A comprehensive study of speed prediction in transportation system: From vehicle to traffic

In the intelligent transportation system (ITS), speed prediction plays a significant role in supporting vehicle routing and traffic guidance. Recently, a considerable amount of research has been devoted to a single-level (e.g., traffic or vehicle) prediction. However, a systematic review of speed pr...

Full description

Saved in:
Bibliographic Details
Published iniScience Vol. 25; no. 3; p. 103909
Main Authors Zhou, Zewei, Yang, Ziru, Zhang, Yuanjian, Huang, Yanjun, Chen, Hong, Yu, Zhuoping
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 18.03.2022
Elsevier
Subjects
Online AccessGet full text
ISSN2589-0042
2589-0042
DOI10.1016/j.isci.2022.103909

Cover

Abstract In the intelligent transportation system (ITS), speed prediction plays a significant role in supporting vehicle routing and traffic guidance. Recently, a considerable amount of research has been devoted to a single-level (e.g., traffic or vehicle) prediction. However, a systematic review of speed prediction in and between different levels is still missing. In this article, existing research is comprehensively analyzed and divided into three levels, i.e. macro traffic, micro vehicles, and meso lane. In addition, this article summarizes the influencing factors and reviews the prediction methods based on how those methods utilize the available information to meet the challenges of the prediction at different levels. This is followed by a summary of evaluation metrics, public datasets, and open-source codes. Finally, future directions in this field are discussed to inspire and guide readers. This article aims to draw a complete picture of speed prediction and promote the development of ITS. [Display omitted] •A comprehensive review is provided for speed prediction in and between different levels•Existing speed prediction methods at different levels are systematically surveyed•The future directions of speed prediction in the transportation system are elaborated Algorithms; Engineering; Transportation engineering
AbstractList In the intelligent transportation system (ITS), speed prediction plays a significant role in supporting vehicle routing and traffic guidance. Recently, a considerable amount of research has been devoted to a single-level (e.g., traffic or vehicle) prediction. However, a systematic review of speed prediction in and between different levels is still missing. In this article, existing research is comprehensively analyzed and divided into three levels, i.e. macro traffic, micro vehicles, and meso lane. In addition, this article summarizes the influencing factors and reviews the prediction methods based on how those methods utilize the available information to meet the challenges of the prediction at different levels. This is followed by a summary of evaluation metrics, public datasets, and open-source codes. Finally, future directions in this field are discussed to inspire and guide readers. This article aims to draw a complete picture of speed prediction and promote the development of ITS.
In the intelligent transportation system (ITS), speed prediction plays a significant role in supporting vehicle routing and traffic guidance. Recently, a considerable amount of research has been devoted to a single-level (e.g., traffic or vehicle) prediction. However, a systematic review of speed prediction in and between different levels is still missing. In this article, existing research is comprehensively analyzed and divided into three levels, i.e. macro traffic, micro vehicles, and meso lane. In addition, this article summarizes the influencing factors and reviews the prediction methods based on how those methods utilize the available information to meet the challenges of the prediction at different levels. This is followed by a summary of evaluation metrics, public datasets, and open-source codes. Finally, future directions in this field are discussed to inspire and guide readers. This article aims to draw a complete picture of speed prediction and promote the development of ITS. [Display omitted] •A comprehensive review is provided for speed prediction in and between different levels•Existing speed prediction methods at different levels are systematically surveyed•The future directions of speed prediction in the transportation system are elaborated Algorithms; Engineering; Transportation engineering
In the intelligent transportation system (ITS), speed prediction plays a significant role in supporting vehicle routing and traffic guidance. Recently, a considerable amount of research has been devoted to a single-level (e.g., traffic or vehicle) prediction. However, a systematic review of speed prediction in and between different levels is still missing. In this article, existing research is comprehensively analyzed and divided into three levels, i.e. macro traffic, micro vehicles, and meso lane. In addition, this article summarizes the influencing factors and reviews the prediction methods based on how those methods utilize the available information to meet the challenges of the prediction at different levels. This is followed by a summary of evaluation metrics, public datasets, and open-source codes. Finally, future directions in this field are discussed to inspire and guide readers. This article aims to draw a complete picture of speed prediction and promote the development of ITS. • A comprehensive review is provided for speed prediction in and between different levels • Existing speed prediction methods at different levels are systematically surveyed • The future directions of speed prediction in the transportation system are elaborated Algorithms; Engineering; Transportation engineering
In the intelligent transportation system (ITS), speed prediction plays a significant role in supporting vehicle routing and traffic guidance. Recently, a considerable amount of research has been devoted to a single-level (e.g., traffic or vehicle) prediction. However, a systematic review of speed prediction in and between different levels is still missing. In this article, existing research is comprehensively analyzed and divided into three levels, i.e. macro traffic, micro vehicles, and meso lane. In addition, this article summarizes the influencing factors and reviews the prediction methods based on how those methods utilize the available information to meet the challenges of the prediction at different levels. This is followed by a summary of evaluation metrics, public datasets, and open-source codes. Finally, future directions in this field are discussed to inspire and guide readers. This article aims to draw a complete picture of speed prediction and promote the development of ITS.In the intelligent transportation system (ITS), speed prediction plays a significant role in supporting vehicle routing and traffic guidance. Recently, a considerable amount of research has been devoted to a single-level (e.g., traffic or vehicle) prediction. However, a systematic review of speed prediction in and between different levels is still missing. In this article, existing research is comprehensively analyzed and divided into three levels, i.e. macro traffic, micro vehicles, and meso lane. In addition, this article summarizes the influencing factors and reviews the prediction methods based on how those methods utilize the available information to meet the challenges of the prediction at different levels. This is followed by a summary of evaluation metrics, public datasets, and open-source codes. Finally, future directions in this field are discussed to inspire and guide readers. This article aims to draw a complete picture of speed prediction and promote the development of ITS.
ArticleNumber 103909
Author Huang, Yanjun
Zhou, Zewei
Yang, Ziru
Zhang, Yuanjian
Yu, Zhuoping
Chen, Hong
Author_xml – sequence: 1
  givenname: Zewei
  orcidid: 0000-0002-7378-9810
  surname: Zhou
  fullname: Zhou, Zewei
  organization: School of Automotive Studies, Tongji University, Shanghai 201804, China
– sequence: 2
  givenname: Ziru
  orcidid: 0000-0003-3497-6119
  surname: Yang
  fullname: Yang, Ziru
  organization: School of Automotive Studies, Tongji University, Shanghai 201804, China
– sequence: 3
  givenname: Yuanjian
  orcidid: 0000-0001-5563-8480
  surname: Zhang
  fullname: Zhang, Yuanjian
  organization: Department of Aeronautical and Automotive Engineering, Loughborough University, LoughboroughLE11 3TU, UK
– sequence: 4
  givenname: Yanjun
  orcidid: 0000-0003-3133-8031
  surname: Huang
  fullname: Huang, Yanjun
  email: yanjun_huang@tongji.edu.cn
  organization: School of Automotive Studies, Tongji University, Shanghai 201804, China
– sequence: 5
  givenname: Hong
  orcidid: 0000-0002-1724-8649
  surname: Chen
  fullname: Chen, Hong
  organization: College of Electronics and Information Engineering, Tongji University, Shanghai201804, China
– sequence: 6
  givenname: Zhuoping
  surname: Yu
  fullname: Yu, Zhuoping
  organization: School of Automotive Studies, Tongji University, Shanghai 201804, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35281740$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1rGzEQFSWlSdP8gR6Kjr3Y0eeuVEohhKYNBHppTz0IWTuKZXYlV1ob_O-jzSYlySEgkJh5781o5r1HRzFFQOgjJUtKaHO-WYbiwpIRxmqAa6LfoBMmlV4QItjRk_cxOitlQwhh9QjdvEPHXDJFW0FO0N8L7NKwzbCGWMIecBl33QEnj8sWoMM10wU3hhRxiHjMNpZtyqO9j5RDGWH4gq9yGvAe1sH1gMc0wbwP7gN6621f4OzhPkV_rr7_vvy5uPn14_ry4mbhJKPjQrWNEsx571crpbXSAA4EbUinpeeyabXvrOUguJa6azvKqJZSCk9do5zi_BRdz7pdshuzzWGw-WCSDeY-kPKtsXmcmjOgXOtazRVzQggprbfKg-NS01bLRletb7PWdrcaoHMQ62f6Z6LPMzGszW3aG6WJaBipAp8fBHL6t4MymqEuCvreRki7YljDlRaME1ahn57W-l_kcTsVoGaAy6mUDN64MI--lg69ocRMXjAbM3nBTF4wsxcqlb2gPqq_Svo6k6Buax8gm4qA6KoFMrixjjO8Rr8D9P_NnA
CitedBy_id crossref_primary_10_1016_j_jclepro_2023_137452
crossref_primary_10_1016_j_inffus_2023_102078
crossref_primary_10_1007_s40996_024_01383_z
crossref_primary_10_1109_TITS_2023_3349198
crossref_primary_10_1016_j_conengprac_2023_105751
crossref_primary_10_1016_j_eiar_2024_107767
crossref_primary_10_1109_TITS_2024_3486963
crossref_primary_10_1177_09544070231186186
crossref_primary_10_1007_s10846_024_02110_6
crossref_primary_10_1007_s11356_024_31927_9
crossref_primary_10_1109_ACCESS_2023_3310821
crossref_primary_10_1016_j_energy_2024_130416
crossref_primary_10_1016_j_cnsns_2024_107871
crossref_primary_10_1016_j_jclepro_2023_136937
crossref_primary_10_3390_s23156950
crossref_primary_10_1016_j_trf_2025_01_018
crossref_primary_10_1177_09544070231213782
crossref_primary_10_1142_S0129183123501279
crossref_primary_10_1177_09544070241272761
crossref_primary_10_1016_j_eng_2023_03_018
crossref_primary_10_1007_s00521_024_10850_7
crossref_primary_10_1109_TVT_2024_3424422
crossref_primary_10_1016_j_scitotenv_2024_174724
crossref_primary_10_1016_j_knosys_2024_111913
crossref_primary_10_3390_electronics14010110
crossref_primary_10_1016_j_energy_2022_126060
crossref_primary_10_1155_atr_9941856
crossref_primary_10_4028_p_FZ0iNi
crossref_primary_10_1002_ente_202300919
crossref_primary_10_3390_s25010191
crossref_primary_10_3390_en16104121
crossref_primary_10_1109_ACCESS_2023_3334388
crossref_primary_10_1061_JTEPBS_TEENG_8059
crossref_primary_10_3390_s25041225
Cites_doi 10.1109/TITS.2016.2643005
10.1177/0361198120941508
10.1016/j.apenergy.2015.12.035
10.1016/j.egypro.2018.09.220
10.1109/TITS.2016.2580318
10.1109/TITS.2018.2877785
10.1103/PhysRevE.53.2366
10.1016/j.ymssp.2021.107765
10.1109/TITS.2018.2882609
10.1109/TVT.2019.2912893
10.1109/TITS.2019.2950416
10.1016/j.trc.2014.02.007
10.1109/TNNLS.2016.2574840
10.1111/mice.12221
10.1109/ACCESS.2020.2992507
10.1016/j.future.2019.06.030
10.1016/S0304-3800(00)00269-6
10.1109/TKDE.2020.3001195
10.1109/ACCESS.2021.3071174
10.3390/en10010074
10.1016/j.trc.2012.08.004
10.1049/iet-its.2018.5593
10.1109/TITS.2013.2247040
10.1016/j.energy.2019.03.083
10.1016/j.trc.2017.02.024
10.1016/j.trc.2019.12.007
10.1109/ACCESS.2018.2890414
10.1109/ACCESS.2018.2868735
10.1016/j.energy.2021.120273
10.1016/j.neucom.2021.03.054
10.1109/TITS.2007.903439
10.1049/iet-its.2020.0410
10.1049/itr2.12019
10.1016/j.neucom.2018.10.097
10.1007/s41019-020-00151-z
10.1609/aaai.v34i01.5477
10.1007/s11431-017-9213-0
10.1109/TITS.2013.2294934
10.1016/j.apenergy.2016.12.056
10.1016/j.trc.2021.103372
10.1109/MITS.2019.2903431
10.1109/ACCESS.2020.3034551
10.1016/j.trc.2010.10.002
10.1016/j.trc.2019.02.002
10.1080/15472450.2019.1583965
10.1080/15472450902858368
10.1049/iet-its.2019.0463
10.1016/j.vehcom.2019.100184
10.1109/TCST.2014.2361294
10.3141/1748-12
10.1061/(ASCE)0733-947X(2003)129:2(161)
10.1016/j.jpowsour.2018.11.085
10.1016/j.trc.2018.04.012
10.1016/j.ifacol.2019.09.104
10.1109/TITS.2020.2970754
10.1016/j.neucom.2018.08.067
10.1109/TITS.2019.2963722
10.1016/j.jpowsour.2016.11.106
10.1016/j.trc.2020.102674
10.1016/j.trb.2010.02.011
10.1111/mice.12417
10.1109/TITS.2019.2935152
10.1016/S0001-4575(02)00022-2
10.1016/j.trb.2009.06.001
10.1109/TITS.2019.2955794
10.1109/TBDATA.2016.2620488
10.1007/s12239-019-0067-y
10.1109/MITS.2018.2806634
10.3901/JME.2019.10.086
10.1016/j.neucom.2020.11.038
10.1016/j.trc.2018.03.001
10.1016/j.trc.2020.01.010
10.1109/TITS.2019.2910560
10.1016/j.is.2016.01.007
10.1016/j.trc.2019.07.003
10.4271/2015-01-0295
10.3141/2188-04
10.1016/j.knosys.2020.106592
10.1016/j.apenergy.2016.02.026
10.1609/aaai.v34i04.5758
10.1109/JSEN.2020.3007809
10.1016/j.knosys.2018.09.003
10.1016/j.apm.2005.02.008
10.1016/j.trc.2015.03.014
10.1016/j.apenergy.2016.12.112
10.1016/j.energy.2020.118126
10.1109/TITS.2020.2984813
10.1609/aaai.v33i01.3301485
10.1109/TITS.2020.2972198
10.1109/TKDE.2017.2718525
10.1109/ACCESS.2018.2879055
10.1016/j.trc.2014.01.005
10.1061/(ASCE)0733-947X(2003)129:6(664)
10.1109/TITS.2018.2878068
10.1016/0191-2615(93)90038-C
10.1109/TITS.2018.2856809
10.1609/aaai.v34i04.6056
10.1109/TITS.2016.2620498
10.1016/j.jocs.2020.101221
10.1016/j.trc.2020.102622
10.1109/JIOT.2020.2983332
10.1109/ACCESS.2019.2926040
10.1109/TITS.2013.2290285
10.7717/peerj-cs.470
10.1109/TCST.2014.2359176
10.1016/j.trc.2019.05.039
10.1016/j.pmcj.2018.07.004
10.1109/TIV.2018.2804159
10.1016/j.physrep.2005.08.005
10.1109/TITS.2018.2813978
10.1109/ACCESS.2020.2977219
10.1016/j.apenergy.2018.12.032
10.1109/TIM.2011.2147670
10.3390/app11125619
10.1016/j.ijepes.2018.01.008
10.1609/aaai.v33i01.3301890
10.1109/ACCESS.2020.3038380
10.1016/j.energy.2018.05.064
10.1177/0361198120911052
ContentType Journal Article
Copyright 2022 The Author(s)
2022 The Author(s).
2022 The Author(s) 2022
Copyright_xml – notice: 2022 The Author(s)
– notice: 2022 The Author(s).
– notice: 2022 The Author(s) 2022
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.1016/j.isci.2022.103909
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed



MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2589-0042
ExternalDocumentID oai_doaj_org_article_e8c7c79382c44455afa8fec359179569
PMC8904620
35281740
10_1016_j_isci_2022_103909
S2589004222001791
Genre Journal Article
Review
GroupedDBID 0SF
53G
6I.
AACTN
AAEDW
AAFTH
AALRI
AAXUO
ABMAC
ADBBV
AEXQZ
AFTJW
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BCNDV
EBS
FDB
GROUPED_DOAJ
HYE
M41
NCXOZ
OK1
ROL
RPM
SSZ
0R~
AAMRU
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
APXCP
CITATION
EJD
NPM
7X8
5PM
ID FETCH-LOGICAL-c521t-876842cfffbb89989eece4160d95f35679fdaa3e43959d7d12195554f1c68c833
IEDL.DBID DOA
ISSN 2589-0042
IngestDate Wed Aug 27 01:20:44 EDT 2025
Thu Aug 21 18:28:46 EDT 2025
Fri Jul 11 13:09:57 EDT 2025
Thu Jan 02 22:55:01 EST 2025
Thu Apr 24 23:06:47 EDT 2025
Tue Jul 01 01:03:48 EDT 2025
Tue Jul 25 20:58:26 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Engineering
Transportation engineering
Algorithms
Language English
License This is an open access article under the CC BY license.
2022 The Author(s).
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c521t-876842cfffbb89989eece4160d95f35679fdaa3e43959d7d12195554f1c68c833
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0002-7378-9810
0000-0003-3497-6119
0000-0003-3133-8031
0000-0002-1724-8649
0000-0001-5563-8480
OpenAccessLink https://doaj.org/article/e8c7c79382c44455afa8fec359179569
PMID 35281740
PQID 2638942302
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_e8c7c79382c44455afa8fec359179569
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8904620
proquest_miscellaneous_2638942302
pubmed_primary_35281740
crossref_citationtrail_10_1016_j_isci_2022_103909
crossref_primary_10_1016_j_isci_2022_103909
elsevier_sciencedirect_doi_10_1016_j_isci_2022_103909
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-03-18
PublicationDateYYYYMMDD 2022-03-18
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-18
  day: 18
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle iScience
PublicationTitleAlternate iScience
PublicationYear 2022
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Zhao, Gao, Bai, Wang, Lu (bib175) 2019; 11
Guo, He, Sun (bib35) 2019; 68
Luo, Cai, Yu, Sun, Bi, Jiang (bib81) 2019; 101
Min, Wynter (bib89) 2011; 19
Diao, Wang, Zhang, Liu, Xie, He (bib26) 2019; 33
Wang, Thorpe, Suppe (bib127) 2003
Wu, Tan, Qin, Ran, Jiang (bib134) 2018; 90
Lee, Jeon, Sohn (bib58) 2020; 22
Zhou, Yang, Ying, Yuan, Yang (bib179) 2019; 20
Chen, Wu, Shi, Huang, Yang, Ke, Zhao (bib17) 2020; 20
Gu, Zhao, Mason (bib32) 2019; 52
Guo, Hu, Qian, Liu, Zhang, Sun, Gao, Yin (bib36) 2021; 22
Zhang (bib162) 2019; 55
Liu, Chu, Xu, Jia, Xu (bib75) 2017; 10638
Sun, Moura, Hu, Hedrick, Sun (bib116) 2015; 23
Fridman, Brown, Glazer, Angell, Dodd, Jenik, Terwilliger, Patsekin, Kindelsberger, Ding (bib28) 2019; 7
Wang, Chen, He (bib128) 2019; 100
Boquet, Morell, Serrano, Vicario (bib7) 2020; 115
Chen, Yan, Liu, Li, Wang, Tian (bib14) 2021; 9
Liao, Zhang, Wu, McIlwraith, Chen, Yang, Guo, Wu (bib66) 2018
Shen, Yu, Zhang, Kong (bib109) 2021; 7
Zhang, Liu, Qi (bib167) 2020; 206
Feng, Wu, Zhang, Wu (bib27) 2020; 8
Shao, Sun (bib107) 2021; 22
Clark (bib21) 2003; 129
Li, Qu, Zhang, Wang, Ran (bib60) 2019; 23
Yu, Yin, Zhu (bib152) 2018
Bruna, Zaremba, Szlam, LeCun (bib9) 2014
Csikós, Viharos, Kis, Tettamanti, Varga (bib22) 2015
Huang, Ran (bib41) 2003
Li, Wang, Fan, Zhang, Guo, Siddique, Ban (bib61) 2020; 111
Deo, Rangesh, Trivedi (bib25) 2018; 3
Xu, Dai, Liu, Gao, Lin, Qi, Xiong (bib141) 2021
Xie, He, Peng (bib138) 2017; 196
Yan, Li, Hongwen, Peng (bib142) 2018; 152
Yu, Markos, Zhang (bib156) 2021
Yue, Yeh, Zhuang (bib159) 2007
Qi, Ishak (bib102) 2014; 43
Qu, Lyu, Li, Ma, Fan (bib104) 2021; 451
Xie, Hu, Xin, Brighton (bib139) 2019; 236
Lefevre, Sun, Bajcsy, Laugier (bib59) 2014
Suh, Shao, Sun (bib114) 2020
Tang, Yao, Sun, Aggarwal, Mitra, Wang (bib120) 2020; 34
Xiang, Ding, Wang, He (bib136) 2017; 189
Gu, Lu, Qin, Li, Shao (bib33) 2019; 106
Liu, Asher, Gong, Huang, Kolmanovsky (bib71)
Jing, Kurt, Ozatay, Michelini, Filev, Ozguner (bib47) 2015
Yang, Yuan, Liu (bib144) 2020; 8
Zhang, Lin, Li, Wang (bib173) 2021; 132
Shin, Yoon (bib113) 2020
Wang, Infield (bib132) 2018; 99
Li, Yu, Shahabi, Liu (bib64) 2018
Gaikwad, Rabinowitz, Motallebiaraghi, Bradley, Asher, Fong, Meyer (bib30) 2020
Yang, Dillon, Chen (bib143) 2017; 28
Lin, Li, Chen, Ye, Huai (bib68) 2018; 30
Liu, Juang (bib70) 2021; 11
Yao, Chen, Cao, Jin, Zhang, Zhu, Yu (bib145) 2017; 32
Jing, Filev, Kurt, Özatay, Michelini, Özgüner (bib46) 2017
Barrios, Motai (bib5) 2011; 60
Tang, Liu, Zou, Zhang, Wang (bib119) 2017; 18
Ge, Li, Liu, Zhou (bib31) 2019
Zhang, He, Lin, Wang, Li (bib171) 2020
Lu, Rui, Yi, Ran, Gu (bib79) 2020; 8
Tampere, Immers (bib118) 2007
Vlahogianni, Karlaftis, Golias (bib125) 2014; 43
Borhan, Vahidi (bib8) 2010; 1
Jin (bib45) 2010; 44
Zhao, Zhao, Jian-cheng, Xin (bib174) 2020; 47
Cui, Henrickson, Ke, Wang (bib23) 2020; 21
Zhang, Wang, Chen, Cao, Huang (bib170) 2021; 22
Amini, Feng, Yang, Kolmanovsky, Sun (bib2) 2020; 2674
Kim, Wang, Mihaylova (bib51) 2019
Korček, Sekanina, Fušík (bib53) 2011
Yu, Liu, Wu, Liao, Anwar, Li, Zhou (bib153) 2019; 163
Newell (bib93) 1993; 27
Yin, Wu, Wei, Shen, Qi, Yin (bib150) 2021; 428
Ahmed, Ghasemzadeh (bib1) 2018; 91
Zhang, Xi, Langari (bib163) 2017; 18
Cao, He, Cui (bib10) 2021; 15
Asif, Dauwels, Goh, Oran, Fathi, Xu, Dhanya, Mitrovic, Jaillet (bib3) 2014; 15
Wang, Shi (bib130) 2013; 27
Zang, Ling, Wei, Tang, Cheng (bib160) 2019; 20
Yuan, Li (bib158) 2021
Atwood, Towsley (bib4) 2016; 29
Ke, Feng, Cui, Wang (bib48) 2020; 14
Ni, Leonard (bib94) 2005; 29
Maerivoet, De Moor (bib87) 2005; 419
Polson, Sokolov (bib100) 2017
Wu, Pan, Long, Jiang, Zhang (bib135) 2019
Vogel (bib126) 2003; 35
Lu, Rui, Ran (bib78) 2020
Liu, Cheng, Wang, Cheng, Gao (bib73) 2018; 2018
Zhang, He, Zhang, Lin, Li (bib165) 2020
Park, Li, Murphey, Kristinsson, McGee, Kuang, Phillips (bib98) 2011
Zhao, Song, Zhang, Liu, Wang, Lin, Deng, Li (bib177) 2020; 21
Chen, Petty, Skabardonis, Varaiya, Jia (bib13) 2001; 1748
Chiu, Zhou, Song (bib20) 2010; 44
Pan, Liang, Wang, Yu, Zheng, Zhang (bib96) 2019
Zhang, Chen, Li, Liu, Huang, Cunningham, Early (bib169) 2021
Helbing (bib38) 1996; 53
Tedjopurnomo, Bao, Zheng, Choudhury, Qin (bib122) 2020
Wang, Chen, Min, He, Yang, Zhang (bib131) 2018
Ma, Tao, Wang, Yu, Wang (bib85) 2015; 54
Park, Murphey, McGee, Kristinsson, Kuang, Phillips (bib99) 2014; 15
Nagel, Schreckenberg (bib91) 1992; 2
Shen, Zhao, Zhan, Li, Guo (bib110) 2018; 155
Ke, Li, Cui, Wang (bib50) 2020; 2674
Li, Chen, Zhao (bib63) 2019; 13
Nagy, Simon (bib92) 2018; 50
Cui, Ke, Wang (bib24) 2018; 118
Furtlehner, Lasgouttes, Attanasi, Pezzulla, Gentile (bib29) 2021
Liu, Li, Gao, Lei, Zhang, Chen (bib74) 2021; 158
Zheng, Fan, Wang, Qi (bib178) 2020; 34
Ke, Li, Cui, Wang (bib49) 2018
Yu, Gu (bib155) 2019; 20
He, Wang, Han, Han, Bai, Liu (bib37) 2021; 225
Guo, He, Peng, Zhou (bib34) 2019; 175
Ma, Sheng, Jin, Ma, Gao (bib83) 2018; 6
Tian, Zhang, Li, Lin, Yang (bib123) 2018; 318
Yu, Li, Zhang, Zhu (bib151) 2019
Chen, Li, Teo, Zou, Wang, Wang, Zeng (bib12) 2019; 33
Zhao, Gao, Yang, Li, Feng, Qin, Bai (bib176) 2019; 7
Chib (bib19) 2001; 5
Bogaerts, Masegosa, Angarita-Zapata, Onieva, Hellinckx (bib6) 2020; 112
Zhang, Shi, Xie, Ma, King, Yeung (bib164) 2018
Shen, Chen, Pan, Shen, Liu (bib108) 2018; 6
Zhang, Zheng, Liu, Jia (bib166) 2020; 396
Huang, Huang, Liu, Dai, Kong (bib40) 2020
Li, Chen, Lu, Zhao (bib62) 2018; 61
Lian, Liu, Li, Liu, Zhou, Yang, Yuan (bib65) 2017; 10
Zhang, Xiong, Sun (bib168) 2017; 185
Yin, Wu, Wei, Shen, Qi, Yin (bib149) 2021
Qian, Feng, Yu, Xu, Wu (bib103) 2020; 7
Sun, Sun, He (bib117) 2017; 185
Lee, Lee, Kim, Park (bib57) 2019
Shih, Huang, Yen, Tsung (bib111) 2019
Tao, Gu, Lu, Rui, Zhou, Ding (bib121) 2020
Zhu, Peng, Xiong, Zhang (bib182) 2016
Liebig, Piatkowski, Bockermann, Morik (bib67) 2017; 64
Lippi, Bertini, Frasconi (bib69) 2013; 14
Le, Oentaryo, Liu, Lau (bib55) 2017; 3
Park, Lee, Bahng, Tae, Kim, Jin, Ko, Choo (bib97) 2020
Miglani, Kumar (bib88) 2019; 20
Zhou, Ravey, Péra (bib181) 2019; 412
Yu (bib154) 2021; 212
Lee, Eo, Jung, Yoon, Rhee (bib56) 2021; 9
Liu, Wang, Zhu (bib72) 2018; 33
Yeon, Min, Shin, Sunwoo, Han (bib148) 2019; 20
Ye, Zhao, Ye, Xu (bib147) 2020
Ye, Hao, Qi, Wu, Boriboonsomsin, Barth (bib146) 2019; 20
Xie, Xiong, Zhu (bib140) 2020
Williams, Hoel (bib133) 2003; 129
Niu, Zhang, Zhou, Cheng, Wang (bib95) 2019
Moser, Waschl, Schmied, Efendic, del Re (bib90) 2015; 8
Yu, Li, Shahabi, Demiryurek, Liu (bib157) 2017
Zhang, Zhang, Yu, Yu (bib161) 2021
Chen, Pao, Lee (bib18) 2014
Hyeon, Kim, Prakash, Stefanopoulou (bib43) 2019
Ma, Dai, He, Ma, Wang, Wang (bib84) 2017
Rapant, Slaninová, Martinovič, Martinovič (bib105) 2016
Ma, Zhong, Li, Ma, Cui, Wang (bib86) 2021; 22
Chandra, Al-Deek (bib11) 2009; 13
Lana, Ser, Velez, Vlahogianni (bib54) 2018; 10
Sun, Hu, Moura, Sun (bib115) 2015; 23
Huang, Yang, Lu, Mi, Kondlapudi (bib39) 2018; 19
Wang, Gu, Wu, Liu, Xiong (bib129) 2016
Xie, Guo, Chen, Xiao, Wang, Zhao (bib137) 2019
Zhang, Li, Lin, Wang, He (bib172) 2019; 105
Chen, Chen, Xie, Cao, Gao, Feng (bib15) 2020; 34
Huang, Wang, Khajepour, Hongwen, ji (bib42) 2017; 341
López Manibardo, Laña, Del Ser (bib77) 2021
Van Wageningen-Kessels, Van Lint, Hoogendoorn, Vuik (bib124) 2010; 2188
Jiang, Fei (bib44) 2017; 18
Polychronopoulos, Tsogas, Amditis, Andreone (bib101) 2007; 8
Zhou, Ravey, Marion-Péra (bib180) 2019
Logofet, Lesnaya (bib76) 2000; 126
Raza, Zhong (bib106) 2017
Kim, Wang, Zhu, Mihaylova (bib52) 2018
Lu, Yi, Liu, Gu, Rui, Ran (bib80) 2020; 14
Lv, Xu, Zheng, Yin, Zhao, Zhou (bib82) 2018
Shin, Sunwoo (bib112) 2019; 20
Chen, Sun (bib16) 2021
Huang (10.1016/j.isci.2022.103909_bib40) 2020
López Manibardo (10.1016/j.isci.2022.103909_bib77) 2021
Feng (10.1016/j.isci.2022.103909_bib27) 2020; 8
Wang (10.1016/j.isci.2022.103909_bib130) 2013; 27
Ma (10.1016/j.isci.2022.103909_bib86) 2021; 22
Yang (10.1016/j.isci.2022.103909_bib143) 2017; 28
Korček (10.1016/j.isci.2022.103909_bib53) 2011
Zhou (10.1016/j.isci.2022.103909_bib179) 2019; 20
Li (10.1016/j.isci.2022.103909_bib60) 2019; 23
Li (10.1016/j.isci.2022.103909_bib61) 2020; 111
Wang (10.1016/j.isci.2022.103909_bib128) 2019; 100
Zhu (10.1016/j.isci.2022.103909_bib182) 2016
Deo (10.1016/j.isci.2022.103909_bib25) 2018; 3
Yu (10.1016/j.isci.2022.103909_bib151) 2019
Huang (10.1016/j.isci.2022.103909_bib39) 2018; 19
Jing (10.1016/j.isci.2022.103909_bib47) 2015
Shin (10.1016/j.isci.2022.103909_bib113) 2020
Tedjopurnomo (10.1016/j.isci.2022.103909_bib122) 2020
Diao (10.1016/j.isci.2022.103909_bib26) 2019; 33
Helbing (10.1016/j.isci.2022.103909_bib38) 1996; 53
Ahmed (10.1016/j.isci.2022.103909_bib1) 2018; 91
Liu (10.1016/j.isci.2022.103909_bib74) 2021; 158
Huang (10.1016/j.isci.2022.103909_bib41) 2003
Liu (10.1016/j.isci.2022.103909_bib72) 2018; 33
Zhang (10.1016/j.isci.2022.103909_bib165) 2020
Zhang (10.1016/j.isci.2022.103909_bib170) 2021; 22
Hyeon (10.1016/j.isci.2022.103909_bib43) 2019
Wang (10.1016/j.isci.2022.103909_bib127) 2003
Cui (10.1016/j.isci.2022.103909_bib23) 2020; 21
Ke (10.1016/j.isci.2022.103909_bib50) 2020; 2674
Zhang (10.1016/j.isci.2022.103909_bib166) 2020; 396
Yu (10.1016/j.isci.2022.103909_bib155) 2019; 20
Wang (10.1016/j.isci.2022.103909_bib131) 2018
Bogaerts (10.1016/j.isci.2022.103909_bib6) 2020; 112
Ke (10.1016/j.isci.2022.103909_bib49) 2018
Liu (10.1016/j.isci.2022.103909_bib70) 2021; 11
Polson (10.1016/j.isci.2022.103909_bib100) 2017
Gu (10.1016/j.isci.2022.103909_bib32) 2019; 52
Sun (10.1016/j.isci.2022.103909_bib117) 2017; 185
Clark (10.1016/j.isci.2022.103909_bib21) 2003; 129
Ma (10.1016/j.isci.2022.103909_bib83) 2018; 6
Jiang (10.1016/j.isci.2022.103909_bib44) 2017; 18
Zang (10.1016/j.isci.2022.103909_bib160) 2019; 20
Chen (10.1016/j.isci.2022.103909_bib18) 2014
Shao (10.1016/j.isci.2022.103909_bib107) 2021; 22
Zhao (10.1016/j.isci.2022.103909_bib174) 2020; 47
Lana (10.1016/j.isci.2022.103909_bib54) 2018; 10
Park (10.1016/j.isci.2022.103909_bib97) 2020
Liu (10.1016/j.isci.2022.103909_bib73) 2018; 2018
Kim (10.1016/j.isci.2022.103909_bib52) 2018
Yang (10.1016/j.isci.2022.103909_bib144) 2020; 8
Cui (10.1016/j.isci.2022.103909_bib24) 2018; 118
Li (10.1016/j.isci.2022.103909_bib62) 2018; 61
Tao (10.1016/j.isci.2022.103909_bib121) 2020
Csikós (10.1016/j.isci.2022.103909_bib22) 2015
Chandra (10.1016/j.isci.2022.103909_bib11) 2009; 13
Suh (10.1016/j.isci.2022.103909_bib114) 2020
Liu (10.1016/j.isci.2022.103909_bib75) 2017; 10638
Zhang (10.1016/j.isci.2022.103909_bib173) 2021; 132
Lippi (10.1016/j.isci.2022.103909_bib69) 2013; 14
Amini (10.1016/j.isci.2022.103909_bib2) 2020; 2674
Chib (10.1016/j.isci.2022.103909_bib19) 2001; 5
Pan (10.1016/j.isci.2022.103909_bib96) 2019
Xie (10.1016/j.isci.2022.103909_bib139) 2019; 236
Barrios (10.1016/j.isci.2022.103909_bib5) 2011; 60
Liao (10.1016/j.isci.2022.103909_bib66) 2018
Xie (10.1016/j.isci.2022.103909_bib138) 2017; 196
Shen (10.1016/j.isci.2022.103909_bib108) 2018; 6
Xie (10.1016/j.isci.2022.103909_bib137) 2019
Qu (10.1016/j.isci.2022.103909_bib104) 2021; 451
Liebig (10.1016/j.isci.2022.103909_bib67) 2017; 64
Ni (10.1016/j.isci.2022.103909_bib94) 2005; 29
Furtlehner (10.1016/j.isci.2022.103909_bib29) 2021
Xiang (10.1016/j.isci.2022.103909_bib136) 2017; 189
Bruna (10.1016/j.isci.2022.103909_bib9) 2014
Fridman (10.1016/j.isci.2022.103909_bib28) 2019; 7
Yin (10.1016/j.isci.2022.103909_bib149) 2021
Zhao (10.1016/j.isci.2022.103909_bib177) 2020; 21
Zhang (10.1016/j.isci.2022.103909_bib168) 2017; 185
Chen (10.1016/j.isci.2022.103909_bib12) 2019; 33
Nagy (10.1016/j.isci.2022.103909_bib92) 2018; 50
Tian (10.1016/j.isci.2022.103909_bib123) 2018; 318
Chen (10.1016/j.isci.2022.103909_bib16) 2021
Lv (10.1016/j.isci.2022.103909_bib82) 2018
Wang (10.1016/j.isci.2022.103909_bib132) 2018; 99
Raza (10.1016/j.isci.2022.103909_bib106) 2017
Yue (10.1016/j.isci.2022.103909_bib159) 2007
Xu (10.1016/j.isci.2022.103909_bib141) 2021
Zhang (10.1016/j.isci.2022.103909_bib164) 2018
Huang (10.1016/j.isci.2022.103909_bib42) 2017; 341
Shin (10.1016/j.isci.2022.103909_bib112) 2019; 20
Zhang (10.1016/j.isci.2022.103909_bib162) 2019; 55
Rapant (10.1016/j.isci.2022.103909_bib105) 2016
Moser (10.1016/j.isci.2022.103909_bib90) 2015; 8
Kim (10.1016/j.isci.2022.103909_bib51) 2019
Li (10.1016/j.isci.2022.103909_bib63) 2019; 13
Shen (10.1016/j.isci.2022.103909_bib110) 2018; 155
Sun (10.1016/j.isci.2022.103909_bib116) 2015; 23
Wu (10.1016/j.isci.2022.103909_bib134) 2018; 90
Jin (10.1016/j.isci.2022.103909_bib45) 2010; 44
Lee (10.1016/j.isci.2022.103909_bib58) 2020; 22
Polychronopoulos (10.1016/j.isci.2022.103909_bib101) 2007; 8
Lian (10.1016/j.isci.2022.103909_bib65) 2017; 10
Guo (10.1016/j.isci.2022.103909_bib35) 2019; 68
Park (10.1016/j.isci.2022.103909_bib98) 2011
Lin (10.1016/j.isci.2022.103909_bib68) 2018; 30
Williams (10.1016/j.isci.2022.103909_bib133) 2003; 129
Zhang (10.1016/j.isci.2022.103909_bib163) 2017; 18
Chen (10.1016/j.isci.2022.103909_bib13) 2001; 1748
Xie (10.1016/j.isci.2022.103909_bib140) 2020
Zhang (10.1016/j.isci.2022.103909_bib169) 2021
Vogel (10.1016/j.isci.2022.103909_bib126) 2003; 35
Lu (10.1016/j.isci.2022.103909_bib79) 2020; 8
Tang (10.1016/j.isci.2022.103909_bib120) 2020; 34
Yan (10.1016/j.isci.2022.103909_bib142) 2018; 152
Nagel (10.1016/j.isci.2022.103909_bib91) 1992; 2
Ye (10.1016/j.isci.2022.103909_bib147) 2020
Chiu (10.1016/j.isci.2022.103909_bib20) 2010; 44
Wu (10.1016/j.isci.2022.103909_bib135) 2019
Van Wageningen-Kessels (10.1016/j.isci.2022.103909_bib124) 2010; 2188
Yin (10.1016/j.isci.2022.103909_bib150) 2021; 428
Ke (10.1016/j.isci.2022.103909_bib48) 2020; 14
Chen (10.1016/j.isci.2022.103909_bib14) 2021; 9
Yu (10.1016/j.isci.2022.103909_bib154) 2021; 212
Ge (10.1016/j.isci.2022.103909_bib31) 2019
Yeon (10.1016/j.isci.2022.103909_bib148) 2019; 20
Yu (10.1016/j.isci.2022.103909_bib152) 2018
Maerivoet (10.1016/j.isci.2022.103909_bib87) 2005; 419
Niu (10.1016/j.isci.2022.103909_bib95) 2019
Tang (10.1016/j.isci.2022.103909_bib119) 2017; 18
Luo (10.1016/j.isci.2022.103909_bib81) 2019; 101
Ma (10.1016/j.isci.2022.103909_bib85) 2015; 54
Shen (10.1016/j.isci.2022.103909_bib109) 2021; 7
Cao (10.1016/j.isci.2022.103909_bib10) 2021; 15
Borhan (10.1016/j.isci.2022.103909_bib8) 2010; 1
Zhang (10.1016/j.isci.2022.103909_bib172) 2019; 105
Le (10.1016/j.isci.2022.103909_bib55) 2017; 3
Tampere (10.1016/j.isci.2022.103909_bib118) 2007
Zhao (10.1016/j.isci.2022.103909_bib175) 2019; 11
Yuan (10.1016/j.isci.2022.103909_bib158) 2021
Zhou (10.1016/j.isci.2022.103909_bib181) 2019; 412
Zheng (10.1016/j.isci.2022.103909_bib178) 2020; 34
Park (10.1016/j.isci.2022.103909_bib99) 2014; 15
Shih (10.1016/j.isci.2022.103909_bib111) 2019
Zhang (10.1016/j.isci.2022.103909_bib161) 2021
Guo (10.1016/j.isci.2022.103909_bib36) 2021; 22
Asif (10.1016/j.isci.2022.103909_bib3) 2014; 15
Chen (10.1016/j.isci.2022.103909_bib15) 2020; 34
Ma (10.1016/j.isci.2022.103909_bib84) 2017
Boquet (10.1016/j.isci.2022.103909_bib7) 2020; 115
Miglani (10.1016/j.isci.2022.103909_bib88) 2019; 20
Lee (10.1016/j.isci.2022.103909_bib57) 2019
Zhang (10.1016/j.isci.2022.103909_bib171) 2020
Lu (10.1016/j.isci.2022.103909_bib80) 2020; 14
Liu (10.1016/j.isci.2022.103909_bib71)
Lu (10.1016/j.isci.2022.103909_bib78) 2020
Vlahogianni (10.1016/j.isci.2022.103909_bib125) 2014; 43
Wang (10.1016/j.isci.2022.103909_bib129) 2016
Sun (10.1016/j.isci.2022.103909_bib115) 2015; 23
Gu (10.1016/j.isci.2022.103909_bib33) 2019; 106
Lee (10.1016/j.isci.2022.103909_bib56) 2021; 9
Chen (10.1016/j.isci.2022.103909_bib17) 2020; 20
Zhao (10.1016/j.isci.2022.103909_bib176) 2019; 7
Li (10.1016/j.isci.2022.103909_bib64) 2018
Min (10.1016/j.isci.2022.103909_bib89) 2011; 19
Atwood (10.1016/j.isci.2022.103909_bib4) 2016; 29
Zhou (10.1016/j.isci.2022.103909_bib180) 2019
Ye (10.1016/j.isci.2022.103909_bib146) 2019; 20
Guo (10.1016/j.isci.2022.103909_bib34) 2019; 175
Qi (10.1016/j.isci.2022.103909_bib102) 2014; 43
Logofet (10.1016/j.isci.2022.103909_bib76) 2000; 126
Yu (10.1016/j.isci.2022.103909_bib157) 2017
Yu (10.1016/j.isci.2022.103909_bib156) 2021
He (10.1016/j.isci.2022.103909_bib37) 2021; 225
Newell (10.1016/j.isci.2022.103909_bib93) 1993; 27
Yu (10.1016/j.isci.2022.103909_bib153) 2019; 163
Gaikwad (10.1016/j.isci.2022.103909_bib30) 2020
Lefevre (10.1016/j.isci.2022.103909_bib59) 2014
Yao (10.1016/j.isci.2022.103909_bib145) 2017; 32
Zhang (10.1016/j.isci.2022.103909_bib167) 2020; 206
Jing (10.1016/j.isci.2022.103909_bib46) 2017
Qian (10.1016/j.isci.2022.103909_bib103) 2020; 7
References_xml – volume: 23
  start-page: 1075
  year: 2015
  end-page: 1086
  ident: bib116
  article-title: Dynamic traffic feedback data enabled energy management in plug-in hybrid electric vehicles
  publication-title: IEEE Trans. Control Syst. Technol.
– volume: 43
  start-page: 95
  year: 2014
  end-page: 111
  ident: bib102
  article-title: A Hidden Markov Model for short term prediction of traffic conditions on freeways
  publication-title: Transportation Res. Part C: Emerging Tech.
– volume: 43
  year: 2014
  ident: bib125
  article-title: Short-term traffic forecasting: where we are and where we’re going
  publication-title: Transportation Res. Part C: Emerging Tech.
– volume: 44
  start-page: 152
  year: 2010
  end-page: 174
  ident: bib20
  article-title: Development and calibration of the Anisotropic Mesoscopic Simulation model for uninterrupted flow facilities
  publication-title: Transportation Res. B: Methodological
– volume: 14
  start-page: 724
  year: 2020
  end-page: 734
  ident: bib48
  article-title: Advanced framework for microscopic and lane-level macroscopic traffic parameters estimation from UAV video
  publication-title: IET Intell. Transport Syst.
– volume: 33
  start-page: 999
  year: 2018
  end-page: 1016
  ident: bib72
  article-title: Short-term traffic speed forecasting based on attention convolutional neural network for arterials
  publication-title: Computer-Aided Civil Infrastructure Eng.
– start-page: 499
  year: 2016
  end-page: 508
  ident: bib129
  article-title: Traffic speed prediction and congestion source exploration: a deep learning method
  publication-title: 2016 IEEE 16th International Conference on Data Mining (ICDM)
– volume: 20
  start-page: 3700
  year: 2019
  end-page: 3709
  ident: bib160
  article-title: Long-term traffic speed prediction based on multiscale spatio-temporal feature learning network
  publication-title: IEEE Trans. Intell. Transportation Syst.
– volume: 111
  start-page: 72
  year: 2020
  end-page: 90
  ident: bib61
  article-title: Short-term traffic state prediction from latent structures: accuracy vs. efficiency
  publication-title: Transportation Res. Part C: Emerging Tech.
– volume: 34
  start-page: 1234
  year: 2020
  end-page: 1241
  ident: bib178
  article-title: GMAN: a graph multi-attention network for traffic prediction
  publication-title: Proc.AAAI Conf.Artif. Intelligence
– volume: 68
  start-page: 5309
  year: 2019
  end-page: 5320
  ident: bib35
  article-title: ARIMA-based road gradient and vehicle velocity prediction for hybrid electric vehicle energy management
  publication-title: IEEE Trans. Vehicular Technol.
– volume: 225
  start-page: 120273
  year: 2021
  ident: bib37
  article-title: An improved MPC-based energy management strategy for hybrid vehicles using V2V and V2I communications
  publication-title: Energy
– volume: 22
  start-page: 4813
  year: 2021
  end-page: 4824
  ident: bib86
  article-title: Forecasting transportation network speed using deep capsule networks with nested LSTM models
  publication-title: IEEE Trans. Intell. Transportation Syst.
– volume: 21
  start-page: 4883
  year: 2020
  end-page: 4894
  ident: bib23
  article-title: Traffic graph convolutional recurrent neural network: a deep learning framework for network-scale traffic learning and forecasting
  publication-title: IEEE Trans. Intell. Transportation Syst.
– volume: 7
  start-page: 102021
  year: 2019
  end-page: 102038
  ident: bib28
  article-title: MIT advanced vehicle Technology study: large-scale naturalistic driving study of driver behavior and interaction with automation
  publication-title: IEEE Access
– volume: 341
  start-page: 91
  year: 2017
  end-page: 106
  ident: bib42
  article-title: Model predictive control power management strategies for HEVs: a review
  publication-title: J. Power Sourc.
– start-page: 1
  year: 2020
  end-page: 11
  ident: bib113
  article-title: Incorporating dynamicity of transportation network with multi-weight traffic graph convolutional network for traffic forecasting
  publication-title: IEEE Trans. Intell. Transportation Syst.
– volume: 14
  start-page: 871
  year: 2013
  end-page: 882
  ident: bib69
  article-title: Short-term traffic flow forecasting: an experimental comparison of time-series analysis and supervised learning
  publication-title: IEEE Trans. Intell. Transportation Syst.
– volume: 34
  start-page: 3529
  year: 2020
  end-page: 3536
  ident: bib15
  article-title: Multi-range attentive bicomponent graph convolutional network for traffic forecasting
  publication-title: Proc. AAAI Conf. Artif.Intelligence
– start-page: 881
  year: 2017
  end-page: 886
  ident: bib46
  article-title: Vehicle speed prediction using a cooperative method of fuzzy Markov model and auto-regressive model
  publication-title: 2017 IEEE Intelligent Vehicles Symposium (IV)
– volume: 158
  start-page: 107765
  year: 2021
  ident: bib74
  article-title: Prediction of vehicle driving conditions with incorporation of stochastic forecasting and machine learning and a case study in energy management of plug-in hybrid electric vehicles
  publication-title: Mech. Syst. Signal Process.
– volume: 8
  start-page: 549
  year: 2007
  end-page: 562
  ident: bib101
  article-title: Sensor fusion for predicting vehicles’ path for collision avoidance systems
  publication-title: IEEE Trans. Intell. Transportation Syst.
– volume: 10
  start-page: 93
  year: 2018
  end-page: 109
  ident: bib54
  article-title: Road traffic forecasting: recent advances and new challenges
  publication-title: IEEE Intell. Transportation Syst. Mag.
– volume: 52
  start-page: 654
  year: 2019
  end-page: 660
  ident: bib32
  article-title: A review of intelligent road preview methods for energy management of hybrid vehicles
  publication-title: IFAC-PapersOnLine
– volume: 163
  start-page: 472
  year: 2019
  end-page: 484
  ident: bib153
  article-title: Forecasting short-term traffic speed based on multiple attributes of adjacent roads
  publication-title: Knowledge-Based Syst.
– start-page: 1
  year: 2020
  end-page: 19
  ident: bib165
  article-title: Graph attention temporal convolutional network for traffic speed forecasting on road networks
  publication-title: Transportmetrica B: Transport Dyn.
– start-page: 962
  year: 2007
  end-page: 967
  ident: bib159
  article-title: Prediction Time Horizon and Effectiveness of Real-Time Data on Short-Term Traffic Predictability
  publication-title: 2007 IEEE Intelligent Transportation Systems Conference
– year: 2020
  ident: bib171
  article-title: High-performance traffic speed forecasting based on spatiotemporal clustering of road segments
  publication-title: IET Intell. Transport Syst.
– volume: 129
  start-page: 664
  year: 2003
  end-page: 672
  ident: bib133
  article-title: Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process: theoretical basis and empirical results
  publication-title: J. Transportation Eng.
– year: 2019
  ident: bib137
  article-title: How do urban incidents affect traffic speed?”A Deep Graph Convolutional Network for Incident-Driven Traffic Speed Prediction
  publication-title: arXiv
– volume: 20
  start-page: 713
  year: 2019
  end-page: 722
  ident: bib148
  article-title: Ego-vehicle speed prediction using a long short-term memory based recurrent neural network
  publication-title: Int. J. Automotive Technology
– start-page: 1
  year: 2003
  end-page: 21
  ident: bib41
  article-title: An application of neural network on traffic speed prediction under adverse weather condition
  publication-title: Transportation Research Board 82nd Annual MeetingTransportation Research Board
– volume: 189
  start-page: 640
  year: 2017
  end-page: 653
  ident: bib136
  article-title: Energy management of a dual-mode power-split hybrid electric vehicle based on velocity prediction and nonlinear model predictive control
  publication-title: Appl. Energy
– volume: 55
  start-page: 86
  year: 2019
  ident: bib162
  article-title: Current status and prospects for model predictive energy management in hybrid electric vehicles
  publication-title: J. Mech. Eng.
– year: 2018
  ident: bib131
  article-title: Efficient Metropolitan Traffic Prediction Based on Graph Recurrent Neural Network
  publication-title: arXiv
– volume: 15
  start-page: 1039
  year: 2014
  end-page: 1053
  ident: bib99
  article-title: Intelligent trip modeling for the prediction of an origin–destination traveling speed profile
  publication-title: IEEE Trans. Intell. Transportation Syst.
– volume: 105
  start-page: 297
  year: 2019
  end-page: 322
  ident: bib172
  article-title: Multistep speed prediction on traffic networks: a deep learning approach considering spatio-temporal dependencies
  publication-title: Transportation Res. Part C: Emerging Tech.
– volume: 129
  start-page: 161
  year: 2003
  end-page: 168
  ident: bib21
  article-title: Traffic prediction using multivariate nonparametric regression
  publication-title: J. Transportation Eng.
– volume: 19
  start-page: 606
  year: 2011
  end-page: 616
  ident: bib89
  article-title: Real-time road traffic prediction with spatio-temporal correlations
  publication-title: Transportation Res. Part C: Emerging Tech.
– start-page: 3494
  year: 2014
  end-page: 3499
  ident: bib59
  article-title: Comparison of parametric and non-parametric approaches for vehicle speed prediction
  publication-title: Proceedings of the American Control Conference
– volume: 19
  start-page: 2373
  year: 2018
  end-page: 2384
  ident: bib39
  article-title: Ecological driving system for connected/automated vehicles using a two-stage control hierarchy
  publication-title: IEEE Trans. Intell. Transportation Syst.
– start-page: 1907
  year: 2019
  end-page: 1913
  ident: bib135
  article-title: Graph wavenet for deep spatial-temporal graph modeling
  publication-title: Proceedings of the 28th International Joint Conference on Artificial Intelligence
– volume: 185
  start-page: 1644
  year: 2017
  end-page: 1653
  ident: bib117
  article-title: Investigating adaptive-ECMS with velocity forecast ability for hybrid electric vehicles
  publication-title: Appl. Energy
– volume: 3
  start-page: 129
  year: 2018
  end-page: 140
  ident: bib25
  article-title: How would surround vehicles move? A unified framework for maneuver classification and motion prediction
  publication-title: IEEE Trans. Intell. Vehicles
– year: 2020
  ident: bib30
  article-title: Vehicle velocity prediction using artificial neural network and effect of real World signals on prediction window
  publication-title: WCX SAE World Congress Experience
– start-page: 5207
  year: 2019
  end-page: 5211
  ident: bib51
  article-title: Structural recurrent neural network for traffic speed prediction
  publication-title: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing
– volume: 99
  start-page: 85
  year: 2018
  end-page: 94
  ident: bib132
  article-title: Markov chain Monte Carlo simulation of electric vehicle use for network integration studies
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 175
  start-page: 378
  year: 2019
  end-page: 392
  ident: bib34
  article-title: A novel MPC-based adaptive energy management strategy in plug-in hybrid electric vehicles
  publication-title: Energy
– volume: 7
  start-page: 7181
  year: 2020
  end-page: 7193
  ident: bib103
  article-title: Vehicular networking-enabled vehicle state prediction via two-level quantized adaptive kalman filtering
  publication-title: IEEE Internet Things J.
– volume: 196
  start-page: 279
  year: 2017
  end-page: 288
  ident: bib138
  article-title: An energy management strategy based on stochastic model predictive control for plug-in hybrid electric buses
  publication-title: Appl. Energy
– volume: 53
  start-page: 2366
  year: 1996
  end-page: 2381
  ident: bib38
  article-title: Gas-kinetic derivation of Navier-Stokes-like traffic equations
  publication-title: Phys. Rev. E
– volume: 6
  start-page: 75629
  year: 2018
  end-page: 75638
  ident: bib83
  article-title: Short-term traffic flow forecasting by selecting appropriate predictions based on pattern matching
  publication-title: IEEE Access
– start-page: 416
  year: 2003
  end-page: 421
  ident: bib127
  article-title: LADAR-based detection and tracking of moving objects from a ground vehicle at high speeds
  publication-title: IEEE IV2003 Intelligent Vehicles Symposium. Proc. (Cat. No.03TH8683)
– volume: 11
  start-page: 5619
  year: 2021
  ident: bib70
  article-title: Estimation of lane-level traffic flow using a deep learning technique
  publication-title: Appl. Sci.
– start-page: 13
  year: 2011
  end-page: 18
  ident: bib53
  article-title: A scalable cellular automata based microscopic traffic simulation
  publication-title: 2011 IEEE Intelligent Vehicles Symposium (IV)
– volume: 18
  start-page: 1793
  year: 2017
  end-page: 1801
  ident: bib44
  article-title: Vehicle speed prediction by two-level data driven models in vehicular networks
  publication-title: IEEE Trans. Intell. Transportation Syst.
– volume: 126
  start-page: 285
  year: 2000
  end-page: 298
  ident: bib76
  article-title: The mathematics of Markov models: what Markov chains can really predict in forest successions
  publication-title: Ecol. Model.
– start-page: 117
  year: 2020
  end-page: 122
  ident: bib121
  article-title: An Attention-Based Approach for Traffic Conditions Forecasting Considering Spatial-Temporal Features
  publication-title: 2020 IEEE 5th International Conference on Intelligent Transportation Engineering
– volume: 91
  start-page: 371
  year: 2018
  end-page: 384
  ident: bib1
  article-title: The impacts of heavy rain on speed and headway Behaviors: an investigation using the SHRP2 naturalistic driving study data
  publication-title: Transportation Res. C: Emerging Tech.
– start-page: 1
  year: 2021
  ident: bib16
  article-title: Bayesian temporal factorization for multidimensional time series prediction
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 412
  start-page: 480
  year: 2019
  end-page: 495
  ident: bib181
  article-title: A survey on driving prediction techniques for predictive energy management of plug-in hybrid electric vehicles
  publication-title: J. Power Sourc.
– start-page: 741
  year: 2019
  ident: bib43
  article-title: Short-term speed forecasting using vehicle wireless communications
  publication-title: 2019 American Control Conference (ACC)
– volume: 90
  start-page: 166
  year: 2018
  end-page: 180
  ident: bib134
  article-title: A hybrid deep learning based traffic flow prediction method and its understanding
  publication-title: Transportation Res. Part C: Emerging Tech.
– volume: 33
  start-page: 485
  year: 2019
  end-page: 492
  ident: bib12
  article-title: Gated residual recurrent graph neural networks for traffic prediction
  publication-title: Proc. AAAI Conf. Artif. Intelligence
– year: 2017
  ident: bib84
  article-title: Learning traffic as images: a deep convolutional neural network for large-scale transportation network speed prediction
  publication-title: Sensors
– volume: 106
  start-page: 1
  year: 2019
  end-page: 16
  ident: bib33
  article-title: Short-term prediction of lane-level traffic speeds: a fusion deep learning model
  publication-title: Transportation Res. Part C: Emerging Tech.
– volume: 14
  start-page: 2073
  year: 2020
  end-page: 2082
  ident: bib80
  article-title: Efficient deep learning based method for multi-lane speed forecasting: a case study in Beijing
  publication-title: IET Intell. Transport Syst.
– volume: 13
  start-page: 53
  year: 2009
  end-page: 72
  ident: bib11
  article-title: Predictions of freeway traffic speeds and volumes using vector autoregressive models
  publication-title: J. Intell. Transportation Syst.
– volume: 23
  start-page: 1197
  year: 2015
  end-page: 1204
  ident: bib115
  article-title: Velocity predictors for predictive energy management in hybrid electric vehicles
  publication-title: IEEE Trans. Control Syst. Technol.
– volume: 132
  start-page: 103372
  year: 2021
  ident: bib173
  article-title: A customized deep learning approach to integrate network-scale online traffic data imputation and prediction
  publication-title: Transportation Res. Part C: Emerging Tech.
– volume: 13
  start-page: 1281
  year: 2019
  end-page: 1290
  ident: bib63
  article-title: Investigating long-term vehicle speed prediction based on BP-LSTM algorithms
  publication-title: IET Intell. Transport Syst.
– volume: 6
  start-page: 51756
  year: 2018
  end-page: 51765
  ident: bib108
  article-title: Research on traffic speed prediction by temporal clustering analysis and convolutional neural network with deformable kernels (may, 2018)
  publication-title: IEEE Access
– start-page: 1
  year: 2021
  end-page: 12
  ident: bib156
  article-title: Long-term urban traffic speed prediction with deep learning on graphs
  publication-title: IEEE Trans. Intell. Transportation Syst.
– volume: 428
  start-page: 42
  year: 2021
  end-page: 53
  ident: bib150
  article-title: Multi-stage attention spatial-temporal graph networks for traffic prediction
  publication-title: Neurocomputing
– start-page: 8
  year: 2018
  ident: bib49
  article-title: Multi-lane traffic pattern learning and forecasting using convolutional neural network
  publication-title: COTA International Symposium on Emerging Trend in Transportation
– volume: 7
  start-page: 9116
  year: 2019
  end-page: 9127
  ident: bib176
  article-title: Truck traffic speed prediction under non-recurrent congestion: based on optimized deep learning algorithms and GPS data
  publication-title: IEEE Access
– volume: 9
  start-page: 54739
  year: 2021
  end-page: 54756
  ident: bib56
  article-title: Short-term traffic prediction with deep neural networks: a survey
  publication-title: IEEE Access
– start-page: 1
  year: 2021
  ident: bib169
  article-title: Integrated velocity prediction method and application in vehicle-environment cooperative control based on internet of vehicles
  publication-title: IEEE Trans. Vehicular Technol.
– start-page: 1
  year: 2018
  end-page: 6
  ident: bib52
  article-title: A capsule network for traffic speed prediction in complex road networks
  publication-title: 2018 Sensor Data Fusion: Trends, Solutions, Applications
– start-page: 1215
  year: 2020
  end-page: 1224
  ident: bib97
  article-title: ST-GRAT: a novel spatio-temporal graph attention network for accurately forecasting dynamically changing road speed
  publication-title: Proc.29th ACM Int.Conf.Inf.Knowledge Management
– volume: 27
  start-page: 281
  year: 1993
  end-page: 287
  ident: bib93
  article-title: A simplified theory of kinematic waves in highway traffic, part I: general theory
  publication-title: Transportation Res. Part B: Methodological
– volume: 100
  start-page: 372
  year: 2019
  end-page: 385
  ident: bib128
  article-title: Traffic speed prediction for urban transportation network: a path based deep learning approach
  publication-title: Transportation Res. Part C: Emerging Tech.
– volume: 115
  start-page: 102622
  year: 2020
  ident: bib7
  article-title: A variational autoencoder solution for road traffic forecasting systems: missing data imputation, dimension reduction, model selection and anomaly detection
  publication-title: Transportation Res. Part C: Emerging Tech.
– volume: 23
  start-page: 605
  year: 2019
  end-page: 616
  ident: bib60
  article-title: Traffic speed prediction for intelligent transportation system based on a deep feature fusion model
  publication-title: J. Intell. Transportation Syst.
– volume: 8
  start-page: 364
  year: 2015
  end-page: 370
  ident: bib90
  article-title: Short term prediction of a vehicle’s velocity trajectory using ITS
  publication-title: SAE Int. J. Passenger Cars - Electron.Electr. Syst.
– volume: 61
  start-page: 782
  year: 2018
  end-page: 790
  ident: bib62
  article-title: Research on optimized GA-SVM vehicle speed prediction model based on driver-vehicle-road-traffic system
  publication-title: Sci. China Technol. Sci.
– volume: 7
  start-page: e470
  year: 2021
  ident: bib109
  article-title: ST-AFN: a spatial-temporal attention based fusion network for lane-level traffic flow prediction
  publication-title: Peerj.Computer Sci.
– year: 2020
  ident: bib140
  article-title: ISTD-GCN: Iterative Spatial-Temporal Diffusion Graph Convolutional Network for Traffic Speed Forecasting
  publication-title: arXiv
– volume: 11
  start-page: 70
  year: 2019
  end-page: 81
  ident: bib175
  article-title: Traffic speed prediction under non-recurrent congestion: based on LSTM method and BeiDou navigation satellite system data
  publication-title: IEEE Intell. Transportation Syst. Mag.
– year: 2019
  ident: bib95
  article-title: A novel spatio-temporal model for city-scale traffic speed prediction
  publication-title: IEEE Access
– start-page: 2861
  year: 2015
  end-page: 2868
  ident: bib47
  article-title: Vehicle speed prediction in a convoy using V2V communication
  publication-title: 2015 IEEE 18th International Conference on Intelligent Transportation Systems
– volume: 60
  start-page: 3747
  year: 2011
  end-page: 3755
  ident: bib5
  article-title: Improving estimation of vehicle’s trajectory using the latest global positioning system with kalman filtering
  publication-title: IEEE Trans. Instrumentation Meas.
– start-page: 473
  year: 2019
  end-page: 477
  ident: bib57
  article-title: Energy consumption prediction system based on deep learning with edge computing
  publication-title: 2019 IEEE 2nd International Conference on Electronics Technology
– volume: 419
  start-page: 1
  year: 2005
  end-page: 64
  ident: bib87
  article-title: Cellular automata models of road traffic
  publication-title: Phys. Rep.
– volume: 47
  start-page: 101221
  year: 2020
  ident: bib174
  article-title: Cellular automata model for Urban Road traffic flow Considering Internet of Vehicles and emergency vehicles
  publication-title: J. Comput. Sci.
– volume: 185
  start-page: 1654
  year: 2017
  end-page: 1662
  ident: bib168
  article-title: Model predictive control for power management in a plug-in hybrid electric vehicle with a hybrid energy storage system
  publication-title: Appl. Energy
– volume: 27
  start-page: 219
  year: 2013
  end-page: 232
  ident: bib130
  article-title: Short-term traffic speed forecasting hybrid model based on Chaos–Wavelet Analysis-Support Vector Machine theory
  publication-title: Transportation Res. Part C: Emerging Tech.
– start-page: 1
  year: 2020
  end-page: 20
  ident: bib122
  article-title: A survey on modern deep neural network for traffic prediction: trends, methods and challenges
  publication-title: IEEE Trans. Knowledge Data Eng.
– volume: 2674
  start-page: 459
  year: 2020
  end-page: 470
  ident: bib50
  article-title: Two-stream multi-channel convolutional neural network for multi-lane traffic speed prediction considering traffic volume impact
  publication-title: Transportation Res. Rec.
– volume: 3
  start-page: 194
  year: 2017
  end-page: 207
  ident: bib55
  article-title: Local Gaussian processes for efficient fine-grained traffic speed prediction
  publication-title: IEEE Trans. Big Data
– volume: 34
  start-page: 5956
  year: 2020
  end-page: 5963
  ident: bib120
  article-title: Joint modeling of local and global temporal dynamics for multivariate time series forecasting with missing values
  publication-title: Proc.AAAI Conf.Artif.Intelligence
– volume: 20
  start-page: 3940
  year: 2019
  end-page: 3951
  ident: bib155
  article-title: Real-time traffic speed estimation with graph convolutional generative autoencoder
  publication-title: IEEE Trans. Intell. Transportation Syst.
– volume: 15
  start-page: 794
  year: 2014
  end-page: 804
  ident: bib3
  article-title: Spatiotemporal patterns in large-scale traffic speed prediction
  publication-title: IEEE Trans. Intell. Transportation Syst.
– volume: 35
  start-page: 427
  year: 2003
  end-page: 433
  ident: bib126
  article-title: A comparison of headway and time to collision as safety indicators
  publication-title: Accid.Anal. Prev.
– volume: 236
  start-page: 893
  year: 2019
  end-page: 905
  ident: bib139
  article-title: Pontryagin’s Minimum Principle based model predictive control of energy management for a plug-in hybrid electric bus
  publication-title: Appl. Energy
– volume: 8
  start-page: 87541
  year: 2020
  end-page: 87551
  ident: bib144
  article-title: Short-term traffic speed prediction of urban road with multi-source data
  publication-title: IEEE Access
– volume: 9
  start-page: 1321
  year: 2021
  end-page: 1337
  ident: bib14
  article-title: A multiscale-grid-based stacked bidirectional GRU neural network model for predicting traffic speeds of urban expressways
  publication-title: IEEE Access
– volume: 20
  start-page: 1378
  year: 2019
  end-page: 1389
  ident: bib146
  article-title: Prediction-based eco-approach and departure at signalized intersections with speed forecasting on preceding vehicles
  publication-title: IEEE Trans. Intell. Transportation Syst.
– volume: 15
  start-page: 359
  year: 2021
  end-page: 370
  ident: bib10
  article-title: City buses’ future velocity prediction for multiple driving cycle: a meta supervised learning solution
  publication-title: IET Intell. Transport Syst.
– volume: 50
  start-page: 148
  year: 2018
  end-page: 163
  ident: bib92
  article-title: Survey on traffic prediction in smart cities
  publication-title: Pervasive Mobile Comput.
– volume: 396
  start-page: 438
  year: 2020
  end-page: 450
  ident: bib166
  article-title: A deep learning based multitask model for network-wide traffic speed prediction
  publication-title: Neurocomputing
– start-page: 1720
  year: 2019
  end-page: 1730
  ident: bib96
  article-title: Urban traffic prediction from spatio-temporal data using deep meta learning
  publication-title: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Association for Computing Machinery, New York, NY, USA
– start-page: 1
  year: 2021
  end-page: 17
  ident: bib149
  article-title: Deep learning on traffic prediction: methods, analysis and future directions
  publication-title: IEEE Trans. Intell. Transportation Syst.
– volume: 18
  start-page: 2340
  year: 2017
  end-page: 2350
  ident: bib119
  article-title: An improved fuzzy neural network for traffic speed prediction considering periodic characteristic
  publication-title: IEEE Trans. Intell. Transportation Syst.
– volume: 29
  year: 2016
  ident: bib4
  article-title: Diffusion-convolutional neural networks
  publication-title: Advances in neural information processing systems
– start-page: 3470
  year: 2018
  end-page: 3476
  ident: bib82
  article-title: LC-RNN: a deep learning model for traffic speed prediction
  publication-title: IJCAI
– volume: 22
  start-page: 1562
  year: 2021
  end-page: 1572
  ident: bib107
  article-title: Eco-approach with traffic prediction and experimental validation for connected and autonomous vehicles
  publication-title: IEEE Trans. Intell. Transportation Syst.
– volume: 22
  start-page: 219
  year: 2021
  end-page: 230
  ident: bib170
  article-title: TrafficGAN: network-scale deep traffic prediction with generative adversarial nets
  publication-title: IEEE Trans. Intell. Transportation Syst.
– start-page: 187
  year: 2016
  end-page: 196
  ident: bib105
  article-title: Traffic speed prediction using hidden Markov models for Czech republic highways
  publication-title: Agent and Multi-Agent Systems: Technology and Applications
– volume: 22
  start-page: 1435
  year: 2020
  end-page: 1448
  ident: bib58
  article-title: Predicting short-term traffic speed using a deep neural network to accommodate citywide spatio-temporal correlations
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– start-page: 1
  year: 2020
  end-page: 12
  ident: bib78
  article-title: Lane-level traffic speed forecasting: a novel mixed deep learning model
  publication-title: IEEE Trans. Intell. Transportation Syst.
– year: 2017
  ident: bib100
  article-title: Deep learning for short-term traffic flow prediction
  publication-title: Transportation Res. Part C: Emerging Tech.
– year: 2018
  ident: bib164
  article-title: GaAN: Gated Attention Networks for Learning on Large and Spatiotemporal Graphs
  publication-title: 34th Conference on Uncertainty in Artificial Intelligence 2018
– start-page: 1
  year: 2021
  ident: bib161
  article-title: FASTGNN: a topological information protected federated learning approach for traffic speed forecasting
  publication-title: IEEE Trans. Ind. Inform.
– start-page: 102
  year: 2015
  end-page: 108
  ident: bib22
  article-title: Traffic speed prediction method for urban networks — an ANN approach
  publication-title: 2015International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS)
– volume: 10
  start-page: 74
  year: 2017
  ident: bib65
  article-title: A mixed logical dynamical-model predictive control (MLD-MPC) energy management control strategy for plug-in hybrid electric vehicles (PHEVs)
  publication-title: Energies
– volume: 112
  start-page: 62
  year: 2020
  end-page: 77
  ident: bib6
  article-title: A graph CNN-LSTM neural network for short and long-term traffic forecasting based on trajectory data
  publication-title: Transportation Res. C Emerging Tech.
– volume: 5
  start-page: 3569
  year: 2001
  end-page: 3649
  ident: bib19
  article-title: Markov chain Monte Carlo methods: computation and inference
  publication-title: Handbooks in Economics
– volume: 101
  start-page: 444
  year: 2019
  end-page: 457
  ident: bib81
  article-title: A short-term energy prediction system based on edge computing for smart city
  publication-title: Future Generation Computer Syst.
– volume: 1748
  start-page: 96
  year: 2001
  end-page: 102
  ident: bib13
  article-title: Freeway performance measurement system: mining loop detector data
  publication-title: Transportation Res. Rec.
– volume: 2018
  start-page: e9728328
  year: 2018
  ident: bib73
  article-title: A novel method for predicting vehicle state in internet of vehicles
  publication-title: Mobile Inf. Syst.
– volume: 20
  start-page: 100184
  year: 2019
  ident: bib88
  article-title: Deep learning models for traffic flow prediction in autonomous vehicles: a review, solutions, and challenges
  publication-title: Vehicular Commun.
– start-page: 209
  year: 2007
  end-page: 216
  ident: bib118
  article-title: An Extended Kalman Filter Application for Traffic State Estimation Using CTM with Implicit Mode Switching and Dynamic Parameters
  publication-title: 2007 IEEE Intelligent Transportation Systems Conference
– start-page: 10
  year: 2014
  end-page: 17
  ident: bib18
  article-title: Efficient traffic speed forecasting based on massive heterogenous historical data
  publication-title: 2014IEEE Int.Conf. Big Data (Big Data)
– volume: 451
  start-page: 290
  year: 2021
  end-page: 304
  ident: bib104
  article-title: Features injected recurrent neural networks for short-term traffic speed prediction
  publication-title: Neurocomputing
– start-page: 50
  year: 2016
  ident: bib182
  article-title: Short-term traffic flow prediction with linear conditional Gaussian bayesian network
  publication-title: J. Adv. transportation
– year: 2021
  ident: bib141
  article-title: Spatial-Temporal Transformer Networks for Traffic Flow Forecasting
  publication-title: arXiv
– start-page: 1
  year: 2020
  end-page: 21
  ident: bib147
  article-title: How to build a graph-based deep learning architecture in traffic domain: a survey
  publication-title: IEEE Trans. Intell. Transportation Syst.
– year: 2021
  ident: bib158
  article-title: A survey of traffic prediction: from spatio-temporal data to intelligent transportation
  publication-title: Data Sci. Eng.
– volume: 20
  start-page: 4119
  year: 2019
  end-page: 4133
  ident: bib179
  article-title: Velocity prediction of intelligent and connected vehicles for a traffic light distance on the urban road
  publication-title: IEEE Trans. Intell. Transportation Syst.
– volume: 44
  start-page: 1084
  year: 2010
  end-page: 1103
  ident: bib45
  article-title: Continuous kinematic wave models of merging traffic flow
  publication-title: Transportation Res. Part B: Methodological
– volume: 155
  start-page: 838
  year: 2018
  end-page: 852
  ident: bib110
  article-title: Optimal energy management strategy for a plug-in hybrid electric commercial vehicle based on velocity prediction
  publication-title: Energy
– volume: 20
  start-page: 14317
  year: 2020
  end-page: 14328
  ident: bib17
  article-title: Sensing data supported traffic flow prediction via denoising schemes and ANN: a comparison
  publication-title: IEEE Sensors J.
– volume: 21
  start-page: 3848
  year: 2020
  end-page: 3858
  ident: bib177
  article-title: T-GCN: a temporal graph convolutional network for traffic prediction
  publication-title: IEEE Trans. Intell. Transportation Syst.
– volume: 2674
  year: 2020
  ident: bib2
  article-title: Long-term vehicle speed prediction via historical traffic data analysis for improved energy efficiency of connected electric vehicles
  publication-title: Transportation Res. Rec. J. Transportation Res. Board
– ident: bib71
  article-title: Vehicle Velocity Prediction and Energy Management Strategy Part 1: Deterministic and Stochastic Vehicle Velocity Prediction Using Machine Learning
– volume: 32
  start-page: 154
  year: 2017
  end-page: 169
  ident: bib145
  article-title: Short-term traffic speed prediction for an urban corridor
  publication-title: Computer-Aided Civil Infrastructure Eng.
– year: 2019
  ident: bib151
  article-title: 3D Graph Convolutional Networks with Temporal Graphs: A Spatial Information Free Framework for Traffic Forecasting
  publication-title: arXiv
– start-page: 1
  year: 2021
  end-page: 10
  ident: bib29
  article-title: Short-term forecasting of urban traffic using spatio-temporal Markov field
  publication-title: IEEE Trans. Intell. Transportation Syst.
– volume: 118
  start-page: 102674
  year: 2018
  end-page: 102688
  ident: bib24
  article-title: Deep stacked bidirectional and unidirectional LSTM recurrent neural network for network-wide traffic speed prediction
  publication-title: Transportation Res. Part C: Emerging Tech.
– start-page: 2991
  year: 2011
  end-page: 2996
  ident: bib98
  article-title: Real time vehicle speed prediction using a Neural Network Traffic Model
  publication-title: The 2011 International Joint Conference on Neural Networks
– start-page: 234
  year: 2019
  end-page: 242
  ident: bib31
  article-title: Temporal graph convolutional networks for traffic speed prediction considering external factors
  publication-title: 2019 20th IEEE International Conference on Mobile Data Management (MDM)
– year: 2019
  ident: bib180
  article-title: A velocity prediction method based on self-learning multi-step Markov chain
  publication-title: IECON 2019-45th Annual Conference of the IEEE Industrial Electronics Society
– start-page: 1
  year: 2018
  end-page: 16
  ident: bib64
  article-title: Diffusion convolutional recurrent neural network: data-driven traffic forecasting
  publication-title: International Conference on Learning Representations
– start-page: 546
  year: 2018
  ident: bib66
  article-title: Deep sequence learning with auxiliary information for traffic prediction
  publication-title: The 24th ACM SIGKDD International Conference
– volume: 10638
  start-page: 378
  year: 2017
  end-page: 386
  ident: bib75
  article-title: A method to improve accuracy of velocity prediction using Markov model
  publication-title: Neural Information Processing
– volume: 2
  start-page: 2221
  year: 1992
  ident: bib91
  article-title: A cellular automaton model for freeway traffic
  publication-title: J. de Physique
– volume: 206
  start-page: 118126
  year: 2020
  ident: bib167
  article-title: Energy optimization of multi-mode coupling drive plug-in hybrid electric vehicles based on speed prediction
  publication-title: Energy
– volume: 54
  start-page: 187
  year: 2015
  end-page: 197
  ident: bib85
  article-title: Long short-term memory neural network for traffic speed prediction using remote microwave sensor data
  publication-title: Transportation Res. Part C: Emerging Tech.
– volume: 30
  start-page: 1310
  year: 2018
  end-page: 1323
  ident: bib68
  article-title: Road traffic speed prediction: a probabilistic model fusing multi-source data
  publication-title: IEEE Trans. Knowledge Data Eng.
– volume: 28
  start-page: 2371
  year: 2017
  end-page: 2381
  ident: bib143
  article-title: Optimized structure of the traffic flow forecasting model with a deep learning approach
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
– year: 2014
  ident: bib9
  article-title: Spectral Networks and Locally Connected Networks on Graphs
  publication-title: arXiv
– volume: 29
  start-page: 1054
  year: 2005
  end-page: 1072
  ident: bib94
  article-title: A simplified kinematic wave model at a merge bottleneck
  publication-title: Appl. Math. Model.
– volume: 318
  start-page: 297
  year: 2018
  end-page: 305
  ident: bib123
  article-title: LSTM-based traffic flow prediction with missing data
  publication-title: Neurocomputing
– volume: 1
  start-page: 5031
  year: 2010
  end-page: 5036
  ident: bib8
  article-title: Model predictive control of a power-split Hybrid Electric Vehicle with combined battery and ultracapacitor energy storage
  publication-title: Proceedings of the 2010 American Control Conference, IEEE, Baltimore, MD
– volume: 64
  start-page: 258
  year: 2017
  end-page: 265
  ident: bib67
  article-title: Dynamic route planning with real-time traffic predictions
  publication-title: Inf. Syst.
– volume: 8
  start-page: 209296
  year: 2020
  end-page: 209307
  ident: bib27
  article-title: Dynamic global-local spatial-temporal network for traffic speed prediction
  publication-title: IEEE Access
– volume: 152
  start-page: 618
  year: 2018
  end-page: 623
  ident: bib142
  article-title: Deep learning for vehicle speed prediction
  publication-title: Energy Proced.
– start-page: 448
  year: 2020
  end-page: 453
  ident: bib114
  article-title: Vehicle speed prediction for connected and autonomous vehicles using communication and perception
  publication-title: 2020 American Control Conference
– volume: 22
  start-page: 1138
  year: 2021
  end-page: 1149
  ident: bib36
  article-title: Optimized graph convolution recurrent neural network for traffic prediction
  publication-title: IEEE Trans. Intell. Transportation Syst.
– volume: 8
  start-page: 42042
  year: 2020
  end-page: 42054
  ident: bib79
  article-title: A hybrid model for lane-level traffic flow forecasting based on complete ensemble empirical mode decomposition and extreme gradient boosting
  publication-title: IEEE Access
– start-page: 777
  year: 2017
  end-page: 785
  ident: bib157
  article-title: Deep learning: a generic approach for extreme condition traffic forecasting
  publication-title: Proceedings of the 2017 SIAM International Conference on Data Mining (SDM)
– start-page: 1
  year: 2021
  end-page: 25
  ident: bib77
  article-title: Deep learning for road traffic forecasting: does it make a difference?
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– volume: 2188
  start-page: 29
  year: 2010
  end-page: 36
  ident: bib124
  article-title: Lagrangian formulation of multiclass kinematic wave model
  publication-title: Transportation Res. Rec.
– year: 2019
  ident: bib111
  article-title: Vehicle speed prediction with RNN and attention model under multiple scenarios
  publication-title: 2019IEEE Intell. Transportation Syst. Conf. (Itsc)
– volume: 212
  start-page: 106592
  year: 2021
  ident: bib154
  article-title: Citywide traffic speed prediction: a geometric deep learning approach
  publication-title: Knowledge-Based Syst.
– volume: 33
  start-page: 890
  year: 2019
  end-page: 897
  ident: bib26
  article-title: Dynamic spatial-temporal graph convolutional neural networks for traffic forecasting
  publication-title: Proc. AAAI Conf. Artif. Intelligence
– start-page: 271
  year: 2017
  end-page: 279
  ident: bib106
  article-title: Hybrid lane-based short-term urban traffic speed forecasting: a genetic approach
  publication-title: 2017 4th International Conference on Transportation Information and Safety (ICTIS)
– start-page: 2355
  year: 2020
  end-page: 2361
  ident: bib40
  article-title: LSGCN: long short-term traffic prediction with graph convolutional networks
  publication-title: Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, International Joint Conferences on Artificial Intelligence Organization, Yokohama, Japan
– start-page: 3634
  year: 2018
  end-page: 3640
  ident: bib152
  article-title: Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework for Traffic Forecasting
  publication-title: Proceedings of the 27th International Joint Conference on Artificial Intelligence
– volume: 20
  start-page: 3201
  year: 2019
  end-page: 3211
  ident: bib112
  article-title: Vehicle speed prediction using a Markov chain with speed constraints
  publication-title: IEEE Trans. Intell. Transportation Syst.
– volume: 18
  start-page: 416
  year: 2017
  end-page: 430
  ident: bib163
  article-title: Real-time energy management strategy based on velocity forecasts using V2V and V2I communications
  publication-title: IEEE Trans. Intell. Transportation Syst.
– volume: 18
  start-page: 2340
  year: 2017
  ident: 10.1016/j.isci.2022.103909_bib119
  article-title: An improved fuzzy neural network for traffic speed prediction considering periodic characteristic
  publication-title: IEEE Trans. Intell. Transportation Syst.
  doi: 10.1109/TITS.2016.2643005
– volume: 2674
  year: 2020
  ident: 10.1016/j.isci.2022.103909_bib2
  article-title: Long-term vehicle speed prediction via historical traffic data analysis for improved energy efficiency of connected electric vehicles
  publication-title: Transportation Res. Rec. J. Transportation Res. Board
  doi: 10.1177/0361198120941508
– volume: 185
  start-page: 1654
  year: 2017
  ident: 10.1016/j.isci.2022.103909_bib168
  article-title: Model predictive control for power management in a plug-in hybrid electric vehicle with a hybrid energy storage system
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2015.12.035
– volume: 152
  start-page: 618
  year: 2018
  ident: 10.1016/j.isci.2022.103909_bib142
  article-title: Deep learning for vehicle speed prediction
  publication-title: Energy Proced.
  doi: 10.1016/j.egypro.2018.09.220
– year: 2020
  ident: 10.1016/j.isci.2022.103909_bib171
  article-title: High-performance traffic speed forecasting based on spatiotemporal clustering of road segments
  publication-title: IET Intell. Transport Syst.
– volume: 18
  start-page: 416
  year: 2017
  ident: 10.1016/j.isci.2022.103909_bib163
  article-title: Real-time energy management strategy based on velocity forecasts using V2V and V2I communications
  publication-title: IEEE Trans. Intell. Transportation Syst.
  doi: 10.1109/TITS.2016.2580318
– year: 2018
  ident: 10.1016/j.isci.2022.103909_bib164
  article-title: GaAN: Gated Attention Networks for Learning on Large and Spatiotemporal Graphs
– volume: 20
  start-page: 3201
  year: 2019
  ident: 10.1016/j.isci.2022.103909_bib112
  article-title: Vehicle speed prediction using a Markov chain with speed constraints
  publication-title: IEEE Trans. Intell. Transportation Syst.
  doi: 10.1109/TITS.2018.2877785
– start-page: 50
  year: 2016
  ident: 10.1016/j.isci.2022.103909_bib182
  article-title: Short-term traffic flow prediction with linear conditional Gaussian bayesian network
  publication-title: J. Adv. transportation
– start-page: 1
  year: 2018
  ident: 10.1016/j.isci.2022.103909_bib52
  article-title: A capsule network for traffic speed prediction in complex road networks
– volume: 53
  start-page: 2366
  year: 1996
  ident: 10.1016/j.isci.2022.103909_bib38
  article-title: Gas-kinetic derivation of Navier-Stokes-like traffic equations
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.53.2366
– volume: 1
  start-page: 5031
  year: 2010
  ident: 10.1016/j.isci.2022.103909_bib8
  article-title: Model predictive control of a power-split Hybrid Electric Vehicle with combined battery and ultracapacitor energy storage
– volume: 158
  start-page: 107765
  year: 2021
  ident: 10.1016/j.isci.2022.103909_bib74
  article-title: Prediction of vehicle driving conditions with incorporation of stochastic forecasting and machine learning and a case study in energy management of plug-in hybrid electric vehicles
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2021.107765
– year: 2019
  ident: 10.1016/j.isci.2022.103909_bib111
  article-title: Vehicle speed prediction with RNN and attention model under multiple scenarios
– volume: 20
  start-page: 4119
  year: 2019
  ident: 10.1016/j.isci.2022.103909_bib179
  article-title: Velocity prediction of intelligent and connected vehicles for a traffic light distance on the urban road
  publication-title: IEEE Trans. Intell. Transportation Syst.
  doi: 10.1109/TITS.2018.2882609
– volume: 68
  start-page: 5309
  year: 2019
  ident: 10.1016/j.isci.2022.103909_bib35
  article-title: ARIMA-based road gradient and vehicle velocity prediction for hybrid electric vehicle energy management
  publication-title: IEEE Trans. Vehicular Technol.
  doi: 10.1109/TVT.2019.2912893
– volume: 2
  start-page: 2221
  year: 1992
  ident: 10.1016/j.isci.2022.103909_bib91
  article-title: A cellular automaton model for freeway traffic
  publication-title: J. de Physique
– start-page: 3634
  year: 2018
  ident: 10.1016/j.isci.2022.103909_bib152
  article-title: Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework for Traffic Forecasting
– year: 2020
  ident: 10.1016/j.isci.2022.103909_bib30
  article-title: Vehicle velocity prediction using artificial neural network and effect of real World signals on prediction window
– start-page: 1
  year: 2018
  ident: 10.1016/j.isci.2022.103909_bib64
  article-title: Diffusion convolutional recurrent neural network: data-driven traffic forecasting
– volume: 21
  start-page: 4883
  year: 2020
  ident: 10.1016/j.isci.2022.103909_bib23
  article-title: Traffic graph convolutional recurrent neural network: a deep learning framework for network-scale traffic learning and forecasting
  publication-title: IEEE Trans. Intell. Transportation Syst.
  doi: 10.1109/TITS.2019.2950416
– volume: 43
  start-page: 95
  year: 2014
  ident: 10.1016/j.isci.2022.103909_bib102
  article-title: A Hidden Markov Model for short term prediction of traffic conditions on freeways
  publication-title: Transportation Res. Part C: Emerging Tech.
  doi: 10.1016/j.trc.2014.02.007
– start-page: 8
  year: 2018
  ident: 10.1016/j.isci.2022.103909_bib49
  article-title: Multi-lane traffic pattern learning and forecasting using convolutional neural network
– volume: 28
  start-page: 2371
  year: 2017
  ident: 10.1016/j.isci.2022.103909_bib143
  article-title: Optimized structure of the traffic flow forecasting model with a deep learning approach
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
  doi: 10.1109/TNNLS.2016.2574840
– volume: 32
  start-page: 154
  year: 2017
  ident: 10.1016/j.isci.2022.103909_bib145
  article-title: Short-term traffic speed prediction for an urban corridor
  publication-title: Computer-Aided Civil Infrastructure Eng.
  doi: 10.1111/mice.12221
– year: 2021
  ident: 10.1016/j.isci.2022.103909_bib141
  article-title: Spatial-Temporal Transformer Networks for Traffic Flow Forecasting
  publication-title: arXiv
– volume: 8
  start-page: 87541
  year: 2020
  ident: 10.1016/j.isci.2022.103909_bib144
  article-title: Short-term traffic speed prediction of urban road with multi-source data
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2992507
– volume: 101
  start-page: 444
  year: 2019
  ident: 10.1016/j.isci.2022.103909_bib81
  article-title: A short-term energy prediction system based on edge computing for smart city
  publication-title: Future Generation Computer Syst.
  doi: 10.1016/j.future.2019.06.030
– volume: 126
  start-page: 285
  year: 2000
  ident: 10.1016/j.isci.2022.103909_bib76
  article-title: The mathematics of Markov models: what Markov chains can really predict in forest successions
  publication-title: Ecol. Model.
  doi: 10.1016/S0304-3800(00)00269-6
– start-page: 1
  year: 2020
  ident: 10.1016/j.isci.2022.103909_bib122
  article-title: A survey on modern deep neural network for traffic prediction: trends, methods and challenges
  publication-title: IEEE Trans. Knowledge Data Eng.
  doi: 10.1109/TKDE.2020.3001195
– volume: 9
  start-page: 54739
  year: 2021
  ident: 10.1016/j.isci.2022.103909_bib56
  article-title: Short-term traffic prediction with deep neural networks: a survey
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3071174
– start-page: 1
  year: 2021
  ident: 10.1016/j.isci.2022.103909_bib77
  article-title: Deep learning for road traffic forecasting: does it make a difference?
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– volume: 10
  start-page: 74
  year: 2017
  ident: 10.1016/j.isci.2022.103909_bib65
  article-title: A mixed logical dynamical-model predictive control (MLD-MPC) energy management control strategy for plug-in hybrid electric vehicles (PHEVs)
  publication-title: Energies
  doi: 10.3390/en10010074
– start-page: 416
  year: 2003
  ident: 10.1016/j.isci.2022.103909_bib127
  article-title: LADAR-based detection and tracking of moving objects from a ground vehicle at high speeds
– start-page: 1
  year: 2021
  ident: 10.1016/j.isci.2022.103909_bib16
  article-title: Bayesian temporal factorization for multidimensional time series prediction
– volume: 27
  start-page: 219
  year: 2013
  ident: 10.1016/j.isci.2022.103909_bib130
  article-title: Short-term traffic speed forecasting hybrid model based on Chaos–Wavelet Analysis-Support Vector Machine theory
  publication-title: Transportation Res. Part C: Emerging Tech.
  doi: 10.1016/j.trc.2012.08.004
– start-page: 3470
  year: 2018
  ident: 10.1016/j.isci.2022.103909_bib82
  article-title: LC-RNN: a deep learning model for traffic speed prediction
  publication-title: IJCAI
– volume: 13
  start-page: 1281
  year: 2019
  ident: 10.1016/j.isci.2022.103909_bib63
  article-title: Investigating long-term vehicle speed prediction based on BP-LSTM algorithms
  publication-title: IET Intell. Transport Syst.
  doi: 10.1049/iet-its.2018.5593
– volume: 14
  start-page: 871
  year: 2013
  ident: 10.1016/j.isci.2022.103909_bib69
  article-title: Short-term traffic flow forecasting: an experimental comparison of time-series analysis and supervised learning
  publication-title: IEEE Trans. Intell. Transportation Syst.
  doi: 10.1109/TITS.2013.2247040
– volume: 175
  start-page: 378
  year: 2019
  ident: 10.1016/j.isci.2022.103909_bib34
  article-title: A novel MPC-based adaptive energy management strategy in plug-in hybrid electric vehicles
  publication-title: Energy
  doi: 10.1016/j.energy.2019.03.083
– year: 2017
  ident: 10.1016/j.isci.2022.103909_bib100
  article-title: Deep learning for short-term traffic flow prediction
  publication-title: Transportation Res. Part C: Emerging Tech.
  doi: 10.1016/j.trc.2017.02.024
– volume: 111
  start-page: 72
  year: 2020
  ident: 10.1016/j.isci.2022.103909_bib61
  article-title: Short-term traffic state prediction from latent structures: accuracy vs. efficiency
  publication-title: Transportation Res. Part C: Emerging Tech.
  doi: 10.1016/j.trc.2019.12.007
– volume: 7
  start-page: 9116
  year: 2019
  ident: 10.1016/j.isci.2022.103909_bib176
  article-title: Truck traffic speed prediction under non-recurrent congestion: based on optimized deep learning algorithms and GPS data
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2890414
– volume: 6
  start-page: 51756
  year: 2018
  ident: 10.1016/j.isci.2022.103909_bib108
  article-title: Research on traffic speed prediction by temporal clustering analysis and convolutional neural network with deformable kernels (may, 2018)
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2868735
– volume: 225
  start-page: 120273
  year: 2021
  ident: 10.1016/j.isci.2022.103909_bib37
  article-title: An improved MPC-based energy management strategy for hybrid vehicles using V2V and V2I communications
  publication-title: Energy
  doi: 10.1016/j.energy.2021.120273
– volume: 451
  start-page: 290
  year: 2021
  ident: 10.1016/j.isci.2022.103909_bib104
  article-title: Features injected recurrent neural networks for short-term traffic speed prediction
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.03.054
– start-page: 473
  year: 2019
  ident: 10.1016/j.isci.2022.103909_bib57
  article-title: Energy consumption prediction system based on deep learning with edge computing
– volume: 8
  start-page: 549
  year: 2007
  ident: 10.1016/j.isci.2022.103909_bib101
  article-title: Sensor fusion for predicting vehicles’ path for collision avoidance systems
  publication-title: IEEE Trans. Intell. Transportation Syst.
  doi: 10.1109/TITS.2007.903439
– volume: 14
  start-page: 2073
  year: 2020
  ident: 10.1016/j.isci.2022.103909_bib80
  article-title: Efficient deep learning based method for multi-lane speed forecasting: a case study in Beijing
  publication-title: IET Intell. Transport Syst.
  doi: 10.1049/iet-its.2020.0410
– start-page: 3494
  year: 2014
  ident: 10.1016/j.isci.2022.103909_bib59
  article-title: Comparison of parametric and non-parametric approaches for vehicle speed prediction
– year: 2019
  ident: 10.1016/j.isci.2022.103909_bib151
  article-title: 3D Graph Convolutional Networks with Temporal Graphs: A Spatial Information Free Framework for Traffic Forecasting
  publication-title: arXiv
– start-page: 881
  year: 2017
  ident: 10.1016/j.isci.2022.103909_bib46
  article-title: Vehicle speed prediction using a cooperative method of fuzzy Markov model and auto-regressive model
– volume: 15
  start-page: 359
  year: 2021
  ident: 10.1016/j.isci.2022.103909_bib10
  article-title: City buses’ future velocity prediction for multiple driving cycle: a meta supervised learning solution
  publication-title: IET Intell. Transport Syst.
  doi: 10.1049/itr2.12019
– year: 2019
  ident: 10.1016/j.isci.2022.103909_bib95
  article-title: A novel spatio-temporal model for city-scale traffic speed prediction
  publication-title: IEEE Access
– volume: 396
  start-page: 438
  year: 2020
  ident: 10.1016/j.isci.2022.103909_bib166
  article-title: A deep learning based multitask model for network-wide traffic speed prediction
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.10.097
– year: 2021
  ident: 10.1016/j.isci.2022.103909_bib158
  article-title: A survey of traffic prediction: from spatio-temporal data to intelligent transportation
  publication-title: Data Sci. Eng.
  doi: 10.1007/s41019-020-00151-z
– volume: 34
  start-page: 1234
  year: 2020
  ident: 10.1016/j.isci.2022.103909_bib178
  article-title: GMAN: a graph multi-attention network for traffic prediction
  publication-title: Proc.AAAI Conf.Artif. Intelligence
  doi: 10.1609/aaai.v34i01.5477
– volume: 61
  start-page: 782
  year: 2018
  ident: 10.1016/j.isci.2022.103909_bib62
  article-title: Research on optimized GA-SVM vehicle speed prediction model based on driver-vehicle-road-traffic system
  publication-title: Sci. China Technol. Sci.
  doi: 10.1007/s11431-017-9213-0
– volume: 29
  year: 2016
  ident: 10.1016/j.isci.2022.103909_bib4
  article-title: Diffusion-convolutional neural networks
  publication-title: Advances in neural information processing systems
– start-page: 1
  year: 2021
  ident: 10.1016/j.isci.2022.103909_bib29
  article-title: Short-term forecasting of urban traffic using spatio-temporal Markov field
  publication-title: IEEE Trans. Intell. Transportation Syst.
– volume: 15
  start-page: 1039
  year: 2014
  ident: 10.1016/j.isci.2022.103909_bib99
  article-title: Intelligent trip modeling for the prediction of an origin–destination traveling speed profile
  publication-title: IEEE Trans. Intell. Transportation Syst.
  doi: 10.1109/TITS.2013.2294934
– volume: 189
  start-page: 640
  year: 2017
  ident: 10.1016/j.isci.2022.103909_bib136
  article-title: Energy management of a dual-mode power-split hybrid electric vehicle based on velocity prediction and nonlinear model predictive control
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.12.056
– volume: 132
  start-page: 103372
  year: 2021
  ident: 10.1016/j.isci.2022.103909_bib173
  article-title: A customized deep learning approach to integrate network-scale online traffic data imputation and prediction
  publication-title: Transportation Res. Part C: Emerging Tech.
  doi: 10.1016/j.trc.2021.103372
– volume: 11
  start-page: 70
  year: 2019
  ident: 10.1016/j.isci.2022.103909_bib175
  article-title: Traffic speed prediction under non-recurrent congestion: based on LSTM method and BeiDou navigation satellite system data
  publication-title: IEEE Intell. Transportation Syst. Mag.
  doi: 10.1109/MITS.2019.2903431
– volume: 9
  start-page: 1321
  year: 2021
  ident: 10.1016/j.isci.2022.103909_bib14
  article-title: A multiscale-grid-based stacked bidirectional GRU neural network model for predicting traffic speeds of urban expressways
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3034551
– volume: 19
  start-page: 606
  year: 2011
  ident: 10.1016/j.isci.2022.103909_bib89
  article-title: Real-time road traffic prediction with spatio-temporal correlations
  publication-title: Transportation Res. Part C: Emerging Tech.
  doi: 10.1016/j.trc.2010.10.002
– volume: 100
  start-page: 372
  year: 2019
  ident: 10.1016/j.isci.2022.103909_bib128
  article-title: Traffic speed prediction for urban transportation network: a path based deep learning approach
  publication-title: Transportation Res. Part C: Emerging Tech.
  doi: 10.1016/j.trc.2019.02.002
– start-page: 741
  year: 2019
  ident: 10.1016/j.isci.2022.103909_bib43
  article-title: Short-term speed forecasting using vehicle wireless communications
– volume: 23
  start-page: 605
  year: 2019
  ident: 10.1016/j.isci.2022.103909_bib60
  article-title: Traffic speed prediction for intelligent transportation system based on a deep feature fusion model
  publication-title: J. Intell. Transportation Syst.
  doi: 10.1080/15472450.2019.1583965
– start-page: 777
  year: 2017
  ident: 10.1016/j.isci.2022.103909_bib157
  article-title: Deep learning: a generic approach for extreme condition traffic forecasting
– volume: 13
  start-page: 53
  year: 2009
  ident: 10.1016/j.isci.2022.103909_bib11
  article-title: Predictions of freeway traffic speeds and volumes using vector autoregressive models
  publication-title: J. Intell. Transportation Syst.
  doi: 10.1080/15472450902858368
– volume: 14
  start-page: 724
  year: 2020
  ident: 10.1016/j.isci.2022.103909_bib48
  article-title: Advanced framework for microscopic and lane-level macroscopic traffic parameters estimation from UAV video
  publication-title: IET Intell. Transport Syst.
  doi: 10.1049/iet-its.2019.0463
– volume: 20
  start-page: 100184
  year: 2019
  ident: 10.1016/j.isci.2022.103909_bib88
  article-title: Deep learning models for traffic flow prediction in autonomous vehicles: a review, solutions, and challenges
  publication-title: Vehicular Commun.
  doi: 10.1016/j.vehcom.2019.100184
– volume: 23
  start-page: 1075
  year: 2015
  ident: 10.1016/j.isci.2022.103909_bib116
  article-title: Dynamic traffic feedback data enabled energy management in plug-in hybrid electric vehicles
  publication-title: IEEE Trans. Control Syst. Technol.
  doi: 10.1109/TCST.2014.2361294
– volume: 1748
  start-page: 96
  year: 2001
  ident: 10.1016/j.isci.2022.103909_bib13
  article-title: Freeway performance measurement system: mining loop detector data
  publication-title: Transportation Res. Rec.
  doi: 10.3141/1748-12
– volume: 129
  start-page: 161
  year: 2003
  ident: 10.1016/j.isci.2022.103909_bib21
  article-title: Traffic prediction using multivariate nonparametric regression
  publication-title: J. Transportation Eng.
  doi: 10.1061/(ASCE)0733-947X(2003)129:2(161)
– volume: 412
  start-page: 480
  year: 2019
  ident: 10.1016/j.isci.2022.103909_bib181
  article-title: A survey on driving prediction techniques for predictive energy management of plug-in hybrid electric vehicles
  publication-title: J. Power Sourc.
  doi: 10.1016/j.jpowsour.2018.11.085
– volume: 91
  start-page: 371
  year: 2018
  ident: 10.1016/j.isci.2022.103909_bib1
  article-title: The impacts of heavy rain on speed and headway Behaviors: an investigation using the SHRP2 naturalistic driving study data
  publication-title: Transportation Res. C: Emerging Tech.
  doi: 10.1016/j.trc.2018.04.012
– volume: 52
  start-page: 654
  year: 2019
  ident: 10.1016/j.isci.2022.103909_bib32
  article-title: A review of intelligent road preview methods for energy management of hybrid vehicles
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2019.09.104
– start-page: 1
  year: 2021
  ident: 10.1016/j.isci.2022.103909_bib161
  article-title: FASTGNN: a topological information protected federated learning approach for traffic speed forecasting
  publication-title: IEEE Trans. Ind. Inform.
– volume: 22
  start-page: 1435
  year: 2020
  ident: 10.1016/j.isci.2022.103909_bib58
  article-title: Predicting short-term traffic speed using a deep neural network to accommodate citywide spatio-temporal correlations
  publication-title: IEEE Transactions on Intelligent Transportation Systems
  doi: 10.1109/TITS.2020.2970754
– start-page: 1720
  year: 2019
  ident: 10.1016/j.isci.2022.103909_bib96
  article-title: Urban traffic prediction from spatio-temporal data using deep meta learning
– volume: 318
  start-page: 297
  year: 2018
  ident: 10.1016/j.isci.2022.103909_bib123
  article-title: LSTM-based traffic flow prediction with missing data
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.08.067
– start-page: 2355
  year: 2020
  ident: 10.1016/j.isci.2022.103909_bib40
  article-title: LSGCN: long short-term traffic prediction with graph convolutional networks
– volume: 22
  start-page: 1138
  year: 2021
  ident: 10.1016/j.isci.2022.103909_bib36
  article-title: Optimized graph convolution recurrent neural network for traffic prediction
  publication-title: IEEE Trans. Intell. Transportation Syst.
  doi: 10.1109/TITS.2019.2963722
– start-page: 546
  year: 2018
  ident: 10.1016/j.isci.2022.103909_bib66
  article-title: Deep sequence learning with auxiliary information for traffic prediction
– volume: 341
  start-page: 91
  year: 2017
  ident: 10.1016/j.isci.2022.103909_bib42
  article-title: Model predictive control power management strategies for HEVs: a review
  publication-title: J. Power Sourc.
  doi: 10.1016/j.jpowsour.2016.11.106
– start-page: 1
  year: 2020
  ident: 10.1016/j.isci.2022.103909_bib78
  article-title: Lane-level traffic speed forecasting: a novel mixed deep learning model
  publication-title: IEEE Trans. Intell. Transportation Syst.
– start-page: 13
  year: 2011
  ident: 10.1016/j.isci.2022.103909_bib53
  article-title: A scalable cellular automata based microscopic traffic simulation
– year: 2018
  ident: 10.1016/j.isci.2022.103909_bib131
  article-title: Efficient Metropolitan Traffic Prediction Based on Graph Recurrent Neural Network
  publication-title: arXiv
– volume: 118
  start-page: 102674
  year: 2018
  ident: 10.1016/j.isci.2022.103909_bib24
  article-title: Deep stacked bidirectional and unidirectional LSTM recurrent neural network for network-wide traffic speed prediction
  publication-title: Transportation Res. Part C: Emerging Tech.
  doi: 10.1016/j.trc.2020.102674
– volume: 44
  start-page: 1084
  year: 2010
  ident: 10.1016/j.isci.2022.103909_bib45
  article-title: Continuous kinematic wave models of merging traffic flow
  publication-title: Transportation Res. Part B: Methodological
  doi: 10.1016/j.trb.2010.02.011
– volume: 33
  start-page: 999
  year: 2018
  ident: 10.1016/j.isci.2022.103909_bib72
  article-title: Short-term traffic speed forecasting based on attention convolutional neural network for arterials
  publication-title: Computer-Aided Civil Infrastructure Eng.
  doi: 10.1111/mice.12417
– volume: 21
  start-page: 3848
  year: 2020
  ident: 10.1016/j.isci.2022.103909_bib177
  article-title: T-GCN: a temporal graph convolutional network for traffic prediction
  publication-title: IEEE Trans. Intell. Transportation Syst.
  doi: 10.1109/TITS.2019.2935152
– volume: 35
  start-page: 427
  year: 2003
  ident: 10.1016/j.isci.2022.103909_bib126
  article-title: A comparison of headway and time to collision as safety indicators
  publication-title: Accid.Anal. Prev.
  doi: 10.1016/S0001-4575(02)00022-2
– volume: 44
  start-page: 152
  year: 2010
  ident: 10.1016/j.isci.2022.103909_bib20
  article-title: Development and calibration of the Anisotropic Mesoscopic Simulation model for uninterrupted flow facilities
  publication-title: Transportation Res. B: Methodological
  doi: 10.1016/j.trb.2009.06.001
– volume: 22
  start-page: 219
  year: 2021
  ident: 10.1016/j.isci.2022.103909_bib170
  article-title: TrafficGAN: network-scale deep traffic prediction with generative adversarial nets
  publication-title: IEEE Trans. Intell. Transportation Syst.
  doi: 10.1109/TITS.2019.2955794
– volume: 3
  start-page: 194
  year: 2017
  ident: 10.1016/j.isci.2022.103909_bib55
  article-title: Local Gaussian processes for efficient fine-grained traffic speed prediction
  publication-title: IEEE Trans. Big Data
  doi: 10.1109/TBDATA.2016.2620488
– volume: 20
  start-page: 713
  year: 2019
  ident: 10.1016/j.isci.2022.103909_bib148
  article-title: Ego-vehicle speed prediction using a long short-term memory based recurrent neural network
  publication-title: Int. J. Automotive Technology
  doi: 10.1007/s12239-019-0067-y
– volume: 10
  start-page: 93
  year: 2018
  ident: 10.1016/j.isci.2022.103909_bib54
  article-title: Road traffic forecasting: recent advances and new challenges
  publication-title: IEEE Intell. Transportation Syst. Mag.
  doi: 10.1109/MITS.2018.2806634
– volume: 55
  start-page: 86
  year: 2019
  ident: 10.1016/j.isci.2022.103909_bib162
  article-title: Current status and prospects for model predictive energy management in hybrid electric vehicles
  publication-title: J. Mech. Eng.
  doi: 10.3901/JME.2019.10.086
– volume: 428
  start-page: 42
  year: 2021
  ident: 10.1016/j.isci.2022.103909_bib150
  article-title: Multi-stage attention spatial-temporal graph networks for traffic prediction
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.11.038
– volume: 10638
  start-page: 378
  year: 2017
  ident: 10.1016/j.isci.2022.103909_bib75
  article-title: A method to improve accuracy of velocity prediction using Markov model
– volume: 90
  start-page: 166
  year: 2018
  ident: 10.1016/j.isci.2022.103909_bib134
  article-title: A hybrid deep learning based traffic flow prediction method and its understanding
  publication-title: Transportation Res. Part C: Emerging Tech.
  doi: 10.1016/j.trc.2018.03.001
– volume: 112
  start-page: 62
  year: 2020
  ident: 10.1016/j.isci.2022.103909_bib6
  article-title: A graph CNN-LSTM neural network for short and long-term traffic forecasting based on trajectory data
  publication-title: Transportation Res. C Emerging Tech.
  doi: 10.1016/j.trc.2020.01.010
– start-page: 271
  year: 2017
  ident: 10.1016/j.isci.2022.103909_bib106
  article-title: Hybrid lane-based short-term urban traffic speed forecasting: a genetic approach
– volume: 20
  start-page: 3940
  year: 2019
  ident: 10.1016/j.isci.2022.103909_bib155
  article-title: Real-time traffic speed estimation with graph convolutional generative autoencoder
  publication-title: IEEE Trans. Intell. Transportation Syst.
  doi: 10.1109/TITS.2019.2910560
– volume: 5
  start-page: 3569
  year: 2001
  ident: 10.1016/j.isci.2022.103909_bib19
  article-title: Markov chain Monte Carlo methods: computation and inference
– volume: 64
  start-page: 258
  year: 2017
  ident: 10.1016/j.isci.2022.103909_bib67
  article-title: Dynamic route planning with real-time traffic predictions
  publication-title: Inf. Syst.
  doi: 10.1016/j.is.2016.01.007
– volume: 106
  start-page: 1
  year: 2019
  ident: 10.1016/j.isci.2022.103909_bib33
  article-title: Short-term prediction of lane-level traffic speeds: a fusion deep learning model
  publication-title: Transportation Res. Part C: Emerging Tech.
  doi: 10.1016/j.trc.2019.07.003
– volume: 8
  start-page: 364
  year: 2015
  ident: 10.1016/j.isci.2022.103909_bib90
  article-title: Short term prediction of a vehicle’s velocity trajectory using ITS
  publication-title: SAE Int. J. Passenger Cars - Electron.Electr. Syst.
  doi: 10.4271/2015-01-0295
– start-page: 187
  year: 2016
  ident: 10.1016/j.isci.2022.103909_bib105
  article-title: Traffic speed prediction using hidden Markov models for Czech republic highways
– start-page: 1
  year: 2021
  ident: 10.1016/j.isci.2022.103909_bib169
  article-title: Integrated velocity prediction method and application in vehicle-environment cooperative control based on internet of vehicles
  publication-title: IEEE Trans. Vehicular Technol.
– volume: 2188
  start-page: 29
  year: 2010
  ident: 10.1016/j.isci.2022.103909_bib124
  article-title: Lagrangian formulation of multiclass kinematic wave model
  publication-title: Transportation Res. Rec.
  doi: 10.3141/2188-04
– volume: 212
  start-page: 106592
  year: 2021
  ident: 10.1016/j.isci.2022.103909_bib154
  article-title: Citywide traffic speed prediction: a geometric deep learning approach
  publication-title: Knowledge-Based Syst.
  doi: 10.1016/j.knosys.2020.106592
– volume: 185
  start-page: 1644
  year: 2017
  ident: 10.1016/j.isci.2022.103909_bib117
  article-title: Investigating adaptive-ECMS with velocity forecast ability for hybrid electric vehicles
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.02.026
– volume: 2018
  start-page: e9728328
  year: 2018
  ident: 10.1016/j.isci.2022.103909_bib73
  article-title: A novel method for predicting vehicle state in internet of vehicles
  publication-title: Mobile Inf. Syst.
– start-page: 2991
  year: 2011
  ident: 10.1016/j.isci.2022.103909_bib98
  article-title: Real time vehicle speed prediction using a Neural Network Traffic Model
– volume: 34
  start-page: 3529
  year: 2020
  ident: 10.1016/j.isci.2022.103909_bib15
  article-title: Multi-range attentive bicomponent graph convolutional network for traffic forecasting
  publication-title: Proc. AAAI Conf. Artif.Intelligence
  doi: 10.1609/aaai.v34i04.5758
– start-page: 2861
  year: 2015
  ident: 10.1016/j.isci.2022.103909_bib47
  article-title: Vehicle speed prediction in a convoy using V2V communication
– volume: 20
  start-page: 14317
  year: 2020
  ident: 10.1016/j.isci.2022.103909_bib17
  article-title: Sensing data supported traffic flow prediction via denoising schemes and ANN: a comparison
  publication-title: IEEE Sensors J.
  doi: 10.1109/JSEN.2020.3007809
– volume: 163
  start-page: 472
  year: 2019
  ident: 10.1016/j.isci.2022.103909_bib153
  article-title: Forecasting short-term traffic speed based on multiple attributes of adjacent roads
  publication-title: Knowledge-Based Syst.
  doi: 10.1016/j.knosys.2018.09.003
– volume: 29
  start-page: 1054
  year: 2005
  ident: 10.1016/j.isci.2022.103909_bib94
  article-title: A simplified kinematic wave model at a merge bottleneck
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2005.02.008
– year: 2019
  ident: 10.1016/j.isci.2022.103909_bib180
  article-title: A velocity prediction method based on self-learning multi-step Markov chain
– volume: 54
  start-page: 187
  year: 2015
  ident: 10.1016/j.isci.2022.103909_bib85
  article-title: Long short-term memory neural network for traffic speed prediction using remote microwave sensor data
  publication-title: Transportation Res. Part C: Emerging Tech.
  doi: 10.1016/j.trc.2015.03.014
– start-page: 1
  year: 2020
  ident: 10.1016/j.isci.2022.103909_bib147
  article-title: How to build a graph-based deep learning architecture in traffic domain: a survey
  publication-title: IEEE Trans. Intell. Transportation Syst.
– volume: 196
  start-page: 279
  year: 2017
  ident: 10.1016/j.isci.2022.103909_bib138
  article-title: An energy management strategy based on stochastic model predictive control for plug-in hybrid electric buses
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.12.112
– volume: 206
  start-page: 118126
  year: 2020
  ident: 10.1016/j.isci.2022.103909_bib167
  article-title: Energy optimization of multi-mode coupling drive plug-in hybrid electric vehicles based on speed prediction
  publication-title: Energy
  doi: 10.1016/j.energy.2020.118126
– start-page: 102
  year: 2015
  ident: 10.1016/j.isci.2022.103909_bib22
  article-title: Traffic speed prediction method for urban networks — an ANN approach
– start-page: 209
  year: 2007
  ident: 10.1016/j.isci.2022.103909_bib118
  article-title: An Extended Kalman Filter Application for Traffic State Estimation Using CTM with Implicit Mode Switching and Dynamic Parameters
– volume: 22
  start-page: 4813
  year: 2021
  ident: 10.1016/j.isci.2022.103909_bib86
  article-title: Forecasting transportation network speed using deep capsule networks with nested LSTM models
  publication-title: IEEE Trans. Intell. Transportation Syst.
  doi: 10.1109/TITS.2020.2984813
– start-page: 1
  year: 2020
  ident: 10.1016/j.isci.2022.103909_bib113
  article-title: Incorporating dynamicity of transportation network with multi-weight traffic graph convolutional network for traffic forecasting
  publication-title: IEEE Trans. Intell. Transportation Syst.
– volume: 33
  start-page: 485
  year: 2019
  ident: 10.1016/j.isci.2022.103909_bib12
  article-title: Gated residual recurrent graph neural networks for traffic prediction
  publication-title: Proc. AAAI Conf. Artif. Intelligence
  doi: 10.1609/aaai.v33i01.3301485
– volume: 22
  start-page: 1562
  year: 2021
  ident: 10.1016/j.isci.2022.103909_bib107
  article-title: Eco-approach with traffic prediction and experimental validation for connected and autonomous vehicles
  publication-title: IEEE Trans. Intell. Transportation Syst.
  doi: 10.1109/TITS.2020.2972198
– start-page: 448
  year: 2020
  ident: 10.1016/j.isci.2022.103909_bib114
  article-title: Vehicle speed prediction for connected and autonomous vehicles using communication and perception
– start-page: 10
  year: 2014
  ident: 10.1016/j.isci.2022.103909_bib18
  article-title: Efficient traffic speed forecasting based on massive heterogenous historical data
– volume: 30
  start-page: 1310
  year: 2018
  ident: 10.1016/j.isci.2022.103909_bib68
  article-title: Road traffic speed prediction: a probabilistic model fusing multi-source data
  publication-title: IEEE Trans. Knowledge Data Eng.
  doi: 10.1109/TKDE.2017.2718525
– volume: 6
  start-page: 75629
  year: 2018
  ident: 10.1016/j.isci.2022.103909_bib83
  article-title: Short-term traffic flow forecasting by selecting appropriate predictions based on pattern matching
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2879055
– volume: 43
  year: 2014
  ident: 10.1016/j.isci.2022.103909_bib125
  article-title: Short-term traffic forecasting: where we are and where we’re going
  publication-title: Transportation Res. Part C: Emerging Tech.
  doi: 10.1016/j.trc.2014.01.005
– volume: 129
  start-page: 664
  year: 2003
  ident: 10.1016/j.isci.2022.103909_bib133
  article-title: Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process: theoretical basis and empirical results
  publication-title: J. Transportation Eng.
  doi: 10.1061/(ASCE)0733-947X(2003)129:6(664)
– volume: 20
  start-page: 3700
  year: 2019
  ident: 10.1016/j.isci.2022.103909_bib160
  article-title: Long-term traffic speed prediction based on multiscale spatio-temporal feature learning network
  publication-title: IEEE Trans. Intell. Transportation Syst.
  doi: 10.1109/TITS.2018.2878068
– start-page: 117
  year: 2020
  ident: 10.1016/j.isci.2022.103909_bib121
  article-title: An Attention-Based Approach for Traffic Conditions Forecasting Considering Spatial-Temporal Features
– volume: 27
  start-page: 281
  year: 1993
  ident: 10.1016/j.isci.2022.103909_bib93
  article-title: A simplified theory of kinematic waves in highway traffic, part I: general theory
  publication-title: Transportation Res. Part B: Methodological
  doi: 10.1016/0191-2615(93)90038-C
– volume: 20
  start-page: 1378
  year: 2019
  ident: 10.1016/j.isci.2022.103909_bib146
  article-title: Prediction-based eco-approach and departure at signalized intersections with speed forecasting on preceding vehicles
  publication-title: IEEE Trans. Intell. Transportation Syst.
  doi: 10.1109/TITS.2018.2856809
– start-page: 962
  year: 2007
  ident: 10.1016/j.isci.2022.103909_bib159
  article-title: Prediction Time Horizon and Effectiveness of Real-Time Data on Short-Term Traffic Predictability
– volume: 34
  start-page: 5956
  year: 2020
  ident: 10.1016/j.isci.2022.103909_bib120
  article-title: Joint modeling of local and global temporal dynamics for multivariate time series forecasting with missing values
  publication-title: Proc.AAAI Conf.Artif.Intelligence
  doi: 10.1609/aaai.v34i04.6056
– volume: 18
  start-page: 1793
  year: 2017
  ident: 10.1016/j.isci.2022.103909_bib44
  article-title: Vehicle speed prediction by two-level data driven models in vehicular networks
  publication-title: IEEE Trans. Intell. Transportation Syst.
  doi: 10.1109/TITS.2016.2620498
– volume: 47
  start-page: 101221
  year: 2020
  ident: 10.1016/j.isci.2022.103909_bib174
  article-title: Cellular automata model for Urban Road traffic flow Considering Internet of Vehicles and emergency vehicles
  publication-title: J. Comput. Sci.
  doi: 10.1016/j.jocs.2020.101221
– volume: 115
  start-page: 102622
  year: 2020
  ident: 10.1016/j.isci.2022.103909_bib7
  article-title: A variational autoencoder solution for road traffic forecasting systems: missing data imputation, dimension reduction, model selection and anomaly detection
  publication-title: Transportation Res. Part C: Emerging Tech.
  doi: 10.1016/j.trc.2020.102622
– volume: 7
  start-page: 7181
  year: 2020
  ident: 10.1016/j.isci.2022.103909_bib103
  article-title: Vehicular networking-enabled vehicle state prediction via two-level quantized adaptive kalman filtering
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2020.2983332
– volume: 7
  start-page: 102021
  year: 2019
  ident: 10.1016/j.isci.2022.103909_bib28
  article-title: MIT advanced vehicle Technology study: large-scale naturalistic driving study of driver behavior and interaction with automation
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2926040
– start-page: 234
  year: 2019
  ident: 10.1016/j.isci.2022.103909_bib31
  article-title: Temporal graph convolutional networks for traffic speed prediction considering external factors
– year: 2014
  ident: 10.1016/j.isci.2022.103909_bib9
  article-title: Spectral Networks and Locally Connected Networks on Graphs
  publication-title: arXiv
– volume: 15
  start-page: 794
  year: 2014
  ident: 10.1016/j.isci.2022.103909_bib3
  article-title: Spatiotemporal patterns in large-scale traffic speed prediction
  publication-title: IEEE Trans. Intell. Transportation Syst.
  doi: 10.1109/TITS.2013.2290285
– volume: 7
  start-page: e470
  year: 2021
  ident: 10.1016/j.isci.2022.103909_bib109
  article-title: ST-AFN: a spatial-temporal attention based fusion network for lane-level traffic flow prediction
  publication-title: Peerj.Computer Sci.
  doi: 10.7717/peerj-cs.470
– volume: 23
  start-page: 1197
  year: 2015
  ident: 10.1016/j.isci.2022.103909_bib115
  article-title: Velocity predictors for predictive energy management in hybrid electric vehicles
  publication-title: IEEE Trans. Control Syst. Technol.
  doi: 10.1109/TCST.2014.2359176
– volume: 105
  start-page: 297
  year: 2019
  ident: 10.1016/j.isci.2022.103909_bib172
  article-title: Multistep speed prediction on traffic networks: a deep learning approach considering spatio-temporal dependencies
  publication-title: Transportation Res. Part C: Emerging Tech.
  doi: 10.1016/j.trc.2019.05.039
– volume: 50
  start-page: 148
  year: 2018
  ident: 10.1016/j.isci.2022.103909_bib92
  article-title: Survey on traffic prediction in smart cities
  publication-title: Pervasive Mobile Comput.
  doi: 10.1016/j.pmcj.2018.07.004
– volume: 3
  start-page: 129
  year: 2018
  ident: 10.1016/j.isci.2022.103909_bib25
  article-title: How would surround vehicles move? A unified framework for maneuver classification and motion prediction
  publication-title: IEEE Trans. Intell. Vehicles
  doi: 10.1109/TIV.2018.2804159
– volume: 419
  start-page: 1
  year: 2005
  ident: 10.1016/j.isci.2022.103909_bib87
  article-title: Cellular automata models of road traffic
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2005.08.005
– volume: 19
  start-page: 2373
  year: 2018
  ident: 10.1016/j.isci.2022.103909_bib39
  article-title: Ecological driving system for connected/automated vehicles using a two-stage control hierarchy
  publication-title: IEEE Trans. Intell. Transportation Syst.
  doi: 10.1109/TITS.2018.2813978
– volume: 8
  start-page: 42042
  year: 2020
  ident: 10.1016/j.isci.2022.103909_bib79
  article-title: A hybrid model for lane-level traffic flow forecasting based on complete ensemble empirical mode decomposition and extreme gradient boosting
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2977219
– volume: 236
  start-page: 893
  year: 2019
  ident: 10.1016/j.isci.2022.103909_bib139
  article-title: Pontryagin’s Minimum Principle based model predictive control of energy management for a plug-in hybrid electric bus
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.12.032
– volume: 60
  start-page: 3747
  year: 2011
  ident: 10.1016/j.isci.2022.103909_bib5
  article-title: Improving estimation of vehicle’s trajectory using the latest global positioning system with kalman filtering
  publication-title: IEEE Trans. Instrumentation Meas.
  doi: 10.1109/TIM.2011.2147670
– start-page: 1907
  year: 2019
  ident: 10.1016/j.isci.2022.103909_bib135
  article-title: Graph wavenet for deep spatial-temporal graph modeling
  publication-title: Proceedings of the 28th International Joint Conference on Artificial Intelligence
– volume: 11
  start-page: 5619
  year: 2021
  ident: 10.1016/j.isci.2022.103909_bib70
  article-title: Estimation of lane-level traffic flow using a deep learning technique
  publication-title: Appl. Sci.
  doi: 10.3390/app11125619
– volume: 99
  start-page: 85
  year: 2018
  ident: 10.1016/j.isci.2022.103909_bib132
  article-title: Markov chain Monte Carlo simulation of electric vehicle use for network integration studies
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2018.01.008
– start-page: 1
  year: 2021
  ident: 10.1016/j.isci.2022.103909_bib149
  article-title: Deep learning on traffic prediction: methods, analysis and future directions
  publication-title: IEEE Trans. Intell. Transportation Syst.
– year: 2019
  ident: 10.1016/j.isci.2022.103909_bib137
  article-title: How do urban incidents affect traffic speed?”A Deep Graph Convolutional Network for Incident-Driven Traffic Speed Prediction
  publication-title: arXiv
– volume: 33
  start-page: 890
  year: 2019
  ident: 10.1016/j.isci.2022.103909_bib26
  article-title: Dynamic spatial-temporal graph convolutional neural networks for traffic forecasting
  publication-title: Proc. AAAI Conf. Artif. Intelligence
  doi: 10.1609/aaai.v33i01.3301890
– volume: 8
  start-page: 209296
  year: 2020
  ident: 10.1016/j.isci.2022.103909_bib27
  article-title: Dynamic global-local spatial-temporal network for traffic speed prediction
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3038380
– volume: 155
  start-page: 838
  year: 2018
  ident: 10.1016/j.isci.2022.103909_bib110
  article-title: Optimal energy management strategy for a plug-in hybrid electric commercial vehicle based on velocity prediction
  publication-title: Energy
  doi: 10.1016/j.energy.2018.05.064
– start-page: 5207
  year: 2019
  ident: 10.1016/j.isci.2022.103909_bib51
  article-title: Structural recurrent neural network for traffic speed prediction
– start-page: 499
  year: 2016
  ident: 10.1016/j.isci.2022.103909_bib129
  article-title: Traffic speed prediction and congestion source exploration: a deep learning method
– start-page: 1
  year: 2021
  ident: 10.1016/j.isci.2022.103909_bib156
  article-title: Long-term urban traffic speed prediction with deep learning on graphs
  publication-title: IEEE Trans. Intell. Transportation Syst.
– year: 2017
  ident: 10.1016/j.isci.2022.103909_bib84
  article-title: Learning traffic as images: a deep convolutional neural network for large-scale transportation network speed prediction
  publication-title: Sensors
– year: 2020
  ident: 10.1016/j.isci.2022.103909_bib140
  article-title: ISTD-GCN: Iterative Spatial-Temporal Diffusion Graph Convolutional Network for Traffic Speed Forecasting
  publication-title: arXiv
– start-page: 1
  year: 2003
  ident: 10.1016/j.isci.2022.103909_bib41
  article-title: An application of neural network on traffic speed prediction under adverse weather condition
– ident: 10.1016/j.isci.2022.103909_bib71
– start-page: 1215
  year: 2020
  ident: 10.1016/j.isci.2022.103909_bib97
  article-title: ST-GRAT: a novel spatio-temporal graph attention network for accurately forecasting dynamically changing road speed
– start-page: 1
  year: 2020
  ident: 10.1016/j.isci.2022.103909_bib165
  article-title: Graph attention temporal convolutional network for traffic speed forecasting on road networks
  publication-title: Transportmetrica B: Transport Dyn.
– volume: 2674
  start-page: 459
  year: 2020
  ident: 10.1016/j.isci.2022.103909_bib50
  article-title: Two-stream multi-channel convolutional neural network for multi-lane traffic speed prediction considering traffic volume impact
  publication-title: Transportation Res. Rec.
  doi: 10.1177/0361198120911052
SSID ssj0002002496
Score 2.4184515
SecondaryResourceType review_article
Snippet In the intelligent transportation system (ITS), speed prediction plays a significant role in supporting vehicle routing and traffic guidance. Recently, a...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 103909
SubjectTerms Algorithms
Engineering
Review
Transportation engineering
Title A comprehensive study of speed prediction in transportation system: From vehicle to traffic
URI https://dx.doi.org/10.1016/j.isci.2022.103909
https://www.ncbi.nlm.nih.gov/pubmed/35281740
https://www.proquest.com/docview/2638942302
https://pubmed.ncbi.nlm.nih.gov/PMC8904620
https://doaj.org/article/e8c7c79382c44455afa8fec359179569
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BatwwEBUhp-ZQ2jRt3SZBhdyCqSxLaym3tGQJheaUQCAHYcsjdkNrh82m398ZyV68LaSX3sxaa1ueZ-sNfvOGsZO6Fo1upc91JUOuQOjcmpnPlfdNCZpQQ_XO369mlzfq262-nbT6Ik1YsgdON-4zGF95BJGRXimldR1qE8CXGvMM5PaxdE9YMUmm7uPnNbLCi53lNGmCEJpDxUwSd1HFKyaHUlLRuSU14mRViub9W4vT3-TzTw3lZFGav2IvBzbJz9MsXrMd6PbZ3sRj8A27O-ckG1_BIknVeTSU5X3gjw-4cnHc0y5jcQNfdnw9ep3HgPHk83zG56v-J_8FCzoLX_c0jKwnDtjN_OL662U-dFTIPTUuoFefUdKHEJqGEi0L4AEpmWitDqWeVTa0dV0CshRt26ot8H2mkXCEws-MN2X5lu12fQfvGfdNKMA20CqDSY-CWle4JTQZ_knZlBkrxjvq_GA3Tl0vfrhRV3bvKAqOouBSFDJ2uvnPQzLbeHb0FwrUZiQZZccfED5ugI_7F3wypscwu4FzJC6Bh1o-e_JPIyYcPpD0laXuoH96dJI4IJJUITP2LmFkc4lkpYMpoMhYtYWerTls7-mWi2j6bSyVEYsP_2PSH9kLmgpJ6QpzyHbXqyc4Qm61bo7jY_Qb2v4f8g
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comprehensive+study+of+speed+prediction+in+transportation+system%3A+From+vehicle+to+traffic&rft.jtitle=iScience&rft.au=Zewei+Zhou&rft.au=Ziru+Yang&rft.au=Yuanjian+Zhang&rft.au=Yanjun+Huang&rft.date=2022-03-18&rft.pub=Elsevier&rft.issn=2589-0042&rft.eissn=2589-0042&rft.volume=25&rft.issue=3&rft.spage=103909&rft_id=info:doi/10.1016%2Fj.isci.2022.103909&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_e8c7c79382c44455afa8fec359179569
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2589-0042&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2589-0042&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2589-0042&client=summon