The Impact of Global Transcriptional Regulation on Bacterial Gene Order

Bacterial gene expression depends on the allocation of limited transcriptional resources provided a particular growth rate and growth condition. Early studies in a few genes suggested this global regulation to generate a unifying hyperbolic expression pattern. Here, we developed a large-scale method...

Full description

Saved in:
Bibliographic Details
Published iniScience Vol. 23; no. 4; p. 101029
Main Authors Yubero, Pablo, Poyatos, Juan F.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 24.04.2020
Elsevier
Subjects
Online AccessGet full text
ISSN2589-0042
2589-0042
DOI10.1016/j.isci.2020.101029

Cover

Abstract Bacterial gene expression depends on the allocation of limited transcriptional resources provided a particular growth rate and growth condition. Early studies in a few genes suggested this global regulation to generate a unifying hyperbolic expression pattern. Here, we developed a large-scale method that generalizes these experiments to quantify the response to growth of over 700 genes that a priori do not exhibit any specific control. We distinguish a core subset following a promoter-specific hyperbolic response. Within this group, we sort genes with regard to their responsiveness to the global regulatory program to show that those with a particularly sensitive linear response are located near the origin of replication. We then find evidence that this genomic architecture is biologically significant by examining position conservation of E. coli genes in 100 bacteria. The response to the transcriptional resources of the cell results in an additional feature contributing to bacterial genome organization. [Display omitted] •Cell physiology determines a global transcriptional regulatory program•Constitutive genes show a differential response to this global regulation•The most responsive constitutive genes are located near the origin of replication•Global transcriptional regulation acts as a gene position conservation force Microbiology; Microbial Genetics; Mathematical Biosciences
AbstractList Bacterial gene expression depends on the allocation of limited transcriptional resources provided a particular growth rate and growth condition. Early studies in a few genes suggested this global regulation to generate a unifying hyperbolic expression pattern. Here, we developed a large-scale method that generalizes these experiments to quantify the response to growth of over 700 genes that a priori do not exhibit any specific control. We distinguish a core subset following a promoter-specific hyperbolic response. Within this group, we sort genes with regard to their responsiveness to the global regulatory program to show that those with a particularly sensitive linear response are located near the origin of replication. We then find evidence that this genomic architecture is biologically significant by examining position conservation of E. coli genes in 100 bacteria. The response to the transcriptional resources of the cell results in an additional feature contributing to bacterial genome organization. [Display omitted] •Cell physiology determines a global transcriptional regulatory program•Constitutive genes show a differential response to this global regulation•The most responsive constitutive genes are located near the origin of replication•Global transcriptional regulation acts as a gene position conservation force Microbiology; Microbial Genetics; Mathematical Biosciences
Bacterial gene expression depends on the allocation of limited transcriptional resources provided a particular growth rate and growth condition. Early studies in a few genes suggested this global regulation to generate a unifying hyperbolic expression pattern. Here, we developed a large-scale method that generalizes these experiments to quantify the response to growth of over 700 genes that a priori do not exhibit any specific control. We distinguish a core subset following a promoter-specific hyperbolic response. Within this group, we sort genes with regard to their responsiveness to the global regulatory program to show that those with a particularly sensitive linear response are located near the origin of replication. We then find evidence that this genomic architecture is biologically significant by examining position conservation of E. coli genes in 100 bacteria. The response to the transcriptional resources of the cell results in an additional feature contributing to bacterial genome organization. • Cell physiology determines a global transcriptional regulatory program • Constitutive genes show a differential response to this global regulation • The most responsive constitutive genes are located near the origin of replication • Global transcriptional regulation acts as a gene position conservation force Microbiology; Microbial Genetics; Mathematical Biosciences
Bacterial gene expression depends on the allocation of limited transcriptional resources provided a particular growth rate and growth condition. Early studies in a few genes suggested this global regulation to generate a unifying hyperbolic expression pattern. Here, we developed a large-scale method that generalizes these experiments to quantify the response to growth of over 700 genes that a priori do not exhibit any specific control. We distinguish a core subset following a promoter-specific hyperbolic response. Within this group, we sort genes with regard to their responsiveness to the global regulatory program to show that those with a particularly sensitive linear response are located near the origin of replication. We then find evidence that this genomic architecture is biologically significant by examining position conservation of E. coli genes in 100 bacteria. The response to the transcriptional resources of the cell results in an additional feature contributing to bacterial genome organization. : Microbiology; Microbial Genetics; Mathematical Biosciences Subject Areas: Microbiology, Microbial Genetics, Mathematical Biosciences
Bacterial gene expression depends on the allocation of limited transcriptional resources provided a particular growth rate and growth condition. Early studies in a few genes suggested this global regulation to generate a unifying hyperbolic expression pattern. Here, we developed a large-scale method that generalizes these experiments to quantify the response to growth of over 700 genes that a priori do not exhibit any specific control. We distinguish a core subset following a promoter-specific hyperbolic response. Within this group, we sort genes with regard to their responsiveness to the global regulatory program to show that those with a particularly sensitive linear response are located near the origin of replication. We then find evidence that this genomic architecture is biologically significant by examining position conservation of E. coli genes in 100 bacteria. The response to the transcriptional resources of the cell results in an additional feature contributing to bacterial genome organization.Bacterial gene expression depends on the allocation of limited transcriptional resources provided a particular growth rate and growth condition. Early studies in a few genes suggested this global regulation to generate a unifying hyperbolic expression pattern. Here, we developed a large-scale method that generalizes these experiments to quantify the response to growth of over 700 genes that a priori do not exhibit any specific control. We distinguish a core subset following a promoter-specific hyperbolic response. Within this group, we sort genes with regard to their responsiveness to the global regulatory program to show that those with a particularly sensitive linear response are located near the origin of replication. We then find evidence that this genomic architecture is biologically significant by examining position conservation of E. coli genes in 100 bacteria. The response to the transcriptional resources of the cell results in an additional feature contributing to bacterial genome organization.
Bacterial gene expression depends on the allocation of limited transcriptional resources provided a particular growth rate and growth condition. Early studies in a few genes suggested this global regulation to generate a unifying hyperbolic expression pattern. Here, we developed a large-scale method that generalizes these experiments to quantify the response to growth of over 700 genes that a priori do not exhibit any specific control. We distinguish a core subset following a promoter-specific hyperbolic response. Within this group, we sort genes with regard to their responsiveness to the global regulatory program to show that those with a particularly sensitive linear response are located near the origin of replication. We then find evidence that this genomic architecture is biologically significant by examining position conservation of E. coli genes in 100 bacteria. The response to the transcriptional resources of the cell results in an additional feature contributing to bacterial genome organization.
ArticleNumber 101029
Author Yubero, Pablo
Poyatos, Juan F.
AuthorAffiliation 1 Logic of Genomic Systems Laboratory, CNB - CSIC, Madrid 28049, Spain
AuthorAffiliation_xml – name: 1 Logic of Genomic Systems Laboratory, CNB - CSIC, Madrid 28049, Spain
Author_xml – sequence: 1
  givenname: Pablo
  surname: Yubero
  fullname: Yubero, Pablo
  organization: Logic of Genomic Systems Laboratory, CNB - CSIC, Madrid 28049, Spain
– sequence: 2
  givenname: Juan F.
  surname: Poyatos
  fullname: Poyatos, Juan F.
  email: jpoyatos@cnb.csic.es
  organization: Logic of Genomic Systems Laboratory, CNB - CSIC, Madrid 28049, Spain
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32283521$$D View this record in MEDLINE/PubMed
BookMark eNqNUVtrFDEUHqRia-0f8EHm0ZddTy4zk4AIWnRdKBRkfQ6Z5Mw2SzYZMzOV_nuzO7W0PhQh5HLyXc7ldXESYsCieEtgSYDUH3ZLNxi3pECPAaDyRXFGKyEXAJyePLqfFhfDsAPISKBc1q-KU0apYBUlZ8Vqc4Plet9rM5axK1c-ttqXm6TDYJLrRxdDfv_A7eT14VHm9SWDMbkcX2HA8jpZTG-Kl532A17cn-fFz29fN5ffF1fXq_Xl56uFyXbjggFSMF3dCMIMBybzXklmQROobcsEMR1vKtlJLWlta6g7zHfLkaNtgLPzYj3r2qh3qk9ur9OditqpYyCmrdJpdMajko1umayZqdqKC6wEcINEg22EaEwtsxabtabQ67vf2vsHQQLq0GW1U4cuq0OX1dzlzPo0s_qp3aM1GMak_ZNUnv4Ed6O28VY1pKoopVng_b1Air8mHEa1zybovQ4Yp0FRJmTOjgNk6LvHXg8mf-eXAWIGmBSHIWGnjBuPg8rWzj9fB_2H-l_Ff5xJmGd86zCpjMBg0LqEZsxDcM_R_wARJtU9
CitedBy_id crossref_primary_10_3389_fmicb_2023_1119878
crossref_primary_10_1007_s11270_023_06829_0
crossref_primary_10_1016_j_amc_2020_125914
crossref_primary_10_1021_acssynbio_3c00009
crossref_primary_10_1093_molbev_msab193
crossref_primary_10_1128_mbio_03432_22
Cites_doi 10.1111/j.1365-2958.2008.06229.x
10.1073/pnas.1108229109
10.1038/msb.2013.14
10.1126/science.1192588
10.1111/j.1365-2958.2006.05046.x
10.1371/journal.pcbi.1000545
10.1038/sj.emboj.7600434
10.1128/MMBR.62.2.434-464.1998
10.1099/00221287-19-3-607
10.1073/pnas.95.17.9761
10.1126/science.1237435
10.1186/1471-2148-7-169
10.1093/nar/gks694
10.1006/jmbi.1999.3056
10.1016/j.tig.2005.06.002
10.1016/j.cell.2009.12.001
10.1016/0022-2836(68)90425-7
10.1038/nmeth895
10.1039/C4MB00721B
10.1016/S0006-3495(74)70003-0
10.1098/rspb.2018.0789
10.1371/journal.pone.0003657
10.1073/pnas.0804953105
10.1016/j.cub.2017.03.022
10.1128/mBio.00097-17
10.1073/pnas.1416533112
10.1093/nar/gkv040
10.1038/nmicrobiol.2016.160
10.1038/msb.2012.70
10.15252/msb.20167402
10.1016/j.plasmid.2004.04.001
10.1038/ng1209
10.1007/s12551-016-0238-2
10.1016/j.tim.2016.06.003
10.1016/j.tig.2016.08.006
10.1099/00221287-19-3-592
10.1093/nar/gku828
10.1038/ncomms11055
ContentType Journal Article
Copyright 2020 The Author(s)
Copyright © 2020 The Author(s). Published by Elsevier Inc. All rights reserved.
2020 The Author(s) 2020
Copyright_xml – notice: 2020 The Author(s)
– notice: Copyright © 2020 The Author(s). Published by Elsevier Inc. All rights reserved.
– notice: 2020 The Author(s) 2020
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1016/j.isci.2020.101029
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList


MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
EISSN 2589-0042
ExternalDocumentID oai_doaj_org_article_97ab3963c5b548e5804ce1a0d7887c69
10.1016/j.isci.2020.101029
PMC7155222
32283521
10_1016_j_isci_2020_101029
S2589004220302133
Genre Journal Article
GroupedDBID 0R~
53G
6I.
AACTN
AAEDW
AAFTH
AALRI
AAMRU
AAXUO
ABMAC
ADBBV
ADVLN
AEXQZ
AFTJW
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BCNDV
EBS
FDB
GROUPED_DOAJ
HYE
M41
OK1
ROL
RPM
SSZ
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
APXCP
CITATION
EJD
NCXOZ
NPM
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c521t-30e20cf67813c40393c4593d0a106db381cf4759f9a926d606fef9ad4e4ed7043
IEDL.DBID UNPAY
ISSN 2589-0042
IngestDate Fri Oct 03 12:45:00 EDT 2025
Sun Oct 26 03:39:28 EDT 2025
Tue Sep 30 16:34:48 EDT 2025
Thu Oct 02 06:18:13 EDT 2025
Thu Jan 02 22:57:40 EST 2025
Tue Jul 01 01:03:29 EDT 2025
Thu Apr 24 22:52:08 EDT 2025
Sun Apr 06 06:53:08 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Microbiology
Mathematical Biosciences
Microbial Genetics
Language English
License This is an open access article under the CC BY license.
Copyright © 2020 The Author(s). Published by Elsevier Inc. All rights reserved.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c521t-30e20cf67813c40393c4593d0a106db381cf4759f9a926d606fef9ad4e4ed7043
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Lead Contact
OpenAccessLink https://proxy.k.utb.cz/login?url=http://www.cell.com/article/S2589004220302133/pdf
PMID 32283521
PQID 2389693400
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_97ab3963c5b548e5804ce1a0d7887c69
unpaywall_primary_10_1016_j_isci_2020_101029
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7155222
proquest_miscellaneous_2389693400
pubmed_primary_32283521
crossref_citationtrail_10_1016_j_isci_2020_101029
crossref_primary_10_1016_j_isci_2020_101029
elsevier_sciencedirect_doi_10_1016_j_isci_2020_101029
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-04-24
PublicationDateYYYYMMDD 2020-04-24
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-24
  day: 24
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle iScience
PublicationTitleAlternate iScience
PublicationYear 2020
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Couturier, Rocha (bib8) 2006; 59
Si, Li, Cox, Sauls, Azizi, Sou, Schwartz, Erickstad, Jun, Li, Jun (bib33) 2017; 27
del Solar, Giraldo, Ruiz-Echevarría, Espinosa, Díaz-Orejas (bib9) 1998; 62
Gibson, Wilson, Feil, Eyre-Walker (bib15) 2018; 285
Liang, Bipatnath, Xu, Chen, Dennis, Ehrenberg, Bremer (bib23) 1999; 292
Block, Hussein, Liang, Lim (bib3) 2012; 40
Camas, Poyatos (bib6) 2008; 3
Gerosa, Kochanowski, Heinemann, Sauer (bib14) 2013; 9
Gyorfy, Draskovits, Vernyik, Blattner, Gaal, Posfai (bib16) 2015; 43
Morrison, Chattoraj (bib25) 2004; 52
Slager, Veening (bib34) 2016; 24
Berthoumieux, de Jong, Baptist, Pinel, Ranquet, Ropers, Geiselmann (bib2) 2013; 9
Kubitschek (bib21) 1974; 14
Deris, Kim, Zhang, Okano, Hermsen, Groisman, Hwa (bib10) 2013; 342
Lal, Dhar, Trostel, Kouzine, Seshasayee, Adhya (bib22) 2016; 7
Zaslaver, Bren, Ronen, Itzkovitz, Kikoin, Shavit, Liebermeister, Surette, Alon (bib40) 2006; 3
Schaechter, Maaloe, Kjeldgaard (bib31) 1958; 19
Kjeldgaard, Maaloe, Schaechter (bib17) 1958; 19
Klumpp, Zhang, Hwa (bib19) 2009; 139
Estrem, Gaal, Ross, Gourse (bib13) 1998; 95
Parter, Kashtan, Alon (bib27) 2007; 7
Weiße, Oyarzún, Danos, Swain (bib39) 2015; 112
Kochanowski, Gerosa, Brunner, Christodoulou, Nikolaev, Sauer (bib20) 2017; 13
Roller, Stoddard, Schmidt (bib30) 2016; 1
Sobetzko, Travers, Muskhelishvili (bib35) 2012; 109
Traxler, Summers, Nguyen, Zacharia, Hightower, Smith, Conway (bib37) 2008; 68
Peebo, Valgepea, Maser, Nahku, Adamberg, Vilu (bib28) 2015; 11
Zaslaver, Kaplan, Bren, Jinich, Mayo, Dekel, Alon, Itzkovitz (bib41) 2009; 5
Donachie, Robinson (bib11) 1987
Valens, Penaud, Rossignol, Cornet, Boccard (bib38) 2004; 23
Dorman, Dorman (bib12) 2016; 8
Scott, Gunderson, Mateescu, Zhang, Hwa (bib32) 2010; 330
Bremer, Dennis (bib4) 1996; 2
Nanninga, Woldringh (bib26) 1985
Bar-Ziv, Voichek, Barkai (bib1) 2016; 32
Cooper, Helmstetter (bib7) 1968; 31
Klumpp, Hwa (bib18) 2008; 105
Mitchison (bib24) 2005; 21
Bryant, Sellars, Busby, Lee (bib5) 2014; 42
Rocha, Danchin (bib29) 2003; 34
Soler-Bistué, Timmermans, Mazel (bib36) 2017; 8
del Solar (10.1016/j.isci.2020.101029_bib9) 1998; 62
Kochanowski (10.1016/j.isci.2020.101029_bib20) 2017; 13
Liang (10.1016/j.isci.2020.101029_bib23) 1999; 292
Klumpp (10.1016/j.isci.2020.101029_bib18) 2008; 105
Rocha (10.1016/j.isci.2020.101029_bib29) 2003; 34
Scott (10.1016/j.isci.2020.101029_bib32) 2010; 330
Valens (10.1016/j.isci.2020.101029_bib38) 2004; 23
Gyorfy (10.1016/j.isci.2020.101029_bib16) 2015; 43
Nanninga (10.1016/j.isci.2020.101029_bib26) 1985
Mitchison (10.1016/j.isci.2020.101029_bib24) 2005; 21
Peebo (10.1016/j.isci.2020.101029_bib28) 2015; 11
Zaslaver (10.1016/j.isci.2020.101029_bib41) 2009; 5
Lal (10.1016/j.isci.2020.101029_bib22) 2016; 7
Sobetzko (10.1016/j.isci.2020.101029_bib35) 2012; 109
Gerosa (10.1016/j.isci.2020.101029_bib14) 2013; 9
Gibson (10.1016/j.isci.2020.101029_bib15) 2018; 285
Schaechter (10.1016/j.isci.2020.101029_bib31) 1958; 19
Camas (10.1016/j.isci.2020.101029_bib6) 2008; 3
Dorman (10.1016/j.isci.2020.101029_bib12) 2016; 8
Traxler (10.1016/j.isci.2020.101029_bib37) 2008; 68
Bar-Ziv (10.1016/j.isci.2020.101029_bib1) 2016; 32
Block (10.1016/j.isci.2020.101029_bib3) 2012; 40
Soler-Bistué (10.1016/j.isci.2020.101029_bib36) 2017; 8
Roller (10.1016/j.isci.2020.101029_bib30) 2016; 1
Cooper (10.1016/j.isci.2020.101029_bib7) 1968; 31
Deris (10.1016/j.isci.2020.101029_bib10) 2013; 342
Kjeldgaard (10.1016/j.isci.2020.101029_bib17) 1958; 19
Morrison (10.1016/j.isci.2020.101029_bib25) 2004; 52
Kubitschek (10.1016/j.isci.2020.101029_bib21) 1974; 14
Si (10.1016/j.isci.2020.101029_bib33) 2017; 27
Zaslaver (10.1016/j.isci.2020.101029_bib40) 2006; 3
Klumpp (10.1016/j.isci.2020.101029_bib19) 2009; 139
Berthoumieux (10.1016/j.isci.2020.101029_bib2) 2013; 9
Weiße (10.1016/j.isci.2020.101029_bib39) 2015; 112
Bryant (10.1016/j.isci.2020.101029_bib5) 2014; 42
Parter (10.1016/j.isci.2020.101029_bib27) 2007; 7
Donachie (10.1016/j.isci.2020.101029_bib11) 1987
Estrem (10.1016/j.isci.2020.101029_bib13) 1998; 95
Couturier (10.1016/j.isci.2020.101029_bib8) 2006; 59
Slager (10.1016/j.isci.2020.101029_bib34) 2016; 24
Bremer (10.1016/j.isci.2020.101029_bib4) 1996; 2
References_xml – volume: 342
  start-page: 1237435
  year: 2013
  ident: bib10
  article-title: The innate growth bistability and fitness landscapes of antibiotic-resistant bacteria
  publication-title: Science
– volume: 14
  start-page: 119
  year: 1974
  end-page: 123
  ident: bib21
  article-title: Constancy of the ratio of DNA to cell volume in steady-state cultures of Escherichia coli B-r
  publication-title: Biophys. J.
– volume: 7
  start-page: 169
  year: 2007
  ident: bib27
  article-title: Environmental variability and modularity of bacterial metabolic networks
  publication-title: BMC Evol. Biol.
– volume: 62
  start-page: 434
  year: 1998
  end-page: 464
  ident: bib9
  article-title: Replication and control of circular bacterial plasmids
  publication-title: Microbiol. Mol. Biol. Rev.
– volume: 34
  start-page: 377
  year: 2003
  end-page: 378
  ident: bib29
  article-title: Essentiality, not expressiveness, drives gene-strand bias in bacteria
  publication-title: Nat. Genet.
– volume: 27
  start-page: 1278
  year: 2017
  end-page: 1287
  ident: bib33
  article-title: Invariance of initiation mass and predictability of cell size in Escherichia coli
  publication-title: Curr. Biol.
– volume: 109
  start-page: E42
  year: 2012
  end-page: E50
  ident: bib35
  article-title: Gene order and chromosome dynamics coordinate spatiotemporal gene expression during the bacterial growth cycle
  publication-title: Proc. Natl. Acad. Sci. U S A.
– volume: 3
  start-page: 623
  year: 2006
  end-page: 628
  ident: bib40
  article-title: A comprehensive library of fluorescent transcriptional reporters for
  publication-title: Nat. Methods
– volume: 13
  start-page: 903
  year: 2017
  ident: bib20
  article-title: Few regulatory metabolites coordinate expression of central metabolic genes in Escherichia coli
  publication-title: Mol. Syst. Biol.
– start-page: 259
  year: 1985
  end-page: 318
  ident: bib26
  article-title: Cell Growth, Genome Duplication, and Cell Division. Molecular Cytology of Escherichia coli
– volume: 330
  start-page: 1099
  year: 2010
  end-page: 1102
  ident: bib32
  article-title: Interdependence of cell growth and gene expression: origins and consequences
  publication-title: Science
– volume: 105
  start-page: 20245
  year: 2008
  end-page: 20250
  ident: bib18
  article-title: Growth-rate-dependent partitioning of RNA polymerases in bacteria
  publication-title: Proc. Natl. Acad. Sci. U S A
– volume: 8
  start-page: 89
  year: 2016
  end-page: 100
  ident: bib12
  article-title: DNA supercoiling is a fundamental regulatory principle in the control of bacterial gene expression
  publication-title: Biophys. Rev.
– volume: 285
  start-page: 20180789
  year: 2018
  ident: bib15
  article-title: The distribution of bacterial doubling times in the wild
  publication-title: Proc. R. Soc. B
– volume: 11
  start-page: 1184
  year: 2015
  end-page: 1193
  ident: bib28
  article-title: Proteome reallocation in Escherichia coli with increasing specific growth rate
  publication-title: Mol. Biosyst.
– volume: 32
  start-page: 717
  year: 2016
  end-page: 723
  ident: bib1
  article-title: Dealing with gene-dosage imbalance during S phase
  publication-title: Trends Genet.
– volume: 95
  start-page: 9761
  year: 1998
  end-page: 9766
  ident: bib13
  article-title: Identification of an UP element consensus sequence for bacterial promoters
  publication-title: Proc. Natl. Acad. Sci. U S A
– volume: 9
  start-page: 658
  year: 2013
  ident: bib14
  article-title: Dissecting specific and global transcriptional regulation of bacterial gene expression
  publication-title: Mol. Syst. Biol.
– volume: 19
  start-page: 607
  year: 1958
  end-page: 616
  ident: bib17
  article-title: The transition between different physiological states during balanced growth of Salmonella typhimurium
  publication-title: J. Gen. Microbiol.
– volume: 5
  start-page: e1000545
  year: 2009
  ident: bib41
  article-title: Invariant distribution of promoter activities in Escherichia coli
  publication-title: PLoS Comput. Biol.
– volume: 42
  start-page: 11383
  year: 2014
  end-page: 11392
  ident: bib5
  article-title: Chromosome position effects on gene expression in Escherichia coli K-12
  publication-title: Nucleic Acids Res.
– volume: 8
  start-page: e00097-17
  year: 2017
  ident: bib36
  article-title: The proximity of ribosomal protein genes to oriC enhances Vibrio cholerae fitness in the absence of multifork replication
  publication-title: mBio
– volume: 43
  start-page: 1783
  year: 2015
  end-page: 1794
  ident: bib16
  article-title: Engineered ribosomal RNA operon copy-number variants of E. coli reveal the evolutionary trade-offs shaping rRNA operon number
  publication-title: Nucleic Acids Res.
– volume: 1
  start-page: 16160
  year: 2016
  ident: bib30
  article-title: Exploiting rRNA operon copy number to investigate bacterial reproductive strategies
  publication-title: Nat. Microbiol.
– volume: 7
  start-page: 11055
  year: 2016
  ident: bib22
  article-title: Genome scale patterns of supercoiling in a bacterial chromosome
  publication-title: Nat. Commun.
– volume: 40
  start-page: 8979
  year: 2012
  end-page: 8992
  ident: bib3
  article-title: Regulatory consequences of gene translocation in bacteria
  publication-title: Nucleic Acids Res.
– volume: 59
  start-page: 1506
  year: 2006
  end-page: 1518
  ident: bib8
  article-title: Replication-associated gene dosage effects shape the genomes of fast-growing bacteria but only for transcription and translation genes
  publication-title: Mol. Microbiol.
– volume: 19
  start-page: 592
  year: 1958
  end-page: 606
  ident: bib31
  article-title: Dependency on medium and temperature of cell size and chemical composition during balanced grown of Salmonella typhimurium
  publication-title: J. Gen. Microbiol.
– start-page: 1578
  year: 1987
  end-page: 1593
  ident: bib11
  article-title: Cell Division: Parameter Values and the Process. Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology
– volume: 139
  start-page: 1366
  year: 2009
  end-page: 1375
  ident: bib19
  article-title: Growth rate-dependent global effects on gene expression in bacteria
  publication-title: Cell
– volume: 2
  start-page: 1553
  year: 1996
  end-page: 1569
  ident: bib4
  article-title: Modulation of chemical composition and other parameters of the cell by growth rate. E coli Salmonella
  publication-title: Cell. Mol Biol.
– volume: 68
  start-page: 1128
  year: 2008
  end-page: 1148
  ident: bib37
  article-title: The global, ppGpp-mediated stringent response to amino acid starvation in Escherichia coli
  publication-title: Mol. Microbiol.
– volume: 21
  start-page: 440
  year: 2005
  end-page: 443
  ident: bib24
  article-title: The regional rule for bacterial base composition
  publication-title: Trends Genet.
– volume: 52
  start-page: 13
  year: 2004
  end-page: 30
  ident: bib25
  article-title: Replication of a unit-copy plasmid F in the bacterial cell cycle: a replication rate function analysis
  publication-title: Plasmid
– volume: 9
  year: 2013
  ident: bib2
  article-title: Shared control of gene expression in bacteria by transcription factors and global physiology of the cell
  publication-title: Mol. Syst. Biol.
– volume: 23
  start-page: 4330
  year: 2004
  end-page: 4341
  ident: bib38
  article-title: Macrodomain organization of the Escherichia coli chromosome
  publication-title: EMBO J.
– volume: 112
  start-page: E1038
  year: 2015
  end-page: E1047
  ident: bib39
  article-title: Mechanistic links between cellular trade-offs, gene expression, and growth
  publication-title: Proc. Natl. Acad. Sci. U S A
– volume: 292
  start-page: 19
  year: 1999
  end-page: 37
  ident: bib23
  article-title: Activities of constitutive promoters in Escherichia coli
  publication-title: J. Mol. Biol.
– volume: 3
  start-page: e3657
  year: 2008
  ident: bib6
  article-title: What determines the assembly of transcriptional network Motifs in Escherichia coli?
  publication-title: PLoS One
– volume: 31
  start-page: 519
  year: 1968
  end-page: 540
  ident: bib7
  article-title: Chromosome replication and the division cycle of Escherichia coli Br
  publication-title: J. Mol. Biol.
– volume: 24
  start-page: 788
  year: 2016
  end-page: 800
  ident: bib34
  article-title: Hard-wired control of bacterial processes by chromosomal gene location
  publication-title: Trends Microbiol.
– volume: 68
  start-page: 1128
  year: 2008
  ident: 10.1016/j.isci.2020.101029_bib37
  article-title: The global, ppGpp-mediated stringent response to amino acid starvation in Escherichia coli
  publication-title: Mol. Microbiol.
  doi: 10.1111/j.1365-2958.2008.06229.x
– volume: 109
  start-page: E42
  year: 2012
  ident: 10.1016/j.isci.2020.101029_bib35
  article-title: Gene order and chromosome dynamics coordinate spatiotemporal gene expression during the bacterial growth cycle
  publication-title: Proc. Natl. Acad. Sci. U S A.
  doi: 10.1073/pnas.1108229109
– volume: 9
  start-page: 658
  year: 2013
  ident: 10.1016/j.isci.2020.101029_bib14
  article-title: Dissecting specific and global transcriptional regulation of bacterial gene expression
  publication-title: Mol. Syst. Biol.
  doi: 10.1038/msb.2013.14
– volume: 330
  start-page: 1099
  year: 2010
  ident: 10.1016/j.isci.2020.101029_bib32
  article-title: Interdependence of cell growth and gene expression: origins and consequences
  publication-title: Science
  doi: 10.1126/science.1192588
– volume: 59
  start-page: 1506
  year: 2006
  ident: 10.1016/j.isci.2020.101029_bib8
  article-title: Replication-associated gene dosage effects shape the genomes of fast-growing bacteria but only for transcription and translation genes
  publication-title: Mol. Microbiol.
  doi: 10.1111/j.1365-2958.2006.05046.x
– volume: 5
  start-page: e1000545
  year: 2009
  ident: 10.1016/j.isci.2020.101029_bib41
  article-title: Invariant distribution of promoter activities in Escherichia coli
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1000545
– volume: 23
  start-page: 4330
  year: 2004
  ident: 10.1016/j.isci.2020.101029_bib38
  article-title: Macrodomain organization of the Escherichia coli chromosome
  publication-title: EMBO J.
  doi: 10.1038/sj.emboj.7600434
– volume: 62
  start-page: 434
  year: 1998
  ident: 10.1016/j.isci.2020.101029_bib9
  article-title: Replication and control of circular bacterial plasmids
  publication-title: Microbiol. Mol. Biol. Rev.
  doi: 10.1128/MMBR.62.2.434-464.1998
– volume: 19
  start-page: 607
  year: 1958
  ident: 10.1016/j.isci.2020.101029_bib17
  article-title: The transition between different physiological states during balanced growth of Salmonella typhimurium
  publication-title: J. Gen. Microbiol.
  doi: 10.1099/00221287-19-3-607
– start-page: 259
  year: 1985
  ident: 10.1016/j.isci.2020.101029_bib26
– start-page: 1578
  year: 1987
  ident: 10.1016/j.isci.2020.101029_bib11
– volume: 2
  start-page: 1553
  year: 1996
  ident: 10.1016/j.isci.2020.101029_bib4
  article-title: Modulation of chemical composition and other parameters of the cell by growth rate. E coli Salmonella
  publication-title: Cell. Mol Biol.
– volume: 95
  start-page: 9761
  year: 1998
  ident: 10.1016/j.isci.2020.101029_bib13
  article-title: Identification of an UP element consensus sequence for bacterial promoters
  publication-title: Proc. Natl. Acad. Sci. U S A
  doi: 10.1073/pnas.95.17.9761
– volume: 342
  start-page: 1237435
  year: 2013
  ident: 10.1016/j.isci.2020.101029_bib10
  article-title: The innate growth bistability and fitness landscapes of antibiotic-resistant bacteria
  publication-title: Science
  doi: 10.1126/science.1237435
– volume: 7
  start-page: 169
  year: 2007
  ident: 10.1016/j.isci.2020.101029_bib27
  article-title: Environmental variability and modularity of bacterial metabolic networks
  publication-title: BMC Evol. Biol.
  doi: 10.1186/1471-2148-7-169
– volume: 40
  start-page: 8979
  year: 2012
  ident: 10.1016/j.isci.2020.101029_bib3
  article-title: Regulatory consequences of gene translocation in bacteria
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gks694
– volume: 292
  start-page: 19
  year: 1999
  ident: 10.1016/j.isci.2020.101029_bib23
  article-title: Activities of constitutive promoters in Escherichia coli
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.1999.3056
– volume: 21
  start-page: 440
  year: 2005
  ident: 10.1016/j.isci.2020.101029_bib24
  article-title: The regional rule for bacterial base composition
  publication-title: Trends Genet.
  doi: 10.1016/j.tig.2005.06.002
– volume: 139
  start-page: 1366
  year: 2009
  ident: 10.1016/j.isci.2020.101029_bib19
  article-title: Growth rate-dependent global effects on gene expression in bacteria
  publication-title: Cell
  doi: 10.1016/j.cell.2009.12.001
– volume: 31
  start-page: 519
  year: 1968
  ident: 10.1016/j.isci.2020.101029_bib7
  article-title: Chromosome replication and the division cycle of Escherichia coli Br
  publication-title: J. Mol. Biol.
  doi: 10.1016/0022-2836(68)90425-7
– volume: 3
  start-page: 623
  year: 2006
  ident: 10.1016/j.isci.2020.101029_bib40
  article-title: A comprehensive library of fluorescent transcriptional reporters for Escherichia coli
  publication-title: Nat. Methods
  doi: 10.1038/nmeth895
– volume: 11
  start-page: 1184
  year: 2015
  ident: 10.1016/j.isci.2020.101029_bib28
  article-title: Proteome reallocation in Escherichia coli with increasing specific growth rate
  publication-title: Mol. Biosyst.
  doi: 10.1039/C4MB00721B
– volume: 14
  start-page: 119
  year: 1974
  ident: 10.1016/j.isci.2020.101029_bib21
  article-title: Constancy of the ratio of DNA to cell volume in steady-state cultures of Escherichia coli B-r
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(74)70003-0
– volume: 285
  start-page: 20180789
  year: 2018
  ident: 10.1016/j.isci.2020.101029_bib15
  article-title: The distribution of bacterial doubling times in the wild
  publication-title: Proc. R. Soc. B
  doi: 10.1098/rspb.2018.0789
– volume: 3
  start-page: e3657
  year: 2008
  ident: 10.1016/j.isci.2020.101029_bib6
  article-title: What determines the assembly of transcriptional network Motifs in Escherichia coli?
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0003657
– volume: 105
  start-page: 20245
  year: 2008
  ident: 10.1016/j.isci.2020.101029_bib18
  article-title: Growth-rate-dependent partitioning of RNA polymerases in bacteria
  publication-title: Proc. Natl. Acad. Sci. U S A
  doi: 10.1073/pnas.0804953105
– volume: 27
  start-page: 1278
  year: 2017
  ident: 10.1016/j.isci.2020.101029_bib33
  article-title: Invariance of initiation mass and predictability of cell size in Escherichia coli
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2017.03.022
– volume: 8
  start-page: e00097-17
  year: 2017
  ident: 10.1016/j.isci.2020.101029_bib36
  article-title: The proximity of ribosomal protein genes to oriC enhances Vibrio cholerae fitness in the absence of multifork replication
  publication-title: mBio
  doi: 10.1128/mBio.00097-17
– volume: 112
  start-page: E1038
  year: 2015
  ident: 10.1016/j.isci.2020.101029_bib39
  article-title: Mechanistic links between cellular trade-offs, gene expression, and growth
  publication-title: Proc. Natl. Acad. Sci. U S A
  doi: 10.1073/pnas.1416533112
– volume: 43
  start-page: 1783
  year: 2015
  ident: 10.1016/j.isci.2020.101029_bib16
  article-title: Engineered ribosomal RNA operon copy-number variants of E. coli reveal the evolutionary trade-offs shaping rRNA operon number
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv040
– volume: 1
  start-page: 16160
  year: 2016
  ident: 10.1016/j.isci.2020.101029_bib30
  article-title: Exploiting rRNA operon copy number to investigate bacterial reproductive strategies
  publication-title: Nat. Microbiol.
  doi: 10.1038/nmicrobiol.2016.160
– volume: 9
  year: 2013
  ident: 10.1016/j.isci.2020.101029_bib2
  article-title: Shared control of gene expression in bacteria by transcription factors and global physiology of the cell
  publication-title: Mol. Syst. Biol.
  doi: 10.1038/msb.2012.70
– volume: 13
  start-page: 903
  year: 2017
  ident: 10.1016/j.isci.2020.101029_bib20
  article-title: Few regulatory metabolites coordinate expression of central metabolic genes in Escherichia coli
  publication-title: Mol. Syst. Biol.
  doi: 10.15252/msb.20167402
– volume: 52
  start-page: 13
  year: 2004
  ident: 10.1016/j.isci.2020.101029_bib25
  article-title: Replication of a unit-copy plasmid F in the bacterial cell cycle: a replication rate function analysis
  publication-title: Plasmid
  doi: 10.1016/j.plasmid.2004.04.001
– volume: 34
  start-page: 377
  year: 2003
  ident: 10.1016/j.isci.2020.101029_bib29
  article-title: Essentiality, not expressiveness, drives gene-strand bias in bacteria
  publication-title: Nat. Genet.
  doi: 10.1038/ng1209
– volume: 8
  start-page: 89
  year: 2016
  ident: 10.1016/j.isci.2020.101029_bib12
  article-title: DNA supercoiling is a fundamental regulatory principle in the control of bacterial gene expression
  publication-title: Biophys. Rev.
  doi: 10.1007/s12551-016-0238-2
– volume: 24
  start-page: 788
  year: 2016
  ident: 10.1016/j.isci.2020.101029_bib34
  article-title: Hard-wired control of bacterial processes by chromosomal gene location
  publication-title: Trends Microbiol.
  doi: 10.1016/j.tim.2016.06.003
– volume: 32
  start-page: 717
  year: 2016
  ident: 10.1016/j.isci.2020.101029_bib1
  article-title: Dealing with gene-dosage imbalance during S phase
  publication-title: Trends Genet.
  doi: 10.1016/j.tig.2016.08.006
– volume: 19
  start-page: 592
  year: 1958
  ident: 10.1016/j.isci.2020.101029_bib31
  article-title: Dependency on medium and temperature of cell size and chemical composition during balanced grown of Salmonella typhimurium
  publication-title: J. Gen. Microbiol.
  doi: 10.1099/00221287-19-3-592
– volume: 42
  start-page: 11383
  year: 2014
  ident: 10.1016/j.isci.2020.101029_bib5
  article-title: Chromosome position effects on gene expression in Escherichia coli K-12
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gku828
– volume: 7
  start-page: 11055
  year: 2016
  ident: 10.1016/j.isci.2020.101029_bib22
  article-title: Genome scale patterns of supercoiling in a bacterial chromosome
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms11055
SSID ssj0002002496
Score 2.1561108
Snippet Bacterial gene expression depends on the allocation of limited transcriptional resources provided a particular growth rate and growth condition. Early studies...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 101029
SubjectTerms Mathematical Biosciences
Microbial Genetics
Microbiology
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kF72I4iu-iOBNg0k2u-keVXweFETB27LZB7aUtKhF_PfO7Ca1paAehB6abZo2s99mvmFnviHkMO9WgjMKYYliLAH-b5IqK3nieCVKkTnUHMNsizt-_VTcPrPnqVZfmBMW5IGD4U5EqSoKKNGsAnJtWTcttM1UajANTnNfupd2xVQw1ffbayiF5zvLMcwJAmg2FTMhuQsrXiE4zP1A6vnlt1fy4v0zzmmefM7nUC6O65H6_FCDwZSDulwhyw2zjE_DHa2SBVuvkSuAQXzjKyHjoYuDwn_sHVT7uIDjh9CQHg5ieJ0FAWcYR03q-B7FOdfJ0-XF4_l10vROSDS2KEhoavNUO3BFGdUFFuDqgglqUgUxoKnAT2uHUn9OKJFzA2GMs_DeFLawpkwLukE69bC2WyRWjnFrwdiZxeVuBKO5E7yi1JVdUZqIZK3tpG6ExbG_xUC2GWR9ifaWaG8Z7B2Ro8l3RkFW48ezz3BKJmeiJLYfAKDIBijyN6BEhLUTKht2EVgDXKr3448ftLMvYenhfoqq7XD8JoHtCC4oPAUjshnQMPmLFGWFYCYiUs7gZOYeZj-pey9e3rtEVbw8j8jxBFF_sNH2f9hohyzhJXG3LC92Sef9dWz3gHS9V_t-fX0BAF0kdA
  priority: 102
  providerName: Directory of Open Access Journals
Title The Impact of Global Transcriptional Regulation on Bacterial Gene Order
URI https://dx.doi.org/10.1016/j.isci.2020.101029
https://www.ncbi.nlm.nih.gov/pubmed/32283521
https://www.proquest.com/docview/2389693400
https://pubmed.ncbi.nlm.nih.gov/PMC7155222
http://www.cell.com/article/S2589004220302133/pdf
https://doaj.org/article/97ab3963c5b548e5804ce1a0d7887c69
UnpaywallVersion publishedVersion
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals
  customDbUrl:
  eissn: 2589-0042
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002002496
  issn: 2589-0042
  databaseCode: DOA
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2589-0042
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002002496
  issn: 2589-0042
  databaseCode: RPM
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-N7gFeYIiPZbApSLxBtsSOnfhxQ4zBw0CDSuPJSvwBG1Vaba0Q_PXc2UmhqjQNqQ-xc3Ua3-U-0rvfAbxkdauk4BiWNEJk6P_brC0qmXnZqkoVnjDHKNviVJ6Myw_n4nwDhsaFlFVJb6yDju737uAzE7UKYFUokQyDqoOZ9XdgUwp0v0ewOT79dPiVmsgJSv9Bur44JuZxUXErxoEsTOTBlfxrgAJO_4odWvcz19Ml7y66WfPrZzOZ_GOLjh_A2VDRE1NQfuwv5u2--b0O8Hj729yC-71nmh5Guoew4bpH8A7FKH0fKinTqU9jh4A0GLhB3eD4LDa0x0GKn6MIAI3zhGmdfiRwz8cwPn775c1J1vdeyAy1OMh47lhuPJqygpuSCnhNKRS3eYMxpG3RzhtPUIFeNYpJi2GQd3hsS1c6W-UlfwKjbtq5bUgbL6RzdWUKR-rCKsGZV7Ll3Fe1qmwCxcAQbXpgcuqPMdFDBtqlJiZqYqKOTEzg1fI7swjLcSP1EfF5SUmQ2mFievVN99uvVdW0HNWRES1GcU7UeWlc0eSW8i2NxEXEICW6906i14FLXdx48ReDSGl8dIntTeemi2uN3pKSiqMWTeBpFLHlT-QES4ScSKBaEb6Ve1g90118D_DgFaHqMZbA66WY3mKPdv6P_BncoxH9r8bK5zCaXy3cLrpn83YvvNbY6x_LP9-fNT8
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6V7QEupYhXCkVB4gZpEzu242NbtRQOBRVWKicr8aMUVtlV2RWCX89MnCysVqqKlEPsTLKJZzKPzcw3AK9Y1WgpOIYltRAZ-v8uawolsyAbrXQRCHOMsi3O5Om4fH8hLjZgaFxIWZX0j3Wno_u12__ERKU7sCqUSIZB1f7MhTuwKQW63yPYHJ99PPhCTeQEpf8gXV8cE_O4qLgV40DWTeSdK_nXAHU4_St2aN3PXE-XvLtoZ_Wvn_Vk8o8tOrkP50NFT0xB-b63mDd79vc6wOPtH3MbtnrPND2IdA9gw7cP4S2KUfquq6RMpyGNHQLSzsAN6gbH57GhPQ5S3A4jADTOE6Z1-oHAPR_B-OT489Fp1vdeyCy1OMh47lluA5qygtuSCnhtKTR3eY0xpGvQzttAUIFB15pJh2FQ8LjvSl96p_KSP4ZRO239U0jrIKT3lbKFJ3XhtOAsaNlwHlSllUugGBhibA9MTv0xJmbIQPtmiImGmGgiExN4vTxnFmE5bqQ-JD4vKQlSu5uYXl-afvmNVnXDUR1Z0WAU50WVl9YXde4o39JKvIgYpMT03kn0OvBSVzf--MtBpAy-usT2uvXTxQ-D3pKWmqMWTeBJFLHlLXKCJUJOJKBWhG_lGVaPtFdfO3hwRah6jCXwZimmt1ijnf8jfwb3aETf1Vj5HEbz64XfRfds3rzoX8g_peE0Sg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Impact+of+Global+Transcriptional+Regulation+on+Bacterial+Gene+Order&rft.jtitle=iScience&rft.au=Yubero%2C+Pablo&rft.au=Poyatos%2C+Juan+F.&rft.date=2020-04-24&rft.pub=Elsevier&rft.eissn=2589-0042&rft.volume=23&rft.issue=4&rft_id=info:doi/10.1016%2Fj.isci.2020.101029&rft_id=info%3Apmid%2F32283521&rft.externalDocID=PMC7155222
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2589-0042&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2589-0042&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2589-0042&client=summon