Metformin Alters Human Host Responses to Mycobacterium tuberculosis in Healthy Subjects
Abstract Background Metformin, the most widely administered diabetes drug, has been proposed as a candidate adjunctive host-directed therapy for tuberculosis, but little is known about its effects on human host responses to Mycobacterium tuberculosis. Methods We investigated in vitro and in vivo eff...
Saved in:
Published in | The Journal of infectious diseases Vol. 220; no. 1; pp. 139 - 150 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
US
Oxford University Press
05.06.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 0022-1899 1537-6613 1537-6613 |
DOI | 10.1093/infdis/jiz064 |
Cover
Abstract | Abstract
Background
Metformin, the most widely administered diabetes drug, has been proposed as a candidate adjunctive host-directed therapy for tuberculosis, but little is known about its effects on human host responses to Mycobacterium tuberculosis.
Methods
We investigated in vitro and in vivo effects of metformin in humans.
Results
Metformin added to peripheral blood mononuclear cells from healthy volunteers enhanced in vitro cellular metabolism while inhibiting the mammalian target of rapamycin targets p70S6K and 4EBP1, with decreased cytokine production and cellular proliferation and increased phagocytosis activity. Metformin administered to healthy human volunteers led to significant downregulation of genes involved in oxidative phosphorylation, mammalian target of rapamycin signaling, and type I interferon response pathways, particularly following stimulation with M. tuberculosis, and upregulation of genes involved in phagocytosis and reactive oxygen species production was increased. These in vivo effects were accompanied by a metformin-induced shift in myeloid cells from classical to nonclassical monocytes. At a functional level, metformin lowered ex vivo production of tumor necrosis factor α, interferon γ, and interleukin 1β but increased phagocytosis activity and reactive oxygen species production.
Conclusion
Metformin has a range of potentially beneficial effects on cellular metabolism, immune function, and gene transcription involved in innate host responses to M. tuberculosis.
Metformin has shown beneficial effects in a murine model of tuberculosis. Using in-vitro and in-vivo studies we show that metformin has beneficial effects on cellular metabolism, immune function and genetranscription involved in innate host responses to M. tuberculosis in humans. |
---|---|
AbstractList | Background Metformin, the most widely administered diabetes drug, has been proposed as a candidate adjunctive host-directed therapy for tuberculosis, but little is known about its effects on human host responses to Mycobacterium tuberculosis. Methods We investigated in vitro and in vivo effects of metformin in humans. Results Metformin added to peripheral blood mononuclear cells from healthy volunteers enhanced in vitro cellular metabolism while inhibiting the mammalian target of rapamycin targets p70S6K and 4EBP1, with decreased cytokine production and cellular proliferation and increased phagocytosis activity. Metformin administered to healthy human volunteers led to significant downregulation of genes involved in oxidative phosphorylation, mammalian target of rapamycin signaling, and type I interferon response pathways, particularly following stimulation with M. tuberculosis, and upregulation of genes involved in phagocytosis and reactive oxygen species production was increased. These in vivo effects were accompanied by a metformin-induced shift in myeloid cells from classical to nonclassical monocytes. At a functional level, metformin lowered ex vivo production of tumor necrosis factor α, interferon γ, and interleukin 1β but increased phagocytosis activity and reactive oxygen species production. Conclusion Metformin has a range of potentially beneficial effects on cellular metabolism, immune function, and gene transcription involved in innate host responses to M. tuberculosis. Metformin, the most widely administered diabetes drug, has been proposed as a candidate adjunctive host-directed therapy for tuberculosis, but little is known about its effects on human host responses to Mycobacterium tuberculosis.BACKGROUNDMetformin, the most widely administered diabetes drug, has been proposed as a candidate adjunctive host-directed therapy for tuberculosis, but little is known about its effects on human host responses to Mycobacterium tuberculosis.We investigated in vitro and in vivo effects of metformin in humans.METHODSWe investigated in vitro and in vivo effects of metformin in humans.Metformin added to peripheral blood mononuclear cells from healthy volunteers enhanced in vitro cellular metabolism while inhibiting the mammalian target of rapamycin targets p70S6K and 4EBP1, with decreased cytokine production and cellular proliferation and increased phagocytosis activity. Metformin administered to healthy human volunteers led to significant downregulation of genes involved in oxidative phosphorylation, mammalian target of rapamycin signaling, and type I interferon response pathways, particularly following stimulation with M. tuberculosis, and upregulation of genes involved in phagocytosis and reactive oxygen species production was increased. These in vivo effects were accompanied by a metformin-induced shift in myeloid cells from classical to nonclassical monocytes. At a functional level, metformin lowered ex vivo production of tumor necrosis factor α, interferon γ, and interleukin 1β but increased phagocytosis activity and reactive oxygen species production.RESULTSMetformin added to peripheral blood mononuclear cells from healthy volunteers enhanced in vitro cellular metabolism while inhibiting the mammalian target of rapamycin targets p70S6K and 4EBP1, with decreased cytokine production and cellular proliferation and increased phagocytosis activity. Metformin administered to healthy human volunteers led to significant downregulation of genes involved in oxidative phosphorylation, mammalian target of rapamycin signaling, and type I interferon response pathways, particularly following stimulation with M. tuberculosis, and upregulation of genes involved in phagocytosis and reactive oxygen species production was increased. These in vivo effects were accompanied by a metformin-induced shift in myeloid cells from classical to nonclassical monocytes. At a functional level, metformin lowered ex vivo production of tumor necrosis factor α, interferon γ, and interleukin 1β but increased phagocytosis activity and reactive oxygen species production.Metformin has a range of potentially beneficial effects on cellular metabolism, immune function, and gene transcription involved in innate host responses to M. tuberculosis.CONCLUSIONMetformin has a range of potentially beneficial effects on cellular metabolism, immune function, and gene transcription involved in innate host responses to M. tuberculosis. Metformin, the most widely administered diabetes drug, has been proposed as a candidate adjunctive host-directed therapy for tuberculosis, but little is known about its effects on human host responses to Mycobacterium tuberculosis. We investigated in vitro and in vivo effects of metformin in humans. Metformin added to peripheral blood mononuclear cells from healthy volunteers enhanced in vitro cellular metabolism while inhibiting the mammalian target of rapamycin targets p70S6K and 4EBP1, with decreased cytokine production and cellular proliferation and increased phagocytosis activity. Metformin administered to healthy human volunteers led to significant downregulation of genes involved in oxidative phosphorylation, mammalian target of rapamycin signaling, and type I interferon response pathways, particularly following stimulation with M. tuberculosis, and upregulation of genes involved in phagocytosis and reactive oxygen species production was increased. These in vivo effects were accompanied by a metformin-induced shift in myeloid cells from classical to nonclassical monocytes. At a functional level, metformin lowered ex vivo production of tumor necrosis factor α, interferon γ, and interleukin 1β but increased phagocytosis activity and reactive oxygen species production. Metformin has a range of potentially beneficial effects on cellular metabolism, immune function, and gene transcription involved in innate host responses to M. tuberculosis. Metformin has shown beneficial effects in a murine model of tuberculosis. Using in-vitro and in-vivo studies we show that metformin has beneficial effects on cellular metabolism, immune function and genetranscription involved in innate host responses to M. tuberculosis in humans. Abstract Background Metformin, the most widely administered diabetes drug, has been proposed as a candidate adjunctive host-directed therapy for tuberculosis, but little is known about its effects on human host responses to Mycobacterium tuberculosis. Methods We investigated in vitro and in vivo effects of metformin in humans. Results Metformin added to peripheral blood mononuclear cells from healthy volunteers enhanced in vitro cellular metabolism while inhibiting the mammalian target of rapamycin targets p70S6K and 4EBP1, with decreased cytokine production and cellular proliferation and increased phagocytosis activity. Metformin administered to healthy human volunteers led to significant downregulation of genes involved in oxidative phosphorylation, mammalian target of rapamycin signaling, and type I interferon response pathways, particularly following stimulation with M. tuberculosis, and upregulation of genes involved in phagocytosis and reactive oxygen species production was increased. These in vivo effects were accompanied by a metformin-induced shift in myeloid cells from classical to nonclassical monocytes. At a functional level, metformin lowered ex vivo production of tumor necrosis factor α, interferon γ, and interleukin 1β but increased phagocytosis activity and reactive oxygen species production. Conclusion Metformin has a range of potentially beneficial effects on cellular metabolism, immune function, and gene transcription involved in innate host responses to M. tuberculosis. Metformin has shown beneficial effects in a murine model of tuberculosis. Using in-vitro and in-vivo studies we show that metformin has beneficial effects on cellular metabolism, immune function and genetranscription involved in innate host responses to M. tuberculosis in humans. |
Author | Lachmandas, Ekta Newell, Evan van Crevel, Reinout Arts, Rob J. W. Ratter, Jacqueline Blok, Bastiaan Dockrell, Hazel M. Cliff, Jacqueline M. Koeken, Valerie A. C. M. Marzuki, Mardiana Binte Eckold, Clare van den Heuvel, Corina Netea, Mihai G. Böhme, Julia Singhal, Amit Teng, Karen W. W. Chen, Jinmiao Smolders, Elise J. Stienstra, Rinke |
AuthorAffiliation | 1 Department of Internal Medicine, Nijmegen 3 Nutrition, Metabolism and Genomics Group, Division of Human Nutrition, Wageningen University, Wageningen, the Netherlands 6 Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 5 Singapore Immunology Network, Agency for Science, Technology, and Research 4 Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, United Kingdom 7 Human Genomics Laboratory, Craiova University of Medicine and Pharmacy, Romania 2 Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen |
AuthorAffiliation_xml | – name: 1 Department of Internal Medicine, Nijmegen – name: 5 Singapore Immunology Network, Agency for Science, Technology, and Research – name: 4 Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, United Kingdom – name: 2 Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen – name: 7 Human Genomics Laboratory, Craiova University of Medicine and Pharmacy, Romania – name: 6 Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore – name: 3 Nutrition, Metabolism and Genomics Group, Division of Human Nutrition, Wageningen University, Wageningen, the Netherlands |
Author_xml | – sequence: 1 givenname: Ekta surname: Lachmandas fullname: Lachmandas, Ekta – sequence: 2 givenname: Clare surname: Eckold fullname: Eckold, Clare – sequence: 3 givenname: Julia surname: Böhme fullname: Böhme, Julia – sequence: 4 givenname: Valerie A. C. M. surname: Koeken fullname: Koeken, Valerie A. C. M. – sequence: 5 givenname: Mardiana Binte surname: Marzuki fullname: Marzuki, Mardiana Binte – sequence: 6 givenname: Bastiaan surname: Blok fullname: Blok, Bastiaan – sequence: 7 givenname: Rob J. W. surname: Arts fullname: Arts, Rob J. W. – sequence: 8 givenname: Jinmiao surname: Chen fullname: Chen, Jinmiao – sequence: 9 givenname: Karen W. W. surname: Teng fullname: Teng, Karen W. W. – sequence: 10 givenname: Jacqueline surname: Ratter fullname: Ratter, Jacqueline – sequence: 11 givenname: Elise J. surname: Smolders fullname: Smolders, Elise J. – sequence: 12 givenname: Corina surname: van den Heuvel fullname: van den Heuvel, Corina – sequence: 13 givenname: Rinke surname: Stienstra fullname: Stienstra, Rinke – sequence: 14 givenname: Hazel M. surname: Dockrell fullname: Dockrell, Hazel M. – sequence: 15 givenname: Evan surname: Newell fullname: Newell, Evan – sequence: 16 givenname: Mihai G. surname: Netea fullname: Netea, Mihai G. – sequence: 17 givenname: Amit surname: Singhal fullname: Singhal, Amit – sequence: 18 givenname: Jacqueline M. surname: Cliff fullname: Cliff, Jacqueline M. – sequence: 19 givenname: Reinout surname: van Crevel fullname: van Crevel, Reinout |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30753544$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkstrFTEUxoNU7O3VpUtlwI2bsXlMMjMuhFLUK7QIPnAZMpkzbS4zyW0elutfb4a5LVoQNzmQ8_s-vpOcE3RknQWEnhP8huCWnRo79Cacbs0vLKpHaEU4q0shCDtCK4wpLUnTtsfoJIQtxrhion6CjhmuOeNVtUI_LiEOzk_GFmdjBB-KTZqULTYuxOILhJ2zAUIRXXG5165TOjMmTUVMHXidRhdMKLJ4A2qM1_via-q2oGN4ih4Pagzw7FDX6PuH99_ON-XF54-fzs8uSs0piSVwwH1fKSCUcFErjgVXuGuGrlKUEDZQphto6prlibq245wLQRnpdatAcM7W6O3ie6uuwBqbD2mV1yZIp4wcTeeV38vb5KUd57JLXZCcU8xpFr9bxPlygl6DjV6NcufNNItmg7871lzLK_dTCl41TVtng9cHA-9uEoQoJxM0jKOy4FKQlNKWYIobltFXD9CtS97mt5G0quq2pjxja_Tyz0T3Ue4-LANsAbR3IXgYpDZRRePmgGaUBMt5LeSyFnJZi6wqH6jujP_FH-Zyafdf9MWCbkN0_h6mQtRVHor9Bsry1pM |
CitedBy_id | crossref_primary_10_1186_s12890_021_01667_4 crossref_primary_10_1016_j_nano_2019_102088 crossref_primary_10_1016_j_intimp_2023_109956 crossref_primary_10_3390_jcm8081166 crossref_primary_10_1002_ctm2_1375 crossref_primary_10_1016_j_ijtb_2023_05_011 crossref_primary_10_4049_jimmunol_2000137 crossref_primary_10_1007_s15010_019_01322_5 crossref_primary_10_1002_ctm2_206 crossref_primary_10_1016_j_micinf_2019_10_002 crossref_primary_10_1016_j_tips_2020_01_003 crossref_primary_10_1016_j_tips_2021_11_016 crossref_primary_10_3389_fimmu_2020_623119 crossref_primary_10_3389_fimmu_2020_557809 crossref_primary_10_1016_j_ebiom_2022_104173 crossref_primary_10_3389_fimmu_2022_931876 crossref_primary_10_1038_s41598_021_98223_1 crossref_primary_10_1007_s11357_020_00261_6 crossref_primary_10_1111_acel_13799 crossref_primary_10_3390_biom14121497 crossref_primary_10_2174_1568026621999201211200447 crossref_primary_10_1021_acsptsci_1c00167 crossref_primary_10_1016_j_biopha_2023_115263 crossref_primary_10_1016_j_intimp_2023_110512 crossref_primary_10_3389_fmicb_2020_00435 crossref_primary_10_3389_fmicb_2020_614313 crossref_primary_10_1038_s41467_024_49246_5 crossref_primary_10_1111_ijcp_13864 crossref_primary_10_1128_spectrum_00167_24 crossref_primary_10_3389_fendo_2022_919223 crossref_primary_10_1016_j_obmed_2023_100514 crossref_primary_10_1016_j_micinf_2020_03_001 crossref_primary_10_3390_idr13030074 crossref_primary_10_3389_fcimb_2021_624607 crossref_primary_10_1038_s41598_020_73212_y crossref_primary_10_1016_j_cegh_2022_101106 crossref_primary_10_1016_j_ijid_2024_107140 crossref_primary_10_1097_FTD_0000000000001149 crossref_primary_10_3389_fcimb_2020_00446 crossref_primary_10_1038_s41467_020_19095_z crossref_primary_10_4103_cdrp_cdrp_8_21 crossref_primary_10_1128_aac_00366_22 crossref_primary_10_1007_s40610_020_00137_w crossref_primary_10_1016_j_tibs_2020_03_003 crossref_primary_10_1093_ije_dyac214 crossref_primary_10_1080_14787210_2020_1760845 crossref_primary_10_1016_j_isci_2022_104464 crossref_primary_10_1099_mic_0_001041 crossref_primary_10_1186_s12879_019_4548_4 crossref_primary_10_1002_jcla_24755 crossref_primary_10_1038_s41574_023_00833_4 crossref_primary_10_1111_imm_13276 crossref_primary_10_3389_fimmu_2021_703060 crossref_primary_10_1016_j_chest_2023_08_026 crossref_primary_10_1016_j_preteyeres_2023_101189 crossref_primary_10_1038_s41385_019_0226_5 crossref_primary_10_1128_AAC_01422_20 crossref_primary_10_3389_fimmu_2023_1122255 crossref_primary_10_1590_s2175_97902022e20422 crossref_primary_10_3390_microorganisms9112282 crossref_primary_10_1016_j_ejmech_2020_112175 crossref_primary_10_1016_j_medj_2020_11_003 crossref_primary_10_3389_fimmu_2024_1463224 crossref_primary_10_7554_eLife_64834 crossref_primary_10_1016_j_tube_2020_102047 crossref_primary_10_1021_jasms_1c00205 crossref_primary_10_2147_IJGM_S318071 crossref_primary_10_12688_wellcomeopenres_19455_1 crossref_primary_10_12688_wellcomeopenres_19455_2 crossref_primary_10_1111_imr_12951 crossref_primary_10_1002_mco2_353 crossref_primary_10_1093_cid_ciab964 |
Cites_doi | 10.1371/journal.pmed.0050152 10.1038/nature13489 10.1021/ac901049w 10.1126/scitranslmed.3009885 10.1038/nature16451 10.1371/journal.pone.0205807 10.3904/kjim.2017.249 10.1111/imr.12257 10.1038/nature09247 10.1038/nbt.2593 10.1007/s00210-009-0477-x 10.1126/science.359.6383.1454 10.1093/cid/cix819 10.1038/nrd.2017.162 10.1093/infdis/jis499 10.1016/j.cmet.2015.01.003 10.1172/JCI97508 10.1186/1741-7015-9-81 10.1096/fj.11-190587 10.1055/s-0034-1377044 10.1038/nri3344 10.1016/j.cell.2015.05.047 10.1016/j.chest.2017.11.040 10.1038/ni.3048 10.1016/S2213-8587(14)70110-X 10.2119/molmed.2013.00065 10.1128/AAC.00652-17 10.1007/s10096-018-3242-6 10.1016/j.bbadis.2015.01.006 10.1016/j.cmet.2013.10.001 10.1002/eji.201546259 10.1161/CIRCRESAHA.116.308445 10.1038/nrendo.2013.256 10.1242/dev.137075 10.1016/j.cmet.2013.06.017 |
ContentType | Journal Article |
Copyright | The Author(s) 2019 The Author(s) 2019. Published by Oxford University Press for the Infectious Diseases Society of America. 2019 The Author(s) 2019. Published by Oxford University Press for the Infectious Diseases Society of America. Wageningen University & Research |
Copyright_xml | – notice: The Author(s) 2019 – notice: The Author(s) 2019. Published by Oxford University Press for the Infectious Diseases Society of America. 2019 – notice: The Author(s) 2019. Published by Oxford University Press for the Infectious Diseases Society of America. – notice: Wageningen University & Research |
DBID | TOX AAYXX CITATION CGR CUY CVF ECM EIF NPM K9. NAPCQ 7X8 5PM QVL |
DOI | 10.1093/infdis/jiz064 |
DatabaseName | Oxford University Press Journals Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium MEDLINE - Academic PubMed Central (Full Participant titles) NARCIS:Publications |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1537-6613 |
EndPage | 150 |
ExternalDocumentID | oai_library_wur_nl_wurpubs_552052 PMC6548897 30753544 10_1093_infdis_jiz064 10.1093/infdis/jiz064 26674972 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Netherlands Organization for Scientific Research – fundername: Medical Research Council grantid: MR/P017568/1 – fundername: ; |
GroupedDBID | --- -DZ -~X ..I .2P .I3 .XZ .ZR 08P 0R~ 123 29K 2AX 2WC 36B 4.4 48X 53G 5GY 5RE 5VS 5WD 70D 85S AABZA AACGO AACZT AAHBH AAHTB AAJKP AAMVS AANCE AAOGV AAPNW AAPQZ AAPXW AARHZ AAUAY AAUQX AAVAP AAWTL ABBHK ABDFA ABEJV ABEUO ABGNP ABIXL ABJNI ABKDP ABLJU ABNHQ ABNKS ABOCM ABPEJ ABPLY ABPPZ ABPQP ABPTD ABQLI ABQNK ABTLG ABVGC ABWST ABXVV ABZBJ ACGFO ACGFS ACGOD ACPRK ACUFI ACUTJ ACUTO ACYHN ADBBV ADEYI ADGZP ADHKW ADHZD ADIPN ADNBA ADOCK ADQBN ADRTK ADVEK ADYVW ADZXQ AEGPL AEGXH AEJOX AEKSI AEMDU AEMQT AENEX AENZO AEPUE AETBJ AEUPB AEWNT AEXZC AFFZL AFIYH AFOFC AFXAL AFYAG AGINJ AGKEF AGORE AGQXC AGSYK AGUTN AHGBF AHMBA AHMMS AHXPO AIAGR AIJHB AJBYB AJEEA AJNCP ALMA_UNASSIGNED_HOLDINGS ALUQC ALXQX APIBT APWMN ATGXG AXUDD BAWUL BAYMD BCRHZ BEYMZ BHONS BR6 BTRTY BVRKM C45 CDBKE CS3 CZ4 D-I DAKXR DCCCD DIK DILTD DU5 D~K EBS ECGQY EE~ EJD EMOBN ENERS F5P F9B FECEO FLUFQ FOEOM FOTVD FQBLK GAUVT GJXCC GX1 H13 H5~ HAR HW0 HZ~ IH2 IOX IPSME J21 JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST JXSIZ KAQDR KBUDW KOP KQ8 KSI KSN L7B LSO LU7 MHKGH MJL ML0 N9A NGC NOMLY NOYVH NU- O9- OAUYM OAWHX OCZFY ODMLO OJQWA OJZSN OK1 OPAEJ OVD OWPYF P2P PAFKI PEELM PQQKQ Q1. Q5Y QBD RD5 ROX ROZ RUSNO RW1 RXO SA0 SJN TCURE TEORI TJX TR2 W2D W8F WH7 X7H YAYTL YKOAZ YXANX ~91 M49 TOX ZKG AAYXX CITATION CGR CUY CVF ECM EIF NPM K9. NAPCQ 7X8 1KJ 5PM .55 .GJ 08R 1TH 3O- 41~ 6.Y 69O AABJS AABMN AAESY AAIYJ AAJQQ AANRK AAPGJ AAQQT AAWDT AAYOK ABFLS ABPTK ABSAR ABSMQ ACEMF ACFRR ACIMA ACPQN ADEIU ADJQC ADMTO ADORX ADQLU ADRIX ADULT ADZLD AEKPW AFFNX AFHKK AFXEN AGKRT AGVJH AHGVY AI. AIKOY AIMBJ AQDSO AQKUS ASMCH AWCFO AZQFJ BGYMP BYORX BZKNY DNJUQ DOOOF DPORF DPPUQ DWIUU EIHJH ESX G8K HQ3 HTVGU J5H JSODD MBLQV MVM N4W NEJ NVLIB O0~ O~Y P0- PQEST QVL TMA UMP VH1 X7M Y6R ZA5 ZE2 ZGI ZXP |
ID | FETCH-LOGICAL-c521t-e5e0dd4ae121567a5065a0b8fb4a2113f23c8e8773613b9b55566231dc9ae6553 |
IEDL.DBID | TOX |
ISSN | 0022-1899 1537-6613 |
IngestDate | Thu Oct 13 09:31:35 EDT 2022 Thu Aug 21 13:54:11 EDT 2025 Sat Sep 27 19:10:17 EDT 2025 Fri Jul 25 19:18:30 EDT 2025 Mon Jul 21 05:36:16 EDT 2025 Thu Apr 24 22:57:52 EDT 2025 Tue Jul 01 01:31:15 EDT 2025 Wed Apr 02 07:04:49 EDT 2025 Thu Jul 03 21:39:23 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | gene transcription host-directed therapy Metformin antimycobacterial mechanisms tuberculosis |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. http://creativecommons.org/licenses/by/4.0 The Author(s) 2019. Published by Oxford University Press for the Infectious Diseases Society of America. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c521t-e5e0dd4ae121567a5065a0b8fb4a2113f23c8e8773613b9b55566231dc9ae6553 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 E. L. and C. E. contributed equally to this article. |
OpenAccessLink | https://dx.doi.org/10.1093/infdis/jiz064 |
PMID | 30753544 |
PQID | 2447972508 |
PQPubID | 41591 |
PageCount | 12 |
ParticipantIDs | wageningen_narcis_oai_library_wur_nl_wurpubs_552052 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6548897 proquest_miscellaneous_2229102083 proquest_journals_2447972508 pubmed_primary_30753544 crossref_citationtrail_10_1093_infdis_jiz064 crossref_primary_10_1093_infdis_jiz064 oup_primary_10_1093_infdis_jiz064 jstor_primary_26674972 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-06-05 |
PublicationDateYYYYMMDD | 2019-06-05 |
PublicationDate_xml | – month: 06 year: 2019 text: 2019-06-05 day: 05 |
PublicationDecade | 2010 |
PublicationPlace | US |
PublicationPlace_xml | – name: US – name: United States – name: Oxford |
PublicationTitle | The Journal of infectious diseases |
PublicationTitleAlternate | J Infect Dis |
PublicationYear | 2019 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Pernicova (2019060500353561400_CIT0011) 2014; 10 Cliff (2019060500353561400_CIT0025) 2013; 207 Cheng (2019060500353561400_CIT0036) 2014; 346 Bae (2019060500353561400_CIT0031) 2011; 25 Lee (2019060500353561400_CIT0006) 2018; 13 Izzo (2019060500353561400_CIT0019) 2017; 26 Leslie (2019060500353561400_CIT0023) 2018; 359 Lee (2019060500353561400_CIT0010) 2018; 33 Dutta (2019060500353561400_CIT0035) 2017; 61 Riza (2019060500353561400_CIT0037) 2014; 2 Mayer-Barber (2019060500353561400_CIT0027) 2014; 511 Park (2019060500353561400_CIT0029) 2013; 19 Labuzek (2019060500353561400_CIT0028) 2010; 381 Mounier (2019060500353561400_CIT0030) 2013; 18 Joosten (2019060500353561400_CIT0022) 2018; 128 He (2019060500353561400_CIT0015) 2015; 21 Morita (2019060500353561400_CIT0016) 2013; 18 Leow (2019060500353561400_CIT0005) 2014; 122 Ma (2019060500353561400_CIT0009) 2018; 37 Orme (2019060500353561400_CIT0033) 2015; 16 Cameron (2019060500353561400_CIT0018) 2016; 119 Chung (2019060500353561400_CIT0021) 2015; 1852 Singhal (2019060500353561400_CIT0004) 2014; 6 Lachmandas (2019060500353561400_CIT0003) 2016; 46 Berry (2019060500353561400_CIT0026) 2010; 466 Kimmey (2019060500353561400_CIT0032) 2015; 528 Baker (2019060500353561400_CIT0002) 2011; 9 Degner (2019060500353561400_CIT0008) 2018; 66 Ronacher (2019060500353561400_CIT0012) 2015; 264 Jeon (2019060500353561400_CIT0001) 2008; 5 Bandura (2019060500353561400_CIT0020) 2009; 81 Diamond (2019060500353561400_CIT0024) 2013; 13 Pan (2019060500353561400_CIT0007) 2018; 153 Newell (2019060500353561400_CIT0013) 2013; 31 Yu (2019060500353561400_CIT0017) 2016; 143 Kaufmann (2019060500353561400_CIT0034) 2018; 17 Levine (2019060500353561400_CIT0014) 2015; 162 |
References_xml | – volume: 5 start-page: e152 year: 2008 ident: 2019060500353561400_CIT0001 article-title: Diabetes mellitus increases the risk of active tuberculosis: a systematic review of 13 observational studies publication-title: PLoS Med doi: 10.1371/journal.pmed.0050152 – volume: 511 start-page: 99 year: 2014 ident: 2019060500353561400_CIT0027 article-title: Host-directed therapy of tuberculosis based on interleukin-1 and type I interferon crosstalk publication-title: Nature doi: 10.1038/nature13489 – volume: 81 start-page: 6813 year: 2009 ident: 2019060500353561400_CIT0020 article-title: Mass cytometry: technique for real time single cell multitarget immunoassay based on inductively coupled plasma time-of-flight mass spectrometry publication-title: Anal Chem doi: 10.1021/ac901049w – volume: 6 start-page: 263ra159 year: 2014 ident: 2019060500353561400_CIT0004 article-title: Metformin as adjunct antituberculosis therapy publication-title: Sci Transl Med doi: 10.1126/scitranslmed.3009885 – volume: 528 start-page: 565 year: 2015 ident: 2019060500353561400_CIT0032 article-title: Unique role for ATG5 in neutrophil-mediated immunopathology during M. tuberculosis infection publication-title: Nature doi: 10.1038/nature16451 – volume: 13 start-page: e0205807 year: 2018 ident: 2019060500353561400_CIT0006 article-title: Metformin use is associated with a low risk of tuberculosis among newly diagnosed diabetes mellitus patients with normal renal function: a nationwide cohort study with validated diagnostic criteria publication-title: PLoS One doi: 10.1371/journal.pone.0205807 – volume: 33 start-page: 933 year: 2018 ident: 2019060500353561400_CIT0010 article-title: The effect of metformin on culture conversion in tuberculosis patients with diabetes mellitus publication-title: Korean J Intern Med doi: 10.3904/kjim.2017.249 – volume: 264 start-page: 121 year: 2015 ident: 2019060500353561400_CIT0012 article-title: Acquired immunodeficiencies and tuberculosis: focus on HIV/AIDS and diabetes mellitus publication-title: Immunol Rev doi: 10.1111/imr.12257 – volume: 466 start-page: 973 year: 2010 ident: 2019060500353561400_CIT0026 article-title: An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis publication-title: Nature doi: 10.1038/nature09247 – volume: 31 start-page: 623 year: 2013 ident: 2019060500353561400_CIT0013 article-title: Combinatorial tetramer staining and mass cytometry analysis facilitate T-cell epitope mapping and characterization publication-title: Nat Biotechnol doi: 10.1038/nbt.2593 – volume: 381 start-page: 171 year: 2010 ident: 2019060500353561400_CIT0028 article-title: Metformin increases phagocytosis and acidifies lysosomal/endosomal compartments in AMPK-dependent manner in rat primary microglia publication-title: Naunyn Schmiedebergs Arch Pharmacol doi: 10.1007/s00210-009-0477-x – volume: 359 start-page: 1454 year: 2018 ident: 2019060500353561400_CIT0023 article-title: Putting immune cells on a diet publication-title: Science doi: 10.1126/science.359.6383.1454 – volume: 66 start-page: 198 year: 2018 ident: 2019060500353561400_CIT0008 article-title: Metformin use reverses the increased mortality associated with diabetes mellitus during tuberculosis treatment publication-title: Clin Infect Dis doi: 10.1093/cid/cix819 – volume: 17 start-page: 35 year: 2018 ident: 2019060500353561400_CIT0034 article-title: Host-directed therapies for bacterial and viral infections publication-title: Nat Rev Drug Discov doi: 10.1038/nrd.2017.162 – volume: 207 start-page: 18 year: 2013 ident: 2019060500353561400_CIT0025 article-title: Distinct phases of blood gene expression pattern through tuberculosis treatment reflect modulation of the humoral immune response publication-title: J Infect Dis doi: 10.1093/infdis/jis499 – volume: 21 start-page: 159 year: 2015 ident: 2019060500353561400_CIT0015 article-title: Metformin action: concentrations matter publication-title: Cell Metab doi: 10.1016/j.cmet.2015.01.003 – volume: 128 start-page: 1837 year: 2018 ident: 2019060500353561400_CIT0022 article-title: Mycobacterial growth inhibition is associated with trained innate immunity publication-title: J Clin Invest doi: 10.1172/JCI97508 – volume: 9 start-page: 81 year: 2011 ident: 2019060500353561400_CIT0002 article-title: The impact of diabetes on tuberculosis treatment outcomes: a systematic review publication-title: BMC Med doi: 10.1186/1741-7015-9-81 – volume: 25 start-page: 4358 year: 2011 ident: 2019060500353561400_CIT0031 article-title: AMP-activated protein kinase enhances the phagocytic ability of macrophages and neutrophils publication-title: FASEB J doi: 10.1096/fj.11-190587 – volume: 122 start-page: 528 year: 2014 ident: 2019060500353561400_CIT0005 article-title: Latent tuberculosis in patients with diabetes mellitus: prevalence, progression and public health implications publication-title: Exp Clin Endocrinol Diabetes doi: 10.1055/s-0034-1377044 – volume: 13 start-page: 46 year: 2013 ident: 2019060500353561400_CIT0024 article-title: The broad-spectrum antiviral functions of IFIT and IFITM proteins publication-title: Nat Rev Immunol doi: 10.1038/nri3344 – volume: 162 start-page: 184 year: 2015 ident: 2019060500353561400_CIT0014 article-title: Data-driven phenotypic dissection of AML reveals progenitor-like cells that correlate with prognosis publication-title: Cell doi: 10.1016/j.cell.2015.05.047 – volume: 153 start-page: 1347 year: 2018 ident: 2019060500353561400_CIT0007 article-title: The risk of TB in patients with type 2 diabetes initiating metformin vs sulfonylurea treatment publication-title: Chest doi: 10.1016/j.chest.2017.11.040 – volume: 16 start-page: 57 year: 2015 ident: 2019060500353561400_CIT0033 article-title: The balance between protective and pathogenic immune responses in the TB-infected lung publication-title: Nat Immunol doi: 10.1038/ni.3048 – volume: 2 start-page: 740 year: 2014 ident: 2019060500353561400_CIT0037 article-title: Clinical management of concurrent diabetes and tuberculosis and the implications for patient services publication-title: Lancet Diabetes Endocrinol doi: 10.1016/S2213-8587(14)70110-X – volume: 19 start-page: 387 year: 2013 ident: 2019060500353561400_CIT0029 article-title: Activation of AMPK enhances neutrophil chemotaxis and bacterial killing publication-title: Mol Med doi: 10.2119/molmed.2013.00065 – volume: 61: year: 2017 ident: 2019060500353561400_CIT0035 article-title: Metformin adjunctive therapy does not improve the sterilizing activity of the first-line antitubercular regimen in mice publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.00652-17 – volume: 37 start-page: 1259 year: 2018 ident: 2019060500353561400_CIT0009 article-title: Metformin reduces the relapse rate of tuberculosis patients with diabetes mellitus: experiences from 3-year follow-up publication-title: Eur J Clin Microbiol Infect Dis doi: 10.1007/s10096-018-3242-6 – volume: 1852 start-page: 720 year: 2015 ident: 2019060500353561400_CIT0021 article-title: The neuroprotective role of metformin in advanced glycation end product treated human neural stem cells is AMPK-dependent publication-title: Biochim Biophys Acta doi: 10.1016/j.bbadis.2015.01.006 – volume: 18 start-page: 698 year: 2013 ident: 2019060500353561400_CIT0016 article-title: mTORC1 controls mitochondrial activity and biogenesis through 4E-BP-dependent translational regulation publication-title: Cell Metab doi: 10.1016/j.cmet.2013.10.001 – volume: 46 start-page: 2574 year: 2016 ident: 2019060500353561400_CIT0003 article-title: Rewiring cellular metabolism via the AKT/mTOR pathway contributes to host defence against Mycobacterium tuberculosis in human and murine cells publication-title: Eur J Immunol doi: 10.1002/eji.201546259 – volume: 119 start-page: 652 year: 2016 ident: 2019060500353561400_CIT0018 article-title: Anti-inflammatory effects of metformin irrespective of diabetes status publication-title: Circ Res doi: 10.1161/CIRCRESAHA.116.308445 – volume: 10 start-page: 143 year: 2014 ident: 2019060500353561400_CIT0011 article-title: Metformin–mode of action and clinical implications for diabetes and cancer publication-title: Nat Rev Endocrinol doi: 10.1038/nrendo.2013.256 – volume: 26 start-page: 1056 year: 2017 ident: 2019060500353561400_CIT0019 article-title: Metformin restores the mitochondrial network and reverses mitochondrial dysfunction in Down syndrome cells publication-title: Hum Mol Genet – volume: 143 start-page: 3050 year: 2016 ident: 2019060500353561400_CIT0017 article-title: Proliferation, survival and metabolism: the role of PI3K/AKT/mTOR signalling in pluripotency and cell fate determination publication-title: Development doi: 10.1242/dev.137075 – volume: 346 start-page: 1579 year: 2014 ident: 2019060500353561400_CIT0036 article-title: mTOR- and HIF-1 alpha-mediated aerobic glycolysis as metabolic basis for trained immunity (vol 346, aaa1503, 2014) publication-title: Science – volume: 18 start-page: 251 year: 2013 ident: 2019060500353561400_CIT0030 article-title: AMPKα1 regulates macrophage skewing at the time of resolution of inflammation during skeletal muscle regeneration publication-title: Cell Metab doi: 10.1016/j.cmet.2013.06.017 |
SSID | ssj0004367 |
Score | 2.5522137 |
Snippet | Abstract
Background
Metformin, the most widely administered diabetes drug, has been proposed as a candidate adjunctive host-directed therapy for tuberculosis,... Metformin, the most widely administered diabetes drug, has been proposed as a candidate adjunctive host-directed therapy for tuberculosis, but little is known... Background Metformin, the most widely administered diabetes drug, has been proposed as a candidate adjunctive host-directed therapy for tuberculosis, but... Metformin has shown beneficial effects in a murine model of tuberculosis. Using in-vitro and in-vivo studies we show that metformin has beneficial effects on... BACKGROUND: Metformin, the most widely administered diabetes drug, has been proposed as a candidate adjunctive host-directed therapy for tuberculosis, but... |
SourceID | wageningen pubmedcentral proquest pubmed crossref oup jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 139 |
SubjectTerms | Antidiabetics antimycobacterial mechanisms Cell Proliferation - drug effects Diabetes mellitus Down-Regulation - drug effects gene transcription Healthy Volunteers host-directed therapy Host-Pathogen Interactions - drug effects Humans Hypoglycemic Agents - pharmacology Immune response Leukocytes (mononuclear) Leukocytes, Mononuclear - drug effects Leukocytes, Mononuclear - microbiology Major and Brief Reports Metabolism Metformin Metformin - pharmacology Monocytes Monocytes - drug effects Monocytes - metabolism Mycobacterium tuberculosis Mycobacterium tuberculosis - pathogenicity Myeloid cells Myeloid Cells - drug effects Myeloid Cells - metabolism Oxidative phosphorylation PATHOGENESIS AND HOST RESPONSE Peripheral blood mononuclear cells Phagocytosis Phagocytosis - drug effects Phosphorylation Rapamycin Reactive oxygen species Reactive Oxygen Species - metabolism Signal Transduction - drug effects TOR protein Transcription Tuberculosis Tuberculosis - metabolism Tuberculosis - microbiology Tumor necrosis factor-α Up-Regulation - drug effects γ-Interferon |
Title | Metformin Alters Human Host Responses to Mycobacterium tuberculosis in Healthy Subjects |
URI | https://www.jstor.org/stable/26674972 https://www.ncbi.nlm.nih.gov/pubmed/30753544 https://www.proquest.com/docview/2447972508 https://www.proquest.com/docview/2229102083 https://pubmed.ncbi.nlm.nih.gov/PMC6548897 http://www.narcis.nl/publication/RecordID/oai:library.wur.nl:wurpubs%2F552052 |
Volume | 220 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Rb9QwDI7QJNBeEAwGZWMKEuKJarekaZrHCTEdmw4ktIl7i9IkFZ1u7XRpNd1-PU7S63YMBE99qJ2qcRx_sWMboffUWAtmkaXqyOg0U1SlBeD-1BohDDEVtyErbfY1n15kp3M2H_wd7g8hfEEPYaZN7Q4v61swn7DZggH2C_r82_wuAZLmfF0W_AhOEEMxzQfcG8Yn3j_8LbHtHr58eE1y-wZ0vAlJT_eM0Mkz9HRAj_g4ivs5emSbHfQ49pNc7aAnsyFS_gL9mNnO49G6wcc-IO5wcNfjaes6_D1ejLUOdy2erTTodKjZ3F_hri_tUveL1tUOA3NMU1ph2GC8x8a9RBcnn88_TdOhiUKqfa-C1DI7MSZT1peRyLligDnUpCyqMlNw-KMVobqwBecUDHspSsYA4AHoM1oomzNGd9FW0zb2NcIZKWmuK8YKyzIOql_BIKWmlFWZUMQk6ON6dqUeKoz7RhcLGSPdVEZhyCiMBH0Yya9jaY2_Ee4GUY1UACp4JjhJ0DuQ3b-Y99eSlYN6OgmYhgM_gFMYYnwNiuWjJaqxbQ80hACUIgBRE_QqLoTxS7AxMsoyGJxvLJGRwBft3nzT1D9D8e4cjoiF4Amid4tJNr5vlAtcg_NO3vRL2Sz8A8ZxkjEyYeTNf_zwHtoGUCfCdTa2j7a6ZW_fAnDqygM4Mnw5Owiq8ws3QBwa |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metformin+Alters+Human+Host+Responses+to+Mycobacterium+tuberculosis+in+Healthy+Subjects&rft.jtitle=The+Journal+of+infectious+diseases&rft.au=Lachmandas%2C+Ekta&rft.au=Eckold%2C+Clare&rft.au=B%C3%B6hme%2C+Julia&rft.au=Valerie+A+C+M+Koeken&rft.date=2019-06-05&rft.pub=Oxford+University+Press&rft.issn=0022-1899&rft.eissn=1537-6613&rft.volume=220&rft.issue=1&rft.spage=139&rft.epage=150&rft_id=info:doi/10.1093%2Finfdis%2Fjiz064&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1899&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1899&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1899&client=summon |