On the role of the tricarboxylic acid cycle in plant productivity

The tricarboxylic acid (TCA) cycle is one of the canonical energy pathways of living systems, as well as being an example of a pathway in which dynamic enzyme assemblies, or metabolons, are well characterized. The role of the enzymes have been the subject of saturated transgenesis approaches, whereb...

Full description

Saved in:
Bibliographic Details
Published inJournal of integrative plant biology Vol. 60; no. 12; pp. 1199 - 1216
Main Authors Zhang, Youjun, Fernie, Alisdair R.
Format Journal Article
LanguageEnglish
Published China (Republic : 1949- ) Wiley Subscription Services, Inc 01.12.2018
Center of Plant System Biology and Biotechnology, 4000 Plovdiv, Bulgaria
Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
Subjects
Online AccessGet full text
ISSN1672-9072
1744-7909
1744-7909
DOI10.1111/jipb.12690

Cover

Abstract The tricarboxylic acid (TCA) cycle is one of the canonical energy pathways of living systems, as well as being an example of a pathway in which dynamic enzyme assemblies, or metabolons, are well characterized. The role of the enzymes have been the subject of saturated transgenesis approaches, whereby the expression of the constituent enzymes were reduced or knocked out in order to ascertain their in vivo function. Some of the resultant plants exhibited improved photosynthesis and plant growth, under controlled greenhouse conditions. In addition, overexpression of the endogenous genes, or heterologous forms of a number of the enzymes, has been carried out in tomato fruit and the roots of a range of species, and in some instances improvement in fruit yield and postharvest properties and plant performance, under nutrient limitation, have been reported, respectively. Given a number of variants, in nature, we discuss possible synthetic approaches involving introducing these variants, or at least a subset of them, into plants. We additionally discuss the likely consequences of introducing synthetic metabolons, wherein certain pairs of reactions are artificially permanently assembled into plants, and speculate as to future strategies to further improve plant productivity by manipulation of the core metabolic pathway. The tricarboxylic acid (TCA) cycle is one of the canonical energy pathways of living systems as well as being an example of a pathway in which dynamic enzyme assemblies or metabolons are well characterized. Given that a number of its variants in nature, here we discuss possible synthetic approaches involving introducing these variants, or at least a subset of them, into plants.
AbstractList The tricarboxylic acid (TCA) cycle is one of the canonical energy pathways of living systems, as well as being an example of a pathway in which dynamic enzyme assemblies, or metabolons, are well characterized. The role of the enzymes have been the subject of saturated transgenesis approaches, whereby the expression of the constituent enzymes were reduced or knocked out in order to ascertain their in vivo function. Some of the resultant plants exhibited improved photosynthesis and plant growth, under controlled greenhouse conditions. In addition, overexpression of the endogenous genes, or heterologous forms of a number of the enzymes, has been carried out in tomato fruit and the roots of a range of species, and in some instances improvement in fruit yield and postharvest properties and plant performance, under nutrient limitation, have been reported, respectively. Given a number of variants, in nature, we discuss possible synthetic approaches involving introducing these variants, or at least a subset of them, into plants. We additionally discuss the likely consequences of introducing synthetic metabolons, wherein certain pairs of reactions are artificially permanently assembled into plants, and speculate as to future strategies to further improve plant productivity by manipulation of the core metabolic pathway.The tricarboxylic acid (TCA) cycle is one of the canonical energy pathways of living systems, as well as being an example of a pathway in which dynamic enzyme assemblies, or metabolons, are well characterized. The role of the enzymes have been the subject of saturated transgenesis approaches, whereby the expression of the constituent enzymes were reduced or knocked out in order to ascertain their in vivo function. Some of the resultant plants exhibited improved photosynthesis and plant growth, under controlled greenhouse conditions. In addition, overexpression of the endogenous genes, or heterologous forms of a number of the enzymes, has been carried out in tomato fruit and the roots of a range of species, and in some instances improvement in fruit yield and postharvest properties and plant performance, under nutrient limitation, have been reported, respectively. Given a number of variants, in nature, we discuss possible synthetic approaches involving introducing these variants, or at least a subset of them, into plants. We additionally discuss the likely consequences of introducing synthetic metabolons, wherein certain pairs of reactions are artificially permanently assembled into plants, and speculate as to future strategies to further improve plant productivity by manipulation of the core metabolic pathway.
The tricarboxylic acid (TCA) cycle is one of the canonical energy pathways of living systems, as well as being an example of a pathway in which dynamic enzyme assemblies, or metabolons, are well character-ized. The role of the enzymes have been the subject of saturated transgenesis approaches, whereby the ex-pression of the constituent enzymes were reduced or knocked out in order to ascertain their in vivo function. Some of the resultant plants exhibited improved photosynthesis and plant growth, under controlled greenhouse conditions. In addition, overexpression of the endogenous genes, or heterologous forms of a number of the enzymes, has been carried out in tomato fruit and the roots of a range of species, and in some instances improvement in fruit yield and postharvest properties and plant performance, under nutrient limitation, have been reported, respectively. Given a number of variants, in nature, we discuss possible synthetic approaches involving introducing these var-iants, or at least a subset of them, into plants. We additionally discuss the likely consequences of intro-ducing synthetic metabolons, wherein certain pairs of reactions are artificially permanently assembled into plants, and speculate as to future strategies to further improve plant productivity by manipulation of the core metabolic pathway.
The tricarboxylic acid (TCA) cycle is one of the canonical energy pathways of living systems, as well as being an example of a pathway in which dynamic enzyme assemblies, or metabolons, are well characterized. The role of the enzymes have been the subject of saturated transgenesis approaches, whereby the expression of the constituent enzymes were reduced or knocked out in order to ascertain their in vivo function. Some of the resultant plants exhibited improved photosynthesis and plant growth, under controlled greenhouse conditions. In addition, overexpression of the endogenous genes, or heterologous forms of a number of the enzymes, has been carried out in tomato fruit and the roots of a range of species, and in some instances improvement in fruit yield and postharvest properties and plant performance, under nutrient limitation, have been reported, respectively. Given a number of variants, in nature, we discuss possible synthetic approaches involving introducing these variants, or at least a subset of them, into plants. We additionally discuss the likely consequences of introducing synthetic metabolons, wherein certain pairs of reactions are artificially permanently assembled into plants, and speculate as to future strategies to further improve plant productivity by manipulation of the core metabolic pathway.
The tricarboxylic acid (TCA) cycle is one of the canonical energy pathways of living systems, as well as being an example of a pathway in which dynamic enzyme assemblies, or metabolons, are well characterized. The role of the enzymes have been the subject of saturated transgenesis approaches, whereby the expression of the constituent enzymes were reduced or knocked out in order to ascertain their in vivo function. Some of the resultant plants exhibited improved photosynthesis and plant growth, under controlled greenhouse conditions. In addition, overexpression of the endogenous genes, or heterologous forms of a number of the enzymes, has been carried out in tomato fruit and the roots of a range of species, and in some instances improvement in fruit yield and postharvest properties and plant performance, under nutrient limitation, have been reported, respectively. Given a number of variants, in nature, we discuss possible synthetic approaches involving introducing these variants, or at least a subset of them, into plants. We additionally discuss the likely consequences of introducing synthetic metabolons, wherein certain pairs of reactions are artificially permanently assembled into plants, and speculate as to future strategies to further improve plant productivity by manipulation of the core metabolic pathway. The tricarboxylic acid (TCA) cycle is one of the canonical energy pathways of living systems as well as being an example of a pathway in which dynamic enzyme assemblies or metabolons are well characterized. Given that a number of its variants in nature, here we discuss possible synthetic approaches involving introducing these variants, or at least a subset of them, into plants.
Author Fernie, Alisdair R.
Zhang, Youjun
AuthorAffiliation Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany;Center of Plant System Biology and Biotechnology, 4000 Plovdiv, Bulgaria
AuthorAffiliation_xml – name: Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany;Center of Plant System Biology and Biotechnology, 4000 Plovdiv, Bulgaria
Author_xml – sequence: 1
  givenname: Youjun
  surname: Zhang
  fullname: Zhang, Youjun
  organization: Center of Plant System Biology and Biotechnology
– sequence: 2
  givenname: Alisdair R.
  surname: Fernie
  fullname: Fernie, Alisdair R.
  email: fernie@mpimp-golm.mpg.de
  organization: Center of Plant System Biology and Biotechnology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29917310$$D View this record in MEDLINE/PubMed
BookMark eNqFkV1rFTEQhoNU7Ife-ANkQQqibDuZ_cjuZS1VK4V6Ua9DNptoDjnJms16uv765nSPvShSA0MG8sxk3ncOyZ7zThHymsIJTed0ZYbuhGLdwjNyQFlZ5qyFdi_lNcO8BYb75HAcVwBFAzW-IPvYtpQVFA7I2bXL4k-VBW9V5vV9HoORInT-drZGZkKaPpOzTO_GZYMVLmZD8P0ko_lt4vySPNfCjurV7j4i3z9d3Jx_ya-uP1-en13lskKEvJFlpTTKAmRNi5JBh7Kvq75pNFQNiopB3Tda6K7VQhUl9D2TKTpJBaZhiyPyYek7uUHMG2EtH4JZizBzCnxrBN8awe-NSPTxQm-E08L94Cs_BZfm4382tx0CbSgCVIl7t3BJ0q9JjZGvzSiVTTKVn0aOiDRhiM3_UagYTX0rmtC3j9CH75FWDbCC4VbRmx01dWvVP8j5u50EwALI4McxKM2liSIa72IQxv5b9_tHJU-aRHcmGavmJ0j-9fLbx6XmDvC_vN0
CitedBy_id crossref_primary_10_3390_plants13050659
crossref_primary_10_1016_j_envexpbot_2020_104187
crossref_primary_10_1371_journal_pone_0262671
crossref_primary_10_1016_j_jfca_2024_106654
crossref_primary_10_1007_s11120_024_01106_5
crossref_primary_10_1007_s11738_020_03194_x
crossref_primary_10_1111_pce_14436
crossref_primary_10_1111_ppl_13711
crossref_primary_10_1021_acs_jafc_2c08647
crossref_primary_10_3389_fsci_2024_1407410
crossref_primary_10_1093_jxb_erae519
crossref_primary_10_3390_ijms24119628
crossref_primary_10_1016_j_envexpbot_2020_104338
crossref_primary_10_1080_10409238_2023_2201945
crossref_primary_10_1007_s40626_020_00175_w
crossref_primary_10_3390_metabo13050610
crossref_primary_10_3390_metabo12030247
crossref_primary_10_1038_s41598_023_40006_x
crossref_primary_10_1186_s12870_024_05668_3
crossref_primary_10_1016_j_plantsci_2023_111706
crossref_primary_10_1016_j_scienta_2023_112394
crossref_primary_10_3390_plants11223153
crossref_primary_10_1039_D3EN00257H
crossref_primary_10_1016_j_fochx_2024_101717
crossref_primary_10_1016_j_scienta_2024_113266
crossref_primary_10_1007_s10725_023_00990_6
crossref_primary_10_3389_fpls_2023_1182105
crossref_primary_10_1016_j_jgg_2024_12_016
crossref_primary_10_3389_fpls_2022_885051
crossref_primary_10_1007_s11104_024_06594_x
crossref_primary_10_1016_j_jssas_2024_06_002
crossref_primary_10_1186_s12870_018_1409_z
crossref_primary_10_1016_j_plaphy_2024_109337
crossref_primary_10_1016_j_plaphy_2024_109465
crossref_primary_10_1093_plphys_kiad133
crossref_primary_10_1111_nph_17323
crossref_primary_10_3390_plants12244079
crossref_primary_10_3390_ijms232315194
crossref_primary_10_1016_j_plaphy_2022_10_016
crossref_primary_10_1016_j_jenvman_2025_124551
crossref_primary_10_1016_j_molp_2021_03_023
crossref_primary_10_1093_plphys_kiac207
crossref_primary_10_1016_j_algal_2024_103690
crossref_primary_10_1016_j_biortech_2024_130834
crossref_primary_10_1111_ppl_13060
crossref_primary_10_3390_antiox12111915
crossref_primary_10_3390_cells10102774
crossref_primary_10_1098_rstb_2023_0352
crossref_primary_10_3390_metabo14080453
crossref_primary_10_1016_j_jhazmat_2022_128366
crossref_primary_10_1111_pce_15473
crossref_primary_10_1016_j_pbi_2023_102382
crossref_primary_10_1016_j_xplc_2020_100028
crossref_primary_10_1016_j_postharvbio_2023_112349
crossref_primary_10_1016_j_xplc_2023_100635
crossref_primary_10_3389_fpls_2023_1114172
crossref_primary_10_1002_moda_19
crossref_primary_10_1093_pcp_pcab036
crossref_primary_10_1016_j_plaphy_2025_109485
crossref_primary_10_1002_ppp3_10399
crossref_primary_10_1186_s13068_023_02315_1
crossref_primary_10_1111_pce_14904
crossref_primary_10_1080_15592324_2019_1592536
crossref_primary_10_1021_acs_analchem_3c01345
crossref_primary_10_3390_ijms25052964
crossref_primary_10_3389_fnut_2022_1013756
crossref_primary_10_3389_fmars_2024_1321865
crossref_primary_10_1016_j_algal_2023_103307
crossref_primary_10_1186_s13007_024_01249_5
crossref_primary_10_3390_f11111154
crossref_primary_10_1016_j_indcrop_2023_117056
crossref_primary_10_3389_fpls_2023_1309678
crossref_primary_10_1016_j_ecoenv_2024_116670
crossref_primary_10_1016_j_jhazmat_2022_129959
crossref_primary_10_1093_jxb_erz428
crossref_primary_10_1007_s12298_021_00985_5
crossref_primary_10_1111_tpj_16210
crossref_primary_10_1111_tpj_16179
crossref_primary_10_1186_s12870_019_2213_0
crossref_primary_10_1093_plphys_kiac011
crossref_primary_10_3390_biom10081107
crossref_primary_10_1016_j_xplc_2020_100081
crossref_primary_10_1002_adbi_202200238
crossref_primary_10_1038_s41598_021_88129_3
crossref_primary_10_1016_j_biortech_2021_125788
crossref_primary_10_1016_j_biortech_2023_128811
crossref_primary_10_1016_j_scienta_2024_112891
crossref_primary_10_1134_S1021443722010071
crossref_primary_10_3389_fpls_2018_01689
crossref_primary_10_1093_hr_uhac061
crossref_primary_10_3389_fpls_2024_1367176
crossref_primary_10_3390_plants9010117
crossref_primary_10_1111_jipb_12750
crossref_primary_10_1016_j_plaphy_2024_108444
crossref_primary_10_3389_fpls_2024_1475242
crossref_primary_10_3390_plants9020130
crossref_primary_10_1038_s41598_024_72568_9
crossref_primary_10_3389_fmicb_2024_1437274
crossref_primary_10_3390_metabo11030165
crossref_primary_10_1016_j_apmt_2024_102142
crossref_primary_10_3390_plants12223856
crossref_primary_10_1186_s12870_024_05908_6
crossref_primary_10_3390_ijms22020916
crossref_primary_10_1002_cppb_20115
crossref_primary_10_1016_j_ijbiomac_2024_131693
crossref_primary_10_3389_fpls_2024_1372232
crossref_primary_10_1016_j_pld_2024_07_008
crossref_primary_10_1016_j_cej_2024_156901
crossref_primary_10_1186_s12864_021_08109_9
crossref_primary_10_1016_j_jplph_2022_153814
crossref_primary_10_1016_j_indcrop_2023_116423
crossref_primary_10_1016_j_fochx_2025_102367
crossref_primary_10_1093_plphys_kiad282
crossref_primary_10_1016_j_ecoenv_2024_115935
crossref_primary_10_3390_foods12203821
crossref_primary_10_1016_j_jplph_2021_153521
crossref_primary_10_1021_acsnano_3c02790
crossref_primary_10_1016_j_jplph_2022_153707
crossref_primary_10_3389_fmicb_2020_575578
crossref_primary_10_3389_fpls_2024_1449157
crossref_primary_10_1155_2018_1539325
crossref_primary_10_3390_plants12173036
crossref_primary_10_1038_s41598_021_88856_7
crossref_primary_10_1080_14620316_2021_1983475
crossref_primary_10_1016_j_envexpbot_2023_105472
crossref_primary_10_1016_j_jprot_2021_104410
crossref_primary_10_3389_fpls_2023_1130292
Cites_doi 10.1007/s11120-017-0429-0
10.1016/j.pbi.2018.01.004
10.1104/pp.113.215970
10.1104/pp.15.01053
10.1146/annurev-arplant-050312-120233
10.1016/j.pbi.2012.01.008
10.1093/jxb/erq453
10.1111/j.1469-8137.2008.02752.x
10.1111/nph.14823
10.1105/tpc.004077
10.1105/tpc.110.081224
10.1007/s12033-009-9162-z
10.1104/pp.112.204826
10.1111/j.1365-3040.2011.02332.x
10.1098/rstb.2000.0706
10.1007/s00299-011-1138-3
10.1104/pp.15.01660
10.1104/pp.109.142976
10.1104/pp.104.050245
10.1016/j.pbi.2005.03.014
10.1128/JB.00405-08
10.1007/s11104-009-9994-0
10.1007/s11120-013-9807-4
10.1105/tpc.108.060830
10.1074/jbc.272.41.25659
10.1038/s41467-017-02168-x
10.1016/j.bbabio.2006.07.001
10.1104/pp.107.106500
10.1038/ncomms6928
10.1073/pnas.1220766110
10.1146/annurev-arplant-042110-103857
10.1371/journal.ppat.1000662
10.1002/anie.201409336
10.1104/pp.108.117978
10.1104/pp.105.059667
10.1105/tpc.109.072231
10.1080/07352680091139231
10.1104/pp.109.149047
10.1007/s11105-011-0397-z
10.1105/tpc.104.024406
10.1111/j.1469-8137.2010.03478.x
10.1104/pp.17.00971
10.1080/00380768.2000.10409141
10.1128/JB.182.24.6892-6899.2000
10.1016/j.pbi.2004.03.007
10.1016/j.copbio.2017.10.001
10.1104/pp.111.175463
10.1016/S1360-1385(01)01892-1
10.1111/ppl.12150
10.1016/j.tplants.2010.03.006
10.1104/pp.108.130518
10.1104/pp.103.026716
10.1111/j.1469-8137.2009.03130.x
10.1093/mp/sst111
10.1146/annurev.arplant.55.031903.141655
10.1111/j.0031-9317.2004.0222.x
10.1073/pnas.1424840112
10.1016/j.pbi.2013.01.004
10.1016/j.tplants.2003.09.015
10.1016/j.tplants.2009.10.002
10.1104/pp.106.088534
10.1111/j.1399-3054.2009.01252.x
10.1038/74531
10.1016/0968-0004(85)90266-X
10.1016/S0021-9258(19)85153-0
10.1093/jxb/erw128
10.1093/jxb/erw083
10.1038/srep10343
10.1104/pp.124.4.1786
10.1038/ncomms12399
10.1073/pnas.1120813109
10.1093/pcp/41.4.383
10.1111/j.1365-313X.2008.03696.x
10.1186/s13007-017-0241-z
10.1104/pp.112.211094
10.1016/S0038-0717(01)00235-8
10.1038/s41467-018-04543-8
10.1111/tpj.13864
10.1016/j.tplants.2015.11.011
10.1104/pp.110.161612
10.1104/pp.104.055566
10.1007/s11103-005-3249-0
10.1104/pp.111.183939
10.1093/mp/ssq049
10.1016/j.pbi.2011.12.003
10.1126/science.aab1852
10.1042/BST0331430
10.1007/s00299-008-0517-x
10.1104/pp.106.086694
10.3389/fbioe.2015.00168
10.3389/fpls.2014.00447
10.1002/j.1460-2075.1995.tb07044.x
10.1104/pp.010376
10.1093/mp/ssu008
10.1074/jbc.M406884200
10.1104/pp.107.103101
10.1016/j.ymben.2010.10.001
10.1038/ncb1782
10.1023/A:1006393726018
10.1016/j.tplants.2012.05.005
10.1042/BCJ20170377
10.1007/s11738-010-0522-x
10.1038/nmicrobiol.2017.67
10.1007/s40610-017-0053-y
10.1021/acscatal.6b03440
10.1016/j.tplants.2013.12.006
10.1080/07352680601147919
10.1093/mp/ssp101
10.1104/pp.105.062141
10.1105/tpc.15.00105
10.1093/pcp/pcm091
10.1126/science.1198701
10.1104/pp.111.179986
10.1104/pp.104.047357
10.1111/j.1365-313X.2003.01991.x
10.1016/j.phytochem.2009.04.023
10.1105/tpc.15.00208
10.1104/pp.113.214114
10.1093/jxb/48.1.75
10.1104/pp.106.085233
10.1038/ncomms15212
10.1074/jbc.M700198200
10.1093/mp/sst144
10.1016/j.tibtech.2015.11.002
10.1111/j.1365-3040.2012.02559.x
10.1111/nph.12629
10.1016/j.tplants.2016.12.008
10.1126/science.276.5318.1566
10.1016/1357-2725(94)00079-Q
10.1007/s11021-005-0062-3
10.1080/713608316
10.1104/pp.102.3.947
10.3389/fpls.2016.01042
10.1111/tpj.13464
10.1073/pnas.0602868103
10.1046/j.1432-1033.2003.03469.x
10.1016/j.tplants.2010.05.006
10.1016/j.molp.2015.02.006
10.1104/pp.126.3.1139
10.1105/tpc.112.099002
10.1007/s00425-009-0945-z
10.1111/j.1365-313X.2007.03115.x
10.1126/science.1210858
10.1105/tpc.016055
10.1038/ng2074
10.1534/g3.115.025791
10.1105/tpc.107.053371
10.1104/pp.110.163816
ContentType Journal Article
Copyright 2018 Institute of Botany, Chinese Academy of Sciences
2018 Institute of Botany, Chinese Academy of Sciences.
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: 2018 Institute of Botany, Chinese Academy of Sciences
– notice: 2018 Institute of Botany, Chinese Academy of Sciences.
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7T7
8FD
C1K
FR3
P64
RC3
7X8
7S9
L.6
2B.
4A8
92I
93N
PSX
TCJ
ADTOC
UNPAY
DOI 10.1111/jipb.12690
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic

Genetics Abstracts
MEDLINE

AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1744-7909
EndPage 1216
ExternalDocumentID 10.1111/jipb.12690
zwxb201812005
29917310
10_1111_jipb_12690
JIPB12690
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: Max‐Planck Society
– fundername: European Union's Horizon 2020 research and innovation program
– fundername: Max-Planck Society
– fundername: funding from the Max-Planck Society; the European Union's Horizon 2020 research and innovation program, project PlantaSYST
GroupedDBID ---
-SA
-S~
.3N
.GA
.Y3
05W
0R~
10A
1OC
29K
2B.
2C.
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VR
5VS
5XA
5XB
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
92E
92I
92Q
930
93N
A03
A8Z
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXDM
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFUIB
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
CAJEA
CCEZO
CCVFK
CHBEP
CHDYS
COF
CS3
CW9
D-E
D-F
D-I
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
ESX
F00
F01
F04
F5P
FA0
FEDTE
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
Q--
Q.N
Q11
QB0
R.K
ROL
RX1
SJN
SUPJJ
SV3
TCJ
TGP
TUS
U1G
U5K
UB1
W8V
W99
WBKPD
WFFXF
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
ZZTAW
~IA
~KM
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
ESTFP
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7T7
8FD
C1K
FR3
P64
RC3
7X8
7S9
L.6
4A8
PSX
ADTOC
UNPAY
ID FETCH-LOGICAL-c5220-8c45ef2c30c613470b2cd65d88f0582a5706d8fafb9fae340dd7cdd7bc1a21733
IEDL.DBID UNPAY
ISSN 1672-9072
1744-7909
IngestDate Sun Oct 26 04:14:53 EDT 2025
Thu May 29 04:01:05 EDT 2025
Fri Sep 05 17:18:33 EDT 2025
Thu Oct 02 10:11:52 EDT 2025
Fri Jul 25 21:05:34 EDT 2025
Mon Jul 21 05:48:11 EDT 2025
Wed Oct 01 03:46:54 EDT 2025
Thu Apr 24 22:54:20 EDT 2025
Wed Jan 22 17:07:07 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License 2018 Institute of Botany, Chinese Academy of Sciences.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5220-8c45ef2c30c613470b2cd65d88f0582a5706d8fafb9fae340dd7cdd7bc1a21733
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/jipb.12690
PMID 29917310
PQID 2158073723
PQPubID 2045135
PageCount 18
ParticipantIDs unpaywall_primary_10_1111_jipb_12690
wanfang_journals_zwxb201812005
proquest_miscellaneous_2221053228
proquest_miscellaneous_2057118151
proquest_journals_2158073723
pubmed_primary_29917310
crossref_citationtrail_10_1111_jipb_12690
crossref_primary_10_1111_jipb_12690
wiley_primary_10_1111_jipb_12690_JIPB12690
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2018
PublicationDateYYYYMMDD 2018-12-01
PublicationDate_xml – month: 12
  year: 2018
  text: December 2018
PublicationDecade 2010
PublicationPlace China (Republic : 1949- )
PublicationPlace_xml – name: China (Republic : 1949- )
– name: Hoboken
PublicationTitle Journal of integrative plant biology
PublicationTitleAlternate J Integr Plant Biol
PublicationTitle_FL Journal of Integrative Plant Biology
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Center of Plant System Biology and Biotechnology, 4000 Plovdiv, Bulgaria
Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
Publisher_xml – name: Wiley Subscription Services, Inc
– name: Center of Plant System Biology and Biotechnology, 4000 Plovdiv, Bulgaria
– name: Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
References 2008; 190
2002; 14
2010; 15
1997; 272
1997; 48
2004; 7
1997; 276
2011; 62
2013; 64
2010; 185
2003; 270
2012; 17
1999; 41
2012; 15
2009; 230
2014a; 19
2018; 49
2016; 34
2018; 9
2000; 18
2000; 19
2000; 124
1995; 27
2004; 37
2008; 27
2005; 74
2013; 110
2010; 3
1985; 10
2007; 19
2010; 32
2007; 282
2000; 355
2009; 182
2010; 326
2015; 54
2012b; 24
2014; 151
2017; 134
1993; 102
2012; 35
1985; 260
2012; 31
2012; 109
2012; 30
2004; 55
2016; 6
2016; 7
2018; 17
2004; 279
2009; 70
2015; 112
2005; 8
2016; 21
2000; 182
2018; 94
2016; 171
2016; 170
2006; 103
2003; 22
2007; 39
2007; 145
2017; 7
2011; 157
2017; 8
2004; 120
2017; 2
2017; 3
2009; 42
2000; 46
2005; 137
2000; 41
2005; 138
2012; 160
2011; 13
2013; 162
2009; 151
2008; 147
2015; 349
2017; 474
2013; 161
2014b; 7
2011; 155
2012a; 35
2009; 57
2014; 5
2013; 16
2006; 1757
2003; 8
1961; 2
2010; 154
2010; 153
2011; 23
2014; 7
2014; 202
2007; 26
2014; 119
2011; 334
2015; 6
2015; 5
2009; 21
2005a; 33
2015; 3
2005b; 137
1995; 14
2017; 22
2002; 34
2016; 54
2008; 10
2007; 50
2017; 175
2015; 8
2003; 133
2011; 332
2001; 126
2009; 137
2017; 216
2001; 127
1984; 75
2018; 2018
2017; 90
2015; 27
2001; 6
2004; 16
2017; 13
2006; 142
2009; 5
2011; 189
2007; 48
2016; 67
2009; 149
2005; 57
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_40_1
e_1_2_10_109_1
e_1_2_10_131_1
e_1_2_10_70_1
e_1_2_10_93_1
e_1_2_10_2_1
e_1_2_10_139_1
e_1_2_10_18_1
e_1_2_10_74_1
e_1_2_10_97_1
e_1_2_10_116_1
e_1_2_10_150_1
e_1_2_10_6_1
e_1_2_10_55_1
e_1_2_10_135_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_78_1
e_1_2_10_112_1
e_1_2_10_13_1
e_1_2_10_32_1
e_1_2_10_51_1
Hussain ISA (e_1_2_10_53_1) 2016; 54
e_1_2_10_120_1
e_1_2_10_147_1
e_1_2_10_82_1
e_1_2_10_128_1
e_1_2_10_29_1
e_1_2_10_63_1
e_1_2_10_86_1
e_1_2_10_105_1
e_1_2_10_124_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_67_1
e_1_2_10_143_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_41_1
e_1_2_10_132_1
e_1_2_10_90_1
e_1_2_10_71_1
e_1_2_10_117_1
e_1_2_10_94_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_75_1
e_1_2_10_113_1
e_1_2_10_136_1
e_1_2_10_38_1
e_1_2_10_98_1
e_1_2_10_56_1
e_1_2_10_79_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_121_1
e_1_2_10_144_1
Zhang YJ (e_1_2_10_151_1) 2018; 17
e_1_2_10_148_1
e_1_2_10_60_1
e_1_2_10_106_1
e_1_2_10_129_1
e_1_2_10_83_1
e_1_2_10_64_1
e_1_2_10_102_1
e_1_2_10_125_1
e_1_2_10_140_1
e_1_2_10_49_1
e_1_2_10_87_1
e_1_2_10_26_1
e_1_2_10_68_1
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_69_1
Rapp BJ (e_1_2_10_101_1) 1984; 75
e_1_2_10_42_1
Robinson JB (e_1_2_10_104_1) 1985; 260
e_1_2_10_110_1
e_1_2_10_91_1
e_1_2_10_72_1
e_1_2_10_95_1
e_1_2_10_118_1
e_1_2_10_4_1
e_1_2_10_137_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_76_1
e_1_2_10_99_1
e_1_2_10_114_1
e_1_2_10_152_1
e_1_2_10_8_1
e_1_2_10_57_1
e_1_2_10_133_1
e_1_2_10_58_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_30_1
e_1_2_10_119_1
e_1_2_10_145_1
e_1_2_10_80_1
e_1_2_10_149_1
e_1_2_10_61_1
e_1_2_10_84_1
e_1_2_10_107_1
e_1_2_10_126_1
e_1_2_10_27_1
e_1_2_10_65_1
e_1_2_10_88_1
e_1_2_10_103_1
e_1_2_10_141_1
e_1_2_10_122_1
e_1_2_10_24_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_108_1
e_1_2_10_130_1
e_1_2_10_92_1
e_1_2_10_73_1
e_1_2_10_115_1
e_1_2_10_138_1
e_1_2_10_96_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_77_1
e_1_2_10_111_1
e_1_2_10_134_1
e_1_2_10_153_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_31_1
e_1_2_10_50_1
e_1_2_10_146_1
e_1_2_10_81_1
e_1_2_10_62_1
e_1_2_10_127_1
e_1_2_10_85_1
e_1_2_10_28_1
e_1_2_10_66_1
e_1_2_10_100_1
e_1_2_10_123_1
e_1_2_10_142_1
e_1_2_10_47_1
e_1_2_10_89_1
References_xml – volume: 182
  start-page: 6892
  year: 2000
  end-page: 6899
  article-title: Functions of the membrane‐associated and cytoplasmic malate dehydrogenases in the citric acid cycle of
  publication-title: J Bacteriol
– volume: 34
  start-page: 191
  year: 2016
  end-page: 197
  article-title: Metabolic engineering of TCA cycle for production of chemicals
  publication-title: Trends Biotechnol
– volume: 16
  start-page: 3098
  year: 2004
  end-page: 3109
  article-title: Colocalization of L‐phenylalanine ammonia‐lyase and cinnarnate 4‐hydroxylase for metabolic channeling in phenylpropanoid biosynthesis
  publication-title: Plant Cell
– volume: 109
  start-page: 8872
  year: 2012
  end-page: 8877
  article-title: Genome‐wide association mapping of leaf metabolic profiles for dissecting complex traits in maize
  publication-title: Proc Natl Acad Sci USA
– volume: 62
  start-page: 79
  year: 2011
  end-page: 104
  article-title: Organization and regulation of mitochondrial respiration in plants
  publication-title: Annu Rev Plant Biol
– volume: 19
  start-page: 3723
  year: 2007
  end-page: 3738
  article-title: Glycolytic enzymes associate dynamically with mitochondria in response to respiratory demand and support substrate channeling
  publication-title: Plant Cell
– volume: 23
  start-page: 162
  year: 2011
  end-page: 184
  article-title: Malate plays a crucial role in starch metabolism, ripening, and soluble solid content of tomato fruit and affects postharvest softening
  publication-title: Plant Cell
– volume: 13
  start-page: 18
  year: 2011
  end-page: 27
  article-title: Physical interactions between tricarboxylic acid cycle enzymes in : Evidence for a metabolon
  publication-title: Metab Eng
– volume: 14
  start-page: 660
  year: 1995
  end-page: 666
  article-title: Inhibition of flower formation by antisense repression of mitochondrial citrate synthase in transgenic potato plants leads to a specific disintegration of the ovary tissues of flowers
  publication-title: EMBO J
– volume: 8
  start-page: 546
  year: 2003
  end-page: 553
  article-title: Beneficial interactions of mitochondrial metabolism with photosynthetic carbon assimilation
  publication-title: Trends Plant Sci
– volume: 19
  start-page: 399
  year: 2014a
  end-page: 407
  article-title: The complex role of mitochondrial metabolism in plant aluminum resistance
  publication-title: Trends Plant Sci
– volume: 27
  start-page: 1968
  year: 2015
  end-page: 1984
  article-title: Mitochondrial dihydrolipoyl dehydrogenase activity shapes photosynthesis and photorespiration of
  publication-title: Plant Cell
– volume: 137
  start-page: 371
  year: 2009
  end-page: 382
  article-title: Alternative oxidase: A defence against metabolic fluctuations
  publication-title: Physiol Plant
– volume: 138
  start-page: 297
  year: 2005
  end-page: 303
  article-title: Immobilization of aluminum with phosphorus in roots is associated with high aluminum resistance in buckwheat
  publication-title: Plant Physiol
– volume: 134
  start-page: 117
  year: 2017
  end-page: 131
  article-title: The Arnon‐Buchanan cycle: A retrospective, 1966–2016
  publication-title: Photosynth Res
– volume: 18
  start-page: 450
  year: 2000
  end-page: 453
  article-title: Enhanced phosphorus uptake in transgenic tobacco plants that overproduce citrate
  publication-title: Nat Biotechnol
– volume: 67
  start-page: 2923
  year: 2016
  end-page: 2929
  article-title: The regulatory interplay between photorespiration and photosynthesis
  publication-title: J Exp Bot
– volume: 349
  start-page: 309
  year: 2015
  end-page: 312
  article-title: Morphinan biosynthesis in opium poppy requires a P450‐oxidoreductase fusion protein
  publication-title: Science
– volume: 110
  start-page: 5241
  year: 2013
  end-page: 5246
  article-title: Aluminum tolerance in maize is associated with higher MATE1 gene copy number
  publication-title: Proc Natl Acad Sci USA
– volume: 175
  start-page: 1068
  year: 2017
  end-page: 1081
  article-title: Impaired malate and fumarate accumulation due to the mutation of the tonoplast dicarboxylate transporter has little effects on stomatal behavior
  publication-title: Plant Physiol
– volume: 15
  start-page: 40
  year: 2010
  end-page: 47
  article-title: Intra‐ and extra‐cellular excretion of carboxylates
  publication-title: Trends Plant Sci
– volume: 15
  start-page: 308
  year: 2012
  end-page: 314
  article-title: Respiratory carbon fluxes in leaves
  publication-title: Curr Opin Plant Biol
– volume: 24
  start-page: 2328
  year: 2012b
  end-page: 2351
  article-title: Antisense inhibition of the 2‐oxoglutarate dehydrogenase complex in tomato demonstrates its importance for plant respiration and during leaf senescence and fruit maturation
  publication-title: Plant Cell
– volume: 75
  start-page: 148
  year: 1984
  end-page: 148
  article-title: Regulation of plant pyruvate dehydrogenase complex from germinating and developing gastor bean endosperm
  publication-title: Plant Physiol
– volume: 57
  start-page: 389
  year: 2009
  end-page: 399
  article-title: Aluminum‐activated citrate and malate transporters from the MATE and ALMT families function independently to confer aluminum tolerance
  publication-title: Plant J
– volume: 7
  start-page: 248
  year: 2014b
  end-page: 251
  article-title: Is there a metabolic requirement for photorespiratory enzyme activities in heterotrophic tissues
  publication-title: Mol Plant
– volume: 202
  start-page: 209
  year: 2014
  end-page: 219
  article-title: Superior aluminium (Al) tolerance of Stylosanthes is achieved mainly by malate synthesis through an Al‐enhanced malic enzyme, SgME1
  publication-title: New Phytol
– volume: 170
  start-page: 86
  year: 2016
  end-page: 101
  article-title: Enhanced photosynthesis and growth in atquac1 knockout mutants are due to altered organic acid accumulation and an increase in both stomatal and mesophyll conductance
  publication-title: Plant Physiol
– volume: 21
  start-page: 1428
  year: 2009
  end-page: 1452
  article-title: Regulatory features underlying pollination‐dependent and ‐independent tomato fruit set revealed by transcript and primary metabolite profiling
  publication-title: Plant Cell
– volume: 15
  start-page: 330
  year: 2010
  end-page: 336
  article-title: Photorespiration: Players, partners and origin
  publication-title: Trends Plant Sci
– volume: 22
  start-page: 249
  year: 2017
  end-page: 262
  article-title: The unprececentec versatility of the plant thiorecoxin system
  publication-title: Trends Plant Sci
– volume: 155
  start-page: 101
  year: 2011
  end-page: 107
  article-title: Targeting mitochondrial metabolism and machinery as a means to enhance photosynthesis
  publication-title: Plant Physiol
– volume: 30
  start-page: 992
  year: 2012
  end-page: 1005
  article-title: Simultaneous overexpression of citrate synthase and phosphoenolpyruvate carboxylase in leaves augments citrate exclusion and Al resistance in transgenic tobacco
  publication-title: Plant Mol Biol Rep
– volume: 145
  start-page: 626
  year: 2007
  end-page: 639
  article-title: Reduced expression of succinyl‐coenzyme A ligase can be compensated for by up‐regulation of the gamma‐aminobutyrate shunt in illuminated tomato leaves
  publication-title: Plant Physiol
– volume: 42
  start-page: 299
  year: 2009
  end-page: 305
  article-title: One novel mitochondrial citrate synthase from L. can enhance aluminum tolerance in transgenic tobacco
  publication-title: Mol Biotechnol
– volume: 33
  start-page: 1430
  year: 2005a
  end-page: 1434
  article-title: Enhancing crop yield in solanaceous species through the genetic manipulation of energy metabolism
  publication-title: Biochem Soc Trans
– volume: 32
  start-page: 1209
  year: 2010
  end-page: 1220
  article-title: Overexpression of malate dehydrogenase in transgenic tobacco leaves: Enhanced malate synthesis and augmented Al‐resistance
  publication-title: Acta Physiol Plant
– volume: 112
  start-page: E1392
  year: 2015
  end-page: E1400
  article-title: Thioredoxin, a master regulator of the tricarboxylic acid cycle in plant mitochondria
  publication-title: Proc Natl Acad Sci USA
– volume: 142
  start-page: 1380
  year: 2006
  end-page: 1396
  article-title: Integrated analysis of metabolite and transcript levels reveals the metabolic shifts that underlie tomato fruit development and highlight regulatory aspects of metabolic network behavior
  publication-title: Plant Physiol
– volume: 171
  start-page: 265
  year: 2016
  end-page: 279
  article-title: Relationships of leaf net photosynthesis, stomatal conductance, and mesophyll conductance to primary metabolism: A multispecies meta‐analysis approach
  publication-title: Plant Physiol
– volume: 157
  start-page: 405
  year: 2011
  end-page: 425
  article-title: Systems biology of tomato fruit development: Combined transcript, protein, and mtabolite analyis of tomato transcription factor (nor, rin) and ethylene receptor (Nr) mutants reveals novel regulatory interactions
  publication-title: Plant Physiol
– volume: 31
  start-page: 49
  year: 2012
  end-page: 56
  article-title: Improved phosphorus acquisition by tobacco through transgenic expression of mitochondrial malate dehydrogenase from
  publication-title: Plant Cell Rep
– volume: 2
  start-page: 17067
  year: 2017
  article-title: Convergent evolution of a modified, acetate‐driven TCA cycle in bacteria
  publication-title: Nat Microbiol
– volume: 50
  start-page: 1093
  year: 2007
  end-page: 1106
  article-title: Deficiency of mitochondrial fumarase activity in tomato plants impairs photosynthesis via an effect on stomatal function
  publication-title: Plant J
– volume: 120
  start-page: 21
  year: 2004
  end-page: 26
  article-title: Malate valves to balance cellular energy supply
  publication-title: Physiol Plant
– volume: 153
  start-page: 611
  year: 2010
  end-page: 621
  article-title: Tricarboxylic acid cycle activity regulates tomato root growth via effects on secondary cell wall production
  publication-title: Plant Physiol
– volume: 16
  start-page: 241
  year: 2004
  end-page: 256
  article-title: Experimental analysis of the mitochondrial proteome highlights signaling and regulatory components, provides assessment of targeting prediction programs, and indicates plant‐specific mitochondrial proteins
  publication-title: Plant Cell
– volume: 74
  start-page: 270
  year: 2005
  end-page: 278
  article-title: A study of the mechanism of acetate assimilation in purple nonsulfur bacteria lacking the glyoxylate shunt: Enzymes of the citramalate cycle in
  publication-title: Microbiology
– volume: 7
  start-page: 2486
  year: 2017
  end-page: 2493
  article-title: Substrate channeling in an artificial metabolon: A molecular dynamics blueprint for an experimental peptide bridge
  publication-title: ACS Catal
– volume: 5
  start-page: 10343
  year: 2015
  article-title: The mitochondrial malate dehydrogenase 1 gene is involved in plant and root growth under phosphorus deficiency conditions in cotton
  publication-title: Sci Rep
– volume: 13
  start-page: 90
  year: 2017
  article-title: Integrative field scale phenotyping for investigating metabolic components of water stress within a vineyard
  publication-title: Plant Meth
– volume: 14
  start-page: 2539
  year: 2002
  end-page: 2551
  article-title: A polyamine metabolon involving aminopropyl transferase complexes in
  publication-title: Plant Cell
– volume: 15
  start-page: 462
  year: 2010
  end-page: 470
  article-title: Not just a circle: Flux modes in the plant TCA cycle
  publication-title: Trends Plant Sci
– volume: 19
  start-page: 267
  year: 2000
  end-page: 290
  article-title: Ascorbic acid in plants: Biosynthesis and function
  publication-title: Crit Rev Plant Sci
– volume: 154
  start-page: 1143
  year: 2010
  end-page: 1157
  article-title: Mitochondrial malate dehydrogenase lowers leaf respiration and alters photorespiration and plant growth in
  publication-title: Plant Physiol
– volume: 162
  start-page: 379
  year: 2013
  end-page: 389
  article-title: Serine acts as a metabolic signal for the transcriptional control of photorespiration‐related genes in
  publication-title: Plant Physiol
– volume: 16
  start-page: 335
  year: 2013
  end-page: 343
  article-title: Regulation of the mitochondrial tricarboxylic acid cycle
  publication-title: Curr Opin Plant Biol
– volume: 54
  start-page: 493
  year: 2016
  end-page: 501
  article-title: Development of transgenic pigeonpea ( L. Millsp) overexpressing citrate synthase gene for high phosphorus uptake
  publication-title: Indian J Exp Biol
– volume: 23
  start-page: 600
  year: 2011
  end-page: 627
  article-title: Antisense inhibition of the iron‐sulphur subunit of succinate dehydrogenase enhances photosynthesis and growth in tomato via an organic acid‐mediated effect on stomatal aperture
  publication-title: Plant Cell
– volume: 3
  start-page: 156
  year: 2010
  end-page: 173
  article-title: Mild reductions in mitochondrial NAD‐dependent isocitrate dehydrogenase activity result in altered nitrate assimilation and pigmentation but do not impact growth
  publication-title: Mol Plant
– volume: 2018
  start-page: 63
  year: 2018
  end-page: 70
  article-title: Next‐generation strategies for understanding and influencing source‐sink relations in crop plants
  publication-title: Curr Opin Plant Biol
– volume: 189
  start-page: 148
  year: 2011
  end-page: 159
  article-title: A seed high‐lysine trait is negatively associated with the TCA cycle and slows down seed germination
  publication-title: New Phytol
– volume: 142
  start-page: 1294
  year: 2006
  end-page: 1303
  article-title: The BnALMT1 and BnALMT2 genes from rape encode aluminum‐activated malate transporters that enhance the aluminum resistance of plant cells
  publication-title: Plant Physiol
– volume: 35
  start-page: 1
  year: 2012a
  end-page: 21
  article-title: Metabolic control and regulation of the tricarboxylic acid cycle in photosynthetic and heterotrophic plant tissues
  publication-title: Plant Cell Environ
– volume: 151
  start-page: 620
  year: 2009
  end-page: 630
  article-title: In folio respiratory fluxomics revealed by C‐13 isotopic labeling and H/D isotope effects highlight the noncyclic nature of the tricarboxylic acid “cycle” in illuminated leaves
  publication-title: Plant Physiol
– volume: 149
  start-page: 653
  year: 2009
  end-page: 669
  article-title: Decreased mitochondrial activities of malate dehydrogenase and fumarase in tomato lead to altered root growth and architecture via diverse mechanisms
  publication-title: Plant Physiol
– volume: 57
  start-page: 871
  year: 2005
  end-page: 888
  article-title: A reporter gene system used to study developmental expressionof alternative oxidase and isolate mitochondrial retrograde regulationmutants in
  publication-title: Plant Mol Biol
– volume: 137
  start-page: 57
  year: 2005
  end-page: 69
  article-title: Subcellular localization of 3‐hydroxy‐3‐methylglutaryl‐coenzyme A reductase
  publication-title: Plant Physiol
– volume: 41
  start-page: 383
  year: 2000
  end-page: 390
  article-title: Role of organic acids in detoxification of aluminum in higher plants
  publication-title: Plant Cell Physiol
– volume: 10
  start-page: 109
  year: 1985
  end-page: 110
  article-title: The metabolon
  publication-title: Trends Biochem Sci
– volume: 126
  start-page: 1139
  year: 2001
  end-page: 1149
  article-title: NAD malic enzyme and the control of carbohydrate metabolism in potato tubers
  publication-title: Plant Physiol
– volume: 3
  start-page: 973
  year: 2010
  end-page: 996
  article-title: Metabolic and signaling aspects underpinning the regulation of plant carbon nitrogen interactions
  publication-title: Mol Plant
– volume: 137
  start-page: 231
  year: 2005
  end-page: 241
  article-title: Aluminum resistance in maize cannot be solely explained by root organic acid exudation. A comparative physiological study
  publication-title: Plant Physiol
– volume: 55
  start-page: 459
  year: 2004
  end-page: 493
  article-title: How do crop plants tolerate acid soils? ‐ mechanisms of aluminum tolerance and phosphorous efficiency
  publication-title: Annu Rev Plant Biol
– volume: 157
  start-page: 1114
  year: 2011
  end-page: 1127
  article-title: A deficiency in the flavoprotein of mitochondrial complex II results in elevated photosynthesis and better growth in nitrogen‐limiting conditions
  publication-title: Plant Physiol
– volume: 8
  start-page: 1975
  year: 2017
  article-title: Differentially evolved glucosyltransferases determine natural variation of rice flavone accumulation and UV‐tolerance
  publication-title: Nat Commun
– volume: 5
  start-page: 1
  year: 2009
  end-page: 10
  article-title: An anaerobic‐type alpha‐ketoglutarate ferredoxin oxidoreductase completes the oxidative tricarboxylic acid cycle of mycobacterium tuberculosis
  publication-title: PLoS Pathog
– volume: 26
  start-page: 17
  year: 2007
  end-page: 43
  article-title: The mitochondrion: An integration point of cellular metabolism and signalling
  publication-title: Crit Rev Plant Sci
– volume: 17
  start-page: 01687
  year: 2018
  article-title: The extra‐pathway interactome of the TCA cycle confirms expected and reveals novel metabolic interactions
  publication-title: Plant Physiol
– volume: 279
  start-page: 36621
  year: 2004
  end-page: 36624
  article-title: Expression of two succinyl‐CoA synthetases with different nucleotide specificities in mammalian tissues
  publication-title: J Biol Chem
– volume: 39
  start-page: 1156
  year: 2007
  end-page: 1161
  article-title: A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum
  publication-title: Nat Genet
– volume: 7
  start-page: 156
  year: 2014
  end-page: 169
  article-title: Redox regulation of mitochondrial citrate synthase
  publication-title: Mol Plant
– volume: 64
  start-page: 723
  year: 2013
  end-page: 746
  article-title: The spatial organization of metabolism within the plant cell
  publication-title: Annu Rev Plant Biol
– volume: 6
  start-page: 475
  year: 2016
  end-page: 484
  article-title: Back to acid soil fields: The citrate transporter SbMATE is a major asset for sustainable grain yield for sorghum cultivated on acid soils
  publication-title: G3: Genes, Genomes, Genet
– volume: 54
  start-page: 1851
  year: 2015
  end-page: 1854
  article-title: Krebs cycle metabolon: Structural evidence of substrate channeling revealed by cross‐linking and mass spectrometry
  publication-title: Angew Chem Int Ed
– volume: 474
  start-page: 3935
  year: 2017
  end-page: 3950
  article-title: Holistic bioengineering: Rewiring central metabolism for enhanced bioproduction
  publication-title: Biochem J
– volume: 185
  start-page: 988
  year: 2010
  end-page: 999
  article-title: In folio isotopic tracing demonstrates that nitrogen assimilation into glutamate is mostly independent from current CO2 assimilation in illuminated leaves of Brassica napus
  publication-title: New Phytol
– volume: 7
  start-page: 12399
  year: 2016
  article-title: Characterization of a recently evolved flavonol‐phenylacyltransferase gene provides signatures of natural light selection in Brassicaceae
  publication-title: Nat Commun
– volume: 103
  start-page: 9738
  year: 2006
  end-page: 9743
  article-title: AtALMT1, which encodes a malate transporter, is identified as one of several genes critical for aluminum tolerance in
  publication-title: Proc Natl Acad Sci USA
– volume: 326
  start-page: 187
  year: 2010
  end-page: 198
  article-title: Transgenic tobacco plants overexpressing pyruvate phosphate dikinase increase exudation of organic acids and decrease accumulation of aluminum in the roots
  publication-title: Plant Soil
– volume: 2
  start-page: 1
  year: 1961
  end-page: 232
– volume: 41
  start-page: 837
  year: 1999
  end-page: 849
  article-title: Effects of antisense repression of an pyruvate dehydrogenase kinase cDNA on plant development
  publication-title: Plant Mol Biol
– volume: 334
  start-page: 1551
  year: 2011
  end-page: 1553
  article-title: The tricarboxylic acid cycle in cyanobacteria
  publication-title: Science
– volume: 332
  start-page: 680
  year: 2011
  end-page: 686
  article-title: Scaffold proteins: Hubs for controlling the flow of cellular information
  publication-title: Science
– volume: 145
  start-page: 1408
  year: 2007
  end-page: 1422
  article-title: Silencing of the mitochondrial ascorbate synthesizing enzyme L‐galactono‐1,4‐lactone dehydrogenase affects plant and fruit development in tomato (1 w OA)
  publication-title: Plant Physiol
– volume: 190
  start-page: 4933
  year: 2008
  end-page: 4940
  article-title: A specialized citric acid cycle requiring succinyl‐coenzyme a (CoA): Acetate CoA‐transferase (AarC) confers acetic acid resistance on the acidophile Acetobacter acet
  publication-title: J Bacteriol
– volume: 8
  start-page: 15212
  year: 2017
  article-title: Protein‐protein interactions and metabolite channelling in the plant tricarboxylic acid cycle
  publication-title: Nat Commun
– volume: 230
  start-page: 355
  year: 2009
  end-page: 365
  article-title: Overexpression of mitochondrial citrate synthase gene in confers aluminum tolerance
  publication-title: Planta
– volume: 160
  start-page: 2227
  year: 2012
  end-page: 2238
  article-title: Decreasing the mitochondrial synthesis of malate in potato tubers does not affect plastidial starch synthesis, suggesting that the physiological regulation of ADPglucose pyrophosphorylase is context dependent
  publication-title: Plant Physiol
– volume: 70
  start-page: 828
  year: 2009
  end-page: 832
  article-title: Malate. Jack of all trades or master of a few
  publication-title: Phytochemistry
– volume: 151
  start-page: 230
  year: 2014
  end-page: 242
  article-title: Can citrate efflux from roots improve phosphorus uptake by plants? Testing the hypothesis with near‐isogenic lines of wheat
  publication-title: Physiol Plant
– volume: 270
  start-page: 1043
  year: 2003
  end-page: 1049
  article-title: Regulation of pyruvate dehydrogenase complex activity in plant cells
  publication-title: Eur J Biochem
– volume: 138
  start-page: 1596
  year: 2005
  end-page: 1606
  article-title: respiratory metabolism of illuminated leaves
  publication-title: Plant Physiol
– volume: 94
  start-page: 372
  year: 2018
  end-page: 392
  article-title: Physical interactions among flavonoid enzymes in snapdragon and torenia reveal the diversity in the flavonoid metabolon organization of different plant species
  publication-title: Plant J
– volume: 102
  start-page: 947
  year: 1993
  end-page: 955
  article-title: Mitochondrial contribution to phosphosynthetic metabolism‐a study with barley ( L.) leaf protoplasts at different light intensities and CO concentrations
  publication-title: Plant Physiol
– volume: 147
  start-page: 115
  year: 2008
  end-page: 127
  article-title: Mild reductions in mitochondrial citrate synthase activity result in a compromised nitrate assimilation and reduced leaf pigmentation but have no effect on photosynthetic performance or growth
  publication-title: Plant Physiol
– volume: 21
  start-page: 295
  year: 2016
  end-page: 301
  article-title: Linking metabolism to membrane signaling: The GABA‐malate connection
  publication-title: Trends Plant Sci
– volume: 67
  start-page: 3003
  year: 2016
  end-page: 3014
  article-title: On the metabolic interactions of (photo)respiration
  publication-title: J Exp Bot
– volume: 127
  start-page: 1836
  year: 2001
  end-page: 1844
  article-title: Overexpression of malate dehydrogenase in transgenic alfalfa enhances organic acid synthesis and confers tolerance to aluminum
  publication-title: Plant Physiol
– volume: 3
  start-page: 37
  year: 2017
  end-page: 51
  article-title: Assembly of dynamic P450‐mediated metabolons—order versus chaos
  publication-title: Curr Mol Biol Rep
– volume: 7
  start-page: 254
  year: 2004
  end-page: 261
  article-title: Respiratory metabolism: Glycolysis, the TCA cycle and mitochondrial electron transport
  publication-title: Curr Opin Plant Biol
– volume: 34
  start-page: 703
  year: 2002
  end-page: 710
  article-title: Organic acid mediated P mobilization in the rhizosphere and uptake by maize roots
  publication-title: Soil Biol Biochem
– volume: 119
  start-page: 141
  year: 2014
  end-page: 156
  article-title: On the role of plant mitochondrial metabolism and its impact on photosynthesis in both optimal and sub‐optimal growth conditions
  publication-title: Photosynth Res
– volume: 27
  start-page: 893
  year: 2008
  end-page: 901
  article-title: Bacterial citrate synthase expression and soil aluminum tolerance in transgenic alfalfa
  publication-title: Plant Cell Rep
– volume: 8
  start-page: 280
  year: 2005
  end-page: 291
  article-title: Metabolon formation and metabolic channeling in the biosynthesis of plant natural products
  publication-title: Curr Opin Plant Biol
– volume: 272
  start-page: 25659
  year: 1997
  end-page: 25667
  article-title: Cloning and characterization of helicobacter pylori succinyl CoA: Acetoacetate CoA‐transferase, a novel prokaryotic member of the CoA‐transferase family
  publication-title: J Biol Chem
– volume: 216
  start-page: 1018
  year: 2017
  end-page: 1033
  article-title: Metabolism within the specialized guard cells of plants
  publication-title: New Phytol
– volume: 62
  start-page: 1467
  year: 2011
  end-page: 1482
  article-title: Respiration and nitrogen assimilation: Targeting mitochondria‐associated metabolism as a means to enhance nitrogen use efficiency
  publication-title: J Exp Bot
– volume: 49
  start-page: VIII
  year: 2018
  end-page: XI
  article-title: Editorial overview: Plant synthetic and systems biology
  publication-title: Curr Opin Biotechnol
– volume: 35
  start-page: 1756
  year: 2012
  end-page: 1768
  article-title: The role of mitochondria in leaf nitrogen metabolism
  publication-title: Plant Cell Environ
– volume: 157
  start-page: 1026
  year: 2011
  end-page: 1042
  article-title: Targeted enhancement of glutamate‐to‐gamma‐aminobutyrate conversion in seeds affects carbon‐nitrogen balance and storage reserves in a development‐dependent manner
  publication-title: Plant Physiol
– volume: 6
  start-page: 5928
  year: 2015
  article-title: AtPHT4;4 is a chloroplast‐localized ascorbate transporter in
  publication-title: Nat Commun
– volume: 27
  start-page: 123
  year: 1995
  end-page: 132
  article-title: Microcompartmentation, metabolic channelling and carbohydrate metabolism
  publication-title: Int J Biochem Cell Biol
– volume: 6
  start-page: 167
  year: 2001
  end-page: 176
  article-title: The glycine decarboxylase system: A fascinating complex
  publication-title: Trends Plant Sci
– volume: 133
  start-page: 1322
  year: 2003
  end-page: 1335
  article-title: Reduced expression of aconitase results in an enhanced rate of photosynthesis and marked shifts in carbon partitioning in illuminated leaves of wild species tomato
  publication-title: Plant Physiol
– volume: 355
  start-page: 1455
  year: 2000
  end-page: 1464
  article-title: Ascorbate biosynthesis and function in photoprotection
  publication-title: Philos Trans R Soc B‐Biol Sci
– volume: 162
  start-page: 239
  year: 2013
  end-page: 253
  article-title: Transcriptomic analysis of the role of carboxylic acids in metabolite signaling in leaves
  publication-title: Plant Physiol
– volume: 142
  start-page: 839
  year: 2006
  end-page: 854
  article-title: seed development and germination is associated with temporally distinct metabolic switches
  publication-title: Plant Physiol
– volume: 48
  start-page: 75
  year: 1997
  end-page: 91
  article-title: Effects of P deficiency on assimilation and transport of nitrate and phosphate in intact plants of castor bean ( L.)
  publication-title: J Exp Bot
– volume: 10
  start-page: 1217
  year: 2008
  end-page: 1223
  article-title: The ABC transporter AtABCB14 is a malate importer and modulates stomatal response to CO
  publication-title: Nat Cell Biol
– volume: 260
  start-page: 800
  year: 1985
  end-page: 805
  article-title: Organization of krebs tricarboxylic‐acid cycle enzyme in mitochondria
  publication-title: J Biol Chem
– volume: 5
  start-page: 447
  year: 2014
  article-title: The role of photosynthesis and amino acid metabolism in the energy status during seed development
  publication-title: Front Plant Sci
– volume: 276
  start-page: 1566
  year: 1997
  end-page: 1568
  article-title: Aluminum tolerance in transgenic plants by alteration of citrate synthesis
  publication-title: Science
– volume: 182
  start-page: 17
  year: 2009
  end-page: 30
  article-title: The oxygen status of the developing seed
  publication-title: New Phytol
– volume: 161
  start-page: 628
  year: 2013
  end-page: 643
  article-title: Alteration of the interconversion of pyruvate and malate in the plastid or cytosol of ripening tomato fruit invokes diverse consequences on sugar but similar effects on cellular organic acid, metabolism, and transitory starch accumulation
  publication-title: Plant Physiol
– volume: 22
  start-page: 503
  year: 2003
  end-page: 529
  article-title: Integration of cellular and physiological functions of guard cells
  publication-title: Crit Rev Plant Sci
– volume: 27
  start-page: 1839
  year: 2015
  end-page: 1856
  article-title: Genetic determinants of the network of primary metabolism and their relationships to plant performance in a maize recombinant inbred line population
  publication-title: Plant Cell
– volume: 137
  start-page: 611
  year: 2005b
  end-page: 622
  article-title: Enhanced photosynthetic performance and growth as a consequence of decreasing mitochondrial malate dehydrogenase activity in transgenic tomato plants
  publication-title: Plant Physiol
– volume: 46
  start-page: 751
  year: 2000
  end-page: 758
  article-title: Comparison of the amount of citric and malic acids in Al media of seven plant species and two cultivars each in five plant species
  publication-title: Soil Sci Plant Nutr
– volume: 1757
  start-page: 1217
  year: 2006
  end-page: 1228
  article-title: Enolase takes part in a macromolecular complex associated to mitochondria in yeast
  publication-title: Biochim Biophys Acta (BBA)‐Bioenerg
– volume: 90
  start-page: 749
  year: 2017
  end-page: 763
  article-title: Engineering central metabolism: A grand challenge for plant biologists
  publication-title: Plant J
– volume: 17
  start-page: 503
  year: 2012
  end-page: 509
  article-title: Unusual cyanobacterial TCA cycles: Not broken just different
  publication-title: Trends Plant Sci
– volume: 3
  start-page: 168
  year: 2015
  article-title: Engineering of metabolic pathways by artificial enzyme channels
  publication-title: Front Bioeng Biotechnol
– volume: 15
  start-page: 269
  year: 2012
  end-page: 275
  article-title: Photorespiration has a dual origin and manifold links to central metabolism
  publication-title: Curr Opin Plant Biol
– volume: 124
  start-page: 1786
  year: 2000
  end-page: 1799
  article-title: Analysis of phosphate acquisition efficiency in different accessions
  publication-title: Plant Physiol
– volume: 9
  start-page: 2136
  year: 2018
  article-title: The role of dynamic enzyme assemblies and substrate channelling in metabolic regulation
  publication-title: Nat Commun
– volume: 7
  start-page: 1042
  year: 2016
  article-title: Organic acids: The pools of fixed carbon involved in redox regulation and energy balance in higher plants
  publication-title: Front Plant Sci
– volume: 282
  start-page: 11893
  year: 2007
  end-page: 11903
  article-title: A novel branched‐chain amino acid metabolon protein‐protein interactions in a supramolecular complex
  publication-title: J Biol Chem
– volume: 37
  start-page: 645
  year: 2004
  end-page: 653
  article-title: A wheat gene encoding an aluminum‐activated malate transporter
  publication-title: Plant J
– volume: 8
  start-page: 674
  year: 2015
  end-page: 676
  article-title: Identification of the elusive chloroplast ascorbate transporter extends the substrate specificity of the PHT family
  publication-title: Mol Plant
– volume: 48
  start-page: 1081
  year: 2007
  end-page: 1091
  article-title: An aluminum‐activated citrate transporter in barley
  publication-title: Plant Cell Physiol
– volume: 7
  start-page: 893
  year: 2014
  end-page: 911
  article-title: Analysis of short‐term metabolic alterations in following changes in the prevailing environmental conditions
  publication-title: Mol Plant
– ident: e_1_2_10_19_1
  doi: 10.1007/s11120-017-0429-0
– ident: e_1_2_10_113_1
  doi: 10.1016/j.pbi.2018.01.004
– ident: e_1_2_10_131_1
  doi: 10.1104/pp.113.215970
– ident: e_1_2_10_77_1
  doi: 10.1104/pp.15.01053
– ident: e_1_2_10_121_1
  doi: 10.1146/annurev-arplant-050312-120233
– ident: e_1_2_10_15_1
  doi: 10.1016/j.pbi.2012.01.008
– ident: e_1_2_10_38_1
  doi: 10.1093/jxb/erq453
– ident: e_1_2_10_17_1
  doi: 10.1111/j.1469-8137.2008.02752.x
– ident: e_1_2_10_25_1
  doi: 10.1111/nph.14823
– ident: e_1_2_10_96_1
  doi: 10.1105/tpc.004077
– ident: e_1_2_10_8_1
  doi: 10.1105/tpc.110.081224
– ident: e_1_2_10_50_1
  doi: 10.1007/s12033-009-9162-z
– ident: e_1_2_10_125_1
  doi: 10.1104/pp.112.204826
– ident: e_1_2_10_7_1
  doi: 10.1111/j.1365-3040.2011.02332.x
– ident: e_1_2_10_111_1
  doi: 10.1098/rstb.2000.0706
– ident: e_1_2_10_72_1
  doi: 10.1007/s00299-011-1138-3
– ident: e_1_2_10_42_1
  doi: 10.1104/pp.15.01660
– ident: e_1_2_10_128_1
  doi: 10.1104/pp.109.142976
– ident: e_1_2_10_67_1
  doi: 10.1104/pp.104.050245
– ident: e_1_2_10_59_1
  doi: 10.1016/j.pbi.2005.03.014
– ident: e_1_2_10_82_1
  doi: 10.1128/JB.00405-08
– ident: e_1_2_10_136_1
  doi: 10.1007/s11104-009-9994-0
– ident: e_1_2_10_6_1
  doi: 10.1007/s11120-013-9807-4
– ident: e_1_2_10_141_1
  doi: 10.1105/tpc.108.060830
– ident: e_1_2_10_24_1
  doi: 10.1074/jbc.272.41.25659
– ident: e_1_2_10_97_1
  doi: 10.1038/s41467-017-02168-x
– ident: e_1_2_10_18_1
  doi: 10.1016/j.bbabio.2006.07.001
– ident: e_1_2_10_4_1
  doi: 10.1104/pp.107.106500
– ident: e_1_2_10_81_1
  doi: 10.1038/ncomms6928
– ident: e_1_2_10_75_1
  doi: 10.1073/pnas.1220766110
– ident: e_1_2_10_80_1
  doi: 10.1146/annurev-arplant-042110-103857
– ident: e_1_2_10_13_1
  doi: 10.1371/journal.ppat.1000662
– ident: e_1_2_10_147_1
  doi: 10.1002/anie.201409336
– ident: e_1_2_10_109_1
  doi: 10.1104/pp.108.117978
– ident: e_1_2_10_152_1
  doi: 10.1104/pp.105.059667
– ident: e_1_2_10_23_1
  doi: 10.1105/tpc.109.072231
– ident: e_1_2_10_112_1
  doi: 10.1080/07352680091139231
– ident: e_1_2_10_137_1
  doi: 10.1104/pp.109.149047
– ident: e_1_2_10_142_1
  doi: 10.1007/s11105-011-0397-z
– ident: e_1_2_10_2_1
  doi: 10.1105/tpc.104.024406
– ident: e_1_2_10_5_1
  doi: 10.1111/j.1469-8137.2010.03478.x
– ident: e_1_2_10_76_1
  doi: 10.1104/pp.17.00971
– ident: e_1_2_10_55_1
  doi: 10.1080/00380768.2000.10409141
– ident: e_1_2_10_139_1
  doi: 10.1128/JB.182.24.6892-6899.2000
– ident: e_1_2_10_32_1
  doi: 10.1016/j.pbi.2004.03.007
– ident: e_1_2_10_61_1
  doi: 10.1016/j.copbio.2017.10.001
– ident: e_1_2_10_93_1
  doi: 10.1104/pp.111.175463
– ident: e_1_2_10_29_1
  doi: 10.1016/S1360-1385(01)01892-1
– ident: e_1_2_10_105_1
  doi: 10.1111/ppl.12150
– ident: e_1_2_10_14_1
  doi: 10.1016/j.tplants.2010.03.006
– ident: e_1_2_10_138_1
  doi: 10.1104/pp.108.130518
– ident: e_1_2_10_21_1
  doi: 10.1104/pp.103.026716
– ident: e_1_2_10_45_1
  doi: 10.1111/j.1469-8137.2009.03130.x
– ident: e_1_2_10_91_1
  doi: 10.1093/mp/sst111
– ident: e_1_2_10_60_1
  doi: 10.1146/annurev.arplant.55.031903.141655
– ident: e_1_2_10_107_1
  doi: 10.1111/j.0031-9317.2004.0222.x
– ident: e_1_2_10_26_1
  doi: 10.1073/pnas.1424840112
– ident: e_1_2_10_85_1
  doi: 10.1016/j.pbi.2013.01.004
– ident: e_1_2_10_100_1
  doi: 10.1016/j.tplants.2003.09.015
– volume: 17
  start-page: 01687
  year: 2018
  ident: e_1_2_10_151_1
  article-title: The extra‐pathway interactome of the TCA cycle confirms expected and reveals novel metabolic interactions
  publication-title: Plant Physiol
– ident: e_1_2_10_79_1
  doi: 10.1016/j.tplants.2009.10.002
– ident: e_1_2_10_20_1
  doi: 10.1104/pp.106.088534
– ident: e_1_2_10_102_1
  doi: 10.1111/j.1399-3054.2009.01252.x
– ident: e_1_2_10_71_1
  doi: 10.1038/74531
– ident: e_1_2_10_114_1
  doi: 10.1016/0968-0004(85)90266-X
– volume: 260
  start-page: 800
  year: 1985
  ident: e_1_2_10_104_1
  article-title: Organization of krebs tricarboxylic‐acid cycle enzyme in mitochondria
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(19)85153-0
– volume: 75
  start-page: 148
  year: 1984
  ident: e_1_2_10_101_1
  article-title: Regulation of plant pyruvate dehydrogenase complex from germinating and developing gastor bean endosperm
  publication-title: Plant Physiol
– ident: e_1_2_10_92_1
  doi: 10.1093/jxb/erw128
– ident: e_1_2_10_130_1
  doi: 10.1093/jxb/erw083
– ident: e_1_2_10_144_1
  doi: 10.1038/srep10343
– ident: e_1_2_10_83_1
  doi: 10.1104/pp.124.4.1786
– ident: e_1_2_10_133_1
  doi: 10.1038/ncomms12399
– ident: e_1_2_10_103_1
  doi: 10.1073/pnas.1120813109
– ident: e_1_2_10_73_1
  doi: 10.1093/pcp/41.4.383
– ident: e_1_2_10_69_1
  doi: 10.1111/j.1365-313X.2008.03696.x
– ident: e_1_2_10_43_1
  doi: 10.1186/s13007-017-0241-z
– ident: e_1_2_10_94_1
  doi: 10.1104/pp.112.211094
– ident: e_1_2_10_116_1
  doi: 10.1016/S0038-0717(01)00235-8
– ident: e_1_2_10_122_1
  doi: 10.1038/s41467-018-04543-8
– ident: e_1_2_10_40_1
  doi: 10.1111/tpj.13864
– ident: e_1_2_10_47_1
  doi: 10.1016/j.tplants.2015.11.011
– ident: e_1_2_10_134_1
  doi: 10.1104/pp.110.161612
– ident: e_1_2_10_89_1
  doi: 10.1104/pp.104.055566
– ident: e_1_2_10_148_1
  doi: 10.1007/s11103-005-3249-0
– ident: e_1_2_10_39_1
  doi: 10.1104/pp.111.183939
– ident: e_1_2_10_90_1
  doi: 10.1093/mp/ssq049
– ident: e_1_2_10_126_1
  doi: 10.1016/j.pbi.2011.12.003
– ident: e_1_2_10_146_1
  doi: 10.1126/science.aab1852
– ident: e_1_2_10_88_1
  doi: 10.1042/BST0331430
– ident: e_1_2_10_11_1
  doi: 10.1007/s00299-008-0517-x
– ident: e_1_2_10_30_1
  doi: 10.1104/pp.106.086694
– ident: e_1_2_10_99_1
  doi: 10.3389/fbioe.2015.00168
– ident: e_1_2_10_44_1
  doi: 10.3389/fpls.2014.00447
– ident: e_1_2_10_65_1
  doi: 10.1002/j.1460-2075.1995.tb07044.x
– volume: 54
  start-page: 493
  year: 2016
  ident: e_1_2_10_53_1
  article-title: Development of transgenic pigeonpea (Cajanus cajan L. Millsp) overexpressing citrate synthase gene for high phosphorus uptake
  publication-title: Indian J Exp Biol
– ident: e_1_2_10_129_1
  doi: 10.1104/pp.010376
– ident: e_1_2_10_37_1
  doi: 10.1093/mp/ssu008
– ident: e_1_2_10_64_1
  doi: 10.1074/jbc.M406884200
– ident: e_1_2_10_117_1
  doi: 10.1104/pp.107.103101
– ident: e_1_2_10_78_1
  doi: 10.1016/j.ymben.2010.10.001
– ident: e_1_2_10_66_1
  doi: 10.1038/ncb1782
– ident: e_1_2_10_153_1
  doi: 10.1023/A:1006393726018
– ident: e_1_2_10_115_1
  doi: 10.1016/j.tplants.2012.05.005
– ident: e_1_2_10_10_1
  doi: 10.1042/BCJ20170377
– ident: e_1_2_10_143_1
  doi: 10.1007/s11738-010-0522-x
– ident: e_1_2_10_63_1
  doi: 10.1038/nmicrobiol.2017.67
– ident: e_1_2_10_12_1
  doi: 10.1007/s40610-017-0053-y
– ident: e_1_2_10_70_1
  doi: 10.1021/acscatal.6b03440
– ident: e_1_2_10_86_1
  doi: 10.1016/j.tplants.2013.12.006
– ident: e_1_2_10_120_1
  doi: 10.1080/07352680601147919
– ident: e_1_2_10_110_1
  doi: 10.1093/mp/ssp101
– ident: e_1_2_10_127_1
  doi: 10.1104/pp.105.062141
– ident: e_1_2_10_132_1
  doi: 10.1105/tpc.15.00105
– ident: e_1_2_10_41_1
  doi: 10.1093/pcp/pcm091
– ident: e_1_2_10_48_1
  doi: 10.1126/science.1198701
– ident: e_1_2_10_31_1
  doi: 10.1104/pp.111.179986
– ident: e_1_2_10_98_1
  doi: 10.1104/pp.104.047357
– ident: e_1_2_10_106_1
  doi: 10.1111/j.1365-313X.2003.01991.x
– ident: e_1_2_10_33_1
  doi: 10.1016/j.phytochem.2009.04.023
– ident: e_1_2_10_145_1
  doi: 10.1105/tpc.15.00208
– ident: e_1_2_10_36_1
  doi: 10.1104/pp.113.214114
– ident: e_1_2_10_58_1
  doi: 10.1093/jxb/48.1.75
– ident: e_1_2_10_68_1
  doi: 10.1104/pp.106.085233
– ident: e_1_2_10_150_1
  doi: 10.1038/ncomms15212
– ident: e_1_2_10_56_1
  doi: 10.1074/jbc.M700198200
– ident: e_1_2_10_108_1
  doi: 10.1093/mp/sst144
– ident: e_1_2_10_140_1
  doi: 10.1016/j.tibtech.2015.11.002
– ident: e_1_2_10_124_1
  doi: 10.1111/j.1365-3040.2012.02559.x
– ident: e_1_2_10_118_1
  doi: 10.1111/nph.12629
– ident: e_1_2_10_46_1
  doi: 10.1016/j.tplants.2016.12.008
– ident: e_1_2_10_27_1
  doi: 10.1126/science.276.5318.1566
– ident: e_1_2_10_3_1
  doi: 10.1016/1357-2725(94)00079-Q
– ident: e_1_2_10_16_1
– ident: e_1_2_10_35_1
  doi: 10.1007/s11021-005-0062-3
– ident: e_1_2_10_95_1
  doi: 10.1080/713608316
– ident: e_1_2_10_62_1
  doi: 10.1104/pp.102.3.947
– ident: e_1_2_10_54_1
  doi: 10.3389/fpls.2016.01042
– ident: e_1_2_10_123_1
  doi: 10.1111/tpj.13464
– ident: e_1_2_10_52_1
  doi: 10.1073/pnas.0602868103
– ident: e_1_2_10_135_1
  doi: 10.1046/j.1432-1033.2003.03469.x
– ident: e_1_2_10_119_1
  doi: 10.1016/j.tplants.2010.05.006
– ident: e_1_2_10_34_1
  doi: 10.1016/j.molp.2015.02.006
– ident: e_1_2_10_57_1
  doi: 10.1104/pp.126.3.1139
– ident: e_1_2_10_9_1
  doi: 10.1105/tpc.112.099002
– ident: e_1_2_10_28_1
  doi: 10.1007/s00425-009-0945-z
– ident: e_1_2_10_87_1
  doi: 10.1111/j.1365-313X.2007.03115.x
– ident: e_1_2_10_149_1
  doi: 10.1126/science.1210858
– ident: e_1_2_10_51_1
  doi: 10.1105/tpc.016055
– ident: e_1_2_10_74_1
  doi: 10.1038/ng2074
– ident: e_1_2_10_22_1
  doi: 10.1534/g3.115.025791
– ident: e_1_2_10_49_1
  doi: 10.1105/tpc.107.053371
– ident: e_1_2_10_84_1
  doi: 10.1104/pp.110.163816
SSID ssj0038062
Score 2.564546
SecondaryResourceType review_article
Snippet The tricarboxylic acid (TCA) cycle is one of the canonical energy pathways of living systems, as well as being an example of a pathway in which dynamic enzyme...
SourceID unpaywall
wanfang
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1199
SubjectTerms carboxylic acids
Citric Acid Cycle - physiology
Crop yield
energy
Enzymes
Fruit - genetics
Fruit - metabolism
fruit yield
Fruits
gene overexpression
genes
greenhouses
Lycopersicon esculentum - genetics
Lycopersicon esculentum - metabolism
Photosynthesis
Photosynthesis - genetics
Photosynthesis - physiology
Plant growth
Plants, Genetically Modified - genetics
Plants, Genetically Modified - physiology
Productivity
roots
synthesis
Tomatoes
transgenesis
Tricarboxylic acid cycle
SummonAdditionalLinks – databaseName: Wiley Online Library - Core collection (SURFmarket)
  dbid: DR2
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB5CKLQ99P1wmwSV5tKCF1uytAr0koSENNAHpYFcihlJdlhqtCbZJd38-o5kr9s0ZaE9GAQe2yNrRvrG1nwDsK25RWEoTEWZu5TW4zw1CjGVzllXKe50zK_48FEdnRTHp_J0Dd4tc2E6fojhg1vwjDhfBwdHc_G7k09aM8o5RXc0AedCxXjqy8AdJXQWq4nmasxTigB5z00at_EMl15fjW5AzLtwe-5bXFxi08SsHl-jP7uOY-NCdHgfvi270O0_-T6az8zIXv3B7vi_fXwA93qEynY7k3oIa5V_BLf2poQiF49h95NnhBlZ2JXIpnVsB5J_PDekTzOxDO3EMbuga9nEs7ahoWNtxysbC1U8gZPDg6_7R2lfhiG1BM6yVNtCVjW3IrMqJJ5mhlunpNO6zqTmKMeZcrrG2uzUWIkic25s6TA2Rwp4hHgK637qq-fAcEdYpSwap3hRm0BuT-GkEg4JuNauSODNcjhK23OUh1IZTTnEKvRGyvhGEng9yLYdM8dfpTaWo1r23nlREszRWajPIxJ4NZwmvwo_S9BX0znJEJANSbkyXyHDKWCWNCXqBJ51FjOoQss89T0nBbYHE1qp51ZvXb_UvLr8YXgkVKOpMoG30VJW3KM8fv95L7Ze_IvwS7gTntLt0dmA9dn5vNokpDUzW9GjfgKIPSIS
  priority: 102
  providerName: Wiley-Blackwell
Title On the role of the tricarboxylic acid cycle in plant productivity
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjipb.12690
https://www.ncbi.nlm.nih.gov/pubmed/29917310
https://www.proquest.com/docview/2158073723
https://www.proquest.com/docview/2057118151
https://www.proquest.com/docview/2221053228
https://d.wanfangdata.com.cn/periodical/zwxb201812005
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/jipb.12690
UnpaywallVersion publishedVersion
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Academic Search Ultimate - eBooks
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1744-7909
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0038062
  issn: 1672-9072
  databaseCode: ABDBF
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCO_Food Science Source
  customDbUrl:
  eissn: 1744-7909
  dateEnd: 20241105
  omitProxy: false
  ssIdentifier: ssj0038062
  issn: 1672-9072
  databaseCode: A8Z
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1672-9072
  databaseCode: DR2
  dateStart: 20050101
  customDbUrl:
  isFulltext: true
  eissn: 1744-7909
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0038062
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1db9MwFL1iHdLGA9-DwKiM2AtIKYkTu-5jh5jGJMaEVmk8Rf6IUUXkRqPV6H49104aKEMVEg-RLMVJruN77XMS32OAA0G1zBTSVMlSE-N8nMaKSxkzY7QpOTUi5Fd8POXHk_zkgl38lsXf6EN0H9x8ZITx2gd4bWwzzr_t1uNMazVIKTK8LdjmDNF4D7Ynp2fjL55n8SGNkfvRJicyj4ejZNQqlK5fvD4n3QCad2Bn4Wq5vJJVFXJ7nJXu6zqaDdPR0T2Qq4Y0q1C-DRZzNdDXf2g8_k9L78PdFquSceNcD-BW6R7C7cMZ4snlIxh_cgTRI_HrE8nMhrKX-5eXCm2qpppIPTVEL_FaMnWkrrATSd0ozIYtKx7D5Oj9-bvjuN2QIdYI05JY6JyVluos0dynoCaKasOZEcImTFDJhgk3wkqrRlaWWZ4YM9R4KJ1KpD5Ztgc9N3PlUyBylGnOtVSG09wqL3OPxJJnRiKEtSaP4PWqSwrdqpX7TTOqomMt-EaK8EYieNXVrRuNjr_W2l_1bNHG6fcCAY9I_E49WQQvu9MYYf63iXTlbIF1ENL69FyWbqhDkTozHBxFBE8ar-lMwQkf256iAQedG220s9962C8zr69-KBqk1XDQjOBN8JYN9yhOPpwdhtKzf3voc9j192_W6exDb365KF8g2pqrPvKMz7TfhtVPNFInOw
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9RAEJ8omqAPfn9UENfIiyS9tLvdveURiORAQGMg4a3Zj6652Ow1cBc8_npnt6WAmkv0oUmTTttpd2b3N-3MbwDWJTWKaQxTFc9tiutxnmqhVMqtNbYS1MpYX3F4JEYnxf4pP-1yc0ItTMsP0X9wC54R5-vg4OGD9E0vHzd6kFMM7-7CvUJgoBIw0beePYrJLPYTzcWQphgD0o6dNCby9OfeXo_-AJkPYXnmGzW_UHUd63q8U_77bSQbl6Ldx22_1fPIYBgyUH4MZlM9MJe_8Tv-91M-gUcdSCVbrVU9hTuVfwb3tycIJOfPYeuLJwgbSUhMJBMX9wPPvzrTqFA9NkSZsSVmjueSsSdNjaNHmpZaNvaqeAEnu5-Od0Zp14khNYjPslSagleOGpYZEWpPM02NFdxK6TIuqeLDTFjplNObTlWsyKwdGty0yRXGPIy9hCU_8dVrIGqTGSGM0lbQwunAb48RpWBWIXZ1tkjg49V4lKajKQ_dMuqyD1fwjZTxjSTwoZdtWnKOv0qtXg1r2TnoeYlIR2ahRQ9L4H1_GF0r_C9RvprMUAaxbKjL5fkCGYoxM8dZUSbwqjWZXhVc6fHZc1RgvbehhXqudeZ1reblxU9NI6cazpYJbERTWXCNcn_v63bce_Mvwu9geXR8eFAe7B19XoEH4Y5tys4qLE3PZtVbBF5TvRbd6xeoYyYz
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BQTwOvB-BUozopUhZJXbs9R5byqotUCpEpd4iP-Jq1cgbtbsq21_P2EkDBbQSHCJFyiSZxDP2N8nMNwDrkhrFNIapiuc2xfU4T7VQKuXWGlsJamWsr_i8L3YOi70jftTl5oRamJYfov_gFjwjztfBwavGul-9fNLoQU4xvLsONwo-kiGjb_trzx7FZBb7ieZiSFOMAWnHThoTefpzr65Hf4DMu3B77hu1OFd1Het6vFP--CqSjUvR-H7bb_UsMhiGDJSTwXymB-biN37H_37KB3CvA6lks7Wqh3Ct8o_g5tYUgeTiMWx-8QRhIwmJiWTq4n7g-VenGhWqJ4YoM7HELPBcMvGkqXH0SNNSy8ZeFU_gcPzh2_udtOvEkBrEZ1kqTcErRw3LjAi1p5mmxgpupXQZl1TxYSasdMrpkVMVKzJrhwY3bXKFMQ9jT2HFT331HIgaMSOEUdoKWjgd-O0xohTMKsSuzhYJbFyOR2k6mvLQLaMu-3AF30gZ30gCb3vZpiXn-KvU6uWwlp2DnpWIdGQWWvSwBN70h9G1wv8S5avpHGUQy4a6XJ4vkaEYM3OcFWUCz1qT6VXBlR6fPUcF1nsbWqrnWmdeP9W8OP-uaeRUw9kygXfRVJZco9zbPdiKey_-Rfg13DrYHpefdvc_voQ74YZtxs4qrMxO59UrxF0zvRa96wcdVSW3
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9BhwQ88DkgMCYj9gJSSuLErvvYIaYxibEHKo2nyB8xqojcaLQa3V_P2U4DBVQh8RDJUuzkbN_Zv0vufgY4EFTLQqGbKlluUtyP81RxKVNmjDY1p0aE_IoPp_x4Wp6cs_NfsvgjP0T_wc1bRlivvYG3xsZ1_k0fjzNr1TCn6OFdhx3OEI0PYGd6ejb57P0sPqIp-n405kSW6WicjTuG0s3Gm3vSH0DzNtxculauLmXThNweZ6X7solmw3Z0dBfkuiMxCuXrcLlQQ331G8fj__T0HtzpsCqZROW6D9dq9wBuHM4RT64ewuSjI4geiY9PJHMbyp7uX14olKmZaSL1zBC9wrZk5kjb4CSSNjLMhiMrdmF69O7T2-O0O5Ah1QjTslToktWW6iLT3KegZopqw5kRwmZMUMlGGTfCSqvGVtZFmRkz0ngpnUt0fYriEQzc3NVPgMhxoTnXUhlOS6s8zT06lrwwEiGsNWUCr9ZTUumOrdwfmtFUvdeCI1KFEUngZV-3jRwdf621t57ZqrPTbxUCHpH5k3qKBF70t9HC_G8T6er5EusgpPXpuSzfUoei68xwcRQJPI5a04uCGz72PUcBDno12irnfqdhP8W8uvyuaKBWw0UzgddBW7Y8ozp5f3YYSk__7aXP4JZ_fozT2YPB4mJZP0e0tVD7nUH9AE7NJlI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+role+of+the+tricarboxylic+acid+cycle+in+plant+productivity&rft.jtitle=Journal+of+integrative+plant+biology&rft.au=Zhang%2C+Youjun&rft.au=Fernie%2C+Alisdair+R.&rft.date=2018-12-01&rft.issn=1672-9072&rft.eissn=1744-7909&rft.volume=60&rft.issue=12&rft.spage=1199&rft.epage=1216&rft_id=info:doi/10.1111%2Fjipb.12690&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_jipb_12690
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzwxb%2Fzwxb.jpg