Ecological plant epigenetics: Evidence from model and non‐model species, and the way forward
Growing evidence shows that epigenetic mechanisms contribute to complex traits, with implications across many fields of biology. In plant ecology, recent studies have attempted to merge ecological experiments with epigenetic analyses to elucidate the contribution of epigenetics to plant phenotypes,...
Saved in:
Published in | Ecology letters Vol. 20; no. 12; pp. 1576 - 1590 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Blackwell Publishing Ltd
01.12.2017
Wiley |
Subjects | |
Online Access | Get full text |
ISSN | 1461-023X 1461-0248 1461-0248 |
DOI | 10.1111/ele.12858 |
Cover
Abstract | Growing evidence shows that epigenetic mechanisms contribute to complex traits, with implications across many fields of biology. In plant ecology, recent studies have attempted to merge ecological experiments with epigenetic analyses to elucidate the contribution of epigenetics to plant phenotypes, stress responses, adaptation to habitat, and range distributions. While there has been some progress in revealing the role of epigenetics in ecological processes, studies with non‐model species have so far been limited to describing broad patterns based on anonymous markers of DNA methylation. In contrast, studies with model species have benefited from powerful genomic resources, which contribute to a more mechanistic understanding but have limited ecological realism. Understanding the significance of epigenetics for plant ecology requires increased transfer of knowledge and methods from model species research to genomes of evolutionarily divergent species, and examination of responses to complex natural environments at a more mechanistic level. This requires transforming genomics tools specifically for studying non‐model species, which is challenging given the large and often polyploid genomes of plants. Collaboration among molecular geneticists, ecologists and bioinformaticians promises to enhance our understanding of the mutual links between genome function and ecological processes. |
---|---|
AbstractList | Growing evidence shows that epigenetic mechanisms contribute to complex traits, with implications across many fields of biology. In plant ecology, recent studies have attempted to merge ecological experiments with epigenetic analyses to elucidate the contribution of epigenetics to plant phenotypes, stress responses, adaptation to habitat, and range distributions. While there has been some progress in revealing the role of epigenetics in ecological processes, studies with non‐model species have so far been limited to describing broad patterns based on anonymous markers of DNA methylation. In contrast, studies with model species have benefited from powerful genomic resources, which contribute to a more mechanistic understanding but have limited ecological realism. Understanding the significance of epigenetics for plant ecology requires increased transfer of knowledge and methods from model species research to genomes of evolutionarily divergent species, and examination of responses to complex natural environments at a more mechanistic level. This requires transforming genomics tools specifically for studying non‐model species, which is challenging given the large and often polyploid genomes of plants. Collaboration among molecular geneticists, ecologists and bioinformaticians promises to enhance our understanding of the mutual links between genome function and ecological processes. Growing evidence shows that epigenetic mechanisms contribute to complex traits, with implications across many fields of biology. In plant ecology, recent studies have attempted to merge ecological experiments with epigenetic analyses to elucidate the contribution of epigenetics to plant phenotypes, stress responses, adaptation to habitat, and range distributions. While there has been some progress in revealing the role of epigenetics in ecological processes, studies with non-model species have so far been limited to describing broad patterns based on anonymous markers of DNA methylation. In contrast, studies with model species have benefited from powerful genomic resources, which contribute to a more mechanistic understanding but have limited ecological realism. Understanding the significance of epigenetics for plant ecology requires increased transfer of knowledge and methods from model species research to genomes of evolutionarily divergent species, and examination of responses to complex natural environments at a more mechanistic level. This requires transforming genomics tools specifically for studying non-model species, which is challenging given the large and often polyploid genomes of plants. Collaboration among molecular geneticists, ecologists and bioinformaticians promises to enhance our understanding of the mutual links between genome function and ecological processes.Growing evidence shows that epigenetic mechanisms contribute to complex traits, with implications across many fields of biology. In plant ecology, recent studies have attempted to merge ecological experiments with epigenetic analyses to elucidate the contribution of epigenetics to plant phenotypes, stress responses, adaptation to habitat, and range distributions. While there has been some progress in revealing the role of epigenetics in ecological processes, studies with non-model species have so far been limited to describing broad patterns based on anonymous markers of DNA methylation. In contrast, studies with model species have benefited from powerful genomic resources, which contribute to a more mechanistic understanding but have limited ecological realism. Understanding the significance of epigenetics for plant ecology requires increased transfer of knowledge and methods from model species research to genomes of evolutionarily divergent species, and examination of responses to complex natural environments at a more mechanistic level. This requires transforming genomics tools specifically for studying non-model species, which is challenging given the large and often polyploid genomes of plants. Collaboration among molecular geneticists, ecologists and bioinformaticians promises to enhance our understanding of the mutual links between genome function and ecological processes. Growing evidence shows that epigenetic mechanisms contribute to complex traits, with implications across many fields of biology. In plant ecology, recent studies have attempted to merge ecological experiments with epigenetic analyses to elucidate the contribution of epigenetics to plant phenotypes, stress responses, adaptation to habitat, and range distributions. While there has been some progress in revealing the role of epigenetics in ecological processes, studies with non‐model species have so far been limited to describing broad patterns based on anonymous markers of DNA methylation. In contrast, studies with model species have benefited from powerful genomic resources , which contribute to a more mechanistic understanding but have limited ecological realism. Understanding the significance of epigenetics for plant ecology requires increased transfer of knowledge and methods from model species research to genomes of evolutionarily divergent species, and examination of responses to complex natural environments at a more mechanistic level. This requires transforming genomics tools specifically for studying non‐model species, which is challenging given the large and often polyploid genomes of plants. Collaboration among molecular geneticists, ecologists and bioinformaticians promises to enhance our understanding of the mutual links between genome function and ecological processes. |
Author | van Gurp, Thomas P. Opgenoorth, Lars Gogol‐Döring, Andreas Verhoeven, Koen J. F. Bucher, Etienne Coulson, Tim Richards, Christina L. Prohaska, Sonja J. Colomé‐Tatché, Maria Grosse, Ivo Lampei, Christian Rensing, Stefan A. Latzel, Vít Becker, Claude Gaspar, Bence Trucchi, Emiliano Kronholm, Ilkka Mirouze, Marie Paun, Ovidiu Bossdorf, Oliver Alonso, Conchita Stadler, Peter F. Ullrich, Kristian Durka, Walter Engelhardt, Jan Heer, Katrin |
Author_xml | – sequence: 1 givenname: Christina L. orcidid: 0000-0001-7848-5165 surname: Richards fullname: Richards, Christina L. email: clr@usf.edu organization: University of South Florida – sequence: 2 givenname: Conchita orcidid: 0000-0002-7418-3204 surname: Alonso fullname: Alonso, Conchita organization: CSIC – sequence: 3 givenname: Claude orcidid: 0000-0003-3406-4670 surname: Becker fullname: Becker, Claude organization: Gregor Mendel Institute of Molecular Plant Biology – sequence: 4 givenname: Oliver orcidid: 0000-0001-7504-6511 surname: Bossdorf fullname: Bossdorf, Oliver organization: University of Tübingen – sequence: 5 givenname: Etienne surname: Bucher fullname: Bucher, Etienne organization: Institut de Recherche en Horticulture et Semences – sequence: 6 givenname: Maria orcidid: 0000-0002-2224-7560 surname: Colomé‐Tatché fullname: Colomé‐Tatché, Maria organization: Technical University of Munich – sequence: 7 givenname: Walter orcidid: 0000-0002-6611-2246 surname: Durka fullname: Durka, Walter organization: German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig – sequence: 8 givenname: Jan surname: Engelhardt fullname: Engelhardt, Jan organization: University of Leipzig – sequence: 9 givenname: Bence surname: Gaspar fullname: Gaspar, Bence organization: University of Tübingen – sequence: 10 givenname: Andreas surname: Gogol‐Döring fullname: Gogol‐Döring, Andreas organization: University of Halle – sequence: 11 givenname: Ivo surname: Grosse fullname: Grosse, Ivo organization: University of Halle – sequence: 12 givenname: Thomas P. surname: van Gurp fullname: van Gurp, Thomas P. organization: Netherlands Institute of Ecology (NIOO‐KNAW) – sequence: 13 givenname: Katrin orcidid: 0000-0002-1036-599X surname: Heer fullname: Heer, Katrin organization: Philipps‐University of Marburg – sequence: 14 givenname: Ilkka orcidid: 0000-0002-4126-0250 surname: Kronholm fullname: Kronholm, Ilkka organization: University of Jyväskylä – sequence: 15 givenname: Christian orcidid: 0000-0003-2866-2869 surname: Lampei fullname: Lampei, Christian organization: Institute of Plant Breeding, Seed Science and Population Genetics – sequence: 16 givenname: Vít orcidid: 0000-0003-0025-5049 surname: Latzel fullname: Latzel, Vít organization: The Czech Academy of Sciences – sequence: 17 givenname: Marie orcidid: 0000-0002-0514-1270 surname: Mirouze fullname: Mirouze, Marie organization: Laboratoire Génome et Développement des Plantes – sequence: 18 givenname: Lars orcidid: 0000-0003-0737-047X surname: Opgenoorth fullname: Opgenoorth, Lars organization: Philipps‐University Marburg – sequence: 19 givenname: Ovidiu orcidid: 0000-0002-8295-4937 surname: Paun fullname: Paun, Ovidiu organization: University of Vienna – sequence: 20 givenname: Sonja J. surname: Prohaska fullname: Prohaska, Sonja J. organization: Santa Fe NM – sequence: 21 givenname: Stefan A. orcidid: 0000-0002-0225-873X surname: Rensing fullname: Rensing, Stefan A. organization: University of Freiburg – sequence: 22 givenname: Peter F. orcidid: 0000-0002-5016-5191 surname: Stadler fullname: Stadler, Peter F. organization: Max Planck Institute for Mathematics in the Sciences – sequence: 23 givenname: Emiliano surname: Trucchi fullname: Trucchi, Emiliano organization: University of Vienna – sequence: 24 givenname: Kristian orcidid: 0000-0003-4308-9626 surname: Ullrich fullname: Ullrich, Kristian organization: Philipps‐University Marburg – sequence: 25 givenname: Koen J. F. orcidid: 0000-0003-3002-4102 surname: Verhoeven fullname: Verhoeven, Koen J. F. organization: Netherlands Institute of Ecology (NIOO‐KNAW) – sequence: 26 givenname: Tim surname: Coulson fullname: Coulson, Tim |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29027325$$D View this record in MEDLINE/PubMed https://hal.science/hal-02098587$$DView record in HAL |
BookMark | eNqFkc1q3DAUhUVJaH7aRV-gGLppIZPoypZH7i4ENwkMdNNCVxWydJ0oyJYreTLMLo-QZ-yTVBNPplBaqo3-vns4954jstf7Hgl5A_QU0jpDh6fABBcvyCEUJcwoK8Te7px_OyBHMd5RCqyaw0tywCrK5jnjh-R7rb3zN1Yrlw1O9WOGg73BHker48esvrcGe41ZG3yXdd6gy1RvsmTg58PjdI8Daovx5OljvMVspdZZ68NKBfOK7LfKRXy93Y_J10_1l4ur2eLz5fXF-WKmOQMx44IXvIKK57phptVMtzSHlqoiuWdFAyiUBoOiaYCDaXPVsJblpSgpq6Ax-TH5MOneKieHYDsV1tIrK6_OF3LzRhmt0oDm95DY9xM7BP9jiXGUnY0aXeoe_TJKRiHRaVL0v2hyDLycC8oT-u4P9M4vQ5-aTlTJ6AZjiXq7pZZNh2Zn9TmQBJxNgA4-xoCt1HZUo_X9GJR1EqjcRC5T5PIp8t-t7yqeRf_GbtVX1uH636CsF_VU8QsTUbhH |
CitedBy_id | crossref_primary_10_1016_j_envexpbot_2019_103918 crossref_primary_10_1111_nph_16493 crossref_primary_10_1016_j_scitotenv_2024_171567 crossref_primary_10_1038_s41467_018_06932_5 crossref_primary_10_3390_ijms242115873 crossref_primary_10_1093_hr_uhae172 crossref_primary_10_1093_aobpla_plaa005 crossref_primary_10_1016_j_tree_2020_08_011 crossref_primary_10_1016_j_plantsci_2022_111431 crossref_primary_10_1093_gbe_evac065 crossref_primary_10_1080_15592294_2019_1625674 crossref_primary_10_1073_pnas_2004833118 crossref_primary_10_1016_j_cbd_2024_101348 crossref_primary_10_1080_14772000_2022_2099478 crossref_primary_10_1093_nargab_lqab106 crossref_primary_10_3389_fpls_2018_01251 crossref_primary_10_32604_phyton_2023_027113 crossref_primary_10_1007_s10530_018_1703_6 crossref_primary_10_1111_eva_13382 crossref_primary_10_3390_f11090976 crossref_primary_10_1002_ecs2_3093 crossref_primary_10_3389_fgene_2022_874648 crossref_primary_10_1111_1365_2745_14420 crossref_primary_10_3390_plants11091226 crossref_primary_10_1016_j_ppees_2018_08_005 crossref_primary_10_1038_s41437_018_0114_x crossref_primary_10_1111_ppl_13162 crossref_primary_10_1080_15592294_2018_1554520 crossref_primary_10_1111_nph_14985 crossref_primary_10_1093_aob_mcab011 crossref_primary_10_1111_brv_12453 crossref_primary_10_1111_nph_15388 crossref_primary_10_1080_15592324_2019_1596717 crossref_primary_10_3389_fevo_2021_681100 crossref_primary_10_15407_ukrbotj78_05_347 crossref_primary_10_1111_1365_2435_13429 crossref_primary_10_1051_jbio_2020011 crossref_primary_10_3389_fpls_2023_1139331 crossref_primary_10_1016_j_tig_2021_04_010 crossref_primary_10_1016_j_envexpbot_2019_03_006 crossref_primary_10_1002_ece3_10511 crossref_primary_10_3390_agronomy12061347 crossref_primary_10_3390_agronomy11061119 crossref_primary_10_1186_s12870_021_03293_y crossref_primary_10_3390_ijms21093318 crossref_primary_10_1111_jeb_13535 crossref_primary_10_3389_fpls_2020_00494 crossref_primary_10_3389_fpls_2018_01148 crossref_primary_10_1038_s41437_020_00355_z crossref_primary_10_3390_biology9100315 crossref_primary_10_1007_s10531_021_02241_4 crossref_primary_10_1111_eva_13235 crossref_primary_10_3390_ijms232113412 crossref_primary_10_3389_fcell_2022_880779 crossref_primary_10_1093_genetics_iyab001 crossref_primary_10_3390_genes12111818 crossref_primary_10_3390_epigenomes5020012 crossref_primary_10_3389_fpls_2022_831175 crossref_primary_10_3389_fpls_2021_633982 crossref_primary_10_1111_nph_18591 crossref_primary_10_1111_plb_13713 crossref_primary_10_3389_fpls_2018_01851 crossref_primary_10_3390_plants12051180 crossref_primary_10_3390_plants11172190 crossref_primary_10_1002_csc2_20351 crossref_primary_10_1038_s41467_024_49162_8 crossref_primary_10_1111_1365_2435_14136 crossref_primary_10_1111_nph_15408 crossref_primary_10_3389_fmars_2020_00205 crossref_primary_10_3389_fcell_2022_1020958 crossref_primary_10_1111_nph_16046 crossref_primary_10_1098_rspb_2022_0065 crossref_primary_10_1111_gcb_15249 crossref_primary_10_1007_s11295_018_1293_6 crossref_primary_10_1016_j_envres_2024_119114 crossref_primary_10_1002_ece3_7954 crossref_primary_10_1093_gbe_evac036 crossref_primary_10_1186_s12870_023_04277_w crossref_primary_10_3389_fpls_2017_02078 crossref_primary_10_1111_mec_17165 crossref_primary_10_3389_fpls_2022_924001 crossref_primary_10_1002_pei3_10055 crossref_primary_10_1017_wsc_2021_13 crossref_primary_10_1093_cz_zoac094 crossref_primary_10_3389_fpls_2019_00622 crossref_primary_10_1093_jxb_eraa132 crossref_primary_10_1111_eva_13212 crossref_primary_10_1002_1438_390X_12018 crossref_primary_10_1111_1365_2745_13964 crossref_primary_10_1111_ele_13373 crossref_primary_10_1002_ece3_5426 crossref_primary_10_1111_mec_16500 crossref_primary_10_3390_genes10040256 crossref_primary_10_1002_ece3_7606 crossref_primary_10_3390_plants12071558 crossref_primary_10_3389_fpls_2018_01635 crossref_primary_10_1093_conphys_coab023 crossref_primary_10_1242_jeb_246009 crossref_primary_10_1111_oik_05591 crossref_primary_10_1093_molbev_msae170 crossref_primary_10_1093_jxb_ery271 crossref_primary_10_1016_j_pld_2023_08_002 crossref_primary_10_1111_njb_04003 crossref_primary_10_1038_s41467_025_55989_6 crossref_primary_10_1534_g3_119_400770 crossref_primary_10_1007_s10530_024_03319_0 crossref_primary_10_1111_mec_15089 crossref_primary_10_3390_su16135474 crossref_primary_10_3390_w13060829 crossref_primary_10_3389_fmars_2020_545102 crossref_primary_10_3390_genes10030219 crossref_primary_10_1007_s10682_020_10038_0 crossref_primary_10_3389_fpls_2018_01990 crossref_primary_10_1371_journal_pgen_1010452 crossref_primary_10_3390_f12050569 crossref_primary_10_3389_fevo_2022_856453 crossref_primary_10_3389_fpls_2020_00694 crossref_primary_10_3389_fpls_2021_733846 crossref_primary_10_1111_1365_2656_13619 crossref_primary_10_1016_j_jenvrad_2018_07_012 crossref_primary_10_1007_s11105_025_01545_x crossref_primary_10_1111_brv_13132 crossref_primary_10_1111_nph_17186 crossref_primary_10_1038_s41437_019_0261_8 crossref_primary_10_3389_fpls_2022_888391 crossref_primary_10_1016_j_scitotenv_2020_140420 crossref_primary_10_1111_mec_15191 crossref_primary_10_1002_ece3_8959 crossref_primary_10_1016_j_tree_2019_11_006 crossref_primary_10_3389_fpls_2022_949752 crossref_primary_10_1111_evo_14367 crossref_primary_10_1111_1755_0998_13490 crossref_primary_10_1266_ggs_20_00025 crossref_primary_10_3390_genes10040263 crossref_primary_10_1111_mec_16832 crossref_primary_10_1111_evo_14494 crossref_primary_10_3390_antiox10071128 crossref_primary_10_1016_j_ecolmodel_2019_02_016 crossref_primary_10_1111_oik_07302 crossref_primary_10_1111_mec_16273 crossref_primary_10_1242_bio_059147 crossref_primary_10_3389_fpls_2020_00435 crossref_primary_10_1371_journal_pone_0293075 crossref_primary_10_1038_s41598_022_08683_2 crossref_primary_10_1111_pce_15370 crossref_primary_10_1111_evo_13619 crossref_primary_10_1093_aob_mcaa100 crossref_primary_10_1093_aobpla_plz020 crossref_primary_10_1038_s41598_019_55826_z crossref_primary_10_3390_seeds2040032 crossref_primary_10_1038_s41437_018_0095_9 crossref_primary_10_1002_ece3_4374 crossref_primary_10_1038_s41477_020_00808_7 crossref_primary_10_1002_ece3_6795 crossref_primary_10_1111_mec_17356 crossref_primary_10_1186_s12915_024_01816_1 crossref_primary_10_1111_1365_2435_70024 crossref_primary_10_1002_tpg2_20049 crossref_primary_10_1038_s41598_022_23165_1 crossref_primary_10_1093_jxb_erae522 crossref_primary_10_1111_nph_17037 crossref_primary_10_3389_fmars_2020_00300 crossref_primary_10_1002_ece3_4144 crossref_primary_10_1111_1755_0998_13597 crossref_primary_10_1146_annurev_arplant_042817_040240 crossref_primary_10_1111_ede_12388 crossref_primary_10_1002_ece3_6689 crossref_primary_10_3897_neobiota_49_33723 crossref_primary_10_1038_s41467_019_09496_0 crossref_primary_10_1098_rstb_2019_0366 crossref_primary_10_1111_oik_09863 crossref_primary_10_1093_aob_mcad173 crossref_primary_10_15446_abc_v27n1_88241 crossref_primary_10_1007_s00335_020_09832_6 crossref_primary_10_1093_jxb_erz532 crossref_primary_10_1093_aob_mcaa004 crossref_primary_10_1111_nph_15487 crossref_primary_10_3390_f13091362 crossref_primary_10_1038_s41598_024_64109_1 crossref_primary_10_3390_genes13050793 crossref_primary_10_1002_ece3_3868 crossref_primary_10_1098_rstb_2020_0117 crossref_primary_10_1016_j_chemosphere_2021_131026 crossref_primary_10_1038_s41598_023_41896_7 crossref_primary_10_1111_mec_14736 crossref_primary_10_1093_evlett_qrae012 crossref_primary_10_3390_epigenomes7010001 crossref_primary_10_1002_ece3_11343 crossref_primary_10_1086_700960 crossref_primary_10_1111_jeb_14162 crossref_primary_10_1007_s00299_020_02617_w crossref_primary_10_1007_s10722_020_01019_x crossref_primary_10_1016_j_ibmb_2020_103370 crossref_primary_10_3390_genes12020227 crossref_primary_10_1146_annurev_marine_010318_095114 crossref_primary_10_1007_s00425_022_03829_y crossref_primary_10_1038_s41598_022_22125_z crossref_primary_10_3389_fpls_2020_00985 crossref_primary_10_1002_tpg2_20367 crossref_primary_10_3390_genes16040361 crossref_primary_10_1086_716512 crossref_primary_10_1111_pbi_14229 crossref_primary_10_1016_j_plantsci_2020_110737 crossref_primary_10_1002_ece3_4504 crossref_primary_10_1101_cshperspect_a034629 crossref_primary_10_1016_j_marpolbul_2024_117011 crossref_primary_10_1016_j_tree_2020_12_009 crossref_primary_10_1111_mec_15481 crossref_primary_10_1016_j_foreco_2020_118319 crossref_primary_10_1146_annurev_ecolsys_110617_062654 crossref_primary_10_1016_j_jembe_2019_03_002 crossref_primary_10_3389_fpls_2019_00246 crossref_primary_10_1007_s00271_020_00682_3 crossref_primary_10_1111_ppl_13782 crossref_primary_10_1093_eep_dvy025 crossref_primary_10_3389_fevo_2022_868826 |
Cites_doi | 10.1093/jnci/95.5.399 10.1111/j.1365-294X.2011.05402.x 10.1186/s13059-016-1059-0 10.3390/ijms130810316 10.1101/gad.524609 10.1126/science.1150646 10.1093/icb/ict012 10.1038/ng.2703 10.1111/evo.12320 10.1098/rspb.2016.0988 10.1038/nrg2641 10.1038/nplants.2014.23 10.1146/annurev-arplant-050312-120237 10.1038/nature11262 10.1007/s11103-013-0165-6 10.1016/0092-8674(85)90192-8 10.1038/nature08328 10.1038/nrg1834 10.1111/mec.12344 10.1186/s12859-014-0356-4 10.1111/mec.12679 10.1093/gbe/evu271 10.1038/nature09861 10.1186/gb-2014-15-2-r38 10.1111/mec.13296 10.1534/genetics.113.158980 10.1111/eva.12482 10.1073/pnas.1212955109 10.1038/nprot.2010.190 10.1111/j.1469-8137.2009.03121.x 10.7554/eLife.09343 10.1534/genetics.111.131615 10.1111/mec.13576 10.1104/pp.111.187831 10.1093/gbe/evw209 10.1093/pcp/pcs044 10.3389/fpls.2015.00114 10.1002/bies.201200169 10.1371/journal.pcbi.1003326 10.1371/journal.pone.0017388 10.1371/journal.pgen.1004920 10.1105/tpc.15.00911 10.3732/ajb.1500526 10.1534/genetics.114.167973 10.1111/tpj.12542 10.1126/science.1260638 10.1086/598822 10.1098/rsbl.2012.0494 10.1007/s11258-014-0430-z 10.1038/ng1841 10.1371/journal.pgen.1005650 10.1016/j.jplph.2011.03.017 10.1111/j.1461-0248.2007.01130.x 10.1186/gb-2014-15-2-r34 10.1104/pp.111.187468 10.1038/ncomms5268 10.1126/science.1248127 10.1007/s004380050374 10.1038/embor.2010.186 10.3389/fgene.2015.00004 10.1046/j.1365-313X.2003.01681.x 10.1105/tpc.109.072041 10.1073/pnas.1424254112 10.1038/nrg.2016.45 10.1086/660911 10.1038/nature10555 10.1073/pnas.1209329109 10.7554/eLife.13546 10.1371/journal.pgen.1000530 10.1534/g3.115.023242 10.1016/j.tpb.2011.08.001 10.1038/nature13722 10.1101/gr.107524.110 10.1111/mec.12911 10.1111/j.1469-8137.2010.03369.x 10.1111/j.1461-0248.2012.01824.x 10.1111/2041-210X.12435 10.1038/43657 10.1038/nmeth.3763 10.1371/journal.pone.0010326 10.1038/nrg3273 10.1126/science.1258699 10.1038/nature15365 10.1186/gb-2013-14-6-r59 10.1111/mec.13502 10.1007/s10682-010-9372-7 10.1111/mec.13550 10.1371/journal.pgen.1004785 10.1111/nph.12010 10.1038/nature11968 10.1093/bioinformatics/btr167 10.1007/s10530-016-1223-1 10.1111/mec.13067 10.1126/science.1180677 10.1093/bfgp/elr039 10.3732/ajb.1400126 10.7554/eLife.05255 10.1111/evo.12324 10.1016/j.tree.2012.07.014 10.1101/sqb.2012.77.014571 10.1515/ngi-2015-0002 10.3389/fpls.2015.00308 10.1038/nature13575 10.1093/molbev/msx150 10.1126/science.1165313 10.1111/mec.13055 10.1371/journal.pone.0081148 10.1111/mec.13230 10.1534/genetics.109.102798 10.1016/S1360-1385(02)02244-6 10.1126/science.1255023 10.1038/nplants.2015.222 10.1111/boj.12007 10.1111/mec.13522 10.1371/journal.pone.0101559 10.1186/1756-8935-8-6 10.1186/gb-2012-13-10-r83 10.1016/j.cell.2016.06.044 10.1073/pnas.1209297109 10.1111/mec.12350 10.1093/nar/gkr598 10.1111/j.1469-8137.2010.03298.x 10.1101/gr.196394.115 10.1534/genetics.111.136176 10.1111/1755-0998.12426 10.1111/mec.12835 10.1371/journal.pone.0030515 10.1038/nature06745 10.1038/ncomms3875 10.1016/j.pbi.2011.01.002 10.1104/pp.111.191593 10.1016/j.cell.2009.12.023 10.1186/gb-2012-13-7-r61 10.1007/s10530-008-9383-2 10.1038/nplants.2016.30 10.1038/nrg3683 10.12688/f1000research.2-217.v2 10.1186/1471-2164-13-300 10.1111/mec.13563 10.1111/j.1365-294X.2011.05026.x |
ContentType | Journal Article |
Copyright | 2017 The Authors. published by CNRS and John Wiley & Sons Ltd 2017 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd. Copyright © 2017 John Wiley & Sons Ltd/CNRS Attribution |
Copyright_xml | – notice: 2017 The Authors. published by CNRS and John Wiley & Sons Ltd – notice: 2017 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd. – notice: Copyright © 2017 John Wiley & Sons Ltd/CNRS – notice: Attribution |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SN 7SS 7U9 C1K H94 M7N 7X8 7S9 L.6 1XC VOOES |
DOI | 10.1111/ele.12858 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Ecology Abstracts Entomology Abstracts (Full archive) Virology and AIDS Abstracts Environmental Sciences and Pollution Management AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) MEDLINE - Academic AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Entomology Abstracts AIDS and Cancer Research Abstracts Virology and AIDS Abstracts Ecology Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Entomology Abstracts MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology Environmental Sciences |
EISSN | 1461-0248 |
EndPage | 1590 |
ExternalDocumentID | oai_HAL_hal_02098587v1 29027325 10_1111_ele_12858 ELE12858 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: Synthesis Centre of the German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig funderid: DFG FZT 118 – fundername: National Science Foundation funderid: DEB‐1419960 – fundername: German Research Foundation funderid: FZT 118 – fundername: Franco‐American Fulbright Commission |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1OC 24P 29G 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABJNI ABPVW ACAHQ ACBWZ ACCZN ACFBH ACGFS ACGOD ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFEBI AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG COF CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS ECGQY EJD F00 F01 F04 F5P FEDTE G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ N~3 O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 R.K ROL RX1 SUPJJ UB1 W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WXSBR WYISQ XG1 ZY4 ZZTAW ~02 ~IA ~KM ~WT AAHHS AAYXX ACCFJ ADZOD AEEZP AEQDE AIWBW AJBDE CITATION ABTAH AEUQT AFPWT CGR CUY CVF ECM EIF ESX NPM WRC 7SN 7SS 7U9 C1K H94 M7N 7X8 7S9 L.6 1XC VOOES |
ID | FETCH-LOGICAL-c5218-5854591953cb2dfc2cf031f0a402324b1e8ac1de8bb151df3ab2f236860291bd3 |
IEDL.DBID | DR2 |
ISSN | 1461-023X 1461-0248 |
IngestDate | Fri Sep 12 12:42:33 EDT 2025 Fri Jul 11 18:36:33 EDT 2025 Fri Jul 11 11:51:54 EDT 2025 Fri Jul 25 10:48:08 EDT 2025 Wed Feb 19 02:32:29 EST 2025 Thu Apr 24 22:50:58 EDT 2025 Tue Jul 01 02:29:43 EDT 2025 Sun Sep 21 06:24:20 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | ecological epigenetics genomics phenotypic plasticity Bioinformatics response to environment Phenotypic plasticity Ecological epigenetics Response to environment Genomics |
Language | English |
License | Attribution 2017 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd. Attribution: http://creativecommons.org/licenses/by |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5218-5854591953cb2dfc2cf031f0a402324b1e8ac1de8bb151df3ab2f236860291bd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-4126-0250 0000-0003-3002-4102 0000-0003-4308-9626 0000-0003-0737-047X 0000-0002-8295-4937 0000-0002-5016-5191 0000-0002-0514-1270 0000-0002-6611-2246 0000-0002-2224-7560 0000-0003-0025-5049 0000-0002-0225-873X 0000-0002-7418-3204 0000-0003-3406-4670 0000-0003-2866-2869 0000-0001-7848-5165 0000-0002-1036-599X 0000-0001-7504-6511 0000-0002-3114-3763 0000-0002-1270-5273 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fele.12858 |
PMID | 29027325 |
PQID | 1962056782 |
PQPubID | 32390 |
PageCount | 15 |
ParticipantIDs | hal_primary_oai_HAL_hal_02098587v1 proquest_miscellaneous_2010202970 proquest_miscellaneous_1951567805 proquest_journals_1962056782 pubmed_primary_29027325 crossref_citationtrail_10_1111_ele_12858 crossref_primary_10_1111_ele_12858 wiley_primary_10_1111_ele_12858_ELE12858 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2017 |
PublicationDateYYYYMMDD | 2017-12-01 |
PublicationDate_xml | – month: 12 year: 2017 text: December 2017 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Paris |
PublicationTitle | Ecology letters |
PublicationTitleAlternate | Ecol Lett |
PublicationYear | 2017 |
Publisher | Blackwell Publishing Ltd Wiley |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley |
References | 2009; 84 2013; 4 2006; 38 2010; 187 2010; 185 2012; 15 2012; 488 2012; 13 2013; 8 1966; 54 2012; 11 2016a; 8 2014; 23 2013; 9 2011; 472 2009; 11 2010; 22 2010; 20 2009; 10 2010; 24 2013; 2013 2013; 53 2014; 15 2012; 27 2013; 197 2011; 480 2010; 5 2012; 21 2014; 10 2010; 327 2009; 182 2002; 7 2016; 166 2015; 525 2016; 18 2016; 17 2016; 16 2011; 6 2016; 13 2012; 109 2016; 283 2003; 33 2016; 5 2016; 7 2016; 2 2012; 190 2015; 112 2005; 7 2009; 461 2016; 28 2013; 171 2016; 26 2016; 25 2013; 22 2014; 68 2011; 12 2010; 140 2015; 348 2011; 14 2016; 103 2003; 95 1999; 401 2012; 53 2011; 168 2014; 5 2013; 14 2014; 2 2017; 34 2008; 319 2011; 20 2015; 216 2014; 9 2011; 27 2014; 7 2016b; 6 2009; 323 2009; 23 2015; 2 2014; 515 2015; 1 2012; 81 2014; 513 2015; 6 2015; 4 2013; 45 1997; 253 2015; 11 2006; 7 1985; 40 2008; 11 2014; 198 2011; 39 2014; 84 2012; 149 2014; 196 2015; 8 2012; 77 2011; 178 2015; 24 2014; 348 2013; 35 2017 2014; 79 2009; 5 2013; 495 2012; 158 2012; 7 2008; 452 2014; 345 2011; 189 2014; 101 2014; 343 2012; 8 e_1_2_7_108_1 e_1_2_7_3_1 e_1_2_7_104_1 e_1_2_7_127_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_100_1 e_1_2_7_123_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_87_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_142_1 e_1_2_7_116_1 e_1_2_7_90_1 e_1_2_7_112_1 e_1_2_7_94_1 e_1_2_7_71_1 e_1_2_7_52_1 e_1_2_7_98_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_75_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_79_1 e_1_2_7_131_1 e_1_2_7_135_1 e_1_2_7_139_1 e_1_2_7_109_1 e_1_2_7_4_1 e_1_2_7_128_1 e_1_2_7_105_1 e_1_2_7_8_1 e_1_2_7_124_1 e_1_2_7_101_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_82_1 e_1_2_7_120_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_86_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_143_1 e_1_2_7_29_1 Levins R. (e_1_2_7_77_1) 1966; 54 e_1_2_7_117_1 e_1_2_7_113_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_93_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_97_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_78_1 e_1_2_7_132_1 e_1_2_7_136_1 e_1_2_7_5_1 e_1_2_7_106_1 e_1_2_7_129_1 e_1_2_7_9_1 e_1_2_7_102_1 e_1_2_7_125_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_81_1 e_1_2_7_121_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_85_1 e_1_2_7_47_1 e_1_2_7_89_1 e_1_2_7_140_1 e_1_2_7_28_1 e_1_2_7_118_1 e_1_2_7_114_1 Gorelick R. (e_1_2_7_38_1) 2005; 7 e_1_2_7_73_1 e_1_2_7_110_1 e_1_2_7_50_1 e_1_2_7_92_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_54_1 e_1_2_7_96_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_133_1 e_1_2_7_137_1 e_1_2_7_6_1 e_1_2_7_107_1 e_1_2_7_80_1 e_1_2_7_126_1 e_1_2_7_103_1 e_1_2_7_18_1 e_1_2_7_84_1 e_1_2_7_122_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_88_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_69_1 e_1_2_7_141_1 e_1_2_7_27_1 e_1_2_7_119_1 e_1_2_7_91_1 e_1_2_7_115_1 e_1_2_7_72_1 e_1_2_7_95_1 e_1_2_7_111_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_99_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_130_1 e_1_2_7_134_1 e_1_2_7_138_1 |
References_xml | – volume: 112 start-page: 6676 year: 2015 end-page: 6681 article-title: Rate, spectrum and evolutionary dynamics of spontaneous epimutations publication-title: Proc. Natl Acad. Sci. USA – volume: 40 start-page: 485 year: 1985 end-page: 486 article-title: Altering gene expression with 5‐azacytidine publication-title: Cell – volume: 7 start-page: 395 year: 2006 end-page: 401 article-title: Inherited epigenetic variation – revisiting soft inheritance publication-title: Nat. Rev. Genet. – volume: 109 start-page: 12040 year: 2012 end-page: 12045 article-title: Transcriptome and methylome interactions in rice hybrids publication-title: Proc. Natl Acad. Sci. USA – volume: 27 start-page: 673 issue: 12 year: 2012 end-page: 678 article-title: What is needed for next‐generation ecological and evolutionary genomics? publication-title: Trends Ecol. Evol. – volume: 327 start-page: 92 year: 2010 end-page: 94 article-title: The rate and molecular spectrum of spontaneous mutations in publication-title: Science – volume: 5 start-page: 4268 year: 2014 article-title: Plant genomes enclose footprints of past infections by giant virus relatives publication-title: Nat. Commun. – volume: 168 start-page: 1685 year: 2011 end-page: 1693 article-title: Heritable alteration in DNA methylation induced by nitrogen‐deficiency stress accompanies enhanced tolerance by progenies to the stress in rice ( L.) publication-title: J. Plant Physiol. – volume: 178 start-page: E18 year: 2011 end-page: E36 article-title: A unified approach to evolutionary consequences of genetic and nongenetic inheritance publication-title: Am. Nat. – volume: 23 start-page: 939 year: 2009 end-page: 950 article-title: Compromised stability of DNA methylation and transposon immobilization in mosaic epigenomes publication-title: Genes Dev. – volume: 103 start-page: 1567 issue: 9 year: 2016 end-page: 1574 article-title: Stress‐induced memory alters growth of clonal off spring of white clover ( ) publication-title: Am. J. Bot. – volume: 23 start-page: 3523 year: 2014 end-page: 3537 article-title: Epigenetic variation reflects dynamic habitat conditions in a rare floodplain herb publication-title: Mol. Ecol. – volume: 35 start-page: 571 year: 2013 end-page: 578 article-title: How epigenetic mutations can affect genetic evolution: model and mechanism publication-title: BioEssays – volume: 23 start-page: 4926 year: 2014 end-page: 4938 article-title: Epigenetic variation predicts regional and local intraspecific functional diversity in a perennial herb publication-title: Mol. Ecol. – volume: 13 start-page: 322 year: 2016 end-page: 324 article-title: epiGBS: reference‐free reduced representation bisulfite sequencing publication-title: Nat. Meth. – volume: 2 start-page: 15222 year: 2016 article-title: Evolutionary patterns of genic DNA methylation vary across land plants publication-title: Nat. Plants – volume: 7 start-page: 60 year: 2016 end-page: 69 article-title: EpiRADseq: scalable analysis of genomewide patterns of methylation using next‐generation sequencing publication-title: Meth. Ecol. Evol. – volume: 95 start-page: 399 year: 2003 end-page: 409 article-title: Inhibition of DNA methylation and reactivation of silenced genes by Zebularine publication-title: J. Natl Cancer Inst. – volume: 38 start-page: 948 year: 2006 end-page: 952 article-title: A naturally occurring epigenetic mutation in a gene encoding an SBP‐box transcription factor inhibits tomato fruit ripening publication-title: Nat. Genet. – volume: 189 start-page: 1093 year: 2011 end-page: 1102 article-title: Epigenetic QTL mapping in publication-title: Genetics – volume: 7 start-page: 154 issue: 1 year: 2014 end-page: 171 article-title: A neutrality test for detecting selection on DNA methylation using single methylation polymorphism frequency spectrum publication-title: Genome Biol Evol. – volume: 149 start-page: 16240 year: 2012 end-page: 16245 article-title: Features of the recombination landscape resulting from the combined loss of sequence variation and DNA methylation publication-title: Proc. Natl Acad. Sci. USA – volume: 24 start-page: 3823 year: 2015 end-page: 3830 article-title: Genome‐wide signature of local adaptation linked to variable CpG methylation in oak populations publication-title: Mol. Ecol. – volume: 1 start-page: 14023 year: 2015 article-title: Genome expansion of linked with retrotransposition and reduced symmetric DNA methylation publication-title: Nat. Plants – volume: 185 start-page: 1108 issue: 4 year: 2010 end-page: 1118 article-title: Stress‐induced DNA methylation changes and their heritability in asexual dandelions publication-title: New Phyt. – volume: 2 start-page: 217 year: 2014 article-title: MethylExtract: High‐Quality methylation maps and SNV calling from whole genome bisulfite sequencing data. Version 2 publication-title: F1000Res. – volume: 452 start-page: 215 year: 2008 end-page: 219 article-title: Shotgun bisulphite sequencing of the genome reveals DNA methylation patterning publication-title: Nature – volume: 24 start-page: 541 year: 2010 end-page: 553 article-title: Experimental alteration of DNA methylation affects the phenotypic plasticity of ecologically relevant traits in publication-title: Evol. Ecol. – volume: 13 start-page: R83 year: 2012 article-title: BSmooth: from whole genome bisulfite sequencing reads to differentially methylated regions publication-title: Genome Biol. – volume: 15 start-page: R34 issue: 2 year: 2014 article-title: A multi‐split mapping algorithm for circular RNA, splicing, ‐splicing and fusion detection publication-title: Genome Biol. – volume: 12 start-page: 50 year: 2011 end-page: 55 article-title: Chromatin modification acts as a memory for systemic acquired resistance in the plant stress response publication-title: EMBO Rep. – volume: 84 start-page: 719 year: 2014 end-page: 735 article-title: A single CMT methyltransferase homolog is involved in CHG DNA methylation and development of publication-title: Plant Mol. Biol. – volume: 4 start-page: e05255 year: 2015 article-title: DNA methylation variation in Arabidopsis has a genetic basis and shows evidence of local adaptation publication-title: eLife – volume: 5 start-page: e1000530 year: 2009 article-title: Assessing the impact of transgenerational epigenetic variation on complex traits publication-title: PLoS Genet. – volume: 495 start-page: 193 year: 2013 end-page: 198 article-title: Patterns of population epigenomic diversity publication-title: Nature – year: 2017 article-title: Genetic and epigenetic variation in following the oil spill publication-title: Evol. Appl. (Special issue) – volume: 515 start-page: 587 year: 2014 end-page: 590 article-title: Epigenetic reprogramming that prevents transgenerational inheritance of the vernalized state publication-title: Nature – volume: 13 start-page: 300 year: 2012 article-title: Single‐base resolution maps of cultivated and wild rice methylomes and regulatory roles of DNA methylation in plant gene expression publication-title: BMC Genom. – volume: 525 start-page: 533 issue: 7570 year: 2015 end-page: 537 article-title: Loss of Karma transposon methylation underlies the mantled somaclonal variant of oil palm publication-title: Nature – volume: 187 start-page: 562 year: 2010 end-page: 564 article-title: Understanding natural epigenetic variation publication-title: New Phytol. – volume: 345 start-page: 1515 year: 2014 end-page: 1518 article-title: H3K27me and PRC2 transmit a memory of repression across generations and during development publication-title: Science – volume: 348 start-page: 132 year: 2015 end-page: 135 article-title: Epigenetics. Restricted epigenetic inheritance of H3K9 methylation publication-title: Science – volume: 158 start-page: 835 year: 2012 end-page: 843 article-title: Descendants of primed plants exhibit resistance to biotic stress publication-title: Plant Physiol. – volume: 253 start-page: 703 year: 1997 end-page: 710 article-title: Differences in DNA methylation patterns are detectable during the dimorphic transition of fungi by amplification of restriction polymorphims publication-title: Mol. Genet. Genomics – volume: 68 start-page: 644 year: 2014 end-page: 655 article-title: Epigenetic variation in asexually reproducing organisms publication-title: Evol. – volume: 348 start-page: 1258699 year: 2014 article-title: Epigenetic inheritance uncoupled from sequence‐specific recruitment publication-title: Science – volume: 15 start-page: 356 issue: 1 year: 2014 article-title: ANGSD: analysis of next generation sequencing data publication-title: BMC Bioinformatics – volume: 6 start-page: 308 year: 2015 article-title: Minimal evidence for consistent changes in maize DNA methylation patterns following environmental stress publication-title: Front. Plant Sci. – volume: 53 start-page: 340 year: 2013 end-page: 350 article-title: Ecological Epigenetics: beyond MS‐AFLP publication-title: Integr. Comp. Biol. – volume: 11 start-page: e1005650 issue: 11 year: 2015 article-title: A flexible, efficient binomial mixed model for identifying differential DNA methylation in bisulfite sequencing data publication-title: PLoS Genet. – volume: 39 start-page: e127 issue: 19 year: 2011 article-title: Targeted bisulfite sequencing by solution hybrid selection and massively parallel sequencing publication-title: Nucl. Acids Res. – volume: 197 start-page: 314 issue: 1 year: 2013 end-page: 322 article-title: Epigenetic variation creates potential for evolution of plant phenotypic plasticity publication-title: New Phytol. – volume: 22 start-page: 4767 year: 2013 end-page: 4782 article-title: Mass flowering of the tropical tree was preceded by expression changes in flowering and drought‐responsive genes publication-title: Mol. Ecol. – volume: 14 start-page: 195 year: 2011 end-page: 203 article-title: Selected aspects of transgenerational epigenetic inheritance and resetting in plants publication-title: Curr. Opin. Plant Biol. – volume: 25 start-page: 1856 year: 2016 end-page: 1868 article-title: Epigenetic mutations can both help and hinder adaptive evolution publication-title: Mol. Ecol. – volume: 488 start-page: 404 year: 2012 end-page: 408 article-title: A selective jumonji H3K27 demethylase inhibitor modulates the proinflammatory macrophage response publication-title: Nature – volume: 68 start-page: 632 year: 2014 end-page: 643 article-title: How stable ‘should’ epigenetic modifications be? Insights from adaptive plasticity and bet hedging publication-title: Evolution – volume: 11 start-page: 71 year: 2012 end-page: 85 article-title: Deep sequencing of small RNAs in plants: applied bioinformatics publication-title: Briefings in Functional Genomics – volume: 25 start-page: 1653 year: 2016 end-page: 1664 article-title: Comparative spatial genetics and epigenetics of plant populations: heuristic value and a proof of concept publication-title: Mol. Ecol. – volume: 18 start-page: 2457 year: 2016 article-title: Epigenetic variation within Phragmites australis among lineages, genotypes, and ramets publication-title: Biol. Invasions – volume: 480 start-page: 245 year: 2011 end-page: 249 article-title: Spontaneous epigenetic variation in the methylome publication-title: Nature – volume: 401 start-page: 157 year: 1999 end-page: 161 article-title: An epigenetic mutation responsible for natural variation in floral symmetry publication-title: Nature – volume: 171 start-page: 441 year: 2013 end-page: 452 article-title: Epigenetic correlates of plant phenotypic plasticity: DNA methylation differs between prickly and nonprickly leaves in heterophyllous (Aquifoliaceae) trees publication-title: Bot. J. Linean Soc. – volume: 45 start-page: 1029 issue: 9 year: 2013 end-page: 1039 article-title: Reconstructing de novo silencing of an active plant retrotransposon publication-title: Nat. Genet. – volume: 2 start-page: 3 year: 2015 end-page: 11 article-title: Non‐genetic inheritance in evolutionary theory – the importance of plant studies publication-title: Non‐Gen. Inherit. – volume: 15 start-page: 1016 year: 2012 end-page: 1025 article-title: Invasion of diverse habitats by few Japanese knotweed genotypes is correlated with high epigenetic differentiation publication-title: Ecol. Lett. – volume: 11 start-page: e1004920 issue: 1 year: 2015 article-title: Century‐scale methylome stability in a recently diverged lineage publication-title: PLoS Genet. – volume: 10 start-page: 669 year: 2009 end-page: 680 article-title: ChIP‐seq: advantages and challenges of a maturing technology publication-title: Nat. Rev. Genet. – volume: 190 start-page: 965 year: 2012 end-page: 975 article-title: Gene capture by Helitron transposons reshuffles the transcriptome of maize publication-title: Genetics – volume: 319 start-page: 64 year: 2008 end-page: 69 article-title: The genome reveals evolutionary insights into the conquest of land by plants publication-title: Science – volume: 6 start-page: e17388 year: 2011 article-title: Azacytidine and decitabine induce gene‐specific and non‐random DNA demethylation in human cancer cell lines publication-title: PLoS ONE – volume: 196 start-page: 667 issue: 3 year: 2014 end-page: 676 article-title: Inheritance Patterns and Stability of DNA methylation variation in maize near‐isogenic lines publication-title: Genetics – volume: 81 start-page: 232 issue: 3 year: 2012 end-page: 242 article-title: Population‐epigenetic models of selection publication-title: Theor. Popul. Biol. – volume: 7 start-page: e30515 issue: 1 year: 2012 article-title: The progeny of plants exposed to salt exhibit changes in DNA Methylation, histone modifications and gene expression publication-title: PLoS ONE – volume: 461 start-page: 427 year: 2009 end-page: 430 article-title: Selective epigenetic control of retrotransposition in publication-title: Nature – volume: 5 start-page: e13546 year: 2016 article-title: Hyperosmotic stress memory in is mediated by distinct epigenetically labile sites in the genome and is restricted in the male germline by DNA glycosylase activity publication-title: eLife – volume: 6 start-page: 114 year: 2015 article-title: Chromatin changes in response to drought, salinity, heat, and cold stresses in plants publication-title: Front. Plant Sci. – volume: 216 start-page: 227 year: 2015 end-page: 233 article-title: Epigenetics: a potential mechanism for clonal plant success publication-title: Plant Ecol. – volume: 140 start-page: 111 year: 2010 end-page: 122 article-title: Transcriptional control of gene expression by microRNAs publication-title: Cell – volume: 25 start-page: 1759 year: 2016 end-page: 1768 article-title: Natural epigenetic variation contributes to heritable flowering divergence in a widespread asexual dandelion lineage publication-title: Mol. Ecol. – volume: 8 start-page: 3030 year: 2016a end-page: 3044 article-title: Reference transcriptomes and detection of duplicated copies in hexaploid and allododecaploid species (Poaceae) publication-title: Genome Biol Evol – volume: 283 start-page: 20160988 year: 2016 article-title: DNA methylation mediates genetic variation for adaptive transgenerational plasticity publication-title: Proc. Biol. Sci. – volume: 158 start-page: 844 year: 2012 end-page: 853 article-title: Next generation systemic acquired resistance publication-title: Plant Physiol. – volume: 16 start-page: 80 year: 2016 end-page: 90 article-title: MSAP markers and global cytosine methylation in plants: a literature survey and comparative analysis for a wild growing species publication-title: Mol. Ecol. Res. – volume: 8 start-page: 798 year: 2012 end-page: 801 article-title: Evidence for an epigenetic role in inbreeding depression publication-title: Biol. Lett. – volume: 7 start-page: 210 issue: 5 year: 2002 end-page: 216 article-title: Priming in plant–pathogen interactions publication-title: Trends in Plant Sci. – volume: 20 start-page: 1675 year: 2011 end-page: 1688 article-title: Untangling individual variation in natural populations: ecological, genetic and epigenetic correlates of long‐term inequality in herbivory publication-title: Mol. Ecol. – volume: 17 start-page: 319 issue: 6 year: 2016 end-page: 332 article-title: Genetic sources of population epigenomic variation publication-title: Nat. Rev. Genet. – volume: 9 start-page: e1003326 issue: 11 year: 2013 article-title: Practical guidelines for the comprehensive analysis of ChIP‐seq data publication-title: PLoS Comp. Biol. – volume: 79 start-page: 67 year: 2014 end-page: 81 article-title: The chromatin landscape of the moss and its dynamics during development and drought stress publication-title: Plant J. – volume: 15 start-page: 394 year: 2014 end-page: 408 article-title: RNA‐directed DNA methylation: an epigenetic pathway of increasing complexity publication-title: Nat. Rev. Genet. – volume: 6 start-page: 29 year: 2016b end-page: 40 article-title: Haplotype detection from Next‐Generation Sequencing in high‐ploidy‐level species: 45S rDNA gene copies in the hexaploid publication-title: G3 – volume: 182 start-page: 845 issue: 3 year: 2009 end-page: 850 article-title: Epigenetic inheritance and the missing heritability problem publication-title: Genetics – volume: 77 start-page: 135 year: 2012 end-page: 145 article-title: Epiallelic variation in publication-title: Cold Spring Harb. Symp. Quant. Biol. – volume: 15 start-page: R38 year: 2014 article-title: MOABS: model based analysis of bisulfite sequencing data publication-title: Genome Biol. – volume: 6 start-page: 4 year: 2015 article-title: Global DNA cytosine methylation as an evolving trait: phylogenetic signal and correlated evolution with genome size in angiosperms publication-title: Front. Genet. – volume: 13 start-page: R61 issue: 7 year: 2012 article-title: Bis‐SNP: combined DNA methylation and SNP calling for Bisulfite‐seq data publication-title: Genome Biol. – volume: 4 year: 2015 article-title: Stress induced gene expression drives transient DNA methylation changes at adjacent repetitive elements publication-title: eLife – volume: 109 start-page: E2183 year: 2012 end-page: E2191 article-title: Widespread dynamic DNA methylation in response to biotic stress publication-title: Proc. Natl Acad. Sci. USA – volume: 20 start-page: 1297 issue: 9 year: 2010 end-page: 1303 article-title: The Genome Analysis Toolkit: a MapReduce framework for analyzing next‐generation DNA sequencing data publication-title: Genome Res. – volume: 343 start-page: 1145 issue: 6175 year: 2014 end-page: 1148 article-title: Mapping the epigenetic basis of complex traits publication-title: Science – volume: 28 start-page: 314 year: 2016 end-page: 325 article-title: Creating order from chaos: epigenome dynamics in plants with complex genomes publication-title: Plant Cell – volume: 24 start-page: 835 year: 2015 end-page: 850 article-title: ICE1 demethylation drives the range expansion of a plant invader through cold tolerance divergence publication-title: Mol. Ecol. – volume: 25 start-page: 1697 year: 2016 end-page: 1713 article-title: BsRADseq screening DNA methylation in natural populations of non‐model species publication-title: Mol. Ecol. – volume: 7 start-page: 371 year: 2005 end-page: 379 article-title: Environmentally alterable additive genetic effects publication-title: Evol. Ecol. Res. – volume: 26 start-page: 256 year: 2016 end-page: 262 article-title: metilene: Fast and sensitive calling of differentially methylated regions from bisulfite sequencing data publication-title: Genome Res. – volume: 198 start-page: 1587 issue: 4 year: 2014 end-page: 1602 article-title: Purifying selection, drift, and reversible mutation with arbitrarily high mutation rates publication-title: Genetics – volume: 323 start-page: 1600 issue: 5921 year: 2009 end-page: 1604 article-title: A role for RNAi in the selective correction of DNA methylation defects publication-title: Science – volume: 101 start-page: 1309 year: 2014 end-page: 1313 article-title: Individual variation in size and fecundity is correlated with differences in global DNA cytosine methylation in the perennial herb (Ranunculaceae) publication-title: Am. J. Bot. – volume: 54 start-page: 421 year: 1966 end-page: 431 article-title: The strategy of model building in population biology publication-title: Am. Sci. – volume: 22 start-page: 2841 year: 2013 end-page: 2847 article-title: Genotyping‐by‐sequencing in ecological and conservation genomics publication-title: Mol. Ecol. – volume: 5 start-page: e10326 year: 2010 article-title: Epigenetic variation in mangrove plants occurring in contrasting natural environment publication-title: PLoS ONE – volume: 53 start-page: 801 year: 2012 end-page: 808 article-title: Stress‐induced chromatin changes: a critical view on their heritability publication-title: Plant Cell Physiol. – volume: 34 start-page: 2035 year: 2017 end-page: 2040 article-title: Small RNAs reflect grandparental environments in apomictic dandelion publication-title: Mol. Biol. Evol. – volume: 25 start-page: 1665 year: 2016 end-page: 1680 article-title: Species wide patterns of DNA methylation variation in Quercus lobata and its association with climate gradients publication-title: Mol. Ecol. – volume: 10 start-page: e1004785 year: 2014 article-title: Evolution of DNA methylation patterns in the Brassicaceae is driven by differences in genome organization publication-title: PLoS Genet. – volume: 27 start-page: 1571 issue: 11 year: 2011 end-page: 1572 article-title: Bismark: a flexible aligner and methylation caller for Bisulfite‐Seq applications publication-title: Bioinformatics – volume: 24 start-page: 710 year: 2015 end-page: 725 article-title: Ten years of transcriptomics in wild populations: what have we learned about their ecology and evolution? publication-title: Mol. Ecol. – volume: 9 start-page: e101559 issue: 7 year: 2014 article-title: Epigenetic inheritance, epimutation, and the response to selection publication-title: PLoS ONE – volume: 8 start-page: 6 year: 2015 article-title: De novo identification of differentially methylated regions in the human genome publication-title: Epigenetics Chromatin – volume: 25 start-page: 1639 year: 2016 end-page: 1652 article-title: Genetic and epigenetic differences associated with environmental gradients in replicate populations of two salt marsh perennials publication-title: Mol. Ecol. – volume: 23 start-page: 1085 issue: 522 year: 2014 end-page: 1095 article-title: Variation in DNA methylation transmissibility, genetic heterogeneity and fecundity‐related traits in natural populations of the perennial herb publication-title: Mol. Ecol. – volume: 158 start-page: 854 year: 2012 end-page: 863 article-title: Herbivory in the previous generation primes plants for enhanced insect resistance publication-title: Plant Physiol. – volume: 472 start-page: 115 year: 2011 end-page: 119 article-title: An siRNA pathway prevents transgenerational retrotransposition in plants subjected to stress publication-title: Nature – volume: 84 start-page: 131 issue: 2 year: 2009 end-page: 176 article-title: Transgenerational epigenetic inheritance: prevalence, mechanisms, and implications for the study of heredity and evolution publication-title: Q. Rev. Biol. – volume: 513 start-page: 555 year: 2014 end-page: 558 article-title: Antifungal drug resistance evoked via RNAi‐dependent epimutations publication-title: Nature – volume: 13 start-page: 10316 year: 2012 end-page: 10335 article-title: Molecular tools for exploring polyploid genomes in plants publication-title: Int. J. Mol. Sci. – volume: 13 start-page: 705 year: 2012 end-page: 719 article-title: Analysing and interpreting DNA methylation data publication-title: Nat. Rev. Genet. – volume: 21 start-page: 2602 year: 2012 end-page: 2616 article-title: Jack of all nectars, master of most: DNA methylation and the epigenetic basis of niche width in a flower‐living yeast publication-title: Mol. Ecol. – volume: 2 start-page: 16030 year: 2016 article-title: Silencing in sperm cells is directed by RNA movement from the surrounding nurse cell publication-title: Nat. Plants – volume: 11 start-page: 106 year: 2008 end-page: 115 article-title: Epigenetics for ecologists publication-title: Ecol. Lett. – volume: 11 start-page: 1159 issue: 5 year: 2009 end-page: 1173 article-title: Hybridization, polyploidy and invasion: lessons from Spartina (Poaceae) publication-title: Biol. Invasions – volume: 187 start-page: 867 issue: 3 year: 2010 end-page: 876 article-title: Epigenetic differentiation and relationship to adaptive genetic divergence in discrete populations of the violet publication-title: New Phytol. – volume: 14 start-page: R59 year: 2013 article-title: Hyperosmotic priming of seedlings establish a long‐term somatic memory accompanied by specific changes of the epigenome publication-title: Genome Biol. – volume: 2013 start-page: 89 issue: 64 year: 2013 end-page: 110 article-title: Tapping the promise of genomics in species with complex, nonmodel genomes publication-title: Annu. Rev. Plant Biol. – volume: 33 start-page: 967 year: 2003 end-page: 973 article-title: Methylation of histone H3 in euchromatin of plant chromosomes depends on basic nuclear DNA content publication-title: Plant J. – volume: 4 start-page: 2875 year: 2013 article-title: Epigenetic diversity increases the productivity and stability of plant populations publication-title: Nat. Commun. – volume: 22 start-page: 17 year: 2010 end-page: 33 article-title: Global epigenetic and transcriptional trends among two rice subspecies and their reciprocal hybrids publication-title: Plant Cell – volume: 8 start-page: e81148 issue: 12 year: 2013 article-title: A reference methylome database and analysis pipeline to facilitate integrative and comparative epigenomics publication-title: PLoS ONE – volume: 17 start-page: 194 year: 2016 article-title: Widespread natural variation of DNA methylation within angiosperms publication-title: Genome Biol. – volume: 6 start-page: 468 issue: 4 year: 2011 end-page: 481 article-title: Preparation of reduced representation bisulfite sequencing libraries for genome‐scale DNA methylation profiling publication-title: Nat. Protoc. – volume: 166 start-page: 492 year: 2016 end-page: 505 article-title: Epigenomic diversity in a global collection of accessions publication-title: Cell – ident: e_1_2_7_21_1 doi: 10.1093/jnci/95.5.399 – ident: e_1_2_7_52_1 doi: 10.1111/j.1365-294X.2011.05402.x – ident: e_1_2_7_94_1 doi: 10.1186/s13059-016-1059-0 – ident: e_1_2_7_8_1 doi: 10.3390/ijms130810316 – ident: e_1_2_7_107_1 doi: 10.1101/gad.524609 – ident: e_1_2_7_109_1 doi: 10.1126/science.1150646 – ident: e_1_2_7_119_1 doi: 10.1093/icb/ict012 – ident: e_1_2_7_85_1 doi: 10.1038/ng.2703 – ident: e_1_2_7_135_1 doi: 10.1111/evo.12320 – ident: e_1_2_7_47_1 doi: 10.1098/rspb.2016.0988 – ident: e_1_2_7_99_1 doi: 10.1038/nrg2641 – ident: e_1_2_7_140_1 doi: 10.1038/nplants.2014.23 – ident: e_1_2_7_55_1 doi: 10.1146/annurev-arplant-050312-120237 – ident: e_1_2_7_73_1 doi: 10.1038/nature11262 – ident: e_1_2_7_95_1 doi: 10.1007/s11103-013-0165-6 – ident: e_1_2_7_62_1 doi: 10.1016/0092-8674(85)90192-8 – ident: e_1_2_7_91_1 doi: 10.1038/nature08328 – ident: e_1_2_7_111_1 doi: 10.1038/nrg1834 – ident: e_1_2_7_68_1 doi: 10.1111/mec.12344 – ident: e_1_2_7_69_1 doi: 10.1186/s12859-014-0356-4 – ident: e_1_2_7_53_1 doi: 10.1111/mec.12679 – ident: e_1_2_7_137_1 doi: 10.1093/gbe/evu271 – ident: e_1_2_7_58_1 doi: 10.1038/nature09861 – ident: e_1_2_7_129_1 doi: 10.1186/gb-2014-15-2-r38 – ident: e_1_2_7_71_1 doi: 10.1111/mec.13296 – ident: e_1_2_7_79_1 doi: 10.1534/genetics.113.158980 – ident: e_1_2_7_115_1 doi: 10.1111/eva.12482 – ident: e_1_2_7_24_1 doi: 10.1073/pnas.1212955109 – ident: e_1_2_7_40_1 doi: 10.1038/nprot.2010.190 – ident: e_1_2_7_136_1 doi: 10.1111/j.1469-8137.2009.03121.x – ident: e_1_2_7_121_1 doi: 10.7554/eLife.09343 – volume: 7 start-page: 371 year: 2005 ident: e_1_2_7_38_1 article-title: Environmentally alterable additive genetic effects publication-title: Evol. Ecol. Res. – ident: e_1_2_7_82_1 doi: 10.1534/genetics.111.131615 – ident: e_1_2_7_54_1 doi: 10.1111/mec.13576 – ident: e_1_2_7_106_1 doi: 10.1104/pp.111.187831 – ident: e_1_2_7_17_1 doi: 10.1093/gbe/evw209 – ident: e_1_2_7_102_1 doi: 10.1093/pcp/pcs044 – ident: e_1_2_7_66_1 doi: 10.3389/fpls.2015.00114 – ident: e_1_2_7_67_1 doi: 10.1002/bies.201200169 – ident: e_1_2_7_9_1 doi: 10.1371/journal.pcbi.1003326 – ident: e_1_2_7_43_1 doi: 10.1371/journal.pone.0017388 – ident: e_1_2_7_44_1 doi: 10.1371/journal.pgen.1004920 – ident: e_1_2_7_127_1 doi: 10.1105/tpc.15.00911 – ident: e_1_2_7_108_1 doi: 10.3732/ajb.1500526 – ident: e_1_2_7_20_1 doi: 10.1534/genetics.114.167973 – ident: e_1_2_7_139_1 doi: 10.1111/tpj.12542 – ident: e_1_2_7_7_1 doi: 10.1126/science.1260638 – ident: e_1_2_7_59_1 doi: 10.1086/598822 – ident: e_1_2_7_134_1 doi: 10.1098/rsbl.2012.0494 – ident: e_1_2_7_30_1 doi: 10.1007/s11258-014-0430-z – ident: e_1_2_7_84_1 doi: 10.1038/ng1841 – ident: e_1_2_7_75_1 doi: 10.1371/journal.pgen.1005650 – ident: e_1_2_7_70_1 doi: 10.1016/j.jplph.2011.03.017 – ident: e_1_2_7_15_1 doi: 10.1111/j.1461-0248.2007.01130.x – ident: e_1_2_7_56_1 doi: 10.1186/gb-2014-15-2-r34 – ident: e_1_2_7_83_1 doi: 10.1104/pp.111.187468 – ident: e_1_2_7_88_1 doi: 10.1038/ncomms5268 – ident: e_1_2_7_26_1 doi: 10.1126/science.1248127 – ident: e_1_2_7_110_1 doi: 10.1007/s004380050374 – ident: e_1_2_7_60_1 doi: 10.1038/embor.2010.186 – ident: e_1_2_7_4_1 doi: 10.3389/fgene.2015.00004 – ident: e_1_2_7_57_1 doi: 10.1046/j.1365-313X.2003.01681.x – ident: e_1_2_7_46_1 doi: 10.1105/tpc.109.072041 – ident: e_1_2_7_39_1 doi: 10.1073/pnas.1424254112 – ident: e_1_2_7_131_1 doi: 10.1038/nrg.2016.45 – ident: e_1_2_7_29_1 doi: 10.1086/660911 – ident: e_1_2_7_12_1 doi: 10.1038/nature10555 – ident: e_1_2_7_31_1 doi: 10.1073/pnas.1209329109 – ident: e_1_2_7_138_1 doi: 10.7554/eLife.13546 – ident: e_1_2_7_61_1 doi: 10.1371/journal.pgen.1000530 – ident: e_1_2_7_18_1 doi: 10.1534/g3.115.023242 – ident: e_1_2_7_37_1 doi: 10.1016/j.tpb.2011.08.001 – ident: e_1_2_7_27_1 doi: 10.1038/nature13722 – ident: e_1_2_7_89_1 doi: 10.1101/gr.107524.110 – ident: e_1_2_7_90_1 doi: 10.1111/mec.12911 – ident: e_1_2_7_112_1 doi: 10.1111/j.1469-8137.2010.03369.x – ident: e_1_2_7_113_1 doi: 10.1111/j.1461-0248.2012.01824.x – ident: e_1_2_7_117_1 doi: 10.1111/2041-210X.12435 – ident: e_1_2_7_28_1 doi: 10.1038/43657 – ident: e_1_2_7_42_1 doi: 10.1038/nmeth.3763 – ident: e_1_2_7_80_1 doi: 10.1371/journal.pone.0010326 – ident: e_1_2_7_14_1 doi: 10.1038/nrg3273 – ident: e_1_2_7_105_1 doi: 10.1126/science.1258699 – ident: e_1_2_7_97_1 doi: 10.1038/nature15365 – ident: e_1_2_7_116_1 doi: 10.1186/gb-2013-14-6-r59 – ident: e_1_2_7_141_1 doi: 10.1111/mec.13502 – ident: e_1_2_7_16_1 doi: 10.1007/s10682-010-9372-7 – ident: e_1_2_7_133_1 doi: 10.1111/mec.13550 – ident: e_1_2_7_122_1 doi: 10.1371/journal.pgen.1004785 – ident: e_1_2_7_143_1 doi: 10.1111/nph.12010 – ident: e_1_2_7_118_1 doi: 10.1038/nature11968 – ident: e_1_2_7_72_1 doi: 10.1093/bioinformatics/btr167 – ident: e_1_2_7_126_1 doi: 10.1007/s10530-016-1223-1 – ident: e_1_2_7_142_1 doi: 10.1111/mec.13067 – ident: e_1_2_7_98_1 doi: 10.1126/science.1180677 – ident: e_1_2_7_128_1 doi: 10.1093/bfgp/elr039 – ident: e_1_2_7_3_1 doi: 10.3732/ajb.1400126 – volume: 54 start-page: 421 year: 1966 ident: e_1_2_7_77_1 article-title: The strategy of model building in population biology publication-title: Am. Sci. – ident: e_1_2_7_32_1 doi: 10.7554/eLife.05255 – ident: e_1_2_7_48_1 doi: 10.1111/evo.12324 – ident: e_1_2_7_101_1 doi: 10.1016/j.tree.2012.07.014 – ident: e_1_2_7_96_1 doi: 10.1101/sqb.2012.77.014571 – ident: e_1_2_7_114_1 doi: 10.1515/ngi-2015-0002 – ident: e_1_2_7_33_1 doi: 10.3389/fpls.2015.00308 – ident: e_1_2_7_19_1 doi: 10.1038/nature13575 – ident: e_1_2_7_92_1 doi: 10.1093/molbev/msx150 – ident: e_1_2_7_132_1 doi: 10.1126/science.1165313 – ident: e_1_2_7_6_1 doi: 10.1111/mec.13055 – ident: e_1_2_7_125_1 doi: 10.1371/journal.pone.0081148 – ident: e_1_2_7_104_1 doi: 10.1111/mec.13230 – ident: e_1_2_7_123_1 doi: 10.1534/genetics.109.102798 – ident: e_1_2_7_25_1 doi: 10.1016/S1360-1385(02)02244-6 – ident: e_1_2_7_36_1 doi: 10.1126/science.1255023 – ident: e_1_2_7_130_1 doi: 10.1038/nplants.2015.222 – ident: e_1_2_7_51_1 doi: 10.1111/boj.12007 – ident: e_1_2_7_34_1 doi: 10.1111/mec.13522 – ident: e_1_2_7_35_1 doi: 10.1371/journal.pone.0101559 – ident: e_1_2_7_103_1 doi: 10.1186/1756-8935-8-6 – ident: e_1_2_7_45_1 doi: 10.1186/gb-2012-13-10-r83 – ident: e_1_2_7_64_1 doi: 10.1016/j.cell.2016.06.044 – ident: e_1_2_7_22_1 doi: 10.1073/pnas.1209297109 – ident: e_1_2_7_93_1 doi: 10.1111/mec.12350 – ident: e_1_2_7_76_1 doi: 10.1093/nar/gkr598 – ident: e_1_2_7_49_1 doi: 10.1111/j.1469-8137.2010.03298.x – ident: e_1_2_7_63_1 doi: 10.1101/gr.196394.115 – ident: e_1_2_7_10_1 doi: 10.1534/genetics.111.136176 – ident: e_1_2_7_5_1 doi: 10.1111/1755-0998.12426 – ident: e_1_2_7_120_1 doi: 10.1111/mec.12835 – ident: e_1_2_7_13_1 doi: 10.1371/journal.pone.0030515 – ident: e_1_2_7_23_1 doi: 10.1038/nature06745 – ident: e_1_2_7_74_1 doi: 10.1038/ncomms3875 – ident: e_1_2_7_100_1 doi: 10.1016/j.pbi.2011.01.002 – ident: e_1_2_7_124_1 doi: 10.1104/pp.111.191593 – ident: e_1_2_7_65_1 doi: 10.1016/j.cell.2009.12.023 – ident: e_1_2_7_81_1 doi: 10.1186/gb-2012-13-7-r61 – ident: e_1_2_7_2_1 doi: 10.1007/s10530-008-9383-2 – ident: e_1_2_7_86_1 doi: 10.1038/nplants.2016.30 – ident: e_1_2_7_87_1 doi: 10.1038/nrg3683 – ident: e_1_2_7_11_1 doi: 10.12688/f1000research.2-217.v2 – ident: e_1_2_7_78_1 doi: 10.1186/1471-2164-13-300 – ident: e_1_2_7_41_1 doi: 10.1111/mec.13563 – ident: e_1_2_7_50_1 doi: 10.1111/j.1365-294X.2011.05026.x |
SSID | ssj0012971 |
Score | 2.6335294 |
SecondaryResourceType | review_article |
Snippet | Growing evidence shows that epigenetic mechanisms contribute to complex traits, with implications across many fields of biology. In plant ecology, recent... |
SourceID | hal proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1576 |
SubjectTerms | Biodiversity and Ecology Bioinformatics Deoxyribonucleic acid Divergence DNA DNA Methylation ecological epigenetics Ecological monitoring ecologists Ecology Ecosystem Environmental Sciences Epigenesis, Genetic Epigenetics geneticists Genetics genome Genomes genomics habitats Knowledge management Life Sciences Natural environment phenotype phenotypic plasticity Plant ecology Plants Plants (botany) Plants genetics Polyploidy Quantitative Methods response to environment Species stress response |
Title | Ecological plant epigenetics: Evidence from model and non‐model species, and the way forward |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fele.12858 https://www.ncbi.nlm.nih.gov/pubmed/29027325 https://www.proquest.com/docview/1962056782 https://www.proquest.com/docview/1951567805 https://www.proquest.com/docview/2010202970 https://hal.science/hal-02098587 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB5UELz4ftQXUTx4sEubdltXT6Iri6iIKOxBLEmaIih1cXeV9eRP8Df6S5xJ2uITxFt2M4W0k5l80858A7AhPK5DHXNX1YV2Q-1HrkhV7IaZH6cR4mduuPROTqPWZXjUrreHYLeshbH8ENULN7IM46_JwIXsfjBy9Mo1dK51KvT1g4h48w_OK-ooPMZssBVGGC7zoF2wClEWT3Xlp7No-IYyIb_DzM-o1Rw7hxNwVS7YZpvc1vo9WVPPX7gc_3lHkzBewFG2Z_fPFAzpfBpGbYPKAY6ahtR6MAPXdkQqZZ07VAfTHSLypBrI7g4rm5MyKldhpr0OE3nK8vv87eXV_qaiTozLt8wE4k72JAYMMTPl7c7C5WHzYr_lFr0ZUKmIClyMMsJ6g77BKcnTTHGVoXvIPIHxKGI06ettofxUb0uJmCLNAiF5xoOIWl41fJkGczCCS9ALwLgXiEAqT6pYhsKPBCIGjYGc0kJ4KlMObJZaSlRBXE79M-6SMoDBB5eYB-fAeiXasWwdPwqhqqt54tdu7R0n9B9i5wZKxI--A8vlTkgKq-4m6K04AkYEVQ6sVdNoj_SRReT6vk8yiBAj6hTxuwxlIHDqGuY5MG93WbUc3iCGIY5Xb5q98vt9JM3jphks_l10CcY44RKTj7MMI72Hvl5BVNWTqzDMw7NVY0TvqbAcoQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1RT9swED5BpwlegA0GGYV5Ew88kCpx0qSd9lJNrbqt8DBRqS9bZDuOJlGlFW1B3RM_gd_IL-HOTqKxgTTx5sQXycn5zt_F5-8AjoTHdahj7qqm0G6o_cgVqYrdMPPjNEL8zA2X3ulZ1B-GX0fN0Qp8Ks_CWH6I6ocbWYbx12Tg9EP6DytHt9xA79psrcILsz9HkOh7RR6FC5kNt8IIA2YejApeIcrjqR59sBqt_qJcyH-B5kPcahae3ib8KIds800uGou5bKjff7E5PvedtmCjQKSsY6fQK1jR-Wt4aWtULrHVNbzWy234aVukVTYdo0aYnhKXJx2DnH1kZX1SRidWmKmww0SesnyS393c2ms614mh-YnpQOjJrsWSIWym1N0dGPa655_7blGeAfWKwMDFQCNstmkbTkmeZoqrDD1E5gkMSRGmSV-3hPJT3ZISYUWaBULyjAcRVb1q-zIN3kANh6D3gHEvEIFUnlSxDIUfCQQNGmM5pYXwVKYcOC7VlKiCu5xKaIyTMobBD5eYD-fAh0p0agk7HhVCXVf9RLHd7wwSuofwuY0S8ZXvQL2cCklh2LMEHRZHzIi4yoH3VTeaJO2ziFxPFiSDIDGiYhFPy1ASAqfCYZ4Du3aaVcPhbSIZ4vj0sZksT79H0h10TePt_4u-g7X--ekgGXw5-7YP65xgiknPqUNtfrnQBwiy5vLQ2NI9tUUf6A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLZgCMQF8aY8A-LAgaI2zdoVTgg2DRiIA0g7USVpKg7TmICBduMn8Bv5JdjpQyBA4pYtrtQ5dvx5cT4D7EqPG2Ei7uq6NK4wfujKVEeuyPwoDRE_c8uld3kVtm_FebfeHYOj8i5Mzg9R_eFGnmH3a3LwQZp9cXLclQ9wc603xmFCoN2ReXNxXR0h8DjPtkSI-TIPugWtEJXxVI9-C0bj91QK-RNnfoetNu60ZmGmAIzsOF_hORgz_XmYzFtIjnDUtLTTowW4y0ekdDboocKYGRDVJt1SfDpkZftQRhdKmG2Aw2Q_ZZj-f7y955_p2iVmzvt2ApEhe5UjhqiWKmsX4bbVvDlpu0X3BFQ7xm0X8wBRj-mUTCueZprrDB048yRmjIiilG8aUvupaSiFUT_NAql4xoOQmlLFvkqDJajhK5gVYNwLZKC0p3SkhPRDiTHdYKqljZSezrQDe6UaE11Qi1OHi15Sphio8cRq3IGdSnSQ82n8KoRrUc0TA3b7uJPQd4huY5SIXnwH1sulSgq_e0pwP-EI6RD2OLBdTaPH0DGI7JuHIckghgupl8PfMlQjwKmvl-fAcm4G1evwmDiAOD69Z-3i79-RNDtNO1j9v-gWTF2ftpLO2dXFGkxzAhG2eGYdas-PQ7OBEOhZbVpT_wT1Sv5Y |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ecological+plant+epigenetics%3A+Evidence+from+model+and+non-model+species%2C+and+the+way+forward&rft.jtitle=Ecology+letters&rft.au=Richards%2C+Christina+L&rft.au=Alonso%2C+Conchita&rft.au=Becker%2C+Claude&rft.au=Bossdorf%2C+Oliver&rft.date=2017-12-01&rft.eissn=1461-0248&rft.volume=20&rft.issue=12&rft.spage=1576&rft_id=info:doi/10.1111%2Fele.12858&rft_id=info%3Apmid%2F29027325&rft.externalDocID=29027325 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1461-023X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1461-023X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1461-023X&client=summon |