Ecological plant epigenetics: Evidence from model and non‐model species, and the way forward

Growing evidence shows that epigenetic mechanisms contribute to complex traits, with implications across many fields of biology. In plant ecology, recent studies have attempted to merge ecological experiments with epigenetic analyses to elucidate the contribution of epigenetics to plant phenotypes,...

Full description

Saved in:
Bibliographic Details
Published inEcology letters Vol. 20; no. 12; pp. 1576 - 1590
Main Authors Richards, Christina L., Alonso, Conchita, Becker, Claude, Bossdorf, Oliver, Bucher, Etienne, Colomé‐Tatché, Maria, Durka, Walter, Engelhardt, Jan, Gaspar, Bence, Gogol‐Döring, Andreas, Grosse, Ivo, van Gurp, Thomas P., Heer, Katrin, Kronholm, Ilkka, Lampei, Christian, Latzel, Vít, Mirouze, Marie, Opgenoorth, Lars, Paun, Ovidiu, Prohaska, Sonja J., Rensing, Stefan A., Stadler, Peter F., Trucchi, Emiliano, Ullrich, Kristian, Verhoeven, Koen J. F., Coulson, Tim
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 01.12.2017
Wiley
Subjects
Online AccessGet full text
ISSN1461-023X
1461-0248
1461-0248
DOI10.1111/ele.12858

Cover

Abstract Growing evidence shows that epigenetic mechanisms contribute to complex traits, with implications across many fields of biology. In plant ecology, recent studies have attempted to merge ecological experiments with epigenetic analyses to elucidate the contribution of epigenetics to plant phenotypes, stress responses, adaptation to habitat, and range distributions. While there has been some progress in revealing the role of epigenetics in ecological processes, studies with non‐model species have so far been limited to describing broad patterns based on anonymous markers of DNA methylation. In contrast, studies with model species have benefited from powerful genomic resources, which contribute to a more mechanistic understanding but have limited ecological realism. Understanding the significance of epigenetics for plant ecology requires increased transfer of knowledge and methods from model species research to genomes of evolutionarily divergent species, and examination of responses to complex natural environments at a more mechanistic level. This requires transforming genomics tools specifically for studying non‐model species, which is challenging given the large and often polyploid genomes of plants. Collaboration among molecular geneticists, ecologists and bioinformaticians promises to enhance our understanding of the mutual links between genome function and ecological processes.
AbstractList Growing evidence shows that epigenetic mechanisms contribute to complex traits, with implications across many fields of biology. In plant ecology, recent studies have attempted to merge ecological experiments with epigenetic analyses to elucidate the contribution of epigenetics to plant phenotypes, stress responses, adaptation to habitat, and range distributions. While there has been some progress in revealing the role of epigenetics in ecological processes, studies with non‐model species have so far been limited to describing broad patterns based on anonymous markers of DNA methylation. In contrast, studies with model species have benefited from powerful genomic resources, which contribute to a more mechanistic understanding but have limited ecological realism. Understanding the significance of epigenetics for plant ecology requires increased transfer of knowledge and methods from model species research to genomes of evolutionarily divergent species, and examination of responses to complex natural environments at a more mechanistic level. This requires transforming genomics tools specifically for studying non‐model species, which is challenging given the large and often polyploid genomes of plants. Collaboration among molecular geneticists, ecologists and bioinformaticians promises to enhance our understanding of the mutual links between genome function and ecological processes.
Growing evidence shows that epigenetic mechanisms contribute to complex traits, with implications across many fields of biology. In plant ecology, recent studies have attempted to merge ecological experiments with epigenetic analyses to elucidate the contribution of epigenetics to plant phenotypes, stress responses, adaptation to habitat, and range distributions. While there has been some progress in revealing the role of epigenetics in ecological processes, studies with non-model species have so far been limited to describing broad patterns based on anonymous markers of DNA methylation. In contrast, studies with model species have benefited from powerful genomic resources, which contribute to a more mechanistic understanding but have limited ecological realism. Understanding the significance of epigenetics for plant ecology requires increased transfer of knowledge and methods from model species research to genomes of evolutionarily divergent species, and examination of responses to complex natural environments at a more mechanistic level. This requires transforming genomics tools specifically for studying non-model species, which is challenging given the large and often polyploid genomes of plants. Collaboration among molecular geneticists, ecologists and bioinformaticians promises to enhance our understanding of the mutual links between genome function and ecological processes.Growing evidence shows that epigenetic mechanisms contribute to complex traits, with implications across many fields of biology. In plant ecology, recent studies have attempted to merge ecological experiments with epigenetic analyses to elucidate the contribution of epigenetics to plant phenotypes, stress responses, adaptation to habitat, and range distributions. While there has been some progress in revealing the role of epigenetics in ecological processes, studies with non-model species have so far been limited to describing broad patterns based on anonymous markers of DNA methylation. In contrast, studies with model species have benefited from powerful genomic resources, which contribute to a more mechanistic understanding but have limited ecological realism. Understanding the significance of epigenetics for plant ecology requires increased transfer of knowledge and methods from model species research to genomes of evolutionarily divergent species, and examination of responses to complex natural environments at a more mechanistic level. This requires transforming genomics tools specifically for studying non-model species, which is challenging given the large and often polyploid genomes of plants. Collaboration among molecular geneticists, ecologists and bioinformaticians promises to enhance our understanding of the mutual links between genome function and ecological processes.
Growing evidence shows that epigenetic mechanisms contribute to complex traits, with implications across many fields of biology. In plant ecology, recent studies have attempted to merge ecological experiments with epigenetic analyses to elucidate the contribution of epigenetics to plant phenotypes, stress responses, adaptation to habitat, and range distributions. While there has been some progress in revealing the role of epigenetics in ecological processes, studies with non‐model species have so far been limited to describing broad patterns based on anonymous markers of DNA methylation. In contrast, studies with model species have benefited from powerful genomic resources , which contribute to a more mechanistic understanding but have limited ecological realism. Understanding the significance of epigenetics for plant ecology requires increased transfer of knowledge and methods from model species research to genomes of evolutionarily divergent species, and examination of responses to complex natural environments at a more mechanistic level. This requires transforming genomics tools specifically for studying non‐model species, which is challenging given the large and often polyploid genomes of plants. Collaboration among molecular geneticists, ecologists and bioinformaticians promises to enhance our understanding of the mutual links between genome function and ecological processes.
Author van Gurp, Thomas P.
Opgenoorth, Lars
Gogol‐Döring, Andreas
Verhoeven, Koen J. F.
Bucher, Etienne
Coulson, Tim
Richards, Christina L.
Prohaska, Sonja J.
Colomé‐Tatché, Maria
Grosse, Ivo
Lampei, Christian
Rensing, Stefan A.
Latzel, Vít
Becker, Claude
Gaspar, Bence
Trucchi, Emiliano
Kronholm, Ilkka
Mirouze, Marie
Paun, Ovidiu
Bossdorf, Oliver
Alonso, Conchita
Stadler, Peter F.
Ullrich, Kristian
Durka, Walter
Engelhardt, Jan
Heer, Katrin
Author_xml – sequence: 1
  givenname: Christina L.
  orcidid: 0000-0001-7848-5165
  surname: Richards
  fullname: Richards, Christina L.
  email: clr@usf.edu
  organization: University of South Florida
– sequence: 2
  givenname: Conchita
  orcidid: 0000-0002-7418-3204
  surname: Alonso
  fullname: Alonso, Conchita
  organization: CSIC
– sequence: 3
  givenname: Claude
  orcidid: 0000-0003-3406-4670
  surname: Becker
  fullname: Becker, Claude
  organization: Gregor Mendel Institute of Molecular Plant Biology
– sequence: 4
  givenname: Oliver
  orcidid: 0000-0001-7504-6511
  surname: Bossdorf
  fullname: Bossdorf, Oliver
  organization: University of Tübingen
– sequence: 5
  givenname: Etienne
  surname: Bucher
  fullname: Bucher, Etienne
  organization: Institut de Recherche en Horticulture et Semences
– sequence: 6
  givenname: Maria
  orcidid: 0000-0002-2224-7560
  surname: Colomé‐Tatché
  fullname: Colomé‐Tatché, Maria
  organization: Technical University of Munich
– sequence: 7
  givenname: Walter
  orcidid: 0000-0002-6611-2246
  surname: Durka
  fullname: Durka, Walter
  organization: German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig
– sequence: 8
  givenname: Jan
  surname: Engelhardt
  fullname: Engelhardt, Jan
  organization: University of Leipzig
– sequence: 9
  givenname: Bence
  surname: Gaspar
  fullname: Gaspar, Bence
  organization: University of Tübingen
– sequence: 10
  givenname: Andreas
  surname: Gogol‐Döring
  fullname: Gogol‐Döring, Andreas
  organization: University of Halle
– sequence: 11
  givenname: Ivo
  surname: Grosse
  fullname: Grosse, Ivo
  organization: University of Halle
– sequence: 12
  givenname: Thomas P.
  surname: van Gurp
  fullname: van Gurp, Thomas P.
  organization: Netherlands Institute of Ecology (NIOO‐KNAW)
– sequence: 13
  givenname: Katrin
  orcidid: 0000-0002-1036-599X
  surname: Heer
  fullname: Heer, Katrin
  organization: Philipps‐University of Marburg
– sequence: 14
  givenname: Ilkka
  orcidid: 0000-0002-4126-0250
  surname: Kronholm
  fullname: Kronholm, Ilkka
  organization: University of Jyväskylä
– sequence: 15
  givenname: Christian
  orcidid: 0000-0003-2866-2869
  surname: Lampei
  fullname: Lampei, Christian
  organization: Institute of Plant Breeding, Seed Science and Population Genetics
– sequence: 16
  givenname: Vít
  orcidid: 0000-0003-0025-5049
  surname: Latzel
  fullname: Latzel, Vít
  organization: The Czech Academy of Sciences
– sequence: 17
  givenname: Marie
  orcidid: 0000-0002-0514-1270
  surname: Mirouze
  fullname: Mirouze, Marie
  organization: Laboratoire Génome et Développement des Plantes
– sequence: 18
  givenname: Lars
  orcidid: 0000-0003-0737-047X
  surname: Opgenoorth
  fullname: Opgenoorth, Lars
  organization: Philipps‐University Marburg
– sequence: 19
  givenname: Ovidiu
  orcidid: 0000-0002-8295-4937
  surname: Paun
  fullname: Paun, Ovidiu
  organization: University of Vienna
– sequence: 20
  givenname: Sonja J.
  surname: Prohaska
  fullname: Prohaska, Sonja J.
  organization: Santa Fe NM
– sequence: 21
  givenname: Stefan A.
  orcidid: 0000-0002-0225-873X
  surname: Rensing
  fullname: Rensing, Stefan A.
  organization: University of Freiburg
– sequence: 22
  givenname: Peter F.
  orcidid: 0000-0002-5016-5191
  surname: Stadler
  fullname: Stadler, Peter F.
  organization: Max Planck Institute for Mathematics in the Sciences
– sequence: 23
  givenname: Emiliano
  surname: Trucchi
  fullname: Trucchi, Emiliano
  organization: University of Vienna
– sequence: 24
  givenname: Kristian
  orcidid: 0000-0003-4308-9626
  surname: Ullrich
  fullname: Ullrich, Kristian
  organization: Philipps‐University Marburg
– sequence: 25
  givenname: Koen J. F.
  orcidid: 0000-0003-3002-4102
  surname: Verhoeven
  fullname: Verhoeven, Koen J. F.
  organization: Netherlands Institute of Ecology (NIOO‐KNAW)
– sequence: 26
  givenname: Tim
  surname: Coulson
  fullname: Coulson, Tim
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29027325$$D View this record in MEDLINE/PubMed
https://hal.science/hal-02098587$$DView record in HAL
BookMark eNqFkc1q3DAUhUVJaH7aRV-gGLppIZPoypZH7i4ENwkMdNNCVxWydJ0oyJYreTLMLo-QZ-yTVBNPplBaqo3-vns4954jstf7Hgl5A_QU0jpDh6fABBcvyCEUJcwoK8Te7px_OyBHMd5RCqyaw0tywCrK5jnjh-R7rb3zN1Yrlw1O9WOGg73BHker48esvrcGe41ZG3yXdd6gy1RvsmTg58PjdI8Daovx5OljvMVspdZZ68NKBfOK7LfKRXy93Y_J10_1l4ur2eLz5fXF-WKmOQMx44IXvIKK57phptVMtzSHlqoiuWdFAyiUBoOiaYCDaXPVsJblpSgpq6Ax-TH5MOneKieHYDsV1tIrK6_OF3LzRhmt0oDm95DY9xM7BP9jiXGUnY0aXeoe_TJKRiHRaVL0v2hyDLycC8oT-u4P9M4vQ5-aTlTJ6AZjiXq7pZZNh2Zn9TmQBJxNgA4-xoCt1HZUo_X9GJR1EqjcRC5T5PIp8t-t7yqeRf_GbtVX1uH636CsF_VU8QsTUbhH
CitedBy_id crossref_primary_10_1016_j_envexpbot_2019_103918
crossref_primary_10_1111_nph_16493
crossref_primary_10_1016_j_scitotenv_2024_171567
crossref_primary_10_1038_s41467_018_06932_5
crossref_primary_10_3390_ijms242115873
crossref_primary_10_1093_hr_uhae172
crossref_primary_10_1093_aobpla_plaa005
crossref_primary_10_1016_j_tree_2020_08_011
crossref_primary_10_1016_j_plantsci_2022_111431
crossref_primary_10_1093_gbe_evac065
crossref_primary_10_1080_15592294_2019_1625674
crossref_primary_10_1073_pnas_2004833118
crossref_primary_10_1016_j_cbd_2024_101348
crossref_primary_10_1080_14772000_2022_2099478
crossref_primary_10_1093_nargab_lqab106
crossref_primary_10_3389_fpls_2018_01251
crossref_primary_10_32604_phyton_2023_027113
crossref_primary_10_1007_s10530_018_1703_6
crossref_primary_10_1111_eva_13382
crossref_primary_10_3390_f11090976
crossref_primary_10_1002_ecs2_3093
crossref_primary_10_3389_fgene_2022_874648
crossref_primary_10_1111_1365_2745_14420
crossref_primary_10_3390_plants11091226
crossref_primary_10_1016_j_ppees_2018_08_005
crossref_primary_10_1038_s41437_018_0114_x
crossref_primary_10_1111_ppl_13162
crossref_primary_10_1080_15592294_2018_1554520
crossref_primary_10_1111_nph_14985
crossref_primary_10_1093_aob_mcab011
crossref_primary_10_1111_brv_12453
crossref_primary_10_1111_nph_15388
crossref_primary_10_1080_15592324_2019_1596717
crossref_primary_10_3389_fevo_2021_681100
crossref_primary_10_15407_ukrbotj78_05_347
crossref_primary_10_1111_1365_2435_13429
crossref_primary_10_1051_jbio_2020011
crossref_primary_10_3389_fpls_2023_1139331
crossref_primary_10_1016_j_tig_2021_04_010
crossref_primary_10_1016_j_envexpbot_2019_03_006
crossref_primary_10_1002_ece3_10511
crossref_primary_10_3390_agronomy12061347
crossref_primary_10_3390_agronomy11061119
crossref_primary_10_1186_s12870_021_03293_y
crossref_primary_10_3390_ijms21093318
crossref_primary_10_1111_jeb_13535
crossref_primary_10_3389_fpls_2020_00494
crossref_primary_10_3389_fpls_2018_01148
crossref_primary_10_1038_s41437_020_00355_z
crossref_primary_10_3390_biology9100315
crossref_primary_10_1007_s10531_021_02241_4
crossref_primary_10_1111_eva_13235
crossref_primary_10_3390_ijms232113412
crossref_primary_10_3389_fcell_2022_880779
crossref_primary_10_1093_genetics_iyab001
crossref_primary_10_3390_genes12111818
crossref_primary_10_3390_epigenomes5020012
crossref_primary_10_3389_fpls_2022_831175
crossref_primary_10_3389_fpls_2021_633982
crossref_primary_10_1111_nph_18591
crossref_primary_10_1111_plb_13713
crossref_primary_10_3389_fpls_2018_01851
crossref_primary_10_3390_plants12051180
crossref_primary_10_3390_plants11172190
crossref_primary_10_1002_csc2_20351
crossref_primary_10_1038_s41467_024_49162_8
crossref_primary_10_1111_1365_2435_14136
crossref_primary_10_1111_nph_15408
crossref_primary_10_3389_fmars_2020_00205
crossref_primary_10_3389_fcell_2022_1020958
crossref_primary_10_1111_nph_16046
crossref_primary_10_1098_rspb_2022_0065
crossref_primary_10_1111_gcb_15249
crossref_primary_10_1007_s11295_018_1293_6
crossref_primary_10_1016_j_envres_2024_119114
crossref_primary_10_1002_ece3_7954
crossref_primary_10_1093_gbe_evac036
crossref_primary_10_1186_s12870_023_04277_w
crossref_primary_10_3389_fpls_2017_02078
crossref_primary_10_1111_mec_17165
crossref_primary_10_3389_fpls_2022_924001
crossref_primary_10_1002_pei3_10055
crossref_primary_10_1017_wsc_2021_13
crossref_primary_10_1093_cz_zoac094
crossref_primary_10_3389_fpls_2019_00622
crossref_primary_10_1093_jxb_eraa132
crossref_primary_10_1111_eva_13212
crossref_primary_10_1002_1438_390X_12018
crossref_primary_10_1111_1365_2745_13964
crossref_primary_10_1111_ele_13373
crossref_primary_10_1002_ece3_5426
crossref_primary_10_1111_mec_16500
crossref_primary_10_3390_genes10040256
crossref_primary_10_1002_ece3_7606
crossref_primary_10_3390_plants12071558
crossref_primary_10_3389_fpls_2018_01635
crossref_primary_10_1093_conphys_coab023
crossref_primary_10_1242_jeb_246009
crossref_primary_10_1111_oik_05591
crossref_primary_10_1093_molbev_msae170
crossref_primary_10_1093_jxb_ery271
crossref_primary_10_1016_j_pld_2023_08_002
crossref_primary_10_1111_njb_04003
crossref_primary_10_1038_s41467_025_55989_6
crossref_primary_10_1534_g3_119_400770
crossref_primary_10_1007_s10530_024_03319_0
crossref_primary_10_1111_mec_15089
crossref_primary_10_3390_su16135474
crossref_primary_10_3390_w13060829
crossref_primary_10_3389_fmars_2020_545102
crossref_primary_10_3390_genes10030219
crossref_primary_10_1007_s10682_020_10038_0
crossref_primary_10_3389_fpls_2018_01990
crossref_primary_10_1371_journal_pgen_1010452
crossref_primary_10_3390_f12050569
crossref_primary_10_3389_fevo_2022_856453
crossref_primary_10_3389_fpls_2020_00694
crossref_primary_10_3389_fpls_2021_733846
crossref_primary_10_1111_1365_2656_13619
crossref_primary_10_1016_j_jenvrad_2018_07_012
crossref_primary_10_1007_s11105_025_01545_x
crossref_primary_10_1111_brv_13132
crossref_primary_10_1111_nph_17186
crossref_primary_10_1038_s41437_019_0261_8
crossref_primary_10_3389_fpls_2022_888391
crossref_primary_10_1016_j_scitotenv_2020_140420
crossref_primary_10_1111_mec_15191
crossref_primary_10_1002_ece3_8959
crossref_primary_10_1016_j_tree_2019_11_006
crossref_primary_10_3389_fpls_2022_949752
crossref_primary_10_1111_evo_14367
crossref_primary_10_1111_1755_0998_13490
crossref_primary_10_1266_ggs_20_00025
crossref_primary_10_3390_genes10040263
crossref_primary_10_1111_mec_16832
crossref_primary_10_1111_evo_14494
crossref_primary_10_3390_antiox10071128
crossref_primary_10_1016_j_ecolmodel_2019_02_016
crossref_primary_10_1111_oik_07302
crossref_primary_10_1111_mec_16273
crossref_primary_10_1242_bio_059147
crossref_primary_10_3389_fpls_2020_00435
crossref_primary_10_1371_journal_pone_0293075
crossref_primary_10_1038_s41598_022_08683_2
crossref_primary_10_1111_pce_15370
crossref_primary_10_1111_evo_13619
crossref_primary_10_1093_aob_mcaa100
crossref_primary_10_1093_aobpla_plz020
crossref_primary_10_1038_s41598_019_55826_z
crossref_primary_10_3390_seeds2040032
crossref_primary_10_1038_s41437_018_0095_9
crossref_primary_10_1002_ece3_4374
crossref_primary_10_1038_s41477_020_00808_7
crossref_primary_10_1002_ece3_6795
crossref_primary_10_1111_mec_17356
crossref_primary_10_1186_s12915_024_01816_1
crossref_primary_10_1111_1365_2435_70024
crossref_primary_10_1002_tpg2_20049
crossref_primary_10_1038_s41598_022_23165_1
crossref_primary_10_1093_jxb_erae522
crossref_primary_10_1111_nph_17037
crossref_primary_10_3389_fmars_2020_00300
crossref_primary_10_1002_ece3_4144
crossref_primary_10_1111_1755_0998_13597
crossref_primary_10_1146_annurev_arplant_042817_040240
crossref_primary_10_1111_ede_12388
crossref_primary_10_1002_ece3_6689
crossref_primary_10_3897_neobiota_49_33723
crossref_primary_10_1038_s41467_019_09496_0
crossref_primary_10_1098_rstb_2019_0366
crossref_primary_10_1111_oik_09863
crossref_primary_10_1093_aob_mcad173
crossref_primary_10_15446_abc_v27n1_88241
crossref_primary_10_1007_s00335_020_09832_6
crossref_primary_10_1093_jxb_erz532
crossref_primary_10_1093_aob_mcaa004
crossref_primary_10_1111_nph_15487
crossref_primary_10_3390_f13091362
crossref_primary_10_1038_s41598_024_64109_1
crossref_primary_10_3390_genes13050793
crossref_primary_10_1002_ece3_3868
crossref_primary_10_1098_rstb_2020_0117
crossref_primary_10_1016_j_chemosphere_2021_131026
crossref_primary_10_1038_s41598_023_41896_7
crossref_primary_10_1111_mec_14736
crossref_primary_10_1093_evlett_qrae012
crossref_primary_10_3390_epigenomes7010001
crossref_primary_10_1002_ece3_11343
crossref_primary_10_1086_700960
crossref_primary_10_1111_jeb_14162
crossref_primary_10_1007_s00299_020_02617_w
crossref_primary_10_1007_s10722_020_01019_x
crossref_primary_10_1016_j_ibmb_2020_103370
crossref_primary_10_3390_genes12020227
crossref_primary_10_1146_annurev_marine_010318_095114
crossref_primary_10_1007_s00425_022_03829_y
crossref_primary_10_1038_s41598_022_22125_z
crossref_primary_10_3389_fpls_2020_00985
crossref_primary_10_1002_tpg2_20367
crossref_primary_10_3390_genes16040361
crossref_primary_10_1086_716512
crossref_primary_10_1111_pbi_14229
crossref_primary_10_1016_j_plantsci_2020_110737
crossref_primary_10_1002_ece3_4504
crossref_primary_10_1101_cshperspect_a034629
crossref_primary_10_1016_j_marpolbul_2024_117011
crossref_primary_10_1016_j_tree_2020_12_009
crossref_primary_10_1111_mec_15481
crossref_primary_10_1016_j_foreco_2020_118319
crossref_primary_10_1146_annurev_ecolsys_110617_062654
crossref_primary_10_1016_j_jembe_2019_03_002
crossref_primary_10_3389_fpls_2019_00246
crossref_primary_10_1007_s00271_020_00682_3
crossref_primary_10_1111_ppl_13782
crossref_primary_10_1093_eep_dvy025
crossref_primary_10_3389_fevo_2022_868826
Cites_doi 10.1093/jnci/95.5.399
10.1111/j.1365-294X.2011.05402.x
10.1186/s13059-016-1059-0
10.3390/ijms130810316
10.1101/gad.524609
10.1126/science.1150646
10.1093/icb/ict012
10.1038/ng.2703
10.1111/evo.12320
10.1098/rspb.2016.0988
10.1038/nrg2641
10.1038/nplants.2014.23
10.1146/annurev-arplant-050312-120237
10.1038/nature11262
10.1007/s11103-013-0165-6
10.1016/0092-8674(85)90192-8
10.1038/nature08328
10.1038/nrg1834
10.1111/mec.12344
10.1186/s12859-014-0356-4
10.1111/mec.12679
10.1093/gbe/evu271
10.1038/nature09861
10.1186/gb-2014-15-2-r38
10.1111/mec.13296
10.1534/genetics.113.158980
10.1111/eva.12482
10.1073/pnas.1212955109
10.1038/nprot.2010.190
10.1111/j.1469-8137.2009.03121.x
10.7554/eLife.09343
10.1534/genetics.111.131615
10.1111/mec.13576
10.1104/pp.111.187831
10.1093/gbe/evw209
10.1093/pcp/pcs044
10.3389/fpls.2015.00114
10.1002/bies.201200169
10.1371/journal.pcbi.1003326
10.1371/journal.pone.0017388
10.1371/journal.pgen.1004920
10.1105/tpc.15.00911
10.3732/ajb.1500526
10.1534/genetics.114.167973
10.1111/tpj.12542
10.1126/science.1260638
10.1086/598822
10.1098/rsbl.2012.0494
10.1007/s11258-014-0430-z
10.1038/ng1841
10.1371/journal.pgen.1005650
10.1016/j.jplph.2011.03.017
10.1111/j.1461-0248.2007.01130.x
10.1186/gb-2014-15-2-r34
10.1104/pp.111.187468
10.1038/ncomms5268
10.1126/science.1248127
10.1007/s004380050374
10.1038/embor.2010.186
10.3389/fgene.2015.00004
10.1046/j.1365-313X.2003.01681.x
10.1105/tpc.109.072041
10.1073/pnas.1424254112
10.1038/nrg.2016.45
10.1086/660911
10.1038/nature10555
10.1073/pnas.1209329109
10.7554/eLife.13546
10.1371/journal.pgen.1000530
10.1534/g3.115.023242
10.1016/j.tpb.2011.08.001
10.1038/nature13722
10.1101/gr.107524.110
10.1111/mec.12911
10.1111/j.1469-8137.2010.03369.x
10.1111/j.1461-0248.2012.01824.x
10.1111/2041-210X.12435
10.1038/43657
10.1038/nmeth.3763
10.1371/journal.pone.0010326
10.1038/nrg3273
10.1126/science.1258699
10.1038/nature15365
10.1186/gb-2013-14-6-r59
10.1111/mec.13502
10.1007/s10682-010-9372-7
10.1111/mec.13550
10.1371/journal.pgen.1004785
10.1111/nph.12010
10.1038/nature11968
10.1093/bioinformatics/btr167
10.1007/s10530-016-1223-1
10.1111/mec.13067
10.1126/science.1180677
10.1093/bfgp/elr039
10.3732/ajb.1400126
10.7554/eLife.05255
10.1111/evo.12324
10.1016/j.tree.2012.07.014
10.1101/sqb.2012.77.014571
10.1515/ngi-2015-0002
10.3389/fpls.2015.00308
10.1038/nature13575
10.1093/molbev/msx150
10.1126/science.1165313
10.1111/mec.13055
10.1371/journal.pone.0081148
10.1111/mec.13230
10.1534/genetics.109.102798
10.1016/S1360-1385(02)02244-6
10.1126/science.1255023
10.1038/nplants.2015.222
10.1111/boj.12007
10.1111/mec.13522
10.1371/journal.pone.0101559
10.1186/1756-8935-8-6
10.1186/gb-2012-13-10-r83
10.1016/j.cell.2016.06.044
10.1073/pnas.1209297109
10.1111/mec.12350
10.1093/nar/gkr598
10.1111/j.1469-8137.2010.03298.x
10.1101/gr.196394.115
10.1534/genetics.111.136176
10.1111/1755-0998.12426
10.1111/mec.12835
10.1371/journal.pone.0030515
10.1038/nature06745
10.1038/ncomms3875
10.1016/j.pbi.2011.01.002
10.1104/pp.111.191593
10.1016/j.cell.2009.12.023
10.1186/gb-2012-13-7-r61
10.1007/s10530-008-9383-2
10.1038/nplants.2016.30
10.1038/nrg3683
10.12688/f1000research.2-217.v2
10.1186/1471-2164-13-300
10.1111/mec.13563
10.1111/j.1365-294X.2011.05026.x
ContentType Journal Article
Copyright 2017 The Authors. published by CNRS and John Wiley & Sons Ltd
2017 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd.
Copyright © 2017 John Wiley & Sons Ltd/CNRS
Attribution
Copyright_xml – notice: 2017 The Authors. published by CNRS and John Wiley & Sons Ltd
– notice: 2017 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd.
– notice: Copyright © 2017 John Wiley & Sons Ltd/CNRS
– notice: Attribution
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7SS
7U9
C1K
H94
M7N
7X8
7S9
L.6
1XC
VOOES
DOI 10.1111/ele.12858
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Ecology Abstracts
Entomology Abstracts (Full archive)
Virology and AIDS Abstracts
Environmental Sciences and Pollution Management
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Entomology Abstracts
AIDS and Cancer Research Abstracts
Virology and AIDS Abstracts
Ecology Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
Entomology Abstracts
MEDLINE

MEDLINE - Academic

CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
Environmental Sciences
EISSN 1461-0248
EndPage 1590
ExternalDocumentID oai_HAL_hal_02098587v1
29027325
10_1111_ele_12858
ELE12858
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: Synthesis Centre of the German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig
  funderid: DFG FZT 118
– fundername: National Science Foundation
  funderid: DEB‐1419960
– fundername: German Research Foundation
  funderid: FZT 118
– fundername: Franco‐American Fulbright Commission
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1OC
24P
29G
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFS
ACGOD
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
ECGQY
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
N~3
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
UB1
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
ZY4
ZZTAW
~02
~IA
~KM
~WT
AAHHS
AAYXX
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
ABTAH
AEUQT
AFPWT
CGR
CUY
CVF
ECM
EIF
ESX
NPM
WRC
7SN
7SS
7U9
C1K
H94
M7N
7X8
7S9
L.6
1XC
VOOES
ID FETCH-LOGICAL-c5218-5854591953cb2dfc2cf031f0a402324b1e8ac1de8bb151df3ab2f236860291bd3
IEDL.DBID DR2
ISSN 1461-023X
1461-0248
IngestDate Fri Sep 12 12:42:33 EDT 2025
Fri Jul 11 18:36:33 EDT 2025
Fri Jul 11 11:51:54 EDT 2025
Fri Jul 25 10:48:08 EDT 2025
Wed Feb 19 02:32:29 EST 2025
Thu Apr 24 22:50:58 EDT 2025
Tue Jul 01 02:29:43 EDT 2025
Sun Sep 21 06:24:20 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords ecological epigenetics
genomics
phenotypic plasticity
Bioinformatics
response to environment
Phenotypic plasticity
Ecological epigenetics
Response to environment
Genomics
Language English
License Attribution
2017 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd.
Attribution: http://creativecommons.org/licenses/by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5218-5854591953cb2dfc2cf031f0a402324b1e8ac1de8bb151df3ab2f236860291bd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-4126-0250
0000-0003-3002-4102
0000-0003-4308-9626
0000-0003-0737-047X
0000-0002-8295-4937
0000-0002-5016-5191
0000-0002-0514-1270
0000-0002-6611-2246
0000-0002-2224-7560
0000-0003-0025-5049
0000-0002-0225-873X
0000-0002-7418-3204
0000-0003-3406-4670
0000-0003-2866-2869
0000-0001-7848-5165
0000-0002-1036-599X
0000-0001-7504-6511
0000-0002-3114-3763
0000-0002-1270-5273
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fele.12858
PMID 29027325
PQID 1962056782
PQPubID 32390
PageCount 15
ParticipantIDs hal_primary_oai_HAL_hal_02098587v1
proquest_miscellaneous_2010202970
proquest_miscellaneous_1951567805
proquest_journals_1962056782
pubmed_primary_29027325
crossref_citationtrail_10_1111_ele_12858
crossref_primary_10_1111_ele_12858
wiley_primary_10_1111_ele_12858_ELE12858
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2017
PublicationDateYYYYMMDD 2017-12-01
PublicationDate_xml – month: 12
  year: 2017
  text: December 2017
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Paris
PublicationTitle Ecology letters
PublicationTitleAlternate Ecol Lett
PublicationYear 2017
Publisher Blackwell Publishing Ltd
Wiley
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley
References 2009; 84
2013; 4
2006; 38
2010; 187
2010; 185
2012; 15
2012; 488
2012; 13
2013; 8
1966; 54
2012; 11
2016a; 8
2014; 23
2013; 9
2011; 472
2009; 11
2010; 22
2010; 20
2009; 10
2010; 24
2013; 2013
2013; 53
2014; 15
2012; 27
2013; 197
2011; 480
2010; 5
2012; 21
2014; 10
2010; 327
2009; 182
2002; 7
2016; 166
2015; 525
2016; 18
2016; 17
2016; 16
2011; 6
2016; 13
2012; 109
2016; 283
2003; 33
2016; 5
2016; 7
2016; 2
2012; 190
2015; 112
2005; 7
2009; 461
2016; 28
2013; 171
2016; 26
2016; 25
2013; 22
2014; 68
2011; 12
2010; 140
2015; 348
2011; 14
2016; 103
2003; 95
1999; 401
2012; 53
2011; 168
2014; 5
2013; 14
2014; 2
2017; 34
2008; 319
2011; 20
2015; 216
2014; 9
2011; 27
2014; 7
2016b; 6
2009; 323
2009; 23
2015; 2
2014; 515
2015; 1
2012; 81
2014; 513
2015; 6
2015; 4
2013; 45
1997; 253
2015; 11
2006; 7
1985; 40
2008; 11
2014; 198
2011; 39
2014; 84
2012; 149
2014; 196
2015; 8
2012; 77
2011; 178
2015; 24
2014; 348
2013; 35
2017
2014; 79
2009; 5
2013; 495
2012; 158
2012; 7
2008; 452
2014; 345
2011; 189
2014; 101
2014; 343
2012; 8
e_1_2_7_108_1
e_1_2_7_3_1
e_1_2_7_104_1
e_1_2_7_127_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_83_1
e_1_2_7_100_1
e_1_2_7_123_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_87_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_142_1
e_1_2_7_116_1
e_1_2_7_90_1
e_1_2_7_112_1
e_1_2_7_94_1
e_1_2_7_71_1
e_1_2_7_52_1
e_1_2_7_98_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_75_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_79_1
e_1_2_7_131_1
e_1_2_7_135_1
e_1_2_7_139_1
e_1_2_7_109_1
e_1_2_7_4_1
e_1_2_7_128_1
e_1_2_7_105_1
e_1_2_7_8_1
e_1_2_7_124_1
e_1_2_7_101_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_82_1
e_1_2_7_120_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_86_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_143_1
e_1_2_7_29_1
Levins R. (e_1_2_7_77_1) 1966; 54
e_1_2_7_117_1
e_1_2_7_113_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_93_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_97_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_78_1
e_1_2_7_132_1
e_1_2_7_136_1
e_1_2_7_5_1
e_1_2_7_106_1
e_1_2_7_129_1
e_1_2_7_9_1
e_1_2_7_102_1
e_1_2_7_125_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_81_1
e_1_2_7_121_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_85_1
e_1_2_7_47_1
e_1_2_7_89_1
e_1_2_7_140_1
e_1_2_7_28_1
e_1_2_7_118_1
e_1_2_7_114_1
Gorelick R. (e_1_2_7_38_1) 2005; 7
e_1_2_7_73_1
e_1_2_7_110_1
e_1_2_7_50_1
e_1_2_7_92_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_54_1
e_1_2_7_96_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_133_1
e_1_2_7_137_1
e_1_2_7_6_1
e_1_2_7_107_1
e_1_2_7_80_1
e_1_2_7_126_1
e_1_2_7_103_1
e_1_2_7_18_1
e_1_2_7_84_1
e_1_2_7_122_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_88_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_69_1
e_1_2_7_141_1
e_1_2_7_27_1
e_1_2_7_119_1
e_1_2_7_91_1
e_1_2_7_115_1
e_1_2_7_72_1
e_1_2_7_95_1
e_1_2_7_111_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_99_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_130_1
e_1_2_7_134_1
e_1_2_7_138_1
References_xml – volume: 112
  start-page: 6676
  year: 2015
  end-page: 6681
  article-title: Rate, spectrum and evolutionary dynamics of spontaneous epimutations
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 40
  start-page: 485
  year: 1985
  end-page: 486
  article-title: Altering gene expression with 5‐azacytidine
  publication-title: Cell
– volume: 7
  start-page: 395
  year: 2006
  end-page: 401
  article-title: Inherited epigenetic variation – revisiting soft inheritance
  publication-title: Nat. Rev. Genet.
– volume: 109
  start-page: 12040
  year: 2012
  end-page: 12045
  article-title: Transcriptome and methylome interactions in rice hybrids
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 27
  start-page: 673
  issue: 12
  year: 2012
  end-page: 678
  article-title: What is needed for next‐generation ecological and evolutionary genomics?
  publication-title: Trends Ecol. Evol.
– volume: 327
  start-page: 92
  year: 2010
  end-page: 94
  article-title: The rate and molecular spectrum of spontaneous mutations in
  publication-title: Science
– volume: 5
  start-page: 4268
  year: 2014
  article-title: Plant genomes enclose footprints of past infections by giant virus relatives
  publication-title: Nat. Commun.
– volume: 168
  start-page: 1685
  year: 2011
  end-page: 1693
  article-title: Heritable alteration in DNA methylation induced by nitrogen‐deficiency stress accompanies enhanced tolerance by progenies to the stress in rice ( L.)
  publication-title: J. Plant Physiol.
– volume: 178
  start-page: E18
  year: 2011
  end-page: E36
  article-title: A unified approach to evolutionary consequences of genetic and nongenetic inheritance
  publication-title: Am. Nat.
– volume: 23
  start-page: 939
  year: 2009
  end-page: 950
  article-title: Compromised stability of DNA methylation and transposon immobilization in mosaic epigenomes
  publication-title: Genes Dev.
– volume: 103
  start-page: 1567
  issue: 9
  year: 2016
  end-page: 1574
  article-title: Stress‐induced memory alters growth of clonal off spring of white clover ( )
  publication-title: Am. J. Bot.
– volume: 23
  start-page: 3523
  year: 2014
  end-page: 3537
  article-title: Epigenetic variation reflects dynamic habitat conditions in a rare floodplain herb
  publication-title: Mol. Ecol.
– volume: 35
  start-page: 571
  year: 2013
  end-page: 578
  article-title: How epigenetic mutations can affect genetic evolution: model and mechanism
  publication-title: BioEssays
– volume: 23
  start-page: 4926
  year: 2014
  end-page: 4938
  article-title: Epigenetic variation predicts regional and local intraspecific functional diversity in a perennial herb
  publication-title: Mol. Ecol.
– volume: 13
  start-page: 322
  year: 2016
  end-page: 324
  article-title: epiGBS: reference‐free reduced representation bisulfite sequencing
  publication-title: Nat. Meth.
– volume: 2
  start-page: 15222
  year: 2016
  article-title: Evolutionary patterns of genic DNA methylation vary across land plants
  publication-title: Nat. Plants
– volume: 7
  start-page: 60
  year: 2016
  end-page: 69
  article-title: EpiRADseq: scalable analysis of genomewide patterns of methylation using next‐generation sequencing
  publication-title: Meth. Ecol. Evol.
– volume: 95
  start-page: 399
  year: 2003
  end-page: 409
  article-title: Inhibition of DNA methylation and reactivation of silenced genes by Zebularine
  publication-title: J. Natl Cancer Inst.
– volume: 38
  start-page: 948
  year: 2006
  end-page: 952
  article-title: A naturally occurring epigenetic mutation in a gene encoding an SBP‐box transcription factor inhibits tomato fruit ripening
  publication-title: Nat. Genet.
– volume: 189
  start-page: 1093
  year: 2011
  end-page: 1102
  article-title: Epigenetic QTL mapping in
  publication-title: Genetics
– volume: 7
  start-page: 154
  issue: 1
  year: 2014
  end-page: 171
  article-title: A neutrality test for detecting selection on DNA methylation using single methylation polymorphism frequency spectrum
  publication-title: Genome Biol Evol.
– volume: 149
  start-page: 16240
  year: 2012
  end-page: 16245
  article-title: Features of the recombination landscape resulting from the combined loss of sequence variation and DNA methylation
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 24
  start-page: 3823
  year: 2015
  end-page: 3830
  article-title: Genome‐wide signature of local adaptation linked to variable CpG methylation in oak populations
  publication-title: Mol. Ecol.
– volume: 1
  start-page: 14023
  year: 2015
  article-title: Genome expansion of linked with retrotransposition and reduced symmetric DNA methylation
  publication-title: Nat. Plants
– volume: 185
  start-page: 1108
  issue: 4
  year: 2010
  end-page: 1118
  article-title: Stress‐induced DNA methylation changes and their heritability in asexual dandelions
  publication-title: New Phyt.
– volume: 2
  start-page: 217
  year: 2014
  article-title: MethylExtract: High‐Quality methylation maps and SNV calling from whole genome bisulfite sequencing data. Version 2
  publication-title: F1000Res.
– volume: 452
  start-page: 215
  year: 2008
  end-page: 219
  article-title: Shotgun bisulphite sequencing of the genome reveals DNA methylation patterning
  publication-title: Nature
– volume: 24
  start-page: 541
  year: 2010
  end-page: 553
  article-title: Experimental alteration of DNA methylation affects the phenotypic plasticity of ecologically relevant traits in
  publication-title: Evol. Ecol.
– volume: 13
  start-page: R83
  year: 2012
  article-title: BSmooth: from whole genome bisulfite sequencing reads to differentially methylated regions
  publication-title: Genome Biol.
– volume: 15
  start-page: R34
  issue: 2
  year: 2014
  article-title: A multi‐split mapping algorithm for circular RNA, splicing, ‐splicing and fusion detection
  publication-title: Genome Biol.
– volume: 12
  start-page: 50
  year: 2011
  end-page: 55
  article-title: Chromatin modification acts as a memory for systemic acquired resistance in the plant stress response
  publication-title: EMBO Rep.
– volume: 84
  start-page: 719
  year: 2014
  end-page: 735
  article-title: A single CMT methyltransferase homolog is involved in CHG DNA methylation and development of
  publication-title: Plant Mol. Biol.
– volume: 4
  start-page: e05255
  year: 2015
  article-title: DNA methylation variation in Arabidopsis has a genetic basis and shows evidence of local adaptation
  publication-title: eLife
– volume: 5
  start-page: e1000530
  year: 2009
  article-title: Assessing the impact of transgenerational epigenetic variation on complex traits
  publication-title: PLoS Genet.
– volume: 495
  start-page: 193
  year: 2013
  end-page: 198
  article-title: Patterns of population epigenomic diversity
  publication-title: Nature
– year: 2017
  article-title: Genetic and epigenetic variation in following the oil spill
  publication-title: Evol. Appl. (Special issue)
– volume: 515
  start-page: 587
  year: 2014
  end-page: 590
  article-title: Epigenetic reprogramming that prevents transgenerational inheritance of the vernalized state
  publication-title: Nature
– volume: 13
  start-page: 300
  year: 2012
  article-title: Single‐base resolution maps of cultivated and wild rice methylomes and regulatory roles of DNA methylation in plant gene expression
  publication-title: BMC Genom.
– volume: 525
  start-page: 533
  issue: 7570
  year: 2015
  end-page: 537
  article-title: Loss of Karma transposon methylation underlies the mantled somaclonal variant of oil palm
  publication-title: Nature
– volume: 187
  start-page: 562
  year: 2010
  end-page: 564
  article-title: Understanding natural epigenetic variation
  publication-title: New Phytol.
– volume: 345
  start-page: 1515
  year: 2014
  end-page: 1518
  article-title: H3K27me and PRC2 transmit a memory of repression across generations and during development
  publication-title: Science
– volume: 348
  start-page: 132
  year: 2015
  end-page: 135
  article-title: Epigenetics. Restricted epigenetic inheritance of H3K9 methylation
  publication-title: Science
– volume: 158
  start-page: 835
  year: 2012
  end-page: 843
  article-title: Descendants of primed plants exhibit resistance to biotic stress
  publication-title: Plant Physiol.
– volume: 253
  start-page: 703
  year: 1997
  end-page: 710
  article-title: Differences in DNA methylation patterns are detectable during the dimorphic transition of fungi by amplification of restriction polymorphims
  publication-title: Mol. Genet. Genomics
– volume: 68
  start-page: 644
  year: 2014
  end-page: 655
  article-title: Epigenetic variation in asexually reproducing organisms
  publication-title: Evol.
– volume: 348
  start-page: 1258699
  year: 2014
  article-title: Epigenetic inheritance uncoupled from sequence‐specific recruitment
  publication-title: Science
– volume: 15
  start-page: 356
  issue: 1
  year: 2014
  article-title: ANGSD: analysis of next generation sequencing data
  publication-title: BMC Bioinformatics
– volume: 6
  start-page: 308
  year: 2015
  article-title: Minimal evidence for consistent changes in maize DNA methylation patterns following environmental stress
  publication-title: Front. Plant Sci.
– volume: 53
  start-page: 340
  year: 2013
  end-page: 350
  article-title: Ecological Epigenetics: beyond MS‐AFLP
  publication-title: Integr. Comp. Biol.
– volume: 11
  start-page: e1005650
  issue: 11
  year: 2015
  article-title: A flexible, efficient binomial mixed model for identifying differential DNA methylation in bisulfite sequencing data
  publication-title: PLoS Genet.
– volume: 39
  start-page: e127
  issue: 19
  year: 2011
  article-title: Targeted bisulfite sequencing by solution hybrid selection and massively parallel sequencing
  publication-title: Nucl. Acids Res.
– volume: 197
  start-page: 314
  issue: 1
  year: 2013
  end-page: 322
  article-title: Epigenetic variation creates potential for evolution of plant phenotypic plasticity
  publication-title: New Phytol.
– volume: 22
  start-page: 4767
  year: 2013
  end-page: 4782
  article-title: Mass flowering of the tropical tree was preceded by expression changes in flowering and drought‐responsive genes
  publication-title: Mol. Ecol.
– volume: 14
  start-page: 195
  year: 2011
  end-page: 203
  article-title: Selected aspects of transgenerational epigenetic inheritance and resetting in plants
  publication-title: Curr. Opin. Plant Biol.
– volume: 25
  start-page: 1856
  year: 2016
  end-page: 1868
  article-title: Epigenetic mutations can both help and hinder adaptive evolution
  publication-title: Mol. Ecol.
– volume: 488
  start-page: 404
  year: 2012
  end-page: 408
  article-title: A selective jumonji H3K27 demethylase inhibitor modulates the proinflammatory macrophage response
  publication-title: Nature
– volume: 68
  start-page: 632
  year: 2014
  end-page: 643
  article-title: How stable ‘should’ epigenetic modifications be? Insights from adaptive plasticity and bet hedging
  publication-title: Evolution
– volume: 11
  start-page: 71
  year: 2012
  end-page: 85
  article-title: Deep sequencing of small RNAs in plants: applied bioinformatics
  publication-title: Briefings in Functional Genomics
– volume: 25
  start-page: 1653
  year: 2016
  end-page: 1664
  article-title: Comparative spatial genetics and epigenetics of plant populations: heuristic value and a proof of concept
  publication-title: Mol. Ecol.
– volume: 18
  start-page: 2457
  year: 2016
  article-title: Epigenetic variation within Phragmites australis among lineages, genotypes, and ramets
  publication-title: Biol. Invasions
– volume: 480
  start-page: 245
  year: 2011
  end-page: 249
  article-title: Spontaneous epigenetic variation in the methylome
  publication-title: Nature
– volume: 401
  start-page: 157
  year: 1999
  end-page: 161
  article-title: An epigenetic mutation responsible for natural variation in floral symmetry
  publication-title: Nature
– volume: 171
  start-page: 441
  year: 2013
  end-page: 452
  article-title: Epigenetic correlates of plant phenotypic plasticity: DNA methylation differs between prickly and nonprickly leaves in heterophyllous (Aquifoliaceae) trees
  publication-title: Bot. J. Linean Soc.
– volume: 45
  start-page: 1029
  issue: 9
  year: 2013
  end-page: 1039
  article-title: Reconstructing de novo silencing of an active plant retrotransposon
  publication-title: Nat. Genet.
– volume: 2
  start-page: 3
  year: 2015
  end-page: 11
  article-title: Non‐genetic inheritance in evolutionary theory – the importance of plant studies
  publication-title: Non‐Gen. Inherit.
– volume: 15
  start-page: 1016
  year: 2012
  end-page: 1025
  article-title: Invasion of diverse habitats by few Japanese knotweed genotypes is correlated with high epigenetic differentiation
  publication-title: Ecol. Lett.
– volume: 11
  start-page: e1004920
  issue: 1
  year: 2015
  article-title: Century‐scale methylome stability in a recently diverged lineage
  publication-title: PLoS Genet.
– volume: 10
  start-page: 669
  year: 2009
  end-page: 680
  article-title: ChIP‐seq: advantages and challenges of a maturing technology
  publication-title: Nat. Rev. Genet.
– volume: 190
  start-page: 965
  year: 2012
  end-page: 975
  article-title: Gene capture by Helitron transposons reshuffles the transcriptome of maize
  publication-title: Genetics
– volume: 319
  start-page: 64
  year: 2008
  end-page: 69
  article-title: The genome reveals evolutionary insights into the conquest of land by plants
  publication-title: Science
– volume: 6
  start-page: e17388
  year: 2011
  article-title: Azacytidine and decitabine induce gene‐specific and non‐random DNA demethylation in human cancer cell lines
  publication-title: PLoS ONE
– volume: 196
  start-page: 667
  issue: 3
  year: 2014
  end-page: 676
  article-title: Inheritance Patterns and Stability of DNA methylation variation in maize near‐isogenic lines
  publication-title: Genetics
– volume: 81
  start-page: 232
  issue: 3
  year: 2012
  end-page: 242
  article-title: Population‐epigenetic models of selection
  publication-title: Theor. Popul. Biol.
– volume: 7
  start-page: e30515
  issue: 1
  year: 2012
  article-title: The progeny of plants exposed to salt exhibit changes in DNA Methylation, histone modifications and gene expression
  publication-title: PLoS ONE
– volume: 461
  start-page: 427
  year: 2009
  end-page: 430
  article-title: Selective epigenetic control of retrotransposition in
  publication-title: Nature
– volume: 5
  start-page: e13546
  year: 2016
  article-title: Hyperosmotic stress memory in is mediated by distinct epigenetically labile sites in the genome and is restricted in the male germline by DNA glycosylase activity
  publication-title: eLife
– volume: 6
  start-page: 114
  year: 2015
  article-title: Chromatin changes in response to drought, salinity, heat, and cold stresses in plants
  publication-title: Front. Plant Sci.
– volume: 216
  start-page: 227
  year: 2015
  end-page: 233
  article-title: Epigenetics: a potential mechanism for clonal plant success
  publication-title: Plant Ecol.
– volume: 140
  start-page: 111
  year: 2010
  end-page: 122
  article-title: Transcriptional control of gene expression by microRNAs
  publication-title: Cell
– volume: 25
  start-page: 1759
  year: 2016
  end-page: 1768
  article-title: Natural epigenetic variation contributes to heritable flowering divergence in a widespread asexual dandelion lineage
  publication-title: Mol. Ecol.
– volume: 8
  start-page: 3030
  year: 2016a
  end-page: 3044
  article-title: Reference transcriptomes and detection of duplicated copies in hexaploid and allododecaploid species (Poaceae)
  publication-title: Genome Biol Evol
– volume: 283
  start-page: 20160988
  year: 2016
  article-title: DNA methylation mediates genetic variation for adaptive transgenerational plasticity
  publication-title: Proc. Biol. Sci.
– volume: 158
  start-page: 844
  year: 2012
  end-page: 853
  article-title: Next generation systemic acquired resistance
  publication-title: Plant Physiol.
– volume: 16
  start-page: 80
  year: 2016
  end-page: 90
  article-title: MSAP markers and global cytosine methylation in plants: a literature survey and comparative analysis for a wild growing species
  publication-title: Mol. Ecol. Res.
– volume: 8
  start-page: 798
  year: 2012
  end-page: 801
  article-title: Evidence for an epigenetic role in inbreeding depression
  publication-title: Biol. Lett.
– volume: 7
  start-page: 210
  issue: 5
  year: 2002
  end-page: 216
  article-title: Priming in plant–pathogen interactions
  publication-title: Trends in Plant Sci.
– volume: 20
  start-page: 1675
  year: 2011
  end-page: 1688
  article-title: Untangling individual variation in natural populations: ecological, genetic and epigenetic correlates of long‐term inequality in herbivory
  publication-title: Mol. Ecol.
– volume: 17
  start-page: 319
  issue: 6
  year: 2016
  end-page: 332
  article-title: Genetic sources of population epigenomic variation
  publication-title: Nat. Rev. Genet.
– volume: 9
  start-page: e1003326
  issue: 11
  year: 2013
  article-title: Practical guidelines for the comprehensive analysis of ChIP‐seq data
  publication-title: PLoS Comp. Biol.
– volume: 79
  start-page: 67
  year: 2014
  end-page: 81
  article-title: The chromatin landscape of the moss and its dynamics during development and drought stress
  publication-title: Plant J.
– volume: 15
  start-page: 394
  year: 2014
  end-page: 408
  article-title: RNA‐directed DNA methylation: an epigenetic pathway of increasing complexity
  publication-title: Nat. Rev. Genet.
– volume: 6
  start-page: 29
  year: 2016b
  end-page: 40
  article-title: Haplotype detection from Next‐Generation Sequencing in high‐ploidy‐level species: 45S rDNA gene copies in the hexaploid
  publication-title: G3
– volume: 182
  start-page: 845
  issue: 3
  year: 2009
  end-page: 850
  article-title: Epigenetic inheritance and the missing heritability problem
  publication-title: Genetics
– volume: 77
  start-page: 135
  year: 2012
  end-page: 145
  article-title: Epiallelic variation in
  publication-title: Cold Spring Harb. Symp. Quant. Biol.
– volume: 15
  start-page: R38
  year: 2014
  article-title: MOABS: model based analysis of bisulfite sequencing data
  publication-title: Genome Biol.
– volume: 6
  start-page: 4
  year: 2015
  article-title: Global DNA cytosine methylation as an evolving trait: phylogenetic signal and correlated evolution with genome size in angiosperms
  publication-title: Front. Genet.
– volume: 13
  start-page: R61
  issue: 7
  year: 2012
  article-title: Bis‐SNP: combined DNA methylation and SNP calling for Bisulfite‐seq data
  publication-title: Genome Biol.
– volume: 4
  year: 2015
  article-title: Stress induced gene expression drives transient DNA methylation changes at adjacent repetitive elements
  publication-title: eLife
– volume: 109
  start-page: E2183
  year: 2012
  end-page: E2191
  article-title: Widespread dynamic DNA methylation in response to biotic stress
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 20
  start-page: 1297
  issue: 9
  year: 2010
  end-page: 1303
  article-title: The Genome Analysis Toolkit: a MapReduce framework for analyzing next‐generation DNA sequencing data
  publication-title: Genome Res.
– volume: 343
  start-page: 1145
  issue: 6175
  year: 2014
  end-page: 1148
  article-title: Mapping the epigenetic basis of complex traits
  publication-title: Science
– volume: 28
  start-page: 314
  year: 2016
  end-page: 325
  article-title: Creating order from chaos: epigenome dynamics in plants with complex genomes
  publication-title: Plant Cell
– volume: 24
  start-page: 835
  year: 2015
  end-page: 850
  article-title: ICE1 demethylation drives the range expansion of a plant invader through cold tolerance divergence
  publication-title: Mol. Ecol.
– volume: 25
  start-page: 1697
  year: 2016
  end-page: 1713
  article-title: BsRADseq screening DNA methylation in natural populations of non‐model species
  publication-title: Mol. Ecol.
– volume: 7
  start-page: 371
  year: 2005
  end-page: 379
  article-title: Environmentally alterable additive genetic effects
  publication-title: Evol. Ecol. Res.
– volume: 26
  start-page: 256
  year: 2016
  end-page: 262
  article-title: metilene: Fast and sensitive calling of differentially methylated regions from bisulfite sequencing data
  publication-title: Genome Res.
– volume: 198
  start-page: 1587
  issue: 4
  year: 2014
  end-page: 1602
  article-title: Purifying selection, drift, and reversible mutation with arbitrarily high mutation rates
  publication-title: Genetics
– volume: 323
  start-page: 1600
  issue: 5921
  year: 2009
  end-page: 1604
  article-title: A role for RNAi in the selective correction of DNA methylation defects
  publication-title: Science
– volume: 101
  start-page: 1309
  year: 2014
  end-page: 1313
  article-title: Individual variation in size and fecundity is correlated with differences in global DNA cytosine methylation in the perennial herb (Ranunculaceae)
  publication-title: Am. J. Bot.
– volume: 54
  start-page: 421
  year: 1966
  end-page: 431
  article-title: The strategy of model building in population biology
  publication-title: Am. Sci.
– volume: 22
  start-page: 2841
  year: 2013
  end-page: 2847
  article-title: Genotyping‐by‐sequencing in ecological and conservation genomics
  publication-title: Mol. Ecol.
– volume: 5
  start-page: e10326
  year: 2010
  article-title: Epigenetic variation in mangrove plants occurring in contrasting natural environment
  publication-title: PLoS ONE
– volume: 53
  start-page: 801
  year: 2012
  end-page: 808
  article-title: Stress‐induced chromatin changes: a critical view on their heritability
  publication-title: Plant Cell Physiol.
– volume: 34
  start-page: 2035
  year: 2017
  end-page: 2040
  article-title: Small RNAs reflect grandparental environments in apomictic dandelion
  publication-title: Mol. Biol. Evol.
– volume: 25
  start-page: 1665
  year: 2016
  end-page: 1680
  article-title: Species wide patterns of DNA methylation variation in Quercus lobata and its association with climate gradients
  publication-title: Mol. Ecol.
– volume: 10
  start-page: e1004785
  year: 2014
  article-title: Evolution of DNA methylation patterns in the Brassicaceae is driven by differences in genome organization
  publication-title: PLoS Genet.
– volume: 27
  start-page: 1571
  issue: 11
  year: 2011
  end-page: 1572
  article-title: Bismark: a flexible aligner and methylation caller for Bisulfite‐Seq applications
  publication-title: Bioinformatics
– volume: 24
  start-page: 710
  year: 2015
  end-page: 725
  article-title: Ten years of transcriptomics in wild populations: what have we learned about their ecology and evolution?
  publication-title: Mol. Ecol.
– volume: 9
  start-page: e101559
  issue: 7
  year: 2014
  article-title: Epigenetic inheritance, epimutation, and the response to selection
  publication-title: PLoS ONE
– volume: 8
  start-page: 6
  year: 2015
  article-title: De novo identification of differentially methylated regions in the human genome
  publication-title: Epigenetics Chromatin
– volume: 25
  start-page: 1639
  year: 2016
  end-page: 1652
  article-title: Genetic and epigenetic differences associated with environmental gradients in replicate populations of two salt marsh perennials
  publication-title: Mol. Ecol.
– volume: 23
  start-page: 1085
  issue: 522
  year: 2014
  end-page: 1095
  article-title: Variation in DNA methylation transmissibility, genetic heterogeneity and fecundity‐related traits in natural populations of the perennial herb
  publication-title: Mol. Ecol.
– volume: 158
  start-page: 854
  year: 2012
  end-page: 863
  article-title: Herbivory in the previous generation primes plants for enhanced insect resistance
  publication-title: Plant Physiol.
– volume: 472
  start-page: 115
  year: 2011
  end-page: 119
  article-title: An siRNA pathway prevents transgenerational retrotransposition in plants subjected to stress
  publication-title: Nature
– volume: 84
  start-page: 131
  issue: 2
  year: 2009
  end-page: 176
  article-title: Transgenerational epigenetic inheritance: prevalence, mechanisms, and implications for the study of heredity and evolution
  publication-title: Q. Rev. Biol.
– volume: 513
  start-page: 555
  year: 2014
  end-page: 558
  article-title: Antifungal drug resistance evoked via RNAi‐dependent epimutations
  publication-title: Nature
– volume: 13
  start-page: 10316
  year: 2012
  end-page: 10335
  article-title: Molecular tools for exploring polyploid genomes in plants
  publication-title: Int. J. Mol. Sci.
– volume: 13
  start-page: 705
  year: 2012
  end-page: 719
  article-title: Analysing and interpreting DNA methylation data
  publication-title: Nat. Rev. Genet.
– volume: 21
  start-page: 2602
  year: 2012
  end-page: 2616
  article-title: Jack of all nectars, master of most: DNA methylation and the epigenetic basis of niche width in a flower‐living yeast
  publication-title: Mol. Ecol.
– volume: 2
  start-page: 16030
  year: 2016
  article-title: Silencing in sperm cells is directed by RNA movement from the surrounding nurse cell
  publication-title: Nat. Plants
– volume: 11
  start-page: 106
  year: 2008
  end-page: 115
  article-title: Epigenetics for ecologists
  publication-title: Ecol. Lett.
– volume: 11
  start-page: 1159
  issue: 5
  year: 2009
  end-page: 1173
  article-title: Hybridization, polyploidy and invasion: lessons from Spartina (Poaceae)
  publication-title: Biol. Invasions
– volume: 187
  start-page: 867
  issue: 3
  year: 2010
  end-page: 876
  article-title: Epigenetic differentiation and relationship to adaptive genetic divergence in discrete populations of the violet
  publication-title: New Phytol.
– volume: 14
  start-page: R59
  year: 2013
  article-title: Hyperosmotic priming of seedlings establish a long‐term somatic memory accompanied by specific changes of the epigenome
  publication-title: Genome Biol.
– volume: 2013
  start-page: 89
  issue: 64
  year: 2013
  end-page: 110
  article-title: Tapping the promise of genomics in species with complex, nonmodel genomes
  publication-title: Annu. Rev. Plant Biol.
– volume: 33
  start-page: 967
  year: 2003
  end-page: 973
  article-title: Methylation of histone H3 in euchromatin of plant chromosomes depends on basic nuclear DNA content
  publication-title: Plant J.
– volume: 4
  start-page: 2875
  year: 2013
  article-title: Epigenetic diversity increases the productivity and stability of plant populations
  publication-title: Nat. Commun.
– volume: 22
  start-page: 17
  year: 2010
  end-page: 33
  article-title: Global epigenetic and transcriptional trends among two rice subspecies and their reciprocal hybrids
  publication-title: Plant Cell
– volume: 8
  start-page: e81148
  issue: 12
  year: 2013
  article-title: A reference methylome database and analysis pipeline to facilitate integrative and comparative epigenomics
  publication-title: PLoS ONE
– volume: 17
  start-page: 194
  year: 2016
  article-title: Widespread natural variation of DNA methylation within angiosperms
  publication-title: Genome Biol.
– volume: 6
  start-page: 468
  issue: 4
  year: 2011
  end-page: 481
  article-title: Preparation of reduced representation bisulfite sequencing libraries for genome‐scale DNA methylation profiling
  publication-title: Nat. Protoc.
– volume: 166
  start-page: 492
  year: 2016
  end-page: 505
  article-title: Epigenomic diversity in a global collection of accessions
  publication-title: Cell
– ident: e_1_2_7_21_1
  doi: 10.1093/jnci/95.5.399
– ident: e_1_2_7_52_1
  doi: 10.1111/j.1365-294X.2011.05402.x
– ident: e_1_2_7_94_1
  doi: 10.1186/s13059-016-1059-0
– ident: e_1_2_7_8_1
  doi: 10.3390/ijms130810316
– ident: e_1_2_7_107_1
  doi: 10.1101/gad.524609
– ident: e_1_2_7_109_1
  doi: 10.1126/science.1150646
– ident: e_1_2_7_119_1
  doi: 10.1093/icb/ict012
– ident: e_1_2_7_85_1
  doi: 10.1038/ng.2703
– ident: e_1_2_7_135_1
  doi: 10.1111/evo.12320
– ident: e_1_2_7_47_1
  doi: 10.1098/rspb.2016.0988
– ident: e_1_2_7_99_1
  doi: 10.1038/nrg2641
– ident: e_1_2_7_140_1
  doi: 10.1038/nplants.2014.23
– ident: e_1_2_7_55_1
  doi: 10.1146/annurev-arplant-050312-120237
– ident: e_1_2_7_73_1
  doi: 10.1038/nature11262
– ident: e_1_2_7_95_1
  doi: 10.1007/s11103-013-0165-6
– ident: e_1_2_7_62_1
  doi: 10.1016/0092-8674(85)90192-8
– ident: e_1_2_7_91_1
  doi: 10.1038/nature08328
– ident: e_1_2_7_111_1
  doi: 10.1038/nrg1834
– ident: e_1_2_7_68_1
  doi: 10.1111/mec.12344
– ident: e_1_2_7_69_1
  doi: 10.1186/s12859-014-0356-4
– ident: e_1_2_7_53_1
  doi: 10.1111/mec.12679
– ident: e_1_2_7_137_1
  doi: 10.1093/gbe/evu271
– ident: e_1_2_7_58_1
  doi: 10.1038/nature09861
– ident: e_1_2_7_129_1
  doi: 10.1186/gb-2014-15-2-r38
– ident: e_1_2_7_71_1
  doi: 10.1111/mec.13296
– ident: e_1_2_7_79_1
  doi: 10.1534/genetics.113.158980
– ident: e_1_2_7_115_1
  doi: 10.1111/eva.12482
– ident: e_1_2_7_24_1
  doi: 10.1073/pnas.1212955109
– ident: e_1_2_7_40_1
  doi: 10.1038/nprot.2010.190
– ident: e_1_2_7_136_1
  doi: 10.1111/j.1469-8137.2009.03121.x
– ident: e_1_2_7_121_1
  doi: 10.7554/eLife.09343
– volume: 7
  start-page: 371
  year: 2005
  ident: e_1_2_7_38_1
  article-title: Environmentally alterable additive genetic effects
  publication-title: Evol. Ecol. Res.
– ident: e_1_2_7_82_1
  doi: 10.1534/genetics.111.131615
– ident: e_1_2_7_54_1
  doi: 10.1111/mec.13576
– ident: e_1_2_7_106_1
  doi: 10.1104/pp.111.187831
– ident: e_1_2_7_17_1
  doi: 10.1093/gbe/evw209
– ident: e_1_2_7_102_1
  doi: 10.1093/pcp/pcs044
– ident: e_1_2_7_66_1
  doi: 10.3389/fpls.2015.00114
– ident: e_1_2_7_67_1
  doi: 10.1002/bies.201200169
– ident: e_1_2_7_9_1
  doi: 10.1371/journal.pcbi.1003326
– ident: e_1_2_7_43_1
  doi: 10.1371/journal.pone.0017388
– ident: e_1_2_7_44_1
  doi: 10.1371/journal.pgen.1004920
– ident: e_1_2_7_127_1
  doi: 10.1105/tpc.15.00911
– ident: e_1_2_7_108_1
  doi: 10.3732/ajb.1500526
– ident: e_1_2_7_20_1
  doi: 10.1534/genetics.114.167973
– ident: e_1_2_7_139_1
  doi: 10.1111/tpj.12542
– ident: e_1_2_7_7_1
  doi: 10.1126/science.1260638
– ident: e_1_2_7_59_1
  doi: 10.1086/598822
– ident: e_1_2_7_134_1
  doi: 10.1098/rsbl.2012.0494
– ident: e_1_2_7_30_1
  doi: 10.1007/s11258-014-0430-z
– ident: e_1_2_7_84_1
  doi: 10.1038/ng1841
– ident: e_1_2_7_75_1
  doi: 10.1371/journal.pgen.1005650
– ident: e_1_2_7_70_1
  doi: 10.1016/j.jplph.2011.03.017
– ident: e_1_2_7_15_1
  doi: 10.1111/j.1461-0248.2007.01130.x
– ident: e_1_2_7_56_1
  doi: 10.1186/gb-2014-15-2-r34
– ident: e_1_2_7_83_1
  doi: 10.1104/pp.111.187468
– ident: e_1_2_7_88_1
  doi: 10.1038/ncomms5268
– ident: e_1_2_7_26_1
  doi: 10.1126/science.1248127
– ident: e_1_2_7_110_1
  doi: 10.1007/s004380050374
– ident: e_1_2_7_60_1
  doi: 10.1038/embor.2010.186
– ident: e_1_2_7_4_1
  doi: 10.3389/fgene.2015.00004
– ident: e_1_2_7_57_1
  doi: 10.1046/j.1365-313X.2003.01681.x
– ident: e_1_2_7_46_1
  doi: 10.1105/tpc.109.072041
– ident: e_1_2_7_39_1
  doi: 10.1073/pnas.1424254112
– ident: e_1_2_7_131_1
  doi: 10.1038/nrg.2016.45
– ident: e_1_2_7_29_1
  doi: 10.1086/660911
– ident: e_1_2_7_12_1
  doi: 10.1038/nature10555
– ident: e_1_2_7_31_1
  doi: 10.1073/pnas.1209329109
– ident: e_1_2_7_138_1
  doi: 10.7554/eLife.13546
– ident: e_1_2_7_61_1
  doi: 10.1371/journal.pgen.1000530
– ident: e_1_2_7_18_1
  doi: 10.1534/g3.115.023242
– ident: e_1_2_7_37_1
  doi: 10.1016/j.tpb.2011.08.001
– ident: e_1_2_7_27_1
  doi: 10.1038/nature13722
– ident: e_1_2_7_89_1
  doi: 10.1101/gr.107524.110
– ident: e_1_2_7_90_1
  doi: 10.1111/mec.12911
– ident: e_1_2_7_112_1
  doi: 10.1111/j.1469-8137.2010.03369.x
– ident: e_1_2_7_113_1
  doi: 10.1111/j.1461-0248.2012.01824.x
– ident: e_1_2_7_117_1
  doi: 10.1111/2041-210X.12435
– ident: e_1_2_7_28_1
  doi: 10.1038/43657
– ident: e_1_2_7_42_1
  doi: 10.1038/nmeth.3763
– ident: e_1_2_7_80_1
  doi: 10.1371/journal.pone.0010326
– ident: e_1_2_7_14_1
  doi: 10.1038/nrg3273
– ident: e_1_2_7_105_1
  doi: 10.1126/science.1258699
– ident: e_1_2_7_97_1
  doi: 10.1038/nature15365
– ident: e_1_2_7_116_1
  doi: 10.1186/gb-2013-14-6-r59
– ident: e_1_2_7_141_1
  doi: 10.1111/mec.13502
– ident: e_1_2_7_16_1
  doi: 10.1007/s10682-010-9372-7
– ident: e_1_2_7_133_1
  doi: 10.1111/mec.13550
– ident: e_1_2_7_122_1
  doi: 10.1371/journal.pgen.1004785
– ident: e_1_2_7_143_1
  doi: 10.1111/nph.12010
– ident: e_1_2_7_118_1
  doi: 10.1038/nature11968
– ident: e_1_2_7_72_1
  doi: 10.1093/bioinformatics/btr167
– ident: e_1_2_7_126_1
  doi: 10.1007/s10530-016-1223-1
– ident: e_1_2_7_142_1
  doi: 10.1111/mec.13067
– ident: e_1_2_7_98_1
  doi: 10.1126/science.1180677
– ident: e_1_2_7_128_1
  doi: 10.1093/bfgp/elr039
– ident: e_1_2_7_3_1
  doi: 10.3732/ajb.1400126
– volume: 54
  start-page: 421
  year: 1966
  ident: e_1_2_7_77_1
  article-title: The strategy of model building in population biology
  publication-title: Am. Sci.
– ident: e_1_2_7_32_1
  doi: 10.7554/eLife.05255
– ident: e_1_2_7_48_1
  doi: 10.1111/evo.12324
– ident: e_1_2_7_101_1
  doi: 10.1016/j.tree.2012.07.014
– ident: e_1_2_7_96_1
  doi: 10.1101/sqb.2012.77.014571
– ident: e_1_2_7_114_1
  doi: 10.1515/ngi-2015-0002
– ident: e_1_2_7_33_1
  doi: 10.3389/fpls.2015.00308
– ident: e_1_2_7_19_1
  doi: 10.1038/nature13575
– ident: e_1_2_7_92_1
  doi: 10.1093/molbev/msx150
– ident: e_1_2_7_132_1
  doi: 10.1126/science.1165313
– ident: e_1_2_7_6_1
  doi: 10.1111/mec.13055
– ident: e_1_2_7_125_1
  doi: 10.1371/journal.pone.0081148
– ident: e_1_2_7_104_1
  doi: 10.1111/mec.13230
– ident: e_1_2_7_123_1
  doi: 10.1534/genetics.109.102798
– ident: e_1_2_7_25_1
  doi: 10.1016/S1360-1385(02)02244-6
– ident: e_1_2_7_36_1
  doi: 10.1126/science.1255023
– ident: e_1_2_7_130_1
  doi: 10.1038/nplants.2015.222
– ident: e_1_2_7_51_1
  doi: 10.1111/boj.12007
– ident: e_1_2_7_34_1
  doi: 10.1111/mec.13522
– ident: e_1_2_7_35_1
  doi: 10.1371/journal.pone.0101559
– ident: e_1_2_7_103_1
  doi: 10.1186/1756-8935-8-6
– ident: e_1_2_7_45_1
  doi: 10.1186/gb-2012-13-10-r83
– ident: e_1_2_7_64_1
  doi: 10.1016/j.cell.2016.06.044
– ident: e_1_2_7_22_1
  doi: 10.1073/pnas.1209297109
– ident: e_1_2_7_93_1
  doi: 10.1111/mec.12350
– ident: e_1_2_7_76_1
  doi: 10.1093/nar/gkr598
– ident: e_1_2_7_49_1
  doi: 10.1111/j.1469-8137.2010.03298.x
– ident: e_1_2_7_63_1
  doi: 10.1101/gr.196394.115
– ident: e_1_2_7_10_1
  doi: 10.1534/genetics.111.136176
– ident: e_1_2_7_5_1
  doi: 10.1111/1755-0998.12426
– ident: e_1_2_7_120_1
  doi: 10.1111/mec.12835
– ident: e_1_2_7_13_1
  doi: 10.1371/journal.pone.0030515
– ident: e_1_2_7_23_1
  doi: 10.1038/nature06745
– ident: e_1_2_7_74_1
  doi: 10.1038/ncomms3875
– ident: e_1_2_7_100_1
  doi: 10.1016/j.pbi.2011.01.002
– ident: e_1_2_7_124_1
  doi: 10.1104/pp.111.191593
– ident: e_1_2_7_65_1
  doi: 10.1016/j.cell.2009.12.023
– ident: e_1_2_7_81_1
  doi: 10.1186/gb-2012-13-7-r61
– ident: e_1_2_7_2_1
  doi: 10.1007/s10530-008-9383-2
– ident: e_1_2_7_86_1
  doi: 10.1038/nplants.2016.30
– ident: e_1_2_7_87_1
  doi: 10.1038/nrg3683
– ident: e_1_2_7_11_1
  doi: 10.12688/f1000research.2-217.v2
– ident: e_1_2_7_78_1
  doi: 10.1186/1471-2164-13-300
– ident: e_1_2_7_41_1
  doi: 10.1111/mec.13563
– ident: e_1_2_7_50_1
  doi: 10.1111/j.1365-294X.2011.05026.x
SSID ssj0012971
Score 2.6335294
SecondaryResourceType review_article
Snippet Growing evidence shows that epigenetic mechanisms contribute to complex traits, with implications across many fields of biology. In plant ecology, recent...
SourceID hal
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1576
SubjectTerms Biodiversity and Ecology
Bioinformatics
Deoxyribonucleic acid
Divergence
DNA
DNA Methylation
ecological epigenetics
Ecological monitoring
ecologists
Ecology
Ecosystem
Environmental Sciences
Epigenesis, Genetic
Epigenetics
geneticists
Genetics
genome
Genomes
genomics
habitats
Knowledge management
Life Sciences
Natural environment
phenotype
phenotypic plasticity
Plant ecology
Plants
Plants (botany)
Plants genetics
Polyploidy
Quantitative Methods
response to environment
Species
stress response
Title Ecological plant epigenetics: Evidence from model and non‐model species, and the way forward
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fele.12858
https://www.ncbi.nlm.nih.gov/pubmed/29027325
https://www.proquest.com/docview/1962056782
https://www.proquest.com/docview/1951567805
https://www.proquest.com/docview/2010202970
https://hal.science/hal-02098587
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB5UELz4ftQXUTx4sEubdltXT6Iri6iIKOxBLEmaIih1cXeV9eRP8Df6S5xJ2uITxFt2M4W0k5l80858A7AhPK5DHXNX1YV2Q-1HrkhV7IaZH6cR4mduuPROTqPWZXjUrreHYLeshbH8ENULN7IM46_JwIXsfjBy9Mo1dK51KvT1g4h48w_OK-ooPMZssBVGGC7zoF2wClEWT3Xlp7No-IYyIb_DzM-o1Rw7hxNwVS7YZpvc1vo9WVPPX7gc_3lHkzBewFG2Z_fPFAzpfBpGbYPKAY6ahtR6MAPXdkQqZZ07VAfTHSLypBrI7g4rm5MyKldhpr0OE3nK8vv87eXV_qaiTozLt8wE4k72JAYMMTPl7c7C5WHzYr_lFr0ZUKmIClyMMsJ6g77BKcnTTHGVoXvIPIHxKGI06ettofxUb0uJmCLNAiF5xoOIWl41fJkGczCCS9ALwLgXiEAqT6pYhsKPBCIGjYGc0kJ4KlMObJZaSlRBXE79M-6SMoDBB5eYB-fAeiXasWwdPwqhqqt54tdu7R0n9B9i5wZKxI--A8vlTkgKq-4m6K04AkYEVQ6sVdNoj_SRReT6vk8yiBAj6hTxuwxlIHDqGuY5MG93WbUc3iCGIY5Xb5q98vt9JM3jphks_l10CcY44RKTj7MMI72Hvl5BVNWTqzDMw7NVY0TvqbAcoQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1RT9swED5BpwlegA0GGYV5Ew88kCpx0qSd9lJNrbqt8DBRqS9bZDuOJlGlFW1B3RM_gd_IL-HOTqKxgTTx5sQXycn5zt_F5-8AjoTHdahj7qqm0G6o_cgVqYrdMPPjNEL8zA2X3ulZ1B-GX0fN0Qp8Ks_CWH6I6ocbWYbx12Tg9EP6DytHt9xA79psrcILsz9HkOh7RR6FC5kNt8IIA2YejApeIcrjqR59sBqt_qJcyH-B5kPcahae3ib8KIds800uGou5bKjff7E5PvedtmCjQKSsY6fQK1jR-Wt4aWtULrHVNbzWy234aVukVTYdo0aYnhKXJx2DnH1kZX1SRidWmKmww0SesnyS393c2ms614mh-YnpQOjJrsWSIWym1N0dGPa655_7blGeAfWKwMDFQCNstmkbTkmeZoqrDD1E5gkMSRGmSV-3hPJT3ZISYUWaBULyjAcRVb1q-zIN3kANh6D3gHEvEIFUnlSxDIUfCQQNGmM5pYXwVKYcOC7VlKiCu5xKaIyTMobBD5eYD-fAh0p0agk7HhVCXVf9RLHd7wwSuofwuY0S8ZXvQL2cCklh2LMEHRZHzIi4yoH3VTeaJO2ziFxPFiSDIDGiYhFPy1ASAqfCYZ4Du3aaVcPhbSIZ4vj0sZksT79H0h10TePt_4u-g7X--ekgGXw5-7YP65xgiknPqUNtfrnQBwiy5vLQ2NI9tUUf6A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLZgCMQF8aY8A-LAgaI2zdoVTgg2DRiIA0g7USVpKg7TmICBduMn8Bv5JdjpQyBA4pYtrtQ5dvx5cT4D7EqPG2Ei7uq6NK4wfujKVEeuyPwoDRE_c8uld3kVtm_FebfeHYOj8i5Mzg9R_eFGnmH3a3LwQZp9cXLclQ9wc603xmFCoN2ReXNxXR0h8DjPtkSI-TIPugWtEJXxVI9-C0bj91QK-RNnfoetNu60ZmGmAIzsOF_hORgz_XmYzFtIjnDUtLTTowW4y0ekdDboocKYGRDVJt1SfDpkZftQRhdKmG2Aw2Q_ZZj-f7y955_p2iVmzvt2ApEhe5UjhqiWKmsX4bbVvDlpu0X3BFQ7xm0X8wBRj-mUTCueZprrDB048yRmjIiilG8aUvupaSiFUT_NAql4xoOQmlLFvkqDJajhK5gVYNwLZKC0p3SkhPRDiTHdYKqljZSezrQDe6UaE11Qi1OHi15Sphio8cRq3IGdSnSQ82n8KoRrUc0TA3b7uJPQd4huY5SIXnwH1sulSgq_e0pwP-EI6RD2OLBdTaPH0DGI7JuHIckghgupl8PfMlQjwKmvl-fAcm4G1evwmDiAOD69Z-3i79-RNDtNO1j9v-gWTF2ftpLO2dXFGkxzAhG2eGYdas-PQ7OBEOhZbVpT_wT1Sv5Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ecological+plant+epigenetics%3A+Evidence+from+model+and+non-model+species%2C+and+the+way+forward&rft.jtitle=Ecology+letters&rft.au=Richards%2C+Christina+L&rft.au=Alonso%2C+Conchita&rft.au=Becker%2C+Claude&rft.au=Bossdorf%2C+Oliver&rft.date=2017-12-01&rft.eissn=1461-0248&rft.volume=20&rft.issue=12&rft.spage=1576&rft_id=info:doi/10.1111%2Fele.12858&rft_id=info%3Apmid%2F29027325&rft.externalDocID=29027325
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1461-023X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1461-023X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1461-023X&client=summon