Metformin Alters Human Host Responses to Mycobacterium tuberculosis in Healthy Subjects

Abstract Background Metformin, the most widely administered diabetes drug, has been proposed as a candidate adjunctive host-directed therapy for tuberculosis, but little is known about its effects on human host responses to Mycobacterium tuberculosis. Methods We investigated in vitro and in vivo eff...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of infectious diseases Vol. 220; no. 1; pp. 139 - 150
Main Authors Lachmandas, Ekta, Eckold, Clare, Böhme, Julia, Koeken, Valerie A. C. M., Marzuki, Mardiana Binte, Blok, Bastiaan, Arts, Rob J. W., Chen, Jinmiao, Teng, Karen W. W., Ratter, Jacqueline, Smolders, Elise J., van den Heuvel, Corina, Stienstra, Rinke, Dockrell, Hazel M., Newell, Evan, Netea, Mihai G., Singhal, Amit, Cliff, Jacqueline M., van Crevel, Reinout
Format Journal Article
LanguageEnglish
Published US Oxford University Press 05.06.2019
Subjects
Online AccessGet full text
ISSN0022-1899
1537-6613
1537-6613
DOI10.1093/infdis/jiz064

Cover

Abstract Abstract Background Metformin, the most widely administered diabetes drug, has been proposed as a candidate adjunctive host-directed therapy for tuberculosis, but little is known about its effects on human host responses to Mycobacterium tuberculosis. Methods We investigated in vitro and in vivo effects of metformin in humans. Results Metformin added to peripheral blood mononuclear cells from healthy volunteers enhanced in vitro cellular metabolism while inhibiting the mammalian target of rapamycin targets p70S6K and 4EBP1, with decreased cytokine production and cellular proliferation and increased phagocytosis activity. Metformin administered to healthy human volunteers led to significant downregulation of genes involved in oxidative phosphorylation, mammalian target of rapamycin signaling, and type I interferon response pathways, particularly following stimulation with M. tuberculosis, and upregulation of genes involved in phagocytosis and reactive oxygen species production was increased. These in vivo effects were accompanied by a metformin-induced shift in myeloid cells from classical to nonclassical monocytes. At a functional level, metformin lowered ex vivo production of tumor necrosis factor α, interferon γ, and interleukin 1β but increased phagocytosis activity and reactive oxygen species production. Conclusion Metformin has a range of potentially beneficial effects on cellular metabolism, immune function, and gene transcription involved in innate host responses to M. tuberculosis. Metformin has shown beneficial effects in a murine model of tuberculosis. Using in-vitro and in-vivo studies we show that metformin has beneficial effects on cellular metabolism, immune function and genetranscription involved in innate host responses to M. tuberculosis in humans.
AbstractList Background Metformin, the most widely administered diabetes drug, has been proposed as a candidate adjunctive host-directed therapy for tuberculosis, but little is known about its effects on human host responses to Mycobacterium tuberculosis. Methods We investigated in vitro and in vivo effects of metformin in humans. Results Metformin added to peripheral blood mononuclear cells from healthy volunteers enhanced in vitro cellular metabolism while inhibiting the mammalian target of rapamycin targets p70S6K and 4EBP1, with decreased cytokine production and cellular proliferation and increased phagocytosis activity. Metformin administered to healthy human volunteers led to significant downregulation of genes involved in oxidative phosphorylation, mammalian target of rapamycin signaling, and type I interferon response pathways, particularly following stimulation with M. tuberculosis, and upregulation of genes involved in phagocytosis and reactive oxygen species production was increased. These in vivo effects were accompanied by a metformin-induced shift in myeloid cells from classical to nonclassical monocytes. At a functional level, metformin lowered ex vivo production of tumor necrosis factor α, interferon γ, and interleukin 1β but increased phagocytosis activity and reactive oxygen species production. Conclusion Metformin has a range of potentially beneficial effects on cellular metabolism, immune function, and gene transcription involved in innate host responses to M. tuberculosis.
Metformin, the most widely administered diabetes drug, has been proposed as a candidate adjunctive host-directed therapy for tuberculosis, but little is known about its effects on human host responses to Mycobacterium tuberculosis.BACKGROUNDMetformin, the most widely administered diabetes drug, has been proposed as a candidate adjunctive host-directed therapy for tuberculosis, but little is known about its effects on human host responses to Mycobacterium tuberculosis.We investigated in vitro and in vivo effects of metformin in humans.METHODSWe investigated in vitro and in vivo effects of metformin in humans.Metformin added to peripheral blood mononuclear cells from healthy volunteers enhanced in vitro cellular metabolism while inhibiting the mammalian target of rapamycin targets p70S6K and 4EBP1, with decreased cytokine production and cellular proliferation and increased phagocytosis activity. Metformin administered to healthy human volunteers led to significant downregulation of genes involved in oxidative phosphorylation, mammalian target of rapamycin signaling, and type I interferon response pathways, particularly following stimulation with M. tuberculosis, and upregulation of genes involved in phagocytosis and reactive oxygen species production was increased. These in vivo effects were accompanied by a metformin-induced shift in myeloid cells from classical to nonclassical monocytes. At a functional level, metformin lowered ex vivo production of tumor necrosis factor α, interferon γ, and interleukin 1β but increased phagocytosis activity and reactive oxygen species production.RESULTSMetformin added to peripheral blood mononuclear cells from healthy volunteers enhanced in vitro cellular metabolism while inhibiting the mammalian target of rapamycin targets p70S6K and 4EBP1, with decreased cytokine production and cellular proliferation and increased phagocytosis activity. Metformin administered to healthy human volunteers led to significant downregulation of genes involved in oxidative phosphorylation, mammalian target of rapamycin signaling, and type I interferon response pathways, particularly following stimulation with M. tuberculosis, and upregulation of genes involved in phagocytosis and reactive oxygen species production was increased. These in vivo effects were accompanied by a metformin-induced shift in myeloid cells from classical to nonclassical monocytes. At a functional level, metformin lowered ex vivo production of tumor necrosis factor α, interferon γ, and interleukin 1β but increased phagocytosis activity and reactive oxygen species production.Metformin has a range of potentially beneficial effects on cellular metabolism, immune function, and gene transcription involved in innate host responses to M. tuberculosis.CONCLUSIONMetformin has a range of potentially beneficial effects on cellular metabolism, immune function, and gene transcription involved in innate host responses to M. tuberculosis.
Metformin, the most widely administered diabetes drug, has been proposed as a candidate adjunctive host-directed therapy for tuberculosis, but little is known about its effects on human host responses to Mycobacterium tuberculosis. We investigated in vitro and in vivo effects of metformin in humans. Metformin added to peripheral blood mononuclear cells from healthy volunteers enhanced in vitro cellular metabolism while inhibiting the mammalian target of rapamycin targets p70S6K and 4EBP1, with decreased cytokine production and cellular proliferation and increased phagocytosis activity. Metformin administered to healthy human volunteers led to significant downregulation of genes involved in oxidative phosphorylation, mammalian target of rapamycin signaling, and type I interferon response pathways, particularly following stimulation with M. tuberculosis, and upregulation of genes involved in phagocytosis and reactive oxygen species production was increased. These in vivo effects were accompanied by a metformin-induced shift in myeloid cells from classical to nonclassical monocytes. At a functional level, metformin lowered ex vivo production of tumor necrosis factor α, interferon γ, and interleukin 1β but increased phagocytosis activity and reactive oxygen species production. Metformin has a range of potentially beneficial effects on cellular metabolism, immune function, and gene transcription involved in innate host responses to M. tuberculosis.
Metformin has shown beneficial effects in a murine model of tuberculosis. Using in-vitro and in-vivo studies we show that metformin has beneficial effects on cellular metabolism, immune function and genetranscription involved in innate host responses to M. tuberculosis in humans.
Abstract Background Metformin, the most widely administered diabetes drug, has been proposed as a candidate adjunctive host-directed therapy for tuberculosis, but little is known about its effects on human host responses to Mycobacterium tuberculosis. Methods We investigated in vitro and in vivo effects of metformin in humans. Results Metformin added to peripheral blood mononuclear cells from healthy volunteers enhanced in vitro cellular metabolism while inhibiting the mammalian target of rapamycin targets p70S6K and 4EBP1, with decreased cytokine production and cellular proliferation and increased phagocytosis activity. Metformin administered to healthy human volunteers led to significant downregulation of genes involved in oxidative phosphorylation, mammalian target of rapamycin signaling, and type I interferon response pathways, particularly following stimulation with M. tuberculosis, and upregulation of genes involved in phagocytosis and reactive oxygen species production was increased. These in vivo effects were accompanied by a metformin-induced shift in myeloid cells from classical to nonclassical monocytes. At a functional level, metformin lowered ex vivo production of tumor necrosis factor α, interferon γ, and interleukin 1β but increased phagocytosis activity and reactive oxygen species production. Conclusion Metformin has a range of potentially beneficial effects on cellular metabolism, immune function, and gene transcription involved in innate host responses to M. tuberculosis. Metformin has shown beneficial effects in a murine model of tuberculosis. Using in-vitro and in-vivo studies we show that metformin has beneficial effects on cellular metabolism, immune function and genetranscription involved in innate host responses to M. tuberculosis in humans.
Author Lachmandas, Ekta
Newell, Evan
van Crevel, Reinout
Arts, Rob J. W.
Ratter, Jacqueline
Blok, Bastiaan
Dockrell, Hazel M.
Cliff, Jacqueline M.
Koeken, Valerie A. C. M.
Marzuki, Mardiana Binte
Eckold, Clare
van den Heuvel, Corina
Netea, Mihai G.
Böhme, Julia
Singhal, Amit
Teng, Karen W. W.
Chen, Jinmiao
Smolders, Elise J.
Stienstra, Rinke
AuthorAffiliation 1 Department of Internal Medicine, Nijmegen
3 Nutrition, Metabolism and Genomics Group, Division of Human Nutrition, Wageningen University, Wageningen, the Netherlands
6 Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
5 Singapore Immunology Network, Agency for Science, Technology, and Research
4 Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, United Kingdom
7 Human Genomics Laboratory, Craiova University of Medicine and Pharmacy, Romania
2 Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen
AuthorAffiliation_xml – name: 1 Department of Internal Medicine, Nijmegen
– name: 5 Singapore Immunology Network, Agency for Science, Technology, and Research
– name: 4 Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, United Kingdom
– name: 2 Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen
– name: 7 Human Genomics Laboratory, Craiova University of Medicine and Pharmacy, Romania
– name: 6 Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
– name: 3 Nutrition, Metabolism and Genomics Group, Division of Human Nutrition, Wageningen University, Wageningen, the Netherlands
Author_xml – sequence: 1
  givenname: Ekta
  surname: Lachmandas
  fullname: Lachmandas, Ekta
– sequence: 2
  givenname: Clare
  surname: Eckold
  fullname: Eckold, Clare
– sequence: 3
  givenname: Julia
  surname: Böhme
  fullname: Böhme, Julia
– sequence: 4
  givenname: Valerie A. C. M.
  surname: Koeken
  fullname: Koeken, Valerie A. C. M.
– sequence: 5
  givenname: Mardiana Binte
  surname: Marzuki
  fullname: Marzuki, Mardiana Binte
– sequence: 6
  givenname: Bastiaan
  surname: Blok
  fullname: Blok, Bastiaan
– sequence: 7
  givenname: Rob J. W.
  surname: Arts
  fullname: Arts, Rob J. W.
– sequence: 8
  givenname: Jinmiao
  surname: Chen
  fullname: Chen, Jinmiao
– sequence: 9
  givenname: Karen W. W.
  surname: Teng
  fullname: Teng, Karen W. W.
– sequence: 10
  givenname: Jacqueline
  surname: Ratter
  fullname: Ratter, Jacqueline
– sequence: 11
  givenname: Elise J.
  surname: Smolders
  fullname: Smolders, Elise J.
– sequence: 12
  givenname: Corina
  surname: van den Heuvel
  fullname: van den Heuvel, Corina
– sequence: 13
  givenname: Rinke
  surname: Stienstra
  fullname: Stienstra, Rinke
– sequence: 14
  givenname: Hazel M.
  surname: Dockrell
  fullname: Dockrell, Hazel M.
– sequence: 15
  givenname: Evan
  surname: Newell
  fullname: Newell, Evan
– sequence: 16
  givenname: Mihai G.
  surname: Netea
  fullname: Netea, Mihai G.
– sequence: 17
  givenname: Amit
  surname: Singhal
  fullname: Singhal, Amit
– sequence: 18
  givenname: Jacqueline M.
  surname: Cliff
  fullname: Cliff, Jacqueline M.
– sequence: 19
  givenname: Reinout
  surname: van Crevel
  fullname: van Crevel, Reinout
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30753544$$D View this record in MEDLINE/PubMed
BookMark eNqFkstrFTEUxoNU7O3VpUtlwI2bsXlMMjMuhFLUK7QIPnAZMpkzbS4zyW0elutfb4a5LVoQNzmQ8_s-vpOcE3RknQWEnhP8huCWnRo79Cacbs0vLKpHaEU4q0shCDtCK4wpLUnTtsfoJIQtxrhion6CjhmuOeNVtUI_LiEOzk_GFmdjBB-KTZqULTYuxOILhJ2zAUIRXXG5165TOjMmTUVMHXidRhdMKLJ4A2qM1_via-q2oGN4ih4Pagzw7FDX6PuH99_ON-XF54-fzs8uSs0piSVwwH1fKSCUcFErjgVXuGuGrlKUEDZQphto6prlibq245wLQRnpdatAcM7W6O3ie6uuwBqbD2mV1yZIp4wcTeeV38vb5KUd57JLXZCcU8xpFr9bxPlygl6DjV6NcufNNItmg7871lzLK_dTCl41TVtng9cHA-9uEoQoJxM0jKOy4FKQlNKWYIobltFXD9CtS97mt5G0quq2pjxja_Tyz0T3Ue4-LANsAbR3IXgYpDZRRePmgGaUBMt5LeSyFnJZi6wqH6jujP_FH-Zyafdf9MWCbkN0_h6mQtRVHor9Bsry1pM
CitedBy_id crossref_primary_10_1186_s12890_021_01667_4
crossref_primary_10_1016_j_nano_2019_102088
crossref_primary_10_1016_j_intimp_2023_109956
crossref_primary_10_3390_jcm8081166
crossref_primary_10_1002_ctm2_1375
crossref_primary_10_1016_j_ijtb_2023_05_011
crossref_primary_10_4049_jimmunol_2000137
crossref_primary_10_1007_s15010_019_01322_5
crossref_primary_10_1002_ctm2_206
crossref_primary_10_1016_j_micinf_2019_10_002
crossref_primary_10_1016_j_tips_2020_01_003
crossref_primary_10_1016_j_tips_2021_11_016
crossref_primary_10_3389_fimmu_2020_623119
crossref_primary_10_3389_fimmu_2020_557809
crossref_primary_10_1016_j_ebiom_2022_104173
crossref_primary_10_3389_fimmu_2022_931876
crossref_primary_10_1038_s41598_021_98223_1
crossref_primary_10_1007_s11357_020_00261_6
crossref_primary_10_1111_acel_13799
crossref_primary_10_3390_biom14121497
crossref_primary_10_2174_1568026621999201211200447
crossref_primary_10_1021_acsptsci_1c00167
crossref_primary_10_1016_j_biopha_2023_115263
crossref_primary_10_1016_j_intimp_2023_110512
crossref_primary_10_3389_fmicb_2020_00435
crossref_primary_10_3389_fmicb_2020_614313
crossref_primary_10_1038_s41467_024_49246_5
crossref_primary_10_1111_ijcp_13864
crossref_primary_10_1128_spectrum_00167_24
crossref_primary_10_3389_fendo_2022_919223
crossref_primary_10_1016_j_obmed_2023_100514
crossref_primary_10_1016_j_micinf_2020_03_001
crossref_primary_10_3390_idr13030074
crossref_primary_10_3389_fcimb_2021_624607
crossref_primary_10_1038_s41598_020_73212_y
crossref_primary_10_1016_j_cegh_2022_101106
crossref_primary_10_1016_j_ijid_2024_107140
crossref_primary_10_1097_FTD_0000000000001149
crossref_primary_10_3389_fcimb_2020_00446
crossref_primary_10_1038_s41467_020_19095_z
crossref_primary_10_4103_cdrp_cdrp_8_21
crossref_primary_10_1128_aac_00366_22
crossref_primary_10_1007_s40610_020_00137_w
crossref_primary_10_1016_j_tibs_2020_03_003
crossref_primary_10_1093_ije_dyac214
crossref_primary_10_1080_14787210_2020_1760845
crossref_primary_10_1016_j_isci_2022_104464
crossref_primary_10_1099_mic_0_001041
crossref_primary_10_1186_s12879_019_4548_4
crossref_primary_10_1002_jcla_24755
crossref_primary_10_1038_s41574_023_00833_4
crossref_primary_10_1111_imm_13276
crossref_primary_10_3389_fimmu_2021_703060
crossref_primary_10_1016_j_chest_2023_08_026
crossref_primary_10_1016_j_preteyeres_2023_101189
crossref_primary_10_1038_s41385_019_0226_5
crossref_primary_10_1128_AAC_01422_20
crossref_primary_10_3389_fimmu_2023_1122255
crossref_primary_10_1590_s2175_97902022e20422
crossref_primary_10_3390_microorganisms9112282
crossref_primary_10_1016_j_ejmech_2020_112175
crossref_primary_10_1016_j_medj_2020_11_003
crossref_primary_10_3389_fimmu_2024_1463224
crossref_primary_10_7554_eLife_64834
crossref_primary_10_1016_j_tube_2020_102047
crossref_primary_10_1021_jasms_1c00205
crossref_primary_10_2147_IJGM_S318071
crossref_primary_10_12688_wellcomeopenres_19455_1
crossref_primary_10_12688_wellcomeopenres_19455_2
crossref_primary_10_1111_imr_12951
crossref_primary_10_1002_mco2_353
crossref_primary_10_1093_cid_ciab964
Cites_doi 10.1371/journal.pmed.0050152
10.1038/nature13489
10.1021/ac901049w
10.1126/scitranslmed.3009885
10.1038/nature16451
10.1371/journal.pone.0205807
10.3904/kjim.2017.249
10.1111/imr.12257
10.1038/nature09247
10.1038/nbt.2593
10.1007/s00210-009-0477-x
10.1126/science.359.6383.1454
10.1093/cid/cix819
10.1038/nrd.2017.162
10.1093/infdis/jis499
10.1016/j.cmet.2015.01.003
10.1172/JCI97508
10.1186/1741-7015-9-81
10.1096/fj.11-190587
10.1055/s-0034-1377044
10.1038/nri3344
10.1016/j.cell.2015.05.047
10.1016/j.chest.2017.11.040
10.1038/ni.3048
10.1016/S2213-8587(14)70110-X
10.2119/molmed.2013.00065
10.1128/AAC.00652-17
10.1007/s10096-018-3242-6
10.1016/j.bbadis.2015.01.006
10.1016/j.cmet.2013.10.001
10.1002/eji.201546259
10.1161/CIRCRESAHA.116.308445
10.1038/nrendo.2013.256
10.1242/dev.137075
10.1016/j.cmet.2013.06.017
ContentType Journal Article
Copyright The Author(s) 2019
The Author(s) 2019. Published by Oxford University Press for the Infectious Diseases Society of America. 2019
The Author(s) 2019. Published by Oxford University Press for the Infectious Diseases Society of America.
Wageningen University & Research
Copyright_xml – notice: The Author(s) 2019
– notice: The Author(s) 2019. Published by Oxford University Press for the Infectious Diseases Society of America. 2019
– notice: The Author(s) 2019. Published by Oxford University Press for the Infectious Diseases Society of America.
– notice: Wageningen University & Research
DBID TOX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
NAPCQ
7X8
5PM
QVL
DOI 10.1093/infdis/jiz064
DatabaseName Oxford University Press Journals Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
MEDLINE - Academic
PubMed Central (Full Participant titles)
NARCIS:Publications
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic

MEDLINE


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1537-6613
EndPage 150
ExternalDocumentID oai_library_wur_nl_wurpubs_552052
PMC6548897
30753544
10_1093_infdis_jiz064
10.1093/infdis/jiz064
26674972
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Netherlands Organization for Scientific Research
– fundername: Medical Research Council
  grantid: MR/P017568/1
– fundername: ;
GroupedDBID ---
-DZ
-~X
..I
.2P
.I3
.XZ
.ZR
08P
0R~
123
29K
2AX
2WC
36B
4.4
48X
53G
5GY
5RE
5VS
5WD
70D
85S
AABZA
AACGO
AACZT
AAHBH
AAHTB
AAJKP
AAMVS
AANCE
AAOGV
AAPNW
AAPQZ
AAPXW
AARHZ
AAUAY
AAUQX
AAVAP
AAWTL
ABBHK
ABDFA
ABEJV
ABEUO
ABGNP
ABIXL
ABJNI
ABKDP
ABLJU
ABNHQ
ABNKS
ABOCM
ABPEJ
ABPLY
ABPPZ
ABPQP
ABPTD
ABQLI
ABQNK
ABTLG
ABVGC
ABWST
ABXVV
ABZBJ
ACGFO
ACGFS
ACGOD
ACPRK
ACUFI
ACUTJ
ACUTO
ACYHN
ADBBV
ADEYI
ADGZP
ADHKW
ADHZD
ADIPN
ADNBA
ADOCK
ADQBN
ADRTK
ADVEK
ADYVW
ADZXQ
AEGPL
AEGXH
AEJOX
AEKSI
AEMDU
AEMQT
AENEX
AENZO
AEPUE
AETBJ
AEUPB
AEWNT
AEXZC
AFFZL
AFIYH
AFOFC
AFXAL
AFYAG
AGINJ
AGKEF
AGORE
AGQXC
AGSYK
AGUTN
AHGBF
AHMBA
AHMMS
AHXPO
AIAGR
AIJHB
AJBYB
AJEEA
AJNCP
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ALXQX
APIBT
APWMN
ATGXG
AXUDD
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BR6
BTRTY
BVRKM
C45
CDBKE
CS3
CZ4
D-I
DAKXR
DCCCD
DIK
DILTD
DU5
D~K
EBS
ECGQY
EE~
EJD
EMOBN
ENERS
F5P
F9B
FECEO
FLUFQ
FOEOM
FOTVD
FQBLK
GAUVT
GJXCC
GX1
H13
H5~
HAR
HW0
HZ~
IH2
IOX
IPSME
J21
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
JXSIZ
KAQDR
KBUDW
KOP
KQ8
KSI
KSN
L7B
LSO
LU7
MHKGH
MJL
ML0
N9A
NGC
NOMLY
NOYVH
NU-
O9-
OAUYM
OAWHX
OCZFY
ODMLO
OJQWA
OJZSN
OK1
OPAEJ
OVD
OWPYF
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
QBD
RD5
ROX
ROZ
RUSNO
RW1
RXO
SA0
SJN
TCURE
TEORI
TJX
TR2
W2D
W8F
WH7
X7H
YAYTL
YKOAZ
YXANX
~91
M49
TOX
ZKG
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
NAPCQ
7X8
1KJ
5PM
.55
.GJ
08R
1TH
3O-
41~
6.Y
69O
AABJS
AABMN
AAESY
AAIYJ
AAJQQ
AANRK
AAPGJ
AAQQT
AAWDT
AAYOK
ABFLS
ABPTK
ABSAR
ABSMQ
ACEMF
ACFRR
ACIMA
ACPQN
ADEIU
ADJQC
ADMTO
ADORX
ADQLU
ADRIX
ADULT
ADZLD
AEKPW
AFFNX
AFHKK
AFXEN
AGKRT
AGVJH
AHGVY
AI.
AIKOY
AIMBJ
AQDSO
AQKUS
ASMCH
AWCFO
AZQFJ
BGYMP
BYORX
BZKNY
DNJUQ
DOOOF
DPORF
DPPUQ
DWIUU
EIHJH
ESX
G8K
HQ3
HTVGU
J5H
JSODD
MBLQV
MVM
N4W
NEJ
NVLIB
O0~
O~Y
P0-
PQEST
QVL
TMA
UMP
VH1
X7M
Y6R
ZA5
ZE2
ZGI
ZXP
ID FETCH-LOGICAL-c521t-e5e0dd4ae121567a5065a0b8fb4a2113f23c8e8773613b9b55566231dc9ae6553
IEDL.DBID TOX
ISSN 0022-1899
1537-6613
IngestDate Thu Oct 13 09:31:35 EDT 2022
Thu Aug 21 13:54:11 EDT 2025
Sat Sep 27 19:10:17 EDT 2025
Fri Jul 25 19:18:30 EDT 2025
Mon Jul 21 05:36:16 EDT 2025
Thu Apr 24 22:57:52 EDT 2025
Tue Jul 01 01:31:15 EDT 2025
Wed Apr 02 07:04:49 EDT 2025
Thu Jul 03 21:39:23 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords gene transcription
host-directed therapy
Metformin
antimycobacterial mechanisms
tuberculosis
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
http://creativecommons.org/licenses/by/4.0
The Author(s) 2019. Published by Oxford University Press for the Infectious Diseases Society of America.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c521t-e5e0dd4ae121567a5065a0b8fb4a2113f23c8e8773613b9b55566231dc9ae6553
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
E. L. and C. E. contributed equally to this article.
OpenAccessLink https://dx.doi.org/10.1093/infdis/jiz064
PMID 30753544
PQID 2447972508
PQPubID 41591
PageCount 12
ParticipantIDs wageningen_narcis_oai_library_wur_nl_wurpubs_552052
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6548897
proquest_miscellaneous_2229102083
proquest_journals_2447972508
pubmed_primary_30753544
crossref_citationtrail_10_1093_infdis_jiz064
crossref_primary_10_1093_infdis_jiz064
oup_primary_10_1093_infdis_jiz064
jstor_primary_26674972
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-06-05
PublicationDateYYYYMMDD 2019-06-05
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-06-05
  day: 05
PublicationDecade 2010
PublicationPlace US
PublicationPlace_xml – name: US
– name: United States
– name: Oxford
PublicationTitle The Journal of infectious diseases
PublicationTitleAlternate J Infect Dis
PublicationYear 2019
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Pernicova (2019060500353561400_CIT0011) 2014; 10
Cliff (2019060500353561400_CIT0025) 2013; 207
Cheng (2019060500353561400_CIT0036) 2014; 346
Bae (2019060500353561400_CIT0031) 2011; 25
Lee (2019060500353561400_CIT0006) 2018; 13
Izzo (2019060500353561400_CIT0019) 2017; 26
Leslie (2019060500353561400_CIT0023) 2018; 359
Lee (2019060500353561400_CIT0010) 2018; 33
Dutta (2019060500353561400_CIT0035) 2017; 61
Riza (2019060500353561400_CIT0037) 2014; 2
Mayer-Barber (2019060500353561400_CIT0027) 2014; 511
Park (2019060500353561400_CIT0029) 2013; 19
Labuzek (2019060500353561400_CIT0028) 2010; 381
Mounier (2019060500353561400_CIT0030) 2013; 18
Joosten (2019060500353561400_CIT0022) 2018; 128
He (2019060500353561400_CIT0015) 2015; 21
Morita (2019060500353561400_CIT0016) 2013; 18
Leow (2019060500353561400_CIT0005) 2014; 122
Ma (2019060500353561400_CIT0009) 2018; 37
Orme (2019060500353561400_CIT0033) 2015; 16
Cameron (2019060500353561400_CIT0018) 2016; 119
Chung (2019060500353561400_CIT0021) 2015; 1852
Singhal (2019060500353561400_CIT0004) 2014; 6
Lachmandas (2019060500353561400_CIT0003) 2016; 46
Berry (2019060500353561400_CIT0026) 2010; 466
Kimmey (2019060500353561400_CIT0032) 2015; 528
Baker (2019060500353561400_CIT0002) 2011; 9
Degner (2019060500353561400_CIT0008) 2018; 66
Ronacher (2019060500353561400_CIT0012) 2015; 264
Jeon (2019060500353561400_CIT0001) 2008; 5
Bandura (2019060500353561400_CIT0020) 2009; 81
Diamond (2019060500353561400_CIT0024) 2013; 13
Pan (2019060500353561400_CIT0007) 2018; 153
Newell (2019060500353561400_CIT0013) 2013; 31
Yu (2019060500353561400_CIT0017) 2016; 143
Kaufmann (2019060500353561400_CIT0034) 2018; 17
Levine (2019060500353561400_CIT0014) 2015; 162
References_xml – volume: 5
  start-page: e152
  year: 2008
  ident: 2019060500353561400_CIT0001
  article-title: Diabetes mellitus increases the risk of active tuberculosis: a systematic review of 13 observational studies
  publication-title: PLoS Med
  doi: 10.1371/journal.pmed.0050152
– volume: 511
  start-page: 99
  year: 2014
  ident: 2019060500353561400_CIT0027
  article-title: Host-directed therapy of tuberculosis based on interleukin-1 and type I interferon crosstalk
  publication-title: Nature
  doi: 10.1038/nature13489
– volume: 81
  start-page: 6813
  year: 2009
  ident: 2019060500353561400_CIT0020
  article-title: Mass cytometry: technique for real time single cell multitarget immunoassay based on inductively coupled plasma time-of-flight mass spectrometry
  publication-title: Anal Chem
  doi: 10.1021/ac901049w
– volume: 6
  start-page: 263ra159
  year: 2014
  ident: 2019060500353561400_CIT0004
  article-title: Metformin as adjunct antituberculosis therapy
  publication-title: Sci Transl Med
  doi: 10.1126/scitranslmed.3009885
– volume: 528
  start-page: 565
  year: 2015
  ident: 2019060500353561400_CIT0032
  article-title: Unique role for ATG5 in neutrophil-mediated immunopathology during M. tuberculosis infection
  publication-title: Nature
  doi: 10.1038/nature16451
– volume: 13
  start-page: e0205807
  year: 2018
  ident: 2019060500353561400_CIT0006
  article-title: Metformin use is associated with a low risk of tuberculosis among newly diagnosed diabetes mellitus patients with normal renal function: a nationwide cohort study with validated diagnostic criteria
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0205807
– volume: 33
  start-page: 933
  year: 2018
  ident: 2019060500353561400_CIT0010
  article-title: The effect of metformin on culture conversion in tuberculosis patients with diabetes mellitus
  publication-title: Korean J Intern Med
  doi: 10.3904/kjim.2017.249
– volume: 264
  start-page: 121
  year: 2015
  ident: 2019060500353561400_CIT0012
  article-title: Acquired immunodeficiencies and tuberculosis: focus on HIV/AIDS and diabetes mellitus
  publication-title: Immunol Rev
  doi: 10.1111/imr.12257
– volume: 466
  start-page: 973
  year: 2010
  ident: 2019060500353561400_CIT0026
  article-title: An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis
  publication-title: Nature
  doi: 10.1038/nature09247
– volume: 31
  start-page: 623
  year: 2013
  ident: 2019060500353561400_CIT0013
  article-title: Combinatorial tetramer staining and mass cytometry analysis facilitate T-cell epitope mapping and characterization
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.2593
– volume: 381
  start-page: 171
  year: 2010
  ident: 2019060500353561400_CIT0028
  article-title: Metformin increases phagocytosis and acidifies lysosomal/endosomal compartments in AMPK-dependent manner in rat primary microglia
  publication-title: Naunyn Schmiedebergs Arch Pharmacol
  doi: 10.1007/s00210-009-0477-x
– volume: 359
  start-page: 1454
  year: 2018
  ident: 2019060500353561400_CIT0023
  article-title: Putting immune cells on a diet
  publication-title: Science
  doi: 10.1126/science.359.6383.1454
– volume: 66
  start-page: 198
  year: 2018
  ident: 2019060500353561400_CIT0008
  article-title: Metformin use reverses the increased mortality associated with diabetes mellitus during tuberculosis treatment
  publication-title: Clin Infect Dis
  doi: 10.1093/cid/cix819
– volume: 17
  start-page: 35
  year: 2018
  ident: 2019060500353561400_CIT0034
  article-title: Host-directed therapies for bacterial and viral infections
  publication-title: Nat Rev Drug Discov
  doi: 10.1038/nrd.2017.162
– volume: 207
  start-page: 18
  year: 2013
  ident: 2019060500353561400_CIT0025
  article-title: Distinct phases of blood gene expression pattern through tuberculosis treatment reflect modulation of the humoral immune response
  publication-title: J Infect Dis
  doi: 10.1093/infdis/jis499
– volume: 21
  start-page: 159
  year: 2015
  ident: 2019060500353561400_CIT0015
  article-title: Metformin action: concentrations matter
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2015.01.003
– volume: 128
  start-page: 1837
  year: 2018
  ident: 2019060500353561400_CIT0022
  article-title: Mycobacterial growth inhibition is associated with trained innate immunity
  publication-title: J Clin Invest
  doi: 10.1172/JCI97508
– volume: 9
  start-page: 81
  year: 2011
  ident: 2019060500353561400_CIT0002
  article-title: The impact of diabetes on tuberculosis treatment outcomes: a systematic review
  publication-title: BMC Med
  doi: 10.1186/1741-7015-9-81
– volume: 25
  start-page: 4358
  year: 2011
  ident: 2019060500353561400_CIT0031
  article-title: AMP-activated protein kinase enhances the phagocytic ability of macrophages and neutrophils
  publication-title: FASEB J
  doi: 10.1096/fj.11-190587
– volume: 122
  start-page: 528
  year: 2014
  ident: 2019060500353561400_CIT0005
  article-title: Latent tuberculosis in patients with diabetes mellitus: prevalence, progression and public health implications
  publication-title: Exp Clin Endocrinol Diabetes
  doi: 10.1055/s-0034-1377044
– volume: 13
  start-page: 46
  year: 2013
  ident: 2019060500353561400_CIT0024
  article-title: The broad-spectrum antiviral functions of IFIT and IFITM proteins
  publication-title: Nat Rev Immunol
  doi: 10.1038/nri3344
– volume: 162
  start-page: 184
  year: 2015
  ident: 2019060500353561400_CIT0014
  article-title: Data-driven phenotypic dissection of AML reveals progenitor-like cells that correlate with prognosis
  publication-title: Cell
  doi: 10.1016/j.cell.2015.05.047
– volume: 153
  start-page: 1347
  year: 2018
  ident: 2019060500353561400_CIT0007
  article-title: The risk of TB in patients with type 2 diabetes initiating metformin vs sulfonylurea treatment
  publication-title: Chest
  doi: 10.1016/j.chest.2017.11.040
– volume: 16
  start-page: 57
  year: 2015
  ident: 2019060500353561400_CIT0033
  article-title: The balance between protective and pathogenic immune responses in the TB-infected lung
  publication-title: Nat Immunol
  doi: 10.1038/ni.3048
– volume: 2
  start-page: 740
  year: 2014
  ident: 2019060500353561400_CIT0037
  article-title: Clinical management of concurrent diabetes and tuberculosis and the implications for patient services
  publication-title: Lancet Diabetes Endocrinol
  doi: 10.1016/S2213-8587(14)70110-X
– volume: 19
  start-page: 387
  year: 2013
  ident: 2019060500353561400_CIT0029
  article-title: Activation of AMPK enhances neutrophil chemotaxis and bacterial killing
  publication-title: Mol Med
  doi: 10.2119/molmed.2013.00065
– volume: 61:
  year: 2017
  ident: 2019060500353561400_CIT0035
  article-title: Metformin adjunctive therapy does not improve the sterilizing activity of the first-line antitubercular regimen in mice
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.00652-17
– volume: 37
  start-page: 1259
  year: 2018
  ident: 2019060500353561400_CIT0009
  article-title: Metformin reduces the relapse rate of tuberculosis patients with diabetes mellitus: experiences from 3-year follow-up
  publication-title: Eur J Clin Microbiol Infect Dis
  doi: 10.1007/s10096-018-3242-6
– volume: 1852
  start-page: 720
  year: 2015
  ident: 2019060500353561400_CIT0021
  article-title: The neuroprotective role of metformin in advanced glycation end product treated human neural stem cells is AMPK-dependent
  publication-title: Biochim Biophys Acta
  doi: 10.1016/j.bbadis.2015.01.006
– volume: 18
  start-page: 698
  year: 2013
  ident: 2019060500353561400_CIT0016
  article-title: mTORC1 controls mitochondrial activity and biogenesis through 4E-BP-dependent translational regulation
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2013.10.001
– volume: 46
  start-page: 2574
  year: 2016
  ident: 2019060500353561400_CIT0003
  article-title: Rewiring cellular metabolism via the AKT/mTOR pathway contributes to host defence against Mycobacterium tuberculosis in human and murine cells
  publication-title: Eur J Immunol
  doi: 10.1002/eji.201546259
– volume: 119
  start-page: 652
  year: 2016
  ident: 2019060500353561400_CIT0018
  article-title: Anti-inflammatory effects of metformin irrespective of diabetes status
  publication-title: Circ Res
  doi: 10.1161/CIRCRESAHA.116.308445
– volume: 10
  start-page: 143
  year: 2014
  ident: 2019060500353561400_CIT0011
  article-title: Metformin–mode of action and clinical implications for diabetes and cancer
  publication-title: Nat Rev Endocrinol
  doi: 10.1038/nrendo.2013.256
– volume: 26
  start-page: 1056
  year: 2017
  ident: 2019060500353561400_CIT0019
  article-title: Metformin restores the mitochondrial network and reverses mitochondrial dysfunction in Down syndrome cells
  publication-title: Hum Mol Genet
– volume: 143
  start-page: 3050
  year: 2016
  ident: 2019060500353561400_CIT0017
  article-title: Proliferation, survival and metabolism: the role of PI3K/AKT/mTOR signalling in pluripotency and cell fate determination
  publication-title: Development
  doi: 10.1242/dev.137075
– volume: 346
  start-page: 1579
  year: 2014
  ident: 2019060500353561400_CIT0036
  article-title: mTOR- and HIF-1 alpha-mediated aerobic glycolysis as metabolic basis for trained immunity (vol 346, aaa1503, 2014)
  publication-title: Science
– volume: 18
  start-page: 251
  year: 2013
  ident: 2019060500353561400_CIT0030
  article-title: AMPKα1 regulates macrophage skewing at the time of resolution of inflammation during skeletal muscle regeneration
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2013.06.017
SSID ssj0004367
Score 2.5522137
Snippet Abstract Background Metformin, the most widely administered diabetes drug, has been proposed as a candidate adjunctive host-directed therapy for tuberculosis,...
Metformin, the most widely administered diabetes drug, has been proposed as a candidate adjunctive host-directed therapy for tuberculosis, but little is known...
Background Metformin, the most widely administered diabetes drug, has been proposed as a candidate adjunctive host-directed therapy for tuberculosis, but...
Metformin has shown beneficial effects in a murine model of tuberculosis. Using in-vitro and in-vivo studies we show that metformin has beneficial effects on...
BACKGROUND: Metformin, the most widely administered diabetes drug, has been proposed as a candidate adjunctive host-directed therapy for tuberculosis, but...
SourceID wageningen
pubmedcentral
proquest
pubmed
crossref
oup
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 139
SubjectTerms Antidiabetics
antimycobacterial mechanisms
Cell Proliferation - drug effects
Diabetes mellitus
Down-Regulation - drug effects
gene transcription
Healthy Volunteers
host-directed therapy
Host-Pathogen Interactions - drug effects
Humans
Hypoglycemic Agents - pharmacology
Immune response
Leukocytes (mononuclear)
Leukocytes, Mononuclear - drug effects
Leukocytes, Mononuclear - microbiology
Major and Brief Reports
Metabolism
Metformin
Metformin - pharmacology
Monocytes
Monocytes - drug effects
Monocytes - metabolism
Mycobacterium tuberculosis
Mycobacterium tuberculosis - pathogenicity
Myeloid cells
Myeloid Cells - drug effects
Myeloid Cells - metabolism
Oxidative phosphorylation
PATHOGENESIS AND HOST RESPONSE
Peripheral blood mononuclear cells
Phagocytosis
Phagocytosis - drug effects
Phosphorylation
Rapamycin
Reactive oxygen species
Reactive Oxygen Species - metabolism
Signal Transduction - drug effects
TOR protein
Transcription
Tuberculosis
Tuberculosis - metabolism
Tuberculosis - microbiology
Tumor necrosis factor-α
Up-Regulation - drug effects
γ-Interferon
Title Metformin Alters Human Host Responses to Mycobacterium tuberculosis in Healthy Subjects
URI https://www.jstor.org/stable/26674972
https://www.ncbi.nlm.nih.gov/pubmed/30753544
https://www.proquest.com/docview/2447972508
https://www.proquest.com/docview/2229102083
https://pubmed.ncbi.nlm.nih.gov/PMC6548897
http://www.narcis.nl/publication/RecordID/oai:library.wur.nl:wurpubs%2F552052
Volume 220
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Rb9QwDI7QJNBeEAwGZWMKEuKJarekaZrHCTEdmw4ktIl7i9IkFZ1u7XRpNd1-PU7S63YMBE99qJ2qcRx_sWMboffUWAtmkaXqyOg0U1SlBeD-1BohDDEVtyErbfY1n15kp3M2H_wd7g8hfEEPYaZN7Q4v61swn7DZggH2C_r82_wuAZLmfF0W_AhOEEMxzQfcG8Yn3j_8LbHtHr58eE1y-wZ0vAlJT_eM0Mkz9HRAj_g4ivs5emSbHfQ49pNc7aAnsyFS_gL9mNnO49G6wcc-IO5wcNfjaes6_D1ejLUOdy2erTTodKjZ3F_hri_tUveL1tUOA3NMU1ph2GC8x8a9RBcnn88_TdOhiUKqfa-C1DI7MSZT1peRyLligDnUpCyqMlNw-KMVobqwBecUDHspSsYA4AHoM1oomzNGd9FW0zb2NcIZKWmuK8YKyzIOql_BIKWmlFWZUMQk6ON6dqUeKoz7RhcLGSPdVEZhyCiMBH0Yya9jaY2_Ee4GUY1UACp4JjhJ0DuQ3b-Y99eSlYN6OgmYhgM_gFMYYnwNiuWjJaqxbQ80hACUIgBRE_QqLoTxS7AxMsoyGJxvLJGRwBft3nzT1D9D8e4cjoiF4Amid4tJNr5vlAtcg_NO3vRL2Sz8A8ZxkjEyYeTNf_zwHtoGUCfCdTa2j7a6ZW_fAnDqygM4Mnw5Owiq8ws3QBwa
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metformin+Alters+Human+Host+Responses+to+Mycobacterium+tuberculosis+in+Healthy+Subjects&rft.jtitle=The+Journal+of+infectious+diseases&rft.au=Lachmandas%2C+Ekta&rft.au=Eckold%2C+Clare&rft.au=B%C3%B6hme%2C+Julia&rft.au=Valerie+A+C+M+Koeken&rft.date=2019-06-05&rft.pub=Oxford+University+Press&rft.issn=0022-1899&rft.eissn=1537-6613&rft.volume=220&rft.issue=1&rft.spage=139&rft.epage=150&rft_id=info:doi/10.1093%2Finfdis%2Fjiz064&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1899&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1899&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1899&client=summon