465 crossref_primary_10_1093_plphys_kiad133 crossref_primary_10_1111_nph_17323 crossref_primary_10_3390_plants12244079 crossref_primary_10_3390_ijms232315194 crossref_primary_10_1016_j_plaphy_2022_10_016 crossref_primary_10_1016_j_jenvman_2025_124551 crossref_primary_10_1016_j_molp_2021_03_023 crossref_primary_10_1093_plphys_kiac207 crossref_primary_10_1016_j_algal_2024_103690 crossref_primary_10_1016_j_biortech_2024_130834 crossref_primary_10_1111_ppl_13060 crossref_primary_10_3390_antiox12111915 crossref_primary_10_3390_cells10102774 crossref_primary_10_1098_rstb_2023_0352 crossref_primary_10_3390_metabo14080453 crossref_primary_10_1016_j_jhazmat_2022_128366 crossref_primary_10_1111_pce_15473 crossref_primary_10_1016_j_pbi_2023_102382 crossref_primary_10_1016_j_xplc_2020_100028 crossref_primary_10_1016_j_postharvbio_2023_112349 crossref_primary_10_1016_j_xplc_2023_100635 crossref_primary_10_3389_fpls_2023_1114172 crossref_primary_10_1002_moda_19 crossref_primary_10_1093_pcp_pcab036 crossref_primary_10_1016_j_plaphy_2025_109485 crossref_primary_10_1002_ppp3_10399 crossref_primary_10_1186_s13068_023_02315_1 crossref_primary_10_1111_pce_14904 crossref_primary_10_1080_15592324_2019_1592536 crossref_primary_10_1021_acs_analchem_3c01345 crossref_primary_10_3390_ijms25052964 crossref_primary_10_3389_fnut_2022_1013756 crossref_primary_10_3389_fmars_2024_1321865 crossref_primary_10_1016_j_algal_2023_103307 crossref_primary_10_1186_s13007_024_01249_5 crossref_primary_10_3390_f11111154 crossref_primary_10_1016_j_indcrop_2023_117056 crossref_primary_10_3389_fpls_2023_1309678 crossref_primary_10_1016_j_ecoenv_2024_116670 crossref_primary_10_1016_j_jhazmat_2022_129959 crossref_primary_10_1093_jxb_erz428 crossref_primary_10_1007_s12298_021_00985_5 crossref_primary_10_1111_tpj_16210 crossref_primary_10_1111_tpj_16179 crossref_primary_10_1186_s12870_019_2213_0 crossref_primary_10_1093_plphys_kiac011 crossref_primary_10_3390_biom10081107 crossref_primary_10_1016_j_xplc_2020_100081 crossref_primary_10_1002_adbi_202200238 crossref_primary_10_1038_s41598_021_88129_3 crossref_primary_10_1016_j_biortech_2021_125788 crossref_primary_10_1016_j_biortech_2023_128811 crossref_primary_10_1016_j_scienta_2024_112891 crossref_primary_10_1134_S1021443722010071 crossref_primary_10_3389_fpls_2018_01689 crossref_primary_10_1093_hr_uhac061 crossref_primary_10_3389_fpls_2024_1367176 crossref_primary_10_3390_plants9010117 crossref_primary_10_1111_jipb_12750 crossref_primary_10_1016_j_plaphy_2024_108444 crossref_primary_10_3389_fpls_2024_1475242 crossref_primary_10_3390_plants9020130 crossref_primary_10_1038_s41598_024_72568_9 crossref_primary_10_3389_fmicb_2024_1437274 crossref_primary_10_3390_metabo11030165 crossref_primary_10_1016_j_apmt_2024_102142 crossref_primary_10_3390_plants12223856 crossref_primary_10_1186_s12870_024_05908_6 crossref_primary_10_3390_ijms22020916 crossref_primary_10_1002_cppb_20115 crossref_primary_10_1016_j_ijbiomac_2024_131693 crossref_primary_10_3389_fpls_2024_1372232 crossref_primary_10_1016_j_pld_2024_07_008 crossref_primary_10_1016_j_cej_2024_156901 crossref_primary_10_1186_s12864_021_08109_9 crossref_primary_10_1016_j_jplph_2022_153814 crossref_primary_10_1016_j_indcrop_2023_116423 crossref_primary_10_1016_j_fochx_2025_102367 crossref_primary_10_1093_plphys_kiad282 crossref_primary_10_1016_j_ecoenv_2024_115935 crossref_primary_10_3390_foods12203821 crossref_primary_10_1016_j_jplph_2021_153521 crossref_primary_10_1021_acsnano_3c02790 crossref_primary_10_1016_j_jplph_2022_153707 crossref_primary_10_3389_fmicb_2020_575578 crossref_primary_10_3389_fpls_2024_1449157 crossref_primary_10_1155_2018_1539325 crossref_primary_10_3390_plants12173036 crossref_primary_10_1038_s41598_021_88856_7 crossref_primary_10_1080_14620316_2021_1983475 crossref_primary_10_1016_j_envexpbot_2023_105472 crossref_primary_10_1016_j_jprot_2021_104410 crossref_primary_10_3389_fpls_2023_1130292 |
| Cites_doi | 10.1007/s11120-017-0429-0 10.1016/j.pbi.2018.01.004 10.1104/pp.113.215970 10.1104/pp.15.01053 10.1146/annurev-arplant-050312-120233 10.1016/j.pbi.2012.01.008 10.1093/jxb/erq453 10.1111/j.1469-8137.2008.02752.x 10.1111/nph.14823 10.1105/tpc.004077 10.1105/tpc.110.081224 10.1007/s12033-009-9162-z 10.1104/pp.112.204826 10.1111/j.1365-3040.2011.02332.x 10.1098/rstb.2000.0706 10.1007/s00299-011-1138-3 10.1104/pp.15.01660 10.1104/pp.109.142976 10.1104/pp.104.050245 10.1016/j.pbi.2005.03.014 10.1128/JB.00405-08 10.1007/s11104-009-9994-0 10.1007/s11120-013-9807-4 10.1105/tpc.108.060830 10.1074/jbc.272.41.25659 10.1038/s41467-017-02168-x 10.1016/j.bbabio.2006.07.001 10.1104/pp.107.106500 10.1038/ncomms6928 10.1073/pnas.1220766110 10.1146/annurev-arplant-042110-103857 10.1371/journal.ppat.1000662 10.1002/anie.201409336 10.1104/pp.108.117978 10.1104/pp.105.059667 10.1105/tpc.109.072231 10.1080/07352680091139231 10.1104/pp.109.149047 10.1007/s11105-011-0397-z 10.1105/tpc.104.024406 10.1111/j.1469-8137.2010.03478.x 10.1104/pp.17.00971 10.1080/00380768.2000.10409141 10.1128/JB.182.24.6892-6899.2000 10.1016/j.pbi.2004.03.007 10.1016/j.copbio.2017.10.001 10.1104/pp.111.175463 10.1016/S1360-1385(01)01892-1 10.1111/ppl.12150 10.1016/j.tplants.2010.03.006 10.1104/pp.108.130518 10.1104/pp.103.026716 10.1111/j.1469-8137.2009.03130.x 10.1093/mp/sst111 10.1146/annurev.arplant.55.031903.141655 10.1111/j.0031-9317.2004.0222.x 10.1073/pnas.1424840112 10.1016/j.pbi.2013.01.004 10.1016/j.tplants.2003.09.015 10.1016/j.tplants.2009.10.002 10.1104/pp.106.088534 10.1111/j.1399-3054.2009.01252.x 10.1038/74531 10.1016/0968-0004(85)90266-X 10.1016/S0021-9258(19)85153-0 10.1093/jxb/erw128 10.1093/jxb/erw083 10.1038/srep10343 10.1104/pp.124.4.1786 10.1038/ncomms12399 10.1073/pnas.1120813109 10.1093/pcp/41.4.383 10.1111/j.1365-313X.2008.03696.x 10.1186/s13007-017-0241-z 10.1104/pp.112.211094 10.1016/S0038-0717(01)00235-8 10.1038/s41467-018-04543-8 10.1111/tpj.13864 10.1016/j.tplants.2015.11.011 10.1104/pp.110.161612 10.1104/pp.104.055566 10.1007/s11103-005-3249-0 10.1104/pp.111.183939 10.1093/mp/ssq049 10.1016/j.pbi.2011.12.003 10.1126/science.aab1852 10.1042/BST0331430 10.1007/s00299-008-0517-x 10.1104/pp.106.086694 10.3389/fbioe.2015.00168 10.3389/fpls.2014.00447 10.1002/j.1460-2075.1995.tb07044.x 10.1104/pp.010376 10.1093/mp/ssu008 10.1074/jbc.M406884200 10.1104/pp.107.103101 10.1016/j.ymben.2010.10.001 10.1038/ncb1782 10.1023/A:1006393726018 10.1016/j.tplants.2012.05.005 10.1042/BCJ20170377 10.1007/s11738-010-0522-x 10.1038/nmicrobiol.2017.67 10.1007/s40610-017-0053-y 10.1021/acscatal.6b03440 10.1016/j.tplants.2013.12.006 10.1080/07352680601147919 10.1093/mp/ssp101 10.1104/pp.105.062141 10.1105/tpc.15.00105 10.1093/pcp/pcm091 10.1126/science.1198701 10.1104/pp.111.179986 10.1104/pp.104.047357 10.1111/j.1365-313X.2003.01991.x 10.1016/j.phytochem.2009.04.023 10.1105/tpc.15.00208 10.1104/pp.113.214114 10.1093/jxb/48.1.75 10.1104/pp.106.085233 10.1038/ncomms15212 10.1074/jbc.M700198200 10.1093/mp/sst144 10.1016/j.tibtech.2015.11.002 10.1111/j.1365-3040.2012.02559.x 10.1111/nph.12629 10.1016/j.tplants.2016.12.008 10.1126/science.276.5318.1566 10.1016/1357-2725(94)00079-Q 10.1007/s11021-005-0062-3 10.1080/713608316 10.1104/pp.102.3.947 10.3389/fpls.2016.01042 10.1111/tpj.13464 10.1073/pnas.0602868103 10.1046/j.1432-1033.2003.03469.x 10.1016/j.tplants.2010.05.006 10.1016/j.molp.2015.02.006 10.1104/pp.126.3.1139 10.1105/tpc.112.099002 10.1007/s00425-009-0945-z 10.1111/j.1365-313X.2007.03115.x 10.1126/science.1210858 10.1105/tpc.016055 10.1038/ng2074 10.1534/g3.115.025791 10.1105/tpc.107.053371 10.1104/pp.110.163816 |
| ContentType | Journal Article |
| Copyright | 2018 Institute of Botany, Chinese Academy of Sciences 2018 Institute of Botany, Chinese Academy of Sciences. Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| Copyright_xml | – notice: 2018 Institute of Botany, Chinese Academy of Sciences – notice: 2018 Institute of Botany, Chinese Academy of Sciences. – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7T7 8FD C1K FR3 P64 RC3 7X8 7S9 L.6 2B. 4A8 92I 93N PSX TCJ ADTOC UNPAY |
| DOI | 10.1111/jipb.12690 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | MEDLINE - Academic Genetics Abstracts MEDLINE AGRICOLA |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Botany |
| EISSN | 1744-7909 |
| EndPage | 1216 |
| ExternalDocumentID | 10.1111/jipb.12690 zwxb201812005 29917310 10_1111_jipb_12690 JIPB12690 |
| Genre | reviewArticle Journal Article Review |
| GrantInformation_xml | – fundername: Max‐Planck Society – fundername: European Union's Horizon 2020 research and innovation program – fundername: Max-Planck Society – fundername: funding from the Max-Planck Society; the European Union's Horizon 2020 research and innovation program, project PlantaSYST |
| GroupedDBID | --- -SA -S~ .3N .GA .Y3 05W 0R~ 10A 1OC 29K 2B. 2C. 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VR 5VS 5XA 5XB 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 92E 92I 92Q 930 93N A03 A8Z AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXDM AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFUIB AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG CAJEA CCEZO CCVFK CHBEP CHDYS COF CS3 CW9 D-E D-F D-I DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN ESX F00 F01 F04 F5P FA0 FEDTE G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D Q-- Q.N Q11 QB0 R.K ROL RX1 SJN SUPJJ SV3 TCJ TGP TUS U1G U5K UB1 W8V W99 WBKPD WFFXF WIH WIK WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 ZZTAW ~IA ~KM ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY CITATION ESTFP CGR CUY CVF ECM EIF NPM 7QO 7T7 8FD C1K FR3 P64 RC3 7X8 7S9 L.6 4A8 PSX ADTOC UNPAY |
| ID | FETCH-LOGICAL-c5220-8c45ef2c30c613470b2cd65d88f0582a5706d8fafb9fae340dd7cdd7bc1a21733 |
| IEDL.DBID | UNPAY |
| ISSN | 1672-9072 1744-7909 |
| IngestDate | Sun Oct 26 04:14:53 EDT 2025 Thu May 29 04:01:05 EDT 2025 Fri Sep 05 17:18:33 EDT 2025 Thu Oct 02 10:11:52 EDT 2025 Fri Jul 25 21:05:34 EDT 2025 Mon Jul 21 05:48:11 EDT 2025 Wed Oct 01 03:46:54 EDT 2025 Thu Apr 24 22:54:20 EDT 2025 Wed Jan 22 17:07:07 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| License | 2018 Institute of Botany, Chinese Academy of Sciences. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5220-8c45ef2c30c613470b2cd65d88f0582a5706d8fafb9fae340dd7cdd7bc1a21733 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/jipb.12690 |
| PMID | 29917310 |
| PQID | 2158073723 |
| PQPubID | 2045135 |
| PageCount | 18 |
| ParticipantIDs | unpaywall_primary_10_1111_jipb_12690 wanfang_journals_zwxb201812005 proquest_miscellaneous_2221053228 proquest_miscellaneous_2057118151 proquest_journals_2158073723 pubmed_primary_29917310 crossref_citationtrail_10_1111_jipb_12690 crossref_primary_10_1111_jipb_12690 wiley_primary_10_1111_jipb_12690_JIPB12690 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | December 2018 |
| PublicationDateYYYYMMDD | 2018-12-01 |
| PublicationDate_xml | – month: 12 year: 2018 text: December 2018 |
| PublicationDecade | 2010 |
| PublicationPlace | China (Republic : 1949- ) |
| PublicationPlace_xml | – name: China (Republic : 1949- ) – name: Hoboken |
| PublicationTitle | Journal of integrative plant biology |
| PublicationTitleAlternate | J Integr Plant Biol |
| PublicationTitle_FL | Journal of Integrative Plant Biology |
| PublicationYear | 2018 |
| Publisher | Wiley Subscription Services, Inc Center of Plant System Biology and Biotechnology, 4000 Plovdiv, Bulgaria Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany |
| Publisher_xml | – name: Wiley Subscription Services, Inc – name: Center of Plant System Biology and Biotechnology, 4000 Plovdiv, Bulgaria – name: Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany |
| References | 2008; 190 2002; 14 2010; 15 1997; 272 1997; 48 2004; 7 1997; 276 2011; 62 2013; 64 2010; 185 2003; 270 2012; 17 1999; 41 2012; 15 2009; 230 2014a; 19 2018; 49 2016; 34 2018; 9 2000; 18 2000; 19 2000; 124 1995; 27 2004; 37 2008; 27 2005; 74 2013; 110 2010; 3 1985; 10 2007; 19 2010; 32 2007; 282 2000; 355 2009; 182 2010; 326 2015; 54 2012b; 24 2014; 151 2017; 134 1993; 102 2012; 35 1985; 260 2012; 31 2012; 109 2012; 30 2004; 55 2016; 6 2016; 7 2018; 17 2004; 279 2009; 70 2015; 112 2005; 8 2016; 21 2000; 182 2018; 94 2016; 171 2016; 170 2006; 103 2003; 22 2007; 39 2007; 145 2017; 7 2011; 157 2017; 8 2004; 120 2017; 2 2017; 3 2009; 42 2000; 46 2005; 137 2000; 41 2005; 138 2012; 160 2011; 13 2013; 162 2009; 151 2008; 147 2015; 349 2017; 474 2013; 161 2014b; 7 2011; 155 2012a; 35 2009; 57 2014; 5 2013; 16 2006; 1757 2003; 8 1961; 2 2010; 154 2010; 153 2011; 23 2014; 7 2014; 202 2007; 26 2014; 119 2011; 334 2015; 6 2015; 5 2009; 21 2005a; 33 2015; 3 2005b; 137 1995; 14 2017; 22 2002; 34 2016; 54 2008; 10 2007; 50 2017; 175 2015; 8 2003; 133 2011; 332 2001; 126 2009; 137 2017; 216 2001; 127 1984; 75 2018; 2018 2017; 90 2015; 27 2001; 6 2004; 16 2017; 13 2006; 142 2009; 5 2011; 189 2007; 48 2016; 67 2009; 149 2005; 57 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_40_1 e_1_2_10_109_1 e_1_2_10_131_1 e_1_2_10_70_1 e_1_2_10_93_1 e_1_2_10_2_1 e_1_2_10_139_1 e_1_2_10_18_1 e_1_2_10_74_1 e_1_2_10_97_1 e_1_2_10_116_1 e_1_2_10_150_1 e_1_2_10_6_1 e_1_2_10_55_1 e_1_2_10_135_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_78_1 e_1_2_10_112_1 e_1_2_10_13_1 e_1_2_10_32_1 e_1_2_10_51_1 Hussain ISA (e_1_2_10_53_1) 2016; 54 e_1_2_10_120_1 e_1_2_10_147_1 e_1_2_10_82_1 e_1_2_10_128_1 e_1_2_10_29_1 e_1_2_10_63_1 e_1_2_10_86_1 e_1_2_10_105_1 e_1_2_10_124_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_67_1 e_1_2_10_143_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_41_1 e_1_2_10_132_1 e_1_2_10_90_1 e_1_2_10_71_1 e_1_2_10_117_1 e_1_2_10_94_1 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_75_1 e_1_2_10_113_1 e_1_2_10_136_1 e_1_2_10_38_1 e_1_2_10_98_1 e_1_2_10_56_1 e_1_2_10_79_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_121_1 e_1_2_10_144_1 Zhang YJ (e_1_2_10_151_1) 2018; 17 e_1_2_10_148_1 e_1_2_10_60_1 e_1_2_10_106_1 e_1_2_10_129_1 e_1_2_10_83_1 e_1_2_10_64_1 e_1_2_10_102_1 e_1_2_10_125_1 e_1_2_10_140_1 e_1_2_10_49_1 e_1_2_10_87_1 e_1_2_10_26_1 e_1_2_10_68_1 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_69_1 Rapp BJ (e_1_2_10_101_1) 1984; 75 e_1_2_10_42_1 Robinson JB (e_1_2_10_104_1) 1985; 260 e_1_2_10_110_1 e_1_2_10_91_1 e_1_2_10_72_1 e_1_2_10_95_1 e_1_2_10_118_1 e_1_2_10_4_1 e_1_2_10_137_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_76_1 e_1_2_10_99_1 e_1_2_10_114_1 e_1_2_10_152_1 e_1_2_10_8_1 e_1_2_10_57_1 e_1_2_10_133_1 e_1_2_10_58_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_30_1 e_1_2_10_119_1 e_1_2_10_145_1 e_1_2_10_80_1 e_1_2_10_149_1 e_1_2_10_61_1 e_1_2_10_84_1 e_1_2_10_107_1 e_1_2_10_126_1 e_1_2_10_27_1 e_1_2_10_65_1 e_1_2_10_88_1 e_1_2_10_103_1 e_1_2_10_141_1 e_1_2_10_122_1 e_1_2_10_24_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_108_1 e_1_2_10_130_1 e_1_2_10_92_1 e_1_2_10_73_1 e_1_2_10_115_1 e_1_2_10_138_1 e_1_2_10_96_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_77_1 e_1_2_10_111_1 e_1_2_10_134_1 e_1_2_10_153_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_31_1 e_1_2_10_50_1 e_1_2_10_146_1 e_1_2_10_81_1 e_1_2_10_62_1 e_1_2_10_127_1 e_1_2_10_85_1 e_1_2_10_28_1 e_1_2_10_66_1 e_1_2_10_100_1 e_1_2_10_123_1 e_1_2_10_142_1 e_1_2_10_47_1 e_1_2_10_89_1 |
| References_xml | – volume: 182 start-page: 6892 year: 2000 end-page: 6899 article-title: Functions of the membrane‐associated and cytoplasmic malate dehydrogenases in the citric acid cycle of publication-title: J Bacteriol – volume: 34 start-page: 191 year: 2016 end-page: 197 article-title: Metabolic engineering of TCA cycle for production of chemicals publication-title: Trends Biotechnol – volume: 16 start-page: 3098 year: 2004 end-page: 3109 article-title: Colocalization of L‐phenylalanine ammonia‐lyase and cinnarnate 4‐hydroxylase for metabolic channeling in phenylpropanoid biosynthesis publication-title: Plant Cell – volume: 109 start-page: 8872 year: 2012 end-page: 8877 article-title: Genome‐wide association mapping of leaf metabolic profiles for dissecting complex traits in maize publication-title: Proc Natl Acad Sci USA – volume: 62 start-page: 79 year: 2011 end-page: 104 article-title: Organization and regulation of mitochondrial respiration in plants publication-title: Annu Rev Plant Biol – volume: 19 start-page: 3723 year: 2007 end-page: 3738 article-title: Glycolytic enzymes associate dynamically with mitochondria in response to respiratory demand and support substrate channeling publication-title: Plant Cell – volume: 23 start-page: 162 year: 2011 end-page: 184 article-title: Malate plays a crucial role in starch metabolism, ripening, and soluble solid content of tomato fruit and affects postharvest softening publication-title: Plant Cell – volume: 13 start-page: 18 year: 2011 end-page: 27 article-title: Physical interactions between tricarboxylic acid cycle enzymes in : Evidence for a metabolon publication-title: Metab Eng – volume: 14 start-page: 660 year: 1995 end-page: 666 article-title: Inhibition of flower formation by antisense repression of mitochondrial citrate synthase in transgenic potato plants leads to a specific disintegration of the ovary tissues of flowers publication-title: EMBO J – volume: 8 start-page: 546 year: 2003 end-page: 553 article-title: Beneficial interactions of mitochondrial metabolism with photosynthetic carbon assimilation publication-title: Trends Plant Sci – volume: 19 start-page: 399 year: 2014a end-page: 407 article-title: The complex role of mitochondrial metabolism in plant aluminum resistance publication-title: Trends Plant Sci – volume: 27 start-page: 1968 year: 2015 end-page: 1984 article-title: Mitochondrial dihydrolipoyl dehydrogenase activity shapes photosynthesis and photorespiration of publication-title: Plant Cell – volume: 137 start-page: 371 year: 2009 end-page: 382 article-title: Alternative oxidase: A defence against metabolic fluctuations publication-title: Physiol Plant – volume: 138 start-page: 297 year: 2005 end-page: 303 article-title: Immobilization of aluminum with phosphorus in roots is associated with high aluminum resistance in buckwheat publication-title: Plant Physiol – volume: 134 start-page: 117 year: 2017 end-page: 131 article-title: The Arnon‐Buchanan cycle: A retrospective, 1966–2016 publication-title: Photosynth Res – volume: 18 start-page: 450 year: 2000 end-page: 453 article-title: Enhanced phosphorus uptake in transgenic tobacco plants that overproduce citrate publication-title: Nat Biotechnol – volume: 67 start-page: 2923 year: 2016 end-page: 2929 article-title: The regulatory interplay between photorespiration and photosynthesis publication-title: J Exp Bot – volume: 349 start-page: 309 year: 2015 end-page: 312 article-title: Morphinan biosynthesis in opium poppy requires a P450‐oxidoreductase fusion protein publication-title: Science – volume: 110 start-page: 5241 year: 2013 end-page: 5246 article-title: Aluminum tolerance in maize is associated with higher MATE1 gene copy number publication-title: Proc Natl Acad Sci USA – volume: 175 start-page: 1068 year: 2017 end-page: 1081 article-title: Impaired malate and fumarate accumulation due to the mutation of the tonoplast dicarboxylate transporter has little effects on stomatal behavior publication-title: Plant Physiol – volume: 15 start-page: 40 year: 2010 end-page: 47 article-title: Intra‐ and extra‐cellular excretion of carboxylates publication-title: Trends Plant Sci – volume: 15 start-page: 308 year: 2012 end-page: 314 article-title: Respiratory carbon fluxes in leaves publication-title: Curr Opin Plant Biol – volume: 24 start-page: 2328 year: 2012b end-page: 2351 article-title: Antisense inhibition of the 2‐oxoglutarate dehydrogenase complex in tomato demonstrates its importance for plant respiration and during leaf senescence and fruit maturation publication-title: Plant Cell – volume: 75 start-page: 148 year: 1984 end-page: 148 article-title: Regulation of plant pyruvate dehydrogenase complex from germinating and developing gastor bean endosperm publication-title: Plant Physiol – volume: 57 start-page: 389 year: 2009 end-page: 399 article-title: Aluminum‐activated citrate and malate transporters from the MATE and ALMT families function independently to confer aluminum tolerance publication-title: Plant J – volume: 7 start-page: 248 year: 2014b end-page: 251 article-title: Is there a metabolic requirement for photorespiratory enzyme activities in heterotrophic tissues publication-title: Mol Plant – volume: 202 start-page: 209 year: 2014 end-page: 219 article-title: Superior aluminium (Al) tolerance of Stylosanthes is achieved mainly by malate synthesis through an Al‐enhanced malic enzyme, SgME1 publication-title: New Phytol – volume: 170 start-page: 86 year: 2016 end-page: 101 article-title: Enhanced photosynthesis and growth in atquac1 knockout mutants are due to altered organic acid accumulation and an increase in both stomatal and mesophyll conductance publication-title: Plant Physiol – volume: 21 start-page: 1428 year: 2009 end-page: 1452 article-title: Regulatory features underlying pollination‐dependent and ‐independent tomato fruit set revealed by transcript and primary metabolite profiling publication-title: Plant Cell – volume: 15 start-page: 330 year: 2010 end-page: 336 article-title: Photorespiration: Players, partners and origin publication-title: Trends Plant Sci – volume: 22 start-page: 249 year: 2017 end-page: 262 article-title: The unprececentec versatility of the plant thiorecoxin system publication-title: Trends Plant Sci – volume: 155 start-page: 101 year: 2011 end-page: 107 article-title: Targeting mitochondrial metabolism and machinery as a means to enhance photosynthesis publication-title: Plant Physiol – volume: 30 start-page: 992 year: 2012 end-page: 1005 article-title: Simultaneous overexpression of citrate synthase and phosphoenolpyruvate carboxylase in leaves augments citrate exclusion and Al resistance in transgenic tobacco publication-title: Plant Mol Biol Rep – volume: 145 start-page: 626 year: 2007 end-page: 639 article-title: Reduced expression of succinyl‐coenzyme A ligase can be compensated for by up‐regulation of the gamma‐aminobutyrate shunt in illuminated tomato leaves publication-title: Plant Physiol – volume: 42 start-page: 299 year: 2009 end-page: 305 article-title: One novel mitochondrial citrate synthase from L. can enhance aluminum tolerance in transgenic tobacco publication-title: Mol Biotechnol – volume: 33 start-page: 1430 year: 2005a end-page: 1434 article-title: Enhancing crop yield in solanaceous species through the genetic manipulation of energy metabolism publication-title: Biochem Soc Trans – volume: 32 start-page: 1209 year: 2010 end-page: 1220 article-title: Overexpression of malate dehydrogenase in transgenic tobacco leaves: Enhanced malate synthesis and augmented Al‐resistance publication-title: Acta Physiol Plant – volume: 112 start-page: E1392 year: 2015 end-page: E1400 article-title: Thioredoxin, a master regulator of the tricarboxylic acid cycle in plant mitochondria publication-title: Proc Natl Acad Sci USA – volume: 142 start-page: 1380 year: 2006 end-page: 1396 article-title: Integrated analysis of metabolite and transcript levels reveals the metabolic shifts that underlie tomato fruit development and highlight regulatory aspects of metabolic network behavior publication-title: Plant Physiol – volume: 171 start-page: 265 year: 2016 end-page: 279 article-title: Relationships of leaf net photosynthesis, stomatal conductance, and mesophyll conductance to primary metabolism: A multispecies meta‐analysis approach publication-title: Plant Physiol – volume: 157 start-page: 405 year: 2011 end-page: 425 article-title: Systems biology of tomato fruit development: Combined transcript, protein, and mtabolite analyis of tomato transcription factor (nor, rin) and ethylene receptor (Nr) mutants reveals novel regulatory interactions publication-title: Plant Physiol – volume: 31 start-page: 49 year: 2012 end-page: 56 article-title: Improved phosphorus acquisition by tobacco through transgenic expression of mitochondrial malate dehydrogenase from publication-title: Plant Cell Rep – volume: 2 start-page: 17067 year: 2017 article-title: Convergent evolution of a modified, acetate‐driven TCA cycle in bacteria publication-title: Nat Microbiol – volume: 50 start-page: 1093 year: 2007 end-page: 1106 article-title: Deficiency of mitochondrial fumarase activity in tomato plants impairs photosynthesis via an effect on stomatal function publication-title: Plant J – volume: 120 start-page: 21 year: 2004 end-page: 26 article-title: Malate valves to balance cellular energy supply publication-title: Physiol Plant – volume: 153 start-page: 611 year: 2010 end-page: 621 article-title: Tricarboxylic acid cycle activity regulates tomato root growth via effects on secondary cell wall production publication-title: Plant Physiol – volume: 16 start-page: 241 year: 2004 end-page: 256 article-title: Experimental analysis of the mitochondrial proteome highlights signaling and regulatory components, provides assessment of targeting prediction programs, and indicates plant‐specific mitochondrial proteins publication-title: Plant Cell – volume: 74 start-page: 270 year: 2005 end-page: 278 article-title: A study of the mechanism of acetate assimilation in purple nonsulfur bacteria lacking the glyoxylate shunt: Enzymes of the citramalate cycle in publication-title: Microbiology – volume: 7 start-page: 2486 year: 2017 end-page: 2493 article-title: Substrate channeling in an artificial metabolon: A molecular dynamics blueprint for an experimental peptide bridge publication-title: ACS Catal – volume: 5 start-page: 10343 year: 2015 article-title: The mitochondrial malate dehydrogenase 1 gene is involved in plant and root growth under phosphorus deficiency conditions in cotton publication-title: Sci Rep – volume: 13 start-page: 90 year: 2017 article-title: Integrative field scale phenotyping for investigating metabolic components of water stress within a vineyard publication-title: Plant Meth – volume: 14 start-page: 2539 year: 2002 end-page: 2551 article-title: A polyamine metabolon involving aminopropyl transferase complexes in publication-title: Plant Cell – volume: 15 start-page: 462 year: 2010 end-page: 470 article-title: Not just a circle: Flux modes in the plant TCA cycle publication-title: Trends Plant Sci – volume: 19 start-page: 267 year: 2000 end-page: 290 article-title: Ascorbic acid in plants: Biosynthesis and function publication-title: Crit Rev Plant Sci – volume: 154 start-page: 1143 year: 2010 end-page: 1157 article-title: Mitochondrial malate dehydrogenase lowers leaf respiration and alters photorespiration and plant growth in publication-title: Plant Physiol – volume: 162 start-page: 379 year: 2013 end-page: 389 article-title: Serine acts as a metabolic signal for the transcriptional control of photorespiration‐related genes in publication-title: Plant Physiol – volume: 16 start-page: 335 year: 2013 end-page: 343 article-title: Regulation of the mitochondrial tricarboxylic acid cycle publication-title: Curr Opin Plant Biol – volume: 54 start-page: 493 year: 2016 end-page: 501 article-title: Development of transgenic pigeonpea ( L. Millsp) overexpressing citrate synthase gene for high phosphorus uptake publication-title: Indian J Exp Biol – volume: 23 start-page: 600 year: 2011 end-page: 627 article-title: Antisense inhibition of the iron‐sulphur subunit of succinate dehydrogenase enhances photosynthesis and growth in tomato via an organic acid‐mediated effect on stomatal aperture publication-title: Plant Cell – volume: 3 start-page: 156 year: 2010 end-page: 173 article-title: Mild reductions in mitochondrial NAD‐dependent isocitrate dehydrogenase activity result in altered nitrate assimilation and pigmentation but do not impact growth publication-title: Mol Plant – volume: 2018 start-page: 63 year: 2018 end-page: 70 article-title: Next‐generation strategies for understanding and influencing source‐sink relations in crop plants publication-title: Curr Opin Plant Biol – volume: 189 start-page: 148 year: 2011 end-page: 159 article-title: A seed high‐lysine trait is negatively associated with the TCA cycle and slows down seed germination publication-title: New Phytol – volume: 142 start-page: 1294 year: 2006 end-page: 1303 article-title: The BnALMT1 and BnALMT2 genes from rape encode aluminum‐activated malate transporters that enhance the aluminum resistance of plant cells publication-title: Plant Physiol – volume: 35 start-page: 1 year: 2012a end-page: 21 article-title: Metabolic control and regulation of the tricarboxylic acid cycle in photosynthetic and heterotrophic plant tissues publication-title: Plant Cell Environ – volume: 151 start-page: 620 year: 2009 end-page: 630 article-title: In folio respiratory fluxomics revealed by C‐13 isotopic labeling and H/D isotope effects highlight the noncyclic nature of the tricarboxylic acid “cycle” in illuminated leaves publication-title: Plant Physiol – volume: 149 start-page: 653 year: 2009 end-page: 669 article-title: Decreased mitochondrial activities of malate dehydrogenase and fumarase in tomato lead to altered root growth and architecture via diverse mechanisms publication-title: Plant Physiol – volume: 57 start-page: 871 year: 2005 end-page: 888 article-title: A reporter gene system used to study developmental expressionof alternative oxidase and isolate mitochondrial retrograde regulationmutants in publication-title: Plant Mol Biol – volume: 137 start-page: 57 year: 2005 end-page: 69 article-title: Subcellular localization of 3‐hydroxy‐3‐methylglutaryl‐coenzyme A reductase publication-title: Plant Physiol – volume: 41 start-page: 383 year: 2000 end-page: 390 article-title: Role of organic acids in detoxification of aluminum in higher plants publication-title: Plant Cell Physiol – volume: 10 start-page: 109 year: 1985 end-page: 110 article-title: The metabolon publication-title: Trends Biochem Sci – volume: 126 start-page: 1139 year: 2001 end-page: 1149 article-title: NAD malic enzyme and the control of carbohydrate metabolism in potato tubers publication-title: Plant Physiol – volume: 3 start-page: 973 year: 2010 end-page: 996 article-title: Metabolic and signaling aspects underpinning the regulation of plant carbon nitrogen interactions publication-title: Mol Plant – volume: 137 start-page: 231 year: 2005 end-page: 241 article-title: Aluminum resistance in maize cannot be solely explained by root organic acid exudation. A comparative physiological study publication-title: Plant Physiol – volume: 55 start-page: 459 year: 2004 end-page: 493 article-title: How do crop plants tolerate acid soils? ‐ mechanisms of aluminum tolerance and phosphorous efficiency publication-title: Annu Rev Plant Biol – volume: 157 start-page: 1114 year: 2011 end-page: 1127 article-title: A deficiency in the flavoprotein of mitochondrial complex II results in elevated photosynthesis and better growth in nitrogen‐limiting conditions publication-title: Plant Physiol – volume: 8 start-page: 1975 year: 2017 article-title: Differentially evolved glucosyltransferases determine natural variation of rice flavone accumulation and UV‐tolerance publication-title: Nat Commun – volume: 5 start-page: 1 year: 2009 end-page: 10 article-title: An anaerobic‐type alpha‐ketoglutarate ferredoxin oxidoreductase completes the oxidative tricarboxylic acid cycle of mycobacterium tuberculosis publication-title: PLoS Pathog – volume: 26 start-page: 17 year: 2007 end-page: 43 article-title: The mitochondrion: An integration point of cellular metabolism and signalling publication-title: Crit Rev Plant Sci – volume: 17 start-page: 01687 year: 2018 article-title: The extra‐pathway interactome of the TCA cycle confirms expected and reveals novel metabolic interactions publication-title: Plant Physiol – volume: 279 start-page: 36621 year: 2004 end-page: 36624 article-title: Expression of two succinyl‐CoA synthetases with different nucleotide specificities in mammalian tissues publication-title: J Biol Chem – volume: 39 start-page: 1156 year: 2007 end-page: 1161 article-title: A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum publication-title: Nat Genet – volume: 7 start-page: 156 year: 2014 end-page: 169 article-title: Redox regulation of mitochondrial citrate synthase publication-title: Mol Plant – volume: 64 start-page: 723 year: 2013 end-page: 746 article-title: The spatial organization of metabolism within the plant cell publication-title: Annu Rev Plant Biol – volume: 6 start-page: 475 year: 2016 end-page: 484 article-title: Back to acid soil fields: The citrate transporter SbMATE is a major asset for sustainable grain yield for sorghum cultivated on acid soils publication-title: G3: Genes, Genomes, Genet – volume: 54 start-page: 1851 year: 2015 end-page: 1854 article-title: Krebs cycle metabolon: Structural evidence of substrate channeling revealed by cross‐linking and mass spectrometry publication-title: Angew Chem Int Ed – volume: 474 start-page: 3935 year: 2017 end-page: 3950 article-title: Holistic bioengineering: Rewiring central metabolism for enhanced bioproduction publication-title: Biochem J – volume: 185 start-page: 988 year: 2010 end-page: 999 article-title: In folio isotopic tracing demonstrates that nitrogen assimilation into glutamate is mostly independent from current CO2 assimilation in illuminated leaves of Brassica napus publication-title: New Phytol – volume: 7 start-page: 12399 year: 2016 article-title: Characterization of a recently evolved flavonol‐phenylacyltransferase gene provides signatures of natural light selection in Brassicaceae publication-title: Nat Commun – volume: 103 start-page: 9738 year: 2006 end-page: 9743 article-title: AtALMT1, which encodes a malate transporter, is identified as one of several genes critical for aluminum tolerance in publication-title: Proc Natl Acad Sci USA – volume: 326 start-page: 187 year: 2010 end-page: 198 article-title: Transgenic tobacco plants overexpressing pyruvate phosphate dikinase increase exudation of organic acids and decrease accumulation of aluminum in the roots publication-title: Plant Soil – volume: 2 start-page: 1 year: 1961 end-page: 232 – volume: 41 start-page: 837 year: 1999 end-page: 849 article-title: Effects of antisense repression of an pyruvate dehydrogenase kinase cDNA on plant development publication-title: Plant Mol Biol – volume: 334 start-page: 1551 year: 2011 end-page: 1553 article-title: The tricarboxylic acid cycle in cyanobacteria publication-title: Science – volume: 332 start-page: 680 year: 2011 end-page: 686 article-title: Scaffold proteins: Hubs for controlling the flow of cellular information publication-title: Science – volume: 145 start-page: 1408 year: 2007 end-page: 1422 article-title: Silencing of the mitochondrial ascorbate synthesizing enzyme L‐galactono‐1,4‐lactone dehydrogenase affects plant and fruit development in tomato (1 w OA) publication-title: Plant Physiol – volume: 190 start-page: 4933 year: 2008 end-page: 4940 article-title: A specialized citric acid cycle requiring succinyl‐coenzyme a (CoA): Acetate CoA‐transferase (AarC) confers acetic acid resistance on the acidophile Acetobacter acet publication-title: J Bacteriol – volume: 8 start-page: 15212 year: 2017 article-title: Protein‐protein interactions and metabolite channelling in the plant tricarboxylic acid cycle publication-title: Nat Commun – volume: 230 start-page: 355 year: 2009 end-page: 365 article-title: Overexpression of mitochondrial citrate synthase gene in confers aluminum tolerance publication-title: Planta – volume: 160 start-page: 2227 year: 2012 end-page: 2238 article-title: Decreasing the mitochondrial synthesis of malate in potato tubers does not affect plastidial starch synthesis, suggesting that the physiological regulation of ADPglucose pyrophosphorylase is context dependent publication-title: Plant Physiol – volume: 70 start-page: 828 year: 2009 end-page: 832 article-title: Malate. Jack of all trades or master of a few publication-title: Phytochemistry – volume: 151 start-page: 230 year: 2014 end-page: 242 article-title: Can citrate efflux from roots improve phosphorus uptake by plants? Testing the hypothesis with near‐isogenic lines of wheat publication-title: Physiol Plant – volume: 270 start-page: 1043 year: 2003 end-page: 1049 article-title: Regulation of pyruvate dehydrogenase complex activity in plant cells publication-title: Eur J Biochem – volume: 138 start-page: 1596 year: 2005 end-page: 1606 article-title: respiratory metabolism of illuminated leaves publication-title: Plant Physiol – volume: 94 start-page: 372 year: 2018 end-page: 392 article-title: Physical interactions among flavonoid enzymes in snapdragon and torenia reveal the diversity in the flavonoid metabolon organization of different plant species publication-title: Plant J – volume: 102 start-page: 947 year: 1993 end-page: 955 article-title: Mitochondrial contribution to phosphosynthetic metabolism‐a study with barley ( L.) leaf protoplasts at different light intensities and CO concentrations publication-title: Plant Physiol – volume: 147 start-page: 115 year: 2008 end-page: 127 article-title: Mild reductions in mitochondrial citrate synthase activity result in a compromised nitrate assimilation and reduced leaf pigmentation but have no effect on photosynthetic performance or growth publication-title: Plant Physiol – volume: 21 start-page: 295 year: 2016 end-page: 301 article-title: Linking metabolism to membrane signaling: The GABA‐malate connection publication-title: Trends Plant Sci – volume: 67 start-page: 3003 year: 2016 end-page: 3014 article-title: On the metabolic interactions of (photo)respiration publication-title: J Exp Bot – volume: 127 start-page: 1836 year: 2001 end-page: 1844 article-title: Overexpression of malate dehydrogenase in transgenic alfalfa enhances organic acid synthesis and confers tolerance to aluminum publication-title: Plant Physiol – volume: 3 start-page: 37 year: 2017 end-page: 51 article-title: Assembly of dynamic P450‐mediated metabolons—order versus chaos publication-title: Curr Mol Biol Rep – volume: 7 start-page: 254 year: 2004 end-page: 261 article-title: Respiratory metabolism: Glycolysis, the TCA cycle and mitochondrial electron transport publication-title: Curr Opin Plant Biol – volume: 34 start-page: 703 year: 2002 end-page: 710 article-title: Organic acid mediated P mobilization in the rhizosphere and uptake by maize roots publication-title: Soil Biol Biochem – volume: 119 start-page: 141 year: 2014 end-page: 156 article-title: On the role of plant mitochondrial metabolism and its impact on photosynthesis in both optimal and sub‐optimal growth conditions publication-title: Photosynth Res – volume: 27 start-page: 893 year: 2008 end-page: 901 article-title: Bacterial citrate synthase expression and soil aluminum tolerance in transgenic alfalfa publication-title: Plant Cell Rep – volume: 8 start-page: 280 year: 2005 end-page: 291 article-title: Metabolon formation and metabolic channeling in the biosynthesis of plant natural products publication-title: Curr Opin Plant Biol – volume: 272 start-page: 25659 year: 1997 end-page: 25667 article-title: Cloning and characterization of helicobacter pylori succinyl CoA: Acetoacetate CoA‐transferase, a novel prokaryotic member of the CoA‐transferase family publication-title: J Biol Chem – volume: 216 start-page: 1018 year: 2017 end-page: 1033 article-title: Metabolism within the specialized guard cells of plants publication-title: New Phytol – volume: 62 start-page: 1467 year: 2011 end-page: 1482 article-title: Respiration and nitrogen assimilation: Targeting mitochondria‐associated metabolism as a means to enhance nitrogen use efficiency publication-title: J Exp Bot – volume: 49 start-page: VIII year: 2018 end-page: XI article-title: Editorial overview: Plant synthetic and systems biology publication-title: Curr Opin Biotechnol – volume: 35 start-page: 1756 year: 2012 end-page: 1768 article-title: The role of mitochondria in leaf nitrogen metabolism publication-title: Plant Cell Environ – volume: 157 start-page: 1026 year: 2011 end-page: 1042 article-title: Targeted enhancement of glutamate‐to‐gamma‐aminobutyrate conversion in seeds affects carbon‐nitrogen balance and storage reserves in a development‐dependent manner publication-title: Plant Physiol – volume: 6 start-page: 5928 year: 2015 article-title: AtPHT4;4 is a chloroplast‐localized ascorbate transporter in publication-title: Nat Commun – volume: 27 start-page: 123 year: 1995 end-page: 132 article-title: Microcompartmentation, metabolic channelling and carbohydrate metabolism publication-title: Int J Biochem Cell Biol – volume: 6 start-page: 167 year: 2001 end-page: 176 article-title: The glycine decarboxylase system: A fascinating complex publication-title: Trends Plant Sci – volume: 133 start-page: 1322 year: 2003 end-page: 1335 article-title: Reduced expression of aconitase results in an enhanced rate of photosynthesis and marked shifts in carbon partitioning in illuminated leaves of wild species tomato publication-title: Plant Physiol – volume: 355 start-page: 1455 year: 2000 end-page: 1464 article-title: Ascorbate biosynthesis and function in photoprotection publication-title: Philos Trans R Soc B‐Biol Sci – volume: 162 start-page: 239 year: 2013 end-page: 253 article-title: Transcriptomic analysis of the role of carboxylic acids in metabolite signaling in leaves publication-title: Plant Physiol – volume: 142 start-page: 839 year: 2006 end-page: 854 article-title: seed development and germination is associated with temporally distinct metabolic switches publication-title: Plant Physiol – volume: 48 start-page: 75 year: 1997 end-page: 91 article-title: Effects of P deficiency on assimilation and transport of nitrate and phosphate in intact plants of castor bean ( L.) publication-title: J Exp Bot – volume: 10 start-page: 1217 year: 2008 end-page: 1223 article-title: The ABC transporter AtABCB14 is a malate importer and modulates stomatal response to CO publication-title: Nat Cell Biol – volume: 260 start-page: 800 year: 1985 end-page: 805 article-title: Organization of krebs tricarboxylic‐acid cycle enzyme in mitochondria publication-title: J Biol Chem – volume: 5 start-page: 447 year: 2014 article-title: The role of photosynthesis and amino acid metabolism in the energy status during seed development publication-title: Front Plant Sci – volume: 276 start-page: 1566 year: 1997 end-page: 1568 article-title: Aluminum tolerance in transgenic plants by alteration of citrate synthesis publication-title: Science – volume: 182 start-page: 17 year: 2009 end-page: 30 article-title: The oxygen status of the developing seed publication-title: New Phytol – volume: 161 start-page: 628 year: 2013 end-page: 643 article-title: Alteration of the interconversion of pyruvate and malate in the plastid or cytosol of ripening tomato fruit invokes diverse consequences on sugar but similar effects on cellular organic acid, metabolism, and transitory starch accumulation publication-title: Plant Physiol – volume: 22 start-page: 503 year: 2003 end-page: 529 article-title: Integration of cellular and physiological functions of guard cells publication-title: Crit Rev Plant Sci – volume: 27 start-page: 1839 year: 2015 end-page: 1856 article-title: Genetic determinants of the network of primary metabolism and their relationships to plant performance in a maize recombinant inbred line population publication-title: Plant Cell – volume: 137 start-page: 611 year: 2005b end-page: 622 article-title: Enhanced photosynthetic performance and growth as a consequence of decreasing mitochondrial malate dehydrogenase activity in transgenic tomato plants publication-title: Plant Physiol – volume: 46 start-page: 751 year: 2000 end-page: 758 article-title: Comparison of the amount of citric and malic acids in Al media of seven plant species and two cultivars each in five plant species publication-title: Soil Sci Plant Nutr – volume: 1757 start-page: 1217 year: 2006 end-page: 1228 article-title: Enolase takes part in a macromolecular complex associated to mitochondria in yeast publication-title: Biochim Biophys Acta (BBA)‐Bioenerg – volume: 90 start-page: 749 year: 2017 end-page: 763 article-title: Engineering central metabolism: A grand challenge for plant biologists publication-title: Plant J – volume: 17 start-page: 503 year: 2012 end-page: 509 article-title: Unusual cyanobacterial TCA cycles: Not broken just different publication-title: Trends Plant Sci – volume: 3 start-page: 168 year: 2015 article-title: Engineering of metabolic pathways by artificial enzyme channels publication-title: Front Bioeng Biotechnol – volume: 15 start-page: 269 year: 2012 end-page: 275 article-title: Photorespiration has a dual origin and manifold links to central metabolism publication-title: Curr Opin Plant Biol – volume: 124 start-page: 1786 year: 2000 end-page: 1799 article-title: Analysis of phosphate acquisition efficiency in different accessions publication-title: Plant Physiol – volume: 9 start-page: 2136 year: 2018 article-title: The role of dynamic enzyme assemblies and substrate channelling in metabolic regulation publication-title: Nat Commun – volume: 7 start-page: 1042 year: 2016 article-title: Organic acids: The pools of fixed carbon involved in redox regulation and energy balance in higher plants publication-title: Front Plant Sci – volume: 282 start-page: 11893 year: 2007 end-page: 11903 article-title: A novel branched‐chain amino acid metabolon protein‐protein interactions in a supramolecular complex publication-title: J Biol Chem – volume: 37 start-page: 645 year: 2004 end-page: 653 article-title: A wheat gene encoding an aluminum‐activated malate transporter publication-title: Plant J – volume: 8 start-page: 674 year: 2015 end-page: 676 article-title: Identification of the elusive chloroplast ascorbate transporter extends the substrate specificity of the PHT family publication-title: Mol Plant – volume: 48 start-page: 1081 year: 2007 end-page: 1091 article-title: An aluminum‐activated citrate transporter in barley publication-title: Plant Cell Physiol – volume: 7 start-page: 893 year: 2014 end-page: 911 article-title: Analysis of short‐term metabolic alterations in following changes in the prevailing environmental conditions publication-title: Mol Plant – ident: e_1_2_10_19_1 doi: 10.1007/s11120-017-0429-0 – ident: e_1_2_10_113_1 doi: 10.1016/j.pbi.2018.01.004 – ident: e_1_2_10_131_1 doi: 10.1104/pp.113.215970 – ident: e_1_2_10_77_1 doi: 10.1104/pp.15.01053 – ident: e_1_2_10_121_1 doi: 10.1146/annurev-arplant-050312-120233 – ident: e_1_2_10_15_1 doi: 10.1016/j.pbi.2012.01.008 – ident: e_1_2_10_38_1 doi: 10.1093/jxb/erq453 – ident: e_1_2_10_17_1 doi: 10.1111/j.1469-8137.2008.02752.x – ident: e_1_2_10_25_1 doi: 10.1111/nph.14823 – ident: e_1_2_10_96_1 doi: 10.1105/tpc.004077 – ident: e_1_2_10_8_1 doi: 10.1105/tpc.110.081224 – ident: e_1_2_10_50_1 doi: 10.1007/s12033-009-9162-z – ident: e_1_2_10_125_1 doi: 10.1104/pp.112.204826 – ident: e_1_2_10_7_1 doi: 10.1111/j.1365-3040.2011.02332.x – ident: e_1_2_10_111_1 doi: 10.1098/rstb.2000.0706 – ident: e_1_2_10_72_1 doi: 10.1007/s00299-011-1138-3 – ident: e_1_2_10_42_1 doi: 10.1104/pp.15.01660 – ident: e_1_2_10_128_1 doi: 10.1104/pp.109.142976 – ident: e_1_2_10_67_1 doi: 10.1104/pp.104.050245 – ident: e_1_2_10_59_1 doi: 10.1016/j.pbi.2005.03.014 – ident: e_1_2_10_82_1 doi: 10.1128/JB.00405-08 – ident: e_1_2_10_136_1 doi: 10.1007/s11104-009-9994-0 – ident: e_1_2_10_6_1 doi: 10.1007/s11120-013-9807-4 – ident: e_1_2_10_141_1 doi: 10.1105/tpc.108.060830 – ident: e_1_2_10_24_1 doi: 10.1074/jbc.272.41.25659 – ident: e_1_2_10_97_1 doi: 10.1038/s41467-017-02168-x – ident: e_1_2_10_18_1 doi: 10.1016/j.bbabio.2006.07.001 – ident: e_1_2_10_4_1 doi: 10.1104/pp.107.106500 – ident: e_1_2_10_81_1 doi: 10.1038/ncomms6928 – ident: e_1_2_10_75_1 doi: 10.1073/pnas.1220766110 – ident: e_1_2_10_80_1 doi: 10.1146/annurev-arplant-042110-103857 – ident: e_1_2_10_13_1 doi: 10.1371/journal.ppat.1000662 – ident: e_1_2_10_147_1 doi: 10.1002/anie.201409336 – ident: e_1_2_10_109_1 doi: 10.1104/pp.108.117978 – ident: e_1_2_10_152_1 doi: 10.1104/pp.105.059667 – ident: e_1_2_10_23_1 doi: 10.1105/tpc.109.072231 – ident: e_1_2_10_112_1 doi: 10.1080/07352680091139231 – ident: e_1_2_10_137_1 doi: 10.1104/pp.109.149047 – ident: e_1_2_10_142_1 doi: 10.1007/s11105-011-0397-z – ident: e_1_2_10_2_1 doi: 10.1105/tpc.104.024406 – ident: e_1_2_10_5_1 doi: 10.1111/j.1469-8137.2010.03478.x – ident: e_1_2_10_76_1 doi: 10.1104/pp.17.00971 – ident: e_1_2_10_55_1 doi: 10.1080/00380768.2000.10409141 – ident: e_1_2_10_139_1 doi: 10.1128/JB.182.24.6892-6899.2000 – ident: e_1_2_10_32_1 doi: 10.1016/j.pbi.2004.03.007 – ident: e_1_2_10_61_1 doi: 10.1016/j.copbio.2017.10.001 – ident: e_1_2_10_93_1 doi: 10.1104/pp.111.175463 – ident: e_1_2_10_29_1 doi: 10.1016/S1360-1385(01)01892-1 – ident: e_1_2_10_105_1 doi: 10.1111/ppl.12150 – ident: e_1_2_10_14_1 doi: 10.1016/j.tplants.2010.03.006 – ident: e_1_2_10_138_1 doi: 10.1104/pp.108.130518 – ident: e_1_2_10_21_1 doi: 10.1104/pp.103.026716 – ident: e_1_2_10_45_1 doi: 10.1111/j.1469-8137.2009.03130.x – ident: e_1_2_10_91_1 doi: 10.1093/mp/sst111 – ident: e_1_2_10_60_1 doi: 10.1146/annurev.arplant.55.031903.141655 – ident: e_1_2_10_107_1 doi: 10.1111/j.0031-9317.2004.0222.x – ident: e_1_2_10_26_1 doi: 10.1073/pnas.1424840112 – ident: e_1_2_10_85_1 doi: 10.1016/j.pbi.2013.01.004 – ident: e_1_2_10_100_1 doi: 10.1016/j.tplants.2003.09.015 – volume: 17 start-page: 01687 year: 2018 ident: e_1_2_10_151_1 article-title: The extra‐pathway interactome of the TCA cycle confirms expected and reveals novel metabolic interactions publication-title: Plant Physiol – ident: e_1_2_10_79_1 doi: 10.1016/j.tplants.2009.10.002 – ident: e_1_2_10_20_1 doi: 10.1104/pp.106.088534 – ident: e_1_2_10_102_1 doi: 10.1111/j.1399-3054.2009.01252.x – ident: e_1_2_10_71_1 doi: 10.1038/74531 – ident: e_1_2_10_114_1 doi: 10.1016/0968-0004(85)90266-X – volume: 260 start-page: 800 year: 1985 ident: e_1_2_10_104_1 article-title: Organization of krebs tricarboxylic‐acid cycle enzyme in mitochondria publication-title: J Biol Chem doi: 10.1016/S0021-9258(19)85153-0 – volume: 75 start-page: 148 year: 1984 ident: e_1_2_10_101_1 article-title: Regulation of plant pyruvate dehydrogenase complex from germinating and developing gastor bean endosperm publication-title: Plant Physiol – ident: e_1_2_10_92_1 doi: 10.1093/jxb/erw128 – ident: e_1_2_10_130_1 doi: 10.1093/jxb/erw083 – ident: e_1_2_10_144_1 doi: 10.1038/srep10343 – ident: e_1_2_10_83_1 doi: 10.1104/pp.124.4.1786 – ident: e_1_2_10_133_1 doi: 10.1038/ncomms12399 – ident: e_1_2_10_103_1 doi: 10.1073/pnas.1120813109 – ident: e_1_2_10_73_1 doi: 10.1093/pcp/41.4.383 – ident: e_1_2_10_69_1 doi: 10.1111/j.1365-313X.2008.03696.x – ident: e_1_2_10_43_1 doi: 10.1186/s13007-017-0241-z – ident: e_1_2_10_94_1 doi: 10.1104/pp.112.211094 – ident: e_1_2_10_116_1 doi: 10.1016/S0038-0717(01)00235-8 – ident: e_1_2_10_122_1 doi: 10.1038/s41467-018-04543-8 – ident: e_1_2_10_40_1 doi: 10.1111/tpj.13864 – ident: e_1_2_10_47_1 doi: 10.1016/j.tplants.2015.11.011 – ident: e_1_2_10_134_1 doi: 10.1104/pp.110.161612 – ident: e_1_2_10_89_1 doi: 10.1104/pp.104.055566 – ident: e_1_2_10_148_1 doi: 10.1007/s11103-005-3249-0 – ident: e_1_2_10_39_1 doi: 10.1104/pp.111.183939 – ident: e_1_2_10_90_1 doi: 10.1093/mp/ssq049 – ident: e_1_2_10_126_1 doi: 10.1016/j.pbi.2011.12.003 – ident: e_1_2_10_146_1 doi: 10.1126/science.aab1852 – ident: e_1_2_10_88_1 doi: 10.1042/BST0331430 – ident: e_1_2_10_11_1 doi: 10.1007/s00299-008-0517-x – ident: e_1_2_10_30_1 doi: 10.1104/pp.106.086694 – ident: e_1_2_10_99_1 doi: 10.3389/fbioe.2015.00168 – ident: e_1_2_10_44_1 doi: 10.3389/fpls.2014.00447 – ident: e_1_2_10_65_1 doi: 10.1002/j.1460-2075.1995.tb07044.x – volume: 54 start-page: 493 year: 2016 ident: e_1_2_10_53_1 article-title: Development of transgenic pigeonpea (Cajanus cajan L. Millsp) overexpressing citrate synthase gene for high phosphorus uptake publication-title: Indian J Exp Biol – ident: e_1_2_10_129_1 doi: 10.1104/pp.010376 – ident: e_1_2_10_37_1 doi: 10.1093/mp/ssu008 – ident: e_1_2_10_64_1 doi: 10.1074/jbc.M406884200 – ident: e_1_2_10_117_1 doi: 10.1104/pp.107.103101 – ident: e_1_2_10_78_1 doi: 10.1016/j.ymben.2010.10.001 – ident: e_1_2_10_66_1 doi: 10.1038/ncb1782 – ident: e_1_2_10_153_1 doi: 10.1023/A:1006393726018 – ident: e_1_2_10_115_1 doi: 10.1016/j.tplants.2012.05.005 – ident: e_1_2_10_10_1 doi: 10.1042/BCJ20170377 – ident: e_1_2_10_143_1 doi: 10.1007/s11738-010-0522-x – ident: e_1_2_10_63_1 doi: 10.1038/nmicrobiol.2017.67 – ident: e_1_2_10_12_1 doi: 10.1007/s40610-017-0053-y – ident: e_1_2_10_70_1 doi: 10.1021/acscatal.6b03440 – ident: e_1_2_10_86_1 doi: 10.1016/j.tplants.2013.12.006 – ident: e_1_2_10_120_1 doi: 10.1080/07352680601147919 – ident: e_1_2_10_110_1 doi: 10.1093/mp/ssp101 – ident: e_1_2_10_127_1 doi: 10.1104/pp.105.062141 – ident: e_1_2_10_132_1 doi: 10.1105/tpc.15.00105 – ident: e_1_2_10_41_1 doi: 10.1093/pcp/pcm091 – ident: e_1_2_10_48_1 doi: 10.1126/science.1198701 – ident: e_1_2_10_31_1 doi: 10.1104/pp.111.179986 – ident: e_1_2_10_98_1 doi: 10.1104/pp.104.047357 – ident: e_1_2_10_106_1 doi: 10.1111/j.1365-313X.2003.01991.x – ident: e_1_2_10_33_1 doi: 10.1016/j.phytochem.2009.04.023 – ident: e_1_2_10_145_1 doi: 10.1105/tpc.15.00208 – ident: e_1_2_10_36_1 doi: 10.1104/pp.113.214114 – ident: e_1_2_10_58_1 doi: 10.1093/jxb/48.1.75 – ident: e_1_2_10_68_1 doi: 10.1104/pp.106.085233 – ident: e_1_2_10_150_1 doi: 10.1038/ncomms15212 – ident: e_1_2_10_56_1 doi: 10.1074/jbc.M700198200 – ident: e_1_2_10_108_1 doi: 10.1093/mp/sst144 – ident: e_1_2_10_140_1 doi: 10.1016/j.tibtech.2015.11.002 – ident: e_1_2_10_124_1 doi: 10.1111/j.1365-3040.2012.02559.x – ident: e_1_2_10_118_1 doi: 10.1111/nph.12629 – ident: e_1_2_10_46_1 doi: 10.1016/j.tplants.2016.12.008 – ident: e_1_2_10_27_1 doi: 10.1126/science.276.5318.1566 – ident: e_1_2_10_3_1 doi: 10.1016/1357-2725(94)00079-Q – ident: e_1_2_10_16_1 – ident: e_1_2_10_35_1 doi: 10.1007/s11021-005-0062-3 – ident: e_1_2_10_95_1 doi: 10.1080/713608316 – ident: e_1_2_10_62_1 doi: 10.1104/pp.102.3.947 – ident: e_1_2_10_54_1 doi: 10.3389/fpls.2016.01042 – ident: e_1_2_10_123_1 doi: 10.1111/tpj.13464 – ident: e_1_2_10_52_1 doi: 10.1073/pnas.0602868103 – ident: e_1_2_10_135_1 doi: 10.1046/j.1432-1033.2003.03469.x – ident: e_1_2_10_119_1 doi: 10.1016/j.tplants.2010.05.006 – ident: e_1_2_10_34_1 doi: 10.1016/j.molp.2015.02.006 – ident: e_1_2_10_57_1 doi: 10.1104/pp.126.3.1139 – ident: e_1_2_10_9_1 doi: 10.1105/tpc.112.099002 – ident: e_1_2_10_28_1 doi: 10.1007/s00425-009-0945-z – ident: e_1_2_10_87_1 doi: 10.1111/j.1365-313X.2007.03115.x – ident: e_1_2_10_149_1 doi: 10.1126/science.1210858 – ident: e_1_2_10_51_1 doi: 10.1105/tpc.016055 – ident: e_1_2_10_74_1 doi: 10.1038/ng2074 – ident: e_1_2_10_22_1 doi: 10.1534/g3.115.025791 – ident: e_1_2_10_49_1 doi: 10.1105/tpc.107.053371 – ident: e_1_2_10_84_1 doi: 10.1104/pp.110.163816 |
| SSID | ssj0038062 |
| Score | 2.564546 |
| SecondaryResourceType | review_article |
| Snippet | The tricarboxylic acid (TCA) cycle is one of the canonical energy pathways of living systems, as well as being an example of a pathway in which dynamic enzyme... |
| SourceID | unpaywall wanfang proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1199 |
| SubjectTerms | carboxylic acids Citric Acid Cycle - physiology Crop yield energy Enzymes Fruit - genetics Fruit - metabolism fruit yield Fruits gene overexpression genes greenhouses Lycopersicon esculentum - genetics Lycopersicon esculentum - metabolism Photosynthesis Photosynthesis - genetics Photosynthesis - physiology Plant growth Plants, Genetically Modified - genetics Plants, Genetically Modified - physiology Productivity roots synthesis Tomatoes transgenesis Tricarboxylic acid cycle |
| SummonAdditionalLinks | – databaseName: Wiley Online Library - Core collection (SURFmarket) dbid: DR2 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB5CKLQ99P1wmwSV5tKCF1uytAr0koSENNAHpYFcihlJdlhqtCbZJd38-o5kr9s0ZaE9GAQe2yNrRvrG1nwDsK25RWEoTEWZu5TW4zw1CjGVzllXKe50zK_48FEdnRTHp_J0Dd4tc2E6fojhg1vwjDhfBwdHc_G7k09aM8o5RXc0AedCxXjqy8AdJXQWq4nmasxTigB5z00at_EMl15fjW5AzLtwe-5bXFxi08SsHl-jP7uOY-NCdHgfvi270O0_-T6az8zIXv3B7vi_fXwA93qEynY7k3oIa5V_BLf2poQiF49h95NnhBlZ2JXIpnVsB5J_PDekTzOxDO3EMbuga9nEs7ahoWNtxysbC1U8gZPDg6_7R2lfhiG1BM6yVNtCVjW3IrMqJJ5mhlunpNO6zqTmKMeZcrrG2uzUWIkic25s6TA2Rwp4hHgK637qq-fAcEdYpSwap3hRm0BuT-GkEg4JuNauSODNcjhK23OUh1IZTTnEKvRGyvhGEng9yLYdM8dfpTaWo1r23nlREszRWajPIxJ4NZwmvwo_S9BX0znJEJANSbkyXyHDKWCWNCXqBJ51FjOoQss89T0nBbYHE1qp51ZvXb_UvLr8YXgkVKOpMoG30VJW3KM8fv95L7Ze_IvwS7gTntLt0dmA9dn5vNokpDUzW9GjfgKIPSIS priority: 102 providerName: Wiley-Blackwell |
| Title | On the role of the tricarboxylic acid cycle in plant productivity |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjipb.12690 https://www.ncbi.nlm.nih.gov/pubmed/29917310 https://www.proquest.com/docview/2158073723 https://www.proquest.com/docview/2057118151 https://www.proquest.com/docview/2221053228 https://d.wanfangdata.com.cn/periodical/zwxb201812005 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/jipb.12690 |
| UnpaywallVersion | publishedVersion |
| Volume | 60 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Academic Search Ultimate - eBooks customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1744-7909 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0038062 issn: 1672-9072 databaseCode: ABDBF dateStart: 20050101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: EBSCO_Food Science Source customDbUrl: eissn: 1744-7909 dateEnd: 20241105 omitProxy: false ssIdentifier: ssj0038062 issn: 1672-9072 databaseCode: A8Z dateStart: 20050101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1672-9072 databaseCode: DR2 dateStart: 20050101 customDbUrl: isFulltext: true eissn: 1744-7909 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0038062 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1db9MwFL1iHdLGA9-DwKiM2AtIKYkTu-5jh5jGJMaEVmk8Rf6IUUXkRqPV6H49104aKEMVEg-RLMVJruN77XMS32OAA0G1zBTSVMlSE-N8nMaKSxkzY7QpOTUi5Fd8POXHk_zkgl38lsXf6EN0H9x8ZITx2gd4bWwzzr_t1uNMazVIKTK8LdjmDNF4D7Ynp2fjL55n8SGNkfvRJicyj4ejZNQqlK5fvD4n3QCad2Bn4Wq5vJJVFXJ7nJXu6zqaDdPR0T2Qq4Y0q1C-DRZzNdDXf2g8_k9L78PdFquSceNcD-BW6R7C7cMZ4snlIxh_cgTRI_HrE8nMhrKX-5eXCm2qpppIPTVEL_FaMnWkrrATSd0ozIYtKx7D5Oj9-bvjuN2QIdYI05JY6JyVluos0dynoCaKasOZEcImTFDJhgk3wkqrRlaWWZ4YM9R4KJ1KpD5Ztgc9N3PlUyBylGnOtVSG09wqL3OPxJJnRiKEtSaP4PWqSwrdqpX7TTOqomMt-EaK8EYieNXVrRuNjr_W2l_1bNHG6fcCAY9I_E49WQQvu9MYYf63iXTlbIF1ENL69FyWbqhDkTozHBxFBE8ar-lMwQkf256iAQedG220s9962C8zr69-KBqk1XDQjOBN8JYN9yhOPpwdhtKzf3voc9j192_W6exDb365KF8g2pqrPvKMz7TfhtVPNFInOw |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9RAEJ8omqAPfn9UENfIiyS9tLvdveURiORAQGMg4a3Zj6652Ow1cBc8_npnt6WAmkv0oUmTTttpd2b3N-3MbwDWJTWKaQxTFc9tiutxnmqhVMqtNbYS1MpYX3F4JEYnxf4pP-1yc0ItTMsP0X9wC54R5-vg4OGD9E0vHzd6kFMM7-7CvUJgoBIw0beePYrJLPYTzcWQphgD0o6dNCby9OfeXo_-AJkPYXnmGzW_UHUd63q8U_77bSQbl6Ldx22_1fPIYBgyUH4MZlM9MJe_8Tv-91M-gUcdSCVbrVU9hTuVfwb3tycIJOfPYeuLJwgbSUhMJBMX9wPPvzrTqFA9NkSZsSVmjueSsSdNjaNHmpZaNvaqeAEnu5-Od0Zp14khNYjPslSagleOGpYZEWpPM02NFdxK6TIuqeLDTFjplNObTlWsyKwdGty0yRXGPIy9hCU_8dVrIGqTGSGM0lbQwunAb48RpWBWIXZ1tkjg49V4lKajKQ_dMuqyD1fwjZTxjSTwoZdtWnKOv0qtXg1r2TnoeYlIR2ahRQ9L4H1_GF0r_C9RvprMUAaxbKjL5fkCGYoxM8dZUSbwqjWZXhVc6fHZc1RgvbehhXqudeZ1reblxU9NI6cazpYJbERTWXCNcn_v63bce_Mvwu9geXR8eFAe7B19XoEH4Y5tys4qLE3PZtVbBF5TvRbd6xeoYyYz |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BQTwOvB-BUozopUhZJXbs9R5byqotUCpEpd4iP-Jq1cgbtbsq21_P2EkDBbQSHCJFyiSZxDP2N8nMNwDrkhrFNIapiuc2xfU4T7VQKuXWGlsJamWsr_i8L3YOi70jftTl5oRamJYfov_gFjwjztfBwavGul-9fNLoQU4xvLsONwo-kiGjb_trzx7FZBb7ieZiSFOMAWnHThoTefpzr65Hf4DMu3B77hu1OFd1Het6vFP--CqSjUvR-H7bb_UsMhiGDJSTwXymB-biN37H_37KB3CvA6lks7Wqh3Ct8o_g5tYUgeTiMWx-8QRhIwmJiWTq4n7g-VenGhWqJ4YoM7HELPBcMvGkqXH0SNNSy8ZeFU_gcPzh2_udtOvEkBrEZ1kqTcErRw3LjAi1p5mmxgpupXQZl1TxYSasdMrpkVMVKzJrhwY3bXKFMQ9jT2HFT331HIgaMSOEUdoKWjgd-O0xohTMKsSuzhYJbFyOR2k6mvLQLaMu-3AF30gZ30gCb3vZpiXn-KvU6uWwlp2DnpWIdGQWWvSwBN70h9G1wv8S5avpHGUQy4a6XJ4vkaEYM3OcFWUCz1qT6VXBlR6fPUcF1nsbWqrnWmdeP9W8OP-uaeRUw9kygXfRVJZco9zbPdiKey_-Rfg13DrYHpefdvc_voQ74YZtxs4qrMxO59UrxF0zvRa96wcdVSW3 |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9BhwQ88DkgMCYj9gJSSuLErvvYIaYxibEHKo2nyB8xqojcaLQa3V_P2U4DBVQh8RDJUuzkbN_Zv0vufgY4EFTLQqGbKlluUtyP81RxKVNmjDY1p0aE_IoPp_x4Wp6cs_NfsvgjP0T_wc1bRlivvYG3xsZ1_k0fjzNr1TCn6OFdhx3OEI0PYGd6ejb57P0sPqIp-n405kSW6WicjTuG0s3Gm3vSH0DzNtxculauLmXThNweZ6X7solmw3Z0dBfkuiMxCuXrcLlQQ331G8fj__T0HtzpsCqZROW6D9dq9wBuHM4RT64ewuSjI4geiY9PJHMbyp7uX14olKmZaSL1zBC9wrZk5kjb4CSSNjLMhiMrdmF69O7T2-O0O5Ah1QjTslToktWW6iLT3KegZopqw5kRwmZMUMlGGTfCSqvGVtZFmRkz0ngpnUt0fYriEQzc3NVPgMhxoTnXUhlOS6s8zT06lrwwEiGsNWUCr9ZTUumOrdwfmtFUvdeCI1KFEUngZV-3jRwdf621t57ZqrPTbxUCHpH5k3qKBF70t9HC_G8T6er5EusgpPXpuSzfUoei68xwcRQJPI5a04uCGz72PUcBDno12irnfqdhP8W8uvyuaKBWw0UzgddBW7Y8ozp5f3YYSk__7aXP4JZ_fozT2YPB4mJZP0e0tVD7nUH9AE7NJlI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+role+of+the+tricarboxylic+acid+cycle+in+plant+productivity&rft.jtitle=Journal+of+integrative+plant+biology&rft.au=Zhang%2C+Youjun&rft.au=Fernie%2C+Alisdair+R.&rft.date=2018-12-01&rft.issn=1672-9072&rft.eissn=1744-7909&rft.volume=60&rft.issue=12&rft.spage=1199&rft.epage=1216&rft_id=info:doi/10.1111%2Fjipb.12690&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_jipb_12690 |
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzwxb%2Fzwxb.jpg |