Ubiquitination of ABCE1 by NOT4 in Response to Mitochondrial Damage Links Co-translational Quality Control to PINK1-Directed Mitophagy

Translation of mRNAs is tightly regulated and constantly surveyed for errors. Aberrant translation can trigger co-translational protein and RNA quality control processes, impairments of which cause neurodegeneration by still poorly understood mechanism(s). Here we show that quality control of transl...

Full description

Saved in:
Bibliographic Details
Published inCell metabolism Vol. 28; no. 1; pp. 130 - 144.e7
Main Authors Wu, Zhihao, Wang, Yan, Lim, Junghyun, Liu, Boxiang, Li, Yanping, Vartak, Rasika, Stankiewicz, Trisha, Montgomery, Stephen, Lu, Bingwei
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 03.07.2018
Subjects
Online AccessGet full text
ISSN1550-4131
1932-7420
1932-7420
DOI10.1016/j.cmet.2018.05.007

Cover

Abstract Translation of mRNAs is tightly regulated and constantly surveyed for errors. Aberrant translation can trigger co-translational protein and RNA quality control processes, impairments of which cause neurodegeneration by still poorly understood mechanism(s). Here we show that quality control of translation of mitochondrial outer membrane (MOM)-localized mRNA intersects with the turnover of damaged mitochondria, both orchestrated by the mitochondrial kinase PINK1. Mitochondrial damage causes stalled translation of complex-I 30 kDa subunit (C-I30) mRNA on MOM, triggering the recruitment of co-translational quality control factors Pelo, ABCE1, and NOT4 to the ribosome/mRNA-ribonucleoprotein complex. Damage-induced ubiquitination of ABCE1 by NOT4 generates poly-ubiquitin signals that attract autophagy receptors to MOM to initiate mitophagy. In the Drosophila PINK1 model, these factors act synergistically to restore mitophagy and neuromuscular tissue integrity. Thus ribosome-associated co-translational quality control generates an early signal to trigger mitophagy. Our results have broad therapeutic implications for the understanding and treatment of neurodegenerative diseases. [Display omitted] •Enhanced translation of OXPHOS-related mRNAs on mitochondrial surface under stress•Severe mitochondrial damage induces translational stalling on mitochondrial surface•Stalled ribosomes recruit co-translational quality control machinery•Remodeling of stalled ribosome/mRNP generates signals that trigger mitophagy Removal of damaged mitochondria is essential for maintaining cellular vitality, but the earliest signal that initiates the mitophagy process is not well defined. Wu et al. show that mitochondrial damage causes stalled translation of OXPHOS-related mRNAs on the mitochondrial surface. Co-translational quality control of stalled ribosomes generates ubiquitin-containing signals that trigger mitophagy.
AbstractList Translation of mRNAs is tightly regulated and constantly surveyed for errors. Aberrant translation can trigger co-translational protein and RNA quality control processes, impairments of which cause neurodegeneration by still poorly understood mechanism(s). Here we show that quality control of translation of mitochondrial outer membrane (MOM)-localized mRNA intersects with the turnover of damaged mitochondria, both orchestrated by the mitochondrial kinase PINK1. Mitochondrial damage causes stalled translation of complex-I 30 kDa subunit (C-I30) mRNA on MOM, triggering the recruitment of co-translational quality control factors Pelo, ABCE1, and NOT4 to the ribosome/mRNA-ribonucleoprotein complex. Damage-induced ubiquitination of ABCE1 by NOT4 generates poly-ubiquitin signals that attract autophagy receptors to MOM to initiate mitophagy. In the Drosophila PINK1 model, these factors act synergistically to restore mitophagy and neuromuscular tissue integrity. Thus ribosome-associated co-translational quality control generates an early signal to trigger mitophagy. Our results have broad therapeutic implications for the understanding and treatment of neurodegenerative diseases.
Translation of mRNAs is tightly regulated and constantly surveyed for errors. Aberrant translation can trigger co-translational protein and RNA quality control processes, impairments of which cause neurodegeneration by still poorly understood mechanism(s). Here we show that quality control of translation of mitochondrial outer membrane (MOM)-localized mRNA intersects with the turnover of damaged mitochondria, both orchestrated by the mitochondrial kinase PINK1. Mitochondrial damage causes stalled translation of complex-I 30 kD subunit ( C-I30 ) mRNA on MOM, triggering the recruitment of co-translational quality control factors Pelo, ABCE1, and NOT4 to the ribosome/mRNA-ribonucleoprotein complex. Damage-induced ubiquitination of ABCE1 by NOT4 generates poly-Ubiquitin signals that attract autophagy receptors to MOM to initiate mitophagy. In the Drosophila PINK1 model, these factors act synergistically to restore mitophagy and neuromuscular tissue integrity. Thus ribosome-associated co-translational quality control generates an early signal to trigger mitophagy. Our results have broad therapeutic implications for the understanding and treatment of neurodegenerative diseases. Removal of damaged mitochondrial is essential for maintaining cellular vitality but the earliest signal that initiates the mitophagy process is not well defined. Wu et al. show that mitochondrial damage causes stalled translation of OXPHOS-related mRNAs on the mitochondrial surface. Co-translational quality control of stalled ribosomes generates ubiquitin-containing signals that trigger mitophagy.
Translation of mRNAs is tightly regulated and constantly surveyed for errors. Aberrant translation can trigger co-translational protein and RNA quality control processes, impairments of which cause neurodegeneration by still poorly understood mechanism(s). Here we show that quality control of translation of mitochondrial outer membrane (MOM)-localized mRNA intersects with the turnover of damaged mitochondria, both orchestrated by the mitochondrial kinase PINK1. Mitochondrial damage causes stalled translation of complex-I 30 kDa subunit (C-I30) mRNA on MOM, triggering the recruitment of co-translational quality control factors Pelo, ABCE1, and NOT4 to the ribosome/mRNA-ribonucleoprotein complex. Damage-induced ubiquitination of ABCE1 by NOT4 generates poly-ubiquitin signals that attract autophagy receptors to MOM to initiate mitophagy. In the Drosophila PINK1 model, these factors act synergistically to restore mitophagy and neuromuscular tissue integrity. Thus ribosome-associated co-translational quality control generates an early signal to trigger mitophagy. Our results have broad therapeutic implications for the understanding and treatment of neurodegenerative diseases. [Display omitted] •Enhanced translation of OXPHOS-related mRNAs on mitochondrial surface under stress•Severe mitochondrial damage induces translational stalling on mitochondrial surface•Stalled ribosomes recruit co-translational quality control machinery•Remodeling of stalled ribosome/mRNP generates signals that trigger mitophagy Removal of damaged mitochondria is essential for maintaining cellular vitality, but the earliest signal that initiates the mitophagy process is not well defined. Wu et al. show that mitochondrial damage causes stalled translation of OXPHOS-related mRNAs on the mitochondrial surface. Co-translational quality control of stalled ribosomes generates ubiquitin-containing signals that trigger mitophagy.
Translation of mRNAs is tightly regulated and constantly surveyed for errors. Aberrant translation can trigger co-translational protein and RNA quality control processes, impairments of which cause neurodegeneration by still poorly understood mechanism(s). Here we show that quality control of translation of mitochondrial outer membrane (MOM)-localized mRNA intersects with the turnover of damaged mitochondria, both orchestrated by the mitochondrial kinase PINK1. Mitochondrial damage causes stalled translation of complex-I 30 kDa subunit (C-I30) mRNA on MOM, triggering the recruitment of co-translational quality control factors Pelo, ABCE1, and NOT4 to the ribosome/mRNA-ribonucleoprotein complex. Damage-induced ubiquitination of ABCE1 by NOT4 generates poly-ubiquitin signals that attract autophagy receptors to MOM to initiate mitophagy. In the Drosophila PINK1 model, these factors act synergistically to restore mitophagy and neuromuscular tissue integrity. Thus ribosome-associated co-translational quality control generates an early signal to trigger mitophagy. Our results have broad therapeutic implications for the understanding and treatment of neurodegenerative diseases.Translation of mRNAs is tightly regulated and constantly surveyed for errors. Aberrant translation can trigger co-translational protein and RNA quality control processes, impairments of which cause neurodegeneration by still poorly understood mechanism(s). Here we show that quality control of translation of mitochondrial outer membrane (MOM)-localized mRNA intersects with the turnover of damaged mitochondria, both orchestrated by the mitochondrial kinase PINK1. Mitochondrial damage causes stalled translation of complex-I 30 kDa subunit (C-I30) mRNA on MOM, triggering the recruitment of co-translational quality control factors Pelo, ABCE1, and NOT4 to the ribosome/mRNA-ribonucleoprotein complex. Damage-induced ubiquitination of ABCE1 by NOT4 generates poly-ubiquitin signals that attract autophagy receptors to MOM to initiate mitophagy. In the Drosophila PINK1 model, these factors act synergistically to restore mitophagy and neuromuscular tissue integrity. Thus ribosome-associated co-translational quality control generates an early signal to trigger mitophagy. Our results have broad therapeutic implications for the understanding and treatment of neurodegenerative diseases.
Author Vartak, Rasika
Lim, Junghyun
Liu, Boxiang
Li, Yanping
Stankiewicz, Trisha
Montgomery, Stephen
Wu, Zhihao
Lu, Bingwei
Wang, Yan
AuthorAffiliation 3 Programs in Neuroscience and Cancer Biology, Stanford University School of Medicine, Stanford CA 94305
2 Department of Genetics, Stanford University School of Medicine, Stanford CA 94305
4 Department of Pharmacology, College of Pharmaceutical Science, Soochow University, Suzhou, China
1 Department of Pathology, Stanford University School of Medicine, Stanford CA 94305
AuthorAffiliation_xml – name: 1 Department of Pathology, Stanford University School of Medicine, Stanford CA 94305
– name: 2 Department of Genetics, Stanford University School of Medicine, Stanford CA 94305
– name: 3 Programs in Neuroscience and Cancer Biology, Stanford University School of Medicine, Stanford CA 94305
– name: 4 Department of Pharmacology, College of Pharmaceutical Science, Soochow University, Suzhou, China
Author_xml – sequence: 1
  givenname: Zhihao
  surname: Wu
  fullname: Wu, Zhihao
  organization: Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
– sequence: 2
  givenname: Yan
  surname: Wang
  fullname: Wang, Yan
  organization: Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
– sequence: 3
  givenname: Junghyun
  surname: Lim
  fullname: Lim, Junghyun
  organization: Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
– sequence: 4
  givenname: Boxiang
  surname: Liu
  fullname: Liu, Boxiang
  organization: Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
– sequence: 5
  givenname: Yanping
  surname: Li
  fullname: Li, Yanping
  organization: Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
– sequence: 6
  givenname: Rasika
  surname: Vartak
  fullname: Vartak, Rasika
  organization: Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
– sequence: 7
  givenname: Trisha
  surname: Stankiewicz
  fullname: Stankiewicz, Trisha
  organization: Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
– sequence: 8
  givenname: Stephen
  surname: Montgomery
  fullname: Montgomery, Stephen
  organization: Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
– sequence: 9
  givenname: Bingwei
  surname: Lu
  fullname: Lu, Bingwei
  email: bingwei@stanford.edu
  organization: Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29861391$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1u1DAUhSNURH_gBVggL9kk2E6cxBJCaqcFKoYWULu2bpybGQ-JPY2dSvMCPDeemVIBi65s6Z7v3KtzjpMD6ywmyWtGM0ZZ-W6V6QFDximrMyoySqtnyRGTOU-rgtOD-BeCpgXL2WFy7P2K0rzMZf4iOeSyLlku2VHy67Yxd5MJxkIwzhLXkdOz2QUjzYZcXd8UxFjyA_3aWY8kOPLVBKeXzrajgZ6cwwALJHNjf3oyc2kYwfp-5xSn3yfoTdjEgQ2j67f4t8urLyw9NyPqgO3Obb2ExeZl8ryD3uOrh_ckuf14cTP7nM6vP13OTuepFpyFlNUCoC5qwE50VVtI3pbYlUAFB94VZcUASglFTYVusdEAnLYlLTXqhlVNmZ8kH_a-66kZsNUYL4NerUczwLhRDoz6d2LNUi3cvRKylkLIaPD2wWB0dxP6oAbjNfY9WHSTV5wWUhaUCxqlb_7e9bjkT_hRwPcCPTrvR-weJYyqbcNqpbYNq23DigoVG45Q_R-kTdglHu81_dPo-z2KMeF7g6Py2qDV2O76UK0zT-G_Acljw7o
CitedBy_id crossref_primary_10_1007_s12268_025_2372_5
crossref_primary_10_1016_j_jbc_2024_107582
crossref_primary_10_1515_hsz_2019_0279
crossref_primary_10_15252_embj_2019103788
crossref_primary_10_1016_j_semcdb_2023_01_003
crossref_primary_10_1080_10409238_2018_1553927
crossref_primary_10_1016_j_arr_2020_101129
crossref_primary_10_1038_s41467_024_45525_3
crossref_primary_10_1039_D2DT00669C
crossref_primary_10_1111_acel_13954
crossref_primary_10_1152_ajprenal_00189_2023
crossref_primary_10_1002_wrna_1721
crossref_primary_10_1007_s12035_019_01667_w
crossref_primary_10_1093_nar_gkae137
crossref_primary_10_1016_j_tibs_2018_11_003
crossref_primary_10_3389_fcell_2020_610689
crossref_primary_10_1016_j_molimm_2020_12_020
crossref_primary_10_1016_j_celrep_2023_112579
crossref_primary_10_1016_j_drudis_2019_04_003
crossref_primary_10_1016_j_immuni_2023_02_014
crossref_primary_10_1016_j_semcdb_2023_03_009
crossref_primary_10_1016_j_cmet_2023_04_003
crossref_primary_10_3390_cells9102229
crossref_primary_10_1016_j_cmet_2023_02_014
crossref_primary_10_1038_s41467_025_56346_3
crossref_primary_10_1111_febs_17217
crossref_primary_10_14336_AD_2020_0913
crossref_primary_10_1093_gerona_glae304
crossref_primary_10_1093_nar_gkad299
crossref_primary_10_1016_j_phrs_2024_107336
crossref_primary_10_1016_j_ejmech_2022_114743
crossref_primary_10_1101_gad_320952_118
crossref_primary_10_1126_scisignal_adl1030
crossref_primary_10_1002_jcp_30040
crossref_primary_10_1002_bies_202100269
crossref_primary_10_1016_j_celrep_2021_109633
crossref_primary_10_1073_pnas_2202322119
crossref_primary_10_1002_wrna_1827
crossref_primary_10_1016_j_molcel_2019_06_031
crossref_primary_10_1038_s41401_022_00879_6
crossref_primary_10_1016_j_tox_2020_152408
crossref_primary_10_1016_j_tcb_2020_01_008
crossref_primary_10_1261_rna_079683_123
crossref_primary_10_1242_jcs_253591
crossref_primary_10_5483_BMBRep_2021_54_9_097
crossref_primary_10_1038_s41576_024_00810_1
crossref_primary_10_3892_mmr_2020_11066
crossref_primary_10_1002_adhm_202400366
crossref_primary_10_1002_jcp_30111
crossref_primary_10_1002_advs_202003636
crossref_primary_10_1126_sciadv_adn2050
crossref_primary_10_1111_cns_13183
crossref_primary_10_1016_j_jinorgbio_2023_112152
crossref_primary_10_1016_j_devcel_2021_02_009
crossref_primary_10_1038_s41467_020_20506_4
crossref_primary_10_1111_cns_13140
crossref_primary_10_1042_BCJ20230110
Cites_doi 10.1146/annurev-genom-082509-141720
10.1083/jcb.201311103
10.1038/nature04530
10.1091/mbc.e12-05-0413
10.1111/j.2517-6161.1995.tb02031.x
10.1126/science.1249749
10.1038/nature04779
10.1016/j.molcel.2015.08.016
10.1101/gad.262758.115
10.1073/pnas.0711845105
10.1093/hmg/ddr048
10.1038/emboj.2011.93
10.1016/j.cell.2006.11.046
10.1083/jcb.200809125
10.1073/pnas.1523926113
10.1261/rna.2145110
10.1016/j.molcel.2014.07.006
10.1073/pnas.0602493103
10.1038/emboj.2012.38
10.1126/science.1096284
10.1146/annurev.biochem.66.1.863
10.1038/nature04788
10.1073/pnas.1307747110
10.1073/pnas.1405752111
10.1101/gr.135350.111
10.1186/s13059-014-0550-8
10.1093/emboj/19.21.5720
10.1096/fj.11-195875
10.1016/j.cell.2007.12.018
10.1016/j.neuron.2011.06.003
10.1146/annurev.genet.39.110304.095751
10.1083/jcb.29.3.395
10.1073/pnas.1107332108
10.1038/33416
10.1038/nature12043
10.1080/15476286.2016.1269993
10.1101/gad.8.5.525
10.1126/science.aaa3650
10.1038/nsmb.3147
10.1371/journal.ppat.1004034
10.1016/j.cell.2011.10.018
10.1038/nature14893
10.1186/s12920-016-0164-y
10.1371/journal.pgen.1002537
10.1089/ars.2010.3799
10.1016/j.cell.2017.10.002
10.1242/dev.02151
10.1371/journal.pgen.1002456
10.1016/j.neuron.2014.12.007
10.1126/science.1192430
10.1073/pnas.0803998105
10.1073/pnas.0812819106
10.1016/S0026-895X(25)10662-7
10.1074/jbc.M808840200
10.1038/nature08971
10.1073/pnas.0709336105
10.1016/j.cell.2006.06.010
10.1001/jamaneurol.2016.3712
10.1016/j.cell.2016.11.042
10.1371/journal.pbio.1000298
10.1016/j.freeradbiomed.2016.04.015
10.1016/j.cmet.2014.12.007
10.1016/j.ajhg.2016.06.026
10.1016/j.tcb.2016.05.008
10.1186/gb-2013-14-4-r36
10.1016/j.cell.2014.02.049
10.1083/jcb.200711108
10.1126/science.1066901
ContentType Journal Article
Copyright 2018 Elsevier Inc.
Copyright © 2018 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2018 Elsevier Inc.
– notice: Copyright © 2018 Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.cmet.2018.05.007
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1932-7420
EndPage 144.e7
ExternalDocumentID PMC5989559
29861391
10_1016_j_cmet_2018_05_007
S1550413118303140
Genre Journal Article
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: R01 MH080378
– fundername: NINDS NIH HHS
  grantid: R37 NS083417
– fundername: NINDS NIH HHS
  grantid: R01 NS083417
– fundername: NINDS NIH HHS
  grantid: R01 NS084412
GroupedDBID ---
--K
0R~
1~5
29B
2WC
4.4
457
4G.
53G
5GY
62-
6I.
6J9
7-5
AACTN
AAEDW
AAFTH
AAIAV
AAKRW
AAKUH
AALRI
AAUCE
AAVLU
AAXUO
ABJNI
ABMAC
ABMWF
ABVKL
ACGFO
ACGFS
ADBBV
ADEZE
ADJPV
AEFWE
AENEX
AEXQZ
AFTJW
AGKMS
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FEDTE
FIRID
HVGLF
IHE
IXB
J1W
JIG
M3Z
M41
NCXOZ
O-L
O9-
OK1
P2P
RCE
RIG
ROL
RPZ
SES
SSZ
TR2
UNMZH
WQ6
ZA5
AAEDT
AAIKJ
AAMRU
AAYWO
AAYXX
ABDGV
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AGCQF
AGHFR
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
HZ~
OZT
CGR
CUY
CVF
ECM
EIF
NPM
7X8
EFKBS
5PM
ID FETCH-LOGICAL-c521t-185aa848aef5f7d492d6ef6a052a2f4671aa69a4805cdebcaa20d606cecb17b63
IEDL.DBID IXB
ISSN 1550-4131
1932-7420
IngestDate Thu Aug 21 18:32:25 EDT 2025
Sun Sep 28 01:18:54 EDT 2025
Thu Apr 03 07:07:51 EDT 2025
Thu Apr 24 22:59:23 EDT 2025
Thu Jul 10 08:53:26 EDT 2025
Fri Feb 23 02:45:29 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords mitochondrial quality control
mitophagy
PINK1
co-translational quality control
NOT4
ubiquitination
autophagy receptor recruitment
ribosome/mRNP remodeling
ribosome stalling
ABCE1
Language English
License This article is made available under the Elsevier license.
Copyright © 2018 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c521t-185aa848aef5f7d492d6ef6a052a2f4671aa69a4805cdebcaa20d606cecb17b63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Lead Contact
These authors contributed equally to this study
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1550413118303140
PMID 29861391
PQID 2049940250
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5989559
proquest_miscellaneous_2049940250
pubmed_primary_29861391
crossref_primary_10_1016_j_cmet_2018_05_007
crossref_citationtrail_10_1016_j_cmet_2018_05_007
elsevier_sciencedirect_doi_10_1016_j_cmet_2018_05_007
PublicationCentury 2000
PublicationDate 2018-07-03
PublicationDateYYYYMMDD 2018-07-03
PublicationDate_xml – month: 07
  year: 2018
  text: 2018-07-03
  day: 03
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell metabolism
PublicationTitleAlternate Cell Metab
PublicationYear 2018
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Kim, Pertea, Trapnell, Pimentel, Kelley, Salzberg (bib29) 2013; 14
Narendra, Jin, Tanaka, Suen, Gautier, Shen, Cookson, Youle (bib41) 2010; 8
Cirulli, Lasseigne, Petrovski, Sapp, Dion, Leblond, Couthouis, Lu, Wang, Krueger (bib9) 2015; 347
Wu, He, Tian, Meng, Li, Chen, Li, Tian, Zhong, Han (bib65) 2014; 10
Shao, Hegde (bib55) 2014; 55
Liu, Sawada, Lee, Yu, Silverio, Alapatt, Millan, Shen, Saxton, Kanao (bib33) 2012; 8
Yang, Gehrke, Imai, Huang, Ouyang, Wang, Yang, Beal, Vogel, Lu (bib67) 2006; 103
Narendra, Tanaka, Suen, Youle (bib40) 2008; 183
Yang, Ouyang, Yang, Beal, McQuibban, Vogel, Lu (bib68) 2008; 105
Dumitriu, Golji, Labadorf, Gao, Beach, Myers, Longo, Latourelle (bib15) 2016; 9
Heo, Ordureau, Paulo, Rinehart, Harper (bib24) 2015; 60
Wei, Chiang, Sumpter, Mishra, Levine (bib63) 2017; 168
Grönholm, Kaustio, Myllymaki, Kallio, Saarikettu, Kronhamn, Valanne, Silvennoinen, Ramet (bib21) 2012; 26
Narendra, Youle (bib42) 2011; 14
Alhebshi, Sideri, Holland, Avery (bib1) 2012; 23
Lazarou, Sliter, Kane, Sarraf, Wang, Burman, Sideris, Fogel, Youle (bib31) 2015; 524
Deng, Dodson, Huang, Guo (bib12) 2008; 105
Haack, Ignatius, Calvo-Garrido, Iuso, Isohanni, Maffezzini, Lonnqvist, Suomalainen, Gorza, Kremer (bib22) 2016; 99
Gehrke, Wu, Klinkenberg, Sun, Auburger, Guo, Lu (bib18) 2015; 21
Love, Huber, Anders (bib35) 2014; 15
Wallace (bib61) 2005; 39
Valente, Abou-Sleiman, Caputo, Muqit, Harvey, Gispert, Ali, Del Turco, Bentivoglio, Healy (bib59) 2004; 304
Chan, Salazar, Pham, Sweredoski, Kolawa, Graham, Hess, Chan (bib7) 2011; 20
Kitada, Asakawa, Hattori, Matsumine, Yamamura, Minoshima, Yokochi, Mizuno, Shimizu (bib30) 1998; 392
Ishimura, Nagy, Dotu, Zhou, Yang, Schimmel, Senju, Nishimura, Chuang, Ackerman (bib26) 2014; 345
Doma, Parker (bib14) 2006; 440
Richter, Sliter, Herhaus, Stolz, Wang, Beli, Zaffagnini, Wild, Martens, Wagner (bib51) 2016; 113
Huang (bib25) 1975; 11
Vilain, Esposito, Haddad, Schaap, Dobreva, Vos, Van Meensel, Morais, De Strooper, Verstreken (bib60) 2012; 8
Chan (bib6) 2006; 125
Neupert (bib43) 1997; 66
Pisareva, Skabkin, Hellen, Pestova, Pisarev (bib48) 2011; 30
Brandman, Hegde (bib4) 2016; 23
Rugarli, Langer (bib52) 2012; 31
Park, Lee, Lee, Kim, Song, Kim, Bae, Kim, Shong, Kim (bib46) 2006; 441
Calvo, Mootha (bib5) 2010; 11
Bingol, Sheng (bib3) 2016; 100
Wang, Winter, Ashrafi, Schlehe, Wong, Selkoe, Rice, Steen, Lavoie, Schwarz (bib62) 2011; 147
Wong, Holzbaur (bib64) 2014; 111
Utsunomiya, Roth (bib58) 1966; 29
Lykke-Andersen, Bennett (bib36) 2014; 204
Durcan, Fon (bib16) 2015; 29
Benjamini, Hochberg (bib2) 1995; 57
Mancera-Martinez, Brito Querido, Valasek, Simonetti, Hashem (bib37) 2017; 14
Nezis, Simonsen, Sagona, Finley, Gaumer, Contamine, Rusten, Stenmark, Brech (bib44) 2008; 180
Xi, Doan, Liu, Xie (bib66) 2005; 132
Graber, Hebert-Seropian, Khoutorsky, David, Yewdell, Lacaille, Sossin (bib19) 2013; 110
Maruyama, Morino, Ito, Izumi, Kato, Watanabe, Kinoshita, Kamada, Nodera, Suzuki (bib38) 2010; 465
Sarraf, Raman, Guarani-Pereira, Sowa, Huttlin, Gygi, Harper (bib53) 2013; 496
Chu, Hong, Masuda, Jenkins, Nelms, Goodnow, Glynne, Wu, Masliah, Joazeiro (bib8) 2009; 106
Pickrell, Youle (bib47) 2015; 85
Nguyen, Padman, Lazarou (bib45) 2016; 26
Shoemaker, Eyler, Green (bib56) 2010; 330
Collart, Struhl (bib11) 1994; 8
Rezaie, Child, Hitchings, Brice, Miller, Coca-Prados, Heon, Krupin, Ritch, Kreutzer (bib50) 2002; 295
Schon, Przedborski (bib54) 2011; 70
Izawa, Park, Zhao, Hartl, Neupert (bib27) 2017; 171
Liu, Acin-Perez, Geghman, Manfredi, Lu, Li (bib34) 2011; 108
Clark, Dodson, Jiang, Cao, Huh, Seol, Yoo, Hay, Guo (bib10) 2006; 441
Levine, Kroemer (bib32) 2008; 132
Dimitrova, Kuroha, Tatematsu, Inada (bib13) 2009; 284
Kabeya, Mizushima, Ueno, Yamamoto, Kirisako, Noda, Kominami, Ohsumi, Yoshimori (bib28) 2000; 19
Moerke, Aktas, Chen, Cantel, Reibarkh, Fahmy, Gross, Degterev, Yuan, Chorev (bib39) 2007; 128
Harrow, Frankish, Gonzalez, Tapanari, Diekhans, Kokocinski, Aken, Barrell, Zadissa, Searle (bib23) 2012; 22
Temme, Zhang, Kremmer, Ihling, Chartier, Sinz, Simonelig, Wahle (bib57) 2010; 16
Poole, Thomas, Andrews, McBride, Whitworth, Pallanck (bib49) 2008; 105
Freischmidt, Muller, Ludolph, Weishaupt, Andersen (bib17) 2017; 74
Green, Levine (bib20) 2014; 157
Liu (10.1016/j.cmet.2018.05.007_bib33) 2012; 8
Neupert (10.1016/j.cmet.2018.05.007_bib43) 1997; 66
Valente (10.1016/j.cmet.2018.05.007_bib59) 2004; 304
Nezis (10.1016/j.cmet.2018.05.007_bib44) 2008; 180
Dimitrova (10.1016/j.cmet.2018.05.007_bib13) 2009; 284
Dumitriu (10.1016/j.cmet.2018.05.007_bib15) 2016; 9
Haack (10.1016/j.cmet.2018.05.007_bib22) 2016; 99
Nguyen (10.1016/j.cmet.2018.05.007_bib45) 2016; 26
Heo (10.1016/j.cmet.2018.05.007_bib24) 2015; 60
Green (10.1016/j.cmet.2018.05.007_bib20) 2014; 157
Izawa (10.1016/j.cmet.2018.05.007_bib27) 2017; 171
Utsunomiya (10.1016/j.cmet.2018.05.007_bib58) 1966; 29
Vilain (10.1016/j.cmet.2018.05.007_bib60) 2012; 8
Huang (10.1016/j.cmet.2018.05.007_bib25) 1975; 11
Pickrell (10.1016/j.cmet.2018.05.007_bib47) 2015; 85
Gehrke (10.1016/j.cmet.2018.05.007_bib18) 2015; 21
Brandman (10.1016/j.cmet.2018.05.007_bib4) 2016; 23
Mancera-Martinez (10.1016/j.cmet.2018.05.007_bib37) 2017; 14
Maruyama (10.1016/j.cmet.2018.05.007_bib38) 2010; 465
Narendra (10.1016/j.cmet.2018.05.007_bib41) 2010; 8
Shao (10.1016/j.cmet.2018.05.007_bib55) 2014; 55
Freischmidt (10.1016/j.cmet.2018.05.007_bib17) 2017; 74
Pisareva (10.1016/j.cmet.2018.05.007_bib48) 2011; 30
Schon (10.1016/j.cmet.2018.05.007_bib54) 2011; 70
Levine (10.1016/j.cmet.2018.05.007_bib32) 2008; 132
Kabeya (10.1016/j.cmet.2018.05.007_bib28) 2000; 19
Wallace (10.1016/j.cmet.2018.05.007_bib61) 2005; 39
Yang (10.1016/j.cmet.2018.05.007_bib68) 2008; 105
Wei (10.1016/j.cmet.2018.05.007_bib63) 2017; 168
Kim (10.1016/j.cmet.2018.05.007_bib29) 2013; 14
Liu (10.1016/j.cmet.2018.05.007_bib34) 2011; 108
Clark (10.1016/j.cmet.2018.05.007_bib10) 2006; 441
Collart (10.1016/j.cmet.2018.05.007_bib11) 1994; 8
Doma (10.1016/j.cmet.2018.05.007_bib14) 2006; 440
Harrow (10.1016/j.cmet.2018.05.007_bib23) 2012; 22
Kitada (10.1016/j.cmet.2018.05.007_bib30) 1998; 392
Grönholm (10.1016/j.cmet.2018.05.007_bib21) 2012; 26
Lazarou (10.1016/j.cmet.2018.05.007_bib31) 2015; 524
Chan (10.1016/j.cmet.2018.05.007_bib6) 2006; 125
Chu (10.1016/j.cmet.2018.05.007_bib8) 2009; 106
Narendra (10.1016/j.cmet.2018.05.007_bib42) 2011; 14
Calvo (10.1016/j.cmet.2018.05.007_bib5) 2010; 11
Narendra (10.1016/j.cmet.2018.05.007_bib40) 2008; 183
Durcan (10.1016/j.cmet.2018.05.007_bib16) 2015; 29
Graber (10.1016/j.cmet.2018.05.007_bib19) 2013; 110
Sarraf (10.1016/j.cmet.2018.05.007_bib53) 2013; 496
Bingol (10.1016/j.cmet.2018.05.007_bib3) 2016; 100
Shoemaker (10.1016/j.cmet.2018.05.007_bib56) 2010; 330
Rezaie (10.1016/j.cmet.2018.05.007_bib50) 2002; 295
Yang (10.1016/j.cmet.2018.05.007_bib67) 2006; 103
Wu (10.1016/j.cmet.2018.05.007_bib65) 2014; 10
Cirulli (10.1016/j.cmet.2018.05.007_bib9) 2015; 347
Lykke-Andersen (10.1016/j.cmet.2018.05.007_bib36) 2014; 204
Moerke (10.1016/j.cmet.2018.05.007_bib39) 2007; 128
Love (10.1016/j.cmet.2018.05.007_bib35) 2014; 15
Rugarli (10.1016/j.cmet.2018.05.007_bib52) 2012; 31
Chan (10.1016/j.cmet.2018.05.007_bib7) 2011; 20
Wang (10.1016/j.cmet.2018.05.007_bib62) 2011; 147
Wong (10.1016/j.cmet.2018.05.007_bib64) 2014; 111
Xi (10.1016/j.cmet.2018.05.007_bib66) 2005; 132
Ishimura (10.1016/j.cmet.2018.05.007_bib26) 2014; 345
Alhebshi (10.1016/j.cmet.2018.05.007_bib1) 2012; 23
Richter (10.1016/j.cmet.2018.05.007_bib51) 2016; 113
Temme (10.1016/j.cmet.2018.05.007_bib57) 2010; 16
Deng (10.1016/j.cmet.2018.05.007_bib12) 2008; 105
Poole (10.1016/j.cmet.2018.05.007_bib49) 2008; 105
Benjamini (10.1016/j.cmet.2018.05.007_bib2) 1995; 57
Park (10.1016/j.cmet.2018.05.007_bib46) 2006; 441
References_xml – volume: 284
  start-page: 10343
  year: 2009
  end-page: 10352
  ident: bib13
  article-title: Nascent peptide-dependent translation arrest leads to Not4p-mediated protein degradation by the proteasome
  publication-title: J. Biol. Chem.
– volume: 14
  start-page: 1279
  year: 2017
  end-page: 1285
  ident: bib37
  article-title: ABCE1: a special factor that orchestrates translation at the crossroad between recycling and initiation
  publication-title: RNA Biol.
– volume: 113
  start-page: 4039
  year: 2016
  end-page: 4044
  ident: bib51
  article-title: Phosphorylation of OPTN by TBK1 enhances its binding to Ub chains and promotes selective autophagy of damaged mitochondria
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 111
  start-page: E4439
  year: 2014
  end-page: E4448
  ident: bib64
  article-title: Optineurin is an autophagy receptor for damaged mitochondria in parkin-mediated mitophagy that is disrupted by an ALS-linked mutation
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 524
  start-page: 309
  year: 2015
  end-page: 314
  ident: bib31
  article-title: The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy
  publication-title: Nature
– volume: 55
  start-page: 880
  year: 2014
  end-page: 890
  ident: bib55
  article-title: Reconstitution of a minimal ribosome-associated ubiquitination pathway with purified factors
  publication-title: Mol. Cell
– volume: 147
  start-page: 893
  year: 2011
  end-page: 906
  ident: bib62
  article-title: PINK1 and parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility
  publication-title: Cell
– volume: 347
  start-page: 1436
  year: 2015
  end-page: 1441
  ident: bib9
  article-title: Exome sequencing in amyotrophic lateral sclerosis identifies risk genes and pathways
  publication-title: Science
– volume: 105
  start-page: 1638
  year: 2008
  end-page: 1643
  ident: bib49
  article-title: The PINK1/Parkin pathway regulates mitochondrial morphology
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 15
  start-page: 550
  year: 2014
  ident: bib35
  article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
  publication-title: Genome Biol.
– volume: 8
  start-page: e1002456
  year: 2012
  ident: bib60
  article-title: The yeast complex I equivalent NADH dehydrogenase rescues pink1 mutants
  publication-title: PLoS Genet.
– volume: 22
  start-page: 1760
  year: 2012
  end-page: 1774
  ident: bib23
  article-title: GENCODE: the reference human genome annotation for the ENCODE Project
  publication-title: Genome Res.
– volume: 345
  start-page: 455
  year: 2014
  end-page: 459
  ident: bib26
  article-title: RNA function. Ribosome stalling induced by mutation of a CNS-specific tRNA causes neurodegeneration
  publication-title: Science
– volume: 9
  start-page: 5
  year: 2016
  ident: bib15
  article-title: Integrative analyses of proteomics and RNA transcriptomics implicate mitochondrial processes, protein folding pathways and GWAS loci in Parkinson disease
  publication-title: BMC Med. Genomics
– volume: 39
  start-page: 359
  year: 2005
  end-page: 407
  ident: bib61
  article-title: A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine
  publication-title: Annu. Rev. Genet.
– volume: 14
  start-page: R36
  year: 2013
  ident: bib29
  article-title: TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions
  publication-title: Genome Biol.
– volume: 8
  start-page: e1000298
  year: 2010
  ident: bib41
  article-title: PINK1 is selectively stabilized on impaired mitochondria to activate parkin
  publication-title: PLoS Biol.
– volume: 132
  start-page: 27
  year: 2008
  end-page: 42
  ident: bib32
  article-title: Autophagy in the pathogenesis of disease
  publication-title: Cell
– volume: 105
  start-page: 14503
  year: 2008
  end-page: 14508
  ident: bib12
  article-title: The Parkinson's disease genes pink1 and parkin promote mitochondrial fission and/or inhibit fusion in
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 26
  start-page: 1239
  year: 2012
  end-page: 1250
  ident: bib21
  article-title: Not4 enhances JAK/STAT pathway-dependent gene expression in
  publication-title: FASEB J.
– volume: 440
  start-page: 561
  year: 2006
  end-page: 564
  ident: bib14
  article-title: Endonucleolytic cleavage of eukaryotic mRNAs with stalls in translation elongation
  publication-title: Nature
– volume: 70
  start-page: 1033
  year: 2011
  end-page: 1053
  ident: bib54
  article-title: Mitochondria: the next (neurode) generation
  publication-title: Neuron
– volume: 441
  start-page: 1157
  year: 2006
  end-page: 1161
  ident: bib46
  article-title: Mitochondrial dysfunction in
  publication-title: Nature
– volume: 180
  start-page: 1065
  year: 2008
  end-page: 1071
  ident: bib44
  article-title: Ref(2)P, the
  publication-title: J. Cell Biol.
– volume: 14
  start-page: 1929
  year: 2011
  end-page: 1938
  ident: bib42
  article-title: Targeting mitochondrial dysfunction: role for PINK1 and Parkin in mitochondrial quality control
  publication-title: Antioxid. Redox Signal.
– volume: 128
  start-page: 257
  year: 2007
  end-page: 267
  ident: bib39
  article-title: Small-molecule inhibition of the interaction between the translation initiation factors eIF4E and eIF4G
  publication-title: Cell
– volume: 57
  start-page: 289
  year: 1995
  end-page: 300
  ident: bib2
  article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing
  publication-title: J. R. Stat. Soc. Series B Stat. Methodol.
– volume: 183
  start-page: 795
  year: 2008
  end-page: 803
  ident: bib40
  article-title: Parkin is recruited selectively to impaired mitochondria and promotes their autophagy
  publication-title: J. Cell Biol.
– volume: 465
  start-page: 223
  year: 2010
  end-page: 226
  ident: bib38
  article-title: Mutations of optineurin in amyotrophic lateral sclerosis
  publication-title: Nature
– volume: 20
  start-page: 1726
  year: 2011
  end-page: 1737
  ident: bib7
  article-title: Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy
  publication-title: Hum. Mol. Genet.
– volume: 125
  start-page: 1241
  year: 2006
  end-page: 1252
  ident: bib6
  article-title: Mitochondria: dynamic organelles in disease, aging, and development
  publication-title: Cell
– volume: 30
  start-page: 1804
  year: 2011
  end-page: 1817
  ident: bib48
  article-title: Dissociation by Pelota, Hbs1 and ABCE1 of mammalian vacant 80S ribosomes and stalled elongation complexes
  publication-title: EMBO J.
– volume: 132
  start-page: 5365
  year: 2005
  end-page: 5374
  ident: bib66
  article-title: Pelota controls self-renewal of germline stem cells by repressing a Bam-independent differentiation pathway
  publication-title: Development
– volume: 19
  start-page: 5720
  year: 2000
  end-page: 5728
  ident: bib28
  article-title: LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing
  publication-title: EMBO J.
– volume: 496
  start-page: 372
  year: 2013
  end-page: 376
  ident: bib53
  article-title: Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization
  publication-title: Nature
– volume: 11
  start-page: 25
  year: 2010
  end-page: 44
  ident: bib5
  article-title: The mitochondrial proteome and human disease
  publication-title: Annu. Rev. Genomics Hum. Genet.
– volume: 100
  start-page: 210
  year: 2016
  end-page: 222
  ident: bib3
  article-title: Mechanisms of mitophagy: PINK1, parkin, USP30 and beyond
  publication-title: Free Radic. Biol. Med.
– volume: 392
  start-page: 605
  year: 1998
  end-page: 608
  ident: bib30
  article-title: Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism
  publication-title: Nature
– volume: 204
  start-page: 467
  year: 2014
  end-page: 476
  ident: bib36
  article-title: Protecting the proteome: eukaryotic cotranslational quality control pathways
  publication-title: J. Cell Biol
– volume: 8
  start-page: 525
  year: 1994
  end-page: 537
  ident: bib11
  article-title: NOT1(CDC39), NOT2(CDC36), NOT3, and NOT4 encode a global-negative regulator of transcription that differentially affects TATA-element utilization
  publication-title: Genes Dev.
– volume: 85
  start-page: 257
  year: 2015
  end-page: 273
  ident: bib47
  article-title: The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson's disease
  publication-title: Neuron
– volume: 441
  start-page: 1162
  year: 2006
  end-page: 1166
  ident: bib10
  article-title: pink1 is required for mitochondrial function and interacts genetically with parkin
  publication-title: Nature
– volume: 168
  start-page: 224
  year: 2017
  end-page: 238 e210
  ident: bib63
  article-title: Prohibitin 2 is an inner mitochondrial membrane mitophagy receptor
  publication-title: Cell
– volume: 74
  start-page: 110
  year: 2017
  end-page: 113
  ident: bib17
  article-title: Association of mutations in TBK1 with sporadic and familial amyotrophic lateral sclerosis and frontotemporal dementia
  publication-title: JAMA Neurol.
– volume: 108
  start-page: 12920
  year: 2011
  end-page: 12924
  ident: bib34
  article-title: Pink1 regulates the oxidative phosphorylation machinery via mitochondrial fission
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 110
  start-page: 16205
  year: 2013
  end-page: 16210
  ident: bib19
  article-title: Reactivation of stalled polyribosomes in synaptic plasticity
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 31
  start-page: 1336
  year: 2012
  end-page: 1349
  ident: bib52
  article-title: Mitochondrial quality control: a matter of life and death for neurons
  publication-title: EMBO J.
– volume: 23
  start-page: 7
  year: 2016
  end-page: 15
  ident: bib4
  article-title: Ribosome-associated protein quality control
  publication-title: Nat. Struct. Mol. Biol.
– volume: 11
  start-page: 511
  year: 1975
  end-page: 519
  ident: bib25
  article-title: Harringtonine, an inhibitor of initiation of protein biosynthesis
  publication-title: Mol. Pharmacol.
– volume: 60
  start-page: 7
  year: 2015
  end-page: 20
  ident: bib24
  article-title: The PINK1-PARKIN mitochondrial ubiquitylation pathway drives a program of OPTN/NDP52 recruitment and TBK1 activation to promote mitophagy
  publication-title: Mol. Cell
– volume: 330
  start-page: 369
  year: 2010
  end-page: 372
  ident: bib56
  article-title: Dom34:Hbs1 promotes subunit dissociation and peptidyl-tRNA drop-off to initiate no-go decay
  publication-title: Science
– volume: 16
  start-page: 1356
  year: 2010
  end-page: 1370
  ident: bib57
  article-title: Subunits of the
  publication-title: RNA
– volume: 171
  start-page: 890
  year: 2017
  end-page: 903 e818
  ident: bib27
  article-title: Cytosolic protein Vms1 links ribosome quality control to mitochondrial and cellular homeostasis
  publication-title: Cell
– volume: 10
  start-page: e1004034
  year: 2014
  ident: bib65
  article-title: Pelo is required for high efficiency viral replication
  publication-title: PLoS Pathog.
– volume: 8
  start-page: e1002537
  year: 2012
  ident: bib33
  article-title: Parkinson's disease-associated kinase PINK1 regulates Miro protein level and axonal transport of mitochondria
  publication-title: PLoS Genet.
– volume: 295
  start-page: 1077
  year: 2002
  end-page: 1079
  ident: bib50
  article-title: Adult-onset primary open-angle glaucoma caused by mutations in optineurin
  publication-title: Science
– volume: 29
  start-page: 989
  year: 2015
  end-page: 999
  ident: bib16
  article-title: The three 'P's of mitophagy: PARKIN, PINK1, and post-translational modifications
  publication-title: Genes Dev.
– volume: 103
  start-page: 10793
  year: 2006
  end-page: 10798
  ident: bib67
  article-title: Mitochondrial pathology and muscle and dopaminergic neuron degeneration caused by inactivation of
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 29
  start-page: 395
  year: 1966
  end-page: 403
  ident: bib58
  article-title: Studies on the function of intracellular ribonucleases. V. Ribonuclease activity in ribosomes and polysomes prepared from rat liver and hepatomas
  publication-title: J. Cell Biol.
– volume: 106
  start-page: 2097
  year: 2009
  end-page: 2103
  ident: bib8
  article-title: A mouse forward genetics screen identifies LISTERIN as an E3 ubiquitin ligase involved in neurodegeneration
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 26
  start-page: 733
  year: 2016
  end-page: 744
  ident: bib45
  article-title: Deciphering the molecular signals of PINK1/Parkin mitophagy
  publication-title: Trends Cell Biol.
– volume: 21
  start-page: 95
  year: 2015
  end-page: 108
  ident: bib18
  article-title: PINK1 and Parkin control localized translation of respiratory chain component mRNAs on mitochondria outer membrane
  publication-title: Cell Metab.
– volume: 66
  start-page: 863
  year: 1997
  end-page: 917
  ident: bib43
  article-title: Protein import into mitochondria
  publication-title: Annu. Rev. Biochem.
– volume: 304
  start-page: 1158
  year: 2004
  end-page: 1160
  ident: bib59
  article-title: Hereditary early-onset Parkinson's disease caused by mutations in PINK1
  publication-title: Science
– volume: 105
  start-page: 7070
  year: 2008
  end-page: 7075
  ident: bib68
  article-title: Pink1 regulates mitochondrial dynamics through interaction with the fission/fusion machinery
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 157
  start-page: 65
  year: 2014
  end-page: 75
  ident: bib20
  article-title: To be or not to be? How selective autophagy and cell death govern cell fate
  publication-title: Cell
– volume: 23
  start-page: 3582
  year: 2012
  end-page: 3590
  ident: bib1
  article-title: The essential iron-sulfur protein Rli1 is an important target accounting for inhibition of cell growth by reactive oxygen species
  publication-title: Mol. Biol. Cell
– volume: 99
  start-page: 735
  year: 2016
  end-page: 743
  ident: bib22
  article-title: Absence of the autophagy adaptor SQSTM1/p62 causes childhood-onset neurodegeneration with ataxia, dystonia, and gaze palsy
  publication-title: Am. J. Hum. Genet.
– volume: 11
  start-page: 25
  year: 2010
  ident: 10.1016/j.cmet.2018.05.007_bib5
  article-title: The mitochondrial proteome and human disease
  publication-title: Annu. Rev. Genomics Hum. Genet.
  doi: 10.1146/annurev-genom-082509-141720
– volume: 204
  start-page: 467
  year: 2014
  ident: 10.1016/j.cmet.2018.05.007_bib36
  article-title: Protecting the proteome: eukaryotic cotranslational quality control pathways
  publication-title: J. Cell Biol
  doi: 10.1083/jcb.201311103
– volume: 440
  start-page: 561
  year: 2006
  ident: 10.1016/j.cmet.2018.05.007_bib14
  article-title: Endonucleolytic cleavage of eukaryotic mRNAs with stalls in translation elongation
  publication-title: Nature
  doi: 10.1038/nature04530
– volume: 23
  start-page: 3582
  year: 2012
  ident: 10.1016/j.cmet.2018.05.007_bib1
  article-title: The essential iron-sulfur protein Rli1 is an important target accounting for inhibition of cell growth by reactive oxygen species
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e12-05-0413
– volume: 57
  start-page: 289
  year: 1995
  ident: 10.1016/j.cmet.2018.05.007_bib2
  article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing
  publication-title: J. R. Stat. Soc. Series B Stat. Methodol.
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– volume: 345
  start-page: 455
  year: 2014
  ident: 10.1016/j.cmet.2018.05.007_bib26
  article-title: RNA function. Ribosome stalling induced by mutation of a CNS-specific tRNA causes neurodegeneration
  publication-title: Science
  doi: 10.1126/science.1249749
– volume: 441
  start-page: 1162
  year: 2006
  ident: 10.1016/j.cmet.2018.05.007_bib10
  article-title: Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin
  publication-title: Nature
  doi: 10.1038/nature04779
– volume: 60
  start-page: 7
  year: 2015
  ident: 10.1016/j.cmet.2018.05.007_bib24
  article-title: The PINK1-PARKIN mitochondrial ubiquitylation pathway drives a program of OPTN/NDP52 recruitment and TBK1 activation to promote mitophagy
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2015.08.016
– volume: 29
  start-page: 989
  year: 2015
  ident: 10.1016/j.cmet.2018.05.007_bib16
  article-title: The three 'P's of mitophagy: PARKIN, PINK1, and post-translational modifications
  publication-title: Genes Dev.
  doi: 10.1101/gad.262758.115
– volume: 105
  start-page: 7070
  year: 2008
  ident: 10.1016/j.cmet.2018.05.007_bib68
  article-title: Pink1 regulates mitochondrial dynamics through interaction with the fission/fusion machinery
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0711845105
– volume: 20
  start-page: 1726
  year: 2011
  ident: 10.1016/j.cmet.2018.05.007_bib7
  article-title: Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddr048
– volume: 30
  start-page: 1804
  year: 2011
  ident: 10.1016/j.cmet.2018.05.007_bib48
  article-title: Dissociation by Pelota, Hbs1 and ABCE1 of mammalian vacant 80S ribosomes and stalled elongation complexes
  publication-title: EMBO J.
  doi: 10.1038/emboj.2011.93
– volume: 128
  start-page: 257
  year: 2007
  ident: 10.1016/j.cmet.2018.05.007_bib39
  article-title: Small-molecule inhibition of the interaction between the translation initiation factors eIF4E and eIF4G
  publication-title: Cell
  doi: 10.1016/j.cell.2006.11.046
– volume: 183
  start-page: 795
  year: 2008
  ident: 10.1016/j.cmet.2018.05.007_bib40
  article-title: Parkin is recruited selectively to impaired mitochondria and promotes their autophagy
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200809125
– volume: 113
  start-page: 4039
  year: 2016
  ident: 10.1016/j.cmet.2018.05.007_bib51
  article-title: Phosphorylation of OPTN by TBK1 enhances its binding to Ub chains and promotes selective autophagy of damaged mitochondria
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1523926113
– volume: 16
  start-page: 1356
  year: 2010
  ident: 10.1016/j.cmet.2018.05.007_bib57
  article-title: Subunits of the Drosophila CCR4-NOT complex and their roles in mRNA deadenylation
  publication-title: RNA
  doi: 10.1261/rna.2145110
– volume: 55
  start-page: 880
  year: 2014
  ident: 10.1016/j.cmet.2018.05.007_bib55
  article-title: Reconstitution of a minimal ribosome-associated ubiquitination pathway with purified factors
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2014.07.006
– volume: 103
  start-page: 10793
  year: 2006
  ident: 10.1016/j.cmet.2018.05.007_bib67
  article-title: Mitochondrial pathology and muscle and dopaminergic neuron degeneration caused by inactivation of Drosophila Pink1 is rescued by Parkin
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0602493103
– volume: 31
  start-page: 1336
  year: 2012
  ident: 10.1016/j.cmet.2018.05.007_bib52
  article-title: Mitochondrial quality control: a matter of life and death for neurons
  publication-title: EMBO J.
  doi: 10.1038/emboj.2012.38
– volume: 304
  start-page: 1158
  year: 2004
  ident: 10.1016/j.cmet.2018.05.007_bib59
  article-title: Hereditary early-onset Parkinson's disease caused by mutations in PINK1
  publication-title: Science
  doi: 10.1126/science.1096284
– volume: 66
  start-page: 863
  year: 1997
  ident: 10.1016/j.cmet.2018.05.007_bib43
  article-title: Protein import into mitochondria
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.biochem.66.1.863
– volume: 441
  start-page: 1157
  year: 2006
  ident: 10.1016/j.cmet.2018.05.007_bib46
  article-title: Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin
  publication-title: Nature
  doi: 10.1038/nature04788
– volume: 110
  start-page: 16205
  year: 2013
  ident: 10.1016/j.cmet.2018.05.007_bib19
  article-title: Reactivation of stalled polyribosomes in synaptic plasticity
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1307747110
– volume: 111
  start-page: E4439
  year: 2014
  ident: 10.1016/j.cmet.2018.05.007_bib64
  article-title: Optineurin is an autophagy receptor for damaged mitochondria in parkin-mediated mitophagy that is disrupted by an ALS-linked mutation
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1405752111
– volume: 22
  start-page: 1760
  year: 2012
  ident: 10.1016/j.cmet.2018.05.007_bib23
  article-title: GENCODE: the reference human genome annotation for the ENCODE Project
  publication-title: Genome Res.
  doi: 10.1101/gr.135350.111
– volume: 15
  start-page: 550
  year: 2014
  ident: 10.1016/j.cmet.2018.05.007_bib35
  article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
  publication-title: Genome Biol.
  doi: 10.1186/s13059-014-0550-8
– volume: 19
  start-page: 5720
  year: 2000
  ident: 10.1016/j.cmet.2018.05.007_bib28
  article-title: LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing
  publication-title: EMBO J.
  doi: 10.1093/emboj/19.21.5720
– volume: 26
  start-page: 1239
  year: 2012
  ident: 10.1016/j.cmet.2018.05.007_bib21
  article-title: Not4 enhances JAK/STAT pathway-dependent gene expression in Drosophila and in human cells
  publication-title: FASEB J.
  doi: 10.1096/fj.11-195875
– volume: 132
  start-page: 27
  year: 2008
  ident: 10.1016/j.cmet.2018.05.007_bib32
  article-title: Autophagy in the pathogenesis of disease
  publication-title: Cell
  doi: 10.1016/j.cell.2007.12.018
– volume: 70
  start-page: 1033
  year: 2011
  ident: 10.1016/j.cmet.2018.05.007_bib54
  article-title: Mitochondria: the next (neurode) generation
  publication-title: Neuron
  doi: 10.1016/j.neuron.2011.06.003
– volume: 39
  start-page: 359
  year: 2005
  ident: 10.1016/j.cmet.2018.05.007_bib61
  article-title: A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine
  publication-title: Annu. Rev. Genet.
  doi: 10.1146/annurev.genet.39.110304.095751
– volume: 29
  start-page: 395
  year: 1966
  ident: 10.1016/j.cmet.2018.05.007_bib58
  article-title: Studies on the function of intracellular ribonucleases. V. Ribonuclease activity in ribosomes and polysomes prepared from rat liver and hepatomas
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.29.3.395
– volume: 108
  start-page: 12920
  year: 2011
  ident: 10.1016/j.cmet.2018.05.007_bib34
  article-title: Pink1 regulates the oxidative phosphorylation machinery via mitochondrial fission
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1107332108
– volume: 392
  start-page: 605
  year: 1998
  ident: 10.1016/j.cmet.2018.05.007_bib30
  article-title: Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism
  publication-title: Nature
  doi: 10.1038/33416
– volume: 496
  start-page: 372
  year: 2013
  ident: 10.1016/j.cmet.2018.05.007_bib53
  article-title: Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization
  publication-title: Nature
  doi: 10.1038/nature12043
– volume: 14
  start-page: 1279
  year: 2017
  ident: 10.1016/j.cmet.2018.05.007_bib37
  article-title: ABCE1: a special factor that orchestrates translation at the crossroad between recycling and initiation
  publication-title: RNA Biol.
  doi: 10.1080/15476286.2016.1269993
– volume: 8
  start-page: 525
  year: 1994
  ident: 10.1016/j.cmet.2018.05.007_bib11
  article-title: NOT1(CDC39), NOT2(CDC36), NOT3, and NOT4 encode a global-negative regulator of transcription that differentially affects TATA-element utilization
  publication-title: Genes Dev.
  doi: 10.1101/gad.8.5.525
– volume: 347
  start-page: 1436
  year: 2015
  ident: 10.1016/j.cmet.2018.05.007_bib9
  article-title: Exome sequencing in amyotrophic lateral sclerosis identifies risk genes and pathways
  publication-title: Science
  doi: 10.1126/science.aaa3650
– volume: 23
  start-page: 7
  year: 2016
  ident: 10.1016/j.cmet.2018.05.007_bib4
  article-title: Ribosome-associated protein quality control
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.3147
– volume: 10
  start-page: e1004034
  year: 2014
  ident: 10.1016/j.cmet.2018.05.007_bib65
  article-title: Pelo is required for high efficiency viral replication
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1004034
– volume: 147
  start-page: 893
  year: 2011
  ident: 10.1016/j.cmet.2018.05.007_bib62
  article-title: PINK1 and parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility
  publication-title: Cell
  doi: 10.1016/j.cell.2011.10.018
– volume: 524
  start-page: 309
  year: 2015
  ident: 10.1016/j.cmet.2018.05.007_bib31
  article-title: The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy
  publication-title: Nature
  doi: 10.1038/nature14893
– volume: 9
  start-page: 5
  year: 2016
  ident: 10.1016/j.cmet.2018.05.007_bib15
  article-title: Integrative analyses of proteomics and RNA transcriptomics implicate mitochondrial processes, protein folding pathways and GWAS loci in Parkinson disease
  publication-title: BMC Med. Genomics
  doi: 10.1186/s12920-016-0164-y
– volume: 8
  start-page: e1002537
  year: 2012
  ident: 10.1016/j.cmet.2018.05.007_bib33
  article-title: Parkinson's disease-associated kinase PINK1 regulates Miro protein level and axonal transport of mitochondria
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1002537
– volume: 14
  start-page: 1929
  year: 2011
  ident: 10.1016/j.cmet.2018.05.007_bib42
  article-title: Targeting mitochondrial dysfunction: role for PINK1 and Parkin in mitochondrial quality control
  publication-title: Antioxid. Redox Signal.
  doi: 10.1089/ars.2010.3799
– volume: 171
  start-page: 890
  year: 2017
  ident: 10.1016/j.cmet.2018.05.007_bib27
  article-title: Cytosolic protein Vms1 links ribosome quality control to mitochondrial and cellular homeostasis
  publication-title: Cell
  doi: 10.1016/j.cell.2017.10.002
– volume: 132
  start-page: 5365
  year: 2005
  ident: 10.1016/j.cmet.2018.05.007_bib66
  article-title: Pelota controls self-renewal of germline stem cells by repressing a Bam-independent differentiation pathway
  publication-title: Development
  doi: 10.1242/dev.02151
– volume: 8
  start-page: e1002456
  year: 2012
  ident: 10.1016/j.cmet.2018.05.007_bib60
  article-title: The yeast complex I equivalent NADH dehydrogenase rescues pink1 mutants
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1002456
– volume: 85
  start-page: 257
  year: 2015
  ident: 10.1016/j.cmet.2018.05.007_bib47
  article-title: The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson's disease
  publication-title: Neuron
  doi: 10.1016/j.neuron.2014.12.007
– volume: 330
  start-page: 369
  year: 2010
  ident: 10.1016/j.cmet.2018.05.007_bib56
  article-title: Dom34:Hbs1 promotes subunit dissociation and peptidyl-tRNA drop-off to initiate no-go decay
  publication-title: Science
  doi: 10.1126/science.1192430
– volume: 105
  start-page: 14503
  year: 2008
  ident: 10.1016/j.cmet.2018.05.007_bib12
  article-title: The Parkinson's disease genes pink1 and parkin promote mitochondrial fission and/or inhibit fusion in Drosophila
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0803998105
– volume: 106
  start-page: 2097
  year: 2009
  ident: 10.1016/j.cmet.2018.05.007_bib8
  article-title: A mouse forward genetics screen identifies LISTERIN as an E3 ubiquitin ligase involved in neurodegeneration
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0812819106
– volume: 11
  start-page: 511
  year: 1975
  ident: 10.1016/j.cmet.2018.05.007_bib25
  article-title: Harringtonine, an inhibitor of initiation of protein biosynthesis
  publication-title: Mol. Pharmacol.
  doi: 10.1016/S0026-895X(25)10662-7
– volume: 284
  start-page: 10343
  year: 2009
  ident: 10.1016/j.cmet.2018.05.007_bib13
  article-title: Nascent peptide-dependent translation arrest leads to Not4p-mediated protein degradation by the proteasome
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M808840200
– volume: 465
  start-page: 223
  year: 2010
  ident: 10.1016/j.cmet.2018.05.007_bib38
  article-title: Mutations of optineurin in amyotrophic lateral sclerosis
  publication-title: Nature
  doi: 10.1038/nature08971
– volume: 105
  start-page: 1638
  year: 2008
  ident: 10.1016/j.cmet.2018.05.007_bib49
  article-title: The PINK1/Parkin pathway regulates mitochondrial morphology
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0709336105
– volume: 125
  start-page: 1241
  year: 2006
  ident: 10.1016/j.cmet.2018.05.007_bib6
  article-title: Mitochondria: dynamic organelles in disease, aging, and development
  publication-title: Cell
  doi: 10.1016/j.cell.2006.06.010
– volume: 74
  start-page: 110
  year: 2017
  ident: 10.1016/j.cmet.2018.05.007_bib17
  article-title: Association of mutations in TBK1 with sporadic and familial amyotrophic lateral sclerosis and frontotemporal dementia
  publication-title: JAMA Neurol.
  doi: 10.1001/jamaneurol.2016.3712
– volume: 168
  start-page: 224
  year: 2017
  ident: 10.1016/j.cmet.2018.05.007_bib63
  article-title: Prohibitin 2 is an inner mitochondrial membrane mitophagy receptor
  publication-title: Cell
  doi: 10.1016/j.cell.2016.11.042
– volume: 8
  start-page: e1000298
  year: 2010
  ident: 10.1016/j.cmet.2018.05.007_bib41
  article-title: PINK1 is selectively stabilized on impaired mitochondria to activate parkin
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.1000298
– volume: 100
  start-page: 210
  year: 2016
  ident: 10.1016/j.cmet.2018.05.007_bib3
  article-title: Mechanisms of mitophagy: PINK1, parkin, USP30 and beyond
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2016.04.015
– volume: 21
  start-page: 95
  year: 2015
  ident: 10.1016/j.cmet.2018.05.007_bib18
  article-title: PINK1 and Parkin control localized translation of respiratory chain component mRNAs on mitochondria outer membrane
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2014.12.007
– volume: 99
  start-page: 735
  year: 2016
  ident: 10.1016/j.cmet.2018.05.007_bib22
  article-title: Absence of the autophagy adaptor SQSTM1/p62 causes childhood-onset neurodegeneration with ataxia, dystonia, and gaze palsy
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2016.06.026
– volume: 26
  start-page: 733
  year: 2016
  ident: 10.1016/j.cmet.2018.05.007_bib45
  article-title: Deciphering the molecular signals of PINK1/Parkin mitophagy
  publication-title: Trends Cell Biol.
  doi: 10.1016/j.tcb.2016.05.008
– volume: 14
  start-page: R36
  year: 2013
  ident: 10.1016/j.cmet.2018.05.007_bib29
  article-title: TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions
  publication-title: Genome Biol.
  doi: 10.1186/gb-2013-14-4-r36
– volume: 157
  start-page: 65
  year: 2014
  ident: 10.1016/j.cmet.2018.05.007_bib20
  article-title: To be or not to be? How selective autophagy and cell death govern cell fate
  publication-title: Cell
  doi: 10.1016/j.cell.2014.02.049
– volume: 180
  start-page: 1065
  year: 2008
  ident: 10.1016/j.cmet.2018.05.007_bib44
  article-title: Ref(2)P, the Drosophila melanogaster homologue of mammalian p62, is required for the formation of protein aggregates in adult brain
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200711108
– volume: 295
  start-page: 1077
  year: 2002
  ident: 10.1016/j.cmet.2018.05.007_bib50
  article-title: Adult-onset primary open-angle glaucoma caused by mutations in optineurin
  publication-title: Science
  doi: 10.1126/science.1066901
SSID ssj0036393
Score 2.5322657
Snippet Translation of mRNAs is tightly regulated and constantly surveyed for errors. Aberrant translation can trigger co-translational protein and RNA quality control...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 130
SubjectTerms ABCE1
Animals
ATP-Binding Cassette Transporters - metabolism
autophagy receptor recruitment
co-translational quality control
Drosophila
Drosophila Proteins - genetics
Endonucleases - metabolism
HeLa Cells
Humans
Mitochondria - metabolism
Mitochondrial Proteins - metabolism
mitochondrial quality control
mitophagy
Mitophagy - genetics
Neurodegenerative Diseases - metabolism
NOT4
Nuclear Proteins - metabolism
PINK1
Protein Kinases - genetics
Protein Kinases - metabolism
Protein Serine-Threonine Kinases - genetics
Ribonucleoproteins - metabolism
ribosome stalling
ribosome/mRNP remodeling
Ribosomes - metabolism
RNA, Messenger - metabolism
Transcription Factors - metabolism
Ubiquitination
Title Ubiquitination of ABCE1 by NOT4 in Response to Mitochondrial Damage Links Co-translational Quality Control to PINK1-Directed Mitophagy
URI https://dx.doi.org/10.1016/j.cmet.2018.05.007
https://www.ncbi.nlm.nih.gov/pubmed/29861391
https://www.proquest.com/docview/2049940250
https://pubmed.ncbi.nlm.nih.gov/PMC5989559
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwELUQElIvVVugXaDIlbhV1m4SO3GOEEBQxLYCVtqb5cR2CYJkC9nD_oH-7s7EyYotFYcek4wty2PPh_P8hpADx600CaIai8QwnjrJtHaO8ZgnQrgUPDoe6F-O47MJ_zYV0zWS9XdhEFbZ2X5v01tr3b0ZdrM5nJXl8BqDa45sMTJCDnbM2_FWKV7imx711jgCD9yC7EGYoXR3ccZjvIoHi3jKQLbsnVhS9t_O6WXw-TeG8plTOn1H3nbRJD30A35P1mz1gWz4-pKLTfJ7kpe_5mVT-iM_Wjt6eJSdBDRf0PH3G07Lil55kKylTU0vYXuDOawMrkp6rB_A2FDMVp9oVrMG3dp9d3hIPfnGgmYe647Nf5yPLwLmjag1bW-zW_1zsUUmpyc32RnrCi-wAusbMPDhWksutXXCJYanoYmti_VIhDp0YFoDreNUczkShUE0lQ5HBjKhwhZ5kORxtE3Wq7qynwiNwyS2uYOoLLU8Sgz0qx2koDpyOrCCD0jQz7gqOlZyLI5xr3r42Z1CLSnUkhoJBVoakK_LNjPPyfGqtOgVqVZWlgKn8Wq7L73WFWw5_I-iK1vPn0AI0kSOweOAfPSrYDmOMJUQIKXBgCQr62MpgHTeq1-q8ral9RapRDrAnf8c7y55g08tlDjaI-vN49x-hoCpyfchVTi_2G_3xR8bTxaV
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqIgQXxJstLyNxQ9bmYSfOsQ2tttBdEOxKe7Oc2KZBbbKl2cP-AX43M3GyYgH1wDUZW5ZnPA_nyzeEvHXcSpMiqrFMDeOZk0xr5xhPeCqEyyCi44X-dJZMFvzDUiz3SD78C4Owyt73e5_eeev-ybjfzfGqqsZfMbnmyBYjY-Rgh7r9FmQDAZr26fJocMcxhOAOZQ_SDMX7P2c8yKu8tAioDGVH34k9Zf8dnf7OPv8EUf4WlU7uk3t9OkkP_YofkD1bPyS3fYPJzSPyc1FUV-uqrfydH20cPTzKj0NabOjs05zTqqZfPErW0rahUzjf4A9rg2ZJ3-tL8DYUy9Vrmjesxbh20d8eUs--saG5B7vj8M-ns48h817Umm621bn-tnlMFifH83zC-s4LrMQGBwyCuNaSS22dcKnhWWQS6xIdiEhHDnxrqHWSaS4DURqEU-koMFAKlbYswrRI4idkv25q-4zQJEoTWzhIyzLL49TAvNpBDapjp0Mr-IiEw46rsqclx-4YF2rAn31XqCWFWlKBUKClEXm3HbPypBw3SotBkWrHtBREjRvHvRm0ruDM4YcUXdtmfQ1CUCdyzB5H5Km3gu06okxChpSFI5Lu2MdWAPm8d9_U1XnH6y0yiXyAB_-53tfkzmQ-PVNnoOvn5C6-6XDF8Quy3_5Y25eQPbXFq-50_AKSPxi_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ubiquitination+of+ABCE1+by+NOT4+in+Response+to+Mitochondrial+Damage+Links+Co-translational+Quality+Control+to+PINK1-Directed+Mitophagy&rft.jtitle=Cell+metabolism&rft.au=Wu%2C+Zhihao&rft.au=Wang%2C+Yan&rft.au=Lim%2C+Junghyun&rft.au=Liu%2C+Boxiang&rft.date=2018-07-03&rft.issn=1550-4131&rft.eissn=1932-7420&rft.volume=28&rft.issue=1&rft.spage=130&rft.epage=144.e7&rft_id=info:doi/10.1016%2Fj.cmet.2018.05.007&rft_id=info%3Apmid%2F29861391&rft.externalDocID=PMC5989559
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1550-4131&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1550-4131&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1550-4131&client=summon