Machine learning for accelerating process‐based computation of land biogeochemical cycles

Global change ecology nowadays embraces ever‐growing large observational datasets (big‐data) and complex mathematical models that track hundreds of ecological processes (big‐model). The rapid advancement of the big‐data‐big‐model has reached its bottleneck: high computational requirements prevent fu...

Full description

Saved in:
Bibliographic Details
Published inGlobal change biology Vol. 29; no. 11; pp. 3221 - 3234
Main Authors Sun, Yan, Goll, Daniel S., Huang, Yuanyuan, Ciais, Philippe, Wang, Ying‐Ping, Bastrikov, Vladislav, Wang, Yilong
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 01.06.2023
Wiley
Subjects
Online AccessGet full text
ISSN1354-1013
1365-2486
1365-2486
DOI10.1111/gcb.16623

Cover

Abstract Global change ecology nowadays embraces ever‐growing large observational datasets (big‐data) and complex mathematical models that track hundreds of ecological processes (big‐model). The rapid advancement of the big‐data‐big‐model has reached its bottleneck: high computational requirements prevent further development of models that need to be integrated over long time‐scales to simulate the distribution of ecosystems carbon and nutrient pools and fluxes. Here, we introduce a machine‐learning acceleration (MLA) tool to tackle this grand challenge. We focus on the most resource‐consuming step in terrestrial biosphere models (TBMs): the equilibration of biogeochemical cycles (spin‐up), a prerequisite that can take up to 98% of the computational time. Through three members of the ORCHIDEE TBM family part of the IPSL Earth System Model, including versions that describe the complex interactions between nitrogen, phosphorus and carbon that do not have any analytical solution for the spin‐up, we show that an unoptimized MLA reduced the computation demand by 77%–80% for global studies via interpolating the equilibrated state of biogeochemical variables for a subset of model pixels. Despite small biases in the MLA‐derived equilibrium, the resulting impact on the predicted regional carbon balance over recent decades is minor. We expect a one‐order of magnitude lower computation demand by optimizing the choices of machine learning algorithms, their settings, and balancing the trade‐off between quality of MLA predictions and need for TBM simulations for training data generation and bias reduction. Our tool is agnostic to gridded models (beyond TBMs), compatible with existing spin‐up acceleration procedures, and opens the door to a wide variety of future applications, with complex non‐linear models benefit most from the computational efficiency. The rapid advancement of the big‐data‐big‐model has reached its bottleneck: high computational requirements prevent further development of Terrestrial Biosphere Models (TBM) that need to be integrated over long time scales to simulate the distribution of ecosystems carbon and nutrient pools and fluxes. To tackle this grand challenge, we developed a machine‐learning acceleration (MLA) tool for the most resource‐consuming step in TBMs: the equilibration of biogeochemical cycles (spin‐up). We show that an unoptimized MLA reduced the computation demand by 77%–80% for global studies via interpolating the equilibrated state of biogeochemical variables for a subset of model pixels.
AbstractList Global change ecology nowadays embraces ever‐growing large observational datasets (big‐data) and complex mathematical models that track hundreds of ecological processes (big‐model). The rapid advancement of the big‐data‐big‐model has reached its bottleneck: high computational requirements prevent further development of models that need to be integrated over long time‐scales to simulate the distribution of ecosystems carbon and nutrient pools and fluxes. Here, we introduce a machine‐learning acceleration (MLA) tool to tackle this grand challenge. We focus on the most resource‐consuming step in terrestrial biosphere models (TBMs): the equilibration of biogeochemical cycles (spin‐up), a prerequisite that can take up to 98% of the computational time. Through three members of the ORCHIDEE TBM family part of the IPSL Earth System Model, including versions that describe the complex interactions between nitrogen, phosphorus and carbon that do not have any analytical solution for the spin‐up, we show that an unoptimized MLA reduced the computation demand by 77%–80% for global studies via interpolating the equilibrated state of biogeochemical variables for a subset of model pixels. Despite small biases in the MLA‐derived equilibrium, the resulting impact on the predicted regional carbon balance over recent decades is minor. We expect a one‐order of magnitude lower computation demand by optimizing the choices of machine learning algorithms, their settings, and balancing the trade‐off between quality of MLA predictions and need for TBM simulations for training data generation and bias reduction. Our tool is agnostic to gridded models (beyond TBMs), compatible with existing spin‐up acceleration procedures, and opens the door to a wide variety of future applications, with complex non‐linear models benefit most from the computational efficiency.
Global change ecology nowadays embraces ever‐growing large observational datasets (big‐data) and complex mathematical models that track hundreds of ecological processes (big‐model). The rapid advancement of the big‐data‐big‐model has reached its bottleneck: high computational requirements prevent further development of models that need to be integrated over long time‐scales to simulate the distribution of ecosystems carbon and nutrient pools and fluxes. Here, we introduce a machine‐learning acceleration (MLA) tool to tackle this grand challenge. We focus on the most resource‐consuming step in terrestrial biosphere models (TBMs): the equilibration of biogeochemical cycles (spin‐up), a prerequisite that can take up to 98% of the computational time. Through three members of the ORCHIDEE TBM family part of the IPSL Earth System Model, including versions that describe the complex interactions between nitrogen, phosphorus and carbon that do not have any analytical solution for the spin‐up, we show that an unoptimized MLA reduced the computation demand by 77%–80% for global studies via interpolating the equilibrated state of biogeochemical variables for a subset of model pixels. Despite small biases in the MLA‐derived equilibrium, the resulting impact on the predicted regional carbon balance over recent decades is minor. We expect a one‐order of magnitude lower computation demand by optimizing the choices of machine learning algorithms, their settings, and balancing the trade‐off between quality of MLA predictions and need for TBM simulations for training data generation and bias reduction. Our tool is agnostic to gridded models (beyond TBMs), compatible with existing spin‐up acceleration procedures, and opens the door to a wide variety of future applications, with complex non‐linear models benefit most from the computational efficiency. The rapid advancement of the big‐data‐big‐model has reached its bottleneck: high computational requirements prevent further development of Terrestrial Biosphere Models (TBM) that need to be integrated over long time scales to simulate the distribution of ecosystems carbon and nutrient pools and fluxes. To tackle this grand challenge, we developed a machine‐learning acceleration (MLA) tool for the most resource‐consuming step in TBMs: the equilibration of biogeochemical cycles (spin‐up). We show that an unoptimized MLA reduced the computation demand by 77%–80% for global studies via interpolating the equilibrated state of biogeochemical variables for a subset of model pixels.
Global change ecology nowadays embraces ever-growing large observational datasets (big-data) and complex mathematical models that track hundreds of ecological processes (big-model). The rapid advancement of the big-data-big-model has reached its bottleneck: high computational requirements prevent further development of models that need to be integrated over long time-scales to simulate the distribution of ecosystems carbon and nutrient pools and fluxes. Here, we introduce a machine-learning acceleration (MLA) tool to tackle this grand challenge. We focus on the most resource-consuming step in terrestrial biosphere models (TBMs): the equilibration of biogeochemical cycles (spin-up), a prerequisite that can take up to 98% of the computational time. Through three members of the ORCHIDEE TBM family part of the IPSL Earth System Model, including versions that describe the complex interactions between nitrogen, phosphorus and carbon that do not have any analytical solution for the spin-up, we show that an unoptimized MLA reduced the computation demand by 77%-80% for global studies via interpolating the equilibrated state of biogeochemical variables for a subset of model pixels. Despite small biases in the MLA-derived equilibrium, the resulting impact on the predicted regional carbon balance over recent decades is minor. We expect a one-order of magnitude lower computation demand by optimizing the choices of machine learning algorithms, their settings, and balancing the trade-off between quality of MLA predictions and need for TBM simulations for training data generation and bias reduction. Our tool is agnostic to gridded models (beyond TBMs), compatible with existing spin-up acceleration procedures, and opens the door to a wide variety of future applications, with complex non-linear models benefit most from the computational efficiency.Global change ecology nowadays embraces ever-growing large observational datasets (big-data) and complex mathematical models that track hundreds of ecological processes (big-model). The rapid advancement of the big-data-big-model has reached its bottleneck: high computational requirements prevent further development of models that need to be integrated over long time-scales to simulate the distribution of ecosystems carbon and nutrient pools and fluxes. Here, we introduce a machine-learning acceleration (MLA) tool to tackle this grand challenge. We focus on the most resource-consuming step in terrestrial biosphere models (TBMs): the equilibration of biogeochemical cycles (spin-up), a prerequisite that can take up to 98% of the computational time. Through three members of the ORCHIDEE TBM family part of the IPSL Earth System Model, including versions that describe the complex interactions between nitrogen, phosphorus and carbon that do not have any analytical solution for the spin-up, we show that an unoptimized MLA reduced the computation demand by 77%-80% for global studies via interpolating the equilibrated state of biogeochemical variables for a subset of model pixels. Despite small biases in the MLA-derived equilibrium, the resulting impact on the predicted regional carbon balance over recent decades is minor. We expect a one-order of magnitude lower computation demand by optimizing the choices of machine learning algorithms, their settings, and balancing the trade-off between quality of MLA predictions and need for TBM simulations for training data generation and bias reduction. Our tool is agnostic to gridded models (beyond TBMs), compatible with existing spin-up acceleration procedures, and opens the door to a wide variety of future applications, with complex non-linear models benefit most from the computational efficiency.
Global change ecology nowadays embraces ever-growing large observational datasets (big-data) and complex mathematical models that track hundreds of ecological processes (big-model). The rapid advancement of the big-data-big-model has reached
Author Wang, Yilong
Goll, Daniel S.
Ciais, Philippe
Bastrikov, Vladislav
Wang, Ying‐Ping
Sun, Yan
Huang, Yuanyuan
Author_xml – sequence: 1
  givenname: Yan
  orcidid: 0000-0003-0481-7192
  surname: Sun
  fullname: Sun, Yan
  organization: CEA‐CNRS‐UVSQ
– sequence: 2
  givenname: Daniel S.
  orcidid: 0000-0001-9246-9671
  surname: Goll
  fullname: Goll, Daniel S.
  email: dsgoll123@gmail.com
  organization: CEA‐CNRS‐UVSQ
– sequence: 3
  givenname: Yuanyuan
  orcidid: 0000-0003-4202-8071
  surname: Huang
  fullname: Huang, Yuanyuan
  email: yuanyuan.huang@csiro.au
  organization: CSIRO Environment
– sequence: 4
  givenname: Philippe
  surname: Ciais
  fullname: Ciais, Philippe
  organization: CEA‐CNRS‐UVSQ
– sequence: 5
  givenname: Ying‐Ping
  orcidid: 0000-0002-4614-6203
  surname: Wang
  fullname: Wang, Ying‐Ping
  organization: CSIRO Environment
– sequence: 6
  givenname: Vladislav
  surname: Bastrikov
  fullname: Bastrikov, Vladislav
  organization: Science Partners
– sequence: 7
  givenname: Yilong
  orcidid: 0000-0001-7176-2692
  surname: Wang
  fullname: Wang, Yilong
  organization: Institute of Tibetan Plateau Research, Chinese Academy of Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36762511$$D View this record in MEDLINE/PubMed
https://hal.science/hal-04097612$$DView record in HAL
BookMark eNqFkc1u1DAUhS1URH9gwQugSGwAKa2vHf9kWUbQIg1iAysWluM4M64ce7AnVLPjEXhGngRPU6hUieKNrevvHp177jE6CDFYhJ4DPoVyzlamOwXOCX2EjoByVpNG8oP9mzU1YKCH6DjnK4wxJZg_QYeUC04YwBH6-lGbtQu28lan4MKqGmKqtDHW26S3-8ImRWNz_vXjZ6ez7SsTx820LX8xVHGovA591bm4stGs7eiM9pXZGW_zU_R40D7bZ7f3Cfry_t3nxWW9_HTxYXG-rA0jQGvbYdNyC20zdJ1pRItxw5hstSiGB9Fy0rJOkk7KXgvWYyBCDGKgeGgJx0LTE_Rm1p3CRu-utfdqk9yo004BVvuEVElI3SRU4NczvNZ3WNROXZ4v1b6GG9wKDuQ7FPbVzJYIvk02b9XockmmjGzjlBWRtCEUWhD_R4VgHCS9cfDyHnoVpxRKQkUQS6ACJC7Ui1tq6kbb_7X6Z3V3g5gUc052eHDos3uscfMGt0k7_1DHtfN2929pdbF4O3f8BpsnxRc
CitedBy_id crossref_primary_10_5194_gmd_17_8141_2024
crossref_primary_10_1029_2023MS003625
crossref_primary_10_1111_gcb_16696
crossref_primary_10_1016_j_agrformet_2024_110229
crossref_primary_10_1016_j_ecolmodel_2024_110835
crossref_primary_10_1126_sciadv_adn2839
crossref_primary_10_3389_fbinf_2023_1275787
crossref_primary_10_1016_j_jhazmat_2024_134980
crossref_primary_10_1016_j_cej_2025_160780
crossref_primary_10_1016_j_jhazmat_2024_134052
Cites_doi 10.5194/essd-14-1917-2022
10.1016/j.dss.2012.01.016
10.1038/s42003-020-01198-4
10.1029/2003GB002199
10.1029/2017MS001237
10.5194/acp-15-5987-2015
10.1038/s41586‐019‐0912‐1
10.1146/annurev-environ-012913-093456
10.1029/2021GB007177
10.5194/gmd-14-1987-2021
10.12703/r/10‐53
10.5194/gmd‐5‐1259‐2012
10.1038/s41467-022-32545-0
10.1111/nph.18535
10.1016/j.envsoft.2021.105006
10.5194/gmd‐10‐3745‐2017
10.1007/BF00058655
10.1613/jair.953
10.1175/BAMS‐D‐17‐0212.1
10.1023/A:1010933404324
10.1016/j.ecolmodel.2005.04.008
10.1029/2018MS001453
ContentType Journal Article
Copyright 2023 The Authors. published by John Wiley & Sons Ltd.
2023 The Authors. Global Change Biology published by John Wiley & Sons Ltd.
2023. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2023 The Authors. published by John Wiley & Sons Ltd.
– notice: 2023 The Authors. Global Change Biology published by John Wiley & Sons Ltd.
– notice: 2023. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7UA
C1K
F1W
H97
L.G
7X8
7S9
L.6
1XC
VOOES
ADTOC
UNPAY
DOI 10.1111/gcb.16623
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Ecology Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
ASFA: Aquatic Sciences and Fisheries Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef

MEDLINE - Academic

AGRICOLA
MEDLINE
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Open Access Journals
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Biology
Environmental Sciences
Ecology
EISSN 1365-2486
EndPage 3234
ExternalDocumentID 10.1111/gcb.16623
oai:HAL:hal-04097612v1
36762511
10_1111_gcb_16623
GCB16623
Genre technicalNote
Journal Article
GrantInformation_xml – fundername: GENCI‐TGCC
  funderid: A0130106328
– fundername: Agence Nationale de la Recherche
  funderid: ANR‐16‐CONV‐0003
– fundername: National Natural Science Foundation of China
  funderid: 42201107
– fundername: Agence Nationale de la Recherche
  grantid: ANR-16-CONV-0003
– fundername: GENCI-TGCC
  grantid: A0130106328
– fundername: National Natural Science Foundation of China
  grantid: 42201107
GroupedDBID -DZ
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
24P
29I
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHEFC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
UB1
UQL
VOH
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WUP
WXSBR
WYISQ
XG1
Y6R
ZZTAW
~02
~IA
~KM
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7UA
C1K
F1W
H97
L.G
7X8
7S9
L.6
1XC
VOOES
ADTOC
UNPAY
ID FETCH-LOGICAL-c5213-eb0c96e194fbbc4790045589a7000f796295b82b88da75d01277f7f30f92607a3
IEDL.DBID DR2
ISSN 1354-1013
1365-2486
IngestDate Sun Oct 26 04:08:33 EDT 2025
Tue Oct 14 20:43:38 EDT 2025
Fri Jul 11 18:27:04 EDT 2025
Thu Oct 02 10:50:29 EDT 2025
Tue Aug 12 13:40:46 EDT 2025
Mon Jul 21 06:03:39 EDT 2025
Wed Oct 01 04:31:42 EDT 2025
Thu Apr 24 22:52:05 EDT 2025
Wed Jan 22 16:23:15 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords computational demand
biogeochemical cycles
hybrid modeling
machine learning
terrestrial biosphere model
Language English
License Attribution-NonCommercial
2023 The Authors. Global Change Biology published by John Wiley & Sons Ltd.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
cc-by-nc
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5213-eb0c96e194fbbc4790045589a7000f796295b82b88da75d01277f7f30f92607a3
Notes Daniel S. Goll and Yuanyuan Huang should be considered joint senior authors.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7176-2692
0000-0001-9246-9671
0000-0003-0481-7192
0000-0002-4614-6203
0000-0003-4202-8071
0000-0002-4462-9607
0000-0001-8560-4943
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcb.16623
PMID 36762511
PQID 2808137180
PQPubID 30327
PageCount 14
ParticipantIDs unpaywall_primary_10_1111_gcb_16623
hal_primary_oai_HAL_hal_04097612v1
proquest_miscellaneous_2834231917
proquest_miscellaneous_2775618323
proquest_journals_2808137180
pubmed_primary_36762511
crossref_primary_10_1111_gcb_16623
crossref_citationtrail_10_1111_gcb_16623
wiley_primary_10_1111_gcb_16623_GCB16623
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2023
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: June 2023
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Global change biology
PublicationTitleAlternate Glob Chang Biol
PublicationYear 2023
Publisher Blackwell Publishing Ltd
Wiley
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley
References 2002; 16
2021; 14
2015; 15
2005; 19
2021; 10
2020; 3
2022
2005; 189
2021; 139
2017; 10
2019; 566
2022; 13
2022; 14
2022; 36
2020; 12
2014; 39
1996; 24
2001; 45
2018; 99
2018; 10
2012; 5
2012; 53
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_14_1
e_1_2_8_15_1
e_1_2_8_16_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_10_1
e_1_2_8_21_1
e_1_2_8_11_1
e_1_2_8_22_1
e_1_2_8_12_1
e_1_2_8_23_1
36974622 - Glob Chang Biol. 2023 Jun;29(11):2865-2867
References_xml – volume: 3
  start-page: 1
  issue: 1
  year: 2020
  end-page: 13
  article-title: A multi‐scale eco‐evolutionary model of cooperation reveals how microbial adaptation influences soil decomposition
  publication-title: Communications Biology
– volume: 139
  year: 2021
  article-title: Evaluation of six methods for correcting bias in estimates from ensemble tree machine learning regression models
  publication-title: Environmental Modelling & Software
– volume: 14
  start-page: 1917
  issue: 4
  year: 2022
  end-page: 2005
  article-title: Global carbon budget 2021
  publication-title: Earth System Science Data
– volume: 10
  start-page: 3745
  issue: 10
  year: 2017
  end-page: 3770
  article-title: A representation of the phosphorus cycle for ORCHIDEE (revision 4520)
  publication-title: Geoscientific Model Development Discussions
– volume: 99
  start-page: 1
  issue: 6
  year: 2018
  end-page: 51
  article-title: The global N O model Intercomparison project (NMIP): Objectives, simulation protocol and expected products
  publication-title: Bulletin of the American Meteorological Society
– volume: 19
  issue: 1
  year: 2005
  article-title: A dynamic global vegetation model for studies of the coupled atmosphere‐biosphere system
  publication-title: Global Biogeochemical Cycles
– year: 2022
  article-title: Atmospheric phosphorus deposition amplifies carbon sinks in simulations of a tropical forest in Central Africa
  publication-title: New Phytologist
– volume: 53
  start-page: 226
  issue: 1
  year: 2012
  end-page: 233
  article-title: Preprocessing unbalanced data using support vector machine
  publication-title: Decision Support Systems
– volume: 36
  year: 2022
  article-title: Quantifying and reducing uncertainty in global carbon cycle predictions: Lessons and perspectives from 15 years of data assimilation studies with the ORCHIDEE terrestrial biosphere model
  publication-title: Global Biogeochemical Cycles
– volume: 189
  start-page: 25
  issue: 1–2
  year: 2005
  end-page: 48
  article-title: Ecosystem model spin‐up: Estimating steady state conditions in a coupled terrestrial carbon and nitrogen cycle model
  publication-title: Ecological Modelling
– volume: 24
  start-page: 123
  issue: 2
  year: 1996
  end-page: 140
  article-title: Bagging predictors
  publication-title: Machine Learning
– volume: 10
  year: 2021
  article-title: Modelling of land nutrient cycles: Recent progress and future development
  publication-title: Faculty Reviews
– volume: 39
  start-page: 91
  issue: 1
  year: 2014
  end-page: 123
  article-title: Modeling the terrestrial biosphere
  publication-title: Annual Review of Environment and Resources
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  end-page: 32
  article-title: Random forests
  publication-title: Machine Learning
– volume: 13
  start-page: 1
  issue: 1
  year: 2022
  end-page: 12
  article-title: Convergence in phosphorus constraints to photosynthesis in forests around the world
  publication-title: Nature Communications
– volume: 5
  start-page: 1259
  issue: 5
  year: 2012
  end-page: 1271
  article-title: A semi‐analytical solution to accelerate spin‐up of a coupled carbon and nitrogen land model to steady state
  publication-title: Geoscientific Model Development
– volume: 14
  start-page: 1987
  issue: 4
  year: 2021
  end-page: 2010
  article-title: Global evaluation of the nutrient‐enabled version of the land surface model ORCHIDEE‐CNP v1. 2 (r5986)
  publication-title: Geoscientific Model Development
– volume: 16
  start-page: 321
  year: 2002
  end-page: 357
  article-title: SMOTE: Synthetic minority over‐sampling technique
  publication-title: Journal of Artificial Intelligence Research
– volume: 12
  issue: 4
  year: 2020
  article-title: Perspectives on the future of land surface models and the challenges of representing complex terrestrial systems
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 15
  start-page: 5987
  issue: 10
  year: 2015
  end-page: 6005
  article-title: Reliable, robust and realistic: The three R's of next‐generation land‐surface modelling
  publication-title: Atmospheric Chemistry and Physics
– volume: 10
  start-page: 1790
  issue: 8
  year: 2018
  end-page: 1808
  article-title: Matrix‐based sensitivity assessment of soil organic carbon storage: A case study from the ORCHIDEE‐MICT model
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 566
  start-page: 195
  issue: 7743
  year: 2019
  end-page: 204
  article-title: Deep learning and process understanding for data‐driven earth system science
  publication-title: Nature
– ident: e_1_2_8_11_1
  doi: 10.5194/essd-14-1917-2022
– ident: e_1_2_8_8_1
  doi: 10.1016/j.dss.2012.01.016
– ident: e_1_2_8_2_1
  doi: 10.1038/s42003-020-01198-4
– ident: e_1_2_8_15_1
  doi: 10.1029/2003GB002199
– ident: e_1_2_8_14_1
  doi: 10.1029/2017MS001237
– ident: e_1_2_8_17_1
  doi: 10.5194/acp-15-5987-2015
– ident: e_1_2_8_18_1
  doi: 10.1038/s41586‐019‐0912‐1
– ident: e_1_2_8_9_1
  doi: 10.1146/annurev-environ-012913-093456
– ident: e_1_2_8_16_1
  doi: 10.1029/2021GB007177
– ident: e_1_2_8_19_1
  doi: 10.5194/gmd-14-1987-2021
– ident: e_1_2_8_22_1
  doi: 10.12703/r/10‐53
– ident: e_1_2_8_23_1
  doi: 10.5194/gmd‐5‐1259‐2012
– ident: e_1_2_8_7_1
  doi: 10.1038/s41467-022-32545-0
– ident: e_1_2_8_13_1
  doi: 10.1111/nph.18535
– ident: e_1_2_8_3_1
  doi: 10.1016/j.envsoft.2021.105006
– ident: e_1_2_8_12_1
  doi: 10.5194/gmd‐10‐3745‐2017
– ident: e_1_2_8_4_1
  doi: 10.1007/BF00058655
– ident: e_1_2_8_6_1
  doi: 10.1613/jair.953
– ident: e_1_2_8_21_1
  doi: 10.1175/BAMS‐D‐17‐0212.1
– ident: e_1_2_8_5_1
  doi: 10.1023/A:1010933404324
– ident: e_1_2_8_20_1
  doi: 10.1016/j.ecolmodel.2005.04.008
– ident: e_1_2_8_10_1
  doi: 10.1029/2018MS001453
– reference: 36974622 - Glob Chang Biol. 2023 Jun;29(11):2865-2867
SSID ssj0003206
Score 2.657282
Snippet Global change ecology nowadays embraces ever‐growing large observational datasets (big‐data) and complex mathematical models that track hundreds of ecological...
Global change ecology nowadays embraces ever-growing large observational datasets (big-data) and complex mathematical models that track hundreds of ecological...
SourceID unpaywall
hal
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3221
SubjectTerms Acceleration
Algorithms
artificial intelligence
Balancing
Bias
Biogeochemical cycle
Biogeochemical cycles
Biogeochemistry
Biological Sciences
Biosphere
Carbon
Carbon Cycle
Computation
computational demand
Computational efficiency
Computer applications
Computing time
data collection
ecology
Ecosystem
Exact solutions
global change
hybrid modeling
Impact prediction
Learning algorithms
Machine learning
Mathematical models
Models, Theoretical
Nitrogen
Phosphorus
Sciences of the Universe
terrestrial biosphere model
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB7RVAg48AgUDAUtD6FeHPxc28cQtUSIVByIVMTB7K5306qRHbUJKJz4CfxGfgkz6wcKjwqJm70eW157Ht_Ys98APONhkAWC-65vDCYoIc_cVHPlmsJgsPe5UpbxZnLIx9Po9VF81PQ5pbUwNT9E98GNLMP6azLwRWFqP9-a-ouZkgOfYwTfgm0eIxjvwfb08O3wvU2z4gidjG2QXNdyRSlvuIU2zt2ISFvHVA_5O9i8BldW5UKsP4v5fBPH2kB0cAM-tlOo609OB6ulHKgvv7A7_sccb8L1BqSyYa1Vt-CSLvtwuW5bue7Dzv7P1XEo1riH8z44E4Tg1ZkVY8_ZaH6CeNju3YYPE1u2qVnTp2LGEC4zoRTGPdJCHFjUixa-f_1GsbVgynacsKrDKsOoBpPJk2qmqcuXpTlgak1VfXdgerD_bjR2m84OrkK4ELpaeirj2s8iI6WKkoyQZZxmIkEPbZKMB1ks00CmaSGSuKDf44lJTOiZDPOvRIQ70CurUt8DlmpP4pj0BYIrg4An0sSPkwnD08gPAgf22rebq4b2nLpvzPM2_cEHnNsH7MCTTnRRc338UQhVpDtO7Nzj4ZucxjziDkPE-Ml3YLfVoLzxCed5QE1OQsQCngOPu8NozfSLRpS6WqFMkiCgRS8bXiCTEmsj5dkO3K21s7sd4t-jpNGBp526XjSXPat9f5fIX41e2o37_3TBB3A1QBBYl9LtQm95ttIPEbQt5aPGMH8AsEw8-w
  priority: 102
  providerName: Unpaywall
Title Machine learning for accelerating process‐based computation of land biogeochemical cycles
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcb.16623
https://www.ncbi.nlm.nih.gov/pubmed/36762511
https://www.proquest.com/docview/2808137180
https://www.proquest.com/docview/2775618323
https://www.proquest.com/docview/2834231917
https://hal.science/hal-04097612
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/gcb.16623
UnpaywallVersion publishedVersion
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1354-1013
  databaseCode: DR2
  dateStart: 19970101
  customDbUrl:
  isFulltext: true
  eissn: 1365-2486
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003206
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD7ahhDwwKUwCIzKXIT2kiqOUycRT6XaqBCdJkSlISZFtmuXiaqt1hZUnvgJ_EZ-Cec4aca4TIi3xDmRnPhcvpMcfwfgqRRxHivJQ-4cJihC5mFmpQnd0GGw59IYz3jTP5C9QfLqqH20Ac_Xe2FKfoj6gxtZhvfXZOBKz38y8pHRLS4xeqP_5UL6dOrNGXWUiH1fTS7aCboaLipWIariqe88F4s2P1Al5O8w8xpcWU5mavVZjcfnEawPQfs34Hg9-bLy5GNrudAt8-UXXsf_fLqbcL2CpqxT6tIt2LCTBlwum1WuGrC9d7YnDsUqpzBvQNBH4D099WLsGeuOTxAF-7Pb8L7vizUtq7pTjBiCZKaMwWhHuocDs3Krwvev3yiiDpnxfSa8wrCpY1R5yfTJdGSpt5cnN2BmRbV8d2Cwv_e22wurfg6hQZAgQqsjk0vL88RpbZI0JzzZznKV4nq5NJdx3tZZrLNsqNL2kH6Kpy51InI5Zl2pEtuwNZlO7D1gmY00jmmuEFI5hDmJJVacXDmZJTyOA9hdr2xhKrJz6rkxLtZJD77gwr_gAB7XorOS4eOPQqge9XXi5O51Xhc0FhFjGOLETzyAnbX2FJUnmBcxtTYRiACiAB7Vl9GG6ceMmtjpEmXSFGEs-lZxgUxGXI2UXQdwt9TMejrEukepYgBPalW96Fl2veb9XaJ42X3hD-7_u-gDuBoj_iur6HZga3G6tA8Rry10Ezbj5LDpzbMJlwYHh513PwD1DDrm
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtQwEB61RahwQLBQCBQwP0K9pNrYiRNLXMqqZYHdikMrVeIQ2V57qbRKVm0XtDcegWfkSZhxsoEKqLgl9iRKPB7PN8n4G4CXUnDFtUzixHsMUIRUceGkjf3Eo7NPpLWB8WZ8KIfH6fuT7GQNXq_2wjT8EN0HN7KMsF6TgdMH6d-sfGrNbiLRfa_DtRRvS6EXTz9267DgobJmIrIUF5tEtLxClMfTXXrJG61_plzIP4HmTdhcVHO9_Kpns8sYNjihg9twq0WPbK9R9x1Yc1UPrjf1JJc92Nr_tW0NxVq7Pe9BNEZsXJ8FMfaKDWanCFTD2V34NA75lI61BSSmDHEs09aiQ6LpgQ3zZjfBj2_fyelNmA2lIIJOWe0ZJUcyc1pPHZXfCvwDzC4p3e4eHB_sHw2GcVtyIbbox0XsTN8q6RKVemNsmiuCfFmhdI4D6nMlucpMwU1RTHSeTei_de5zL_peYWCUa7EFG1VduQfACtc32GYSjajHIxJJHRHXKO1lkSacR7CzGvrStnzkVBZjVq7iEtRSGbQUwfNOdN6QcPxVCPXX9RNt9nBvVFJbn0i9EMp9SSLYXqm3bI31vORUfUSgk-5H8KzrRjOjfye6cvUCZfIckSYuf-IKmYLoFCkAjuB-M3W6xyFiPIrmInjRzaWr3mUnzLJ_S5RvB2_CwcP_F30Km8Oj8agcvTv88AhucIRrTdLbNmxcnC3cY4RXF-ZJsKKfDVwb3Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9NAEB61RVwPHKEFQ4HlEOqLI9_2SryUtCFAUyHUSpVQZe2ud0NFZEdtAgpP_AR-I7-EmbXjUo4K8Wavx9LaO8c39uw3AE-TMOCBSHzXNwYTlDDhbqYT5ZrCYLD3E6Us481wNxnsR68P4oMleL7YC1PzQ7Qf3MgyrL8mA9eTwvxk5SMlu36C4XsZLkQxz6igb-vdKXlUGNjOmn4YR-hs_LDhFaI6nvbWM9Fo-QPVQv4ONK_C5Vk5EfPPYjw-i2FtEOpfh8PF9Ovak4_d2VR21ZdfmB3_9_luwLUGnbLNWp1uwpIuO3Cx7lc578Da9um2OBRr_MJJB5whYu_q2IqxZ6w3PkIgbM9uwfuhrdfUrGlQMWKIk5lQCgMeqR8OTOrdCt-_fqOgWjBlW01YnWGVYVR8yeRRNdLU3svyGzA1p3K-Vdjvb-_1Bm7T0sFViBNCV0tP8UT7PDJSqijlBCnjjIsUF8ykPAl4LLNAZlkh0rig_-KpSU3oGY6JVyrCNVgpq1LfAZZpT-KY9AWiKoNIJ9JEjMOFSbLIDwIHNhZLm6uG75zabozzRd6DLzi3L9iBx63opCb5-KMQ6kd7nWi5B5s7OY15RBqGUPGT78D6Qn3yxhmc5AF1NwkRBHgOPGovoxnTvxlR6mqGMmmKSBbda3iOTEZ0jZRgO3C7Vs12OkS8R9miA09aXT3vWTas6v1dIn_Ze2EP7v676EO49Harn--82n1zD64EiAbrmrp1WJkez_R9RG9T-cAa6Q-mBDwE
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB7RVAg48AgUDAUtD6FeHPxc28cQtUSIVByIVMTB7K5306qRHbUJKJz4CfxGfgkz6wcKjwqJm70eW157Ht_Ys98APONhkAWC-65vDCYoIc_cVHPlmsJgsPe5UpbxZnLIx9Po9VF81PQ5pbUwNT9E98GNLMP6azLwRWFqP9-a-ouZkgOfYwTfgm0eIxjvwfb08O3wvU2z4gidjG2QXNdyRSlvuIU2zt2ISFvHVA_5O9i8BldW5UKsP4v5fBPH2kB0cAM-tlOo609OB6ulHKgvv7A7_sccb8L1BqSyYa1Vt-CSLvtwuW5bue7Dzv7P1XEo1riH8z44E4Tg1ZkVY8_ZaH6CeNju3YYPE1u2qVnTp2LGEC4zoRTGPdJCHFjUixa-f_1GsbVgynacsKrDKsOoBpPJk2qmqcuXpTlgak1VfXdgerD_bjR2m84OrkK4ELpaeirj2s8iI6WKkoyQZZxmIkEPbZKMB1ks00CmaSGSuKDf44lJTOiZDPOvRIQ70CurUt8DlmpP4pj0BYIrg4An0sSPkwnD08gPAgf22rebq4b2nLpvzPM2_cEHnNsH7MCTTnRRc338UQhVpDtO7Nzj4ZucxjziDkPE-Ml3YLfVoLzxCed5QE1OQsQCngOPu8NozfSLRpS6WqFMkiCgRS8bXiCTEmsj5dkO3K21s7sd4t-jpNGBp526XjSXPat9f5fIX41e2o37_3TBB3A1QBBYl9LtQm95ttIPEbQt5aPGMH8AsEw8-w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+for+accelerating+process%E2%80%90based+computation+of+land+biogeochemical+cycles&rft.jtitle=Global+change+biology&rft.au=Sun%2C+Yan&rft.au=Goll%2C+Daniel+S.&rft.au=Huang%2C+Yuanyuan&rft.au=Ciais%2C+Philippe&rft.date=2023-06-01&rft.issn=1354-1013&rft.eissn=1365-2486&rft.volume=29&rft.issue=11&rft.spage=3221&rft.epage=3234&rft_id=info:doi/10.1111%2Fgcb.16623&rft.externalDBID=10.1111%252Fgcb.16623&rft.externalDocID=GCB16623
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1354-1013&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1354-1013&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1354-1013&client=summon