A comprehensive study of speed prediction in transportation system: From vehicle to traffic
In the intelligent transportation system (ITS), speed prediction plays a significant role in supporting vehicle routing and traffic guidance. Recently, a considerable amount of research has been devoted to a single-level (e.g., traffic or vehicle) prediction. However, a systematic review of speed pr...
Saved in:
Published in | iScience Vol. 25; no. 3; p. 103909 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
18.03.2022
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 2589-0042 2589-0042 |
DOI | 10.1016/j.isci.2022.103909 |
Cover
Abstract | In the intelligent transportation system (ITS), speed prediction plays a significant role in supporting vehicle routing and traffic guidance. Recently, a considerable amount of research has been devoted to a single-level (e.g., traffic or vehicle) prediction. However, a systematic review of speed prediction in and between different levels is still missing. In this article, existing research is comprehensively analyzed and divided into three levels, i.e. macro traffic, micro vehicles, and meso lane. In addition, this article summarizes the influencing factors and reviews the prediction methods based on how those methods utilize the available information to meet the challenges of the prediction at different levels. This is followed by a summary of evaluation metrics, public datasets, and open-source codes. Finally, future directions in this field are discussed to inspire and guide readers. This article aims to draw a complete picture of speed prediction and promote the development of ITS.
[Display omitted]
•A comprehensive review is provided for speed prediction in and between different levels•Existing speed prediction methods at different levels are systematically surveyed•The future directions of speed prediction in the transportation system are elaborated
Algorithms; Engineering; Transportation engineering |
---|---|
AbstractList | In the intelligent transportation system (ITS), speed prediction plays a significant role in supporting vehicle routing and traffic guidance. Recently, a considerable amount of research has been devoted to a single-level (e.g., traffic or vehicle) prediction. However, a systematic review of speed prediction in and between different levels is still missing. In this article, existing research is comprehensively analyzed and divided into three levels, i.e. macro traffic, micro vehicles, and meso lane. In addition, this article summarizes the influencing factors and reviews the prediction methods based on how those methods utilize the available information to meet the challenges of the prediction at different levels. This is followed by a summary of evaluation metrics, public datasets, and open-source codes. Finally, future directions in this field are discussed to inspire and guide readers. This article aims to draw a complete picture of speed prediction and promote the development of ITS. In the intelligent transportation system (ITS), speed prediction plays a significant role in supporting vehicle routing and traffic guidance. Recently, a considerable amount of research has been devoted to a single-level (e.g., traffic or vehicle) prediction. However, a systematic review of speed prediction in and between different levels is still missing. In this article, existing research is comprehensively analyzed and divided into three levels, i.e. macro traffic, micro vehicles, and meso lane. In addition, this article summarizes the influencing factors and reviews the prediction methods based on how those methods utilize the available information to meet the challenges of the prediction at different levels. This is followed by a summary of evaluation metrics, public datasets, and open-source codes. Finally, future directions in this field are discussed to inspire and guide readers. This article aims to draw a complete picture of speed prediction and promote the development of ITS. [Display omitted] •A comprehensive review is provided for speed prediction in and between different levels•Existing speed prediction methods at different levels are systematically surveyed•The future directions of speed prediction in the transportation system are elaborated Algorithms; Engineering; Transportation engineering In the intelligent transportation system (ITS), speed prediction plays a significant role in supporting vehicle routing and traffic guidance. Recently, a considerable amount of research has been devoted to a single-level (e.g., traffic or vehicle) prediction. However, a systematic review of speed prediction in and between different levels is still missing. In this article, existing research is comprehensively analyzed and divided into three levels, i.e. macro traffic, micro vehicles, and meso lane. In addition, this article summarizes the influencing factors and reviews the prediction methods based on how those methods utilize the available information to meet the challenges of the prediction at different levels. This is followed by a summary of evaluation metrics, public datasets, and open-source codes. Finally, future directions in this field are discussed to inspire and guide readers. This article aims to draw a complete picture of speed prediction and promote the development of ITS. • A comprehensive review is provided for speed prediction in and between different levels • Existing speed prediction methods at different levels are systematically surveyed • The future directions of speed prediction in the transportation system are elaborated Algorithms; Engineering; Transportation engineering In the intelligent transportation system (ITS), speed prediction plays a significant role in supporting vehicle routing and traffic guidance. Recently, a considerable amount of research has been devoted to a single-level (e.g., traffic or vehicle) prediction. However, a systematic review of speed prediction in and between different levels is still missing. In this article, existing research is comprehensively analyzed and divided into three levels, i.e. macro traffic, micro vehicles, and meso lane. In addition, this article summarizes the influencing factors and reviews the prediction methods based on how those methods utilize the available information to meet the challenges of the prediction at different levels. This is followed by a summary of evaluation metrics, public datasets, and open-source codes. Finally, future directions in this field are discussed to inspire and guide readers. This article aims to draw a complete picture of speed prediction and promote the development of ITS.In the intelligent transportation system (ITS), speed prediction plays a significant role in supporting vehicle routing and traffic guidance. Recently, a considerable amount of research has been devoted to a single-level (e.g., traffic or vehicle) prediction. However, a systematic review of speed prediction in and between different levels is still missing. In this article, existing research is comprehensively analyzed and divided into three levels, i.e. macro traffic, micro vehicles, and meso lane. In addition, this article summarizes the influencing factors and reviews the prediction methods based on how those methods utilize the available information to meet the challenges of the prediction at different levels. This is followed by a summary of evaluation metrics, public datasets, and open-source codes. Finally, future directions in this field are discussed to inspire and guide readers. This article aims to draw a complete picture of speed prediction and promote the development of ITS. |
ArticleNumber | 103909 |
Author | Huang, Yanjun Zhou, Zewei Yang, Ziru Zhang, Yuanjian Yu, Zhuoping Chen, Hong |
Author_xml | – sequence: 1 givenname: Zewei orcidid: 0000-0002-7378-9810 surname: Zhou fullname: Zhou, Zewei organization: School of Automotive Studies, Tongji University, Shanghai 201804, China – sequence: 2 givenname: Ziru orcidid: 0000-0003-3497-6119 surname: Yang fullname: Yang, Ziru organization: School of Automotive Studies, Tongji University, Shanghai 201804, China – sequence: 3 givenname: Yuanjian orcidid: 0000-0001-5563-8480 surname: Zhang fullname: Zhang, Yuanjian organization: Department of Aeronautical and Automotive Engineering, Loughborough University, LoughboroughLE11 3TU, UK – sequence: 4 givenname: Yanjun orcidid: 0000-0003-3133-8031 surname: Huang fullname: Huang, Yanjun email: yanjun_huang@tongji.edu.cn organization: School of Automotive Studies, Tongji University, Shanghai 201804, China – sequence: 5 givenname: Hong orcidid: 0000-0002-1724-8649 surname: Chen fullname: Chen, Hong organization: College of Electronics and Information Engineering, Tongji University, Shanghai201804, China – sequence: 6 givenname: Zhuoping surname: Yu fullname: Yu, Zhuoping organization: School of Automotive Studies, Tongji University, Shanghai 201804, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35281740$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk1rGzEQFSWlSdP8gR6Kjr3Y0eeuVEohhKYNBHppTz0IWTuKZXYlV1ob_O-jzSYlySEgkJh5781o5r1HRzFFQOgjJUtKaHO-WYbiwpIRxmqAa6LfoBMmlV4QItjRk_cxOitlQwhh9QjdvEPHXDJFW0FO0N8L7NKwzbCGWMIecBl33QEnj8sWoMM10wU3hhRxiHjMNpZtyqO9j5RDGWH4gq9yGvAe1sH1gMc0wbwP7gN6621f4OzhPkV_rr7_vvy5uPn14_ry4mbhJKPjQrWNEsx571crpbXSAA4EbUinpeeyabXvrOUguJa6azvKqJZSCk9do5zi_BRdz7pdshuzzWGw-WCSDeY-kPKtsXmcmjOgXOtazRVzQggprbfKg-NS01bLRletb7PWdrcaoHMQ62f6Z6LPMzGszW3aG6WJaBipAp8fBHL6t4MymqEuCvreRki7YljDlRaME1ahn57W-l_kcTsVoGaAy6mUDN64MI--lg69ocRMXjAbM3nBTF4wsxcqlb2gPqq_Svo6k6Buax8gm4qA6KoFMrixjjO8Rr8D9P_NnA |
CitedBy_id | crossref_primary_10_1016_j_jclepro_2023_137452 crossref_primary_10_1016_j_inffus_2023_102078 crossref_primary_10_1007_s40996_024_01383_z crossref_primary_10_1109_TITS_2023_3349198 crossref_primary_10_1016_j_conengprac_2023_105751 crossref_primary_10_1016_j_eiar_2024_107767 crossref_primary_10_1109_TITS_2024_3486963 crossref_primary_10_1177_09544070231186186 crossref_primary_10_1007_s10846_024_02110_6 crossref_primary_10_1007_s11356_024_31927_9 crossref_primary_10_1109_ACCESS_2023_3310821 crossref_primary_10_1016_j_energy_2024_130416 crossref_primary_10_1016_j_cnsns_2024_107871 crossref_primary_10_1016_j_jclepro_2023_136937 crossref_primary_10_3390_s23156950 crossref_primary_10_1016_j_trf_2025_01_018 crossref_primary_10_1177_09544070231213782 crossref_primary_10_1142_S0129183123501279 crossref_primary_10_1177_09544070241272761 crossref_primary_10_1016_j_eng_2023_03_018 crossref_primary_10_1007_s00521_024_10850_7 crossref_primary_10_1109_TVT_2024_3424422 crossref_primary_10_1016_j_scitotenv_2024_174724 crossref_primary_10_1016_j_knosys_2024_111913 crossref_primary_10_3390_electronics14010110 crossref_primary_10_1016_j_energy_2022_126060 crossref_primary_10_1155_atr_9941856 crossref_primary_10_4028_p_FZ0iNi crossref_primary_10_1002_ente_202300919 crossref_primary_10_3390_s25010191 crossref_primary_10_3390_en16104121 crossref_primary_10_1109_ACCESS_2023_3334388 crossref_primary_10_1061_JTEPBS_TEENG_8059 crossref_primary_10_3390_s25041225 |
Cites_doi | 10.1109/TITS.2016.2643005 10.1177/0361198120941508 10.1016/j.apenergy.2015.12.035 10.1016/j.egypro.2018.09.220 10.1109/TITS.2016.2580318 10.1109/TITS.2018.2877785 10.1103/PhysRevE.53.2366 10.1016/j.ymssp.2021.107765 10.1109/TITS.2018.2882609 10.1109/TVT.2019.2912893 10.1109/TITS.2019.2950416 10.1016/j.trc.2014.02.007 10.1109/TNNLS.2016.2574840 10.1111/mice.12221 10.1109/ACCESS.2020.2992507 10.1016/j.future.2019.06.030 10.1016/S0304-3800(00)00269-6 10.1109/TKDE.2020.3001195 10.1109/ACCESS.2021.3071174 10.3390/en10010074 10.1016/j.trc.2012.08.004 10.1049/iet-its.2018.5593 10.1109/TITS.2013.2247040 10.1016/j.energy.2019.03.083 10.1016/j.trc.2017.02.024 10.1016/j.trc.2019.12.007 10.1109/ACCESS.2018.2890414 10.1109/ACCESS.2018.2868735 10.1016/j.energy.2021.120273 10.1016/j.neucom.2021.03.054 10.1109/TITS.2007.903439 10.1049/iet-its.2020.0410 10.1049/itr2.12019 10.1016/j.neucom.2018.10.097 10.1007/s41019-020-00151-z 10.1609/aaai.v34i01.5477 10.1007/s11431-017-9213-0 10.1109/TITS.2013.2294934 10.1016/j.apenergy.2016.12.056 10.1016/j.trc.2021.103372 10.1109/MITS.2019.2903431 10.1109/ACCESS.2020.3034551 10.1016/j.trc.2010.10.002 10.1016/j.trc.2019.02.002 10.1080/15472450.2019.1583965 10.1080/15472450902858368 10.1049/iet-its.2019.0463 10.1016/j.vehcom.2019.100184 10.1109/TCST.2014.2361294 10.3141/1748-12 10.1061/(ASCE)0733-947X(2003)129:2(161) 10.1016/j.jpowsour.2018.11.085 10.1016/j.trc.2018.04.012 10.1016/j.ifacol.2019.09.104 10.1109/TITS.2020.2970754 10.1016/j.neucom.2018.08.067 10.1109/TITS.2019.2963722 10.1016/j.jpowsour.2016.11.106 10.1016/j.trc.2020.102674 10.1016/j.trb.2010.02.011 10.1111/mice.12417 10.1109/TITS.2019.2935152 10.1016/S0001-4575(02)00022-2 10.1016/j.trb.2009.06.001 10.1109/TITS.2019.2955794 10.1109/TBDATA.2016.2620488 10.1007/s12239-019-0067-y 10.1109/MITS.2018.2806634 10.3901/JME.2019.10.086 10.1016/j.neucom.2020.11.038 10.1016/j.trc.2018.03.001 10.1016/j.trc.2020.01.010 10.1109/TITS.2019.2910560 10.1016/j.is.2016.01.007 10.1016/j.trc.2019.07.003 10.4271/2015-01-0295 10.3141/2188-04 10.1016/j.knosys.2020.106592 10.1016/j.apenergy.2016.02.026 10.1609/aaai.v34i04.5758 10.1109/JSEN.2020.3007809 10.1016/j.knosys.2018.09.003 10.1016/j.apm.2005.02.008 10.1016/j.trc.2015.03.014 10.1016/j.apenergy.2016.12.112 10.1016/j.energy.2020.118126 10.1109/TITS.2020.2984813 10.1609/aaai.v33i01.3301485 10.1109/TITS.2020.2972198 10.1109/TKDE.2017.2718525 10.1109/ACCESS.2018.2879055 10.1016/j.trc.2014.01.005 10.1061/(ASCE)0733-947X(2003)129:6(664) 10.1109/TITS.2018.2878068 10.1016/0191-2615(93)90038-C 10.1109/TITS.2018.2856809 10.1609/aaai.v34i04.6056 10.1109/TITS.2016.2620498 10.1016/j.jocs.2020.101221 10.1016/j.trc.2020.102622 10.1109/JIOT.2020.2983332 10.1109/ACCESS.2019.2926040 10.1109/TITS.2013.2290285 10.7717/peerj-cs.470 10.1109/TCST.2014.2359176 10.1016/j.trc.2019.05.039 10.1016/j.pmcj.2018.07.004 10.1109/TIV.2018.2804159 10.1016/j.physrep.2005.08.005 10.1109/TITS.2018.2813978 10.1109/ACCESS.2020.2977219 10.1016/j.apenergy.2018.12.032 10.1109/TIM.2011.2147670 10.3390/app11125619 10.1016/j.ijepes.2018.01.008 10.1609/aaai.v33i01.3301890 10.1109/ACCESS.2020.3038380 10.1016/j.energy.2018.05.064 10.1177/0361198120911052 |
ContentType | Journal Article |
Copyright | 2022 The Author(s) 2022 The Author(s). 2022 The Author(s) 2022 |
Copyright_xml | – notice: 2022 The Author(s) – notice: 2022 The Author(s). – notice: 2022 The Author(s) 2022 |
DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.1016/j.isci.2022.103909 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2589-0042 |
ExternalDocumentID | oai_doaj_org_article_e8c7c79382c44455afa8fec359179569 PMC8904620 35281740 10_1016_j_isci_2022_103909 S2589004222001791 |
Genre | Journal Article Review |
GroupedDBID | 0SF 53G 6I. AACTN AAEDW AAFTH AALRI AAXUO ABMAC ADBBV AEXQZ AFTJW AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BCNDV EBS FDB GROUPED_DOAJ HYE M41 NCXOZ OK1 ROL RPM SSZ 0R~ AAMRU AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AKBMS AKYEP APXCP CITATION EJD NPM 7X8 5PM |
ID | FETCH-LOGICAL-c521t-876842cfffbb89989eece4160d95f35679fdaa3e43959d7d12195554f1c68c833 |
IEDL.DBID | DOA |
ISSN | 2589-0042 |
IngestDate | Wed Aug 27 01:20:44 EDT 2025 Thu Aug 21 18:28:46 EDT 2025 Fri Jul 11 13:09:57 EDT 2025 Thu Jan 02 22:55:01 EST 2025 Thu Apr 24 23:06:47 EDT 2025 Tue Jul 01 01:03:48 EDT 2025 Tue Jul 25 20:58:26 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Engineering Transportation engineering Algorithms |
Language | English |
License | This is an open access article under the CC BY license. 2022 The Author(s). This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c521t-876842cfffbb89989eece4160d95f35679fdaa3e43959d7d12195554f1c68c833 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-7378-9810 0000-0003-3497-6119 0000-0003-3133-8031 0000-0002-1724-8649 0000-0001-5563-8480 |
OpenAccessLink | https://doaj.org/article/e8c7c79382c44455afa8fec359179569 |
PMID | 35281740 |
PQID | 2638942302 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e8c7c79382c44455afa8fec359179569 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8904620 proquest_miscellaneous_2638942302 pubmed_primary_35281740 crossref_citationtrail_10_1016_j_isci_2022_103909 crossref_primary_10_1016_j_isci_2022_103909 elsevier_sciencedirect_doi_10_1016_j_isci_2022_103909 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-03-18 |
PublicationDateYYYYMMDD | 2022-03-18 |
PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-18 day: 18 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | iScience |
PublicationTitleAlternate | iScience |
PublicationYear | 2022 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Zhao, Gao, Bai, Wang, Lu (bib175) 2019; 11 Guo, He, Sun (bib35) 2019; 68 Luo, Cai, Yu, Sun, Bi, Jiang (bib81) 2019; 101 Min, Wynter (bib89) 2011; 19 Diao, Wang, Zhang, Liu, Xie, He (bib26) 2019; 33 Wang, Thorpe, Suppe (bib127) 2003 Wu, Tan, Qin, Ran, Jiang (bib134) 2018; 90 Lee, Jeon, Sohn (bib58) 2020; 22 Zhou, Yang, Ying, Yuan, Yang (bib179) 2019; 20 Chen, Wu, Shi, Huang, Yang, Ke, Zhao (bib17) 2020; 20 Gu, Zhao, Mason (bib32) 2019; 52 Guo, Hu, Qian, Liu, Zhang, Sun, Gao, Yin (bib36) 2021; 22 Zhang (bib162) 2019; 55 Liu, Chu, Xu, Jia, Xu (bib75) 2017; 10638 Sun, Moura, Hu, Hedrick, Sun (bib116) 2015; 23 Fridman, Brown, Glazer, Angell, Dodd, Jenik, Terwilliger, Patsekin, Kindelsberger, Ding (bib28) 2019; 7 Wang, Chen, He (bib128) 2019; 100 Boquet, Morell, Serrano, Vicario (bib7) 2020; 115 Chen, Yan, Liu, Li, Wang, Tian (bib14) 2021; 9 Liao, Zhang, Wu, McIlwraith, Chen, Yang, Guo, Wu (bib66) 2018 Shen, Yu, Zhang, Kong (bib109) 2021; 7 Zhang, Liu, Qi (bib167) 2020; 206 Feng, Wu, Zhang, Wu (bib27) 2020; 8 Shao, Sun (bib107) 2021; 22 Clark (bib21) 2003; 129 Li, Qu, Zhang, Wang, Ran (bib60) 2019; 23 Yu, Yin, Zhu (bib152) 2018 Bruna, Zaremba, Szlam, LeCun (bib9) 2014 Csikós, Viharos, Kis, Tettamanti, Varga (bib22) 2015 Huang, Ran (bib41) 2003 Li, Wang, Fan, Zhang, Guo, Siddique, Ban (bib61) 2020; 111 Deo, Rangesh, Trivedi (bib25) 2018; 3 Xu, Dai, Liu, Gao, Lin, Qi, Xiong (bib141) 2021 Xie, He, Peng (bib138) 2017; 196 Yan, Li, Hongwen, Peng (bib142) 2018; 152 Yu, Markos, Zhang (bib156) 2021 Yue, Yeh, Zhuang (bib159) 2007 Qi, Ishak (bib102) 2014; 43 Qu, Lyu, Li, Ma, Fan (bib104) 2021; 451 Xie, Hu, Xin, Brighton (bib139) 2019; 236 Lefevre, Sun, Bajcsy, Laugier (bib59) 2014 Suh, Shao, Sun (bib114) 2020 Tang, Yao, Sun, Aggarwal, Mitra, Wang (bib120) 2020; 34 Xiang, Ding, Wang, He (bib136) 2017; 189 Gu, Lu, Qin, Li, Shao (bib33) 2019; 106 Liu, Asher, Gong, Huang, Kolmanovsky (bib71) Jing, Kurt, Ozatay, Michelini, Filev, Ozguner (bib47) 2015 Yang, Yuan, Liu (bib144) 2020; 8 Zhang, Lin, Li, Wang (bib173) 2021; 132 Shin, Yoon (bib113) 2020 Wang, Infield (bib132) 2018; 99 Li, Yu, Shahabi, Liu (bib64) 2018 Gaikwad, Rabinowitz, Motallebiaraghi, Bradley, Asher, Fong, Meyer (bib30) 2020 Yang, Dillon, Chen (bib143) 2017; 28 Lin, Li, Chen, Ye, Huai (bib68) 2018; 30 Liu, Juang (bib70) 2021; 11 Yao, Chen, Cao, Jin, Zhang, Zhu, Yu (bib145) 2017; 32 Jing, Filev, Kurt, Özatay, Michelini, Özgüner (bib46) 2017 Barrios, Motai (bib5) 2011; 60 Tang, Liu, Zou, Zhang, Wang (bib119) 2017; 18 Ge, Li, Liu, Zhou (bib31) 2019 Zhang, He, Lin, Wang, Li (bib171) 2020 Lu, Rui, Yi, Ran, Gu (bib79) 2020; 8 Tampere, Immers (bib118) 2007 Vlahogianni, Karlaftis, Golias (bib125) 2014; 43 Borhan, Vahidi (bib8) 2010; 1 Jin (bib45) 2010; 44 Zhao, Zhao, Jian-cheng, Xin (bib174) 2020; 47 Cui, Henrickson, Ke, Wang (bib23) 2020; 21 Zhang, Wang, Chen, Cao, Huang (bib170) 2021; 22 Amini, Feng, Yang, Kolmanovsky, Sun (bib2) 2020; 2674 Kim, Wang, Mihaylova (bib51) 2019 Korček, Sekanina, Fušík (bib53) 2011 Yu, Liu, Wu, Liao, Anwar, Li, Zhou (bib153) 2019; 163 Newell (bib93) 1993; 27 Yin, Wu, Wei, Shen, Qi, Yin (bib150) 2021; 428 Ahmed, Ghasemzadeh (bib1) 2018; 91 Zhang, Xi, Langari (bib163) 2017; 18 Cao, He, Cui (bib10) 2021; 15 Asif, Dauwels, Goh, Oran, Fathi, Xu, Dhanya, Mitrovic, Jaillet (bib3) 2014; 15 Wang, Shi (bib130) 2013; 27 Zang, Ling, Wei, Tang, Cheng (bib160) 2019; 20 Yuan, Li (bib158) 2021 Atwood, Towsley (bib4) 2016; 29 Ke, Feng, Cui, Wang (bib48) 2020; 14 Ni, Leonard (bib94) 2005; 29 Maerivoet, De Moor (bib87) 2005; 419 Polson, Sokolov (bib100) 2017 Wu, Pan, Long, Jiang, Zhang (bib135) 2019 Vogel (bib126) 2003; 35 Lu, Rui, Ran (bib78) 2020 Liu, Cheng, Wang, Cheng, Gao (bib73) 2018; 2018 Zhang, He, Zhang, Lin, Li (bib165) 2020 Park, Li, Murphey, Kristinsson, McGee, Kuang, Phillips (bib98) 2011 Zhao, Song, Zhang, Liu, Wang, Lin, Deng, Li (bib177) 2020; 21 Chen, Petty, Skabardonis, Varaiya, Jia (bib13) 2001; 1748 Chiu, Zhou, Song (bib20) 2010; 44 Pan, Liang, Wang, Yu, Zheng, Zhang (bib96) 2019 Zhang, Chen, Li, Liu, Huang, Cunningham, Early (bib169) 2021 Helbing (bib38) 1996; 53 Tedjopurnomo, Bao, Zheng, Choudhury, Qin (bib122) 2020 Wang, Chen, Min, He, Yang, Zhang (bib131) 2018 Ma, Tao, Wang, Yu, Wang (bib85) 2015; 54 Park, Murphey, McGee, Kristinsson, Kuang, Phillips (bib99) 2014; 15 Nagel, Schreckenberg (bib91) 1992; 2 Shen, Zhao, Zhan, Li, Guo (bib110) 2018; 155 Ke, Li, Cui, Wang (bib50) 2020; 2674 Li, Chen, Zhao (bib63) 2019; 13 Nagy, Simon (bib92) 2018; 50 Cui, Ke, Wang (bib24) 2018; 118 Furtlehner, Lasgouttes, Attanasi, Pezzulla, Gentile (bib29) 2021 Liu, Li, Gao, Lei, Zhang, Chen (bib74) 2021; 158 Zheng, Fan, Wang, Qi (bib178) 2020; 34 Ke, Li, Cui, Wang (bib49) 2018 Yu, Gu (bib155) 2019; 20 He, Wang, Han, Han, Bai, Liu (bib37) 2021; 225 Guo, He, Peng, Zhou (bib34) 2019; 175 Ma, Sheng, Jin, Ma, Gao (bib83) 2018; 6 Tian, Zhang, Li, Lin, Yang (bib123) 2018; 318 Yu, Li, Zhang, Zhu (bib151) 2019 Chen, Li, Teo, Zou, Wang, Wang, Zeng (bib12) 2019; 33 Zhao, Gao, Yang, Li, Feng, Qin, Bai (bib176) 2019; 7 Chib (bib19) 2001; 5 Bogaerts, Masegosa, Angarita-Zapata, Onieva, Hellinckx (bib6) 2020; 112 Zhang, Shi, Xie, Ma, King, Yeung (bib164) 2018 Shen, Chen, Pan, Shen, Liu (bib108) 2018; 6 Zhang, Zheng, Liu, Jia (bib166) 2020; 396 Huang, Huang, Liu, Dai, Kong (bib40) 2020 Li, Chen, Lu, Zhao (bib62) 2018; 61 Lian, Liu, Li, Liu, Zhou, Yang, Yuan (bib65) 2017; 10 Zhang, Xiong, Sun (bib168) 2017; 185 Yin, Wu, Wei, Shen, Qi, Yin (bib149) 2021 Qian, Feng, Yu, Xu, Wu (bib103) 2020; 7 Sun, Sun, He (bib117) 2017; 185 Lee, Lee, Kim, Park (bib57) 2019 Shih, Huang, Yen, Tsung (bib111) 2019 Tao, Gu, Lu, Rui, Zhou, Ding (bib121) 2020 Zhu, Peng, Xiong, Zhang (bib182) 2016 Liebig, Piatkowski, Bockermann, Morik (bib67) 2017; 64 Lippi, Bertini, Frasconi (bib69) 2013; 14 Le, Oentaryo, Liu, Lau (bib55) 2017; 3 Park, Lee, Bahng, Tae, Kim, Jin, Ko, Choo (bib97) 2020 Miglani, Kumar (bib88) 2019; 20 Zhou, Ravey, Péra (bib181) 2019; 412 Yu (bib154) 2021; 212 Lee, Eo, Jung, Yoon, Rhee (bib56) 2021; 9 Liu, Wang, Zhu (bib72) 2018; 33 Yeon, Min, Shin, Sunwoo, Han (bib148) 2019; 20 Ye, Zhao, Ye, Xu (bib147) 2020 Ye, Hao, Qi, Wu, Boriboonsomsin, Barth (bib146) 2019; 20 Xie, Xiong, Zhu (bib140) 2020 Williams, Hoel (bib133) 2003; 129 Niu, Zhang, Zhou, Cheng, Wang (bib95) 2019 Moser, Waschl, Schmied, Efendic, del Re (bib90) 2015; 8 Yu, Li, Shahabi, Demiryurek, Liu (bib157) 2017 Zhang, Zhang, Yu, Yu (bib161) 2021 Chen, Pao, Lee (bib18) 2014 Hyeon, Kim, Prakash, Stefanopoulou (bib43) 2019 Ma, Dai, He, Ma, Wang, Wang (bib84) 2017 Rapant, Slaninová, Martinovič, Martinovič (bib105) 2016 Ma, Zhong, Li, Ma, Cui, Wang (bib86) 2021; 22 Chandra, Al-Deek (bib11) 2009; 13 Lana, Ser, Velez, Vlahogianni (bib54) 2018; 10 Sun, Hu, Moura, Sun (bib115) 2015; 23 Huang, Yang, Lu, Mi, Kondlapudi (bib39) 2018; 19 Wang, Gu, Wu, Liu, Xiong (bib129) 2016 Xie, Guo, Chen, Xiao, Wang, Zhao (bib137) 2019 Zhang, Li, Lin, Wang, He (bib172) 2019; 105 Chen, Chen, Xie, Cao, Gao, Feng (bib15) 2020; 34 Huang, Wang, Khajepour, Hongwen, ji (bib42) 2017; 341 López Manibardo, Laña, Del Ser (bib77) 2021 Van Wageningen-Kessels, Van Lint, Hoogendoorn, Vuik (bib124) 2010; 2188 Jiang, Fei (bib44) 2017; 18 Polychronopoulos, Tsogas, Amditis, Andreone (bib101) 2007; 8 Zhou, Ravey, Marion-Péra (bib180) 2019 Logofet, Lesnaya (bib76) 2000; 126 Raza, Zhong (bib106) 2017 Kim, Wang, Zhu, Mihaylova (bib52) 2018 Lu, Yi, Liu, Gu, Rui, Ran (bib80) 2020; 14 Lv, Xu, Zheng, Yin, Zhao, Zhou (bib82) 2018 Shin, Sunwoo (bib112) 2019; 20 Chen, Sun (bib16) 2021 Huang (10.1016/j.isci.2022.103909_bib40) 2020 López Manibardo (10.1016/j.isci.2022.103909_bib77) 2021 Feng (10.1016/j.isci.2022.103909_bib27) 2020; 8 Wang (10.1016/j.isci.2022.103909_bib130) 2013; 27 Ma (10.1016/j.isci.2022.103909_bib86) 2021; 22 Yang (10.1016/j.isci.2022.103909_bib143) 2017; 28 Korček (10.1016/j.isci.2022.103909_bib53) 2011 Zhou (10.1016/j.isci.2022.103909_bib179) 2019; 20 Li (10.1016/j.isci.2022.103909_bib60) 2019; 23 Li (10.1016/j.isci.2022.103909_bib61) 2020; 111 Wang (10.1016/j.isci.2022.103909_bib128) 2019; 100 Zhu (10.1016/j.isci.2022.103909_bib182) 2016 Deo (10.1016/j.isci.2022.103909_bib25) 2018; 3 Yu (10.1016/j.isci.2022.103909_bib151) 2019 Huang (10.1016/j.isci.2022.103909_bib39) 2018; 19 Jing (10.1016/j.isci.2022.103909_bib47) 2015 Shin (10.1016/j.isci.2022.103909_bib113) 2020 Tedjopurnomo (10.1016/j.isci.2022.103909_bib122) 2020 Diao (10.1016/j.isci.2022.103909_bib26) 2019; 33 Helbing (10.1016/j.isci.2022.103909_bib38) 1996; 53 Ahmed (10.1016/j.isci.2022.103909_bib1) 2018; 91 Liu (10.1016/j.isci.2022.103909_bib74) 2021; 158 Huang (10.1016/j.isci.2022.103909_bib41) 2003 Liu (10.1016/j.isci.2022.103909_bib72) 2018; 33 Zhang (10.1016/j.isci.2022.103909_bib165) 2020 Zhang (10.1016/j.isci.2022.103909_bib170) 2021; 22 Hyeon (10.1016/j.isci.2022.103909_bib43) 2019 Wang (10.1016/j.isci.2022.103909_bib127) 2003 Cui (10.1016/j.isci.2022.103909_bib23) 2020; 21 Ke (10.1016/j.isci.2022.103909_bib50) 2020; 2674 Zhang (10.1016/j.isci.2022.103909_bib166) 2020; 396 Yu (10.1016/j.isci.2022.103909_bib155) 2019; 20 Wang (10.1016/j.isci.2022.103909_bib131) 2018 Bogaerts (10.1016/j.isci.2022.103909_bib6) 2020; 112 Ke (10.1016/j.isci.2022.103909_bib49) 2018 Liu (10.1016/j.isci.2022.103909_bib70) 2021; 11 Polson (10.1016/j.isci.2022.103909_bib100) 2017 Gu (10.1016/j.isci.2022.103909_bib32) 2019; 52 Sun (10.1016/j.isci.2022.103909_bib117) 2017; 185 Clark (10.1016/j.isci.2022.103909_bib21) 2003; 129 Ma (10.1016/j.isci.2022.103909_bib83) 2018; 6 Jiang (10.1016/j.isci.2022.103909_bib44) 2017; 18 Zang (10.1016/j.isci.2022.103909_bib160) 2019; 20 Chen (10.1016/j.isci.2022.103909_bib18) 2014 Shao (10.1016/j.isci.2022.103909_bib107) 2021; 22 Zhao (10.1016/j.isci.2022.103909_bib174) 2020; 47 Lana (10.1016/j.isci.2022.103909_bib54) 2018; 10 Park (10.1016/j.isci.2022.103909_bib97) 2020 Liu (10.1016/j.isci.2022.103909_bib73) 2018; 2018 Kim (10.1016/j.isci.2022.103909_bib52) 2018 Yang (10.1016/j.isci.2022.103909_bib144) 2020; 8 Cui (10.1016/j.isci.2022.103909_bib24) 2018; 118 Li (10.1016/j.isci.2022.103909_bib62) 2018; 61 Tao (10.1016/j.isci.2022.103909_bib121) 2020 Csikós (10.1016/j.isci.2022.103909_bib22) 2015 Chandra (10.1016/j.isci.2022.103909_bib11) 2009; 13 Suh (10.1016/j.isci.2022.103909_bib114) 2020 Liu (10.1016/j.isci.2022.103909_bib75) 2017; 10638 Zhang (10.1016/j.isci.2022.103909_bib173) 2021; 132 Lippi (10.1016/j.isci.2022.103909_bib69) 2013; 14 Amini (10.1016/j.isci.2022.103909_bib2) 2020; 2674 Chib (10.1016/j.isci.2022.103909_bib19) 2001; 5 Pan (10.1016/j.isci.2022.103909_bib96) 2019 Xie (10.1016/j.isci.2022.103909_bib139) 2019; 236 Barrios (10.1016/j.isci.2022.103909_bib5) 2011; 60 Liao (10.1016/j.isci.2022.103909_bib66) 2018 Xie (10.1016/j.isci.2022.103909_bib138) 2017; 196 Shen (10.1016/j.isci.2022.103909_bib108) 2018; 6 Xie (10.1016/j.isci.2022.103909_bib137) 2019 Qu (10.1016/j.isci.2022.103909_bib104) 2021; 451 Liebig (10.1016/j.isci.2022.103909_bib67) 2017; 64 Ni (10.1016/j.isci.2022.103909_bib94) 2005; 29 Furtlehner (10.1016/j.isci.2022.103909_bib29) 2021 Xiang (10.1016/j.isci.2022.103909_bib136) 2017; 189 Bruna (10.1016/j.isci.2022.103909_bib9) 2014 Fridman (10.1016/j.isci.2022.103909_bib28) 2019; 7 Yin (10.1016/j.isci.2022.103909_bib149) 2021 Zhao (10.1016/j.isci.2022.103909_bib177) 2020; 21 Zhang (10.1016/j.isci.2022.103909_bib168) 2017; 185 Chen (10.1016/j.isci.2022.103909_bib12) 2019; 33 Nagy (10.1016/j.isci.2022.103909_bib92) 2018; 50 Tian (10.1016/j.isci.2022.103909_bib123) 2018; 318 Chen (10.1016/j.isci.2022.103909_bib16) 2021 Lv (10.1016/j.isci.2022.103909_bib82) 2018 Wang (10.1016/j.isci.2022.103909_bib132) 2018; 99 Raza (10.1016/j.isci.2022.103909_bib106) 2017 Yue (10.1016/j.isci.2022.103909_bib159) 2007 Xu (10.1016/j.isci.2022.103909_bib141) 2021 Zhang (10.1016/j.isci.2022.103909_bib164) 2018 Huang (10.1016/j.isci.2022.103909_bib42) 2017; 341 Shin (10.1016/j.isci.2022.103909_bib112) 2019; 20 Zhang (10.1016/j.isci.2022.103909_bib162) 2019; 55 Rapant (10.1016/j.isci.2022.103909_bib105) 2016 Moser (10.1016/j.isci.2022.103909_bib90) 2015; 8 Kim (10.1016/j.isci.2022.103909_bib51) 2019 Li (10.1016/j.isci.2022.103909_bib63) 2019; 13 Shen (10.1016/j.isci.2022.103909_bib110) 2018; 155 Sun (10.1016/j.isci.2022.103909_bib116) 2015; 23 Wu (10.1016/j.isci.2022.103909_bib134) 2018; 90 Jin (10.1016/j.isci.2022.103909_bib45) 2010; 44 Lee (10.1016/j.isci.2022.103909_bib58) 2020; 22 Polychronopoulos (10.1016/j.isci.2022.103909_bib101) 2007; 8 Lian (10.1016/j.isci.2022.103909_bib65) 2017; 10 Guo (10.1016/j.isci.2022.103909_bib35) 2019; 68 Park (10.1016/j.isci.2022.103909_bib98) 2011 Lin (10.1016/j.isci.2022.103909_bib68) 2018; 30 Williams (10.1016/j.isci.2022.103909_bib133) 2003; 129 Zhang (10.1016/j.isci.2022.103909_bib163) 2017; 18 Chen (10.1016/j.isci.2022.103909_bib13) 2001; 1748 Xie (10.1016/j.isci.2022.103909_bib140) 2020 Zhang (10.1016/j.isci.2022.103909_bib169) 2021 Vogel (10.1016/j.isci.2022.103909_bib126) 2003; 35 Lu (10.1016/j.isci.2022.103909_bib79) 2020; 8 Tang (10.1016/j.isci.2022.103909_bib120) 2020; 34 Yan (10.1016/j.isci.2022.103909_bib142) 2018; 152 Nagel (10.1016/j.isci.2022.103909_bib91) 1992; 2 Ye (10.1016/j.isci.2022.103909_bib147) 2020 Chiu (10.1016/j.isci.2022.103909_bib20) 2010; 44 Wu (10.1016/j.isci.2022.103909_bib135) 2019 Van Wageningen-Kessels (10.1016/j.isci.2022.103909_bib124) 2010; 2188 Yin (10.1016/j.isci.2022.103909_bib150) 2021; 428 Ke (10.1016/j.isci.2022.103909_bib48) 2020; 14 Chen (10.1016/j.isci.2022.103909_bib14) 2021; 9 Yu (10.1016/j.isci.2022.103909_bib154) 2021; 212 Ge (10.1016/j.isci.2022.103909_bib31) 2019 Yeon (10.1016/j.isci.2022.103909_bib148) 2019; 20 Yu (10.1016/j.isci.2022.103909_bib152) 2018 Maerivoet (10.1016/j.isci.2022.103909_bib87) 2005; 419 Niu (10.1016/j.isci.2022.103909_bib95) 2019 Tang (10.1016/j.isci.2022.103909_bib119) 2017; 18 Luo (10.1016/j.isci.2022.103909_bib81) 2019; 101 Ma (10.1016/j.isci.2022.103909_bib85) 2015; 54 Shen (10.1016/j.isci.2022.103909_bib109) 2021; 7 Cao (10.1016/j.isci.2022.103909_bib10) 2021; 15 Borhan (10.1016/j.isci.2022.103909_bib8) 2010; 1 Zhang (10.1016/j.isci.2022.103909_bib172) 2019; 105 Le (10.1016/j.isci.2022.103909_bib55) 2017; 3 Tampere (10.1016/j.isci.2022.103909_bib118) 2007 Zhao (10.1016/j.isci.2022.103909_bib175) 2019; 11 Yuan (10.1016/j.isci.2022.103909_bib158) 2021 Zhou (10.1016/j.isci.2022.103909_bib181) 2019; 412 Zheng (10.1016/j.isci.2022.103909_bib178) 2020; 34 Park (10.1016/j.isci.2022.103909_bib99) 2014; 15 Shih (10.1016/j.isci.2022.103909_bib111) 2019 Zhang (10.1016/j.isci.2022.103909_bib161) 2021 Guo (10.1016/j.isci.2022.103909_bib36) 2021; 22 Asif (10.1016/j.isci.2022.103909_bib3) 2014; 15 Chen (10.1016/j.isci.2022.103909_bib15) 2020; 34 Ma (10.1016/j.isci.2022.103909_bib84) 2017 Boquet (10.1016/j.isci.2022.103909_bib7) 2020; 115 Miglani (10.1016/j.isci.2022.103909_bib88) 2019; 20 Lee (10.1016/j.isci.2022.103909_bib57) 2019 Zhang (10.1016/j.isci.2022.103909_bib171) 2020 Lu (10.1016/j.isci.2022.103909_bib80) 2020; 14 Liu (10.1016/j.isci.2022.103909_bib71) Lu (10.1016/j.isci.2022.103909_bib78) 2020 Vlahogianni (10.1016/j.isci.2022.103909_bib125) 2014; 43 Wang (10.1016/j.isci.2022.103909_bib129) 2016 Sun (10.1016/j.isci.2022.103909_bib115) 2015; 23 Gu (10.1016/j.isci.2022.103909_bib33) 2019; 106 Lee (10.1016/j.isci.2022.103909_bib56) 2021; 9 Chen (10.1016/j.isci.2022.103909_bib17) 2020; 20 Zhao (10.1016/j.isci.2022.103909_bib176) 2019; 7 Li (10.1016/j.isci.2022.103909_bib64) 2018 Min (10.1016/j.isci.2022.103909_bib89) 2011; 19 Atwood (10.1016/j.isci.2022.103909_bib4) 2016; 29 Zhou (10.1016/j.isci.2022.103909_bib180) 2019 Ye (10.1016/j.isci.2022.103909_bib146) 2019; 20 Guo (10.1016/j.isci.2022.103909_bib34) 2019; 175 Qi (10.1016/j.isci.2022.103909_bib102) 2014; 43 Logofet (10.1016/j.isci.2022.103909_bib76) 2000; 126 Yu (10.1016/j.isci.2022.103909_bib157) 2017 Yu (10.1016/j.isci.2022.103909_bib156) 2021 He (10.1016/j.isci.2022.103909_bib37) 2021; 225 Newell (10.1016/j.isci.2022.103909_bib93) 1993; 27 Yu (10.1016/j.isci.2022.103909_bib153) 2019; 163 Gaikwad (10.1016/j.isci.2022.103909_bib30) 2020 Lefevre (10.1016/j.isci.2022.103909_bib59) 2014 Yao (10.1016/j.isci.2022.103909_bib145) 2017; 32 Zhang (10.1016/j.isci.2022.103909_bib167) 2020; 206 Jing (10.1016/j.isci.2022.103909_bib46) 2017 Qian (10.1016/j.isci.2022.103909_bib103) 2020; 7 |
References_xml | – volume: 23 start-page: 1075 year: 2015 end-page: 1086 ident: bib116 article-title: Dynamic traffic feedback data enabled energy management in plug-in hybrid electric vehicles publication-title: IEEE Trans. Control Syst. Technol. – volume: 43 start-page: 95 year: 2014 end-page: 111 ident: bib102 article-title: A Hidden Markov Model for short term prediction of traffic conditions on freeways publication-title: Transportation Res. Part C: Emerging Tech. – volume: 43 year: 2014 ident: bib125 article-title: Short-term traffic forecasting: where we are and where we’re going publication-title: Transportation Res. Part C: Emerging Tech. – volume: 44 start-page: 152 year: 2010 end-page: 174 ident: bib20 article-title: Development and calibration of the Anisotropic Mesoscopic Simulation model for uninterrupted flow facilities publication-title: Transportation Res. B: Methodological – volume: 14 start-page: 724 year: 2020 end-page: 734 ident: bib48 article-title: Advanced framework for microscopic and lane-level macroscopic traffic parameters estimation from UAV video publication-title: IET Intell. Transport Syst. – volume: 33 start-page: 999 year: 2018 end-page: 1016 ident: bib72 article-title: Short-term traffic speed forecasting based on attention convolutional neural network for arterials publication-title: Computer-Aided Civil Infrastructure Eng. – start-page: 499 year: 2016 end-page: 508 ident: bib129 article-title: Traffic speed prediction and congestion source exploration: a deep learning method publication-title: 2016 IEEE 16th International Conference on Data Mining (ICDM) – volume: 20 start-page: 3700 year: 2019 end-page: 3709 ident: bib160 article-title: Long-term traffic speed prediction based on multiscale spatio-temporal feature learning network publication-title: IEEE Trans. Intell. Transportation Syst. – volume: 111 start-page: 72 year: 2020 end-page: 90 ident: bib61 article-title: Short-term traffic state prediction from latent structures: accuracy vs. efficiency publication-title: Transportation Res. Part C: Emerging Tech. – volume: 34 start-page: 1234 year: 2020 end-page: 1241 ident: bib178 article-title: GMAN: a graph multi-attention network for traffic prediction publication-title: Proc.AAAI Conf.Artif. Intelligence – volume: 68 start-page: 5309 year: 2019 end-page: 5320 ident: bib35 article-title: ARIMA-based road gradient and vehicle velocity prediction for hybrid electric vehicle energy management publication-title: IEEE Trans. Vehicular Technol. – volume: 225 start-page: 120273 year: 2021 ident: bib37 article-title: An improved MPC-based energy management strategy for hybrid vehicles using V2V and V2I communications publication-title: Energy – volume: 22 start-page: 4813 year: 2021 end-page: 4824 ident: bib86 article-title: Forecasting transportation network speed using deep capsule networks with nested LSTM models publication-title: IEEE Trans. Intell. Transportation Syst. – volume: 21 start-page: 4883 year: 2020 end-page: 4894 ident: bib23 article-title: Traffic graph convolutional recurrent neural network: a deep learning framework for network-scale traffic learning and forecasting publication-title: IEEE Trans. Intell. Transportation Syst. – volume: 7 start-page: 102021 year: 2019 end-page: 102038 ident: bib28 article-title: MIT advanced vehicle Technology study: large-scale naturalistic driving study of driver behavior and interaction with automation publication-title: IEEE Access – volume: 341 start-page: 91 year: 2017 end-page: 106 ident: bib42 article-title: Model predictive control power management strategies for HEVs: a review publication-title: J. Power Sourc. – start-page: 1 year: 2020 end-page: 11 ident: bib113 article-title: Incorporating dynamicity of transportation network with multi-weight traffic graph convolutional network for traffic forecasting publication-title: IEEE Trans. Intell. Transportation Syst. – volume: 14 start-page: 871 year: 2013 end-page: 882 ident: bib69 article-title: Short-term traffic flow forecasting: an experimental comparison of time-series analysis and supervised learning publication-title: IEEE Trans. Intell. Transportation Syst. – volume: 34 start-page: 3529 year: 2020 end-page: 3536 ident: bib15 article-title: Multi-range attentive bicomponent graph convolutional network for traffic forecasting publication-title: Proc. AAAI Conf. Artif.Intelligence – start-page: 881 year: 2017 end-page: 886 ident: bib46 article-title: Vehicle speed prediction using a cooperative method of fuzzy Markov model and auto-regressive model publication-title: 2017 IEEE Intelligent Vehicles Symposium (IV) – volume: 158 start-page: 107765 year: 2021 ident: bib74 article-title: Prediction of vehicle driving conditions with incorporation of stochastic forecasting and machine learning and a case study in energy management of plug-in hybrid electric vehicles publication-title: Mech. Syst. Signal Process. – volume: 8 start-page: 549 year: 2007 end-page: 562 ident: bib101 article-title: Sensor fusion for predicting vehicles’ path for collision avoidance systems publication-title: IEEE Trans. Intell. Transportation Syst. – volume: 10 start-page: 93 year: 2018 end-page: 109 ident: bib54 article-title: Road traffic forecasting: recent advances and new challenges publication-title: IEEE Intell. Transportation Syst. Mag. – volume: 52 start-page: 654 year: 2019 end-page: 660 ident: bib32 article-title: A review of intelligent road preview methods for energy management of hybrid vehicles publication-title: IFAC-PapersOnLine – volume: 163 start-page: 472 year: 2019 end-page: 484 ident: bib153 article-title: Forecasting short-term traffic speed based on multiple attributes of adjacent roads publication-title: Knowledge-Based Syst. – start-page: 1 year: 2020 end-page: 19 ident: bib165 article-title: Graph attention temporal convolutional network for traffic speed forecasting on road networks publication-title: Transportmetrica B: Transport Dyn. – start-page: 962 year: 2007 end-page: 967 ident: bib159 article-title: Prediction Time Horizon and Effectiveness of Real-Time Data on Short-Term Traffic Predictability publication-title: 2007 IEEE Intelligent Transportation Systems Conference – year: 2020 ident: bib171 article-title: High-performance traffic speed forecasting based on spatiotemporal clustering of road segments publication-title: IET Intell. Transport Syst. – volume: 129 start-page: 664 year: 2003 end-page: 672 ident: bib133 article-title: Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process: theoretical basis and empirical results publication-title: J. Transportation Eng. – year: 2019 ident: bib137 article-title: How do urban incidents affect traffic speed?”A Deep Graph Convolutional Network for Incident-Driven Traffic Speed Prediction publication-title: arXiv – volume: 20 start-page: 713 year: 2019 end-page: 722 ident: bib148 article-title: Ego-vehicle speed prediction using a long short-term memory based recurrent neural network publication-title: Int. J. Automotive Technology – start-page: 1 year: 2003 end-page: 21 ident: bib41 article-title: An application of neural network on traffic speed prediction under adverse weather condition publication-title: Transportation Research Board 82nd Annual MeetingTransportation Research Board – volume: 189 start-page: 640 year: 2017 end-page: 653 ident: bib136 article-title: Energy management of a dual-mode power-split hybrid electric vehicle based on velocity prediction and nonlinear model predictive control publication-title: Appl. Energy – volume: 55 start-page: 86 year: 2019 ident: bib162 article-title: Current status and prospects for model predictive energy management in hybrid electric vehicles publication-title: J. Mech. Eng. – year: 2018 ident: bib131 article-title: Efficient Metropolitan Traffic Prediction Based on Graph Recurrent Neural Network publication-title: arXiv – volume: 15 start-page: 1039 year: 2014 end-page: 1053 ident: bib99 article-title: Intelligent trip modeling for the prediction of an origin–destination traveling speed profile publication-title: IEEE Trans. Intell. Transportation Syst. – volume: 105 start-page: 297 year: 2019 end-page: 322 ident: bib172 article-title: Multistep speed prediction on traffic networks: a deep learning approach considering spatio-temporal dependencies publication-title: Transportation Res. Part C: Emerging Tech. – volume: 129 start-page: 161 year: 2003 end-page: 168 ident: bib21 article-title: Traffic prediction using multivariate nonparametric regression publication-title: J. Transportation Eng. – volume: 19 start-page: 606 year: 2011 end-page: 616 ident: bib89 article-title: Real-time road traffic prediction with spatio-temporal correlations publication-title: Transportation Res. Part C: Emerging Tech. – start-page: 3494 year: 2014 end-page: 3499 ident: bib59 article-title: Comparison of parametric and non-parametric approaches for vehicle speed prediction publication-title: Proceedings of the American Control Conference – volume: 19 start-page: 2373 year: 2018 end-page: 2384 ident: bib39 article-title: Ecological driving system for connected/automated vehicles using a two-stage control hierarchy publication-title: IEEE Trans. Intell. Transportation Syst. – start-page: 1907 year: 2019 end-page: 1913 ident: bib135 article-title: Graph wavenet for deep spatial-temporal graph modeling publication-title: Proceedings of the 28th International Joint Conference on Artificial Intelligence – volume: 185 start-page: 1644 year: 2017 end-page: 1653 ident: bib117 article-title: Investigating adaptive-ECMS with velocity forecast ability for hybrid electric vehicles publication-title: Appl. Energy – volume: 3 start-page: 129 year: 2018 end-page: 140 ident: bib25 article-title: How would surround vehicles move? A unified framework for maneuver classification and motion prediction publication-title: IEEE Trans. Intell. Vehicles – year: 2020 ident: bib30 article-title: Vehicle velocity prediction using artificial neural network and effect of real World signals on prediction window publication-title: WCX SAE World Congress Experience – start-page: 5207 year: 2019 end-page: 5211 ident: bib51 article-title: Structural recurrent neural network for traffic speed prediction publication-title: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing – volume: 99 start-page: 85 year: 2018 end-page: 94 ident: bib132 article-title: Markov chain Monte Carlo simulation of electric vehicle use for network integration studies publication-title: Int. J. Electr. Power Energy Syst. – volume: 175 start-page: 378 year: 2019 end-page: 392 ident: bib34 article-title: A novel MPC-based adaptive energy management strategy in plug-in hybrid electric vehicles publication-title: Energy – volume: 7 start-page: 7181 year: 2020 end-page: 7193 ident: bib103 article-title: Vehicular networking-enabled vehicle state prediction via two-level quantized adaptive kalman filtering publication-title: IEEE Internet Things J. – volume: 196 start-page: 279 year: 2017 end-page: 288 ident: bib138 article-title: An energy management strategy based on stochastic model predictive control for plug-in hybrid electric buses publication-title: Appl. Energy – volume: 53 start-page: 2366 year: 1996 end-page: 2381 ident: bib38 article-title: Gas-kinetic derivation of Navier-Stokes-like traffic equations publication-title: Phys. Rev. E – volume: 6 start-page: 75629 year: 2018 end-page: 75638 ident: bib83 article-title: Short-term traffic flow forecasting by selecting appropriate predictions based on pattern matching publication-title: IEEE Access – start-page: 416 year: 2003 end-page: 421 ident: bib127 article-title: LADAR-based detection and tracking of moving objects from a ground vehicle at high speeds publication-title: IEEE IV2003 Intelligent Vehicles Symposium. Proc. (Cat. No.03TH8683) – volume: 11 start-page: 5619 year: 2021 ident: bib70 article-title: Estimation of lane-level traffic flow using a deep learning technique publication-title: Appl. Sci. – start-page: 13 year: 2011 end-page: 18 ident: bib53 article-title: A scalable cellular automata based microscopic traffic simulation publication-title: 2011 IEEE Intelligent Vehicles Symposium (IV) – volume: 18 start-page: 1793 year: 2017 end-page: 1801 ident: bib44 article-title: Vehicle speed prediction by two-level data driven models in vehicular networks publication-title: IEEE Trans. Intell. Transportation Syst. – volume: 126 start-page: 285 year: 2000 end-page: 298 ident: bib76 article-title: The mathematics of Markov models: what Markov chains can really predict in forest successions publication-title: Ecol. Model. – start-page: 117 year: 2020 end-page: 122 ident: bib121 article-title: An Attention-Based Approach for Traffic Conditions Forecasting Considering Spatial-Temporal Features publication-title: 2020 IEEE 5th International Conference on Intelligent Transportation Engineering – volume: 91 start-page: 371 year: 2018 end-page: 384 ident: bib1 article-title: The impacts of heavy rain on speed and headway Behaviors: an investigation using the SHRP2 naturalistic driving study data publication-title: Transportation Res. C: Emerging Tech. – start-page: 1 year: 2021 ident: bib16 article-title: Bayesian temporal factorization for multidimensional time series prediction publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 412 start-page: 480 year: 2019 end-page: 495 ident: bib181 article-title: A survey on driving prediction techniques for predictive energy management of plug-in hybrid electric vehicles publication-title: J. Power Sourc. – start-page: 741 year: 2019 ident: bib43 article-title: Short-term speed forecasting using vehicle wireless communications publication-title: 2019 American Control Conference (ACC) – volume: 90 start-page: 166 year: 2018 end-page: 180 ident: bib134 article-title: A hybrid deep learning based traffic flow prediction method and its understanding publication-title: Transportation Res. Part C: Emerging Tech. – volume: 33 start-page: 485 year: 2019 end-page: 492 ident: bib12 article-title: Gated residual recurrent graph neural networks for traffic prediction publication-title: Proc. AAAI Conf. Artif. Intelligence – year: 2017 ident: bib84 article-title: Learning traffic as images: a deep convolutional neural network for large-scale transportation network speed prediction publication-title: Sensors – volume: 106 start-page: 1 year: 2019 end-page: 16 ident: bib33 article-title: Short-term prediction of lane-level traffic speeds: a fusion deep learning model publication-title: Transportation Res. Part C: Emerging Tech. – volume: 14 start-page: 2073 year: 2020 end-page: 2082 ident: bib80 article-title: Efficient deep learning based method for multi-lane speed forecasting: a case study in Beijing publication-title: IET Intell. Transport Syst. – volume: 13 start-page: 53 year: 2009 end-page: 72 ident: bib11 article-title: Predictions of freeway traffic speeds and volumes using vector autoregressive models publication-title: J. Intell. Transportation Syst. – volume: 23 start-page: 1197 year: 2015 end-page: 1204 ident: bib115 article-title: Velocity predictors for predictive energy management in hybrid electric vehicles publication-title: IEEE Trans. Control Syst. Technol. – volume: 132 start-page: 103372 year: 2021 ident: bib173 article-title: A customized deep learning approach to integrate network-scale online traffic data imputation and prediction publication-title: Transportation Res. Part C: Emerging Tech. – volume: 13 start-page: 1281 year: 2019 end-page: 1290 ident: bib63 article-title: Investigating long-term vehicle speed prediction based on BP-LSTM algorithms publication-title: IET Intell. Transport Syst. – volume: 6 start-page: 51756 year: 2018 end-page: 51765 ident: bib108 article-title: Research on traffic speed prediction by temporal clustering analysis and convolutional neural network with deformable kernels (may, 2018) publication-title: IEEE Access – start-page: 1 year: 2021 end-page: 12 ident: bib156 article-title: Long-term urban traffic speed prediction with deep learning on graphs publication-title: IEEE Trans. Intell. Transportation Syst. – volume: 428 start-page: 42 year: 2021 end-page: 53 ident: bib150 article-title: Multi-stage attention spatial-temporal graph networks for traffic prediction publication-title: Neurocomputing – start-page: 8 year: 2018 ident: bib49 article-title: Multi-lane traffic pattern learning and forecasting using convolutional neural network publication-title: COTA International Symposium on Emerging Trend in Transportation – volume: 7 start-page: 9116 year: 2019 end-page: 9127 ident: bib176 article-title: Truck traffic speed prediction under non-recurrent congestion: based on optimized deep learning algorithms and GPS data publication-title: IEEE Access – volume: 9 start-page: 54739 year: 2021 end-page: 54756 ident: bib56 article-title: Short-term traffic prediction with deep neural networks: a survey publication-title: IEEE Access – start-page: 1 year: 2021 ident: bib169 article-title: Integrated velocity prediction method and application in vehicle-environment cooperative control based on internet of vehicles publication-title: IEEE Trans. Vehicular Technol. – start-page: 1 year: 2018 end-page: 6 ident: bib52 article-title: A capsule network for traffic speed prediction in complex road networks publication-title: 2018 Sensor Data Fusion: Trends, Solutions, Applications – start-page: 1215 year: 2020 end-page: 1224 ident: bib97 article-title: ST-GRAT: a novel spatio-temporal graph attention network for accurately forecasting dynamically changing road speed publication-title: Proc.29th ACM Int.Conf.Inf.Knowledge Management – volume: 27 start-page: 281 year: 1993 end-page: 287 ident: bib93 article-title: A simplified theory of kinematic waves in highway traffic, part I: general theory publication-title: Transportation Res. Part B: Methodological – volume: 100 start-page: 372 year: 2019 end-page: 385 ident: bib128 article-title: Traffic speed prediction for urban transportation network: a path based deep learning approach publication-title: Transportation Res. Part C: Emerging Tech. – volume: 115 start-page: 102622 year: 2020 ident: bib7 article-title: A variational autoencoder solution for road traffic forecasting systems: missing data imputation, dimension reduction, model selection and anomaly detection publication-title: Transportation Res. Part C: Emerging Tech. – volume: 23 start-page: 605 year: 2019 end-page: 616 ident: bib60 article-title: Traffic speed prediction for intelligent transportation system based on a deep feature fusion model publication-title: J. Intell. Transportation Syst. – volume: 8 start-page: 364 year: 2015 end-page: 370 ident: bib90 article-title: Short term prediction of a vehicle’s velocity trajectory using ITS publication-title: SAE Int. J. Passenger Cars - Electron.Electr. Syst. – volume: 61 start-page: 782 year: 2018 end-page: 790 ident: bib62 article-title: Research on optimized GA-SVM vehicle speed prediction model based on driver-vehicle-road-traffic system publication-title: Sci. China Technol. Sci. – volume: 7 start-page: e470 year: 2021 ident: bib109 article-title: ST-AFN: a spatial-temporal attention based fusion network for lane-level traffic flow prediction publication-title: Peerj.Computer Sci. – year: 2020 ident: bib140 article-title: ISTD-GCN: Iterative Spatial-Temporal Diffusion Graph Convolutional Network for Traffic Speed Forecasting publication-title: arXiv – volume: 11 start-page: 70 year: 2019 end-page: 81 ident: bib175 article-title: Traffic speed prediction under non-recurrent congestion: based on LSTM method and BeiDou navigation satellite system data publication-title: IEEE Intell. Transportation Syst. Mag. – year: 2019 ident: bib95 article-title: A novel spatio-temporal model for city-scale traffic speed prediction publication-title: IEEE Access – start-page: 2861 year: 2015 end-page: 2868 ident: bib47 article-title: Vehicle speed prediction in a convoy using V2V communication publication-title: 2015 IEEE 18th International Conference on Intelligent Transportation Systems – volume: 60 start-page: 3747 year: 2011 end-page: 3755 ident: bib5 article-title: Improving estimation of vehicle’s trajectory using the latest global positioning system with kalman filtering publication-title: IEEE Trans. Instrumentation Meas. – start-page: 473 year: 2019 end-page: 477 ident: bib57 article-title: Energy consumption prediction system based on deep learning with edge computing publication-title: 2019 IEEE 2nd International Conference on Electronics Technology – volume: 419 start-page: 1 year: 2005 end-page: 64 ident: bib87 article-title: Cellular automata models of road traffic publication-title: Phys. Rep. – volume: 47 start-page: 101221 year: 2020 ident: bib174 article-title: Cellular automata model for Urban Road traffic flow Considering Internet of Vehicles and emergency vehicles publication-title: J. Comput. Sci. – volume: 185 start-page: 1654 year: 2017 end-page: 1662 ident: bib168 article-title: Model predictive control for power management in a plug-in hybrid electric vehicle with a hybrid energy storage system publication-title: Appl. Energy – volume: 27 start-page: 219 year: 2013 end-page: 232 ident: bib130 article-title: Short-term traffic speed forecasting hybrid model based on Chaos–Wavelet Analysis-Support Vector Machine theory publication-title: Transportation Res. Part C: Emerging Tech. – start-page: 1 year: 2020 end-page: 20 ident: bib122 article-title: A survey on modern deep neural network for traffic prediction: trends, methods and challenges publication-title: IEEE Trans. Knowledge Data Eng. – volume: 2674 start-page: 459 year: 2020 end-page: 470 ident: bib50 article-title: Two-stream multi-channel convolutional neural network for multi-lane traffic speed prediction considering traffic volume impact publication-title: Transportation Res. Rec. – volume: 3 start-page: 194 year: 2017 end-page: 207 ident: bib55 article-title: Local Gaussian processes for efficient fine-grained traffic speed prediction publication-title: IEEE Trans. Big Data – volume: 34 start-page: 5956 year: 2020 end-page: 5963 ident: bib120 article-title: Joint modeling of local and global temporal dynamics for multivariate time series forecasting with missing values publication-title: Proc.AAAI Conf.Artif.Intelligence – volume: 20 start-page: 3940 year: 2019 end-page: 3951 ident: bib155 article-title: Real-time traffic speed estimation with graph convolutional generative autoencoder publication-title: IEEE Trans. Intell. Transportation Syst. – volume: 15 start-page: 794 year: 2014 end-page: 804 ident: bib3 article-title: Spatiotemporal patterns in large-scale traffic speed prediction publication-title: IEEE Trans. Intell. Transportation Syst. – volume: 35 start-page: 427 year: 2003 end-page: 433 ident: bib126 article-title: A comparison of headway and time to collision as safety indicators publication-title: Accid.Anal. Prev. – volume: 236 start-page: 893 year: 2019 end-page: 905 ident: bib139 article-title: Pontryagin’s Minimum Principle based model predictive control of energy management for a plug-in hybrid electric bus publication-title: Appl. Energy – volume: 8 start-page: 87541 year: 2020 end-page: 87551 ident: bib144 article-title: Short-term traffic speed prediction of urban road with multi-source data publication-title: IEEE Access – volume: 9 start-page: 1321 year: 2021 end-page: 1337 ident: bib14 article-title: A multiscale-grid-based stacked bidirectional GRU neural network model for predicting traffic speeds of urban expressways publication-title: IEEE Access – volume: 20 start-page: 1378 year: 2019 end-page: 1389 ident: bib146 article-title: Prediction-based eco-approach and departure at signalized intersections with speed forecasting on preceding vehicles publication-title: IEEE Trans. Intell. Transportation Syst. – volume: 15 start-page: 359 year: 2021 end-page: 370 ident: bib10 article-title: City buses’ future velocity prediction for multiple driving cycle: a meta supervised learning solution publication-title: IET Intell. Transport Syst. – volume: 50 start-page: 148 year: 2018 end-page: 163 ident: bib92 article-title: Survey on traffic prediction in smart cities publication-title: Pervasive Mobile Comput. – volume: 396 start-page: 438 year: 2020 end-page: 450 ident: bib166 article-title: A deep learning based multitask model for network-wide traffic speed prediction publication-title: Neurocomputing – start-page: 1720 year: 2019 end-page: 1730 ident: bib96 article-title: Urban traffic prediction from spatio-temporal data using deep meta learning publication-title: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Association for Computing Machinery, New York, NY, USA – start-page: 1 year: 2021 end-page: 17 ident: bib149 article-title: Deep learning on traffic prediction: methods, analysis and future directions publication-title: IEEE Trans. Intell. Transportation Syst. – volume: 18 start-page: 2340 year: 2017 end-page: 2350 ident: bib119 article-title: An improved fuzzy neural network for traffic speed prediction considering periodic characteristic publication-title: IEEE Trans. Intell. Transportation Syst. – volume: 29 year: 2016 ident: bib4 article-title: Diffusion-convolutional neural networks publication-title: Advances in neural information processing systems – start-page: 3470 year: 2018 end-page: 3476 ident: bib82 article-title: LC-RNN: a deep learning model for traffic speed prediction publication-title: IJCAI – volume: 22 start-page: 1562 year: 2021 end-page: 1572 ident: bib107 article-title: Eco-approach with traffic prediction and experimental validation for connected and autonomous vehicles publication-title: IEEE Trans. Intell. Transportation Syst. – volume: 22 start-page: 219 year: 2021 end-page: 230 ident: bib170 article-title: TrafficGAN: network-scale deep traffic prediction with generative adversarial nets publication-title: IEEE Trans. Intell. Transportation Syst. – start-page: 187 year: 2016 end-page: 196 ident: bib105 article-title: Traffic speed prediction using hidden Markov models for Czech republic highways publication-title: Agent and Multi-Agent Systems: Technology and Applications – volume: 22 start-page: 1435 year: 2020 end-page: 1448 ident: bib58 article-title: Predicting short-term traffic speed using a deep neural network to accommodate citywide spatio-temporal correlations publication-title: IEEE Transactions on Intelligent Transportation Systems – start-page: 1 year: 2020 end-page: 12 ident: bib78 article-title: Lane-level traffic speed forecasting: a novel mixed deep learning model publication-title: IEEE Trans. Intell. Transportation Syst. – year: 2017 ident: bib100 article-title: Deep learning for short-term traffic flow prediction publication-title: Transportation Res. Part C: Emerging Tech. – year: 2018 ident: bib164 article-title: GaAN: Gated Attention Networks for Learning on Large and Spatiotemporal Graphs publication-title: 34th Conference on Uncertainty in Artificial Intelligence 2018 – start-page: 1 year: 2021 ident: bib161 article-title: FASTGNN: a topological information protected federated learning approach for traffic speed forecasting publication-title: IEEE Trans. Ind. Inform. – start-page: 102 year: 2015 end-page: 108 ident: bib22 article-title: Traffic speed prediction method for urban networks — an ANN approach publication-title: 2015International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS) – volume: 10 start-page: 74 year: 2017 ident: bib65 article-title: A mixed logical dynamical-model predictive control (MLD-MPC) energy management control strategy for plug-in hybrid electric vehicles (PHEVs) publication-title: Energies – volume: 112 start-page: 62 year: 2020 end-page: 77 ident: bib6 article-title: A graph CNN-LSTM neural network for short and long-term traffic forecasting based on trajectory data publication-title: Transportation Res. C Emerging Tech. – volume: 5 start-page: 3569 year: 2001 end-page: 3649 ident: bib19 article-title: Markov chain Monte Carlo methods: computation and inference publication-title: Handbooks in Economics – volume: 101 start-page: 444 year: 2019 end-page: 457 ident: bib81 article-title: A short-term energy prediction system based on edge computing for smart city publication-title: Future Generation Computer Syst. – volume: 1748 start-page: 96 year: 2001 end-page: 102 ident: bib13 article-title: Freeway performance measurement system: mining loop detector data publication-title: Transportation Res. Rec. – volume: 2018 start-page: e9728328 year: 2018 ident: bib73 article-title: A novel method for predicting vehicle state in internet of vehicles publication-title: Mobile Inf. Syst. – volume: 20 start-page: 100184 year: 2019 ident: bib88 article-title: Deep learning models for traffic flow prediction in autonomous vehicles: a review, solutions, and challenges publication-title: Vehicular Commun. – start-page: 209 year: 2007 end-page: 216 ident: bib118 article-title: An Extended Kalman Filter Application for Traffic State Estimation Using CTM with Implicit Mode Switching and Dynamic Parameters publication-title: 2007 IEEE Intelligent Transportation Systems Conference – start-page: 10 year: 2014 end-page: 17 ident: bib18 article-title: Efficient traffic speed forecasting based on massive heterogenous historical data publication-title: 2014IEEE Int.Conf. Big Data (Big Data) – volume: 451 start-page: 290 year: 2021 end-page: 304 ident: bib104 article-title: Features injected recurrent neural networks for short-term traffic speed prediction publication-title: Neurocomputing – start-page: 50 year: 2016 ident: bib182 article-title: Short-term traffic flow prediction with linear conditional Gaussian bayesian network publication-title: J. Adv. transportation – year: 2021 ident: bib141 article-title: Spatial-Temporal Transformer Networks for Traffic Flow Forecasting publication-title: arXiv – start-page: 1 year: 2020 end-page: 21 ident: bib147 article-title: How to build a graph-based deep learning architecture in traffic domain: a survey publication-title: IEEE Trans. Intell. Transportation Syst. – year: 2021 ident: bib158 article-title: A survey of traffic prediction: from spatio-temporal data to intelligent transportation publication-title: Data Sci. Eng. – volume: 20 start-page: 4119 year: 2019 end-page: 4133 ident: bib179 article-title: Velocity prediction of intelligent and connected vehicles for a traffic light distance on the urban road publication-title: IEEE Trans. Intell. Transportation Syst. – volume: 44 start-page: 1084 year: 2010 end-page: 1103 ident: bib45 article-title: Continuous kinematic wave models of merging traffic flow publication-title: Transportation Res. Part B: Methodological – volume: 155 start-page: 838 year: 2018 end-page: 852 ident: bib110 article-title: Optimal energy management strategy for a plug-in hybrid electric commercial vehicle based on velocity prediction publication-title: Energy – volume: 20 start-page: 14317 year: 2020 end-page: 14328 ident: bib17 article-title: Sensing data supported traffic flow prediction via denoising schemes and ANN: a comparison publication-title: IEEE Sensors J. – volume: 21 start-page: 3848 year: 2020 end-page: 3858 ident: bib177 article-title: T-GCN: a temporal graph convolutional network for traffic prediction publication-title: IEEE Trans. Intell. Transportation Syst. – volume: 2674 year: 2020 ident: bib2 article-title: Long-term vehicle speed prediction via historical traffic data analysis for improved energy efficiency of connected electric vehicles publication-title: Transportation Res. Rec. J. Transportation Res. Board – ident: bib71 article-title: Vehicle Velocity Prediction and Energy Management Strategy Part 1: Deterministic and Stochastic Vehicle Velocity Prediction Using Machine Learning – volume: 32 start-page: 154 year: 2017 end-page: 169 ident: bib145 article-title: Short-term traffic speed prediction for an urban corridor publication-title: Computer-Aided Civil Infrastructure Eng. – year: 2019 ident: bib151 article-title: 3D Graph Convolutional Networks with Temporal Graphs: A Spatial Information Free Framework for Traffic Forecasting publication-title: arXiv – start-page: 1 year: 2021 end-page: 10 ident: bib29 article-title: Short-term forecasting of urban traffic using spatio-temporal Markov field publication-title: IEEE Trans. Intell. Transportation Syst. – volume: 118 start-page: 102674 year: 2018 end-page: 102688 ident: bib24 article-title: Deep stacked bidirectional and unidirectional LSTM recurrent neural network for network-wide traffic speed prediction publication-title: Transportation Res. Part C: Emerging Tech. – start-page: 2991 year: 2011 end-page: 2996 ident: bib98 article-title: Real time vehicle speed prediction using a Neural Network Traffic Model publication-title: The 2011 International Joint Conference on Neural Networks – start-page: 234 year: 2019 end-page: 242 ident: bib31 article-title: Temporal graph convolutional networks for traffic speed prediction considering external factors publication-title: 2019 20th IEEE International Conference on Mobile Data Management (MDM) – year: 2019 ident: bib180 article-title: A velocity prediction method based on self-learning multi-step Markov chain publication-title: IECON 2019-45th Annual Conference of the IEEE Industrial Electronics Society – start-page: 1 year: 2018 end-page: 16 ident: bib64 article-title: Diffusion convolutional recurrent neural network: data-driven traffic forecasting publication-title: International Conference on Learning Representations – start-page: 546 year: 2018 ident: bib66 article-title: Deep sequence learning with auxiliary information for traffic prediction publication-title: The 24th ACM SIGKDD International Conference – volume: 10638 start-page: 378 year: 2017 end-page: 386 ident: bib75 article-title: A method to improve accuracy of velocity prediction using Markov model publication-title: Neural Information Processing – volume: 2 start-page: 2221 year: 1992 ident: bib91 article-title: A cellular automaton model for freeway traffic publication-title: J. de Physique – volume: 206 start-page: 118126 year: 2020 ident: bib167 article-title: Energy optimization of multi-mode coupling drive plug-in hybrid electric vehicles based on speed prediction publication-title: Energy – volume: 54 start-page: 187 year: 2015 end-page: 197 ident: bib85 article-title: Long short-term memory neural network for traffic speed prediction using remote microwave sensor data publication-title: Transportation Res. Part C: Emerging Tech. – volume: 30 start-page: 1310 year: 2018 end-page: 1323 ident: bib68 article-title: Road traffic speed prediction: a probabilistic model fusing multi-source data publication-title: IEEE Trans. Knowledge Data Eng. – volume: 28 start-page: 2371 year: 2017 end-page: 2381 ident: bib143 article-title: Optimized structure of the traffic flow forecasting model with a deep learning approach publication-title: IEEE Trans. Neural Networks Learn. Syst. – year: 2014 ident: bib9 article-title: Spectral Networks and Locally Connected Networks on Graphs publication-title: arXiv – volume: 29 start-page: 1054 year: 2005 end-page: 1072 ident: bib94 article-title: A simplified kinematic wave model at a merge bottleneck publication-title: Appl. Math. Model. – volume: 318 start-page: 297 year: 2018 end-page: 305 ident: bib123 article-title: LSTM-based traffic flow prediction with missing data publication-title: Neurocomputing – volume: 1 start-page: 5031 year: 2010 end-page: 5036 ident: bib8 article-title: Model predictive control of a power-split Hybrid Electric Vehicle with combined battery and ultracapacitor energy storage publication-title: Proceedings of the 2010 American Control Conference, IEEE, Baltimore, MD – volume: 64 start-page: 258 year: 2017 end-page: 265 ident: bib67 article-title: Dynamic route planning with real-time traffic predictions publication-title: Inf. Syst. – volume: 8 start-page: 209296 year: 2020 end-page: 209307 ident: bib27 article-title: Dynamic global-local spatial-temporal network for traffic speed prediction publication-title: IEEE Access – volume: 152 start-page: 618 year: 2018 end-page: 623 ident: bib142 article-title: Deep learning for vehicle speed prediction publication-title: Energy Proced. – start-page: 448 year: 2020 end-page: 453 ident: bib114 article-title: Vehicle speed prediction for connected and autonomous vehicles using communication and perception publication-title: 2020 American Control Conference – volume: 22 start-page: 1138 year: 2021 end-page: 1149 ident: bib36 article-title: Optimized graph convolution recurrent neural network for traffic prediction publication-title: IEEE Trans. Intell. Transportation Syst. – volume: 8 start-page: 42042 year: 2020 end-page: 42054 ident: bib79 article-title: A hybrid model for lane-level traffic flow forecasting based on complete ensemble empirical mode decomposition and extreme gradient boosting publication-title: IEEE Access – start-page: 777 year: 2017 end-page: 785 ident: bib157 article-title: Deep learning: a generic approach for extreme condition traffic forecasting publication-title: Proceedings of the 2017 SIAM International Conference on Data Mining (SDM) – start-page: 1 year: 2021 end-page: 25 ident: bib77 article-title: Deep learning for road traffic forecasting: does it make a difference? publication-title: IEEE Transactions on Intelligent Transportation Systems – volume: 2188 start-page: 29 year: 2010 end-page: 36 ident: bib124 article-title: Lagrangian formulation of multiclass kinematic wave model publication-title: Transportation Res. Rec. – year: 2019 ident: bib111 article-title: Vehicle speed prediction with RNN and attention model under multiple scenarios publication-title: 2019IEEE Intell. Transportation Syst. Conf. (Itsc) – volume: 212 start-page: 106592 year: 2021 ident: bib154 article-title: Citywide traffic speed prediction: a geometric deep learning approach publication-title: Knowledge-Based Syst. – volume: 33 start-page: 890 year: 2019 end-page: 897 ident: bib26 article-title: Dynamic spatial-temporal graph convolutional neural networks for traffic forecasting publication-title: Proc. AAAI Conf. Artif. Intelligence – start-page: 271 year: 2017 end-page: 279 ident: bib106 article-title: Hybrid lane-based short-term urban traffic speed forecasting: a genetic approach publication-title: 2017 4th International Conference on Transportation Information and Safety (ICTIS) – start-page: 2355 year: 2020 end-page: 2361 ident: bib40 article-title: LSGCN: long short-term traffic prediction with graph convolutional networks publication-title: Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, International Joint Conferences on Artificial Intelligence Organization, Yokohama, Japan – start-page: 3634 year: 2018 end-page: 3640 ident: bib152 article-title: Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework for Traffic Forecasting publication-title: Proceedings of the 27th International Joint Conference on Artificial Intelligence – volume: 20 start-page: 3201 year: 2019 end-page: 3211 ident: bib112 article-title: Vehicle speed prediction using a Markov chain with speed constraints publication-title: IEEE Trans. Intell. Transportation Syst. – volume: 18 start-page: 416 year: 2017 end-page: 430 ident: bib163 article-title: Real-time energy management strategy based on velocity forecasts using V2V and V2I communications publication-title: IEEE Trans. Intell. Transportation Syst. – volume: 18 start-page: 2340 year: 2017 ident: 10.1016/j.isci.2022.103909_bib119 article-title: An improved fuzzy neural network for traffic speed prediction considering periodic characteristic publication-title: IEEE Trans. Intell. Transportation Syst. doi: 10.1109/TITS.2016.2643005 – volume: 2674 year: 2020 ident: 10.1016/j.isci.2022.103909_bib2 article-title: Long-term vehicle speed prediction via historical traffic data analysis for improved energy efficiency of connected electric vehicles publication-title: Transportation Res. Rec. J. Transportation Res. Board doi: 10.1177/0361198120941508 – volume: 185 start-page: 1654 year: 2017 ident: 10.1016/j.isci.2022.103909_bib168 article-title: Model predictive control for power management in a plug-in hybrid electric vehicle with a hybrid energy storage system publication-title: Appl. Energy doi: 10.1016/j.apenergy.2015.12.035 – volume: 152 start-page: 618 year: 2018 ident: 10.1016/j.isci.2022.103909_bib142 article-title: Deep learning for vehicle speed prediction publication-title: Energy Proced. doi: 10.1016/j.egypro.2018.09.220 – year: 2020 ident: 10.1016/j.isci.2022.103909_bib171 article-title: High-performance traffic speed forecasting based on spatiotemporal clustering of road segments publication-title: IET Intell. Transport Syst. – volume: 18 start-page: 416 year: 2017 ident: 10.1016/j.isci.2022.103909_bib163 article-title: Real-time energy management strategy based on velocity forecasts using V2V and V2I communications publication-title: IEEE Trans. Intell. Transportation Syst. doi: 10.1109/TITS.2016.2580318 – year: 2018 ident: 10.1016/j.isci.2022.103909_bib164 article-title: GaAN: Gated Attention Networks for Learning on Large and Spatiotemporal Graphs – volume: 20 start-page: 3201 year: 2019 ident: 10.1016/j.isci.2022.103909_bib112 article-title: Vehicle speed prediction using a Markov chain with speed constraints publication-title: IEEE Trans. Intell. Transportation Syst. doi: 10.1109/TITS.2018.2877785 – start-page: 50 year: 2016 ident: 10.1016/j.isci.2022.103909_bib182 article-title: Short-term traffic flow prediction with linear conditional Gaussian bayesian network publication-title: J. Adv. transportation – start-page: 1 year: 2018 ident: 10.1016/j.isci.2022.103909_bib52 article-title: A capsule network for traffic speed prediction in complex road networks – volume: 53 start-page: 2366 year: 1996 ident: 10.1016/j.isci.2022.103909_bib38 article-title: Gas-kinetic derivation of Navier-Stokes-like traffic equations publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.53.2366 – volume: 1 start-page: 5031 year: 2010 ident: 10.1016/j.isci.2022.103909_bib8 article-title: Model predictive control of a power-split Hybrid Electric Vehicle with combined battery and ultracapacitor energy storage – volume: 158 start-page: 107765 year: 2021 ident: 10.1016/j.isci.2022.103909_bib74 article-title: Prediction of vehicle driving conditions with incorporation of stochastic forecasting and machine learning and a case study in energy management of plug-in hybrid electric vehicles publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2021.107765 – year: 2019 ident: 10.1016/j.isci.2022.103909_bib111 article-title: Vehicle speed prediction with RNN and attention model under multiple scenarios – volume: 20 start-page: 4119 year: 2019 ident: 10.1016/j.isci.2022.103909_bib179 article-title: Velocity prediction of intelligent and connected vehicles for a traffic light distance on the urban road publication-title: IEEE Trans. Intell. Transportation Syst. doi: 10.1109/TITS.2018.2882609 – volume: 68 start-page: 5309 year: 2019 ident: 10.1016/j.isci.2022.103909_bib35 article-title: ARIMA-based road gradient and vehicle velocity prediction for hybrid electric vehicle energy management publication-title: IEEE Trans. Vehicular Technol. doi: 10.1109/TVT.2019.2912893 – volume: 2 start-page: 2221 year: 1992 ident: 10.1016/j.isci.2022.103909_bib91 article-title: A cellular automaton model for freeway traffic publication-title: J. de Physique – start-page: 3634 year: 2018 ident: 10.1016/j.isci.2022.103909_bib152 article-title: Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework for Traffic Forecasting – year: 2020 ident: 10.1016/j.isci.2022.103909_bib30 article-title: Vehicle velocity prediction using artificial neural network and effect of real World signals on prediction window – start-page: 1 year: 2018 ident: 10.1016/j.isci.2022.103909_bib64 article-title: Diffusion convolutional recurrent neural network: data-driven traffic forecasting – volume: 21 start-page: 4883 year: 2020 ident: 10.1016/j.isci.2022.103909_bib23 article-title: Traffic graph convolutional recurrent neural network: a deep learning framework for network-scale traffic learning and forecasting publication-title: IEEE Trans. Intell. Transportation Syst. doi: 10.1109/TITS.2019.2950416 – volume: 43 start-page: 95 year: 2014 ident: 10.1016/j.isci.2022.103909_bib102 article-title: A Hidden Markov Model for short term prediction of traffic conditions on freeways publication-title: Transportation Res. Part C: Emerging Tech. doi: 10.1016/j.trc.2014.02.007 – start-page: 8 year: 2018 ident: 10.1016/j.isci.2022.103909_bib49 article-title: Multi-lane traffic pattern learning and forecasting using convolutional neural network – volume: 28 start-page: 2371 year: 2017 ident: 10.1016/j.isci.2022.103909_bib143 article-title: Optimized structure of the traffic flow forecasting model with a deep learning approach publication-title: IEEE Trans. Neural Networks Learn. Syst. doi: 10.1109/TNNLS.2016.2574840 – volume: 32 start-page: 154 year: 2017 ident: 10.1016/j.isci.2022.103909_bib145 article-title: Short-term traffic speed prediction for an urban corridor publication-title: Computer-Aided Civil Infrastructure Eng. doi: 10.1111/mice.12221 – year: 2021 ident: 10.1016/j.isci.2022.103909_bib141 article-title: Spatial-Temporal Transformer Networks for Traffic Flow Forecasting publication-title: arXiv – volume: 8 start-page: 87541 year: 2020 ident: 10.1016/j.isci.2022.103909_bib144 article-title: Short-term traffic speed prediction of urban road with multi-source data publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2992507 – volume: 101 start-page: 444 year: 2019 ident: 10.1016/j.isci.2022.103909_bib81 article-title: A short-term energy prediction system based on edge computing for smart city publication-title: Future Generation Computer Syst. doi: 10.1016/j.future.2019.06.030 – volume: 126 start-page: 285 year: 2000 ident: 10.1016/j.isci.2022.103909_bib76 article-title: The mathematics of Markov models: what Markov chains can really predict in forest successions publication-title: Ecol. Model. doi: 10.1016/S0304-3800(00)00269-6 – start-page: 1 year: 2020 ident: 10.1016/j.isci.2022.103909_bib122 article-title: A survey on modern deep neural network for traffic prediction: trends, methods and challenges publication-title: IEEE Trans. Knowledge Data Eng. doi: 10.1109/TKDE.2020.3001195 – volume: 9 start-page: 54739 year: 2021 ident: 10.1016/j.isci.2022.103909_bib56 article-title: Short-term traffic prediction with deep neural networks: a survey publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3071174 – start-page: 1 year: 2021 ident: 10.1016/j.isci.2022.103909_bib77 article-title: Deep learning for road traffic forecasting: does it make a difference? publication-title: IEEE Transactions on Intelligent Transportation Systems – volume: 10 start-page: 74 year: 2017 ident: 10.1016/j.isci.2022.103909_bib65 article-title: A mixed logical dynamical-model predictive control (MLD-MPC) energy management control strategy for plug-in hybrid electric vehicles (PHEVs) publication-title: Energies doi: 10.3390/en10010074 – start-page: 416 year: 2003 ident: 10.1016/j.isci.2022.103909_bib127 article-title: LADAR-based detection and tracking of moving objects from a ground vehicle at high speeds – start-page: 1 year: 2021 ident: 10.1016/j.isci.2022.103909_bib16 article-title: Bayesian temporal factorization for multidimensional time series prediction – volume: 27 start-page: 219 year: 2013 ident: 10.1016/j.isci.2022.103909_bib130 article-title: Short-term traffic speed forecasting hybrid model based on Chaos–Wavelet Analysis-Support Vector Machine theory publication-title: Transportation Res. Part C: Emerging Tech. doi: 10.1016/j.trc.2012.08.004 – start-page: 3470 year: 2018 ident: 10.1016/j.isci.2022.103909_bib82 article-title: LC-RNN: a deep learning model for traffic speed prediction publication-title: IJCAI – volume: 13 start-page: 1281 year: 2019 ident: 10.1016/j.isci.2022.103909_bib63 article-title: Investigating long-term vehicle speed prediction based on BP-LSTM algorithms publication-title: IET Intell. Transport Syst. doi: 10.1049/iet-its.2018.5593 – volume: 14 start-page: 871 year: 2013 ident: 10.1016/j.isci.2022.103909_bib69 article-title: Short-term traffic flow forecasting: an experimental comparison of time-series analysis and supervised learning publication-title: IEEE Trans. Intell. Transportation Syst. doi: 10.1109/TITS.2013.2247040 – volume: 175 start-page: 378 year: 2019 ident: 10.1016/j.isci.2022.103909_bib34 article-title: A novel MPC-based adaptive energy management strategy in plug-in hybrid electric vehicles publication-title: Energy doi: 10.1016/j.energy.2019.03.083 – year: 2017 ident: 10.1016/j.isci.2022.103909_bib100 article-title: Deep learning for short-term traffic flow prediction publication-title: Transportation Res. Part C: Emerging Tech. doi: 10.1016/j.trc.2017.02.024 – volume: 111 start-page: 72 year: 2020 ident: 10.1016/j.isci.2022.103909_bib61 article-title: Short-term traffic state prediction from latent structures: accuracy vs. efficiency publication-title: Transportation Res. Part C: Emerging Tech. doi: 10.1016/j.trc.2019.12.007 – volume: 7 start-page: 9116 year: 2019 ident: 10.1016/j.isci.2022.103909_bib176 article-title: Truck traffic speed prediction under non-recurrent congestion: based on optimized deep learning algorithms and GPS data publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2890414 – volume: 6 start-page: 51756 year: 2018 ident: 10.1016/j.isci.2022.103909_bib108 article-title: Research on traffic speed prediction by temporal clustering analysis and convolutional neural network with deformable kernels (may, 2018) publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2868735 – volume: 225 start-page: 120273 year: 2021 ident: 10.1016/j.isci.2022.103909_bib37 article-title: An improved MPC-based energy management strategy for hybrid vehicles using V2V and V2I communications publication-title: Energy doi: 10.1016/j.energy.2021.120273 – volume: 451 start-page: 290 year: 2021 ident: 10.1016/j.isci.2022.103909_bib104 article-title: Features injected recurrent neural networks for short-term traffic speed prediction publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.03.054 – start-page: 473 year: 2019 ident: 10.1016/j.isci.2022.103909_bib57 article-title: Energy consumption prediction system based on deep learning with edge computing – volume: 8 start-page: 549 year: 2007 ident: 10.1016/j.isci.2022.103909_bib101 article-title: Sensor fusion for predicting vehicles’ path for collision avoidance systems publication-title: IEEE Trans. Intell. Transportation Syst. doi: 10.1109/TITS.2007.903439 – volume: 14 start-page: 2073 year: 2020 ident: 10.1016/j.isci.2022.103909_bib80 article-title: Efficient deep learning based method for multi-lane speed forecasting: a case study in Beijing publication-title: IET Intell. Transport Syst. doi: 10.1049/iet-its.2020.0410 – start-page: 3494 year: 2014 ident: 10.1016/j.isci.2022.103909_bib59 article-title: Comparison of parametric and non-parametric approaches for vehicle speed prediction – year: 2019 ident: 10.1016/j.isci.2022.103909_bib151 article-title: 3D Graph Convolutional Networks with Temporal Graphs: A Spatial Information Free Framework for Traffic Forecasting publication-title: arXiv – start-page: 881 year: 2017 ident: 10.1016/j.isci.2022.103909_bib46 article-title: Vehicle speed prediction using a cooperative method of fuzzy Markov model and auto-regressive model – volume: 15 start-page: 359 year: 2021 ident: 10.1016/j.isci.2022.103909_bib10 article-title: City buses’ future velocity prediction for multiple driving cycle: a meta supervised learning solution publication-title: IET Intell. Transport Syst. doi: 10.1049/itr2.12019 – year: 2019 ident: 10.1016/j.isci.2022.103909_bib95 article-title: A novel spatio-temporal model for city-scale traffic speed prediction publication-title: IEEE Access – volume: 396 start-page: 438 year: 2020 ident: 10.1016/j.isci.2022.103909_bib166 article-title: A deep learning based multitask model for network-wide traffic speed prediction publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.10.097 – year: 2021 ident: 10.1016/j.isci.2022.103909_bib158 article-title: A survey of traffic prediction: from spatio-temporal data to intelligent transportation publication-title: Data Sci. Eng. doi: 10.1007/s41019-020-00151-z – volume: 34 start-page: 1234 year: 2020 ident: 10.1016/j.isci.2022.103909_bib178 article-title: GMAN: a graph multi-attention network for traffic prediction publication-title: Proc.AAAI Conf.Artif. Intelligence doi: 10.1609/aaai.v34i01.5477 – volume: 61 start-page: 782 year: 2018 ident: 10.1016/j.isci.2022.103909_bib62 article-title: Research on optimized GA-SVM vehicle speed prediction model based on driver-vehicle-road-traffic system publication-title: Sci. China Technol. Sci. doi: 10.1007/s11431-017-9213-0 – volume: 29 year: 2016 ident: 10.1016/j.isci.2022.103909_bib4 article-title: Diffusion-convolutional neural networks publication-title: Advances in neural information processing systems – start-page: 1 year: 2021 ident: 10.1016/j.isci.2022.103909_bib29 article-title: Short-term forecasting of urban traffic using spatio-temporal Markov field publication-title: IEEE Trans. Intell. Transportation Syst. – volume: 15 start-page: 1039 year: 2014 ident: 10.1016/j.isci.2022.103909_bib99 article-title: Intelligent trip modeling for the prediction of an origin–destination traveling speed profile publication-title: IEEE Trans. Intell. Transportation Syst. doi: 10.1109/TITS.2013.2294934 – volume: 189 start-page: 640 year: 2017 ident: 10.1016/j.isci.2022.103909_bib136 article-title: Energy management of a dual-mode power-split hybrid electric vehicle based on velocity prediction and nonlinear model predictive control publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.12.056 – volume: 132 start-page: 103372 year: 2021 ident: 10.1016/j.isci.2022.103909_bib173 article-title: A customized deep learning approach to integrate network-scale online traffic data imputation and prediction publication-title: Transportation Res. Part C: Emerging Tech. doi: 10.1016/j.trc.2021.103372 – volume: 11 start-page: 70 year: 2019 ident: 10.1016/j.isci.2022.103909_bib175 article-title: Traffic speed prediction under non-recurrent congestion: based on LSTM method and BeiDou navigation satellite system data publication-title: IEEE Intell. Transportation Syst. Mag. doi: 10.1109/MITS.2019.2903431 – volume: 9 start-page: 1321 year: 2021 ident: 10.1016/j.isci.2022.103909_bib14 article-title: A multiscale-grid-based stacked bidirectional GRU neural network model for predicting traffic speeds of urban expressways publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3034551 – volume: 19 start-page: 606 year: 2011 ident: 10.1016/j.isci.2022.103909_bib89 article-title: Real-time road traffic prediction with spatio-temporal correlations publication-title: Transportation Res. Part C: Emerging Tech. doi: 10.1016/j.trc.2010.10.002 – volume: 100 start-page: 372 year: 2019 ident: 10.1016/j.isci.2022.103909_bib128 article-title: Traffic speed prediction for urban transportation network: a path based deep learning approach publication-title: Transportation Res. Part C: Emerging Tech. doi: 10.1016/j.trc.2019.02.002 – start-page: 741 year: 2019 ident: 10.1016/j.isci.2022.103909_bib43 article-title: Short-term speed forecasting using vehicle wireless communications – volume: 23 start-page: 605 year: 2019 ident: 10.1016/j.isci.2022.103909_bib60 article-title: Traffic speed prediction for intelligent transportation system based on a deep feature fusion model publication-title: J. Intell. Transportation Syst. doi: 10.1080/15472450.2019.1583965 – start-page: 777 year: 2017 ident: 10.1016/j.isci.2022.103909_bib157 article-title: Deep learning: a generic approach for extreme condition traffic forecasting – volume: 13 start-page: 53 year: 2009 ident: 10.1016/j.isci.2022.103909_bib11 article-title: Predictions of freeway traffic speeds and volumes using vector autoregressive models publication-title: J. Intell. Transportation Syst. doi: 10.1080/15472450902858368 – volume: 14 start-page: 724 year: 2020 ident: 10.1016/j.isci.2022.103909_bib48 article-title: Advanced framework for microscopic and lane-level macroscopic traffic parameters estimation from UAV video publication-title: IET Intell. Transport Syst. doi: 10.1049/iet-its.2019.0463 – volume: 20 start-page: 100184 year: 2019 ident: 10.1016/j.isci.2022.103909_bib88 article-title: Deep learning models for traffic flow prediction in autonomous vehicles: a review, solutions, and challenges publication-title: Vehicular Commun. doi: 10.1016/j.vehcom.2019.100184 – volume: 23 start-page: 1075 year: 2015 ident: 10.1016/j.isci.2022.103909_bib116 article-title: Dynamic traffic feedback data enabled energy management in plug-in hybrid electric vehicles publication-title: IEEE Trans. Control Syst. Technol. doi: 10.1109/TCST.2014.2361294 – volume: 1748 start-page: 96 year: 2001 ident: 10.1016/j.isci.2022.103909_bib13 article-title: Freeway performance measurement system: mining loop detector data publication-title: Transportation Res. Rec. doi: 10.3141/1748-12 – volume: 129 start-page: 161 year: 2003 ident: 10.1016/j.isci.2022.103909_bib21 article-title: Traffic prediction using multivariate nonparametric regression publication-title: J. Transportation Eng. doi: 10.1061/(ASCE)0733-947X(2003)129:2(161) – volume: 412 start-page: 480 year: 2019 ident: 10.1016/j.isci.2022.103909_bib181 article-title: A survey on driving prediction techniques for predictive energy management of plug-in hybrid electric vehicles publication-title: J. Power Sourc. doi: 10.1016/j.jpowsour.2018.11.085 – volume: 91 start-page: 371 year: 2018 ident: 10.1016/j.isci.2022.103909_bib1 article-title: The impacts of heavy rain on speed and headway Behaviors: an investigation using the SHRP2 naturalistic driving study data publication-title: Transportation Res. C: Emerging Tech. doi: 10.1016/j.trc.2018.04.012 – volume: 52 start-page: 654 year: 2019 ident: 10.1016/j.isci.2022.103909_bib32 article-title: A review of intelligent road preview methods for energy management of hybrid vehicles publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2019.09.104 – start-page: 1 year: 2021 ident: 10.1016/j.isci.2022.103909_bib161 article-title: FASTGNN: a topological information protected federated learning approach for traffic speed forecasting publication-title: IEEE Trans. Ind. Inform. – volume: 22 start-page: 1435 year: 2020 ident: 10.1016/j.isci.2022.103909_bib58 article-title: Predicting short-term traffic speed using a deep neural network to accommodate citywide spatio-temporal correlations publication-title: IEEE Transactions on Intelligent Transportation Systems doi: 10.1109/TITS.2020.2970754 – start-page: 1720 year: 2019 ident: 10.1016/j.isci.2022.103909_bib96 article-title: Urban traffic prediction from spatio-temporal data using deep meta learning – volume: 318 start-page: 297 year: 2018 ident: 10.1016/j.isci.2022.103909_bib123 article-title: LSTM-based traffic flow prediction with missing data publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.08.067 – start-page: 2355 year: 2020 ident: 10.1016/j.isci.2022.103909_bib40 article-title: LSGCN: long short-term traffic prediction with graph convolutional networks – volume: 22 start-page: 1138 year: 2021 ident: 10.1016/j.isci.2022.103909_bib36 article-title: Optimized graph convolution recurrent neural network for traffic prediction publication-title: IEEE Trans. Intell. Transportation Syst. doi: 10.1109/TITS.2019.2963722 – start-page: 546 year: 2018 ident: 10.1016/j.isci.2022.103909_bib66 article-title: Deep sequence learning with auxiliary information for traffic prediction – volume: 341 start-page: 91 year: 2017 ident: 10.1016/j.isci.2022.103909_bib42 article-title: Model predictive control power management strategies for HEVs: a review publication-title: J. Power Sourc. doi: 10.1016/j.jpowsour.2016.11.106 – start-page: 1 year: 2020 ident: 10.1016/j.isci.2022.103909_bib78 article-title: Lane-level traffic speed forecasting: a novel mixed deep learning model publication-title: IEEE Trans. Intell. Transportation Syst. – start-page: 13 year: 2011 ident: 10.1016/j.isci.2022.103909_bib53 article-title: A scalable cellular automata based microscopic traffic simulation – year: 2018 ident: 10.1016/j.isci.2022.103909_bib131 article-title: Efficient Metropolitan Traffic Prediction Based on Graph Recurrent Neural Network publication-title: arXiv – volume: 118 start-page: 102674 year: 2018 ident: 10.1016/j.isci.2022.103909_bib24 article-title: Deep stacked bidirectional and unidirectional LSTM recurrent neural network for network-wide traffic speed prediction publication-title: Transportation Res. Part C: Emerging Tech. doi: 10.1016/j.trc.2020.102674 – volume: 44 start-page: 1084 year: 2010 ident: 10.1016/j.isci.2022.103909_bib45 article-title: Continuous kinematic wave models of merging traffic flow publication-title: Transportation Res. Part B: Methodological doi: 10.1016/j.trb.2010.02.011 – volume: 33 start-page: 999 year: 2018 ident: 10.1016/j.isci.2022.103909_bib72 article-title: Short-term traffic speed forecasting based on attention convolutional neural network for arterials publication-title: Computer-Aided Civil Infrastructure Eng. doi: 10.1111/mice.12417 – volume: 21 start-page: 3848 year: 2020 ident: 10.1016/j.isci.2022.103909_bib177 article-title: T-GCN: a temporal graph convolutional network for traffic prediction publication-title: IEEE Trans. Intell. Transportation Syst. doi: 10.1109/TITS.2019.2935152 – volume: 35 start-page: 427 year: 2003 ident: 10.1016/j.isci.2022.103909_bib126 article-title: A comparison of headway and time to collision as safety indicators publication-title: Accid.Anal. Prev. doi: 10.1016/S0001-4575(02)00022-2 – volume: 44 start-page: 152 year: 2010 ident: 10.1016/j.isci.2022.103909_bib20 article-title: Development and calibration of the Anisotropic Mesoscopic Simulation model for uninterrupted flow facilities publication-title: Transportation Res. B: Methodological doi: 10.1016/j.trb.2009.06.001 – volume: 22 start-page: 219 year: 2021 ident: 10.1016/j.isci.2022.103909_bib170 article-title: TrafficGAN: network-scale deep traffic prediction with generative adversarial nets publication-title: IEEE Trans. Intell. Transportation Syst. doi: 10.1109/TITS.2019.2955794 – volume: 3 start-page: 194 year: 2017 ident: 10.1016/j.isci.2022.103909_bib55 article-title: Local Gaussian processes for efficient fine-grained traffic speed prediction publication-title: IEEE Trans. Big Data doi: 10.1109/TBDATA.2016.2620488 – volume: 20 start-page: 713 year: 2019 ident: 10.1016/j.isci.2022.103909_bib148 article-title: Ego-vehicle speed prediction using a long short-term memory based recurrent neural network publication-title: Int. J. Automotive Technology doi: 10.1007/s12239-019-0067-y – volume: 10 start-page: 93 year: 2018 ident: 10.1016/j.isci.2022.103909_bib54 article-title: Road traffic forecasting: recent advances and new challenges publication-title: IEEE Intell. Transportation Syst. Mag. doi: 10.1109/MITS.2018.2806634 – volume: 55 start-page: 86 year: 2019 ident: 10.1016/j.isci.2022.103909_bib162 article-title: Current status and prospects for model predictive energy management in hybrid electric vehicles publication-title: J. Mech. Eng. doi: 10.3901/JME.2019.10.086 – volume: 428 start-page: 42 year: 2021 ident: 10.1016/j.isci.2022.103909_bib150 article-title: Multi-stage attention spatial-temporal graph networks for traffic prediction publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.11.038 – volume: 10638 start-page: 378 year: 2017 ident: 10.1016/j.isci.2022.103909_bib75 article-title: A method to improve accuracy of velocity prediction using Markov model – volume: 90 start-page: 166 year: 2018 ident: 10.1016/j.isci.2022.103909_bib134 article-title: A hybrid deep learning based traffic flow prediction method and its understanding publication-title: Transportation Res. Part C: Emerging Tech. doi: 10.1016/j.trc.2018.03.001 – volume: 112 start-page: 62 year: 2020 ident: 10.1016/j.isci.2022.103909_bib6 article-title: A graph CNN-LSTM neural network for short and long-term traffic forecasting based on trajectory data publication-title: Transportation Res. C Emerging Tech. doi: 10.1016/j.trc.2020.01.010 – start-page: 271 year: 2017 ident: 10.1016/j.isci.2022.103909_bib106 article-title: Hybrid lane-based short-term urban traffic speed forecasting: a genetic approach – volume: 20 start-page: 3940 year: 2019 ident: 10.1016/j.isci.2022.103909_bib155 article-title: Real-time traffic speed estimation with graph convolutional generative autoencoder publication-title: IEEE Trans. Intell. Transportation Syst. doi: 10.1109/TITS.2019.2910560 – volume: 5 start-page: 3569 year: 2001 ident: 10.1016/j.isci.2022.103909_bib19 article-title: Markov chain Monte Carlo methods: computation and inference – volume: 64 start-page: 258 year: 2017 ident: 10.1016/j.isci.2022.103909_bib67 article-title: Dynamic route planning with real-time traffic predictions publication-title: Inf. Syst. doi: 10.1016/j.is.2016.01.007 – volume: 106 start-page: 1 year: 2019 ident: 10.1016/j.isci.2022.103909_bib33 article-title: Short-term prediction of lane-level traffic speeds: a fusion deep learning model publication-title: Transportation Res. Part C: Emerging Tech. doi: 10.1016/j.trc.2019.07.003 – volume: 8 start-page: 364 year: 2015 ident: 10.1016/j.isci.2022.103909_bib90 article-title: Short term prediction of a vehicle’s velocity trajectory using ITS publication-title: SAE Int. J. Passenger Cars - Electron.Electr. Syst. doi: 10.4271/2015-01-0295 – start-page: 187 year: 2016 ident: 10.1016/j.isci.2022.103909_bib105 article-title: Traffic speed prediction using hidden Markov models for Czech republic highways – start-page: 1 year: 2021 ident: 10.1016/j.isci.2022.103909_bib169 article-title: Integrated velocity prediction method and application in vehicle-environment cooperative control based on internet of vehicles publication-title: IEEE Trans. Vehicular Technol. – volume: 2188 start-page: 29 year: 2010 ident: 10.1016/j.isci.2022.103909_bib124 article-title: Lagrangian formulation of multiclass kinematic wave model publication-title: Transportation Res. Rec. doi: 10.3141/2188-04 – volume: 212 start-page: 106592 year: 2021 ident: 10.1016/j.isci.2022.103909_bib154 article-title: Citywide traffic speed prediction: a geometric deep learning approach publication-title: Knowledge-Based Syst. doi: 10.1016/j.knosys.2020.106592 – volume: 185 start-page: 1644 year: 2017 ident: 10.1016/j.isci.2022.103909_bib117 article-title: Investigating adaptive-ECMS with velocity forecast ability for hybrid electric vehicles publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.02.026 – volume: 2018 start-page: e9728328 year: 2018 ident: 10.1016/j.isci.2022.103909_bib73 article-title: A novel method for predicting vehicle state in internet of vehicles publication-title: Mobile Inf. Syst. – start-page: 2991 year: 2011 ident: 10.1016/j.isci.2022.103909_bib98 article-title: Real time vehicle speed prediction using a Neural Network Traffic Model – volume: 34 start-page: 3529 year: 2020 ident: 10.1016/j.isci.2022.103909_bib15 article-title: Multi-range attentive bicomponent graph convolutional network for traffic forecasting publication-title: Proc. AAAI Conf. Artif.Intelligence doi: 10.1609/aaai.v34i04.5758 – start-page: 2861 year: 2015 ident: 10.1016/j.isci.2022.103909_bib47 article-title: Vehicle speed prediction in a convoy using V2V communication – volume: 20 start-page: 14317 year: 2020 ident: 10.1016/j.isci.2022.103909_bib17 article-title: Sensing data supported traffic flow prediction via denoising schemes and ANN: a comparison publication-title: IEEE Sensors J. doi: 10.1109/JSEN.2020.3007809 – volume: 163 start-page: 472 year: 2019 ident: 10.1016/j.isci.2022.103909_bib153 article-title: Forecasting short-term traffic speed based on multiple attributes of adjacent roads publication-title: Knowledge-Based Syst. doi: 10.1016/j.knosys.2018.09.003 – volume: 29 start-page: 1054 year: 2005 ident: 10.1016/j.isci.2022.103909_bib94 article-title: A simplified kinematic wave model at a merge bottleneck publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2005.02.008 – year: 2019 ident: 10.1016/j.isci.2022.103909_bib180 article-title: A velocity prediction method based on self-learning multi-step Markov chain – volume: 54 start-page: 187 year: 2015 ident: 10.1016/j.isci.2022.103909_bib85 article-title: Long short-term memory neural network for traffic speed prediction using remote microwave sensor data publication-title: Transportation Res. Part C: Emerging Tech. doi: 10.1016/j.trc.2015.03.014 – start-page: 1 year: 2020 ident: 10.1016/j.isci.2022.103909_bib147 article-title: How to build a graph-based deep learning architecture in traffic domain: a survey publication-title: IEEE Trans. Intell. Transportation Syst. – volume: 196 start-page: 279 year: 2017 ident: 10.1016/j.isci.2022.103909_bib138 article-title: An energy management strategy based on stochastic model predictive control for plug-in hybrid electric buses publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.12.112 – volume: 206 start-page: 118126 year: 2020 ident: 10.1016/j.isci.2022.103909_bib167 article-title: Energy optimization of multi-mode coupling drive plug-in hybrid electric vehicles based on speed prediction publication-title: Energy doi: 10.1016/j.energy.2020.118126 – start-page: 102 year: 2015 ident: 10.1016/j.isci.2022.103909_bib22 article-title: Traffic speed prediction method for urban networks — an ANN approach – start-page: 209 year: 2007 ident: 10.1016/j.isci.2022.103909_bib118 article-title: An Extended Kalman Filter Application for Traffic State Estimation Using CTM with Implicit Mode Switching and Dynamic Parameters – volume: 22 start-page: 4813 year: 2021 ident: 10.1016/j.isci.2022.103909_bib86 article-title: Forecasting transportation network speed using deep capsule networks with nested LSTM models publication-title: IEEE Trans. Intell. Transportation Syst. doi: 10.1109/TITS.2020.2984813 – start-page: 1 year: 2020 ident: 10.1016/j.isci.2022.103909_bib113 article-title: Incorporating dynamicity of transportation network with multi-weight traffic graph convolutional network for traffic forecasting publication-title: IEEE Trans. Intell. Transportation Syst. – volume: 33 start-page: 485 year: 2019 ident: 10.1016/j.isci.2022.103909_bib12 article-title: Gated residual recurrent graph neural networks for traffic prediction publication-title: Proc. AAAI Conf. Artif. Intelligence doi: 10.1609/aaai.v33i01.3301485 – volume: 22 start-page: 1562 year: 2021 ident: 10.1016/j.isci.2022.103909_bib107 article-title: Eco-approach with traffic prediction and experimental validation for connected and autonomous vehicles publication-title: IEEE Trans. Intell. Transportation Syst. doi: 10.1109/TITS.2020.2972198 – start-page: 448 year: 2020 ident: 10.1016/j.isci.2022.103909_bib114 article-title: Vehicle speed prediction for connected and autonomous vehicles using communication and perception – start-page: 10 year: 2014 ident: 10.1016/j.isci.2022.103909_bib18 article-title: Efficient traffic speed forecasting based on massive heterogenous historical data – volume: 30 start-page: 1310 year: 2018 ident: 10.1016/j.isci.2022.103909_bib68 article-title: Road traffic speed prediction: a probabilistic model fusing multi-source data publication-title: IEEE Trans. Knowledge Data Eng. doi: 10.1109/TKDE.2017.2718525 – volume: 6 start-page: 75629 year: 2018 ident: 10.1016/j.isci.2022.103909_bib83 article-title: Short-term traffic flow forecasting by selecting appropriate predictions based on pattern matching publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2879055 – volume: 43 year: 2014 ident: 10.1016/j.isci.2022.103909_bib125 article-title: Short-term traffic forecasting: where we are and where we’re going publication-title: Transportation Res. Part C: Emerging Tech. doi: 10.1016/j.trc.2014.01.005 – volume: 129 start-page: 664 year: 2003 ident: 10.1016/j.isci.2022.103909_bib133 article-title: Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process: theoretical basis and empirical results publication-title: J. Transportation Eng. doi: 10.1061/(ASCE)0733-947X(2003)129:6(664) – volume: 20 start-page: 3700 year: 2019 ident: 10.1016/j.isci.2022.103909_bib160 article-title: Long-term traffic speed prediction based on multiscale spatio-temporal feature learning network publication-title: IEEE Trans. Intell. Transportation Syst. doi: 10.1109/TITS.2018.2878068 – start-page: 117 year: 2020 ident: 10.1016/j.isci.2022.103909_bib121 article-title: An Attention-Based Approach for Traffic Conditions Forecasting Considering Spatial-Temporal Features – volume: 27 start-page: 281 year: 1993 ident: 10.1016/j.isci.2022.103909_bib93 article-title: A simplified theory of kinematic waves in highway traffic, part I: general theory publication-title: Transportation Res. Part B: Methodological doi: 10.1016/0191-2615(93)90038-C – volume: 20 start-page: 1378 year: 2019 ident: 10.1016/j.isci.2022.103909_bib146 article-title: Prediction-based eco-approach and departure at signalized intersections with speed forecasting on preceding vehicles publication-title: IEEE Trans. Intell. Transportation Syst. doi: 10.1109/TITS.2018.2856809 – start-page: 962 year: 2007 ident: 10.1016/j.isci.2022.103909_bib159 article-title: Prediction Time Horizon and Effectiveness of Real-Time Data on Short-Term Traffic Predictability – volume: 34 start-page: 5956 year: 2020 ident: 10.1016/j.isci.2022.103909_bib120 article-title: Joint modeling of local and global temporal dynamics for multivariate time series forecasting with missing values publication-title: Proc.AAAI Conf.Artif.Intelligence doi: 10.1609/aaai.v34i04.6056 – volume: 18 start-page: 1793 year: 2017 ident: 10.1016/j.isci.2022.103909_bib44 article-title: Vehicle speed prediction by two-level data driven models in vehicular networks publication-title: IEEE Trans. Intell. Transportation Syst. doi: 10.1109/TITS.2016.2620498 – volume: 47 start-page: 101221 year: 2020 ident: 10.1016/j.isci.2022.103909_bib174 article-title: Cellular automata model for Urban Road traffic flow Considering Internet of Vehicles and emergency vehicles publication-title: J. Comput. Sci. doi: 10.1016/j.jocs.2020.101221 – volume: 115 start-page: 102622 year: 2020 ident: 10.1016/j.isci.2022.103909_bib7 article-title: A variational autoencoder solution for road traffic forecasting systems: missing data imputation, dimension reduction, model selection and anomaly detection publication-title: Transportation Res. Part C: Emerging Tech. doi: 10.1016/j.trc.2020.102622 – volume: 7 start-page: 7181 year: 2020 ident: 10.1016/j.isci.2022.103909_bib103 article-title: Vehicular networking-enabled vehicle state prediction via two-level quantized adaptive kalman filtering publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2020.2983332 – volume: 7 start-page: 102021 year: 2019 ident: 10.1016/j.isci.2022.103909_bib28 article-title: MIT advanced vehicle Technology study: large-scale naturalistic driving study of driver behavior and interaction with automation publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2926040 – start-page: 234 year: 2019 ident: 10.1016/j.isci.2022.103909_bib31 article-title: Temporal graph convolutional networks for traffic speed prediction considering external factors – year: 2014 ident: 10.1016/j.isci.2022.103909_bib9 article-title: Spectral Networks and Locally Connected Networks on Graphs publication-title: arXiv – volume: 15 start-page: 794 year: 2014 ident: 10.1016/j.isci.2022.103909_bib3 article-title: Spatiotemporal patterns in large-scale traffic speed prediction publication-title: IEEE Trans. Intell. Transportation Syst. doi: 10.1109/TITS.2013.2290285 – volume: 7 start-page: e470 year: 2021 ident: 10.1016/j.isci.2022.103909_bib109 article-title: ST-AFN: a spatial-temporal attention based fusion network for lane-level traffic flow prediction publication-title: Peerj.Computer Sci. doi: 10.7717/peerj-cs.470 – volume: 23 start-page: 1197 year: 2015 ident: 10.1016/j.isci.2022.103909_bib115 article-title: Velocity predictors for predictive energy management in hybrid electric vehicles publication-title: IEEE Trans. Control Syst. Technol. doi: 10.1109/TCST.2014.2359176 – volume: 105 start-page: 297 year: 2019 ident: 10.1016/j.isci.2022.103909_bib172 article-title: Multistep speed prediction on traffic networks: a deep learning approach considering spatio-temporal dependencies publication-title: Transportation Res. Part C: Emerging Tech. doi: 10.1016/j.trc.2019.05.039 – volume: 50 start-page: 148 year: 2018 ident: 10.1016/j.isci.2022.103909_bib92 article-title: Survey on traffic prediction in smart cities publication-title: Pervasive Mobile Comput. doi: 10.1016/j.pmcj.2018.07.004 – volume: 3 start-page: 129 year: 2018 ident: 10.1016/j.isci.2022.103909_bib25 article-title: How would surround vehicles move? A unified framework for maneuver classification and motion prediction publication-title: IEEE Trans. Intell. Vehicles doi: 10.1109/TIV.2018.2804159 – volume: 419 start-page: 1 year: 2005 ident: 10.1016/j.isci.2022.103909_bib87 article-title: Cellular automata models of road traffic publication-title: Phys. Rep. doi: 10.1016/j.physrep.2005.08.005 – volume: 19 start-page: 2373 year: 2018 ident: 10.1016/j.isci.2022.103909_bib39 article-title: Ecological driving system for connected/automated vehicles using a two-stage control hierarchy publication-title: IEEE Trans. Intell. Transportation Syst. doi: 10.1109/TITS.2018.2813978 – volume: 8 start-page: 42042 year: 2020 ident: 10.1016/j.isci.2022.103909_bib79 article-title: A hybrid model for lane-level traffic flow forecasting based on complete ensemble empirical mode decomposition and extreme gradient boosting publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2977219 – volume: 236 start-page: 893 year: 2019 ident: 10.1016/j.isci.2022.103909_bib139 article-title: Pontryagin’s Minimum Principle based model predictive control of energy management for a plug-in hybrid electric bus publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.12.032 – volume: 60 start-page: 3747 year: 2011 ident: 10.1016/j.isci.2022.103909_bib5 article-title: Improving estimation of vehicle’s trajectory using the latest global positioning system with kalman filtering publication-title: IEEE Trans. Instrumentation Meas. doi: 10.1109/TIM.2011.2147670 – start-page: 1907 year: 2019 ident: 10.1016/j.isci.2022.103909_bib135 article-title: Graph wavenet for deep spatial-temporal graph modeling publication-title: Proceedings of the 28th International Joint Conference on Artificial Intelligence – volume: 11 start-page: 5619 year: 2021 ident: 10.1016/j.isci.2022.103909_bib70 article-title: Estimation of lane-level traffic flow using a deep learning technique publication-title: Appl. Sci. doi: 10.3390/app11125619 – volume: 99 start-page: 85 year: 2018 ident: 10.1016/j.isci.2022.103909_bib132 article-title: Markov chain Monte Carlo simulation of electric vehicle use for network integration studies publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2018.01.008 – start-page: 1 year: 2021 ident: 10.1016/j.isci.2022.103909_bib149 article-title: Deep learning on traffic prediction: methods, analysis and future directions publication-title: IEEE Trans. Intell. Transportation Syst. – year: 2019 ident: 10.1016/j.isci.2022.103909_bib137 article-title: How do urban incidents affect traffic speed?”A Deep Graph Convolutional Network for Incident-Driven Traffic Speed Prediction publication-title: arXiv – volume: 33 start-page: 890 year: 2019 ident: 10.1016/j.isci.2022.103909_bib26 article-title: Dynamic spatial-temporal graph convolutional neural networks for traffic forecasting publication-title: Proc. AAAI Conf. Artif. Intelligence doi: 10.1609/aaai.v33i01.3301890 – volume: 8 start-page: 209296 year: 2020 ident: 10.1016/j.isci.2022.103909_bib27 article-title: Dynamic global-local spatial-temporal network for traffic speed prediction publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3038380 – volume: 155 start-page: 838 year: 2018 ident: 10.1016/j.isci.2022.103909_bib110 article-title: Optimal energy management strategy for a plug-in hybrid electric commercial vehicle based on velocity prediction publication-title: Energy doi: 10.1016/j.energy.2018.05.064 – start-page: 5207 year: 2019 ident: 10.1016/j.isci.2022.103909_bib51 article-title: Structural recurrent neural network for traffic speed prediction – start-page: 499 year: 2016 ident: 10.1016/j.isci.2022.103909_bib129 article-title: Traffic speed prediction and congestion source exploration: a deep learning method – start-page: 1 year: 2021 ident: 10.1016/j.isci.2022.103909_bib156 article-title: Long-term urban traffic speed prediction with deep learning on graphs publication-title: IEEE Trans. Intell. Transportation Syst. – year: 2017 ident: 10.1016/j.isci.2022.103909_bib84 article-title: Learning traffic as images: a deep convolutional neural network for large-scale transportation network speed prediction publication-title: Sensors – year: 2020 ident: 10.1016/j.isci.2022.103909_bib140 article-title: ISTD-GCN: Iterative Spatial-Temporal Diffusion Graph Convolutional Network for Traffic Speed Forecasting publication-title: arXiv – start-page: 1 year: 2003 ident: 10.1016/j.isci.2022.103909_bib41 article-title: An application of neural network on traffic speed prediction under adverse weather condition – ident: 10.1016/j.isci.2022.103909_bib71 – start-page: 1215 year: 2020 ident: 10.1016/j.isci.2022.103909_bib97 article-title: ST-GRAT: a novel spatio-temporal graph attention network for accurately forecasting dynamically changing road speed – start-page: 1 year: 2020 ident: 10.1016/j.isci.2022.103909_bib165 article-title: Graph attention temporal convolutional network for traffic speed forecasting on road networks publication-title: Transportmetrica B: Transport Dyn. – volume: 2674 start-page: 459 year: 2020 ident: 10.1016/j.isci.2022.103909_bib50 article-title: Two-stream multi-channel convolutional neural network for multi-lane traffic speed prediction considering traffic volume impact publication-title: Transportation Res. Rec. doi: 10.1177/0361198120911052 |
SSID | ssj0002002496 |
Score | 2.4184515 |
SecondaryResourceType | review_article |
Snippet | In the intelligent transportation system (ITS), speed prediction plays a significant role in supporting vehicle routing and traffic guidance. Recently, a... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 103909 |
SubjectTerms | Algorithms Engineering Review Transportation engineering |
Title | A comprehensive study of speed prediction in transportation system: From vehicle to traffic |
URI | https://dx.doi.org/10.1016/j.isci.2022.103909 https://www.ncbi.nlm.nih.gov/pubmed/35281740 https://www.proquest.com/docview/2638942302 https://pubmed.ncbi.nlm.nih.gov/PMC8904620 https://doaj.org/article/e8c7c79382c44455afa8fec359179569 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BatwwEBUhp-ZQ2jRt3SZBhdyCqSxLaym3tGQJheaUQCAHYcsjdkNrh82m398ZyV68LaSX3sxaa1ueZ-sNfvOGsZO6Fo1upc91JUOuQOjcmpnPlfdNCZpQQ_XO369mlzfq262-nbT6Ik1YsgdON-4zGF95BJGRXimldR1qE8CXGvMM5PaxdE9YMUmm7uPnNbLCi53lNGmCEJpDxUwSd1HFKyaHUlLRuSU14mRViub9W4vT3-TzTw3lZFGav2IvBzbJz9MsXrMd6PbZ3sRj8A27O-ckG1_BIknVeTSU5X3gjw-4cnHc0y5jcQNfdnw9ep3HgPHk83zG56v-J_8FCzoLX_c0jKwnDtjN_OL662U-dFTIPTUuoFefUdKHEJqGEi0L4AEpmWitDqWeVTa0dV0CshRt26ot8H2mkXCEws-MN2X5lu12fQfvGfdNKMA20CqDSY-CWle4JTQZ_knZlBkrxjvq_GA3Tl0vfrhRV3bvKAqOouBSFDJ2uvnPQzLbeHb0FwrUZiQZZccfED5ugI_7F3wypscwu4FzJC6Bh1o-e_JPIyYcPpD0laXuoH96dJI4IJJUITP2LmFkc4lkpYMpoMhYtYWerTls7-mWi2j6bSyVEYsP_2PSH9kLmgpJ6QpzyHbXqyc4Qm61bo7jY_Qb2v4f8g |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comprehensive+study+of+speed+prediction+in+transportation+system%3A+From+vehicle+to+traffic&rft.jtitle=iScience&rft.au=Zewei+Zhou&rft.au=Ziru+Yang&rft.au=Yuanjian+Zhang&rft.au=Yanjun+Huang&rft.date=2022-03-18&rft.pub=Elsevier&rft.issn=2589-0042&rft.eissn=2589-0042&rft.volume=25&rft.issue=3&rft.spage=103909&rft_id=info:doi/10.1016%2Fj.isci.2022.103909&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_e8c7c79382c44455afa8fec359179569 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2589-0042&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2589-0042&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2589-0042&client=summon |