Hybrid Spectral Library Combining DIA-MS Data and a Targeted Virtual Library Substantially Deepens the Proteome Coverage

Data-independent acquisition mass spectrometry (DIA-MS) is a powerful technique that enables relatively deep proteomic profiling with superior quantification reproducibility. DIA data mining predominantly relies on a spectral library of sufficient proteome coverage that, in most cases, is built on d...

Full description

Saved in:
Bibliographic Details
Published iniScience Vol. 23; no. 3; p. 100903
Main Authors Lou, Ronghui, Tang, Pan, Ding, Kang, Li, Shanshan, Tian, Cuiping, Li, Yunxia, Zhao, Suwen, Zhang, Yaoyang, Shui, Wenqing
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 27.03.2020
Elsevier
Subjects
Online AccessGet full text
ISSN2589-0042
2589-0042
DOI10.1016/j.isci.2020.100903

Cover

Abstract Data-independent acquisition mass spectrometry (DIA-MS) is a powerful technique that enables relatively deep proteomic profiling with superior quantification reproducibility. DIA data mining predominantly relies on a spectral library of sufficient proteome coverage that, in most cases, is built on data-dependent acquisition-based analysis of the same sample. To expand the proteome coverage for a pre-determined protein family, we report herein on the construction of a hybrid spectral library that supplements a DIA experiment-derived library with a protein family-targeted virtual library predicted by deep learning. Leveraging this DIA hybrid library substantially deepens the coverage of three transmembrane protein families (G protein-coupled receptors, ion channels, and transporters) in mouse brain tissues with increases in protein identification of 37%–87% and peptide identification of 58%–161%. Moreover, of the 412 novel GPCR peptides exclusively identified with the DIA hybrid library strategy, 53.6% were validated as present in mouse brain tissues based on orthogonal experimental measurement. [Display omitted] •A virtual library is built for a selected protein family using deep learning models•The hybrid library strategy vastly deepens the coverage for the targeted protein family•About 53.6% of novel GPCR peptides identified with the DIA hybrid library are validated•Extend the strategy to deep mapping of multiple transmembrane protein families Analytical Chemistry; Biological Sciences; Classification of Proteins; Proteomics
AbstractList Data-independent acquisition mass spectrometry (DIA-MS) is a powerful technique that enables relatively deep proteomic profiling with superior quantification reproducibility. DIA data mining predominantly relies on a spectral library of sufficient proteome coverage that, in most cases, is built on data-dependent acquisition-based analysis of the same sample. To expand the proteome coverage for a pre-determined protein family, we report herein on the construction of a hybrid spectral library that supplements a DIA experiment-derived library with a protein family-targeted virtual library predicted by deep learning. Leveraging this DIA hybrid library substantially deepens the coverage of three transmembrane protein families (G protein-coupled receptors, ion channels, and transporters) in mouse brain tissues with increases in protein identification of 37%-87% and peptide identification of 58%-161%. Moreover, of the 412 novel GPCR peptides exclusively identified with the DIA hybrid library strategy, 53.6% were validated as present in mouse brain tissues based on orthogonal experimental measurement.Data-independent acquisition mass spectrometry (DIA-MS) is a powerful technique that enables relatively deep proteomic profiling with superior quantification reproducibility. DIA data mining predominantly relies on a spectral library of sufficient proteome coverage that, in most cases, is built on data-dependent acquisition-based analysis of the same sample. To expand the proteome coverage for a pre-determined protein family, we report herein on the construction of a hybrid spectral library that supplements a DIA experiment-derived library with a protein family-targeted virtual library predicted by deep learning. Leveraging this DIA hybrid library substantially deepens the coverage of three transmembrane protein families (G protein-coupled receptors, ion channels, and transporters) in mouse brain tissues with increases in protein identification of 37%-87% and peptide identification of 58%-161%. Moreover, of the 412 novel GPCR peptides exclusively identified with the DIA hybrid library strategy, 53.6% were validated as present in mouse brain tissues based on orthogonal experimental measurement.
Data-independent acquisition mass spectrometry (DIA-MS) is a powerful technique that enables relatively deep proteomic profiling with superior quantification reproducibility. DIA data mining predominantly relies on a spectral library of sufficient proteome coverage that, in most cases, is built on data-dependent acquisition-based analysis of the same sample. To expand the proteome coverage for a pre-determined protein family, we report herein on the construction of a hybrid spectral library that supplements a DIA experiment-derived library with a protein family-targeted virtual library predicted by deep learning. Leveraging this DIA hybrid library substantially deepens the coverage of three transmembrane protein families (G protein-coupled receptors, ion channels, and transporters) in mouse brain tissues with increases in protein identification of 37%–87% and peptide identification of 58%–161%. Moreover, of the 412 novel GPCR peptides exclusively identified with the DIA hybrid library strategy, 53.6% were validated as present in mouse brain tissues based on orthogonal experimental measurement. • A virtual library is built for a selected protein family using deep learning models • The hybrid library strategy vastly deepens the coverage for the targeted protein family • About 53.6% of novel GPCR peptides identified with the DIA hybrid library are validated • Extend the strategy to deep mapping of multiple transmembrane protein families Analytical Chemistry; Biological Sciences; Classification of Proteins; Proteomics
Data-independent acquisition mass spectrometry (DIA-MS) is a powerful technique that enables relatively deep proteomic profiling with superior quantification reproducibility. DIA data mining predominantly relies on a spectral library of sufficient proteome coverage that, in most cases, is built on data-dependent acquisition-based analysis of the same sample. To expand the proteome coverage for a pre-determined protein family, we report herein on the construction of a hybrid spectral library that supplements a DIA experiment-derived library with a protein family-targeted virtual library predicted by deep learning. Leveraging this DIA hybrid library substantially deepens the coverage of three transmembrane protein families (G protein-coupled receptors, ion channels, and transporters) in mouse brain tissues with increases in protein identification of 37%–87% and peptide identification of 58%–161%. Moreover, of the 412 novel GPCR peptides exclusively identified with the DIA hybrid library strategy, 53.6% were validated as present in mouse brain tissues based on orthogonal experimental measurement. [Display omitted] •A virtual library is built for a selected protein family using deep learning models•The hybrid library strategy vastly deepens the coverage for the targeted protein family•About 53.6% of novel GPCR peptides identified with the DIA hybrid library are validated•Extend the strategy to deep mapping of multiple transmembrane protein families Analytical Chemistry; Biological Sciences; Classification of Proteins; Proteomics
Data-independent acquisition mass spectrometry (DIA-MS) is a powerful technique that enables relatively deep proteomic profiling with superior quantification reproducibility. DIA data mining predominantly relies on a spectral library of sufficient proteome coverage that, in most cases, is built on data-dependent acquisition-based analysis of the same sample. To expand the proteome coverage for a pre-determined protein family, we report herein on the construction of a hybrid spectral library that supplements a DIA experiment-derived library with a protein family-targeted virtual library predicted by deep learning. Leveraging this DIA hybrid library substantially deepens the coverage of three transmembrane protein families (G protein-coupled receptors, ion channels, and transporters) in mouse brain tissues with increases in protein identification of 37%-87% and peptide identification of 58%-161%. Moreover, of the 412 novel GPCR peptides exclusively identified with the DIA hybrid library strategy, 53.6% were validated as present in mouse brain tissues based on orthogonal experimental measurement.
Data-independent acquisition mass spectrometry (DIA-MS) is a powerful technique that enables relatively deep proteomic profiling with superior quantification reproducibility. DIA data mining predominantly relies on a spectral library of sufficient proteome coverage that, in most cases, is built on data-dependent acquisition-based analysis of the same sample. To expand the proteome coverage for a pre-determined protein family, we report herein on the construction of a hybrid spectral library that supplements a DIA experiment-derived library with a protein family-targeted virtual library predicted by deep learning. Leveraging this DIA hybrid library substantially deepens the coverage of three transmembrane protein families (G protein-coupled receptors, ion channels, and transporters) in mouse brain tissues with increases in protein identification of 37%–87% and peptide identification of 58%–161%. Moreover, of the 412 novel GPCR peptides exclusively identified with the DIA hybrid library strategy, 53.6% were validated as present in mouse brain tissues based on orthogonal experimental measurement. : Analytical Chemistry; Biological Sciences; Classification of Proteins; Proteomics Subject Areas: Analytical Chemistry, Biological Sciences, Classification of Proteins, Proteomics
ArticleNumber 100903
Author Tang, Pan
Li, Yunxia
Ding, Kang
Lou, Ronghui
Zhang, Yaoyang
Shui, Wenqing
Tian, Cuiping
Zhao, Suwen
Li, Shanshan
AuthorAffiliation 4 Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
1 iHuman Institute, ShanghaiTech University, Shanghai 201210, China
2 School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
3 University of Chinese Academy of Sciences, Beijing 100049, China
AuthorAffiliation_xml – name: 2 School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
– name: 4 Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
– name: 1 iHuman Institute, ShanghaiTech University, Shanghai 201210, China
– name: 3 University of Chinese Academy of Sciences, Beijing 100049, China
Author_xml – sequence: 1
  givenname: Ronghui
  surname: Lou
  fullname: Lou, Ronghui
  organization: iHuman Institute, ShanghaiTech University, Shanghai 201210, China
– sequence: 2
  givenname: Pan
  surname: Tang
  fullname: Tang, Pan
  organization: iHuman Institute, ShanghaiTech University, Shanghai 201210, China
– sequence: 3
  givenname: Kang
  surname: Ding
  fullname: Ding, Kang
  organization: iHuman Institute, ShanghaiTech University, Shanghai 201210, China
– sequence: 4
  givenname: Shanshan
  surname: Li
  fullname: Li, Shanshan
  organization: iHuman Institute, ShanghaiTech University, Shanghai 201210, China
– sequence: 5
  givenname: Cuiping
  surname: Tian
  fullname: Tian, Cuiping
  organization: iHuman Institute, ShanghaiTech University, Shanghai 201210, China
– sequence: 6
  givenname: Yunxia
  surname: Li
  fullname: Li, Yunxia
  organization: Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
– sequence: 7
  givenname: Suwen
  surname: Zhao
  fullname: Zhao, Suwen
  email: zhaosw@shanghaitech.edu.cn
  organization: iHuman Institute, ShanghaiTech University, Shanghai 201210, China
– sequence: 8
  givenname: Yaoyang
  surname: Zhang
  fullname: Zhang, Yaoyang
  email: zyy@sioc.ac.cn
  organization: Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
– sequence: 9
  givenname: Wenqing
  surname: Shui
  fullname: Shui, Wenqing
  email: shuiwq@shanghaitech.edu.cn
  organization: iHuman Institute, ShanghaiTech University, Shanghai 201210, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32109675$$D View this record in MEDLINE/PubMed
BookMark eNqNUk1vEzEUXKEiWkr_AAfkI5cNtvfTEkKqEmgjBYGUwtXyx9uto40dvN6U_Pt62VKlHCpOtvxm5s1749fJiXUWkuQtwTOCSflhMzO9MjOK6fiAGc5eJGe0qFmKcU5Pju6nyUXfbzCOSExzVr5KTjNKMCur4iz5fX2Q3mi03oEKXnRoZaQX_oDmbiuNNbZFi-Vl-nWNFiIIJKxGAt0I30IAjX4aH4Yj0nqQfRA2GNF1B7QA2IHtUbgF9N27AG4LUXcPXrTwJnnZiK6Hi4fzPPnx5fPN_Dpdfbtazi9XqSooCanENJMMa1VjChWjVEtJtIAC15IyaEitSq2oBKgIlbVqatlQKEgmiqKI5ew8WU662okN33mzjUa5E4b_eXC-5cIHozrgFaYsB10xoCSvZcXiWvMMJJN5ncuyjlrZpDXYnTjcxSEfBQnmYyx8w8dY-BgLn2KJrE8TazfILWgFdlz0EytPK9bc8tbto588r1gZBd4_CHj3a4A-8G1sAl0nLLih5zQrWRZXk48O3x33emzyN_AIoBNAedf3Hpr_m6D-h6RMEMG40a_pnqd-nKgQM94b8DwiwCrQxscfF0Mwz9HvAYoU59Y
CitedBy_id crossref_primary_10_1002_pmic_202300285
crossref_primary_10_1007_s11306_022_01913_8
crossref_primary_10_1021_acs_jproteome_1c00899
crossref_primary_10_1038_s41587_021_00968_7
crossref_primary_10_3389_fnmol_2020_564446
crossref_primary_10_1002_pmic_201900335
crossref_primary_10_1016_j_crmeth_2021_100003
crossref_primary_10_3390_ijms23042187
crossref_primary_10_1038_s41467_022_35740_1
crossref_primary_10_1016_j_foodchem_2024_141198
crossref_primary_10_1021_acs_jproteome_3c00736
crossref_primary_10_1021_acs_jproteome_0c00350
crossref_primary_10_1038_s41467_021_26979_1
crossref_primary_10_1126_sciadv_abf0634
crossref_primary_10_1021_acs_jproteome_0c01004
crossref_primary_10_1038_s41587_022_01424_w
crossref_primary_10_1021_acs_analchem_0c05427
crossref_primary_10_3390_life11090982
crossref_primary_10_3389_fmicb_2020_01362
crossref_primary_10_1016_j_yjmcc_2021_01_007
crossref_primary_10_1021_acs_jproteome_3c00850
crossref_primary_10_1002_pmic_202200125
crossref_primary_10_1016_j_crmeth_2023_100479
crossref_primary_10_1021_acs_analchem_3c01189
crossref_primary_10_1038_s41467_022_30094_0
crossref_primary_10_1007_s10753_024_02044_z
crossref_primary_10_1016_j_mcpro_2024_100712
Cites_doi 10.1074/mcp.RA117.000314
10.1038/nprot.2015.015
10.15252/msb.20178126
10.1146/annurev-pharmtox-032112-135923
10.1038/nmeth.4390
10.1074/mcp.O111.016717
10.1074/mcp.M114.044305
10.1074/mcp.O114.047035
10.1093/nar/gky869
10.1016/j.cels.2017.05.009
10.1038/s41592-019-0426-7
10.1016/j.cell.2016.06.041
10.1021/acs.analchem.8b02386
10.1038/nmeth.2015
10.1038/nmeth.4153
10.1038/s41592-019-0427-6
10.1016/j.coph.2017.02.001
10.1109/TKDE.2009.191
10.1038/nmeth.4398
10.1021/acs.analchem.7b02566
10.1038/nature13319
ContentType Journal Article
Copyright 2020 The Authors
Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.
2020 The Authors 2020
Copyright_xml – notice: 2020 The Authors
– notice: Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.
– notice: 2020 The Authors 2020
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1016/j.isci.2020.100903
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
EISSN 2589-0042
ExternalDocumentID oai_doaj_org_article_70294ed79e2148b7900943eb9b484b68
10.1016/j.isci.2020.100903
PMC7044796
32109675
10_1016_j_isci_2020_100903
S2589004220300870
Genre Journal Article
GroupedDBID 0SF
53G
6I.
AACTN
AAEDW
AAFTH
AALRI
AAXUO
ABMAC
ADBBV
AEXQZ
AFTJW
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BCNDV
EBS
FDB
GROUPED_DOAJ
HYE
M41
NCXOZ
OK1
ROL
RPM
SSZ
0R~
AAMRU
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
APXCP
CITATION
EJD
NPM
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c521t-b023b90dc802e7922dbb1dae508b29ef18c6dc2bee712b8cf8bf2e513a555ef13
IEDL.DBID DOA
ISSN 2589-0042
IngestDate Fri Oct 03 12:44:09 EDT 2025
Wed Oct 01 16:45:24 EDT 2025
Tue Sep 30 16:45:39 EDT 2025
Fri Jul 11 09:07:18 EDT 2025
Thu Jan 02 22:57:53 EST 2025
Thu Apr 24 22:57:09 EDT 2025
Tue Jul 01 01:03:28 EDT 2025
Tue Jul 25 21:04:23 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Biological Sciences
Analytical Chemistry
Classification of Proteins
Proteomics
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c521t-b023b90dc802e7922dbb1dae508b29ef18c6dc2bee712b8cf8bf2e513a555ef13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Lead Contact
These authors contributed equally
OpenAccessLink https://doaj.org/article/70294ed79e2148b7900943eb9b484b68
PMID 32109675
PQID 2369392248
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_70294ed79e2148b7900943eb9b484b68
unpaywall_primary_10_1016_j_isci_2020_100903
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7044796
proquest_miscellaneous_2369392248
pubmed_primary_32109675
crossref_primary_10_1016_j_isci_2020_100903
crossref_citationtrail_10_1016_j_isci_2020_100903
elsevier_sciencedirect_doi_10_1016_j_isci_2020_100903
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-03-27
PublicationDateYYYYMMDD 2020-03-27
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-27
  day: 27
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle iScience
PublicationTitleAlternate iScience
PublicationYear 2020
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Bruderer, Bernhardt, Gandhi, Xuan, Sondermann, Schmidt, Gomez-Varela, Reiter (bib3) 2017; 16
Bruderer, Bernhardt, Gandhi, Miladinovic, Cheng, Messner, Ehrenberger, Zanotelli, Butscheid, Escher (bib2) 2015; 14
Tsou, Avtonomov, Larsen, Tucholska, Choi, Gingras, Nesvizhskii (bib20) 2015; 12
Gessulat, Schmidt, Zolg, Samaras, Schnatbaum, Zerweck, Knaute, Rechenberger, Delanghe, Huhmer (bib4) 2019; 16
Ting, Egertson, Bollinger, Searle, Payne, Noble, MacCoss (bib17) 2017; 14
Picotti, Aebersold (bib13) 2012; 9
Ting, Egertson, Payne, Kim, MacLean, Kall, Aebersold, Smith, Noble, MacCoss (bib18) 2015; 14
Kusebauch, Campbell, Deutsch, Chu, Spicer, Brusniak, Slagel, Sun, Stevens, Grimes (bib8) 2016; 166
Ludwig, Gillet, Rosenberger, Amon, Collins, Aebersold (bib9) 2018; 14
Katritch, Cherezov, Stevens (bib7) 2013; 53
Ma, Chen, Wu, Yang, Bai, Shu, Li, Zhang, Jin, He (bib11) 2019; 47
Rosenberger, Bludau, Schmitt, Heusel, Hunter, Liu, MacCoss, MacLean, Nesvizhskii, Pedrioli (bib14) 2017; 14
Wilhelm, Schlegl, Hahne, Gholami, Lieberenz, Savitski, Ziegler, Butzmann, Gessulat, Marx (bib21) 2014; 509
Zolg, Wilhelm, Schnatbaum, Zerweck, Knaute, Delanghe, Bailey, Gessulat, Ehrlich, Weininger (bib24) 2017; 14
Ma, Ren, Yang, Ren, Yang, Liu (bib10) 2018; 90
Tiwary, Levy, Gutenbrunner, Salinas Soto, Palaniappan, Deming, Berndl, Brant, Cimermancic, Cox (bib19) 2019; 16
Zhou, Zeng, Chi, Luo, Liu, Zhan, He, Zhang (bib23) 2017; 89
Bekker-Jensen, Kelstrup, Batth, Larsen, Haldrup, Bramsen, Sorensen, Hoyer, Orntoft, Andersen (bib1) 2017; 4
Pan, Yang (bib12) 2010; 22
Schubert, Gillet, Collins, Navarro, Rosenberger, Wolski, Lam, Amodei, Mallick, MacLean (bib15) 2015; 10
Gillet, Navarro, Tate, Rost, Selevsek, Reiter, Bonner, Aebersold (bib5) 2012; 11
Huang, Todd, Thathiah (bib6) 2017; 32
Picotti (10.1016/j.isci.2020.100903_bib13) 2012; 9
Zhou (10.1016/j.isci.2020.100903_bib23) 2017; 89
Rosenberger (10.1016/j.isci.2020.100903_bib14) 2017; 14
Gessulat (10.1016/j.isci.2020.100903_bib4) 2019; 16
Ludwig (10.1016/j.isci.2020.100903_bib9) 2018; 14
Ting (10.1016/j.isci.2020.100903_bib18) 2015; 14
Gillet (10.1016/j.isci.2020.100903_bib5) 2012; 11
Katritch (10.1016/j.isci.2020.100903_bib7) 2013; 53
Ting (10.1016/j.isci.2020.100903_bib17) 2017; 14
Huang (10.1016/j.isci.2020.100903_bib6) 2017; 32
Kusebauch (10.1016/j.isci.2020.100903_bib8) 2016; 166
Ma (10.1016/j.isci.2020.100903_bib10) 2018; 90
Ma (10.1016/j.isci.2020.100903_bib11) 2019; 47
Bruderer (10.1016/j.isci.2020.100903_bib2) 2015; 14
Tsou (10.1016/j.isci.2020.100903_bib20) 2015; 12
Pan (10.1016/j.isci.2020.100903_bib12) 2010; 22
Bekker-Jensen (10.1016/j.isci.2020.100903_bib1) 2017; 4
Tiwary (10.1016/j.isci.2020.100903_bib19) 2019; 16
Wilhelm (10.1016/j.isci.2020.100903_bib21) 2014; 509
Zolg (10.1016/j.isci.2020.100903_bib24) 2017; 14
Schubert (10.1016/j.isci.2020.100903_bib15) 2015; 10
Bruderer (10.1016/j.isci.2020.100903_bib3) 2017; 16
References_xml – volume: 22
  start-page: 1345
  year: 2010
  end-page: 1359
  ident: bib12
  article-title: A survey on transfer learning
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 32
  start-page: 96
  year: 2017
  end-page: 110
  ident: bib6
  article-title: The role of GPCRs in neurodegenerative diseases: avenues for therapeutic intervention
  publication-title: Curr. Opin. Pharmacol.
– volume: 89
  start-page: 12690
  year: 2017
  end-page: 12697
  ident: bib23
  article-title: pDeep: predicting MS/MS spectra of peptides with deep learning
  publication-title: Anal. Chem.
– volume: 14
  start-page: e8126
  year: 2018
  ident: bib9
  article-title: Data-independent acquisition-based SWATH-MS for quantitative proteomics: a tutorial
  publication-title: Mol. Syst. Biol.
– volume: 11
  year: 2012
  ident: bib5
  article-title: Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis
  publication-title: Mol. Cell. Proteomics
– volume: 14
  start-page: 903
  year: 2017
  end-page: 908
  ident: bib17
  article-title: PECAN: library-free peptide detection for data-independent acquisition tandem mass spectrometry data
  publication-title: Nat. Methods
– volume: 14
  start-page: 1400
  year: 2015
  end-page: 1410
  ident: bib2
  article-title: Extending the limits of quantitative proteome profiling with data-independent acquisition and application to acetaminophen-treated three-dimensional liver microtissues
  publication-title: Mol. Cell. Proteomics
– volume: 10
  start-page: 426
  year: 2015
  end-page: 441
  ident: bib15
  article-title: Building high-quality assay libraries for targeted analysis of SWATH MS data
  publication-title: Nat. Protoc.
– volume: 14
  start-page: 2301
  year: 2015
  end-page: 2307
  ident: bib18
  article-title: Peptide-centric proteome analysis: an alternative strategy for the analysis of tandem mass spectrometry data
  publication-title: Mol. Cell. Proteomics
– volume: 4
  start-page: 587
  year: 2017
  end-page: 599.e4
  ident: bib1
  article-title: An optimized shotgun strategy for the rapid generation of comprehensive human proteomes
  publication-title: Cell Syst.
– volume: 12
  start-page: 258
  year: 2015
  end-page: 264
  ident: bib20
  article-title: DIA-Umpire: comprehensive computational framework for data-independent acquisition proteomics
  publication-title: Nat. Methods
– volume: 16
  start-page: 2296
  year: 2017
  end-page: 2309
  ident: bib3
  article-title: Optimization of experimental parameters in data-independent mass spectrometry significantly increases depth and reproducibility of results
  publication-title: Mol. Cell. Proteomics
– volume: 16
  start-page: 519
  year: 2019
  end-page: 525
  ident: bib19
  article-title: High-quality MS/MS spectrum prediction for data-dependent and data-independent acquisition data analysis
  publication-title: Nat. Methods
– volume: 509
  start-page: 582
  year: 2014
  end-page: 587
  ident: bib21
  article-title: Mass-spectrometry-based draft of the human proteome
  publication-title: Nature
– volume: 53
  start-page: 531
  year: 2013
  end-page: 556
  ident: bib7
  article-title: Structure-function of the G protein-coupled receptor superfamily
  publication-title: Annu. Rev. Pharmacol. Toxicol.
– volume: 90
  start-page: 10881
  year: 2018
  end-page: 10888
  ident: bib10
  article-title: Improved peptide retention time prediction in liquid chromatography through deep learning
  publication-title: Anal Chem.
– volume: 14
  start-page: 259
  year: 2017
  end-page: 262
  ident: bib24
  article-title: Building ProteomeTools based on a complete synthetic human proteome
  publication-title: Nat. Methods
– volume: 9
  start-page: 555
  year: 2012
  end-page: 566
  ident: bib13
  article-title: Selected reaction monitoring-based proteomics: workflows, potential, pitfalls and future directions
  publication-title: Nat. Methods
– volume: 166
  start-page: 766
  year: 2016
  end-page: 778
  ident: bib8
  article-title: Human SRMAtlas: a resource of targeted assays to quantify the complete human proteome
  publication-title: Cell
– volume: 16
  start-page: 509
  year: 2019
  end-page: 518
  ident: bib4
  article-title: Prosit: proteome-wide prediction of peptide tandem mass spectra by deep learning
  publication-title: Nat. Methods
– volume: 14
  start-page: 921
  year: 2017
  end-page: 927
  ident: bib14
  article-title: Statistical control of peptide and protein error rates in large-scale targeted data-independent acquisition analyses
  publication-title: Nat. Methods
– volume: 47
  start-page: D1211
  year: 2019
  end-page: D1217
  ident: bib11
  article-title: iProX: an integrated proteome resource
  publication-title: Nucleic Acids Res.
– volume: 16
  start-page: 2296
  year: 2017
  ident: 10.1016/j.isci.2020.100903_bib3
  article-title: Optimization of experimental parameters in data-independent mass spectrometry significantly increases depth and reproducibility of results
  publication-title: Mol. Cell. Proteomics
  doi: 10.1074/mcp.RA117.000314
– volume: 10
  start-page: 426
  year: 2015
  ident: 10.1016/j.isci.2020.100903_bib15
  article-title: Building high-quality assay libraries for targeted analysis of SWATH MS data
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2015.015
– volume: 14
  start-page: e8126
  year: 2018
  ident: 10.1016/j.isci.2020.100903_bib9
  article-title: Data-independent acquisition-based SWATH-MS for quantitative proteomics: a tutorial
  publication-title: Mol. Syst. Biol.
  doi: 10.15252/msb.20178126
– volume: 53
  start-page: 531
  year: 2013
  ident: 10.1016/j.isci.2020.100903_bib7
  article-title: Structure-function of the G protein-coupled receptor superfamily
  publication-title: Annu. Rev. Pharmacol. Toxicol.
  doi: 10.1146/annurev-pharmtox-032112-135923
– volume: 14
  start-page: 903
  year: 2017
  ident: 10.1016/j.isci.2020.100903_bib17
  article-title: PECAN: library-free peptide detection for data-independent acquisition tandem mass spectrometry data
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4390
– volume: 11
  year: 2012
  ident: 10.1016/j.isci.2020.100903_bib5
  article-title: Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis
  publication-title: Mol. Cell. Proteomics
  doi: 10.1074/mcp.O111.016717
– volume: 14
  start-page: 1400
  year: 2015
  ident: 10.1016/j.isci.2020.100903_bib2
  article-title: Extending the limits of quantitative proteome profiling with data-independent acquisition and application to acetaminophen-treated three-dimensional liver microtissues
  publication-title: Mol. Cell. Proteomics
  doi: 10.1074/mcp.M114.044305
– volume: 14
  start-page: 2301
  year: 2015
  ident: 10.1016/j.isci.2020.100903_bib18
  article-title: Peptide-centric proteome analysis: an alternative strategy for the analysis of tandem mass spectrometry data
  publication-title: Mol. Cell. Proteomics
  doi: 10.1074/mcp.O114.047035
– volume: 47
  start-page: D1211
  year: 2019
  ident: 10.1016/j.isci.2020.100903_bib11
  article-title: iProX: an integrated proteome resource
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gky869
– volume: 4
  start-page: 587
  year: 2017
  ident: 10.1016/j.isci.2020.100903_bib1
  article-title: An optimized shotgun strategy for the rapid generation of comprehensive human proteomes
  publication-title: Cell Syst.
  doi: 10.1016/j.cels.2017.05.009
– volume: 12
  start-page: 258
  year: 2015
  ident: 10.1016/j.isci.2020.100903_bib20
  article-title: DIA-Umpire: comprehensive computational framework for data-independent acquisition proteomics
  publication-title: Nat. Methods
– volume: 16
  start-page: 509
  year: 2019
  ident: 10.1016/j.isci.2020.100903_bib4
  article-title: Prosit: proteome-wide prediction of peptide tandem mass spectra by deep learning
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0426-7
– volume: 166
  start-page: 766
  year: 2016
  ident: 10.1016/j.isci.2020.100903_bib8
  article-title: Human SRMAtlas: a resource of targeted assays to quantify the complete human proteome
  publication-title: Cell
  doi: 10.1016/j.cell.2016.06.041
– volume: 90
  start-page: 10881
  year: 2018
  ident: 10.1016/j.isci.2020.100903_bib10
  article-title: Improved peptide retention time prediction in liquid chromatography through deep learning
  publication-title: Anal Chem.
  doi: 10.1021/acs.analchem.8b02386
– volume: 9
  start-page: 555
  year: 2012
  ident: 10.1016/j.isci.2020.100903_bib13
  article-title: Selected reaction monitoring-based proteomics: workflows, potential, pitfalls and future directions
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2015
– volume: 14
  start-page: 259
  year: 2017
  ident: 10.1016/j.isci.2020.100903_bib24
  article-title: Building ProteomeTools based on a complete synthetic human proteome
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4153
– volume: 16
  start-page: 519
  year: 2019
  ident: 10.1016/j.isci.2020.100903_bib19
  article-title: High-quality MS/MS spectrum prediction for data-dependent and data-independent acquisition data analysis
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0427-6
– volume: 32
  start-page: 96
  year: 2017
  ident: 10.1016/j.isci.2020.100903_bib6
  article-title: The role of GPCRs in neurodegenerative diseases: avenues for therapeutic intervention
  publication-title: Curr. Opin. Pharmacol.
  doi: 10.1016/j.coph.2017.02.001
– volume: 22
  start-page: 1345
  year: 2010
  ident: 10.1016/j.isci.2020.100903_bib12
  article-title: A survey on transfer learning
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2009.191
– volume: 14
  start-page: 921
  year: 2017
  ident: 10.1016/j.isci.2020.100903_bib14
  article-title: Statistical control of peptide and protein error rates in large-scale targeted data-independent acquisition analyses
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4398
– volume: 89
  start-page: 12690
  year: 2017
  ident: 10.1016/j.isci.2020.100903_bib23
  article-title: pDeep: predicting MS/MS spectra of peptides with deep learning
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.7b02566
– volume: 509
  start-page: 582
  year: 2014
  ident: 10.1016/j.isci.2020.100903_bib21
  article-title: Mass-spectrometry-based draft of the human proteome
  publication-title: Nature
  doi: 10.1038/nature13319
SSID ssj0002002496
Score 2.3105216
Snippet Data-independent acquisition mass spectrometry (DIA-MS) is a powerful technique that enables relatively deep proteomic profiling with superior quantification...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 100903
SubjectTerms Analytical Chemistry
Biological Sciences
Classification of Proteins
Proteomics
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdG9wAvfIiv8iUj8QbZEteO7cdCmQrSpomtaDxFduxAoaRV1wrKX8-d40RUlabx2ObiJr6fz-fqd_cj5FXGnIKdHWlVXCY8y8pEVQYcYnMOLhcyC82ej0_y8YR_vBAXe6QVLkRWJf5jHWJ0nLvDMyaUDs2qAJEpAOxw4aobZD8XkH73yP7k5HT4BUXkBNJ_wC4WxzQ8LixuhXMgC4QA3YpjxQ0o9Onf2od288xduuTNdb0wm19mNvtnLzq6Qz61FT0NBeXHwXplD8o_uw0er_-ad8ntmJnSYWN3j-z5-j75Pd5gSRdFmXp8KhrrHCjEERu0JejowzA5PqMjszLU1I4aeh7Y5d7Rz9Mllqd0N2GUQtViwPxsQ0ceBXgvKaSg9BTbRcx_ehgX1hbEuAdkcvT-_N04iWINSYmaCImFzd_q1JUqZV5qxpy1mTMeEkDLtK8yVeauZNZ7mTGrykrZinmRDYwQAi4PHpJePa_9Y0Il96wETxlnKu51BSFYeOGcyg0rpcr7JGs9WJSxkzkKasyKlrL2vUCvF-j1ovF6n7zu7lk0fTyutH6LwOgssQd3-GK-_FpEfxUyZZp7J7VncKa0UgeWprfacsVtrvpEtLAqYjrTpCkw1PTKH3_ZYrCAtY44MbWfry8LNsg15LOMw9iPGkx2j4i1WBpOf30it9C69Q7bV-rpt9BPXKacSw3T-qbD9TXm6Mn_mT8lt_AT0veYfEZ6q-XaP4d8bmVfxBX8F3hBR1M
  priority: 102
  providerName: Unpaywall
Title Hybrid Spectral Library Combining DIA-MS Data and a Targeted Virtual Library Substantially Deepens the Proteome Coverage
URI https://dx.doi.org/10.1016/j.isci.2020.100903
https://www.ncbi.nlm.nih.gov/pubmed/32109675
https://www.proquest.com/docview/2369392248
https://pubmed.ncbi.nlm.nih.gov/PMC7044796
http://www.cell.com/article/S2589004220300870/pdf
https://doaj.org/article/70294ed79e2148b7900943eb9b484b68
UnpaywallVersion publishedVersion
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2589-0042
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002002496
  issn: 2589-0042
  databaseCode: DOA
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2589-0042
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002002496
  issn: 2589-0042
  databaseCode: RPM
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELZQOcAFgXgFSmUkbrAi69hr-xgIVUBqVYkGlZNlr2dFqnRTtYlo_j0z3ocSVSocuO5jdnfmsz3WfjMfY-9yEQ2u7ESrkjqTeV5mpvIYkFBIDLnSeWr2fHRcTGfy25k625L6Ik5Y0x64cdxHPRRWQtQWBGbuQdvEhYNggzQyFKnMd2js1mbqPP1eo1Z4SVlOEScIodlWzDTkLqp4xc2hSCwB2ylmtatSat6_szjdTj5vcygfrOtLv_ntF4utBerwMXvUZpZ83HzRE3YP6qfsZrqhkixOMvNkgLd1ChzngZC0Ifjk6zg7-s4nfuW5ryP3_DSxwyHyH_MrKi_pb6JZhlSHEbOLDZ8ACehec0wh-Qm1e1heANrFsYFz1DM2O_xy-nmatWILWUmaBlnAxTvYYSzNUIC2QsQQ8ugBE7ggLFS5KYtYigCgcxFMWZlQCVD5yCul8PToOdurlzW8ZFxLECU61UdfSbAVTqEKVIym8KLUphiwvHO2K9tO5CSIsXAd5ezcUYAcBcg1ARqw9_09l00fjjuv_kQx7K-kHtrpACLLtchyf0PWgKkOAa5NR5o0A03N73z42w4uDscq_YDxNSzX106MCov5qJBo-0UDn_4VqZbK4u5twPQOsHa-YfdMPf-V-oHroZTaols_9BD8Bx-9-h8-es0ekkki5Qm9z_ZWV2t4g1naKhykAXnA7s-OT8Y__wAjSDhh
linkProvider Directory of Open Access Journals
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdG9wAvfIiv8iUj8QbZEteO7cdCmQrSpomtaDxFduxAoaRV1wrKX8-d40RUlabx2ObiJr6fz-fqd_cj5FXGnIKdHWlVXCY8y8pEVQYcYnMOLhcyC82ej0_y8YR_vBAXe6QVLkRWJf5jHWJ0nLvDMyaUDs2qAJEpAOxw4aobZD8XkH73yP7k5HT4BUXkBNJ_wC4WxzQ8LixuhXMgC4QA3YpjxQ0o9Onf2od288xduuTNdb0wm19mNvtnLzq6Qz61FT0NBeXHwXplD8o_uw0er_-ad8ntmJnSYWN3j-z5-j75Pd5gSRdFmXp8KhrrHCjEERu0JejowzA5PqMjszLU1I4aeh7Y5d7Rz9Mllqd0N2GUQtViwPxsQ0ceBXgvKaSg9BTbRcx_ehgX1hbEuAdkcvT-_N04iWINSYmaCImFzd_q1JUqZV5qxpy1mTMeEkDLtK8yVeauZNZ7mTGrykrZinmRDYwQAi4PHpJePa_9Y0Il96wETxlnKu51BSFYeOGcyg0rpcr7JGs9WJSxkzkKasyKlrL2vUCvF-j1ovF6n7zu7lk0fTyutH6LwOgssQd3-GK-_FpEfxUyZZp7J7VncKa0UgeWprfacsVtrvpEtLAqYjrTpCkw1PTKH3_ZYrCAtY44MbWfry8LNsg15LOMw9iPGkx2j4i1WBpOf30it9C69Q7bV-rpt9BPXKacSw3T-qbD9TXm6Mn_mT8lt_AT0veYfEZ6q-XaP4d8bmVfxBX8F3hBR1M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+Spectral+Library+Combining+DIA-MS+Data+and+a+Targeted+Virtual+Library+Substantially+Deepens+the+Proteome+Coverage&rft.jtitle=iScience&rft.au=Lou%2C+Ronghui&rft.au=Tang%2C+Pan&rft.au=Ding%2C+Kang&rft.au=Li%2C+Shanshan&rft.date=2020-03-27&rft.eissn=2589-0042&rft.volume=23&rft.issue=3&rft.spage=100903&rft_id=info:doi/10.1016%2Fj.isci.2020.100903&rft_id=info%3Apmid%2F32109675&rft.externalDocID=32109675
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2589-0042&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2589-0042&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2589-0042&client=summon