Immunofluorescence microscopy-based detection of ssDNA foci by BrdU in mammalian cells
DNA end resection converts broken ends of double-stranded DNA (dsDNA) to 3′-single-stranded DNA (3′-ssDNA). The extent of resection regulates DNA double-strand break (DSB) repair pathway choice and thereby genomic stability. Here, we characterize an optimized immunofluorescence (IF) microscopy-based...
Saved in:
Published in | STAR protocols Vol. 2; no. 4; p. 100978 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
17.12.2021
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 2666-1667 2666-1667 |
DOI | 10.1016/j.xpro.2021.100978 |
Cover
Abstract | DNA end resection converts broken ends of double-stranded DNA (dsDNA) to 3′-single-stranded DNA (3′-ssDNA). The extent of resection regulates DNA double-strand break (DSB) repair pathway choice and thereby genomic stability. Here, we characterize an optimized immunofluorescence (IF) microscopy-based protocol for measuring ssDNA in mammalian cells by labeling genomic DNA with 5-bromo-2′-deoxyuridine (BrdU). BrdU foci can be detected under non-denaturing conditions by anti-BrdU antibody, providing an accurate and reliable readout of DNA end resection in most mammalian cell lines.
For complete details on the use and execution of this protocol, please refer to Kilgas et al. (2021).
[Display omitted]
•Single-stranded DNA (ssDNA) detection by BrdU labeling under non-denaturing conditions•Number of ssDNA foci measured by immunofluorescence (IF)-based confocal microscopy•Compatible with co-staining for cell cycle markers•Amenable to semi-quantitative image analysis for quantification
DNA end resection converts broken ends of double-stranded DNA (dsDNA) to 3′-single-stranded DNA (3′-ssDNA). The extent of resection regulates DNA double-strand break (DSB) repair pathway choice and thereby genomic stability. Here, we characterize an optimized immunofluorescence (IF) microscopy-based protocol for measuring ssDNA in mammalian cells by labeling genomic DNA with 5-bromo-2′-deoxyuridine (BrdU). BrdU foci can be detected under non-denaturing conditions by anti-BrdU antibody, providing an accurate and reliable readout of DNA end resection in most mammalian cell lines. |
---|---|
AbstractList | DNA end resection converts broken ends of double-stranded DNA (dsDNA) to 3′-single-stranded DNA (3′-ssDNA). The extent of resection regulates DNA double-strand break (DSB) repair pathway choice and thereby genomic stability. Here, we characterize an optimized immunofluorescence (IF) microscopy-based protocol for measuring ssDNA in mammalian cells by labeling genomic DNA with 5-bromo-2′-deoxyuridine (BrdU). BrdU foci can be detected under non-denaturing conditions by anti-BrdU antibody, providing an accurate and reliable readout of DNA end resection in most mammalian cell lines.
For complete details on the use and execution of this protocol, please refer to Kilgas et al. (2021).
[Display omitted]
•Single-stranded DNA (ssDNA) detection by BrdU labeling under non-denaturing conditions•Number of ssDNA foci measured by immunofluorescence (IF)-based confocal microscopy•Compatible with co-staining for cell cycle markers•Amenable to semi-quantitative image analysis for quantification
DNA end resection converts broken ends of double-stranded DNA (dsDNA) to 3′-single-stranded DNA (3′-ssDNA). The extent of resection regulates DNA double-strand break (DSB) repair pathway choice and thereby genomic stability. Here, we characterize an optimized immunofluorescence (IF) microscopy-based protocol for measuring ssDNA in mammalian cells by labeling genomic DNA with 5-bromo-2′-deoxyuridine (BrdU). BrdU foci can be detected under non-denaturing conditions by anti-BrdU antibody, providing an accurate and reliable readout of DNA end resection in most mammalian cell lines. DNA end resection converts broken ends of double-stranded DNA (dsDNA) to 3'-single-stranded DNA (3'-ssDNA). The extent of resection regulates DNA double-strand break (DSB) repair pathway choice and thereby genomic stability. Here, we characterize an optimized immunofluorescence (IF) microscopy-based protocol for measuring ssDNA in mammalian cells by labeling genomic DNA with 5-bromo-2'-deoxyuridine (BrdU). BrdU foci can be detected under non-denaturing conditions by anti-BrdU antibody, providing an accurate and reliable readout of DNA end resection in most mammalian cell lines. For complete details on the use and execution of this protocol, please refer to Kilgas et al. (2021). DNA end resection converts broken ends of double-stranded DNA (dsDNA) to 3′-single-stranded DNA (3′-ssDNA). The extent of resection regulates DNA double-strand break (DSB) repair pathway choice and thereby genomic stability. Here, we characterize an optimized immunofluorescence (IF) microscopy-based protocol for measuring ssDNA in mammalian cells by labeling genomic DNA with 5-bromo-2′-deoxyuridine (BrdU). BrdU foci can be detected under non-denaturing conditions by anti-BrdU antibody, providing an accurate and reliable readout of DNA end resection in most mammalian cell lines. For complete details on the use and execution of this protocol, please refer to Kilgas et al. (2021). • Single-stranded DNA (ssDNA) detection by BrdU labeling under non-denaturing conditions • Number of ssDNA foci measured by immunofluorescence (IF)-based confocal microscopy • Compatible with co-staining for cell cycle markers • Amenable to semi-quantitative image analysis for quantification DNA end resection converts broken ends of double-stranded DNA (dsDNA) to 3′-single-stranded DNA (3′-ssDNA). The extent of resection regulates DNA double-strand break (DSB) repair pathway choice and thereby genomic stability. Here, we characterize an optimized immunofluorescence (IF) microscopy-based protocol for measuring ssDNA in mammalian cells by labeling genomic DNA with 5-bromo-2′-deoxyuridine (BrdU). BrdU foci can be detected under non-denaturing conditions by anti-BrdU antibody, providing an accurate and reliable readout of DNA end resection in most mammalian cell lines. DNA end resection converts broken ends of double-stranded DNA (dsDNA) to 3'-single-stranded DNA (3'-ssDNA). The extent of resection regulates DNA double-strand break (DSB) repair pathway choice and thereby genomic stability. Here, we characterize an optimized immunofluorescence (IF) microscopy-based protocol for measuring ssDNA in mammalian cells by labeling genomic DNA with 5-bromo-2'-deoxyuridine (BrdU). BrdU foci can be detected under non-denaturing conditions by anti-BrdU antibody, providing an accurate and reliable readout of DNA end resection in most mammalian cell lines. For complete details on the use and execution of this protocol, please refer to Kilgas et al. (2021).DNA end resection converts broken ends of double-stranded DNA (dsDNA) to 3'-single-stranded DNA (3'-ssDNA). The extent of resection regulates DNA double-strand break (DSB) repair pathway choice and thereby genomic stability. Here, we characterize an optimized immunofluorescence (IF) microscopy-based protocol for measuring ssDNA in mammalian cells by labeling genomic DNA with 5-bromo-2'-deoxyuridine (BrdU). BrdU foci can be detected under non-denaturing conditions by anti-BrdU antibody, providing an accurate and reliable readout of DNA end resection in most mammalian cell lines. For complete details on the use and execution of this protocol, please refer to Kilgas et al. (2021). |
ArticleNumber | 100978 |
Author | Kiltie, Anne E. Kilgas, Susan Ramadan, Kristijan |
Author_xml | – sequence: 1 givenname: Susan surname: Kilgas fullname: Kilgas, Susan organization: MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK – sequence: 2 givenname: Anne E. orcidid: 0000-0001-7208-2912 surname: Kiltie fullname: Kiltie, Anne E. organization: Rowett Institute, University of Aberdeen, Aberdeen AB25 2ZD, UK – sequence: 3 givenname: Kristijan orcidid: 0000-0001-5522-021X surname: Ramadan fullname: Ramadan, Kristijan email: kristijan.ramadan@oncology.ox.ac.uk organization: MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34888531$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kktv1DAUhS1UREvpH2CBsmSTwXYcx5EQUimvkSrYULaWH9fFo8Qe7KRi_j0OaVHLoitb9j3fke45z9FRiAEQeknwhmDC3-w2v_cpbiimpDzgvhNP0AnlnNeE8-7o3v0YneW8wxjTllBGxDN03DAhRNuQE_RjO45ziG6YY4JsIBioRm9SzCbuD7VWGWxlYQIz-Riq6KqcP3w9r1w0vtKH6n2yV5UP1ajGUQ1ehcrAMOQX6KlTQ4az2_MUXX36-P3iS3357fP24vyyNi0lU80xbWjXaUqNFtZRzXlvsVUEBDM9ZZpaxoiibe9a3QK1lhvjBFjTUQPONqdou3JtVDu5T35U6SCj8vLvQ0zXUqXJmwGkdUKA01xr7hhxTmltRW97AcY0itLCerey9rMeiwWEKanhAfThT_A_5XW8kYI3DDeiAF7fAlL8NUOe5Ojzsg4VIM5ZUo7L0tuWsTL66r7XP5O7YMqAWAeWKHICJ42f1JJBsfaDJFguNZA7udRALjWQaw2KlP4nvaM_Knq7iqCkdeMhyWz80gbrU8m-rNM_Jv8DhWnOdQ |
CitedBy_id | crossref_primary_10_1093_nar_gkad727 crossref_primary_10_1242_jcs_263414 crossref_primary_10_3390_ijms241512062 crossref_primary_10_1038_s41467_024_52862_w crossref_primary_10_7554_eLife_80254 crossref_primary_10_1002_1878_0261_13645 crossref_primary_10_1016_j_molcel_2024_01_018 crossref_primary_10_1093_nar_gkae563 |
Cites_doi | 10.1038/s41467-019-08889-5 10.1016/j.molcel.2019.06.023 10.1007/978-1-4939-2522-3_5 10.1016/j.cell.2013.10.043 10.1038/nprot.2015.066 10.1038/ncb1358 10.1126/science.1074023 10.1083/jcb.201303073 10.1038/ncb3303 10.1007/978-1-0716-0644-5_5 10.1093/hmg/ddq046 10.21769/BioProtoc.3701 10.1038/s41467-019-11095-y 10.1016/j.celrep.2021.109153 10.1093/nar/gkv754 10.1038/s12276-020-00519-1 10.1038/sj.onc.1204445 10.3390/genes11040409 10.1038/s41586-018-0670-5 10.1016/j.cell.2018.11.024 |
ContentType | Journal Article |
Copyright | 2021 The Authors 2021 The Authors. 2021 The Authors 2021 |
Copyright_xml | – notice: 2021 The Authors – notice: 2021 The Authors. – notice: 2021 The Authors 2021 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
DOI | 10.1016/j.xpro.2021.100978 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2666-1667 |
ExternalDocumentID | oai_doaj_org_article_df88efb6bb6f41ffabbd89d98ecc3a22 PMC8634038 34888531 10_1016_j_xpro_2021_100978 S2666166721006845 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Cancer Research UK grantid: 23279 – fundername: Medical Research Council grantid: MC_UU_00001/1 – fundername: Medical Research Council grantid: MC_PC_12001/1 |
GroupedDBID | 53G 6I. AAEDW AAFTH AAXUO AEXQZ ALMA_UNASSIGNED_HOLDINGS AMRAJ EBS FDB GROUPED_DOAJ M41 M~E OK1 ROL RPM 0R~ AALRI AAMRU AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AITUG AKBMS AKRWK AKYEP APXCP CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c521t-6023277b22cb8df2b669d0da1e84c924b2d441a259f5b5e2dd6ccf8edc72cefd3 |
IEDL.DBID | DOA |
ISSN | 2666-1667 |
IngestDate | Wed Aug 27 01:32:46 EDT 2025 Thu Aug 21 14:08:00 EDT 2025 Fri Jul 11 14:46:12 EDT 2025 Mon Jul 21 05:45:33 EDT 2025 Thu Apr 24 23:08:31 EDT 2025 Tue Jul 01 01:14:27 EDT 2025 Fri Feb 23 02:41:51 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Microscopy Molecular Biology Antibody Cell-based Assays Cell Biology |
Language | English |
License | This is an open access article under the CC BY license. 2021 The Authors. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c521t-6023277b22cb8df2b669d0da1e84c924b2d441a259f5b5e2dd6ccf8edc72cefd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Technical contact Lead contact |
ORCID | 0000-0001-7208-2912 0000-0001-5522-021X |
OpenAccessLink | https://doaj.org/article/df88efb6bb6f41ffabbd89d98ecc3a22 |
PMID | 34888531 |
PQID | 2608535544 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_df88efb6bb6f41ffabbd89d98ecc3a22 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8634038 proquest_miscellaneous_2608535544 pubmed_primary_34888531 crossref_citationtrail_10_1016_j_xpro_2021_100978 crossref_primary_10_1016_j_xpro_2021_100978 elsevier_sciencedirect_doi_10_1016_j_xpro_2021_100978 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-12-17 |
PublicationDateYYYYMMDD | 2021-12-17 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-17 day: 17 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | STAR protocols |
PublicationTitleAlternate | STAR Protoc |
PublicationYear | 2021 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Halder, Torrecilla, Burkhalter, Popovic, Fielden, Vaz, Oehler, Pilger, Lessel, Wiseman (bib9) 2019; 10 Mukherjee, Tomimatsu, Burma (bib15) 2015; 1292 Bantele, Lisby, Pfander (bib3) 2019; 10 Jachimowicz, Beleggia, Isensee, Velpula, Goergens, Bustos, Doll, Shenoy, Checa-Rodriguez, Wiederstein (bib11) 2019; 176 Zhou, Paull (bib20) 2021; 2153 Kijas, Lim, Bolderson, Cerosaletti, Gatei, Jakob, Tobias, Taucher-Scholz, Gueven, Oakley (bib13) 2015; 43 Altieri, Dell'aquila, Pentimalli, Giordano, Alfano (bib1) 2020; 10 Despras, Daboussi, Hyrien, Marheineke, Kannouche (bib6) 2010; 19 Forment, Jackson (bib8) 2015; 10 Kao, Mckenna, Yen (bib12) 2001; 20 Zhao, Kim, Kloeber, Lou (bib19) 2020; 52 Bai, Wang, Li, Zhan, Li, Zhao, Zhou, Li, Li, Huo (bib2) 2019; 75 Britton, Coates, Jackson (bib4) 2013; 202 Broderick, Nieminuszczy, Baddock, Deshpande, Gileadi, Paull, Mchugh, Niedzwiedz (bib5) 2016; 18 Ragu, Matos-Rodrigues, Lopez (bib16) 2020; 11 Sogo, Lopes, Foiani (bib17) 2002; 297 Toledo, Altmeyer, Rask, Lukas, Larsen, Povlsen, Bekker-Jensen, Mailand, Bartek, Lukas (bib18) 2013; 155 He, Meghani, Caron, Yang, Ronato, Bian, Sharma, Moore, Niraj, Detappe (bib10) 2018; 563 Feng, Collingwood, Boeck, Fox, Alvino, Fangman, Raghuraman, Brewer (bib7) 2006; 8 Kilgas, Singh, Paillas, Then, Torrecilla, Nicholson, Browning, Vendrell, Konietzny, Kessler (bib14) 2021; 35 Toledo (10.1016/j.xpro.2021.100978_bib18) 2013; 155 Halder (10.1016/j.xpro.2021.100978_bib9) 2019; 10 Despras (10.1016/j.xpro.2021.100978_bib6) 2010; 19 Britton (10.1016/j.xpro.2021.100978_bib4) 2013; 202 Jachimowicz (10.1016/j.xpro.2021.100978_bib11) 2019; 176 Zhou (10.1016/j.xpro.2021.100978_bib20) 2021; 2153 Kijas (10.1016/j.xpro.2021.100978_bib13) 2015; 43 Zhao (10.1016/j.xpro.2021.100978_bib19) 2020; 52 Bantele (10.1016/j.xpro.2021.100978_bib3) 2019; 10 Sogo (10.1016/j.xpro.2021.100978_bib17) 2002; 297 Mukherjee (10.1016/j.xpro.2021.100978_bib15) 2015; 1292 Broderick (10.1016/j.xpro.2021.100978_bib5) 2016; 18 Kao (10.1016/j.xpro.2021.100978_bib12) 2001; 20 Ragu (10.1016/j.xpro.2021.100978_bib16) 2020; 11 Bai (10.1016/j.xpro.2021.100978_bib2) 2019; 75 Feng (10.1016/j.xpro.2021.100978_bib7) 2006; 8 Altieri (10.1016/j.xpro.2021.100978_bib1) 2020; 10 Kilgas (10.1016/j.xpro.2021.100978_bib14) 2021; 35 Forment (10.1016/j.xpro.2021.100978_bib8) 2015; 10 He (10.1016/j.xpro.2021.100978_bib10) 2018; 563 |
References_xml | – volume: 18 start-page: 271 year: 2016 end-page: 280 ident: bib5 article-title: EXD2 promotes homologous recombination by facilitating DNA end resection publication-title: Nat. Cell Biol. – volume: 75 start-page: 1299 year: 2019 end-page: 1314.e6 ident: bib2 article-title: C1QBP promotes homologous recombination by stabilizing MRE11 and controlling the assembly and activation of MRE11/RAD50/NBS1 complex publication-title: Mol. Cell – volume: 52 start-page: 1705 year: 2020 end-page: 1714 ident: bib19 article-title: DNA end resection and its role in DNA replication and DSB repair choice in mammalian cells publication-title: Exp. Mol. Med. – volume: 297 start-page: 599 year: 2002 end-page: 602 ident: bib17 article-title: Fork reversal and ssDNA accumulation at stalled replication forks owing to checkpoint defects publication-title: Science – volume: 563 start-page: 522 year: 2018 end-page: 526 ident: bib10 article-title: DYNLL1 binds to MRE11 to limit DNA end resection in BRCA1-deficient cells publication-title: Nature – volume: 35 start-page: 109153 year: 2021 ident: bib14 article-title: p97/VCP inhibition causes excessive MRE11-dependent DNA end resection promoting cell killing after ionizing radiation publication-title: Cell Rep. – volume: 10 start-page: 944 year: 2019 ident: bib3 article-title: Quantitative sensing and signalling of single-stranded DNA during the DNA damage response publication-title: Nat. Commun. – volume: 20 start-page: 3486 year: 2001 end-page: 3496 ident: bib12 article-title: Detection of repair activity during the DNA damage-induced G2 delay in human cancer cells publication-title: Oncogene – volume: 43 start-page: 8352 year: 2015 end-page: 8367 ident: bib13 article-title: ATM-dependent phosphorylation of MRE11 controls extent of resection during homology directed repair by signalling through Exonuclease 1 publication-title: Nucleic Acids Res. – volume: 11 start-page: 409 year: 2020 ident: bib16 article-title: Replication stress, DNA damage, inflammatory cytokines and innate immune response publication-title: Genes – volume: 202 start-page: 579 year: 2013 end-page: 595 ident: bib4 article-title: A new method for high-resolution imaging of Ku foci to decipher mechanisms of DNA double-strand break repair publication-title: J. Cell Biol. – volume: 10 start-page: 3142 year: 2019 ident: bib9 article-title: SPRTN protease and checkpoint kinase 1 cross-activation loop safeguards DNA replication publication-title: Nat. Commun. – volume: 155 start-page: 1088 year: 2013 end-page: 1103 ident: bib18 article-title: ATR prohibits replication catastrophe by preventing global exhaustion of RPA publication-title: Cell – volume: 8 start-page: 148 year: 2006 end-page: 155 ident: bib7 article-title: Genomic mapping of single-stranded DNA in hydroxyurea-challenged yeasts identifies origins of replication publication-title: Nat. Cell Biol. – volume: 1292 start-page: 67 year: 2015 end-page: 75 ident: bib15 article-title: Immunofluorescence-based methods to monitor DNA end resection publication-title: Methods Mol. Biol. – volume: 10 start-page: 1297 year: 2015 end-page: 1307 ident: bib8 article-title: A flow cytometry-based method to simplify the analysis and quantification of protein association to chromatin in mammalian cells publication-title: Nat. Protoc. – volume: 176 start-page: 505 year: 2019 end-page: 519 e22 ident: bib11 article-title: UBQLN4 represses homologous recombination and is overexpressed in aggressive tumors publication-title: Cell – volume: 19 start-page: 1690 year: 2010 end-page: 1701 ident: bib6 article-title: ATR/Chk1 pathway is essential for resumption of DNA synthesis and cell survival in UV-irradiated XP variant cells publication-title: Hum. Mol. Genet. – volume: 10 start-page: e3701 year: 2020 ident: bib1 article-title: SMART (single molecule analysis of resection tracks) technique for assessing DNA end-resection in response to DNA damage publication-title: Bio Protoc. – volume: 2153 start-page: 59 year: 2021 end-page: 69 ident: bib20 article-title: Quantifying DNA end resection in human cells publication-title: Methods Mol. Biol. – volume: 10 start-page: 944 year: 2019 ident: 10.1016/j.xpro.2021.100978_bib3 article-title: Quantitative sensing and signalling of single-stranded DNA during the DNA damage response publication-title: Nat. Commun. doi: 10.1038/s41467-019-08889-5 – volume: 75 start-page: 1299 year: 2019 ident: 10.1016/j.xpro.2021.100978_bib2 article-title: C1QBP promotes homologous recombination by stabilizing MRE11 and controlling the assembly and activation of MRE11/RAD50/NBS1 complex publication-title: Mol. Cell doi: 10.1016/j.molcel.2019.06.023 – volume: 1292 start-page: 67 year: 2015 ident: 10.1016/j.xpro.2021.100978_bib15 article-title: Immunofluorescence-based methods to monitor DNA end resection publication-title: Methods Mol. Biol. doi: 10.1007/978-1-4939-2522-3_5 – volume: 155 start-page: 1088 year: 2013 ident: 10.1016/j.xpro.2021.100978_bib18 article-title: ATR prohibits replication catastrophe by preventing global exhaustion of RPA publication-title: Cell doi: 10.1016/j.cell.2013.10.043 – volume: 10 start-page: 1297 year: 2015 ident: 10.1016/j.xpro.2021.100978_bib8 article-title: A flow cytometry-based method to simplify the analysis and quantification of protein association to chromatin in mammalian cells publication-title: Nat. Protoc. doi: 10.1038/nprot.2015.066 – volume: 8 start-page: 148 year: 2006 ident: 10.1016/j.xpro.2021.100978_bib7 article-title: Genomic mapping of single-stranded DNA in hydroxyurea-challenged yeasts identifies origins of replication publication-title: Nat. Cell Biol. doi: 10.1038/ncb1358 – volume: 297 start-page: 599 year: 2002 ident: 10.1016/j.xpro.2021.100978_bib17 article-title: Fork reversal and ssDNA accumulation at stalled replication forks owing to checkpoint defects publication-title: Science doi: 10.1126/science.1074023 – volume: 202 start-page: 579 year: 2013 ident: 10.1016/j.xpro.2021.100978_bib4 article-title: A new method for high-resolution imaging of Ku foci to decipher mechanisms of DNA double-strand break repair publication-title: J. Cell Biol. doi: 10.1083/jcb.201303073 – volume: 18 start-page: 271 year: 2016 ident: 10.1016/j.xpro.2021.100978_bib5 article-title: EXD2 promotes homologous recombination by facilitating DNA end resection publication-title: Nat. Cell Biol. doi: 10.1038/ncb3303 – volume: 2153 start-page: 59 year: 2021 ident: 10.1016/j.xpro.2021.100978_bib20 article-title: Quantifying DNA end resection in human cells publication-title: Methods Mol. Biol. doi: 10.1007/978-1-0716-0644-5_5 – volume: 19 start-page: 1690 year: 2010 ident: 10.1016/j.xpro.2021.100978_bib6 article-title: ATR/Chk1 pathway is essential for resumption of DNA synthesis and cell survival in UV-irradiated XP variant cells publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddq046 – volume: 10 start-page: e3701 year: 2020 ident: 10.1016/j.xpro.2021.100978_bib1 article-title: SMART (single molecule analysis of resection tracks) technique for assessing DNA end-resection in response to DNA damage publication-title: Bio Protoc. doi: 10.21769/BioProtoc.3701 – volume: 10 start-page: 3142 year: 2019 ident: 10.1016/j.xpro.2021.100978_bib9 article-title: SPRTN protease and checkpoint kinase 1 cross-activation loop safeguards DNA replication publication-title: Nat. Commun. doi: 10.1038/s41467-019-11095-y – volume: 35 start-page: 109153 year: 2021 ident: 10.1016/j.xpro.2021.100978_bib14 article-title: p97/VCP inhibition causes excessive MRE11-dependent DNA end resection promoting cell killing after ionizing radiation publication-title: Cell Rep. doi: 10.1016/j.celrep.2021.109153 – volume: 43 start-page: 8352 year: 2015 ident: 10.1016/j.xpro.2021.100978_bib13 article-title: ATM-dependent phosphorylation of MRE11 controls extent of resection during homology directed repair by signalling through Exonuclease 1 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv754 – volume: 52 start-page: 1705 year: 2020 ident: 10.1016/j.xpro.2021.100978_bib19 article-title: DNA end resection and its role in DNA replication and DSB repair choice in mammalian cells publication-title: Exp. Mol. Med. doi: 10.1038/s12276-020-00519-1 – volume: 20 start-page: 3486 year: 2001 ident: 10.1016/j.xpro.2021.100978_bib12 article-title: Detection of repair activity during the DNA damage-induced G2 delay in human cancer cells publication-title: Oncogene doi: 10.1038/sj.onc.1204445 – volume: 11 start-page: 409 year: 2020 ident: 10.1016/j.xpro.2021.100978_bib16 article-title: Replication stress, DNA damage, inflammatory cytokines and innate immune response publication-title: Genes doi: 10.3390/genes11040409 – volume: 563 start-page: 522 year: 2018 ident: 10.1016/j.xpro.2021.100978_bib10 article-title: DYNLL1 binds to MRE11 to limit DNA end resection in BRCA1-deficient cells publication-title: Nature doi: 10.1038/s41586-018-0670-5 – volume: 176 start-page: 505 year: 2019 ident: 10.1016/j.xpro.2021.100978_bib11 article-title: UBQLN4 represses homologous recombination and is overexpressed in aggressive tumors publication-title: Cell doi: 10.1016/j.cell.2018.11.024 |
SSID | ssj0002512418 |
Score | 2.244509 |
Snippet | DNA end resection converts broken ends of double-stranded DNA (dsDNA) to 3′-single-stranded DNA (3′-ssDNA). The extent of resection regulates DNA double-strand... DNA end resection converts broken ends of double-stranded DNA (dsDNA) to 3'-single-stranded DNA (3'-ssDNA). The extent of resection regulates DNA double-strand... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 100978 |
SubjectTerms | Antibody Bromodeoxyuridine - chemistry Bromodeoxyuridine - metabolism Cell Biology Cell Line, Tumor Cell-based Assays DNA, Single-Stranded - analysis DNA, Single-Stranded - chemistry DNA, Single-Stranded - genetics DNA, Single-Stranded - metabolism Genomic Instability - genetics Humans Microscopy Microscopy, Fluorescence - methods Molecular Biology Protocol |
Title | Immunofluorescence microscopy-based detection of ssDNA foci by BrdU in mammalian cells |
URI | https://dx.doi.org/10.1016/j.xpro.2021.100978 https://www.ncbi.nlm.nih.gov/pubmed/34888531 https://www.proquest.com/docview/2608535544 https://pubmed.ncbi.nlm.nih.gov/PMC8634038 https://doaj.org/article/df88efb6bb6f41ffabbd89d98ecc3a22 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT1wqUKEEaOVK3FBE4tiOc-xTLRI9sag3K-OHWNRNqn1I9N93xsmudkEqFy45JNlkZzyZ75vReIaxT0GAkVK5XDqAXOrK5W0NeEC0K2qhRNFSvuPbrb6eyK936m5r1BfVhA3tgQfFffHRmBBBA-goyxhbAG8a3xh8d9WK5H2LptgKpsgHE2rLlNxDANJ5qXU97pgZirt-o3vC4FCUVCWQZqxtoVJq3r8DTn-Tzz9rKLdA6eoV2x_ZJD8dpHjNXoTugP24oT0ffbxf9fPUrMkFPqO6O9qB8pgTbnnuwzIVYXW8j3yxuLg95RHXicMjP5v7CZ92fNbOZikLwim7v3jDJleX38-v83F8Qu5oSkGuEY5FXYMQDoyPArRufOHbMhjpMOwC4ZELtRj_RAUqCO-1c9GgSLVwIfrqLdvr-i68Y1whZjV40ikdpC9doxuHXhKQnwTvlc9YuVafdWNvcRpxcW_XRWS_LKncksrtoPKMfd785mHorPHs3We0Kps7qSt2OoG2Ykdbsf-ylYyp9ZrakWAMxAEfNX325SdrA7D49ZHS2y70q4XFaBD5DlIymbHDwSA2f7FC34gXy4zVO6ayI8PulW76M3X4NrqSRWXe_w-hP7CXJAqV4JT1R7a3nK_CERKpJRynb-Y4ZbieAJj4IK4 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Immunofluorescence+microscopy-based+detection+of+ssDNA+foci+by+BrdU+in+mammalian+cells&rft.jtitle=STAR+protocols&rft.au=Kilgas%2C+Susan&rft.au=Kiltie%2C+Anne+E&rft.au=Ramadan%2C+Kristijan&rft.date=2021-12-17&rft.issn=2666-1667&rft.eissn=2666-1667&rft.volume=2&rft.issue=4&rft.spage=100978&rft_id=info:doi/10.1016%2Fj.xpro.2021.100978&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2666-1667&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2666-1667&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2666-1667&client=summon |