Immunofluorescence microscopy-based detection of ssDNA foci by BrdU in mammalian cells

DNA end resection converts broken ends of double-stranded DNA (dsDNA) to 3′-single-stranded DNA (3′-ssDNA). The extent of resection regulates DNA double-strand break (DSB) repair pathway choice and thereby genomic stability. Here, we characterize an optimized immunofluorescence (IF) microscopy-based...

Full description

Saved in:
Bibliographic Details
Published inSTAR protocols Vol. 2; no. 4; p. 100978
Main Authors Kilgas, Susan, Kiltie, Anne E., Ramadan, Kristijan
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 17.12.2021
Elsevier
Subjects
Online AccessGet full text
ISSN2666-1667
2666-1667
DOI10.1016/j.xpro.2021.100978

Cover

Abstract DNA end resection converts broken ends of double-stranded DNA (dsDNA) to 3′-single-stranded DNA (3′-ssDNA). The extent of resection regulates DNA double-strand break (DSB) repair pathway choice and thereby genomic stability. Here, we characterize an optimized immunofluorescence (IF) microscopy-based protocol for measuring ssDNA in mammalian cells by labeling genomic DNA with 5-bromo-2′-deoxyuridine (BrdU). BrdU foci can be detected under non-denaturing conditions by anti-BrdU antibody, providing an accurate and reliable readout of DNA end resection in most mammalian cell lines. For complete details on the use and execution of this protocol, please refer to Kilgas et al. (2021). [Display omitted] •Single-stranded DNA (ssDNA) detection by BrdU labeling under non-denaturing conditions•Number of ssDNA foci measured by immunofluorescence (IF)-based confocal microscopy•Compatible with co-staining for cell cycle markers•Amenable to semi-quantitative image analysis for quantification DNA end resection converts broken ends of double-stranded DNA (dsDNA) to 3′-single-stranded DNA (3′-ssDNA). The extent of resection regulates DNA double-strand break (DSB) repair pathway choice and thereby genomic stability. Here, we characterize an optimized immunofluorescence (IF) microscopy-based protocol for measuring ssDNA in mammalian cells by labeling genomic DNA with 5-bromo-2′-deoxyuridine (BrdU). BrdU foci can be detected under non-denaturing conditions by anti-BrdU antibody, providing an accurate and reliable readout of DNA end resection in most mammalian cell lines.
AbstractList DNA end resection converts broken ends of double-stranded DNA (dsDNA) to 3′-single-stranded DNA (3′-ssDNA). The extent of resection regulates DNA double-strand break (DSB) repair pathway choice and thereby genomic stability. Here, we characterize an optimized immunofluorescence (IF) microscopy-based protocol for measuring ssDNA in mammalian cells by labeling genomic DNA with 5-bromo-2′-deoxyuridine (BrdU). BrdU foci can be detected under non-denaturing conditions by anti-BrdU antibody, providing an accurate and reliable readout of DNA end resection in most mammalian cell lines. For complete details on the use and execution of this protocol, please refer to Kilgas et al. (2021). [Display omitted] •Single-stranded DNA (ssDNA) detection by BrdU labeling under non-denaturing conditions•Number of ssDNA foci measured by immunofluorescence (IF)-based confocal microscopy•Compatible with co-staining for cell cycle markers•Amenable to semi-quantitative image analysis for quantification DNA end resection converts broken ends of double-stranded DNA (dsDNA) to 3′-single-stranded DNA (3′-ssDNA). The extent of resection regulates DNA double-strand break (DSB) repair pathway choice and thereby genomic stability. Here, we characterize an optimized immunofluorescence (IF) microscopy-based protocol for measuring ssDNA in mammalian cells by labeling genomic DNA with 5-bromo-2′-deoxyuridine (BrdU). BrdU foci can be detected under non-denaturing conditions by anti-BrdU antibody, providing an accurate and reliable readout of DNA end resection in most mammalian cell lines.
DNA end resection converts broken ends of double-stranded DNA (dsDNA) to 3'-single-stranded DNA (3'-ssDNA). The extent of resection regulates DNA double-strand break (DSB) repair pathway choice and thereby genomic stability. Here, we characterize an optimized immunofluorescence (IF) microscopy-based protocol for measuring ssDNA in mammalian cells by labeling genomic DNA with 5-bromo-2'-deoxyuridine (BrdU). BrdU foci can be detected under non-denaturing conditions by anti-BrdU antibody, providing an accurate and reliable readout of DNA end resection in most mammalian cell lines. For complete details on the use and execution of this protocol, please refer to Kilgas et al. (2021).
DNA end resection converts broken ends of double-stranded DNA (dsDNA) to 3′-single-stranded DNA (3′-ssDNA). The extent of resection regulates DNA double-strand break (DSB) repair pathway choice and thereby genomic stability. Here, we characterize an optimized immunofluorescence (IF) microscopy-based protocol for measuring ssDNA in mammalian cells by labeling genomic DNA with 5-bromo-2′-deoxyuridine (BrdU). BrdU foci can be detected under non-denaturing conditions by anti-BrdU antibody, providing an accurate and reliable readout of DNA end resection in most mammalian cell lines. For complete details on the use and execution of this protocol, please refer to Kilgas et al. (2021). • Single-stranded DNA (ssDNA) detection by BrdU labeling under non-denaturing conditions • Number of ssDNA foci measured by immunofluorescence (IF)-based confocal microscopy • Compatible with co-staining for cell cycle markers • Amenable to semi-quantitative image analysis for quantification DNA end resection converts broken ends of double-stranded DNA (dsDNA) to 3′-single-stranded DNA (3′-ssDNA). The extent of resection regulates DNA double-strand break (DSB) repair pathway choice and thereby genomic stability. Here, we characterize an optimized immunofluorescence (IF) microscopy-based protocol for measuring ssDNA in mammalian cells by labeling genomic DNA with 5-bromo-2′-deoxyuridine (BrdU). BrdU foci can be detected under non-denaturing conditions by anti-BrdU antibody, providing an accurate and reliable readout of DNA end resection in most mammalian cell lines.
DNA end resection converts broken ends of double-stranded DNA (dsDNA) to 3'-single-stranded DNA (3'-ssDNA). The extent of resection regulates DNA double-strand break (DSB) repair pathway choice and thereby genomic stability. Here, we characterize an optimized immunofluorescence (IF) microscopy-based protocol for measuring ssDNA in mammalian cells by labeling genomic DNA with 5-bromo-2'-deoxyuridine (BrdU). BrdU foci can be detected under non-denaturing conditions by anti-BrdU antibody, providing an accurate and reliable readout of DNA end resection in most mammalian cell lines. For complete details on the use and execution of this protocol, please refer to Kilgas et al. (2021).DNA end resection converts broken ends of double-stranded DNA (dsDNA) to 3'-single-stranded DNA (3'-ssDNA). The extent of resection regulates DNA double-strand break (DSB) repair pathway choice and thereby genomic stability. Here, we characterize an optimized immunofluorescence (IF) microscopy-based protocol for measuring ssDNA in mammalian cells by labeling genomic DNA with 5-bromo-2'-deoxyuridine (BrdU). BrdU foci can be detected under non-denaturing conditions by anti-BrdU antibody, providing an accurate and reliable readout of DNA end resection in most mammalian cell lines. For complete details on the use and execution of this protocol, please refer to Kilgas et al. (2021).
ArticleNumber 100978
Author Kiltie, Anne E.
Kilgas, Susan
Ramadan, Kristijan
Author_xml – sequence: 1
  givenname: Susan
  surname: Kilgas
  fullname: Kilgas, Susan
  organization: MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
– sequence: 2
  givenname: Anne E.
  orcidid: 0000-0001-7208-2912
  surname: Kiltie
  fullname: Kiltie, Anne E.
  organization: Rowett Institute, University of Aberdeen, Aberdeen AB25 2ZD, UK
– sequence: 3
  givenname: Kristijan
  orcidid: 0000-0001-5522-021X
  surname: Ramadan
  fullname: Ramadan, Kristijan
  email: kristijan.ramadan@oncology.ox.ac.uk
  organization: MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34888531$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv1DAUhS1UREvpH2CBsmSTwXYcx5EQUimvkSrYULaWH9fFo8Qe7KRi_j0OaVHLoitb9j3fke45z9FRiAEQeknwhmDC3-w2v_cpbiimpDzgvhNP0AnlnNeE8-7o3v0YneW8wxjTllBGxDN03DAhRNuQE_RjO45ziG6YY4JsIBioRm9SzCbuD7VWGWxlYQIz-Riq6KqcP3w9r1w0vtKH6n2yV5UP1ajGUQ1ehcrAMOQX6KlTQ4az2_MUXX36-P3iS3357fP24vyyNi0lU80xbWjXaUqNFtZRzXlvsVUEBDM9ZZpaxoiibe9a3QK1lhvjBFjTUQPONqdou3JtVDu5T35U6SCj8vLvQ0zXUqXJmwGkdUKA01xr7hhxTmltRW97AcY0itLCerey9rMeiwWEKanhAfThT_A_5XW8kYI3DDeiAF7fAlL8NUOe5Ojzsg4VIM5ZUo7L0tuWsTL66r7XP5O7YMqAWAeWKHICJ42f1JJBsfaDJFguNZA7udRALjWQaw2KlP4nvaM_Knq7iqCkdeMhyWz80gbrU8m-rNM_Jv8DhWnOdQ
CitedBy_id crossref_primary_10_1093_nar_gkad727
crossref_primary_10_1242_jcs_263414
crossref_primary_10_3390_ijms241512062
crossref_primary_10_1038_s41467_024_52862_w
crossref_primary_10_7554_eLife_80254
crossref_primary_10_1002_1878_0261_13645
crossref_primary_10_1016_j_molcel_2024_01_018
crossref_primary_10_1093_nar_gkae563
Cites_doi 10.1038/s41467-019-08889-5
10.1016/j.molcel.2019.06.023
10.1007/978-1-4939-2522-3_5
10.1016/j.cell.2013.10.043
10.1038/nprot.2015.066
10.1038/ncb1358
10.1126/science.1074023
10.1083/jcb.201303073
10.1038/ncb3303
10.1007/978-1-0716-0644-5_5
10.1093/hmg/ddq046
10.21769/BioProtoc.3701
10.1038/s41467-019-11095-y
10.1016/j.celrep.2021.109153
10.1093/nar/gkv754
10.1038/s12276-020-00519-1
10.1038/sj.onc.1204445
10.3390/genes11040409
10.1038/s41586-018-0670-5
10.1016/j.cell.2018.11.024
ContentType Journal Article
Copyright 2021 The Authors
2021 The Authors.
2021 The Authors 2021
Copyright_xml – notice: 2021 The Authors
– notice: 2021 The Authors.
– notice: 2021 The Authors 2021
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.1016/j.xpro.2021.100978
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
EISSN 2666-1667
ExternalDocumentID oai_doaj_org_article_df88efb6bb6f41ffabbd89d98ecc3a22
PMC8634038
34888531
10_1016_j_xpro_2021_100978
S2666166721006845
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Cancer Research UK
  grantid: 23279
– fundername: Medical Research Council
  grantid: MC_UU_00001/1
– fundername: Medical Research Council
  grantid: MC_PC_12001/1
GroupedDBID 53G
6I.
AAEDW
AAFTH
AAXUO
AEXQZ
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
EBS
FDB
GROUPED_DOAJ
M41
M~E
OK1
ROL
RPM
0R~
AALRI
AAMRU
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AITUG
AKBMS
AKRWK
AKYEP
APXCP
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c521t-6023277b22cb8df2b669d0da1e84c924b2d441a259f5b5e2dd6ccf8edc72cefd3
IEDL.DBID DOA
ISSN 2666-1667
IngestDate Wed Aug 27 01:32:46 EDT 2025
Thu Aug 21 14:08:00 EDT 2025
Fri Jul 11 14:46:12 EDT 2025
Mon Jul 21 05:45:33 EDT 2025
Thu Apr 24 23:08:31 EDT 2025
Tue Jul 01 01:14:27 EDT 2025
Fri Feb 23 02:41:51 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Microscopy
Molecular Biology
Antibody
Cell-based Assays
Cell Biology
Language English
License This is an open access article under the CC BY license.
2021 The Authors.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c521t-6023277b22cb8df2b669d0da1e84c924b2d441a259f5b5e2dd6ccf8edc72cefd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Technical contact
Lead contact
ORCID 0000-0001-7208-2912
0000-0001-5522-021X
OpenAccessLink https://doaj.org/article/df88efb6bb6f41ffabbd89d98ecc3a22
PMID 34888531
PQID 2608535544
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_df88efb6bb6f41ffabbd89d98ecc3a22
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8634038
proquest_miscellaneous_2608535544
pubmed_primary_34888531
crossref_citationtrail_10_1016_j_xpro_2021_100978
crossref_primary_10_1016_j_xpro_2021_100978
elsevier_sciencedirect_doi_10_1016_j_xpro_2021_100978
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-12-17
PublicationDateYYYYMMDD 2021-12-17
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-17
  day: 17
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle STAR protocols
PublicationTitleAlternate STAR Protoc
PublicationYear 2021
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Halder, Torrecilla, Burkhalter, Popovic, Fielden, Vaz, Oehler, Pilger, Lessel, Wiseman (bib9) 2019; 10
Mukherjee, Tomimatsu, Burma (bib15) 2015; 1292
Bantele, Lisby, Pfander (bib3) 2019; 10
Jachimowicz, Beleggia, Isensee, Velpula, Goergens, Bustos, Doll, Shenoy, Checa-Rodriguez, Wiederstein (bib11) 2019; 176
Zhou, Paull (bib20) 2021; 2153
Kijas, Lim, Bolderson, Cerosaletti, Gatei, Jakob, Tobias, Taucher-Scholz, Gueven, Oakley (bib13) 2015; 43
Altieri, Dell'aquila, Pentimalli, Giordano, Alfano (bib1) 2020; 10
Despras, Daboussi, Hyrien, Marheineke, Kannouche (bib6) 2010; 19
Forment, Jackson (bib8) 2015; 10
Kao, Mckenna, Yen (bib12) 2001; 20
Zhao, Kim, Kloeber, Lou (bib19) 2020; 52
Bai, Wang, Li, Zhan, Li, Zhao, Zhou, Li, Li, Huo (bib2) 2019; 75
Britton, Coates, Jackson (bib4) 2013; 202
Broderick, Nieminuszczy, Baddock, Deshpande, Gileadi, Paull, Mchugh, Niedzwiedz (bib5) 2016; 18
Ragu, Matos-Rodrigues, Lopez (bib16) 2020; 11
Sogo, Lopes, Foiani (bib17) 2002; 297
Toledo, Altmeyer, Rask, Lukas, Larsen, Povlsen, Bekker-Jensen, Mailand, Bartek, Lukas (bib18) 2013; 155
He, Meghani, Caron, Yang, Ronato, Bian, Sharma, Moore, Niraj, Detappe (bib10) 2018; 563
Feng, Collingwood, Boeck, Fox, Alvino, Fangman, Raghuraman, Brewer (bib7) 2006; 8
Kilgas, Singh, Paillas, Then, Torrecilla, Nicholson, Browning, Vendrell, Konietzny, Kessler (bib14) 2021; 35
Toledo (10.1016/j.xpro.2021.100978_bib18) 2013; 155
Halder (10.1016/j.xpro.2021.100978_bib9) 2019; 10
Despras (10.1016/j.xpro.2021.100978_bib6) 2010; 19
Britton (10.1016/j.xpro.2021.100978_bib4) 2013; 202
Jachimowicz (10.1016/j.xpro.2021.100978_bib11) 2019; 176
Zhou (10.1016/j.xpro.2021.100978_bib20) 2021; 2153
Kijas (10.1016/j.xpro.2021.100978_bib13) 2015; 43
Zhao (10.1016/j.xpro.2021.100978_bib19) 2020; 52
Bantele (10.1016/j.xpro.2021.100978_bib3) 2019; 10
Sogo (10.1016/j.xpro.2021.100978_bib17) 2002; 297
Mukherjee (10.1016/j.xpro.2021.100978_bib15) 2015; 1292
Broderick (10.1016/j.xpro.2021.100978_bib5) 2016; 18
Kao (10.1016/j.xpro.2021.100978_bib12) 2001; 20
Ragu (10.1016/j.xpro.2021.100978_bib16) 2020; 11
Bai (10.1016/j.xpro.2021.100978_bib2) 2019; 75
Feng (10.1016/j.xpro.2021.100978_bib7) 2006; 8
Altieri (10.1016/j.xpro.2021.100978_bib1) 2020; 10
Kilgas (10.1016/j.xpro.2021.100978_bib14) 2021; 35
Forment (10.1016/j.xpro.2021.100978_bib8) 2015; 10
He (10.1016/j.xpro.2021.100978_bib10) 2018; 563
References_xml – volume: 18
  start-page: 271
  year: 2016
  end-page: 280
  ident: bib5
  article-title: EXD2 promotes homologous recombination by facilitating DNA end resection
  publication-title: Nat. Cell Biol.
– volume: 75
  start-page: 1299
  year: 2019
  end-page: 1314.e6
  ident: bib2
  article-title: C1QBP promotes homologous recombination by stabilizing MRE11 and controlling the assembly and activation of MRE11/RAD50/NBS1 complex
  publication-title: Mol. Cell
– volume: 52
  start-page: 1705
  year: 2020
  end-page: 1714
  ident: bib19
  article-title: DNA end resection and its role in DNA replication and DSB repair choice in mammalian cells
  publication-title: Exp. Mol. Med.
– volume: 297
  start-page: 599
  year: 2002
  end-page: 602
  ident: bib17
  article-title: Fork reversal and ssDNA accumulation at stalled replication forks owing to checkpoint defects
  publication-title: Science
– volume: 563
  start-page: 522
  year: 2018
  end-page: 526
  ident: bib10
  article-title: DYNLL1 binds to MRE11 to limit DNA end resection in BRCA1-deficient cells
  publication-title: Nature
– volume: 35
  start-page: 109153
  year: 2021
  ident: bib14
  article-title: p97/VCP inhibition causes excessive MRE11-dependent DNA end resection promoting cell killing after ionizing radiation
  publication-title: Cell Rep.
– volume: 10
  start-page: 944
  year: 2019
  ident: bib3
  article-title: Quantitative sensing and signalling of single-stranded DNA during the DNA damage response
  publication-title: Nat. Commun.
– volume: 20
  start-page: 3486
  year: 2001
  end-page: 3496
  ident: bib12
  article-title: Detection of repair activity during the DNA damage-induced G2 delay in human cancer cells
  publication-title: Oncogene
– volume: 43
  start-page: 8352
  year: 2015
  end-page: 8367
  ident: bib13
  article-title: ATM-dependent phosphorylation of MRE11 controls extent of resection during homology directed repair by signalling through Exonuclease 1
  publication-title: Nucleic Acids Res.
– volume: 11
  start-page: 409
  year: 2020
  ident: bib16
  article-title: Replication stress, DNA damage, inflammatory cytokines and innate immune response
  publication-title: Genes
– volume: 202
  start-page: 579
  year: 2013
  end-page: 595
  ident: bib4
  article-title: A new method for high-resolution imaging of Ku foci to decipher mechanisms of DNA double-strand break repair
  publication-title: J. Cell Biol.
– volume: 10
  start-page: 3142
  year: 2019
  ident: bib9
  article-title: SPRTN protease and checkpoint kinase 1 cross-activation loop safeguards DNA replication
  publication-title: Nat. Commun.
– volume: 155
  start-page: 1088
  year: 2013
  end-page: 1103
  ident: bib18
  article-title: ATR prohibits replication catastrophe by preventing global exhaustion of RPA
  publication-title: Cell
– volume: 8
  start-page: 148
  year: 2006
  end-page: 155
  ident: bib7
  article-title: Genomic mapping of single-stranded DNA in hydroxyurea-challenged yeasts identifies origins of replication
  publication-title: Nat. Cell Biol.
– volume: 1292
  start-page: 67
  year: 2015
  end-page: 75
  ident: bib15
  article-title: Immunofluorescence-based methods to monitor DNA end resection
  publication-title: Methods Mol. Biol.
– volume: 10
  start-page: 1297
  year: 2015
  end-page: 1307
  ident: bib8
  article-title: A flow cytometry-based method to simplify the analysis and quantification of protein association to chromatin in mammalian cells
  publication-title: Nat. Protoc.
– volume: 176
  start-page: 505
  year: 2019
  end-page: 519 e22
  ident: bib11
  article-title: UBQLN4 represses homologous recombination and is overexpressed in aggressive tumors
  publication-title: Cell
– volume: 19
  start-page: 1690
  year: 2010
  end-page: 1701
  ident: bib6
  article-title: ATR/Chk1 pathway is essential for resumption of DNA synthesis and cell survival in UV-irradiated XP variant cells
  publication-title: Hum. Mol. Genet.
– volume: 10
  start-page: e3701
  year: 2020
  ident: bib1
  article-title: SMART (single molecule analysis of resection tracks) technique for assessing DNA end-resection in response to DNA damage
  publication-title: Bio Protoc.
– volume: 2153
  start-page: 59
  year: 2021
  end-page: 69
  ident: bib20
  article-title: Quantifying DNA end resection in human cells
  publication-title: Methods Mol. Biol.
– volume: 10
  start-page: 944
  year: 2019
  ident: 10.1016/j.xpro.2021.100978_bib3
  article-title: Quantitative sensing and signalling of single-stranded DNA during the DNA damage response
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-08889-5
– volume: 75
  start-page: 1299
  year: 2019
  ident: 10.1016/j.xpro.2021.100978_bib2
  article-title: C1QBP promotes homologous recombination by stabilizing MRE11 and controlling the assembly and activation of MRE11/RAD50/NBS1 complex
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2019.06.023
– volume: 1292
  start-page: 67
  year: 2015
  ident: 10.1016/j.xpro.2021.100978_bib15
  article-title: Immunofluorescence-based methods to monitor DNA end resection
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-4939-2522-3_5
– volume: 155
  start-page: 1088
  year: 2013
  ident: 10.1016/j.xpro.2021.100978_bib18
  article-title: ATR prohibits replication catastrophe by preventing global exhaustion of RPA
  publication-title: Cell
  doi: 10.1016/j.cell.2013.10.043
– volume: 10
  start-page: 1297
  year: 2015
  ident: 10.1016/j.xpro.2021.100978_bib8
  article-title: A flow cytometry-based method to simplify the analysis and quantification of protein association to chromatin in mammalian cells
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2015.066
– volume: 8
  start-page: 148
  year: 2006
  ident: 10.1016/j.xpro.2021.100978_bib7
  article-title: Genomic mapping of single-stranded DNA in hydroxyurea-challenged yeasts identifies origins of replication
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1358
– volume: 297
  start-page: 599
  year: 2002
  ident: 10.1016/j.xpro.2021.100978_bib17
  article-title: Fork reversal and ssDNA accumulation at stalled replication forks owing to checkpoint defects
  publication-title: Science
  doi: 10.1126/science.1074023
– volume: 202
  start-page: 579
  year: 2013
  ident: 10.1016/j.xpro.2021.100978_bib4
  article-title: A new method for high-resolution imaging of Ku foci to decipher mechanisms of DNA double-strand break repair
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201303073
– volume: 18
  start-page: 271
  year: 2016
  ident: 10.1016/j.xpro.2021.100978_bib5
  article-title: EXD2 promotes homologous recombination by facilitating DNA end resection
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb3303
– volume: 2153
  start-page: 59
  year: 2021
  ident: 10.1016/j.xpro.2021.100978_bib20
  article-title: Quantifying DNA end resection in human cells
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-0716-0644-5_5
– volume: 19
  start-page: 1690
  year: 2010
  ident: 10.1016/j.xpro.2021.100978_bib6
  article-title: ATR/Chk1 pathway is essential for resumption of DNA synthesis and cell survival in UV-irradiated XP variant cells
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddq046
– volume: 10
  start-page: e3701
  year: 2020
  ident: 10.1016/j.xpro.2021.100978_bib1
  article-title: SMART (single molecule analysis of resection tracks) technique for assessing DNA end-resection in response to DNA damage
  publication-title: Bio Protoc.
  doi: 10.21769/BioProtoc.3701
– volume: 10
  start-page: 3142
  year: 2019
  ident: 10.1016/j.xpro.2021.100978_bib9
  article-title: SPRTN protease and checkpoint kinase 1 cross-activation loop safeguards DNA replication
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-11095-y
– volume: 35
  start-page: 109153
  year: 2021
  ident: 10.1016/j.xpro.2021.100978_bib14
  article-title: p97/VCP inhibition causes excessive MRE11-dependent DNA end resection promoting cell killing after ionizing radiation
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2021.109153
– volume: 43
  start-page: 8352
  year: 2015
  ident: 10.1016/j.xpro.2021.100978_bib13
  article-title: ATM-dependent phosphorylation of MRE11 controls extent of resection during homology directed repair by signalling through Exonuclease 1
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv754
– volume: 52
  start-page: 1705
  year: 2020
  ident: 10.1016/j.xpro.2021.100978_bib19
  article-title: DNA end resection and its role in DNA replication and DSB repair choice in mammalian cells
  publication-title: Exp. Mol. Med.
  doi: 10.1038/s12276-020-00519-1
– volume: 20
  start-page: 3486
  year: 2001
  ident: 10.1016/j.xpro.2021.100978_bib12
  article-title: Detection of repair activity during the DNA damage-induced G2 delay in human cancer cells
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1204445
– volume: 11
  start-page: 409
  year: 2020
  ident: 10.1016/j.xpro.2021.100978_bib16
  article-title: Replication stress, DNA damage, inflammatory cytokines and innate immune response
  publication-title: Genes
  doi: 10.3390/genes11040409
– volume: 563
  start-page: 522
  year: 2018
  ident: 10.1016/j.xpro.2021.100978_bib10
  article-title: DYNLL1 binds to MRE11 to limit DNA end resection in BRCA1-deficient cells
  publication-title: Nature
  doi: 10.1038/s41586-018-0670-5
– volume: 176
  start-page: 505
  year: 2019
  ident: 10.1016/j.xpro.2021.100978_bib11
  article-title: UBQLN4 represses homologous recombination and is overexpressed in aggressive tumors
  publication-title: Cell
  doi: 10.1016/j.cell.2018.11.024
SSID ssj0002512418
Score 2.244509
Snippet DNA end resection converts broken ends of double-stranded DNA (dsDNA) to 3′-single-stranded DNA (3′-ssDNA). The extent of resection regulates DNA double-strand...
DNA end resection converts broken ends of double-stranded DNA (dsDNA) to 3'-single-stranded DNA (3'-ssDNA). The extent of resection regulates DNA double-strand...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 100978
SubjectTerms Antibody
Bromodeoxyuridine - chemistry
Bromodeoxyuridine - metabolism
Cell Biology
Cell Line, Tumor
Cell-based Assays
DNA, Single-Stranded - analysis
DNA, Single-Stranded - chemistry
DNA, Single-Stranded - genetics
DNA, Single-Stranded - metabolism
Genomic Instability - genetics
Humans
Microscopy
Microscopy, Fluorescence - methods
Molecular Biology
Protocol
Title Immunofluorescence microscopy-based detection of ssDNA foci by BrdU in mammalian cells
URI https://dx.doi.org/10.1016/j.xpro.2021.100978
https://www.ncbi.nlm.nih.gov/pubmed/34888531
https://www.proquest.com/docview/2608535544
https://pubmed.ncbi.nlm.nih.gov/PMC8634038
https://doaj.org/article/df88efb6bb6f41ffabbd89d98ecc3a22
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT1wqUKEEaOVK3FBE4tiOc-xTLRI9sag3K-OHWNRNqn1I9N93xsmudkEqFy45JNlkZzyZ75vReIaxT0GAkVK5XDqAXOrK5W0NeEC0K2qhRNFSvuPbrb6eyK936m5r1BfVhA3tgQfFffHRmBBBA-goyxhbAG8a3xh8d9WK5H2LptgKpsgHE2rLlNxDANJ5qXU97pgZirt-o3vC4FCUVCWQZqxtoVJq3r8DTn-Tzz9rKLdA6eoV2x_ZJD8dpHjNXoTugP24oT0ffbxf9fPUrMkFPqO6O9qB8pgTbnnuwzIVYXW8j3yxuLg95RHXicMjP5v7CZ92fNbOZikLwim7v3jDJleX38-v83F8Qu5oSkGuEY5FXYMQDoyPArRufOHbMhjpMOwC4ZELtRj_RAUqCO-1c9GgSLVwIfrqLdvr-i68Y1whZjV40ikdpC9doxuHXhKQnwTvlc9YuVafdWNvcRpxcW_XRWS_LKncksrtoPKMfd785mHorPHs3We0Kps7qSt2OoG2Ykdbsf-ylYyp9ZrakWAMxAEfNX325SdrA7D49ZHS2y70q4XFaBD5DlIymbHDwSA2f7FC34gXy4zVO6ayI8PulW76M3X4NrqSRWXe_w-hP7CXJAqV4JT1R7a3nK_CERKpJRynb-Y4ZbieAJj4IK4
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Immunofluorescence+microscopy-based+detection+of+ssDNA+foci+by+BrdU+in+mammalian+cells&rft.jtitle=STAR+protocols&rft.au=Kilgas%2C+Susan&rft.au=Kiltie%2C+Anne+E&rft.au=Ramadan%2C+Kristijan&rft.date=2021-12-17&rft.issn=2666-1667&rft.eissn=2666-1667&rft.volume=2&rft.issue=4&rft.spage=100978&rft_id=info:doi/10.1016%2Fj.xpro.2021.100978&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2666-1667&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2666-1667&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2666-1667&client=summon