Numerical investigation of four-lid-driven cavity flow bifurcation using the multiple-relaxation-time lattice Boltzmann method

•More flexibilities allowed for MRT-LBM to simulate challenging flow bifurcations.•Practical guidelines provided for using MRT-LBM to detect characteristic flow patterns.•All major four-lid-driven cavity flow features captured by the present MRT-LBM alone. As a fundamental subject in fluid mechanics...

Full description

Saved in:
Bibliographic Details
Published inComputers & fluids Vol. 110; pp. 136 - 151
Main Authors Zhuo, Congshan, Zhong, Chengwen, Guo, Xixiong, Cao, Jun
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.03.2015
Subjects
Online AccessGet full text
ISSN0045-7930
1879-0747
DOI10.1016/j.compfluid.2014.11.018

Cover

Abstract •More flexibilities allowed for MRT-LBM to simulate challenging flow bifurcations.•Practical guidelines provided for using MRT-LBM to detect characteristic flow patterns.•All major four-lid-driven cavity flow features captured by the present MRT-LBM alone. As a fundamental subject in fluid mechanics, sophisticated cavity flow patterns due to the movement of multi-lids have been routinely analyzed by the Computational Fluid Dynamics community. This paper seeks to make a systematic study over the complex four-lid-driven cavity flows using the multiple-relaxation-time (MRT) lattice Boltzmann method (LBM). The flow is generated by moving the top wall to the right and the bottom wall to the left, while moving the left wall downwards and the right wall upwards, with an identical moving speed. The present MRT-LBM results reveal a lot of important features of bifurcated flow, such as the symmetry and steady characteristics of cavity flows at low Reynolds numbers, the two-stage multiplicity of stable asymmetric and unstable symmetric cavity flow patterns when the Reynolds number exceeds its first and second critical values (corresponding to the first and second steady bifurcation stages), respectively, as well as the flow periodicity after a further critical Reynolds number is reached (referred to as Hopf bifurcation point). For the steady flow regions, the detailed characteristics are reported that include the locations of the vortex centers, the values of stream function at the vortex centers. For the first and second steady bifurcations as well as the Hopf bifurcation phenomena, in the present MRT simulations, the critical Reynolds numbers are predicted at 132.5±0.5, 359±1, and 720±7, respectively. For the numerically observed periodic flows, the history plots for the stream function and vorticity and the corresponding phase-space trajectories, as well as the merging and unmerging details of the different vortices during a single period of the change in flow pattern are all examined. Through comparison against the stability analysis and numerical results reported elsewhere, not only does the MRT-LBM approach exhibit its fairly satisfactory accuracy, but also its remarkable capability for investigating the multiplicity of complex flow patterns.
AbstractList As a fundamental subject in fluid mechanics, sophisticated cavity flow patterns due to the movement of multi-lids have been routinely analyzed by the Computational Fluid Dynamics community. This paper seeks to make a systematic study over the complex four-lid-driven cavity flows using the multiple-relaxation-time (MRT) lattice Boltzmann method (LBM). The flow is generated by moving the top wall to the right and the bottom wall to the left, while moving the left wall downwards and the right wall upwards, with an identical moving speed. Through comparison against the stability analysis and numerical results reported elsewhere, not only does the MRT-LBM approach exhibit its fairly satisfactory accuracy, but also its remarkable capability for investigating the multiplicity of complex flow patterns.
•More flexibilities allowed for MRT-LBM to simulate challenging flow bifurcations.•Practical guidelines provided for using MRT-LBM to detect characteristic flow patterns.•All major four-lid-driven cavity flow features captured by the present MRT-LBM alone. As a fundamental subject in fluid mechanics, sophisticated cavity flow patterns due to the movement of multi-lids have been routinely analyzed by the Computational Fluid Dynamics community. This paper seeks to make a systematic study over the complex four-lid-driven cavity flows using the multiple-relaxation-time (MRT) lattice Boltzmann method (LBM). The flow is generated by moving the top wall to the right and the bottom wall to the left, while moving the left wall downwards and the right wall upwards, with an identical moving speed. The present MRT-LBM results reveal a lot of important features of bifurcated flow, such as the symmetry and steady characteristics of cavity flows at low Reynolds numbers, the two-stage multiplicity of stable asymmetric and unstable symmetric cavity flow patterns when the Reynolds number exceeds its first and second critical values (corresponding to the first and second steady bifurcation stages), respectively, as well as the flow periodicity after a further critical Reynolds number is reached (referred to as Hopf bifurcation point). For the steady flow regions, the detailed characteristics are reported that include the locations of the vortex centers, the values of stream function at the vortex centers. For the first and second steady bifurcations as well as the Hopf bifurcation phenomena, in the present MRT simulations, the critical Reynolds numbers are predicted at 132.5±0.5, 359±1, and 720±7, respectively. For the numerically observed periodic flows, the history plots for the stream function and vorticity and the corresponding phase-space trajectories, as well as the merging and unmerging details of the different vortices during a single period of the change in flow pattern are all examined. Through comparison against the stability analysis and numerical results reported elsewhere, not only does the MRT-LBM approach exhibit its fairly satisfactory accuracy, but also its remarkable capability for investigating the multiplicity of complex flow patterns.
Author Zhuo, Congshan
Guo, Xixiong
Cao, Jun
Zhong, Chengwen
Author_xml – sequence: 1
  givenname: Congshan
  surname: Zhuo
  fullname: Zhuo, Congshan
  organization: National Key Laboratory of Science and Technology on Aerodynamic Design and Research, Northwestern Polytechnical University, Xi’an 710072, PR China
– sequence: 2
  givenname: Chengwen
  surname: Zhong
  fullname: Zhong, Chengwen
  organization: National Key Laboratory of Science and Technology on Aerodynamic Design and Research, Northwestern Polytechnical University, Xi’an 710072, PR China
– sequence: 3
  givenname: Xixiong
  surname: Guo
  fullname: Guo, Xixiong
  organization: Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, Ontario M5B 2K3, Canada
– sequence: 4
  givenname: Jun
  surname: Cao
  fullname: Cao, Jun
  email: jcao@ryerson.ca
  organization: Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, Ontario M5B 2K3, Canada
BookMark eNqNkT9vFDEQxS0UJC6Bz4BLmr141rvn3YIiRPyTImigtnz2OJmT1z5s75FQ8NmzySEKGlKNRvPek-b9TtlJTBEZew1iDQI257u1TdPeh5ncuhXQrQHWAoZnbAWDGhuhOnXCVkJ0faNGKV6w01J2Ytll263Y7y_zhJmsCZziAUula1MpRZ4892nOTSDXuEwHjNyaA9U77kP6ybfk52yP0rlQvOb1Bvk0h0r7gE3GYG4fr02lCXkwtZJF_i6F-msyMfIJ601yL9lzb0LBV3_mGfv-4f23y0_N1dePny8vrhrbt1AbGLadHGTvjUM1CiddN3oB0krnres2pjfbrt0Mg2xx8HIACX659uNG9eDFKM_Ym2PuPqcf8_KmnqhYDMFETHPRoMSoWiGH7klSUGMPapGqo9TmVEpGr_eZJpPvNAj9AEfv9F84-gGOBtALnMX59h-npfrYV82GwhP8F0c_LqUdCLMuljBadJTRVu0S_TfjHmO9tgU
CitedBy_id crossref_primary_10_1016_j_enganabound_2023_05_037
crossref_primary_10_1088_1873_7005_aace32
crossref_primary_10_1088_1873_7005_ab7bcf
crossref_primary_10_1016_j_compfluid_2016_08_004
crossref_primary_10_1002_eng2_70047
crossref_primary_10_1016_j_compfluid_2017_10_027
crossref_primary_10_1016_j_camwa_2020_05_025
crossref_primary_10_3390_math10224242
crossref_primary_10_1016_j_matcom_2025_03_015
Cites_doi 10.1016/j.compfluid.2013.08.005
10.1016/j.compfluid.2010.03.006
10.1016/j.camwa.2013.02.020
10.1006/jcph.2002.7145
10.1146/annurev.fluid.30.1.329
10.1016/j.camwa.2010.03.053
10.1088/0169-5983/44/3/031403
10.1006/jcph.1995.1103
10.1002/fld.953
10.1007/s00162-013-0312-3
10.1016/j.physleta.2006.07.074
10.1016/S0017-9310(98)00224-5
10.1002/fld.533
10.1103/PhysRevE.83.056710
10.1017/S0022112096004727
10.1088/1009-1963/11/4/310
10.1103/PhysRevE.68.036706
10.1016/j.camwa.2013.03.002
10.1146/annurev.fluid.32.1.93
10.1016/j.compfluid.2004.12.004
10.1146/annurev-fluid-121108-145519
10.1007/s001620050138
10.1103/PhysRevE.61.6546
10.1063/1.857891
10.1016/j.compfluid.2005.08.006
10.1016/j.compfluid.2008.02.001
ContentType Journal Article
Copyright 2014 Elsevier Ltd
Copyright_xml – notice: 2014 Elsevier Ltd
DBID AAYXX
CITATION
7UA
C1K
F1W
H96
L.G
7SC
7TB
7U5
8FD
FR3
H8D
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.compfluid.2014.11.018
DatabaseName CrossRef
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
Aerospace Database
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Aerospace Database

Aquatic Science & Fisheries Abstracts (ASFA) Professional
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0747
EndPage 151
ExternalDocumentID 10_1016_j_compfluid_2014_11_018
S0045793014004484
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABAOU
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SST
SSW
SSZ
T5K
TN5
XPP
ZMT
~G-
29F
6TJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABEFU
ABFNM
ABWVN
ABXDB
ACKIV
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
T9H
VH1
WUQ
~HD
7UA
C1K
F1W
H96
L.G
7SC
7TB
7U5
8FD
FR3
H8D
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c521t-18b43835fade790d3d49f013c3dfcd46a5ab4268832e8f38131f13c596751f093
IEDL.DBID .~1
ISSN 0045-7930
IngestDate Wed Oct 01 14:41:46 EDT 2025
Tue Oct 07 09:26:08 EDT 2025
Wed Oct 01 03:04:24 EDT 2025
Thu Apr 24 22:51:24 EDT 2025
Fri Feb 23 02:29:48 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Bifurcation
Multiple-relaxation-time model
Four-lid-driven cavity flow
Lattice Boltzmann method
Flow periodicity
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c521t-18b43835fade790d3d49f013c3dfcd46a5ab4268832e8f38131f13c596751f093
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1709179517
PQPubID 23462
PageCount 16
ParticipantIDs proquest_miscellaneous_1709720384
proquest_miscellaneous_1709179517
crossref_primary_10_1016_j_compfluid_2014_11_018
crossref_citationtrail_10_1016_j_compfluid_2014_11_018
elsevier_sciencedirect_doi_10_1016_j_compfluid_2014_11_018
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-03-01
PublicationDateYYYYMMDD 2015-03-01
PublicationDate_xml – month: 03
  year: 2015
  text: 2015-03-01
  day: 01
PublicationDecade 2010
PublicationTitle Computers & fluids
PublicationYear 2015
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Sahin, Owens (b0020) 2003; 42
Zhuo, Zhong, Cao (b0120) 2013; 65
Alleborn, Raszillier, Durst (b0010) 1999; 42
Shankar, Deshpande (b0040) 2000; 32
Cheng, Hung (b0015) 2006; 35
Lallemand, Luo (b0095) 2000; 61
Guo, Zhong, Zhuo, Cao (b0130) 2014; 28
Wahba (b0030) 2009; 38
Ye, Li (b0125) 2013; 88
Aidun, Triantafillopoulos, Benson (b0005) 1991; 3
Erturk, Corke, Gokcol (b0050) 2005; 48
Luo, Liao, Chen, Peng, Zhang (b0110) 2011; 83
Brezillon, Girault, Cadou (b0060) 2011; 39
Wahba (b0075) 2011; 3
Bruneau, Saad (b0025) 2006; 35
Zhuo, Zhong, Cao (b0115) 2013; 65
Cadou, Guevel, Girault (b0080) 2012; 44
Aidun, Clausen (b0090) 2010; 42
Hou, Zou, Chen, Doolen, Cogley (b0045) 1995; 118
Auteri, Parolini, Quartapelle (b0055) 2002; 183
Kuhlmann, Wanschura, Rath (b0065) 1997; 336
Albensoeder, Kuhlmann, Rath (b0070) 2001; 14
Du, Shi, Chen (b0105) 2006; 359
Guo, Zheng, Shi (b0135) 2002; 11
Lallemand, Luo (b0100) 2003; 68
Chen, Doolen (b0085) 1998; 30
Arumuga Perumal, Anoop Dass (b0035) 2011; 61
Luo (10.1016/j.compfluid.2014.11.018_b0110) 2011; 83
Cheng (10.1016/j.compfluid.2014.11.018_b0015) 2006; 35
Brezillon (10.1016/j.compfluid.2014.11.018_b0060) 2011; 39
Lallemand (10.1016/j.compfluid.2014.11.018_b0095) 2000; 61
Aidun (10.1016/j.compfluid.2014.11.018_b0005) 1991; 3
Auteri (10.1016/j.compfluid.2014.11.018_b0055) 2002; 183
Zhuo (10.1016/j.compfluid.2014.11.018_b0120) 2013; 65
Albensoeder (10.1016/j.compfluid.2014.11.018_b0070) 2001; 14
Ye (10.1016/j.compfluid.2014.11.018_b0125) 2013; 88
Cadou (10.1016/j.compfluid.2014.11.018_b0080) 2012; 44
Du (10.1016/j.compfluid.2014.11.018_b0105) 2006; 359
Guo (10.1016/j.compfluid.2014.11.018_b0130) 2014; 28
Kuhlmann (10.1016/j.compfluid.2014.11.018_b0065) 1997; 336
Chen (10.1016/j.compfluid.2014.11.018_b0085) 1998; 30
Zhuo (10.1016/j.compfluid.2014.11.018_b0115) 2013; 65
Hou (10.1016/j.compfluid.2014.11.018_b0045) 1995; 118
Arumuga Perumal (10.1016/j.compfluid.2014.11.018_b0035) 2011; 61
Shankar (10.1016/j.compfluid.2014.11.018_b0040) 2000; 32
Bruneau (10.1016/j.compfluid.2014.11.018_b0025) 2006; 35
Wahba (10.1016/j.compfluid.2014.11.018_b0075) 2011; 3
Aidun (10.1016/j.compfluid.2014.11.018_b0090) 2010; 42
Sahin (10.1016/j.compfluid.2014.11.018_b0020) 2003; 42
Wahba (10.1016/j.compfluid.2014.11.018_b0030) 2009; 38
Erturk (10.1016/j.compfluid.2014.11.018_b0050) 2005; 48
Guo (10.1016/j.compfluid.2014.11.018_b0135) 2002; 11
Alleborn (10.1016/j.compfluid.2014.11.018_b0010) 1999; 42
Lallemand (10.1016/j.compfluid.2014.11.018_b0100) 2003; 68
References_xml – volume: 336
  start-page: 267
  year: 1997
  end-page: 299
  ident: b0065
  article-title: Flow in two-sided lid-driven cavities: non-uniqueness, instabilities, and cellular structures
  publication-title: J Fluid Mech
– volume: 38
  start-page: 247
  year: 2009
  end-page: 253
  ident: b0030
  article-title: Multiplicity of states for two-sided and four-sided lid-driven cavity flows
  publication-title: Comput Fluids
– volume: 183
  start-page: 1
  year: 2002
  end-page: 25
  ident: b0055
  article-title: Numerical investigation on the stability of singular driven cavity flow
  publication-title: J Comput Phys
– volume: 35
  start-page: 1046
  year: 2006
  end-page: 1062
  ident: b0015
  article-title: Vortex structure of steady flow in a rectangular cavity
  publication-title: Comput Fluids
– volume: 44
  start-page: 031403
  year: 2012
  ident: b0080
  article-title: Numerical tools for the stability analysis of 2D flows: application to the two- and four-sided lid-driven cavity
  publication-title: Fluid Dynam Res
– volume: 61
  start-page: 3711
  year: 2011
  end-page: 3721
  ident: b0035
  article-title: Multiplicity of steady solutions in two-dimensional lid-driven cavity flows by lattice Boltzmann Method
  publication-title: Comput Math Appl
– volume: 11
  start-page: 366
  year: 2002
  end-page: 374
  ident: b0135
  article-title: Non-equilibrium extrapolation method for velocity and pressure boundary conditions in the lattice Boltzmann method
  publication-title: Chin Phys
– volume: 35
  start-page: 326
  year: 2006
  end-page: 348
  ident: b0025
  article-title: The 2D lid-driven cavity problem revisited
  publication-title: Comput Fluids
– volume: 30
  start-page: 329
  year: 1998
  end-page: 364
  ident: b0085
  article-title: Lattice Boltzmann method for fluid flows
  publication-title: Annu Rev Fluid Mech
– volume: 28
  start-page: 215
  year: 2014
  end-page: 231
  ident: b0130
  article-title: Multiple-relaxation-time lattice Boltzmann method for study of two-lid-driven cavity flow solution multiplicity
  publication-title: Theor Comput Fluid Dynam
– volume: 68
  start-page: 036706
  year: 2003
  ident: b0100
  article-title: Theory of the lattice Boltzmann method: acoustic and thermal properties in two and three dimensions
  publication-title: Phys Rev E
– volume: 3
  start-page: 2081
  year: 1991
  end-page: 2091
  ident: b0005
  article-title: Global stability of a lid-driven cavity with through flow: flow visualization studies
  publication-title: Phys Fluids
– volume: 61
  start-page: 6546
  year: 2000
  end-page: 6562
  ident: b0095
  article-title: Theory of the lattice Boltzmann method: dispersion, dissipation, isotropy, Galilean invariance and stability
  publication-title: Phys Rev E
– volume: 48
  start-page: 747
  year: 2005
  end-page: 774
  ident: b0050
  article-title: Numerical solutions of 2-D steady incompressible driven cavity flow at high Reynolds numbers
  publication-title: Int J Numer Meth Fluids
– volume: 42
  start-page: 79
  year: 2003
  end-page: 88
  ident: b0020
  article-title: A novel fully-implicit finite volume method applied to the lid-driven cavity problem–Part II: linear stability analysis
  publication-title: Int J Numer Meth Fluids
– volume: 32
  start-page: 93
  year: 2000
  end-page: 136
  ident: b0040
  article-title: Fluid mechanics in the driven cavity
  publication-title: Annu Rev Fluid Mech
– volume: 65
  start-page: 1883
  year: 2013
  end-page: 1893
  ident: b0120
  article-title: Filter-matrix lattice Boltzmann simulation of lid-driven deep-cavity flows, Part II – flow bifurcation
  publication-title: Comput Math Appl
– volume: 65
  start-page: 1863
  year: 2013
  end-page: 1882
  ident: b0115
  article-title: Filter-matrix lattice Boltzmann simulation of lid-driven deep-cavity flows, Part I – steady flows
  publication-title: Comput Math Appl
– volume: 359
  start-page: 564
  year: 2006
  end-page: 572
  ident: b0105
  article-title: Multi-relaxation-time lattice Boltzmann model for incompressible flow
  publication-title: Phys Lett A
– volume: 42
  start-page: 439
  year: 2010
  end-page: 472
  ident: b0090
  article-title: Lattice-Boltzmann method for complex flows
  publication-title: Annu Rev Fluid Mech
– volume: 42
  start-page: 833
  year: 1999
  end-page: 853
  ident: b0010
  article-title: Lid-driven cavity with heat and mass transport
  publication-title: Int J Heat Mass Transfer
– volume: 88
  start-page: 241
  year: 2013
  end-page: 249
  ident: b0125
  article-title: Entropic lattice Boltzmann method based high Reynolds number flow simulation using CUDA on GPU
  publication-title: Comput Fluids
– volume: 83
  start-page: 056710
  year: 2011
  ident: b0110
  article-title: Numerics of the lattice Boltzmann method: effects of collision models on the lattice Boltzmann simulations
  publication-title: Phys Rev E
– volume: 118
  start-page: 329
  year: 1995
  end-page: 347
  ident: b0045
  article-title: Simulation of cavity flow by the lattice Boltzmann method
  publication-title: J Comput Phys
– volume: 3
  start-page: 100
  year: 2011
  end-page: 110
  ident: b0075
  article-title: Numerical simulations of flow bifurcations inside a driven cavity
  publication-title: CFD Lett
– volume: 39
  start-page: 1226
  year: 2011
  end-page: 1240
  ident: b0060
  article-title: A numerical algorithm coupling a bifurcating indicator and a direct method for the computation of Hopf bifurcation points in fluid mechanics
  publication-title: Comput Fluids
– volume: 14
  start-page: 223
  year: 2001
  end-page: 241
  ident: b0070
  article-title: Multiplicity of steady two-dimensional flows in two-sided lid-driven cavities
  publication-title: Theor Comp Fluid Dynam
– volume: 88
  start-page: 241
  year: 2013
  ident: 10.1016/j.compfluid.2014.11.018_b0125
  article-title: Entropic lattice Boltzmann method based high Reynolds number flow simulation using CUDA on GPU
  publication-title: Comput Fluids
  doi: 10.1016/j.compfluid.2013.08.005
– volume: 39
  start-page: 1226
  year: 2011
  ident: 10.1016/j.compfluid.2014.11.018_b0060
  article-title: A numerical algorithm coupling a bifurcating indicator and a direct method for the computation of Hopf bifurcation points in fluid mechanics
  publication-title: Comput Fluids
  doi: 10.1016/j.compfluid.2010.03.006
– volume: 65
  start-page: 1863
  year: 2013
  ident: 10.1016/j.compfluid.2014.11.018_b0115
  article-title: Filter-matrix lattice Boltzmann simulation of lid-driven deep-cavity flows, Part I – steady flows
  publication-title: Comput Math Appl
  doi: 10.1016/j.camwa.2013.02.020
– volume: 183
  start-page: 1
  year: 2002
  ident: 10.1016/j.compfluid.2014.11.018_b0055
  article-title: Numerical investigation on the stability of singular driven cavity flow
  publication-title: J Comput Phys
  doi: 10.1006/jcph.2002.7145
– volume: 30
  start-page: 329
  year: 1998
  ident: 10.1016/j.compfluid.2014.11.018_b0085
  article-title: Lattice Boltzmann method for fluid flows
  publication-title: Annu Rev Fluid Mech
  doi: 10.1146/annurev.fluid.30.1.329
– volume: 61
  start-page: 3711
  year: 2011
  ident: 10.1016/j.compfluid.2014.11.018_b0035
  article-title: Multiplicity of steady solutions in two-dimensional lid-driven cavity flows by lattice Boltzmann Method
  publication-title: Comput Math Appl
  doi: 10.1016/j.camwa.2010.03.053
– volume: 44
  start-page: 031403
  year: 2012
  ident: 10.1016/j.compfluid.2014.11.018_b0080
  article-title: Numerical tools for the stability analysis of 2D flows: application to the two- and four-sided lid-driven cavity
  publication-title: Fluid Dynam Res
  doi: 10.1088/0169-5983/44/3/031403
– volume: 118
  start-page: 329
  year: 1995
  ident: 10.1016/j.compfluid.2014.11.018_b0045
  article-title: Simulation of cavity flow by the lattice Boltzmann method
  publication-title: J Comput Phys
  doi: 10.1006/jcph.1995.1103
– volume: 48
  start-page: 747
  year: 2005
  ident: 10.1016/j.compfluid.2014.11.018_b0050
  article-title: Numerical solutions of 2-D steady incompressible driven cavity flow at high Reynolds numbers
  publication-title: Int J Numer Meth Fluids
  doi: 10.1002/fld.953
– volume: 28
  start-page: 215
  year: 2014
  ident: 10.1016/j.compfluid.2014.11.018_b0130
  article-title: Multiple-relaxation-time lattice Boltzmann method for study of two-lid-driven cavity flow solution multiplicity
  publication-title: Theor Comput Fluid Dynam
  doi: 10.1007/s00162-013-0312-3
– volume: 359
  start-page: 564
  year: 2006
  ident: 10.1016/j.compfluid.2014.11.018_b0105
  article-title: Multi-relaxation-time lattice Boltzmann model for incompressible flow
  publication-title: Phys Lett A
  doi: 10.1016/j.physleta.2006.07.074
– volume: 42
  start-page: 833
  year: 1999
  ident: 10.1016/j.compfluid.2014.11.018_b0010
  article-title: Lid-driven cavity with heat and mass transport
  publication-title: Int J Heat Mass Transfer
  doi: 10.1016/S0017-9310(98)00224-5
– volume: 3
  start-page: 100
  year: 2011
  ident: 10.1016/j.compfluid.2014.11.018_b0075
  article-title: Numerical simulations of flow bifurcations inside a driven cavity
  publication-title: CFD Lett
– volume: 42
  start-page: 79
  year: 2003
  ident: 10.1016/j.compfluid.2014.11.018_b0020
  article-title: A novel fully-implicit finite volume method applied to the lid-driven cavity problem–Part II: linear stability analysis
  publication-title: Int J Numer Meth Fluids
  doi: 10.1002/fld.533
– volume: 83
  start-page: 056710
  year: 2011
  ident: 10.1016/j.compfluid.2014.11.018_b0110
  article-title: Numerics of the lattice Boltzmann method: effects of collision models on the lattice Boltzmann simulations
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.83.056710
– volume: 336
  start-page: 267
  year: 1997
  ident: 10.1016/j.compfluid.2014.11.018_b0065
  article-title: Flow in two-sided lid-driven cavities: non-uniqueness, instabilities, and cellular structures
  publication-title: J Fluid Mech
  doi: 10.1017/S0022112096004727
– volume: 11
  start-page: 366
  year: 2002
  ident: 10.1016/j.compfluid.2014.11.018_b0135
  article-title: Non-equilibrium extrapolation method for velocity and pressure boundary conditions in the lattice Boltzmann method
  publication-title: Chin Phys
  doi: 10.1088/1009-1963/11/4/310
– volume: 68
  start-page: 036706
  year: 2003
  ident: 10.1016/j.compfluid.2014.11.018_b0100
  article-title: Theory of the lattice Boltzmann method: acoustic and thermal properties in two and three dimensions
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.68.036706
– volume: 65
  start-page: 1883
  year: 2013
  ident: 10.1016/j.compfluid.2014.11.018_b0120
  article-title: Filter-matrix lattice Boltzmann simulation of lid-driven deep-cavity flows, Part II – flow bifurcation
  publication-title: Comput Math Appl
  doi: 10.1016/j.camwa.2013.03.002
– volume: 32
  start-page: 93
  year: 2000
  ident: 10.1016/j.compfluid.2014.11.018_b0040
  article-title: Fluid mechanics in the driven cavity
  publication-title: Annu Rev Fluid Mech
  doi: 10.1146/annurev.fluid.32.1.93
– volume: 35
  start-page: 326
  year: 2006
  ident: 10.1016/j.compfluid.2014.11.018_b0025
  article-title: The 2D lid-driven cavity problem revisited
  publication-title: Comput Fluids
  doi: 10.1016/j.compfluid.2004.12.004
– volume: 42
  start-page: 439
  year: 2010
  ident: 10.1016/j.compfluid.2014.11.018_b0090
  article-title: Lattice-Boltzmann method for complex flows
  publication-title: Annu Rev Fluid Mech
  doi: 10.1146/annurev-fluid-121108-145519
– volume: 14
  start-page: 223
  year: 2001
  ident: 10.1016/j.compfluid.2014.11.018_b0070
  article-title: Multiplicity of steady two-dimensional flows in two-sided lid-driven cavities
  publication-title: Theor Comp Fluid Dynam
  doi: 10.1007/s001620050138
– volume: 61
  start-page: 6546
  year: 2000
  ident: 10.1016/j.compfluid.2014.11.018_b0095
  article-title: Theory of the lattice Boltzmann method: dispersion, dissipation, isotropy, Galilean invariance and stability
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.61.6546
– volume: 3
  start-page: 2081
  year: 1991
  ident: 10.1016/j.compfluid.2014.11.018_b0005
  article-title: Global stability of a lid-driven cavity with through flow: flow visualization studies
  publication-title: Phys Fluids
  doi: 10.1063/1.857891
– volume: 35
  start-page: 1046
  year: 2006
  ident: 10.1016/j.compfluid.2014.11.018_b0015
  article-title: Vortex structure of steady flow in a rectangular cavity
  publication-title: Comput Fluids
  doi: 10.1016/j.compfluid.2005.08.006
– volume: 38
  start-page: 247
  year: 2009
  ident: 10.1016/j.compfluid.2014.11.018_b0030
  article-title: Multiplicity of states for two-sided and four-sided lid-driven cavity flows
  publication-title: Comput Fluids
  doi: 10.1016/j.compfluid.2008.02.001
SSID ssj0004324
Score 2.1419308
Snippet •More flexibilities allowed for MRT-LBM to simulate challenging flow bifurcations.•Practical guidelines provided for using MRT-LBM to detect characteristic...
As a fundamental subject in fluid mechanics, sophisticated cavity flow patterns due to the movement of multi-lids have been routinely analyzed by the...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 136
SubjectTerms Bifurcation
Cavity flow
Communities
Computational fluid dynamics
Computer simulation
Flow periodicity
Fluid flow
Fluids
Four-lid-driven cavity flow
Lattice Boltzmann method
Mathematical models
Multiple-relaxation-time model
Walls
Title Numerical investigation of four-lid-driven cavity flow bifurcation using the multiple-relaxation-time lattice Boltzmann method
URI https://dx.doi.org/10.1016/j.compfluid.2014.11.018
https://www.proquest.com/docview/1709179517
https://www.proquest.com/docview/1709720384
Volume 110
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-0747
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004324
  issn: 0045-7930
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1879-0747
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004324
  issn: 0045-7930
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-0747
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004324
  issn: 0045-7930
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1879-0747
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004324
  issn: 0045-7930
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-0747
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004324
  issn: 0045-7930
  databaseCode: AKRWK
  dateStart: 19730101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6iFz2IT3wuEbxG0226bbzpoqyKe1LwFtI8pFLbZd2iePC3O7NtfSF68NBDmwRCJpmZdL75hpD9INCRFdywJPSeCaktk9aHzPCej41M4cEE56thb3AjLm6j2xnSb3NhEFbZ6P5ap0-1dfPlsFnNw1GWYY6viGB34RWBwyUDOUGFiLGKwcHrB8wDGefqKDNSM4b8C8YLYds-rzKkDA3EAdJ5YvWPny3UN109NUBnS2Sx8RzpcT25ZTLjihWy8IlPcJW8Dqs6AJPT7IM_oyxo6amH8SzPLLNjVHDUaKwaQX1ePtE089W4_ndHEQh_R8EtpC3WkGG-y_O0lWEpeprrCULm6EmZT14edFHQug71Grk5O73uD1hTYIEZrGPAgiRFptLIa-tiyW1ohfTgE5rQemNFT0c6BQuewKl3iQfbHgYeWiMJt4zAcxmuk9miLNwGoUZaHhjT7cYOHAbowsPYJjJxGhwk03WbpNcuqjIN-zgWwchVCzO7V-_SUCgNuJsokMYm4e8DRzUBx99DjlqpqS97SYGZ-HvwXitnBScNwye6cGX1qIIYfKsYPNL49z4Y2E7E1n8msU3m4S2qsW47ZHYyrtwuOD-TtDPd3R0yd3x-ORi-ARepCNM
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYoHNoeEPShQnm4Uq8GJ3E2MTdArBa6u6dF4mY5flRBaYK2G4E48Ns7s0l2oUJw4JBLbEtWxp5H5ptvCPkZBDq2ghuWRt4zIbVl0vqIGd7ziZEZPFjgPBr3Bpfi4iq-WiGnXS0Mwipb3d_o9Lm2bt8ctl_z8CbPscZXxHC6METgEGSId2RNxGGCEdjBwxLngZRzTZoZuRkj_gTkhbhtX9Q5coYG4gD5PLH9x_Mm6j9lPbdA_Q2y3rqO9LjZ3SZZceUn8vERoeBn8jCumwxMQfMlgUZV0spTD-tZkVtmp6jhqNHYNoL6orqlWe7rafPzjiIS_jcFv5B2YEOGBS9381GGvehpoWeImaMnVTG7_6PLkjaNqL-Qy_7Z5HTA2g4LzGAjAxakGVKVxl5bl0huIyukB6fQRNYbK3o61hmY8BSuvUs9GPco8DAaSwgzAs9l9JWsllXpvhFqpOWBMWGYOPAYYAqPEpvK1GnwkEzotkiv-6jKtPTj2AWjUB3O7FotpKFQGhCcKJDGFuGLhTcNA8frS446qaknh0mBnXh98Y9OzgquGuZPdOmq-q8KEnCuEnBJk5fnYGY7Fdtv2cQ-eT-YjIZqeD7-9Z18gJG4Ab7tkNXZtHa74AnNsr35Sf8HHM0KaA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+investigation+of+four-lid-driven+cavity+flow+bifurcation+using+the+multiple-relaxation-time+lattice+Boltzmann+method&rft.jtitle=Computers+%26+fluids&rft.au=Zhuo%2C+Congshan&rft.au=Zhong%2C+Chengwen&rft.au=Guo%2C+Xixiong&rft.au=Cao%2C+Jun&rft.date=2015-03-01&rft.issn=0045-7930&rft.volume=110&rft.spage=136&rft.epage=151&rft_id=info:doi/10.1016%2Fj.compfluid.2014.11.018&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7930&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7930&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7930&client=summon