Hybrid Spectral Library Combining DIA-MS Data and a Targeted Virtual Library Substantially Deepens the Proteome Coverage
Data-independent acquisition mass spectrometry (DIA-MS) is a powerful technique that enables relatively deep proteomic profiling with superior quantification reproducibility. DIA data mining predominantly relies on a spectral library of sufficient proteome coverage that, in most cases, is built on d...
        Saved in:
      
    
          | Published in | iScience Vol. 23; no. 3; p. 100903 | 
|---|---|
| Main Authors | , , , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          Elsevier Inc
    
        27.03.2020
     Elsevier  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2589-0042 2589-0042  | 
| DOI | 10.1016/j.isci.2020.100903 | 
Cover
| Abstract | Data-independent acquisition mass spectrometry (DIA-MS) is a powerful technique that enables relatively deep proteomic profiling with superior quantification reproducibility. DIA data mining predominantly relies on a spectral library of sufficient proteome coverage that, in most cases, is built on data-dependent acquisition-based analysis of the same sample. To expand the proteome coverage for a pre-determined protein family, we report herein on the construction of a hybrid spectral library that supplements a DIA experiment-derived library with a protein family-targeted virtual library predicted by deep learning. Leveraging this DIA hybrid library substantially deepens the coverage of three transmembrane protein families (G protein-coupled receptors, ion channels, and transporters) in mouse brain tissues with increases in protein identification of 37%–87% and peptide identification of 58%–161%. Moreover, of the 412 novel GPCR peptides exclusively identified with the DIA hybrid library strategy, 53.6% were validated as present in mouse brain tissues based on orthogonal experimental measurement.
[Display omitted]
•A virtual library is built for a selected protein family using deep learning models•The hybrid library strategy vastly deepens the coverage for the targeted protein family•About 53.6% of novel GPCR peptides identified with the DIA hybrid library are validated•Extend the strategy to deep mapping of multiple transmembrane protein families
Analytical Chemistry; Biological Sciences; Classification of Proteins; Proteomics | 
    
|---|---|
| AbstractList | Data-independent acquisition mass spectrometry (DIA-MS) is a powerful technique that enables relatively deep proteomic profiling with superior quantification reproducibility. DIA data mining predominantly relies on a spectral library of sufficient proteome coverage that, in most cases, is built on data-dependent acquisition-based analysis of the same sample. To expand the proteome coverage for a pre-determined protein family, we report herein on the construction of a hybrid spectral library that supplements a DIA experiment-derived library with a protein family-targeted virtual library predicted by deep learning. Leveraging this DIA hybrid library substantially deepens the coverage of three transmembrane protein families (G protein-coupled receptors, ion channels, and transporters) in mouse brain tissues with increases in protein identification of 37%-87% and peptide identification of 58%-161%. Moreover, of the 412 novel GPCR peptides exclusively identified with the DIA hybrid library strategy, 53.6% were validated as present in mouse brain tissues based on orthogonal experimental measurement.Data-independent acquisition mass spectrometry (DIA-MS) is a powerful technique that enables relatively deep proteomic profiling with superior quantification reproducibility. DIA data mining predominantly relies on a spectral library of sufficient proteome coverage that, in most cases, is built on data-dependent acquisition-based analysis of the same sample. To expand the proteome coverage for a pre-determined protein family, we report herein on the construction of a hybrid spectral library that supplements a DIA experiment-derived library with a protein family-targeted virtual library predicted by deep learning. Leveraging this DIA hybrid library substantially deepens the coverage of three transmembrane protein families (G protein-coupled receptors, ion channels, and transporters) in mouse brain tissues with increases in protein identification of 37%-87% and peptide identification of 58%-161%. Moreover, of the 412 novel GPCR peptides exclusively identified with the DIA hybrid library strategy, 53.6% were validated as present in mouse brain tissues based on orthogonal experimental measurement. Data-independent acquisition mass spectrometry (DIA-MS) is a powerful technique that enables relatively deep proteomic profiling with superior quantification reproducibility. DIA data mining predominantly relies on a spectral library of sufficient proteome coverage that, in most cases, is built on data-dependent acquisition-based analysis of the same sample. To expand the proteome coverage for a pre-determined protein family, we report herein on the construction of a hybrid spectral library that supplements a DIA experiment-derived library with a protein family-targeted virtual library predicted by deep learning. Leveraging this DIA hybrid library substantially deepens the coverage of three transmembrane protein families (G protein-coupled receptors, ion channels, and transporters) in mouse brain tissues with increases in protein identification of 37%–87% and peptide identification of 58%–161%. Moreover, of the 412 novel GPCR peptides exclusively identified with the DIA hybrid library strategy, 53.6% were validated as present in mouse brain tissues based on orthogonal experimental measurement. • A virtual library is built for a selected protein family using deep learning models • The hybrid library strategy vastly deepens the coverage for the targeted protein family • About 53.6% of novel GPCR peptides identified with the DIA hybrid library are validated • Extend the strategy to deep mapping of multiple transmembrane protein families Analytical Chemistry; Biological Sciences; Classification of Proteins; Proteomics Data-independent acquisition mass spectrometry (DIA-MS) is a powerful technique that enables relatively deep proteomic profiling with superior quantification reproducibility. DIA data mining predominantly relies on a spectral library of sufficient proteome coverage that, in most cases, is built on data-dependent acquisition-based analysis of the same sample. To expand the proteome coverage for a pre-determined protein family, we report herein on the construction of a hybrid spectral library that supplements a DIA experiment-derived library with a protein family-targeted virtual library predicted by deep learning. Leveraging this DIA hybrid library substantially deepens the coverage of three transmembrane protein families (G protein-coupled receptors, ion channels, and transporters) in mouse brain tissues with increases in protein identification of 37%–87% and peptide identification of 58%–161%. Moreover, of the 412 novel GPCR peptides exclusively identified with the DIA hybrid library strategy, 53.6% were validated as present in mouse brain tissues based on orthogonal experimental measurement. [Display omitted] •A virtual library is built for a selected protein family using deep learning models•The hybrid library strategy vastly deepens the coverage for the targeted protein family•About 53.6% of novel GPCR peptides identified with the DIA hybrid library are validated•Extend the strategy to deep mapping of multiple transmembrane protein families Analytical Chemistry; Biological Sciences; Classification of Proteins; Proteomics Data-independent acquisition mass spectrometry (DIA-MS) is a powerful technique that enables relatively deep proteomic profiling with superior quantification reproducibility. DIA data mining predominantly relies on a spectral library of sufficient proteome coverage that, in most cases, is built on data-dependent acquisition-based analysis of the same sample. To expand the proteome coverage for a pre-determined protein family, we report herein on the construction of a hybrid spectral library that supplements a DIA experiment-derived library with a protein family-targeted virtual library predicted by deep learning. Leveraging this DIA hybrid library substantially deepens the coverage of three transmembrane protein families (G protein-coupled receptors, ion channels, and transporters) in mouse brain tissues with increases in protein identification of 37%-87% and peptide identification of 58%-161%. Moreover, of the 412 novel GPCR peptides exclusively identified with the DIA hybrid library strategy, 53.6% were validated as present in mouse brain tissues based on orthogonal experimental measurement. Data-independent acquisition mass spectrometry (DIA-MS) is a powerful technique that enables relatively deep proteomic profiling with superior quantification reproducibility. DIA data mining predominantly relies on a spectral library of sufficient proteome coverage that, in most cases, is built on data-dependent acquisition-based analysis of the same sample. To expand the proteome coverage for a pre-determined protein family, we report herein on the construction of a hybrid spectral library that supplements a DIA experiment-derived library with a protein family-targeted virtual library predicted by deep learning. Leveraging this DIA hybrid library substantially deepens the coverage of three transmembrane protein families (G protein-coupled receptors, ion channels, and transporters) in mouse brain tissues with increases in protein identification of 37%–87% and peptide identification of 58%–161%. Moreover, of the 412 novel GPCR peptides exclusively identified with the DIA hybrid library strategy, 53.6% were validated as present in mouse brain tissues based on orthogonal experimental measurement. : Analytical Chemistry; Biological Sciences; Classification of Proteins; Proteomics Subject Areas: Analytical Chemistry, Biological Sciences, Classification of Proteins, Proteomics  | 
    
| ArticleNumber | 100903 | 
    
| Author | Tang, Pan Li, Yunxia Ding, Kang Lou, Ronghui Zhang, Yaoyang Shui, Wenqing Tian, Cuiping Zhao, Suwen Li, Shanshan  | 
    
| AuthorAffiliation | 4 Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China 1 iHuman Institute, ShanghaiTech University, Shanghai 201210, China 2 School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China 3 University of Chinese Academy of Sciences, Beijing 100049, China  | 
    
| AuthorAffiliation_xml | – name: 2 School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China – name: 4 Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China – name: 1 iHuman Institute, ShanghaiTech University, Shanghai 201210, China – name: 3 University of Chinese Academy of Sciences, Beijing 100049, China  | 
    
| Author_xml | – sequence: 1 givenname: Ronghui surname: Lou fullname: Lou, Ronghui organization: iHuman Institute, ShanghaiTech University, Shanghai 201210, China – sequence: 2 givenname: Pan surname: Tang fullname: Tang, Pan organization: iHuman Institute, ShanghaiTech University, Shanghai 201210, China – sequence: 3 givenname: Kang surname: Ding fullname: Ding, Kang organization: iHuman Institute, ShanghaiTech University, Shanghai 201210, China – sequence: 4 givenname: Shanshan surname: Li fullname: Li, Shanshan organization: iHuman Institute, ShanghaiTech University, Shanghai 201210, China – sequence: 5 givenname: Cuiping surname: Tian fullname: Tian, Cuiping organization: iHuman Institute, ShanghaiTech University, Shanghai 201210, China – sequence: 6 givenname: Yunxia surname: Li fullname: Li, Yunxia organization: Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China – sequence: 7 givenname: Suwen surname: Zhao fullname: Zhao, Suwen email: zhaosw@shanghaitech.edu.cn organization: iHuman Institute, ShanghaiTech University, Shanghai 201210, China – sequence: 8 givenname: Yaoyang surname: Zhang fullname: Zhang, Yaoyang email: zyy@sioc.ac.cn organization: Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China – sequence: 9 givenname: Wenqing surname: Shui fullname: Shui, Wenqing email: shuiwq@shanghaitech.edu.cn organization: iHuman Institute, ShanghaiTech University, Shanghai 201210, China  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32109675$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqNUk1vEzEUXKEiWkr_AAfkI5cNtvfTEkKqEmgjBYGUwtXyx9uto40dvN6U_Pt62VKlHCpOtvxm5s1749fJiXUWkuQtwTOCSflhMzO9MjOK6fiAGc5eJGe0qFmKcU5Pju6nyUXfbzCOSExzVr5KTjNKMCur4iz5fX2Q3mi03oEKXnRoZaQX_oDmbiuNNbZFi-Vl-nWNFiIIJKxGAt0I30IAjX4aH4Yj0nqQfRA2GNF1B7QA2IHtUbgF9N27AG4LUXcPXrTwJnnZiK6Hi4fzPPnx5fPN_Dpdfbtazi9XqSooCanENJMMa1VjChWjVEtJtIAC15IyaEitSq2oBKgIlbVqatlQKEgmiqKI5ew8WU662okN33mzjUa5E4b_eXC-5cIHozrgFaYsB10xoCSvZcXiWvMMJJN5ncuyjlrZpDXYnTjcxSEfBQnmYyx8w8dY-BgLn2KJrE8TazfILWgFdlz0EytPK9bc8tbto588r1gZBd4_CHj3a4A-8G1sAl0nLLih5zQrWRZXk48O3x33emzyN_AIoBNAedf3Hpr_m6D-h6RMEMG40a_pnqd-nKgQM94b8DwiwCrQxscfF0Mwz9HvAYoU59Y | 
    
| CitedBy_id | crossref_primary_10_1002_pmic_202300285 crossref_primary_10_1007_s11306_022_01913_8 crossref_primary_10_1021_acs_jproteome_1c00899 crossref_primary_10_1038_s41587_021_00968_7 crossref_primary_10_3389_fnmol_2020_564446 crossref_primary_10_1002_pmic_201900335 crossref_primary_10_1016_j_crmeth_2021_100003 crossref_primary_10_3390_ijms23042187 crossref_primary_10_1038_s41467_022_35740_1 crossref_primary_10_1016_j_foodchem_2024_141198 crossref_primary_10_1021_acs_jproteome_3c00736 crossref_primary_10_1021_acs_jproteome_0c00350 crossref_primary_10_1038_s41467_021_26979_1 crossref_primary_10_1126_sciadv_abf0634 crossref_primary_10_1021_acs_jproteome_0c01004 crossref_primary_10_1038_s41587_022_01424_w crossref_primary_10_1021_acs_analchem_0c05427 crossref_primary_10_3390_life11090982 crossref_primary_10_3389_fmicb_2020_01362 crossref_primary_10_1016_j_yjmcc_2021_01_007 crossref_primary_10_1021_acs_jproteome_3c00850 crossref_primary_10_1002_pmic_202200125 crossref_primary_10_1016_j_crmeth_2023_100479 crossref_primary_10_1021_acs_analchem_3c01189 crossref_primary_10_1038_s41467_022_30094_0 crossref_primary_10_1007_s10753_024_02044_z crossref_primary_10_1016_j_mcpro_2024_100712  | 
    
| Cites_doi | 10.1074/mcp.RA117.000314 10.1038/nprot.2015.015 10.15252/msb.20178126 10.1146/annurev-pharmtox-032112-135923 10.1038/nmeth.4390 10.1074/mcp.O111.016717 10.1074/mcp.M114.044305 10.1074/mcp.O114.047035 10.1093/nar/gky869 10.1016/j.cels.2017.05.009 10.1038/s41592-019-0426-7 10.1016/j.cell.2016.06.041 10.1021/acs.analchem.8b02386 10.1038/nmeth.2015 10.1038/nmeth.4153 10.1038/s41592-019-0427-6 10.1016/j.coph.2017.02.001 10.1109/TKDE.2009.191 10.1038/nmeth.4398 10.1021/acs.analchem.7b02566 10.1038/nature13319  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2020 The Authors Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved. 2020 The Authors 2020  | 
    
| Copyright_xml | – notice: 2020 The Authors – notice: Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved. – notice: 2020 The Authors 2020  | 
    
| DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 5PM ADTOC UNPAY DOA  | 
    
| DOI | 10.1016/j.isci.2020.100903 | 
    
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE - Academic PubMed  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| EISSN | 2589-0042 | 
    
| ExternalDocumentID | oai_doaj_org_article_70294ed79e2148b7900943eb9b484b68 10.1016/j.isci.2020.100903 PMC7044796 32109675 10_1016_j_isci_2020_100903 S2589004220300870  | 
    
| Genre | Journal Article | 
    
| GroupedDBID | 0SF 53G 6I. AACTN AAEDW AAFTH AALRI AAXUO ABMAC ADBBV AEXQZ AFTJW AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BCNDV EBS FDB GROUPED_DOAJ HYE M41 NCXOZ OK1 ROL RPM SSZ 0R~ AAMRU AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AKBMS AKYEP APXCP CITATION EJD NPM 7X8 5PM ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c521t-b023b90dc802e7922dbb1dae508b29ef18c6dc2bee712b8cf8bf2e513a555ef13 | 
    
| IEDL.DBID | DOA | 
    
| ISSN | 2589-0042 | 
    
| IngestDate | Fri Oct 03 12:44:09 EDT 2025 Wed Oct 01 16:45:24 EDT 2025 Tue Sep 30 16:45:39 EDT 2025 Fri Jul 11 09:07:18 EDT 2025 Thu Jan 02 22:57:53 EST 2025 Thu Apr 24 22:57:09 EDT 2025 Tue Jul 01 01:03:28 EDT 2025 Tue Jul 25 21:04:23 EDT 2023  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 3 | 
    
| Keywords | Biological Sciences Analytical Chemistry Classification of Proteins Proteomics  | 
    
| Language | English | 
    
| License | This is an open access article under the CC BY-NC-ND license. Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). cc-by-nc-nd  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c521t-b023b90dc802e7922dbb1dae508b29ef18c6dc2bee712b8cf8bf2e513a555ef13 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Lead Contact These authors contributed equally  | 
    
| OpenAccessLink | https://doaj.org/article/70294ed79e2148b7900943eb9b484b68 | 
    
| PMID | 32109675 | 
    
| PQID | 2369392248 | 
    
| PQPubID | 23479 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_70294ed79e2148b7900943eb9b484b68 unpaywall_primary_10_1016_j_isci_2020_100903 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7044796 proquest_miscellaneous_2369392248 pubmed_primary_32109675 crossref_primary_10_1016_j_isci_2020_100903 crossref_citationtrail_10_1016_j_isci_2020_100903 elsevier_sciencedirect_doi_10_1016_j_isci_2020_100903  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2020-03-27 | 
    
| PublicationDateYYYYMMDD | 2020-03-27 | 
    
| PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-27 day: 27  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States | 
    
| PublicationTitle | iScience | 
    
| PublicationTitleAlternate | iScience | 
    
| PublicationYear | 2020 | 
    
| Publisher | Elsevier Inc Elsevier  | 
    
| Publisher_xml | – name: Elsevier Inc – name: Elsevier  | 
    
| References | Bruderer, Bernhardt, Gandhi, Xuan, Sondermann, Schmidt, Gomez-Varela, Reiter (bib3) 2017; 16 Bruderer, Bernhardt, Gandhi, Miladinovic, Cheng, Messner, Ehrenberger, Zanotelli, Butscheid, Escher (bib2) 2015; 14 Tsou, Avtonomov, Larsen, Tucholska, Choi, Gingras, Nesvizhskii (bib20) 2015; 12 Gessulat, Schmidt, Zolg, Samaras, Schnatbaum, Zerweck, Knaute, Rechenberger, Delanghe, Huhmer (bib4) 2019; 16 Ting, Egertson, Bollinger, Searle, Payne, Noble, MacCoss (bib17) 2017; 14 Picotti, Aebersold (bib13) 2012; 9 Ting, Egertson, Payne, Kim, MacLean, Kall, Aebersold, Smith, Noble, MacCoss (bib18) 2015; 14 Kusebauch, Campbell, Deutsch, Chu, Spicer, Brusniak, Slagel, Sun, Stevens, Grimes (bib8) 2016; 166 Ludwig, Gillet, Rosenberger, Amon, Collins, Aebersold (bib9) 2018; 14 Katritch, Cherezov, Stevens (bib7) 2013; 53 Ma, Chen, Wu, Yang, Bai, Shu, Li, Zhang, Jin, He (bib11) 2019; 47 Rosenberger, Bludau, Schmitt, Heusel, Hunter, Liu, MacCoss, MacLean, Nesvizhskii, Pedrioli (bib14) 2017; 14 Wilhelm, Schlegl, Hahne, Gholami, Lieberenz, Savitski, Ziegler, Butzmann, Gessulat, Marx (bib21) 2014; 509 Zolg, Wilhelm, Schnatbaum, Zerweck, Knaute, Delanghe, Bailey, Gessulat, Ehrlich, Weininger (bib24) 2017; 14 Ma, Ren, Yang, Ren, Yang, Liu (bib10) 2018; 90 Tiwary, Levy, Gutenbrunner, Salinas Soto, Palaniappan, Deming, Berndl, Brant, Cimermancic, Cox (bib19) 2019; 16 Zhou, Zeng, Chi, Luo, Liu, Zhan, He, Zhang (bib23) 2017; 89 Bekker-Jensen, Kelstrup, Batth, Larsen, Haldrup, Bramsen, Sorensen, Hoyer, Orntoft, Andersen (bib1) 2017; 4 Pan, Yang (bib12) 2010; 22 Schubert, Gillet, Collins, Navarro, Rosenberger, Wolski, Lam, Amodei, Mallick, MacLean (bib15) 2015; 10 Gillet, Navarro, Tate, Rost, Selevsek, Reiter, Bonner, Aebersold (bib5) 2012; 11 Huang, Todd, Thathiah (bib6) 2017; 32 Picotti (10.1016/j.isci.2020.100903_bib13) 2012; 9 Zhou (10.1016/j.isci.2020.100903_bib23) 2017; 89 Rosenberger (10.1016/j.isci.2020.100903_bib14) 2017; 14 Gessulat (10.1016/j.isci.2020.100903_bib4) 2019; 16 Ludwig (10.1016/j.isci.2020.100903_bib9) 2018; 14 Ting (10.1016/j.isci.2020.100903_bib18) 2015; 14 Gillet (10.1016/j.isci.2020.100903_bib5) 2012; 11 Katritch (10.1016/j.isci.2020.100903_bib7) 2013; 53 Ting (10.1016/j.isci.2020.100903_bib17) 2017; 14 Huang (10.1016/j.isci.2020.100903_bib6) 2017; 32 Kusebauch (10.1016/j.isci.2020.100903_bib8) 2016; 166 Ma (10.1016/j.isci.2020.100903_bib10) 2018; 90 Ma (10.1016/j.isci.2020.100903_bib11) 2019; 47 Bruderer (10.1016/j.isci.2020.100903_bib2) 2015; 14 Tsou (10.1016/j.isci.2020.100903_bib20) 2015; 12 Pan (10.1016/j.isci.2020.100903_bib12) 2010; 22 Bekker-Jensen (10.1016/j.isci.2020.100903_bib1) 2017; 4 Tiwary (10.1016/j.isci.2020.100903_bib19) 2019; 16 Wilhelm (10.1016/j.isci.2020.100903_bib21) 2014; 509 Zolg (10.1016/j.isci.2020.100903_bib24) 2017; 14 Schubert (10.1016/j.isci.2020.100903_bib15) 2015; 10 Bruderer (10.1016/j.isci.2020.100903_bib3) 2017; 16  | 
    
| References_xml | – volume: 22 start-page: 1345 year: 2010 end-page: 1359 ident: bib12 article-title: A survey on transfer learning publication-title: IEEE Trans. Knowl. Data Eng. – volume: 32 start-page: 96 year: 2017 end-page: 110 ident: bib6 article-title: The role of GPCRs in neurodegenerative diseases: avenues for therapeutic intervention publication-title: Curr. Opin. Pharmacol. – volume: 89 start-page: 12690 year: 2017 end-page: 12697 ident: bib23 article-title: pDeep: predicting MS/MS spectra of peptides with deep learning publication-title: Anal. Chem. – volume: 14 start-page: e8126 year: 2018 ident: bib9 article-title: Data-independent acquisition-based SWATH-MS for quantitative proteomics: a tutorial publication-title: Mol. Syst. Biol. – volume: 11 year: 2012 ident: bib5 article-title: Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis publication-title: Mol. Cell. Proteomics – volume: 14 start-page: 903 year: 2017 end-page: 908 ident: bib17 article-title: PECAN: library-free peptide detection for data-independent acquisition tandem mass spectrometry data publication-title: Nat. Methods – volume: 14 start-page: 1400 year: 2015 end-page: 1410 ident: bib2 article-title: Extending the limits of quantitative proteome profiling with data-independent acquisition and application to acetaminophen-treated three-dimensional liver microtissues publication-title: Mol. Cell. Proteomics – volume: 10 start-page: 426 year: 2015 end-page: 441 ident: bib15 article-title: Building high-quality assay libraries for targeted analysis of SWATH MS data publication-title: Nat. Protoc. – volume: 14 start-page: 2301 year: 2015 end-page: 2307 ident: bib18 article-title: Peptide-centric proteome analysis: an alternative strategy for the analysis of tandem mass spectrometry data publication-title: Mol. Cell. Proteomics – volume: 4 start-page: 587 year: 2017 end-page: 599.e4 ident: bib1 article-title: An optimized shotgun strategy for the rapid generation of comprehensive human proteomes publication-title: Cell Syst. – volume: 12 start-page: 258 year: 2015 end-page: 264 ident: bib20 article-title: DIA-Umpire: comprehensive computational framework for data-independent acquisition proteomics publication-title: Nat. Methods – volume: 16 start-page: 2296 year: 2017 end-page: 2309 ident: bib3 article-title: Optimization of experimental parameters in data-independent mass spectrometry significantly increases depth and reproducibility of results publication-title: Mol. Cell. Proteomics – volume: 16 start-page: 519 year: 2019 end-page: 525 ident: bib19 article-title: High-quality MS/MS spectrum prediction for data-dependent and data-independent acquisition data analysis publication-title: Nat. Methods – volume: 509 start-page: 582 year: 2014 end-page: 587 ident: bib21 article-title: Mass-spectrometry-based draft of the human proteome publication-title: Nature – volume: 53 start-page: 531 year: 2013 end-page: 556 ident: bib7 article-title: Structure-function of the G protein-coupled receptor superfamily publication-title: Annu. Rev. Pharmacol. Toxicol. – volume: 90 start-page: 10881 year: 2018 end-page: 10888 ident: bib10 article-title: Improved peptide retention time prediction in liquid chromatography through deep learning publication-title: Anal Chem. – volume: 14 start-page: 259 year: 2017 end-page: 262 ident: bib24 article-title: Building ProteomeTools based on a complete synthetic human proteome publication-title: Nat. Methods – volume: 9 start-page: 555 year: 2012 end-page: 566 ident: bib13 article-title: Selected reaction monitoring-based proteomics: workflows, potential, pitfalls and future directions publication-title: Nat. Methods – volume: 166 start-page: 766 year: 2016 end-page: 778 ident: bib8 article-title: Human SRMAtlas: a resource of targeted assays to quantify the complete human proteome publication-title: Cell – volume: 16 start-page: 509 year: 2019 end-page: 518 ident: bib4 article-title: Prosit: proteome-wide prediction of peptide tandem mass spectra by deep learning publication-title: Nat. Methods – volume: 14 start-page: 921 year: 2017 end-page: 927 ident: bib14 article-title: Statistical control of peptide and protein error rates in large-scale targeted data-independent acquisition analyses publication-title: Nat. Methods – volume: 47 start-page: D1211 year: 2019 end-page: D1217 ident: bib11 article-title: iProX: an integrated proteome resource publication-title: Nucleic Acids Res. – volume: 16 start-page: 2296 year: 2017 ident: 10.1016/j.isci.2020.100903_bib3 article-title: Optimization of experimental parameters in data-independent mass spectrometry significantly increases depth and reproducibility of results publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.RA117.000314 – volume: 10 start-page: 426 year: 2015 ident: 10.1016/j.isci.2020.100903_bib15 article-title: Building high-quality assay libraries for targeted analysis of SWATH MS data publication-title: Nat. Protoc. doi: 10.1038/nprot.2015.015 – volume: 14 start-page: e8126 year: 2018 ident: 10.1016/j.isci.2020.100903_bib9 article-title: Data-independent acquisition-based SWATH-MS for quantitative proteomics: a tutorial publication-title: Mol. Syst. Biol. doi: 10.15252/msb.20178126 – volume: 53 start-page: 531 year: 2013 ident: 10.1016/j.isci.2020.100903_bib7 article-title: Structure-function of the G protein-coupled receptor superfamily publication-title: Annu. Rev. Pharmacol. Toxicol. doi: 10.1146/annurev-pharmtox-032112-135923 – volume: 14 start-page: 903 year: 2017 ident: 10.1016/j.isci.2020.100903_bib17 article-title: PECAN: library-free peptide detection for data-independent acquisition tandem mass spectrometry data publication-title: Nat. Methods doi: 10.1038/nmeth.4390 – volume: 11 year: 2012 ident: 10.1016/j.isci.2020.100903_bib5 article-title: Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.O111.016717 – volume: 14 start-page: 1400 year: 2015 ident: 10.1016/j.isci.2020.100903_bib2 article-title: Extending the limits of quantitative proteome profiling with data-independent acquisition and application to acetaminophen-treated three-dimensional liver microtissues publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.M114.044305 – volume: 14 start-page: 2301 year: 2015 ident: 10.1016/j.isci.2020.100903_bib18 article-title: Peptide-centric proteome analysis: an alternative strategy for the analysis of tandem mass spectrometry data publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.O114.047035 – volume: 47 start-page: D1211 year: 2019 ident: 10.1016/j.isci.2020.100903_bib11 article-title: iProX: an integrated proteome resource publication-title: Nucleic Acids Res. doi: 10.1093/nar/gky869 – volume: 4 start-page: 587 year: 2017 ident: 10.1016/j.isci.2020.100903_bib1 article-title: An optimized shotgun strategy for the rapid generation of comprehensive human proteomes publication-title: Cell Syst. doi: 10.1016/j.cels.2017.05.009 – volume: 12 start-page: 258 year: 2015 ident: 10.1016/j.isci.2020.100903_bib20 article-title: DIA-Umpire: comprehensive computational framework for data-independent acquisition proteomics publication-title: Nat. Methods – volume: 16 start-page: 509 year: 2019 ident: 10.1016/j.isci.2020.100903_bib4 article-title: Prosit: proteome-wide prediction of peptide tandem mass spectra by deep learning publication-title: Nat. Methods doi: 10.1038/s41592-019-0426-7 – volume: 166 start-page: 766 year: 2016 ident: 10.1016/j.isci.2020.100903_bib8 article-title: Human SRMAtlas: a resource of targeted assays to quantify the complete human proteome publication-title: Cell doi: 10.1016/j.cell.2016.06.041 – volume: 90 start-page: 10881 year: 2018 ident: 10.1016/j.isci.2020.100903_bib10 article-title: Improved peptide retention time prediction in liquid chromatography through deep learning publication-title: Anal Chem. doi: 10.1021/acs.analchem.8b02386 – volume: 9 start-page: 555 year: 2012 ident: 10.1016/j.isci.2020.100903_bib13 article-title: Selected reaction monitoring-based proteomics: workflows, potential, pitfalls and future directions publication-title: Nat. Methods doi: 10.1038/nmeth.2015 – volume: 14 start-page: 259 year: 2017 ident: 10.1016/j.isci.2020.100903_bib24 article-title: Building ProteomeTools based on a complete synthetic human proteome publication-title: Nat. Methods doi: 10.1038/nmeth.4153 – volume: 16 start-page: 519 year: 2019 ident: 10.1016/j.isci.2020.100903_bib19 article-title: High-quality MS/MS spectrum prediction for data-dependent and data-independent acquisition data analysis publication-title: Nat. Methods doi: 10.1038/s41592-019-0427-6 – volume: 32 start-page: 96 year: 2017 ident: 10.1016/j.isci.2020.100903_bib6 article-title: The role of GPCRs in neurodegenerative diseases: avenues for therapeutic intervention publication-title: Curr. Opin. Pharmacol. doi: 10.1016/j.coph.2017.02.001 – volume: 22 start-page: 1345 year: 2010 ident: 10.1016/j.isci.2020.100903_bib12 article-title: A survey on transfer learning publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2009.191 – volume: 14 start-page: 921 year: 2017 ident: 10.1016/j.isci.2020.100903_bib14 article-title: Statistical control of peptide and protein error rates in large-scale targeted data-independent acquisition analyses publication-title: Nat. Methods doi: 10.1038/nmeth.4398 – volume: 89 start-page: 12690 year: 2017 ident: 10.1016/j.isci.2020.100903_bib23 article-title: pDeep: predicting MS/MS spectra of peptides with deep learning publication-title: Anal. Chem. doi: 10.1021/acs.analchem.7b02566 – volume: 509 start-page: 582 year: 2014 ident: 10.1016/j.isci.2020.100903_bib21 article-title: Mass-spectrometry-based draft of the human proteome publication-title: Nature doi: 10.1038/nature13319  | 
    
| SSID | ssj0002002496 | 
    
| Score | 2.3105216 | 
    
| Snippet | Data-independent acquisition mass spectrometry (DIA-MS) is a powerful technique that enables relatively deep proteomic profiling with superior quantification... | 
    
| SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref elsevier  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 100903 | 
    
| SubjectTerms | Analytical Chemistry Biological Sciences Classification of Proteins Proteomics  | 
    
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdG9wAvfIiv8iUj8QbZEteO7cdCmQrSpomtaDxFduxAoaRV1wrKX8-d40RUlabx2ObiJr6fz-fqd_cj5FXGnIKdHWlVXCY8y8pEVQYcYnMOLhcyC82ej0_y8YR_vBAXe6QVLkRWJf5jHWJ0nLvDMyaUDs2qAJEpAOxw4aobZD8XkH73yP7k5HT4BUXkBNJ_wC4WxzQ8LixuhXMgC4QA3YpjxQ0o9Onf2od288xduuTNdb0wm19mNvtnLzq6Qz61FT0NBeXHwXplD8o_uw0er_-ad8ntmJnSYWN3j-z5-j75Pd5gSRdFmXp8KhrrHCjEERu0JejowzA5PqMjszLU1I4aeh7Y5d7Rz9Mllqd0N2GUQtViwPxsQ0ceBXgvKaSg9BTbRcx_ehgX1hbEuAdkcvT-_N04iWINSYmaCImFzd_q1JUqZV5qxpy1mTMeEkDLtK8yVeauZNZ7mTGrykrZinmRDYwQAi4PHpJePa_9Y0Il96wETxlnKu51BSFYeOGcyg0rpcr7JGs9WJSxkzkKasyKlrL2vUCvF-j1ovF6n7zu7lk0fTyutH6LwOgssQd3-GK-_FpEfxUyZZp7J7VncKa0UgeWprfacsVtrvpEtLAqYjrTpCkw1PTKH3_ZYrCAtY44MbWfry8LNsg15LOMw9iPGkx2j4i1WBpOf30it9C69Q7bV-rpt9BPXKacSw3T-qbD9TXm6Mn_mT8lt_AT0veYfEZ6q-XaP4d8bmVfxBX8F3hBR1M priority: 102 providerName: Unpaywall  | 
    
| Title | Hybrid Spectral Library Combining DIA-MS Data and a Targeted Virtual Library Substantially Deepens the Proteome Coverage | 
    
| URI | https://dx.doi.org/10.1016/j.isci.2020.100903 https://www.ncbi.nlm.nih.gov/pubmed/32109675 https://www.proquest.com/docview/2369392248 https://pubmed.ncbi.nlm.nih.gov/PMC7044796 http://www.cell.com/article/S2589004220300870/pdf https://doaj.org/article/70294ed79e2148b7900943eb9b484b68  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 23 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2589-0042 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002002496 issn: 2589-0042 databaseCode: DOA dateStart: 20180101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2589-0042 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002002496 issn: 2589-0042 databaseCode: RPM dateStart: 20180101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELZQOcAFgXgFSmUkbrAi69hr-xgIVUBqVYkGlZNlr2dFqnRTtYlo_j0z3ocSVSocuO5jdnfmsz3WfjMfY-9yEQ2u7ESrkjqTeV5mpvIYkFBIDLnSeWr2fHRcTGfy25k625L6Ik5Y0x64cdxHPRRWQtQWBGbuQdvEhYNggzQyFKnMd2js1mbqPP1eo1Z4SVlOEScIodlWzDTkLqp4xc2hSCwB2ylmtatSat6_szjdTj5vcygfrOtLv_ntF4utBerwMXvUZpZ83HzRE3YP6qfsZrqhkixOMvNkgLd1ChzngZC0Ifjk6zg7-s4nfuW5ryP3_DSxwyHyH_MrKi_pb6JZhlSHEbOLDZ8ACehec0wh-Qm1e1heANrFsYFz1DM2O_xy-nmatWILWUmaBlnAxTvYYSzNUIC2QsQQ8ugBE7ggLFS5KYtYigCgcxFMWZlQCVD5yCul8PToOdurlzW8ZFxLECU61UdfSbAVTqEKVIym8KLUphiwvHO2K9tO5CSIsXAd5ezcUYAcBcg1ARqw9_09l00fjjuv_kQx7K-kHtrpACLLtchyf0PWgKkOAa5NR5o0A03N73z42w4uDscq_YDxNSzX106MCov5qJBo-0UDn_4VqZbK4u5twPQOsHa-YfdMPf-V-oHroZTaols_9BD8Bx-9-h8-es0ekkki5Qm9z_ZWV2t4g1naKhykAXnA7s-OT8Y__wAjSDhh | 
    
| linkProvider | Directory of Open Access Journals | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdG9wAvfIiv8iUj8QbZEteO7cdCmQrSpomtaDxFduxAoaRV1wrKX8-d40RUlabx2ObiJr6fz-fqd_cj5FXGnIKdHWlVXCY8y8pEVQYcYnMOLhcyC82ej0_y8YR_vBAXe6QVLkRWJf5jHWJ0nLvDMyaUDs2qAJEpAOxw4aobZD8XkH73yP7k5HT4BUXkBNJ_wC4WxzQ8LixuhXMgC4QA3YpjxQ0o9Onf2od288xduuTNdb0wm19mNvtnLzq6Qz61FT0NBeXHwXplD8o_uw0er_-ad8ntmJnSYWN3j-z5-j75Pd5gSRdFmXp8KhrrHCjEERu0JejowzA5PqMjszLU1I4aeh7Y5d7Rz9Mllqd0N2GUQtViwPxsQ0ceBXgvKaSg9BTbRcx_ehgX1hbEuAdkcvT-_N04iWINSYmaCImFzd_q1JUqZV5qxpy1mTMeEkDLtK8yVeauZNZ7mTGrykrZinmRDYwQAi4PHpJePa_9Y0Il96wETxlnKu51BSFYeOGcyg0rpcr7JGs9WJSxkzkKasyKlrL2vUCvF-j1ovF6n7zu7lk0fTyutH6LwOgssQd3-GK-_FpEfxUyZZp7J7VncKa0UgeWprfacsVtrvpEtLAqYjrTpCkw1PTKH3_ZYrCAtY44MbWfry8LNsg15LOMw9iPGkx2j4i1WBpOf30it9C69Q7bV-rpt9BPXKacSw3T-qbD9TXm6Mn_mT8lt_AT0veYfEZ6q-XaP4d8bmVfxBX8F3hBR1M | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+Spectral+Library+Combining+DIA-MS+Data+and+a+Targeted+Virtual+Library+Substantially+Deepens+the+Proteome+Coverage&rft.jtitle=iScience&rft.au=Lou%2C+Ronghui&rft.au=Tang%2C+Pan&rft.au=Ding%2C+Kang&rft.au=Li%2C+Shanshan&rft.date=2020-03-27&rft.eissn=2589-0042&rft.volume=23&rft.issue=3&rft.spage=100903&rft_id=info:doi/10.1016%2Fj.isci.2020.100903&rft_id=info%3Apmid%2F32109675&rft.externalDocID=32109675 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2589-0042&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2589-0042&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2589-0042&client=summon |