Machine learning for accelerating process‐based computation of land biogeochemical cycles
Global change ecology nowadays embraces ever‐growing large observational datasets (big‐data) and complex mathematical models that track hundreds of ecological processes (big‐model). The rapid advancement of the big‐data‐big‐model has reached its bottleneck: high computational requirements prevent fu...
Saved in:
| Published in | Global change biology Vol. 29; no. 11; pp. 3221 - 3234 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
England
Blackwell Publishing Ltd
01.06.2023
Wiley |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1354-1013 1365-2486 1365-2486 |
| DOI | 10.1111/gcb.16623 |
Cover
| Abstract | Global change ecology nowadays embraces ever‐growing large observational datasets (big‐data) and complex mathematical models that track hundreds of ecological processes (big‐model). The rapid advancement of the big‐data‐big‐model has reached its bottleneck: high computational requirements prevent further development of models that need to be integrated over long time‐scales to simulate the distribution of ecosystems carbon and nutrient pools and fluxes. Here, we introduce a machine‐learning acceleration (MLA) tool to tackle this grand challenge. We focus on the most resource‐consuming step in terrestrial biosphere models (TBMs): the equilibration of biogeochemical cycles (spin‐up), a prerequisite that can take up to 98% of the computational time. Through three members of the ORCHIDEE TBM family part of the IPSL Earth System Model, including versions that describe the complex interactions between nitrogen, phosphorus and carbon that do not have any analytical solution for the spin‐up, we show that an unoptimized MLA reduced the computation demand by 77%–80% for global studies via interpolating the equilibrated state of biogeochemical variables for a subset of model pixels. Despite small biases in the MLA‐derived equilibrium, the resulting impact on the predicted regional carbon balance over recent decades is minor. We expect a one‐order of magnitude lower computation demand by optimizing the choices of machine learning algorithms, their settings, and balancing the trade‐off between quality of MLA predictions and need for TBM simulations for training data generation and bias reduction. Our tool is agnostic to gridded models (beyond TBMs), compatible with existing spin‐up acceleration procedures, and opens the door to a wide variety of future applications, with complex non‐linear models benefit most from the computational efficiency.
The rapid advancement of the big‐data‐big‐model has reached its bottleneck: high computational requirements prevent further development of Terrestrial Biosphere Models (TBM) that need to be integrated over long time scales to simulate the distribution of ecosystems carbon and nutrient pools and fluxes. To tackle this grand challenge, we developed a machine‐learning acceleration (MLA) tool for the most resource‐consuming step in TBMs: the equilibration of biogeochemical cycles (spin‐up). We show that an unoptimized MLA reduced the computation demand by 77%–80% for global studies via interpolating the equilibrated state of biogeochemical variables for a subset of model pixels. |
|---|---|
| AbstractList | Global change ecology nowadays embraces ever‐growing large observational datasets (big‐data) and complex mathematical models that track hundreds of ecological processes (big‐model). The rapid advancement of the big‐data‐big‐model has reached its bottleneck: high computational requirements prevent further development of models that need to be integrated over long time‐scales to simulate the distribution of ecosystems carbon and nutrient pools and fluxes. Here, we introduce a machine‐learning acceleration (MLA) tool to tackle this grand challenge. We focus on the most resource‐consuming step in terrestrial biosphere models (TBMs): the equilibration of biogeochemical cycles (spin‐up), a prerequisite that can take up to 98% of the computational time. Through three members of the ORCHIDEE TBM family part of the IPSL Earth System Model, including versions that describe the complex interactions between nitrogen, phosphorus and carbon that do not have any analytical solution for the spin‐up, we show that an unoptimized MLA reduced the computation demand by 77%–80% for global studies via interpolating the equilibrated state of biogeochemical variables for a subset of model pixels. Despite small biases in the MLA‐derived equilibrium, the resulting impact on the predicted regional carbon balance over recent decades is minor. We expect a one‐order of magnitude lower computation demand by optimizing the choices of machine learning algorithms, their settings, and balancing the trade‐off between quality of MLA predictions and need for TBM simulations for training data generation and bias reduction. Our tool is agnostic to gridded models (beyond TBMs), compatible with existing spin‐up acceleration procedures, and opens the door to a wide variety of future applications, with complex non‐linear models benefit most from the computational efficiency. Global change ecology nowadays embraces ever‐growing large observational datasets (big‐data) and complex mathematical models that track hundreds of ecological processes (big‐model). The rapid advancement of the big‐data‐big‐model has reached its bottleneck: high computational requirements prevent further development of models that need to be integrated over long time‐scales to simulate the distribution of ecosystems carbon and nutrient pools and fluxes. Here, we introduce a machine‐learning acceleration (MLA) tool to tackle this grand challenge. We focus on the most resource‐consuming step in terrestrial biosphere models (TBMs): the equilibration of biogeochemical cycles (spin‐up), a prerequisite that can take up to 98% of the computational time. Through three members of the ORCHIDEE TBM family part of the IPSL Earth System Model, including versions that describe the complex interactions between nitrogen, phosphorus and carbon that do not have any analytical solution for the spin‐up, we show that an unoptimized MLA reduced the computation demand by 77%–80% for global studies via interpolating the equilibrated state of biogeochemical variables for a subset of model pixels. Despite small biases in the MLA‐derived equilibrium, the resulting impact on the predicted regional carbon balance over recent decades is minor. We expect a one‐order of magnitude lower computation demand by optimizing the choices of machine learning algorithms, their settings, and balancing the trade‐off between quality of MLA predictions and need for TBM simulations for training data generation and bias reduction. Our tool is agnostic to gridded models (beyond TBMs), compatible with existing spin‐up acceleration procedures, and opens the door to a wide variety of future applications, with complex non‐linear models benefit most from the computational efficiency. The rapid advancement of the big‐data‐big‐model has reached its bottleneck: high computational requirements prevent further development of Terrestrial Biosphere Models (TBM) that need to be integrated over long time scales to simulate the distribution of ecosystems carbon and nutrient pools and fluxes. To tackle this grand challenge, we developed a machine‐learning acceleration (MLA) tool for the most resource‐consuming step in TBMs: the equilibration of biogeochemical cycles (spin‐up). We show that an unoptimized MLA reduced the computation demand by 77%–80% for global studies via interpolating the equilibrated state of biogeochemical variables for a subset of model pixels. Global change ecology nowadays embraces ever-growing large observational datasets (big-data) and complex mathematical models that track hundreds of ecological processes (big-model). The rapid advancement of the big-data-big-model has reached its bottleneck: high computational requirements prevent further development of models that need to be integrated over long time-scales to simulate the distribution of ecosystems carbon and nutrient pools and fluxes. Here, we introduce a machine-learning acceleration (MLA) tool to tackle this grand challenge. We focus on the most resource-consuming step in terrestrial biosphere models (TBMs): the equilibration of biogeochemical cycles (spin-up), a prerequisite that can take up to 98% of the computational time. Through three members of the ORCHIDEE TBM family part of the IPSL Earth System Model, including versions that describe the complex interactions between nitrogen, phosphorus and carbon that do not have any analytical solution for the spin-up, we show that an unoptimized MLA reduced the computation demand by 77%-80% for global studies via interpolating the equilibrated state of biogeochemical variables for a subset of model pixels. Despite small biases in the MLA-derived equilibrium, the resulting impact on the predicted regional carbon balance over recent decades is minor. We expect a one-order of magnitude lower computation demand by optimizing the choices of machine learning algorithms, their settings, and balancing the trade-off between quality of MLA predictions and need for TBM simulations for training data generation and bias reduction. Our tool is agnostic to gridded models (beyond TBMs), compatible with existing spin-up acceleration procedures, and opens the door to a wide variety of future applications, with complex non-linear models benefit most from the computational efficiency.Global change ecology nowadays embraces ever-growing large observational datasets (big-data) and complex mathematical models that track hundreds of ecological processes (big-model). The rapid advancement of the big-data-big-model has reached its bottleneck: high computational requirements prevent further development of models that need to be integrated over long time-scales to simulate the distribution of ecosystems carbon and nutrient pools and fluxes. Here, we introduce a machine-learning acceleration (MLA) tool to tackle this grand challenge. We focus on the most resource-consuming step in terrestrial biosphere models (TBMs): the equilibration of biogeochemical cycles (spin-up), a prerequisite that can take up to 98% of the computational time. Through three members of the ORCHIDEE TBM family part of the IPSL Earth System Model, including versions that describe the complex interactions between nitrogen, phosphorus and carbon that do not have any analytical solution for the spin-up, we show that an unoptimized MLA reduced the computation demand by 77%-80% for global studies via interpolating the equilibrated state of biogeochemical variables for a subset of model pixels. Despite small biases in the MLA-derived equilibrium, the resulting impact on the predicted regional carbon balance over recent decades is minor. We expect a one-order of magnitude lower computation demand by optimizing the choices of machine learning algorithms, their settings, and balancing the trade-off between quality of MLA predictions and need for TBM simulations for training data generation and bias reduction. Our tool is agnostic to gridded models (beyond TBMs), compatible with existing spin-up acceleration procedures, and opens the door to a wide variety of future applications, with complex non-linear models benefit most from the computational efficiency. Global change ecology nowadays embraces ever-growing large observational datasets (big-data) and complex mathematical models that track hundreds of ecological processes (big-model). The rapid advancement of the big-data-big-model has reached |
| Author | Wang, Yilong Goll, Daniel S. Ciais, Philippe Bastrikov, Vladislav Wang, Ying‐Ping Sun, Yan Huang, Yuanyuan |
| Author_xml | – sequence: 1 givenname: Yan orcidid: 0000-0003-0481-7192 surname: Sun fullname: Sun, Yan organization: CEA‐CNRS‐UVSQ – sequence: 2 givenname: Daniel S. orcidid: 0000-0001-9246-9671 surname: Goll fullname: Goll, Daniel S. email: dsgoll123@gmail.com organization: CEA‐CNRS‐UVSQ – sequence: 3 givenname: Yuanyuan orcidid: 0000-0003-4202-8071 surname: Huang fullname: Huang, Yuanyuan email: yuanyuan.huang@csiro.au organization: CSIRO Environment – sequence: 4 givenname: Philippe surname: Ciais fullname: Ciais, Philippe organization: CEA‐CNRS‐UVSQ – sequence: 5 givenname: Ying‐Ping orcidid: 0000-0002-4614-6203 surname: Wang fullname: Wang, Ying‐Ping organization: CSIRO Environment – sequence: 6 givenname: Vladislav surname: Bastrikov fullname: Bastrikov, Vladislav organization: Science Partners – sequence: 7 givenname: Yilong orcidid: 0000-0001-7176-2692 surname: Wang fullname: Wang, Yilong organization: Institute of Tibetan Plateau Research, Chinese Academy of Sciences |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36762511$$D View this record in MEDLINE/PubMed https://hal.science/hal-04097612$$DView record in HAL |
| BookMark | eNqFkc1u1DAUhS1URH9gwQugSGwAKa2vHf9kWUbQIg1iAysWluM4M64ce7AnVLPjEXhGngRPU6hUieKNrevvHp177jE6CDFYhJ4DPoVyzlamOwXOCX2EjoByVpNG8oP9mzU1YKCH6DjnK4wxJZg_QYeUC04YwBH6-lGbtQu28lan4MKqGmKqtDHW26S3-8ImRWNz_vXjZ6ez7SsTx820LX8xVHGovA591bm4stGs7eiM9pXZGW_zU_R40D7bZ7f3Cfry_t3nxWW9_HTxYXG-rA0jQGvbYdNyC20zdJ1pRItxw5hstSiGB9Fy0rJOkk7KXgvWYyBCDGKgeGgJx0LTE_Rm1p3CRu-utfdqk9yo004BVvuEVElI3SRU4NczvNZ3WNROXZ4v1b6GG9wKDuQ7FPbVzJYIvk02b9XockmmjGzjlBWRtCEUWhD_R4VgHCS9cfDyHnoVpxRKQkUQS6ACJC7Ui1tq6kbb_7X6Z3V3g5gUc052eHDos3uscfMGt0k7_1DHtfN2929pdbF4O3f8BpsnxRc |
| CitedBy_id | crossref_primary_10_5194_gmd_17_8141_2024 crossref_primary_10_1029_2023MS003625 crossref_primary_10_1111_gcb_16696 crossref_primary_10_1016_j_agrformet_2024_110229 crossref_primary_10_1016_j_ecolmodel_2024_110835 crossref_primary_10_1126_sciadv_adn2839 crossref_primary_10_3389_fbinf_2023_1275787 crossref_primary_10_1016_j_jhazmat_2024_134980 crossref_primary_10_1016_j_cej_2025_160780 crossref_primary_10_1016_j_jhazmat_2024_134052 |
| Cites_doi | 10.5194/essd-14-1917-2022 10.1016/j.dss.2012.01.016 10.1038/s42003-020-01198-4 10.1029/2003GB002199 10.1029/2017MS001237 10.5194/acp-15-5987-2015 10.1038/s41586‐019‐0912‐1 10.1146/annurev-environ-012913-093456 10.1029/2021GB007177 10.5194/gmd-14-1987-2021 10.12703/r/10‐53 10.5194/gmd‐5‐1259‐2012 10.1038/s41467-022-32545-0 10.1111/nph.18535 10.1016/j.envsoft.2021.105006 10.5194/gmd‐10‐3745‐2017 10.1007/BF00058655 10.1613/jair.953 10.1175/BAMS‐D‐17‐0212.1 10.1023/A:1010933404324 10.1016/j.ecolmodel.2005.04.008 10.1029/2018MS001453 |
| ContentType | Journal Article |
| Copyright | 2023 The Authors. published by John Wiley & Sons Ltd. 2023 The Authors. Global Change Biology published by John Wiley & Sons Ltd. 2023. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: 2023 The Authors. published by John Wiley & Sons Ltd. – notice: 2023 The Authors. Global Change Biology published by John Wiley & Sons Ltd. – notice: 2023. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SN 7UA C1K F1W H97 L.G 7X8 7S9 L.6 1XC VOOES ADTOC UNPAY |
| DOI | 10.1111/gcb.16623 |
| DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Ecology Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE - Academic AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Aquatic Science & Fisheries Abstracts (ASFA) Professional Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality ASFA: Aquatic Sciences and Fisheries Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic AGRICOLA MEDLINE Aquatic Science & Fisheries Abstracts (ASFA) Professional |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Open Access Journals url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Meteorology & Climatology Biology Environmental Sciences Ecology |
| EISSN | 1365-2486 |
| EndPage | 3234 |
| ExternalDocumentID | 10.1111/gcb.16623 oai:HAL:hal-04097612v1 36762511 10_1111_gcb_16623 GCB16623 |
| Genre | technicalNote Journal Article |
| GrantInformation_xml | – fundername: GENCI‐TGCC funderid: A0130106328 – fundername: Agence Nationale de la Recherche funderid: ANR‐16‐CONV‐0003 – fundername: National Natural Science Foundation of China funderid: 42201107 – fundername: Agence Nationale de la Recherche grantid: ANR-16-CONV-0003 – fundername: GENCI-TGCC grantid: A0130106328 – fundername: National Natural Science Foundation of China grantid: 42201107 |
| GroupedDBID | -DZ .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 24P 29I 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEFU ABEML ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHEFC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG COF CS3 D-E D-F DC6 DCZOG DDYGU DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TEORI UB1 UQL VOH W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WRC WUP WXSBR WYISQ XG1 Y6R ZZTAW ~02 ~IA ~KM ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION CGR CUY CVF ECM EIF NPM 7SN 7UA C1K F1W H97 L.G 7X8 7S9 L.6 1XC VOOES ADTOC UNPAY |
| ID | FETCH-LOGICAL-c5213-eb0c96e194fbbc4790045589a7000f796295b82b88da75d01277f7f30f92607a3 |
| IEDL.DBID | DR2 |
| ISSN | 1354-1013 1365-2486 |
| IngestDate | Sun Oct 26 04:08:33 EDT 2025 Tue Oct 14 20:43:38 EDT 2025 Fri Jul 11 18:27:04 EDT 2025 Thu Oct 02 10:50:29 EDT 2025 Tue Aug 12 13:40:46 EDT 2025 Mon Jul 21 06:03:39 EDT 2025 Wed Oct 01 04:31:42 EDT 2025 Thu Apr 24 22:52:05 EDT 2025 Wed Jan 22 16:23:15 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Keywords | computational demand biogeochemical cycles hybrid modeling machine learning terrestrial biosphere model |
| Language | English |
| License | Attribution-NonCommercial 2023 The Authors. Global Change Biology published by John Wiley & Sons Ltd. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 cc-by-nc |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5213-eb0c96e194fbbc4790045589a7000f796295b82b88da75d01277f7f30f92607a3 |
| Notes | Daniel S. Goll and Yuanyuan Huang should be considered joint senior authors. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-7176-2692 0000-0001-9246-9671 0000-0003-0481-7192 0000-0002-4614-6203 0000-0003-4202-8071 0000-0002-4462-9607 0000-0001-8560-4943 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcb.16623 |
| PMID | 36762511 |
| PQID | 2808137180 |
| PQPubID | 30327 |
| PageCount | 14 |
| ParticipantIDs | unpaywall_primary_10_1111_gcb_16623 hal_primary_oai_HAL_hal_04097612v1 proquest_miscellaneous_2834231917 proquest_miscellaneous_2775618323 proquest_journals_2808137180 pubmed_primary_36762511 crossref_primary_10_1111_gcb_16623 crossref_citationtrail_10_1111_gcb_16623 wiley_primary_10_1111_gcb_16623_GCB16623 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | June 2023 |
| PublicationDateYYYYMMDD | 2023-06-01 |
| PublicationDate_xml | – month: 06 year: 2023 text: June 2023 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Oxford |
| PublicationTitle | Global change biology |
| PublicationTitleAlternate | Glob Chang Biol |
| PublicationYear | 2023 |
| Publisher | Blackwell Publishing Ltd Wiley |
| Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley |
| References | 2002; 16 2021; 14 2015; 15 2005; 19 2021; 10 2020; 3 2022 2005; 189 2021; 139 2017; 10 2019; 566 2022; 13 2022; 14 2022; 36 2020; 12 2014; 39 1996; 24 2001; 45 2018; 99 2018; 10 2012; 5 2012; 53 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_14_1 e_1_2_8_15_1 e_1_2_8_16_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_10_1 e_1_2_8_21_1 e_1_2_8_11_1 e_1_2_8_22_1 e_1_2_8_12_1 e_1_2_8_23_1 36974622 - Glob Chang Biol. 2023 Jun;29(11):2865-2867 |
| References_xml | – volume: 3 start-page: 1 issue: 1 year: 2020 end-page: 13 article-title: A multi‐scale eco‐evolutionary model of cooperation reveals how microbial adaptation influences soil decomposition publication-title: Communications Biology – volume: 139 year: 2021 article-title: Evaluation of six methods for correcting bias in estimates from ensemble tree machine learning regression models publication-title: Environmental Modelling & Software – volume: 14 start-page: 1917 issue: 4 year: 2022 end-page: 2005 article-title: Global carbon budget 2021 publication-title: Earth System Science Data – volume: 10 start-page: 3745 issue: 10 year: 2017 end-page: 3770 article-title: A representation of the phosphorus cycle for ORCHIDEE (revision 4520) publication-title: Geoscientific Model Development Discussions – volume: 99 start-page: 1 issue: 6 year: 2018 end-page: 51 article-title: The global N O model Intercomparison project (NMIP): Objectives, simulation protocol and expected products publication-title: Bulletin of the American Meteorological Society – volume: 19 issue: 1 year: 2005 article-title: A dynamic global vegetation model for studies of the coupled atmosphere‐biosphere system publication-title: Global Biogeochemical Cycles – year: 2022 article-title: Atmospheric phosphorus deposition amplifies carbon sinks in simulations of a tropical forest in Central Africa publication-title: New Phytologist – volume: 53 start-page: 226 issue: 1 year: 2012 end-page: 233 article-title: Preprocessing unbalanced data using support vector machine publication-title: Decision Support Systems – volume: 36 year: 2022 article-title: Quantifying and reducing uncertainty in global carbon cycle predictions: Lessons and perspectives from 15 years of data assimilation studies with the ORCHIDEE terrestrial biosphere model publication-title: Global Biogeochemical Cycles – volume: 189 start-page: 25 issue: 1–2 year: 2005 end-page: 48 article-title: Ecosystem model spin‐up: Estimating steady state conditions in a coupled terrestrial carbon and nitrogen cycle model publication-title: Ecological Modelling – volume: 24 start-page: 123 issue: 2 year: 1996 end-page: 140 article-title: Bagging predictors publication-title: Machine Learning – volume: 10 year: 2021 article-title: Modelling of land nutrient cycles: Recent progress and future development publication-title: Faculty Reviews – volume: 39 start-page: 91 issue: 1 year: 2014 end-page: 123 article-title: Modeling the terrestrial biosphere publication-title: Annual Review of Environment and Resources – volume: 45 start-page: 5 issue: 1 year: 2001 end-page: 32 article-title: Random forests publication-title: Machine Learning – volume: 13 start-page: 1 issue: 1 year: 2022 end-page: 12 article-title: Convergence in phosphorus constraints to photosynthesis in forests around the world publication-title: Nature Communications – volume: 5 start-page: 1259 issue: 5 year: 2012 end-page: 1271 article-title: A semi‐analytical solution to accelerate spin‐up of a coupled carbon and nitrogen land model to steady state publication-title: Geoscientific Model Development – volume: 14 start-page: 1987 issue: 4 year: 2021 end-page: 2010 article-title: Global evaluation of the nutrient‐enabled version of the land surface model ORCHIDEE‐CNP v1. 2 (r5986) publication-title: Geoscientific Model Development – volume: 16 start-page: 321 year: 2002 end-page: 357 article-title: SMOTE: Synthetic minority over‐sampling technique publication-title: Journal of Artificial Intelligence Research – volume: 12 issue: 4 year: 2020 article-title: Perspectives on the future of land surface models and the challenges of representing complex terrestrial systems publication-title: Journal of Advances in Modeling Earth Systems – volume: 15 start-page: 5987 issue: 10 year: 2015 end-page: 6005 article-title: Reliable, robust and realistic: The three R's of next‐generation land‐surface modelling publication-title: Atmospheric Chemistry and Physics – volume: 10 start-page: 1790 issue: 8 year: 2018 end-page: 1808 article-title: Matrix‐based sensitivity assessment of soil organic carbon storage: A case study from the ORCHIDEE‐MICT model publication-title: Journal of Advances in Modeling Earth Systems – volume: 566 start-page: 195 issue: 7743 year: 2019 end-page: 204 article-title: Deep learning and process understanding for data‐driven earth system science publication-title: Nature – ident: e_1_2_8_11_1 doi: 10.5194/essd-14-1917-2022 – ident: e_1_2_8_8_1 doi: 10.1016/j.dss.2012.01.016 – ident: e_1_2_8_2_1 doi: 10.1038/s42003-020-01198-4 – ident: e_1_2_8_15_1 doi: 10.1029/2003GB002199 – ident: e_1_2_8_14_1 doi: 10.1029/2017MS001237 – ident: e_1_2_8_17_1 doi: 10.5194/acp-15-5987-2015 – ident: e_1_2_8_18_1 doi: 10.1038/s41586‐019‐0912‐1 – ident: e_1_2_8_9_1 doi: 10.1146/annurev-environ-012913-093456 – ident: e_1_2_8_16_1 doi: 10.1029/2021GB007177 – ident: e_1_2_8_19_1 doi: 10.5194/gmd-14-1987-2021 – ident: e_1_2_8_22_1 doi: 10.12703/r/10‐53 – ident: e_1_2_8_23_1 doi: 10.5194/gmd‐5‐1259‐2012 – ident: e_1_2_8_7_1 doi: 10.1038/s41467-022-32545-0 – ident: e_1_2_8_13_1 doi: 10.1111/nph.18535 – ident: e_1_2_8_3_1 doi: 10.1016/j.envsoft.2021.105006 – ident: e_1_2_8_12_1 doi: 10.5194/gmd‐10‐3745‐2017 – ident: e_1_2_8_4_1 doi: 10.1007/BF00058655 – ident: e_1_2_8_6_1 doi: 10.1613/jair.953 – ident: e_1_2_8_21_1 doi: 10.1175/BAMS‐D‐17‐0212.1 – ident: e_1_2_8_5_1 doi: 10.1023/A:1010933404324 – ident: e_1_2_8_20_1 doi: 10.1016/j.ecolmodel.2005.04.008 – ident: e_1_2_8_10_1 doi: 10.1029/2018MS001453 – reference: 36974622 - Glob Chang Biol. 2023 Jun;29(11):2865-2867 |
| SSID | ssj0003206 |
| Score | 2.657282 |
| Snippet | Global change ecology nowadays embraces ever‐growing large observational datasets (big‐data) and complex mathematical models that track hundreds of ecological... Global change ecology nowadays embraces ever-growing large observational datasets (big-data) and complex mathematical models that track hundreds of ecological... |
| SourceID | unpaywall hal proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 3221 |
| SubjectTerms | Acceleration Algorithms artificial intelligence Balancing Bias Biogeochemical cycle Biogeochemical cycles Biogeochemistry Biological Sciences Biosphere Carbon Carbon Cycle Computation computational demand Computational efficiency Computer applications Computing time data collection ecology Ecosystem Exact solutions global change hybrid modeling Impact prediction Learning algorithms Machine learning Mathematical models Models, Theoretical Nitrogen Phosphorus Sciences of the Universe terrestrial biosphere model |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB7RVAg48AgUDAUtD6FeHPxc28cQtUSIVByIVMTB7K5306qRHbUJKJz4CfxGfgkz6wcKjwqJm70eW157Ht_Ys98APONhkAWC-65vDCYoIc_cVHPlmsJgsPe5UpbxZnLIx9Po9VF81PQ5pbUwNT9E98GNLMP6azLwRWFqP9-a-ouZkgOfYwTfgm0eIxjvwfb08O3wvU2z4gidjG2QXNdyRSlvuIU2zt2ISFvHVA_5O9i8BldW5UKsP4v5fBPH2kB0cAM-tlOo609OB6ulHKgvv7A7_sccb8L1BqSyYa1Vt-CSLvtwuW5bue7Dzv7P1XEo1riH8z44E4Tg1ZkVY8_ZaH6CeNju3YYPE1u2qVnTp2LGEC4zoRTGPdJCHFjUixa-f_1GsbVgynacsKrDKsOoBpPJk2qmqcuXpTlgak1VfXdgerD_bjR2m84OrkK4ELpaeirj2s8iI6WKkoyQZZxmIkEPbZKMB1ks00CmaSGSuKDf44lJTOiZDPOvRIQ70CurUt8DlmpP4pj0BYIrg4An0sSPkwnD08gPAgf22rebq4b2nLpvzPM2_cEHnNsH7MCTTnRRc338UQhVpDtO7Nzj4ZucxjziDkPE-Ml3YLfVoLzxCed5QE1OQsQCngOPu8NozfSLRpS6WqFMkiCgRS8bXiCTEmsj5dkO3K21s7sd4t-jpNGBp526XjSXPat9f5fIX41e2o37_3TBB3A1QBBYl9LtQm95ttIPEbQt5aPGMH8AsEw8-w priority: 102 providerName: Unpaywall |
| Title | Machine learning for accelerating process‐based computation of land biogeochemical cycles |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcb.16623 https://www.ncbi.nlm.nih.gov/pubmed/36762511 https://www.proquest.com/docview/2808137180 https://www.proquest.com/docview/2775618323 https://www.proquest.com/docview/2834231917 https://hal.science/hal-04097612 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/gcb.16623 |
| UnpaywallVersion | publishedVersion |
| Volume | 29 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1354-1013 databaseCode: DR2 dateStart: 19970101 customDbUrl: isFulltext: true eissn: 1365-2486 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003206 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD7ahhDwwKUwCIzKXIT2kiqOUycRT6XaqBCdJkSlISZFtmuXiaqt1hZUnvgJ_EZ-Cec4aca4TIi3xDmRnPhcvpMcfwfgqRRxHivJQ-4cJihC5mFmpQnd0GGw59IYz3jTP5C9QfLqqH20Ac_Xe2FKfoj6gxtZhvfXZOBKz38y8pHRLS4xeqP_5UL6dOrNGXWUiH1fTS7aCboaLipWIariqe88F4s2P1Al5O8w8xpcWU5mavVZjcfnEawPQfs34Hg9-bLy5GNrudAt8-UXXsf_fLqbcL2CpqxT6tIt2LCTBlwum1WuGrC9d7YnDsUqpzBvQNBH4D099WLsGeuOTxAF-7Pb8L7vizUtq7pTjBiCZKaMwWhHuocDs3Krwvev3yiiDpnxfSa8wrCpY1R5yfTJdGSpt5cnN2BmRbV8d2Cwv_e22wurfg6hQZAgQqsjk0vL88RpbZI0JzzZznKV4nq5NJdx3tZZrLNsqNL2kH6Kpy51InI5Zl2pEtuwNZlO7D1gmY00jmmuEFI5hDmJJVacXDmZJTyOA9hdr2xhKrJz6rkxLtZJD77gwr_gAB7XorOS4eOPQqge9XXi5O51Xhc0FhFjGOLETzyAnbX2FJUnmBcxtTYRiACiAB7Vl9GG6ceMmtjpEmXSFGEs-lZxgUxGXI2UXQdwt9TMejrEukepYgBPalW96Fl2veb9XaJ42X3hD-7_u-gDuBoj_iur6HZga3G6tA8Rry10Ezbj5LDpzbMJlwYHh513PwD1DDrm |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtQwEB61RahwQLBQCBQwP0K9pNrYiRNLXMqqZYHdikMrVeIQ2V57qbRKVm0XtDcegWfkSZhxsoEKqLgl9iRKPB7PN8n4G4CXUnDFtUzixHsMUIRUceGkjf3Eo7NPpLWB8WZ8KIfH6fuT7GQNXq_2wjT8EN0HN7KMsF6TgdMH6d-sfGrNbiLRfa_DtRRvS6EXTz9267DgobJmIrIUF5tEtLxClMfTXXrJG61_plzIP4HmTdhcVHO9_Kpns8sYNjihg9twq0WPbK9R9x1Yc1UPrjf1JJc92Nr_tW0NxVq7Pe9BNEZsXJ8FMfaKDWanCFTD2V34NA75lI61BSSmDHEs09aiQ6LpgQ3zZjfBj2_fyelNmA2lIIJOWe0ZJUcyc1pPHZXfCvwDzC4p3e4eHB_sHw2GcVtyIbbox0XsTN8q6RKVemNsmiuCfFmhdI4D6nMlucpMwU1RTHSeTei_de5zL_peYWCUa7EFG1VduQfACtc32GYSjajHIxJJHRHXKO1lkSacR7CzGvrStnzkVBZjVq7iEtRSGbQUwfNOdN6QcPxVCPXX9RNt9nBvVFJbn0i9EMp9SSLYXqm3bI31vORUfUSgk-5H8KzrRjOjfye6cvUCZfIckSYuf-IKmYLoFCkAjuB-M3W6xyFiPIrmInjRzaWr3mUnzLJ_S5RvB2_CwcP_F30Km8Oj8agcvTv88AhucIRrTdLbNmxcnC3cY4RXF-ZJsKKfDVwb3Q |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9NAEB61RVwPHKEFQ4HlEOqLI9_2SryUtCFAUyHUSpVQZe2ud0NFZEdtAgpP_AR-I7-EmbXjUo4K8Wavx9LaO8c39uw3AE-TMOCBSHzXNwYTlDDhbqYT5ZrCYLD3E6Us481wNxnsR68P4oMleL7YC1PzQ7Qf3MgyrL8mA9eTwvxk5SMlu36C4XsZLkQxz6igb-vdKXlUGNjOmn4YR-hs_LDhFaI6nvbWM9Fo-QPVQv4ONK_C5Vk5EfPPYjw-i2FtEOpfh8PF9Ovak4_d2VR21ZdfmB3_9_luwLUGnbLNWp1uwpIuO3Cx7lc578Da9um2OBRr_MJJB5whYu_q2IqxZ6w3PkIgbM9uwfuhrdfUrGlQMWKIk5lQCgMeqR8OTOrdCt-_fqOgWjBlW01YnWGVYVR8yeRRNdLU3svyGzA1p3K-Vdjvb-_1Bm7T0sFViBNCV0tP8UT7PDJSqijlBCnjjIsUF8ykPAl4LLNAZlkh0rig_-KpSU3oGY6JVyrCNVgpq1LfAZZpT-KY9AWiKoNIJ9JEjMOFSbLIDwIHNhZLm6uG75zabozzRd6DLzi3L9iBx63opCb5-KMQ6kd7nWi5B5s7OY15RBqGUPGT78D6Qn3yxhmc5AF1NwkRBHgOPGovoxnTvxlR6mqGMmmKSBbda3iOTEZ0jZRgO3C7Vs12OkS8R9miA09aXT3vWTas6v1dIn_Ze2EP7v676EO49Harn--82n1zD64EiAbrmrp1WJkez_R9RG9T-cAa6Q-mBDwE |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB7RVAg48AgUDAUtD6FeHPxc28cQtUSIVByIVMTB7K5306qRHbUJKJz4CfxGfgkz6wcKjwqJm70eW157Ht_Ys98APONhkAWC-65vDCYoIc_cVHPlmsJgsPe5UpbxZnLIx9Po9VF81PQ5pbUwNT9E98GNLMP6azLwRWFqP9-a-ouZkgOfYwTfgm0eIxjvwfb08O3wvU2z4gidjG2QXNdyRSlvuIU2zt2ISFvHVA_5O9i8BldW5UKsP4v5fBPH2kB0cAM-tlOo609OB6ulHKgvv7A7_sccb8L1BqSyYa1Vt-CSLvtwuW5bue7Dzv7P1XEo1riH8z44E4Tg1ZkVY8_ZaH6CeNju3YYPE1u2qVnTp2LGEC4zoRTGPdJCHFjUixa-f_1GsbVgynacsKrDKsOoBpPJk2qmqcuXpTlgak1VfXdgerD_bjR2m84OrkK4ELpaeirj2s8iI6WKkoyQZZxmIkEPbZKMB1ks00CmaSGSuKDf44lJTOiZDPOvRIQ70CurUt8DlmpP4pj0BYIrg4An0sSPkwnD08gPAgf22rebq4b2nLpvzPM2_cEHnNsH7MCTTnRRc338UQhVpDtO7Nzj4ZucxjziDkPE-Ml3YLfVoLzxCed5QE1OQsQCngOPu8NozfSLRpS6WqFMkiCgRS8bXiCTEmsj5dkO3K21s7sd4t-jpNGBp526XjSXPat9f5fIX41e2o37_3TBB3A1QBBYl9LtQm95ttIPEbQt5aPGMH8AsEw8-w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+for+accelerating+process%E2%80%90based+computation+of+land+biogeochemical+cycles&rft.jtitle=Global+change+biology&rft.au=Sun%2C+Yan&rft.au=Goll%2C+Daniel+S.&rft.au=Huang%2C+Yuanyuan&rft.au=Ciais%2C+Philippe&rft.date=2023-06-01&rft.issn=1354-1013&rft.eissn=1365-2486&rft.volume=29&rft.issue=11&rft.spage=3221&rft.epage=3234&rft_id=info:doi/10.1111%2Fgcb.16623&rft.externalDBID=10.1111%252Fgcb.16623&rft.externalDocID=GCB16623 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1354-1013&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1354-1013&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1354-1013&client=summon |