Correlating cathodoluminescence and scanning transmission electron microscopy for InGaN platelet nano-LEDs
Structural defects are detrimental to the efficiency and quality of optoelectronic semiconductor devices. In this work, we study InGaN platelets with a quantum well structure intended for nano-LEDs emitting red light and how their optical properties, measured with cathodoluminescence, relate to the...
Saved in:
Published in | Applied physics letters Vol. 123; no. 2 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Melville
American Institute of Physics
10.07.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0003-6951 1077-3118 1077-3118 |
DOI | 10.1063/5.0150863 |
Cover
Abstract | Structural defects are detrimental to the efficiency and quality of optoelectronic semiconductor devices. In this work, we study InGaN platelets with a quantum well structure intended for nano-LEDs emitting red light and how their optical properties, measured with cathodoluminescence, relate to the corresponding atomic structure. Through a method of spectroscopy–thinning–imaging, we demonstrate in plan-view how stacking mismatch boundaries intersect the quantum well in a pattern correlated with the observed diminished cathodoluminescence intensity. The results highlight the importance of avoiding stacking mismatch in small LED structures due to the relatively large region of non-radiative recombination caused by the mismatch boundaries. |
---|---|
AbstractList | Structural defects are detrimental to the efficiency and quality of optoelectronic semiconductor devices. In this work, we study InGaN platelets with a quantum well structure intended for nano-LEDs emitting red light and how their optical properties, measured with cathodoluminescence, relate to the corresponding atomic structure. Through a method of spectroscopy-thinning-imaging, we demonstrate in plan-view how stacking mismatch boundaries intersect the quantum well in a pattern correlated with the observed diminished cathodoluminescence intensity. The results highlight the importance of avoiding stacking mismatch in small LED structures due to the relatively large region of non-radiative recombination caused by the mismatch boundaries. |
Author | Samuelson, Lars Persson, Axel R. Persson, Per O. Å. Gustafsson, Anders Bi, Zhaoxia Darakchieva, Vanya |
Author_xml | – sequence: 1 givenname: Axel R. surname: Persson fullname: Persson, Axel R. organization: 5Institute of Nanoscience and Applications, Southern University of Science and Technology, Shenzhen, China – sequence: 2 givenname: Anders surname: Gustafsson fullname: Gustafsson, Anders organization: Solid State Physics and NanoLund, Lund University – sequence: 3 givenname: Zhaoxia surname: Bi fullname: Bi, Zhaoxia organization: 5Institute of Nanoscience and Applications, Southern University of Science and Technology, Shenzhen, China – sequence: 4 givenname: Lars surname: Samuelson fullname: Samuelson, Lars organization: 5Institute of Nanoscience and Applications, Southern University of Science and Technology, Shenzhen, China – sequence: 5 givenname: Vanya surname: Darakchieva fullname: Darakchieva, Vanya organization: 5Institute of Nanoscience and Applications, Southern University of Science and Technology, Shenzhen, China – sequence: 6 givenname: Per O. Å. surname: Persson fullname: Persson, Per O. Å. organization: Thin Film Physics Division, Department of Physics, Chemistry and Biology (IFM), Linköping University |
BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-196688$$DView record from Swedish Publication Index |
BookMark | eNp9kU9v1DAQxS1UJLYLB75BJE4gpbXjP3GO1baUSiu4ANfRxHFar7x2sBOhfnu87PaCWk625d_MvHnvnJyFGCwh7xm9YFTxS3lBmaRa8VdkxWjb1pwxfUZWlFJeq06yN-Q85115yobzFdltYkrW4-zCfWVwfohD9MveBZuNDcZWGIYqGwzhAMwJQ967nF0MlfXWzKlc9s6kmE2cHqsxpuou3OLXaio9CzFXAUOstzfX-S15PaLP9t3pXJMfn2--b77U22-3d5urbW1kw-ZajLbhXTMKKwTvWSc62jdS0H5oDBrsWfk0XGtsxh710DIxaJSaaaUsx9bwNcFj3_zbTksPU3J7TI8Q0cEU04weks0Wk3kAv0C2UCjvyvJlqwx6GJSgnYZRcA6C9Rx6OvYg24E2RsvBIi0z6hdnXLufVxDTPXi3AOuU0rrwH478lOKvxeYZdnFJodgAjeaKKiFLZmtyeaQOfuZkRzBu_iurGO88MAqHkEHCKeRS8fGfiiclz7GfTpqfuv4H_gMGG7i3 |
CODEN | APPLAB |
CitedBy_id | crossref_primary_10_1088_1361_6528_ad7b43 crossref_primary_10_1002_pssb_202400446 crossref_primary_10_1088_1361_6528_ad33e9 crossref_primary_10_1063_5_0202473 |
Cites_doi | 10.1063/1.3694674 10.1063/1.3643001 10.1088/1674-1056/aca9c2 10.1016/j.ultramic.2021.113255 10.1002/pssa.201026149 10.1063/1.115079 10.1063/1.4792505 10.1063/1.5096322 10.1021/acsami.0c00951 10.1021/acsanm.0c02106 10.1017/S1431927613013780 10.1039/D1NR06088K 10.1002/jemt.23876 10.1063/1.1825051 10.1111/j.1365-2818.2011.03510.x 10.1143/JJAP.34.L797 10.1143/JJAP.32.L8 10.1063/5.0058429 10.1063/1.1897486 10.1021/nl4034768 10.1063/1.5145201 10.1063/1.4985767 10.1103/PhysRevLett.44.287 10.1016/j.apsusc.2019.07.072 10.1109/JQE.2005.857057 10.1063/1.5010237 10.1186/s40679-015-0008-4 10.1088/2632-959X/abed3d 10.1111/jmi.12150 10.1038/386351a0 10.1088/0022-3727/47/13/135107 10.1002/(SICI)1521-396X(199901)171:1<325::AID-PSSA325>3.0.CO;2-1 |
ContentType | Journal Article |
Copyright | Author(s) 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
Copyright_xml | – notice: Author(s) – notice: 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
CorporateAuthor | Fasta tillståndets fysik LU Profile Area: Light and Materials Lunds universitets profilområden Naturvetenskapliga fakulteten Faculty of Engineering, LTH Lunds Tekniska Högskola Fysiska institutionen LTH Profile areas Strategiska forskningsområden (SFO) NanoLund: Centre for Nanoscience Medicinska fakulteten Solid State Physics Lunds universitet LTH profilområden Profile areas and other strong research environments Faculty of Science Lund University LTH Profile Area: Nanoscience and Semiconductor Technology Department of Physics Lund University Profile areas Lund University Bioimaging Center LU profilområde: Ljus och material Faculty of Medicine Strategic research areas (SRA) LTH profilområde: Nanovetenskap och halvledarteknologi Profilområden och andra starka forskningsmiljöer |
CorporateAuthor_xml | – name: Naturvetenskapliga fakulteten – name: Strategiska forskningsområden (SFO) – name: LTH profilområde: Nanovetenskap och halvledarteknologi – name: LU profilområde: Ljus och material – name: Department of Physics – name: Strategic research areas (SRA) – name: Lunds Tekniska Högskola – name: Faculty of Engineering, LTH – name: Lund University Profile areas – name: Lund University – name: NanoLund: Centre for Nanoscience – name: Lund University Bioimaging Center – name: Profile areas and other strong research environments – name: Faculty of Medicine – name: Medicinska fakulteten – name: LTH Profile Area: Nanoscience and Semiconductor Technology – name: Lunds universitet – name: Faculty of Science – name: Lunds universitets profilområden – name: Profilområden och andra starka forskningsmiljöer – name: LTH Profile areas – name: LTH profilområden – name: Solid State Physics – name: LU Profile Area: Light and Materials – name: Fysiska institutionen – name: Fasta tillståndets fysik |
DBID | AJDQP AAYXX CITATION 8FD H8D L7M ABXSW ADTPV AOWAS D8T DG8 ZZAVC AGCHP D95 |
DOI | 10.1063/5.0150863 |
DatabaseName | AIP Open Access Journals CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace SWEPUB Linköpings universitet full text SwePub SwePub Articles SWEPUB Freely available online SWEPUB Linköpings universitet SwePub Articles full text SWEPUB Lunds universitet full text SWEPUB Lunds universitet |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Technology Research Database CrossRef |
Database_xml | – sequence: 1 dbid: AJDQP name: AIP Open Access Journals url: https://publishing.aip.org/librarians/open-access-policy sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1077-3118 |
ExternalDocumentID | oai_portal_research_lu_se_publications_8dd64098_f433_41b3_b0fb_57d02c85dea0 oai_DiVA_org_liu_196688 10_1063_5_0150863 apl |
GrantInformation_xml | – fundername: Vetenskapsrådet grantid: 2021-00171 funderid: 10.13039/501100004359 – fundername: NanoLund, Lunds Universitet funderid: 10.13039/501100019166 – fundername: Crafoordska Stiftelsen funderid: 10.13039/501100003173 – fundername: VINNOVA grantid: 2022-03139 funderid: 10.13039/501100001858 – fundername: Vetenskapsrådet grantid: 2022-02832 funderid: 10.13039/501100004359 – fundername: Stiftelsen för Strategisk Forskning grantid: EM16-0024 funderid: 10.13039/501100001729 – fundername: Stiftelsen för Strategisk Forskning grantid: RIF21-0026 funderid: 10.13039/501100004359 – fundername: Knut och Alice Wallenbergs Stiftelse funderid: 10.13039/501100004063 – fundername: Stiftelsen för Strategisk Forskning grantid: 2009-00971 funderid: 10.13039/501100011751 |
GroupedDBID | -DZ -~X .DC 2-P 23M 4.4 5GY 5VS 6J9 A9. AAAAW AABDS AAEUA AAGZG AAPUP AAYIH ABFTF ABJNI ABZEH ACBEA ACBRY ACGFO ACGFS ACLYJ ACNCT ACZLF ADCTM AEGXH AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AIAGR AJDQP AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BPZLN CS3 D0L EBS ESX F.2 F5P FDOHQ FFFMQ HAM M6X M71 M73 N9A NPSNA O-B P2P RIP RNS RQS SJN TAE TN5 UCJ UPT WH7 XJE YZZ ~02 1UP 53G AAGWI AAYXX ABJGX ADMLS BDMKI CITATION 8FD H8D L7M 0ZJ 186 2WC 3O- 41~ 6TJ AAYJJ ABRJW ABXSW ACKIV ADTPV AETEA AI. AOWAS D8T DG8 EJD MVM NEJ NEUPN OHT RDFOP ROL T9H UQL VH1 VOH VQP XJT XOL YYP ZY4 ZZAVC AGCHP D95 |
ID | FETCH-LOGICAL-c521t-4fe2392f4e443b19490b2540bd2cacab1392c388a2fba8d714d8a581866e3a7c3 |
IEDL.DBID | AJDQP |
ISSN | 0003-6951 1077-3118 |
IngestDate | Wed Sep 24 03:41:08 EDT 2025 Thu Aug 21 06:52:46 EDT 2025 Mon Jun 30 05:45:57 EDT 2025 Wed Sep 10 05:59:26 EDT 2025 Thu Apr 24 23:00:44 EDT 2025 Fri Jun 21 00:10:38 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c521t-4fe2392f4e443b19490b2540bd2cacab1392c388a2fba8d714d8a581866e3a7c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-7024-7266 0000-0001-9140-6724 0000-0001-9289-5961 0000-0002-0399-8369 0000-0003-1971-9894 0000-0002-8112-7411 |
OpenAccessLink | http://dx.doi.org/10.1063/5.0150863 |
PQID | 2836064586 |
PQPubID | 2050678 |
PageCount | 7 |
ParticipantIDs | swepub_primary_oai_DiVA_org_liu_196688 crossref_citationtrail_10_1063_5_0150863 crossref_primary_10_1063_5_0150863 proquest_journals_2836064586 scitation_primary_10_1063_5_0150863 swepub_primary_oai_portal_research_lu_se_publications_8dd64098_f433_41b3_b0fb_57d02c85dea0 |
PublicationCentury | 2000 |
PublicationDate | 2023-07-10 |
PublicationDateYYYYMMDD | 2023-07-10 |
PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-10 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | Melville |
PublicationPlace_xml | – name: Melville |
PublicationTitle | Applied physics letters |
PublicationYear | 2023 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | Salviati, Albrecht, Zanotti-Fregonara, Armani, Mayer, Shreter, Guzzi, Melnik, Vassilevski, Dmitriev, Strunk (c9) 1999 Nakamura, Senoh, Mukai (c5) 1993 Wang, Wuu, Lin, Han, Horng, Hsu, Huo, Jou, Yu, Lin (c14) 2005 Palisaitis (c28) 2021 Petroff, Logan, Savage (c20) 1980 Winter, Lebbink, Vries, Post, Drury (c23) 2011 Wasisto, Prades, Gülink, Waag (c11) 2019 Gustafsson, Bi, Samuelson (c29) 2021 Lin, Jiang (c4) 2020 Dimkou, Russo, Dalapati, Houard, Rochat, Cooper, Bellet-Amarlic, Grenier, Monroy, Rigutti (c6) 2020 Park, Park, Romankov, Park, Yoo, Lee, Yang (c30) 2014 Bi, Lu, Colvin, Vainorius, Gustafsson, Johansson, Timm, Lenrick, Wallenberg, Monemar, Samuelson (c26) 2020 Meng, McFelea, Datta, Chowdhury, Werkhoven, Arena, Mahajan (c33) 2011 Cherns, Sahonta, Liu, Ponce, Amano, Akasaki (c10) 2004 Nakamura, Senoh, Iwasa, Nagahama (c7) 1995 Lenrick, Ek, Jacobsson, Borgström, Wallenberg (c31) 2014 Jones, Yang, Pennycook, Marshall, Aert, Browning, Castell, Nellist (c32) 2015 Ponce, Bour (c3) 1997 Kusch, Comish, Loeto, Hammersley, Kappers, Dawson, Oliver, Massabuau (c17) 2022 Li, Waag (c1) 2012 Bi, Gustafsson, Lenrick, Lindgren, Hultin, Wallenberg, Ohlsson, Monemar, Samuelson (c25) 2018 Cantu, Wu, Waltereit, Keller, Romanov, DenBaars, Speck (c13) 2005 Rigutti, Blum, Shinde, Hernández-Maldonado, Lefebvre, Houard, Vurpillot, Vella, Tchernycheva, Durand, Eymery, Deconihout (c19) 2014 Piprek (c2) 2010 O'Hanlon, Massabuau, Bao, Kappers, Oliver (c21) 2021 Wang, Lv, Chen, Zhang, Guo, Li, Wu, Jiang (c27) 2019 Ding, Frentrup, Fairclough, Kusch, Kappers, Wallis, Oliver (c22) 2021 Bi, Gustafsson, Samuelson (c12) 2023 Coenen, Haegel (c24) 2017 Sverdlov, Martin, Morkoç, Smith (c15) 1995 Massabuau, Trinh-Xuan, Lodié, Thrush, Zhu, Oehler, Zhu, Kappers, Humphreys, Oliver (c16) 2013 Bruckbauer, Edwards, Sahonta, Massabuau, Kappers, Humphreys, Oliver, Martin (c18) 2014 (2023071213225559400_c17) 2022; 14 (2023071213225559400_c8) 2006 (2023071213225559400_c27) 2019; 494 (2023071213225559400_c7) 1995; 34 (2023071213225559400_c3) 1997; 386 (2023071213225559400_c4) 2020; 116 (2023071213225559400_c21) 2021; 231 (2023071213225559400_c31) 2014; 20 (2023071213225559400_c2) 2010; 207 (2023071213225559400_c33) 2011; 110 (2023071213225559400_c20) 1980; 44 (2023071213225559400_c26) 2020; 12 (2023071213225559400_c18) 2014; 47 (2023071213225559400_c24) 2017; 4 (2023071213225559400_c9) 1999; 171 (2023071213225559400_c19) 2014; 14 (2023071213225559400_c6) 2020; 3 (2023071213225559400_c1) 2012; 111 (2023071213225559400_c29) 2021; 2 (2023071213225559400_c12) 2023; 32 (2023071213225559400_c5) 1993; 32 (2023071213225559400_c10) 2004; 85 (2023071213225559400_c11) 2019; 6 (2023071213225559400_c25) 2018; 123 (2023071213225559400_c23) 2011; 243 (2023071213225559400_c28) 2021; 84 (2023071213225559400_c30) 2014; 255 (2023071213225559400_c32) 2015; 1 (2023071213225559400_c13) 2005; 97 (2023071213225559400_c15) 1995; 67 (2023071213225559400_c16) 2013; 113 (2023071213225559400_c14) 2005; 41 (2023071213225559400_c22) 2021; 130 |
References_xml | – start-page: 073503 year: 2011 ident: c33 article-title: Origin of predominantly a type dislocations in InGaN layers and wells grown on (0001) GaN publication-title: J. Appl. Phys. – start-page: 402 year: 2022 ident: c17 article-title: Carrier dynamics at trench defects in InGaN/GaN quantum wells revealed by time-resolved cathodoluminescence publication-title: Nanoscale – start-page: 018103 year: 2023 ident: c12 article-title: Bottom-up approaches to microLEDs emitting red, green and blue light based on GaN nanowires and relaxed InGaN platelets publication-title: Chin. Phys. B – start-page: 014006 year: 2021 ident: c29 article-title: From InGaN pyramids to micro-LEDs characterized by cathodoluminescence publication-title: Nano Express – start-page: 100502 year: 2020 ident: c4 article-title: Development of microLED publication-title: Appl. Phys. Lett. – start-page: 113255 year: 2021 ident: c21 article-title: Directly correlated microscopy of trench defects in InGaN quantum wells publication-title: Ultramicroscopy – start-page: 025102 year: 2018 ident: c25 article-title: High In-content InGaN nano-pyramids: Tuning crystal homogeneity by optimized nucleation of GaN seeds publication-title: J. Appl. Phys. – start-page: 180 year: 2014 ident: c30 article-title: Use of permanent marker to deposit a protection layer against FIB damage in TEM specimen preparation publication-title: J. Microscopy – start-page: 031103 year: 2017 ident: c24 article-title: Cathodoluminescence for the 21st century: Learning more from light publication-title: Appl. Phys. Rev. – start-page: 17845 year: 2020 ident: c26 article-title: Realization of ultrahigh quality InGaN platelets to be used as relaxed templates for red micro-LEDs publication-title: ACS Appl. Mater. Interfaces – start-page: L8 year: 1993 ident: c5 article-title: P-GaN/N-InGaN/N-GaN double-heterostructure blue-light-emitting diodes publication-title: Jpn. J. Appl. Phys. – start-page: 107 year: 2014 ident: c19 article-title: Correlation of microphotoluminescence spectroscopy, scanning transmission electron microscopy, and atom probe tomography on a single nano-object containing an InGaN/GaN Multiquantum well system publication-title: Nano Lett. – start-page: 133 year: 2014 ident: c31 article-title: FIB plan and side view cross-sectional TEM sample preparation of nanostructures publication-title: Microscopy Microanalysis – start-page: 103534 year: 2005 ident: c13 article-title: Role of inclined threading dislocations in stress relaxation in mismatched layers publication-title: J. Appl. Phys. – start-page: 071101 year: 2012 ident: c1 article-title: GaN based nanorods for solid state lighting publication-title: J. Appl. Phys. – start-page: 285 year: 2019 ident: c27 article-title: Reduction of nonradiative recombination in InGaN epilayers grown with periodical dilute hydrogen carrier gas publication-title: Appl. Surf. Sci. – start-page: 3182 year: 2021 ident: c28 article-title: Use of cleaved wedge geometry for plan-view transmission electron microscopy sample preparation publication-title: Microscopy Res. Tech. – start-page: 351 year: 1997 ident: c3 article-title: Nitride-based semiconductors for blue and green light-emitting devices publication-title: Nature – start-page: 10133 year: 2020 ident: c6 article-title: InGaN quantum dots studied by correlative microscopy techniques for enhanced light-emitting diodes publication-title: ACS Appl. Nano Mater – start-page: 135107 year: 2014 ident: c18 article-title: Cathodoluminescence hyperspectral imaging of trench-like defects in InGaN/GaN quantum well structures publication-title: J. Phys. D: Appl. Phys. – start-page: 287 year: 1980 ident: c20 article-title: Nonradiative recombination at dislocations in III-V compound semiconductors publication-title: Phys. Rev. Lett. – start-page: 2217 year: 2010 ident: c2 article-title: Efficiency droop in nitride-based light-emitting diodes publication-title: Physica Status Solidi (a) – start-page: 315 year: 2011 ident: c23 article-title: FIB-SEM cathodoluminescence tomography: Practical and theoretical considerations publication-title: J. Microscopy – start-page: 4923 year: 2004 ident: c10 article-title: The generation of misfit dislocations in facet-controlled growth of AlGaN/GaN films publication-title: Appl. Phys. Lett. – start-page: 073505 year: 2013 ident: c16 article-title: Correlations between the morphology and emission properties of trench defects in InGaN/GaN quantum wells publication-title: J. Appl. Phys. – start-page: 8 year: 2015 ident: c32 article-title: Smart Align–A new tool for robust non-rigid registration of scanning microscope data publication-title: Adv. Struct. Chem. Imaging – start-page: 1403 year: 2005 ident: c14 article-title: Efficiency improvement of near-ultraviolet InGaN LEDs using patterned sapphire substrates publication-title: IEEE J. Quantum Electron. – start-page: 041315 year: 2019 ident: c11 article-title: Beyond solid-state lighting: Miniaturization, hybrid integration, and applications of GaN nano-and micro-LEDs publication-title: Appl. Phys. Rev. – start-page: L797 year: 1995 ident: c7 article-title: High-brightness InGaN blue, green and yellow light-emitting diodes with quantum well structures publication-title: Jpn. J. Appl. Phys. – start-page: 2063 year: 1995 ident: c15 article-title: Formation of threading defects in GaN wurtzite films grown on nonisomorphic substrates publication-title: Appl. Phys. Lett. – start-page: 115705 year: 2021 ident: c22 article-title: Multimicroscopy of cross-section zincblende GaN LED heterostructure publication-title: J. Appl. Phys. – start-page: 325 year: 1999 ident: c9 article-title: Cathodoluminescence and transmission electron microscopy study of the influence of crystal defects on optical transitions in GaN publication-title: Phys. Status Solidi (a) – volume: 111 start-page: 071101 year: 2012 ident: 2023071213225559400_c1 article-title: GaN based nanorods for solid state lighting publication-title: J. Appl. Phys. doi: 10.1063/1.3694674 – volume-title: Light-Emitting Diodes year: 2006 ident: 2023071213225559400_c8 – volume: 110 start-page: 073503 year: 2011 ident: 2023071213225559400_c33 article-title: Origin of predominantly a type dislocations in InGaN layers and wells grown on (0001) GaN publication-title: J. Appl. Phys. doi: 10.1063/1.3643001 – volume: 32 start-page: 018103 year: 2023 ident: 2023071213225559400_c12 article-title: Bottom-up approaches to microLEDs emitting red, green and blue light based on GaN nanowires and relaxed InGaN platelets publication-title: Chin. Phys. B doi: 10.1088/1674-1056/aca9c2 – volume: 231 start-page: 113255 year: 2021 ident: 2023071213225559400_c21 article-title: Directly correlated microscopy of trench defects in InGaN quantum wells publication-title: Ultramicroscopy doi: 10.1016/j.ultramic.2021.113255 – volume: 207 start-page: 2217 year: 2010 ident: 2023071213225559400_c2 article-title: Efficiency droop in nitride-based light-emitting diodes publication-title: Physica Status Solidi (a) doi: 10.1002/pssa.201026149 – volume: 67 start-page: 2063 year: 1995 ident: 2023071213225559400_c15 article-title: Formation of threading defects in GaN wurtzite films grown on nonisomorphic substrates publication-title: Appl. Phys. Lett. doi: 10.1063/1.115079 – volume: 113 start-page: 073505 year: 2013 ident: 2023071213225559400_c16 article-title: Correlations between the morphology and emission properties of trench defects in InGaN/GaN quantum wells publication-title: J. Appl. Phys. doi: 10.1063/1.4792505 – volume: 6 start-page: 041315 year: 2019 ident: 2023071213225559400_c11 article-title: Beyond solid-state lighting: Miniaturization, hybrid integration, and applications of GaN nano-and micro-LEDs publication-title: Appl. Phys. Rev. doi: 10.1063/1.5096322 – volume: 12 start-page: 17845 year: 2020 ident: 2023071213225559400_c26 article-title: Realization of ultrahigh quality InGaN platelets to be used as relaxed templates for red micro-LEDs publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c00951 – volume: 3 start-page: 10133 year: 2020 ident: 2023071213225559400_c6 article-title: InGaN quantum dots studied by correlative microscopy techniques for enhanced light-emitting diodes publication-title: ACS Appl. Nano Mater doi: 10.1021/acsanm.0c02106 – volume: 20 start-page: 133 year: 2014 ident: 2023071213225559400_c31 article-title: FIB plan and side view cross-sectional TEM sample preparation of nanostructures publication-title: Microscopy Microanalysis doi: 10.1017/S1431927613013780 – volume: 14 start-page: 402 year: 2022 ident: 2023071213225559400_c17 article-title: Carrier dynamics at trench defects in InGaN/GaN quantum wells revealed by time-resolved cathodoluminescence publication-title: Nanoscale doi: 10.1039/D1NR06088K – volume: 84 start-page: 3182 year: 2021 ident: 2023071213225559400_c28 article-title: Use of cleaved wedge geometry for plan-view transmission electron microscopy sample preparation publication-title: Microscopy Res. Tech. doi: 10.1002/jemt.23876 – volume: 85 start-page: 4923 year: 2004 ident: 2023071213225559400_c10 article-title: The generation of misfit dislocations in facet-controlled growth of AlGaN/GaN films publication-title: Appl. Phys. Lett. doi: 10.1063/1.1825051 – volume: 243 start-page: 315 year: 2011 ident: 2023071213225559400_c23 article-title: FIB-SEM cathodoluminescence tomography: Practical and theoretical considerations publication-title: J. Microscopy doi: 10.1111/j.1365-2818.2011.03510.x – volume: 34 start-page: L797 year: 1995 ident: 2023071213225559400_c7 article-title: High-brightness InGaN blue, green and yellow light-emitting diodes with quantum well structures publication-title: Jpn. J. Appl. Phys. doi: 10.1143/JJAP.34.L797 – volume: 32 start-page: L8 year: 1993 ident: 2023071213225559400_c5 article-title: P-GaN/N-InGaN/N-GaN double-heterostructure blue-light-emitting diodes publication-title: Jpn. J. Appl. Phys. doi: 10.1143/JJAP.32.L8 – volume: 130 start-page: 115705 year: 2021 ident: 2023071213225559400_c22 article-title: Multimicroscopy of cross-section zincblende GaN LED heterostructure publication-title: J. Appl. Phys. doi: 10.1063/5.0058429 – volume: 97 start-page: 103534 year: 2005 ident: 2023071213225559400_c13 article-title: Role of inclined threading dislocations in stress relaxation in mismatched layers publication-title: J. Appl. Phys. doi: 10.1063/1.1897486 – volume: 14 start-page: 107 year: 2014 ident: 2023071213225559400_c19 article-title: Correlation of microphotoluminescence spectroscopy, scanning transmission electron microscopy, and atom probe tomography on a single nano-object containing an InGaN/GaN Multiquantum well system publication-title: Nano Lett. doi: 10.1021/nl4034768 – volume: 116 start-page: 100502 year: 2020 ident: 2023071213225559400_c4 article-title: Development of microLED publication-title: Appl. Phys. Lett. doi: 10.1063/1.5145201 – volume: 4 start-page: 031103 year: 2017 ident: 2023071213225559400_c24 article-title: Cathodoluminescence for the 21st century: Learning more from light publication-title: Appl. Phys. Rev. doi: 10.1063/1.4985767 – volume: 44 start-page: 287 year: 1980 ident: 2023071213225559400_c20 article-title: Nonradiative recombination at dislocations in III-V compound semiconductors publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.44.287 – volume: 494 start-page: 285 year: 2019 ident: 2023071213225559400_c27 article-title: Reduction of nonradiative recombination in InGaN epilayers grown with periodical dilute hydrogen carrier gas publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.07.072 – volume: 41 start-page: 1403 year: 2005 ident: 2023071213225559400_c14 article-title: Efficiency improvement of near-ultraviolet InGaN LEDs using patterned sapphire substrates publication-title: IEEE J. Quantum Electron. doi: 10.1109/JQE.2005.857057 – volume: 123 start-page: 025102 year: 2018 ident: 2023071213225559400_c25 article-title: High In-content InGaN nano-pyramids: Tuning crystal homogeneity by optimized nucleation of GaN seeds publication-title: J. Appl. Phys. doi: 10.1063/1.5010237 – volume: 1 start-page: 8 year: 2015 ident: 2023071213225559400_c32 article-title: Smart Align–A new tool for robust non-rigid registration of scanning microscope data publication-title: Adv. Struct. Chem. Imaging doi: 10.1186/s40679-015-0008-4 – volume: 2 start-page: 014006 year: 2021 ident: 2023071213225559400_c29 article-title: From InGaN pyramids to micro-LEDs characterized by cathodoluminescence publication-title: Nano Express doi: 10.1088/2632-959X/abed3d – volume: 255 start-page: 180 year: 2014 ident: 2023071213225559400_c30 article-title: Use of permanent marker to deposit a protection layer against FIB damage in TEM specimen preparation publication-title: J. Microscopy doi: 10.1111/jmi.12150 – volume: 386 start-page: 351 year: 1997 ident: 2023071213225559400_c3 article-title: Nitride-based semiconductors for blue and green light-emitting devices publication-title: Nature doi: 10.1038/386351a0 – volume: 47 start-page: 135107 year: 2014 ident: 2023071213225559400_c18 article-title: Cathodoluminescence hyperspectral imaging of trench-like defects in InGaN/GaN quantum well structures publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/47/13/135107 – volume: 171 start-page: 325 year: 1999 ident: 2023071213225559400_c9 article-title: Cathodoluminescence and transmission electron microscopy study of the influence of crystal defects on optical transitions in GaN publication-title: Phys. Status Solidi (a) doi: 10.1002/(SICI)1521-396X(199901)171:1<325::AID-PSSA325>3.0.CO;2-1 |
SSID | ssj0005233 |
Score | 2.4583142 |
Snippet | Structural defects are detrimental to the efficiency and quality of optoelectronic semiconductor devices. In this work, we study InGaN platelets with a quantum... |
SourceID | swepub proquest crossref scitation |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Applied physics Atomic structure Boundaries Cathodoluminescence Condensed Matter Physics (including Material Physics, Nano Physics) Den kondenserade materiens fysik (Här ingår: Materialfysik, nanofysik) Fysik Indium gallium nitrides Light emitting diodes Natural Sciences Naturvetenskap Optical properties Optoelectronic devices Physical Sciences Quantum wells Radiative recombination Scanning transmission electron microscopy Semiconductor devices Stacking |
Title | Correlating cathodoluminescence and scanning transmission electron microscopy for InGaN platelet nano-LEDs |
URI | http://dx.doi.org/10.1063/5.0150863 https://www.proquest.com/docview/2836064586 https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-196688 |
Volume | 123 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB2VVgg4ICggFkplUYS4RCTxR5zjqttSqlKBoKjiMvInFC3piuwe-PeMN8myoIK4T6zIM_a8scfvATwLlfPOcZnVPvJMOB4yI3Wd1bHKvSi8EXbZ5Xuqjs7E8bk834C9v9zgK_4y0WoSilD8GmyVtHQpdLfGx5N3b9c6OTgfhPEUIYaBQGj949_Tzi8seYMSTXfn_QdX6DK_HN6B2z0wZOPOk3dhIzTbcGuNLnAbri_bNV17D77uJ1GN1MbWfGaJeZWKS9plUgu7S0uVmcaz1nV6RGye8hH5Mx2MsUH3hn1LrXjpUcoPRsCVvW5emVM2ozHJYs4a01xmJweT9j6cHR582D_KetWEzCVxgkzEUBLoiSIIwW1Rizq3VAXm1pfOOGMJ8pWOa23KaI32VSG8Jvck4rvATeX4A9hsLpvwEFhRu0paYwjyCUG1i43CFV5JU1VcxmBG8GKYVBymMSlbTHF5ta04SuznfwRPV6azjkfjKqOdwTPYL6UWy_TMRAmp1Qj2Vt761yDPOz-uTBKD9uTi4xgprHB6sUDadZTWI_h0hWFX9WBPtfQFpwtsA87WzlBRe6-oLNYYBecoCsvR5tGirHxeOi19MPmj__rXx3Azydens-Ii34HN-fdFeEIgZ253Kcgnb07e7_bB_hOha_t4 |
linkProvider | American Institute of Physics |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9NAEF1BK1Q4ICggAgVWgBAXt7b308eoaUlLiEBqUcVltF-GoOBaODnw75mN7TSgCnEfW6uZ3Z03u7PvEfI6KOedYyIpfMkS7lhIjNBFUpQq9TzzhttVl-9Ujs_56YW46Hpz4lsYHESzb2Z1SxFczw86ByZzxJzL-opwQLKDSLiJ-EKym2RbyVThpN4eno4-fdzo8WCsl8yTiCV6aqHNj_9MSFcocwdTUHsb_heL6CrzHN8jdzvISIftEO-TG6HaJXc2iAR3ya1VI6drHpDvh1FuIza4VV9p5GTFshP3n9jc7uIipqbytHGtUhFdxEyFkY5HZrRXxKE_YpNefK7yiyKkpSfVOzOlNf4TLRa0MtVlMjkaNQ_J-fHR2eE46fQUEhdlCxJehhzhUMkD58xmBS9Si_Vhan3ujDMWwWDumNYmL63RXmXcawxcpMQLzCjHHpGt6rIKjwnNCqeENQbBIOdY1diSu8xLYZRiogxmQN72ToXejVHzYg6rS2_JQEDn_wF5uTatW4aN64z2-shAt8gayOMDFMmFlgPyah2tf_3kTRvHtUnk1h7NPg8BZxvMZ0vA_UhqPSBfrjFs6yHoSJi-wXwJTYB643QVtPcSC2YNJWcMeGYZ2LS0IJRPc6eFDyZ98l9jfUF2xmcfJjA5mb5_Sm5Hkft4opyle2Rr8XMZniEUWtjn3YT_DT-aBvo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Correlating+cathodoluminescence+and+scanning+transmission+electron+microscopy+for+InGaN+platelet+nano-LEDs&rft.jtitle=Applied+physics+letters&rft.au=Persson%2C+Axel+R.&rft.au=Gustafsson%2C+Anders&rft.au=Bi%2C+Zhaoxia&rft.au=Samuelson%2C+Lars&rft.date=2023-07-10&rft.issn=0003-6951&rft.eissn=1077-3118&rft.volume=123&rft.issue=2&rft_id=info:doi/10.1063%2F5.0150863&rft.externalDBID=n%2Fa&rft.externalDocID=10_1063_5_0150863 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-6951&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-6951&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-6951&client=summon |