Phenotypic Modulation of Smooth Muscle Cells in Atherosclerosis Is Associated With Downregulation of LMOD1, SYNPO2, PDLIM7, PLN, and SYNM

OBJECTIVE—Key augmented processes in atherosclerosis have been identified, whereas less is known about downregulated pathways. Here, we applied a systems biology approach to examine suppressed molecular signatures, with the hypothesis that they may provide insight into mechanisms contributing to pla...

Full description

Saved in:
Bibliographic Details
Published inArteriosclerosis, thrombosis, and vascular biology Vol. 36; no. 9; pp. 1947 - 1961
Main Authors Perisic Matic, Ljubica, Rykaczewska, Urszula, Razuvaev, Anton, Sabater-Lleal, Maria, Lengquist, Mariette, Miller, Clint L., Ericsson, Ida, Röhl, Samuel, Kronqvist, Malin, Aldi, Silvia, Magné, Joelle, Paloschi, Valentina, Vesterlund, Mattias, Li, Yuhuang, Jin, Hong, Diez, Maria Gonzalez, Roy, Joy, Baldassarre, Damiano, Veglia, Fabrizio, Humphries, Steve E., de Faire, Ulf, Tremoli, Elena, Odeberg, Jacob, Vukojević, Vladana, Lehtiö, Janne, Maegdefessel, Lars, Ehrenborg, Ewa, Paulsson-Berne, Gabrielle, Hansson, Göran K., Lindeman, Jan H.N., Eriksson, Per, Quertermous, Thomas, Hamsten, Anders, Hedin, Ulf
Format Journal Article
LanguageEnglish
Published United States American Heart Association, Inc 01.09.2016
American Heart Association
Subjects
Online AccessGet full text
ISSN1079-5642
1524-4636
1524-4636
DOI10.1161/ATVBAHA.116.307893

Cover

Abstract OBJECTIVE—Key augmented processes in atherosclerosis have been identified, whereas less is known about downregulated pathways. Here, we applied a systems biology approach to examine suppressed molecular signatures, with the hypothesis that they may provide insight into mechanisms contributing to plaque stability. APPROACH AND RESULTS—Muscle contraction, muscle development, and actin cytoskeleton were the most downregulated pathways (false discovery rate=6.99e-21, 1.66e-6, 2.54e-10, respectively) in microarrays from human carotid plaques (n=177) versus healthy arteries (n=15). In addition to typical smooth muscle cell (SMC) markers, these pathways also encompassed cytoskeleton-related genes previously not associated with atherosclerosis. SYNPO2, SYNM, LMOD1, PDLIM7, and PLN expression positively correlated to typical SMC markers in plaques (Pearson r>0.6, P<0.0001) and in rat intimal hyperplasia (r>0.8, P<0.0001). By immunohistochemistry, the proteins were expressed in SMCs in normal vessels, but largely absent in human plaques and intimal hyperplasia. Subcellularly, most proteins localized to the cytoskeleton in cultured SMCs and were regulated by active enhancer histone modification H3K27ac by chromatin immunoprecipitation-sequencing. Functionally, the genes were downregulated by PDGFB (platelet-derived growth factor beta) and IFNg (interferron gamma), exposure to shear flow stress, and oxLDL (oxidized low-density lipoprotein) loading. Genetic variants in PDLIM7, PLN, and SYNPO2 loci associated with progression of carotid intima-media thickness in high-risk subjects without symptoms of cardiovascular disease (n=3378). By eQTL (expression quantitative trait locus), rs11746443 also associated with PDLIM7 expression in plaques. Mechanistically, silencing of PDLIM7 in vitro led to downregulation of SMC markers and disruption of the actin cytoskeleton, decreased cell spreading, and increased proliferation. CONCLUSIONS—We identified a panel of genes that reflect the altered phenotype of SMCs in vascular disease and could be early sensitive markers of SMC dedifferentiation.
AbstractList OBJECTIVE—Key augmented processes in atherosclerosis have been identified, whereas less is known about downregulated pathways. Here, we applied a systems biology approach to examine suppressed molecular signatures, with the hypothesis that they may provide insight into mechanisms contributing to plaque stability. APPROACH AND RESULTS—Muscle contraction, muscle development, and actin cytoskeleton were the most downregulated pathways (false discovery rate=6.99e-21, 1.66e-6, 2.54e-10, respectively) in microarrays from human carotid plaques (n=177) versus healthy arteries (n=15). In addition to typical smooth muscle cell (SMC) markers, these pathways also encompassed cytoskeleton-related genes previously not associated with atherosclerosis. SYNPO2, SYNM, LMOD1, PDLIM7, and PLN expression positively correlated to typical SMC markers in plaques (Pearson r>0.6, P<0.0001) and in rat intimal hyperplasia (r>0.8, P<0.0001). By immunohistochemistry, the proteins were expressed in SMCs in normal vessels, but largely absent in human plaques and intimal hyperplasia. Subcellularly, most proteins localized to the cytoskeleton in cultured SMCs and were regulated by active enhancer histone modification H3K27ac by chromatin immunoprecipitation-sequencing. Functionally, the genes were downregulated by PDGFB (platelet-derived growth factor beta) and IFNg (interferron gamma), exposure to shear flow stress, and oxLDL (oxidized low-density lipoprotein) loading. Genetic variants in PDLIM7, PLN, and SYNPO2 loci associated with progression of carotid intima-media thickness in high-risk subjects without symptoms of cardiovascular disease (n=3378). By eQTL (expression quantitative trait locus), rs11746443 also associated with PDLIM7 expression in plaques. Mechanistically, silencing of PDLIM7 in vitro led to downregulation of SMC markers and disruption of the actin cytoskeleton, decreased cell spreading, and increased proliferation. CONCLUSIONS—We identified a panel of genes that reflect the altered phenotype of SMCs in vascular disease and could be early sensitive markers of SMC dedifferentiation.
Key augmented processes in atherosclerosis have been identified, whereas less is known about downregulated pathways. Here, we applied a systems biology approach to examine suppressed molecular signatures, with the hypothesis that they may provide insight into mechanisms contributing to plaque stability.OBJECTIVEKey augmented processes in atherosclerosis have been identified, whereas less is known about downregulated pathways. Here, we applied a systems biology approach to examine suppressed molecular signatures, with the hypothesis that they may provide insight into mechanisms contributing to plaque stability.Muscle contraction, muscle development, and actin cytoskeleton were the most downregulated pathways (false discovery rate=6.99e-21, 1.66e-6, 2.54e-10, respectively) in microarrays from human carotid plaques (n=177) versus healthy arteries (n=15). In addition to typical smooth muscle cell (SMC) markers, these pathways also encompassed cytoskeleton-related genes previously not associated with atherosclerosis. SYNPO2, SYNM, LMOD1, PDLIM7, and PLN expression positively correlated to typical SMC markers in plaques (Pearson r>0.6, P<0.0001) and in rat intimal hyperplasia (r>0.8, P<0.0001). By immunohistochemistry, the proteins were expressed in SMCs in normal vessels, but largely absent in human plaques and intimal hyperplasia. Subcellularly, most proteins localized to the cytoskeleton in cultured SMCs and were regulated by active enhancer histone modification H3K27ac by chromatin immunoprecipitation-sequencing. Functionally, the genes were downregulated by PDGFB (platelet-derived growth factor beta) and IFNg (interferron gamma), exposure to shear flow stress, and oxLDL (oxidized low-density lipoprotein) loading. Genetic variants in PDLIM7, PLN, and SYNPO2 loci associated with progression of carotid intima-media thickness in high-risk subjects without symptoms of cardiovascular disease (n=3378). By eQTL (expression quantitative trait locus), rs11746443 also associated with PDLIM7 expression in plaques. Mechanistically, silencing of PDLIM7 in vitro led to downregulation of SMC markers and disruption of the actin cytoskeleton, decreased cell spreading, and increased proliferation.APPROACH AND RESULTSMuscle contraction, muscle development, and actin cytoskeleton were the most downregulated pathways (false discovery rate=6.99e-21, 1.66e-6, 2.54e-10, respectively) in microarrays from human carotid plaques (n=177) versus healthy arteries (n=15). In addition to typical smooth muscle cell (SMC) markers, these pathways also encompassed cytoskeleton-related genes previously not associated with atherosclerosis. SYNPO2, SYNM, LMOD1, PDLIM7, and PLN expression positively correlated to typical SMC markers in plaques (Pearson r>0.6, P<0.0001) and in rat intimal hyperplasia (r>0.8, P<0.0001). By immunohistochemistry, the proteins were expressed in SMCs in normal vessels, but largely absent in human plaques and intimal hyperplasia. Subcellularly, most proteins localized to the cytoskeleton in cultured SMCs and were regulated by active enhancer histone modification H3K27ac by chromatin immunoprecipitation-sequencing. Functionally, the genes were downregulated by PDGFB (platelet-derived growth factor beta) and IFNg (interferron gamma), exposure to shear flow stress, and oxLDL (oxidized low-density lipoprotein) loading. Genetic variants in PDLIM7, PLN, and SYNPO2 loci associated with progression of carotid intima-media thickness in high-risk subjects without symptoms of cardiovascular disease (n=3378). By eQTL (expression quantitative trait locus), rs11746443 also associated with PDLIM7 expression in plaques. Mechanistically, silencing of PDLIM7 in vitro led to downregulation of SMC markers and disruption of the actin cytoskeleton, decreased cell spreading, and increased proliferation.We identified a panel of genes that reflect the altered phenotype of SMCs in vascular disease and could be early sensitive markers of SMC dedifferentiation.CONCLUSIONSWe identified a panel of genes that reflect the altered phenotype of SMCs in vascular disease and could be early sensitive markers of SMC dedifferentiation.
Objective— Key augmented processes in atherosclerosis have been identified, whereas less is known about downregulated pathways. Here, we applied a systems biology approach to examine suppressed molecular signatures, with the hypothesis that they may provide insight into mechanisms contributing to plaque stability. Approach and Results— Muscle contraction, muscle development, and actin cytoskeleton were the most downregulated pathways (false discovery rate=6.99e-21, 1.66e-6, 2.54e-10, respectively) in microarrays from human carotid plaques (n=177) versus healthy arteries (n=15). In addition to typical smooth muscle cell (SMC) markers, these pathways also encompassed cytoskeleton-related genes previously not associated with atherosclerosis. SYNPO2, SYNM, LMOD1, PDLIM7 , and PLN expression positively correlated to typical SMC markers in plaques (Pearson r >0.6, P <0.0001) and in rat intimal hyperplasia ( r >0.8, P <0.0001). By immunohistochemistry, the proteins were expressed in SMCs in normal vessels, but largely absent in human plaques and intimal hyperplasia. Subcellularly, most proteins localized to the cytoskeleton in cultured SMCs and were regulated by active enhancer histone modification H3K27ac by chromatin immunoprecipitation-sequencing. Functionally, the genes were downregulated by PDGFB (platelet-derived growth factor beta) and IFNg (interferron gamma), exposure to shear flow stress, and oxLDL (oxidized low-density lipoprotein) loading. Genetic variants in PDLIM7, PLN , and SYNPO2 loci associated with progression of carotid intima-media thickness in high-risk subjects without symptoms of cardiovascular disease (n=3378). By eQTL (expression quantitative trait locus), rs11746443 also associated with PDLIM7 expression in plaques. Mechanistically, silencing of PDLIM7 in vitro led to downregulation of SMC markers and disruption of the actin cytoskeleton, decreased cell spreading, and increased proliferation. Conclusions— We identified a panel of genes that reflect the altered phenotype of SMCs in vascular disease and could be early sensitive markers of SMC dedifferentiation.
Key augmented processes in atherosclerosis have been identified, whereas less is known about downregulated pathways. Here, we applied a systems biology approach to examine suppressed molecular signatures, with the hypothesis that they may provide insight into mechanisms contributing to plaque stability. Muscle contraction, muscle development, and actin cytoskeleton were the most downregulated pathways (false discovery rate=6.99e-21, 1.66e-6, 2.54e-10, respectively) in microarrays from human carotid plaques (n=177) versus healthy arteries (n=15). In addition to typical smooth muscle cell (SMC) markers, these pathways also encompassed cytoskeleton-related genes previously not associated with atherosclerosis. SYNPO2, SYNM, LMOD1, PDLIM7, and PLN expression positively correlated to typical SMC markers in plaques (Pearson r>0.6, P<0.0001) and in rat intimal hyperplasia (r>0.8, P<0.0001). By immunohistochemistry, the proteins were expressed in SMCs in normal vessels, but largely absent in human plaques and intimal hyperplasia. Subcellularly, most proteins localized to the cytoskeleton in cultured SMCs and were regulated by active enhancer histone modification H3K27ac by chromatin immunoprecipitation-sequencing. Functionally, the genes were downregulated by PDGFB (platelet-derived growth factor beta) and IFNg (interferron gamma), exposure to shear flow stress, and oxLDL (oxidized low-density lipoprotein) loading. Genetic variants in PDLIM7, PLN, and SYNPO2 loci associated with progression of carotid intima-media thickness in high-risk subjects without symptoms of cardiovascular disease (n=3378). By eQTL (expression quantitative trait locus), rs11746443 also associated with PDLIM7 expression in plaques. Mechanistically, silencing of PDLIM7 in vitro led to downregulation of SMC markers and disruption of the actin cytoskeleton, decreased cell spreading, and increased proliferation. We identified a panel of genes that reflect the altered phenotype of SMCs in vascular disease and could be early sensitive markers of SMC dedifferentiation.
Author Lengquist, Mariette
Tremoli, Elena
Veglia, Fabrizio
Magné, Joelle
Quertermous, Thomas
Miller, Clint L.
Jin, Hong
de Faire, Ulf
Li, Yuhuang
Eriksson, Per
Kronqvist, Malin
Hansson, Göran K.
Paulsson-Berne, Gabrielle
Baldassarre, Damiano
Röhl, Samuel
Perisic Matic, Ljubica
Ehrenborg, Ewa
Sabater-Lleal, Maria
Lehtiö, Janne
Ericsson, Ida
Diez, Maria Gonzalez
Vukojević, Vladana
Vesterlund, Mattias
Roy, Joy
Rykaczewska, Urszula
Aldi, Silvia
Hedin, Ulf
Hamsten, Anders
Humphries, Steve E.
Razuvaev, Anton
Lindeman, Jan H.N.
Paloschi, Valentina
Odeberg, Jacob
Maegdefessel, Lars
AuthorAffiliation From the Departments of Molecular Medicine and Surgery (L.P.M., U.R., A.R., M.L., I.E., S.R., M.K., S.A., J.R., U.H.), Medicine (M.S.-L., J.M., V.P., Y.L., H.J., M.G.D., L.M., E.E., G.P.-B., G.K.H., P.E., A.H.), Division of Cardiovascular Epidemiology, Institute of Environmental Medicine (U.d.F.), and Department of Clinical Neuroscience, Center for Molecular Medicine (V.V.), Karolinska Institutet, Solna, Sweden; Division of Vascular Surgery, Stanford University, CA (C.L.M., T.Q.); Science for Life Laboratory, Solna, Sweden (M.V., J.L.); Dipartimento di Scienze Farmacologiche e Biomolecolari, Università di Milano, Italy (D.B., E.T.); Dipartimento di Scienze Cliniche e di Comunità, Centro Cardiologico Monzino, IRCCS, Milan, Italy (D.B., F.V., E.T.); British Heart Foundation Laboratories, Department of Medicine, University College of London, United Kingdom (S.E.H.); Department of Cardiology, Karolinska University Hospital Solna, Karolinska Institutet, Stockholm, Sweden (U.d.F.); Science f
AuthorAffiliation_xml – name: From the Departments of Molecular Medicine and Surgery (L.P.M., U.R., A.R., M.L., I.E., S.R., M.K., S.A., J.R., U.H.), Medicine (M.S.-L., J.M., V.P., Y.L., H.J., M.G.D., L.M., E.E., G.P.-B., G.K.H., P.E., A.H.), Division of Cardiovascular Epidemiology, Institute of Environmental Medicine (U.d.F.), and Department of Clinical Neuroscience, Center for Molecular Medicine (V.V.), Karolinska Institutet, Solna, Sweden; Division of Vascular Surgery, Stanford University, CA (C.L.M., T.Q.); Science for Life Laboratory, Solna, Sweden (M.V., J.L.); Dipartimento di Scienze Farmacologiche e Biomolecolari, Università di Milano, Italy (D.B., E.T.); Dipartimento di Scienze Cliniche e di Comunità, Centro Cardiologico Monzino, IRCCS, Milan, Italy (D.B., F.V., E.T.); British Heart Foundation Laboratories, Department of Medicine, University College of London, United Kingdom (S.E.H.); Department of Cardiology, Karolinska University Hospital Solna, Karolinska Institutet, Stockholm, Sweden (U.d.F.); Science for Life Laboratory, Department of Proteomics, Stockholm, Sweden (J.O.); and Department of Vascular Surgery, Leiden University Medical Center, The Netherlands (J.H.N.L.)
Author_xml – sequence: 1
  givenname: Ljubica
  surname: Perisic Matic
  fullname: Perisic Matic, Ljubica
  organization: From the Departments of Molecular Medicine and Surgery (L.P.M., U.R., A.R., M.L., I.E., S.R., M.K., S.A., J.R., U.H.), Medicine (M.S.-L., J.M., V.P., Y.L., H.J., M.G.D., L.M., E.E., G.P.-B., G.K.H., P.E., A.H.), Division of Cardiovascular Epidemiology, Institute of Environmental Medicine (U.d.F.), and Department of Clinical Neuroscience, Center for Molecular Medicine (V.V.), Karolinska Institutet, Solna, Sweden; Division of Vascular Surgery, Stanford University, CA (C.L.M., T.Q.); Science for Life Laboratory, Solna, Sweden (M.V., J.L.); Dipartimento di Scienze Farmacologiche e Biomolecolari, Università di Milano, Italy (D.B., E.T.); Dipartimento di Scienze Cliniche e di Comunità, Centro Cardiologico Monzino, IRCCS, Milan, Italy (D.B., F.V., E.T.); British Heart Foundation Laboratories, Department of Medicine, University College of London, United Kingdom (S.E.H.); Department of Cardiology, Karolinska University Hospital Solna, Karolinska Institutet, Stockholm, Sweden (U.d.F.); Science for Life Laboratory, Department of Proteomics, Stockholm, Sweden (J.O.); and Department of Vascular Surgery, Leiden University Medical Center, The Netherlands (J.H.N.L.)
– sequence: 2
  givenname: Urszula
  surname: Rykaczewska
  fullname: Rykaczewska, Urszula
– sequence: 3
  givenname: Anton
  surname: Razuvaev
  fullname: Razuvaev, Anton
– sequence: 4
  givenname: Maria
  surname: Sabater-Lleal
  fullname: Sabater-Lleal, Maria
– sequence: 5
  givenname: Mariette
  surname: Lengquist
  fullname: Lengquist, Mariette
– sequence: 6
  givenname: Clint
  surname: Miller
  middlename: L.
  fullname: Miller, Clint L.
– sequence: 7
  givenname: Ida
  surname: Ericsson
  fullname: Ericsson, Ida
– sequence: 8
  givenname: Samuel
  surname: Röhl
  fullname: Röhl, Samuel
– sequence: 9
  givenname: Malin
  surname: Kronqvist
  fullname: Kronqvist, Malin
– sequence: 10
  givenname: Silvia
  surname: Aldi
  fullname: Aldi, Silvia
– sequence: 11
  givenname: Joelle
  surname: Magné
  fullname: Magné, Joelle
– sequence: 12
  givenname: Valentina
  surname: Paloschi
  fullname: Paloschi, Valentina
– sequence: 13
  givenname: Mattias
  surname: Vesterlund
  fullname: Vesterlund, Mattias
– sequence: 14
  givenname: Yuhuang
  surname: Li
  fullname: Li, Yuhuang
– sequence: 15
  givenname: Hong
  surname: Jin
  fullname: Jin, Hong
– sequence: 16
  givenname: Maria
  surname: Diez
  middlename: Gonzalez
  fullname: Diez, Maria Gonzalez
– sequence: 17
  givenname: Joy
  surname: Roy
  fullname: Roy, Joy
– sequence: 18
  givenname: Damiano
  surname: Baldassarre
  fullname: Baldassarre, Damiano
– sequence: 19
  givenname: Fabrizio
  surname: Veglia
  fullname: Veglia, Fabrizio
– sequence: 20
  givenname: Steve
  surname: Humphries
  middlename: E.
  fullname: Humphries, Steve E.
– sequence: 21
  givenname: Ulf
  surname: de Faire
  fullname: de Faire, Ulf
– sequence: 22
  givenname: Elena
  surname: Tremoli
  fullname: Tremoli, Elena
– sequence: 23
  givenname: Jacob
  surname: Odeberg
  fullname: Odeberg, Jacob
– sequence: 24
  givenname: Vladana
  surname: Vukojević
  fullname: Vukojević, Vladana
– sequence: 25
  givenname: Janne
  surname: Lehtiö
  fullname: Lehtiö, Janne
– sequence: 26
  givenname: Lars
  surname: Maegdefessel
  fullname: Maegdefessel, Lars
– sequence: 27
  givenname: Ewa
  surname: Ehrenborg
  fullname: Ehrenborg, Ewa
– sequence: 28
  givenname: Gabrielle
  surname: Paulsson-Berne
  fullname: Paulsson-Berne, Gabrielle
– sequence: 29
  givenname: Göran
  surname: Hansson
  middlename: K.
  fullname: Hansson, Göran K.
– sequence: 30
  givenname: Jan
  surname: Lindeman
  middlename: H.N.
  fullname: Lindeman, Jan H.N.
– sequence: 31
  givenname: Per
  surname: Eriksson
  fullname: Eriksson, Per
– sequence: 32
  givenname: Thomas
  surname: Quertermous
  fullname: Quertermous, Thomas
– sequence: 33
  givenname: Anders
  surname: Hamsten
  fullname: Hamsten, Anders
– sequence: 34
  givenname: Ulf
  surname: Hedin
  fullname: Hedin, Ulf
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27470516$$D View this record in MEDLINE/PubMed
https://hal.science/hal-05269660$$DView record in HAL
http://kipublications.ki.se/Default.aspx?queryparsed=id:134309466$$DView record from Swedish Publication Index
BookMark eNp9ks9u1DAQxiNURP_AC3BAPoK0KbbjOM4FKd0FdqVsu1ILiJPldSaNaTZe4qSrPgJvjUO2qO2hF9sz8_0-W545Dg4a20AQvCX4lBBOPmZX38-yeTYEpxFORBq9CI5ITFnIeMQP_BknaRhzRg-DY-d-YYwZpfhVcEgTluCY8KPgz6qCxnZ3W6PR0hZ9rTpjG2RLdLmxtqvQsne6BjSFunbINCjrKmjtkPOrcWjhUOac1UZ1UKAfxiMzu2tauH7glS8vZmSCLn-ery7oBK1m-WKZ-D0_nyDVFENh-Tp4WarawZv9fhJ8-_L5ajoP84uvi2mWhzqmJArXJWGx0AoLBqUSKU24KDloJSiUoLhKCx3RQq8ZV5rSJIkLnBZY8JIWpBAiOgnC0dftYNuv5bY1G9XeSauM3Kdu_AlkjKMYU6__NOp9ZQOFhqZrVf0Ie1xpTCWv7a0UaUoE4d7gw2hQPcHmWS6HHI4pTznHt8Rr3-8va-3vHlwnN8Zp__eqAds76Q0Z54xR5qXvHr7rv_N9b71AjALtO-VaKKU23b-W-GeaWhIshzGS-zEaAjmOkUfpE_Te_VmIj9DO1h207qbud9DKClTdVc-BfwG0Y9u4
CitedBy_id crossref_primary_10_1016_j_foodchem_2022_134666
crossref_primary_10_1038_s41419_020_2240_7
crossref_primary_10_1161_ATVBAHA_118_311717
crossref_primary_10_3390_cells10061276
crossref_primary_10_1111_joim_12655
crossref_primary_10_1002_ctm2_682
crossref_primary_10_1161_ATVBAHA_123_320330
crossref_primary_10_1161_CIRCGEN_117_001977
crossref_primary_10_1016_j_vph_2023_107167
crossref_primary_10_1016_j_heliyon_2024_e29164
crossref_primary_10_1016_j_tice_2021_101598
crossref_primary_10_1371_journal_pgen_1007755
crossref_primary_10_1002_mabi_201900279
crossref_primary_10_1152_ajpcell_00047_2019
crossref_primary_10_1161_ATVBAHA_121_315969
crossref_primary_10_1016_j_celrep_2023_113468
crossref_primary_10_2174_1381612825666190430113212
crossref_primary_10_3390_ani11051423
crossref_primary_10_1096_fj_202400001RR
crossref_primary_10_3389_fcvm_2021_655869
crossref_primary_10_1016_j_gene_2024_148605
crossref_primary_10_1161_ATVBAHA_118_311092
crossref_primary_10_3390_ijms18061260
crossref_primary_10_7717_peerj_15341
crossref_primary_10_1161_CIRCRESAHA_119_316063
crossref_primary_10_1016_j_omtm_2018_05_003
crossref_primary_10_1152_ajplung_00447_2021
crossref_primary_10_3390_cells13010085
crossref_primary_10_1016_j_atherosclerosis_2019_05_005
crossref_primary_10_1093_cvr_cvy206
crossref_primary_10_1002_jcp_29637
crossref_primary_10_1093_cvr_cvy022
crossref_primary_10_1016_j_lfs_2021_119092
crossref_primary_10_3390_cells11243976
crossref_primary_10_1186_s12915_022_01269_4
crossref_primary_10_5114_aoms_128387
crossref_primary_10_1038_s41592_019_0529_1
crossref_primary_10_3389_fcvm_2018_00072
crossref_primary_10_3390_cells9041009
crossref_primary_10_1016_j_atherosclerosis_2020_06_005
crossref_primary_10_1016_j_jvssci_2020_01_001
crossref_primary_10_1080_14017431_2018_1494303
crossref_primary_10_1016_j_meatsci_2020_108378
crossref_primary_10_1038_s41598_018_31328_2
crossref_primary_10_1016_j_jvssci_2020_07_004
crossref_primary_10_3390_cells10092209
crossref_primary_10_3390_gucdd1030016
crossref_primary_10_1002_path_5511
crossref_primary_10_26508_lsa_202101114
crossref_primary_10_1016_j_gendis_2024_101249
crossref_primary_10_1016_j_compbiomed_2022_106364
crossref_primary_10_1093_cvr_cvad038
crossref_primary_10_1002_ehf2_14048
crossref_primary_10_1152_ajpcell_00170_2018
crossref_primary_10_3390_cells11203279
crossref_primary_10_1161_ATVBAHA_121_317018
crossref_primary_10_1016_j_jacbts_2021_04_001
crossref_primary_10_1161_ATVBAHA_119_312141
crossref_primary_10_1161_ATVBAHA_122_317953
crossref_primary_10_1016_j_ajpath_2023_12_007
crossref_primary_10_1038_s41598_020_65361_x
crossref_primary_10_3390_jcm11020373
Cites_doi 10.1016/j.jvs.2010.03.069
10.1016/j.amjcard.2007.06.002
10.1111/joim.12448
10.1093/cvr/cvv005
10.1161/ATVBAHA.114.305065
10.1016/j.coph.2006.11.007
10.1007/s00018-015-1936-9
10.1161/ATVBAHA.113.301844
10.1371/journal.pgen.1005202
10.1186/1471-2164-6-68
10.1161/STROKEAHA.115.003390
10.1083/jcb.139.1.193
10.1007/978-1-59745-571-8_3
10.1083/jcb.200012039
10.1038/ncb1400
10.1093/eurjhf/hfs119
10.1083/jcb.107.2.555
10.1371/journal.pgen.1004263
10.1007/s00109-011-0773-z
10.1152/physiolgenomics.00076.2007
10.1093/nar/gkt984
10.1074/jbc.M111.302224
10.1161/01.RES.61.2.296
10.1016/j.bone.2010.03.013
10.1038/nm1459
10.1038/ki.2011.231
10.1159/000333800
10.1006/excr.2001.5427
10.1046/j.1432-0436.2001.067001050.x
10.1093/hmg/ddt167
10.1161/ATVBAHA.108.179739
10.1074/jbc.M112.440057
10.1146/annurev-physiol-012110-142315
10.1161/ATVBAHA.114.304405
10.1093/nar/gkq537
10.1161/01.ATV.18.3.333
10.1038/nm.3866
10.1161/ATVBAHA.114.304029
10.1016/j.jvs.2010.02.282
10.1101/gad.291004
10.1093/cvr/cvs115.x
10.1101/gr.087528.108
10.1097/00041433-200410000-00010
10.1016/j.atherosclerosis.2009.11.016
10.1038/nmeth.2332
10.1371/journal.pone.0080809
10.1038/srep21176
10.1007/BF00417860
10.1083/jcb.107.1.307
10.1161/CIRCULATIONAHA.113.005015
10.1007/s11883-000-0081-5
10.1161/CIRCULATIONAHA.113.002887
10.1016/j.lfs.2004.03.004
10.1038/ki.2012.321
10.1371/journal.pgen.1005155
10.1038/ng.2007.6
ContentType Journal Article
Copyright 2016 American Heart Association, Inc.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2016 American Heart Association, Inc.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
CorporateAuthor on behalf of the IMPROVE Study Group
CorporateAuthor_xml – name: on behalf of the IMPROVE Study Group
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
1XC
5PM
ADTPV
AOWAS
DOI 10.1161/ATVBAHA.116.307893
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Hyper Article en Ligne (HAL)
PubMed Central (Full Participant titles)
SwePub
SwePub Articles
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1524-4636
EndPage 1961
ExternalDocumentID oai_swepub_ki_se_503502
PMC8991816
oai_HAL_hal_05269660v1
27470516
10_1161_ATVBAHA_116_307893
10.1161/ATVBAHA.116.307893
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: British Heart Foundation
  grantid: RG2008/014
– fundername: British Heart Foundation
  grantid: RG/08/008/25291
– fundername: NHLBI NIH HHS
  grantid: K99 HL125912
GroupedDBID ---
.3C
.55
.GJ
.Z2
01R
0R~
1J1
23N
2WC
3O-
40H
4Q1
4Q2
4Q3
53G
5GY
5RE
5VS
71W
77Y
7O~
AAAAV
AAAXR
AAGIX
AAHPQ
AAIQE
AAMOA
AAMTA
AAQKA
AARTV
AASCR
AASOK
AAXQO
ABASU
ABBUW
ABDIG
ABJNI
ABPXF
ABQRW
ABVCZ
ABXVJ
ABZAD
ABZZY
ACCJW
ACDDN
ACEWG
ACGFS
ACGOD
ACILI
ACLDA
ACPRK
ACWDW
ACWRI
ACXJB
ACXNZ
ACZKN
ADBBV
ADFPA
ADGGA
ADHPY
ADNKB
AE3
AE6
AEETU
AENEX
AFBFQ
AFDTB
AFFNX
AFUWQ
AGINI
AHJKT
AHMBA
AHOMT
AHQNM
AHRYX
AHVBC
AIJEX
AINUH
AJCLO
AJIOK
AJNWD
AJNYG
AJZMW
AKCTQ
AKULP
ALKUP
ALMA_UNASSIGNED_HOLDINGS
ALMTX
AMJPA
AMKUR
AMNEI
AOHHW
AOQMC
AYCSE
BAWUL
BOYCO
BQLVK
BS7
C1A
C45
CS3
DIK
DIWNM
DUNZO
E.X
E3Z
EBS
EEVPB
EJD
ERAAH
EX3
F2K
F2L
F2M
F2N
F5P
FCALG
FL-
FRP
FW0
GNXGY
GQDEL
GX1
H0~
H13
HLJTE
HZ~
IKREB
IKYAY
IN~
IPNFZ
J5H
JF9
JG8
JK3
JK8
K8S
KD2
KMI
KQ8
L-C
L7B
N9A
N~7
N~B
N~M
O9-
OAG
OAH
OB2
OCUKA
ODA
OL1
OLG
OLH
OLU
OLV
OLY
OLZ
OPUJH
ORVUJ
OUVQU
OVD
OVDNE
OVIDH
OVLEI
OWU
OWV
OWW
OWX
OWY
OWZ
OXXIT
P-K
P2P
PQQKQ
PZZ
RAH
RIG
RLZ
S4R
S4S
T8P
TEORI
TR2
TSPGW
V2I
VVN
W3M
W8F
WOQ
WOW
X3V
X3W
X7M
XXN
XYM
YFH
ZGI
ZZMQN
AAYXX
ADGHP
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ADKSD
ADSXY
1XC
5PM
ADTPV
AOWAS
ID FETCH-LOGICAL-c5213-bf1458ca084efa892768f6eca82efea6a9dc32dcb46ac22775d09d086f2d1d883
ISSN 1079-5642
1524-4636
IngestDate Wed Sep 24 03:32:48 EDT 2025
Thu Aug 21 18:20:57 EDT 2025
Sat Sep 20 06:20:33 EDT 2025
Mon Sep 08 04:09:14 EDT 2025
Mon Jul 21 06:04:05 EDT 2025
Thu Apr 24 23:02:52 EDT 2025
Tue Jul 01 02:21:57 EDT 2025
Fri May 16 03:43:17 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords actin cytoskeleton
atherosclerosis
smooth muscle cells
hyperplasia
downregulation
Language English
License 2016 American Heart Association, Inc.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c5213-bf1458ca084efa892768f6eca82efea6a9dc32dcb46ac22775d09d086f2d1d883
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0316-4046
OpenAccessLink https://www.ahajournals.org/doi/pdf/10.1161/ATVBAHA.116.307893
PMID 27470516
PQID 1814664424
PQPubID 23479
PageCount 15
ParticipantIDs swepub_primary_oai_swepub_ki_se_503502
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8991816
hal_primary_oai_HAL_hal_05269660v1
proquest_miscellaneous_1814664424
pubmed_primary_27470516
crossref_citationtrail_10_1161_ATVBAHA_116_307893
crossref_primary_10_1161_ATVBAHA_116_307893
wolterskluwer_health_10_1161_ATVBAHA_116_307893
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-September
PublicationDateYYYYMMDD 2016-09-01
PublicationDate_xml – month: 09
  year: 2016
  text: 2016-September
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Arteriosclerosis, thrombosis, and vascular biology
PublicationTitleAlternate Arterioscler Thromb Vasc Biol
PublicationYear 2016
Publisher American Heart Association, Inc
American Heart Association
Publisher_xml – name: American Heart Association, Inc
– name: American Heart Association
References e_1_3_4_3_2
e_1_3_4_9_2
e_1_3_4_7_2
e_1_3_4_40_2
e_1_3_4_5_2
e_1_3_4_23_2
e_1_3_4_44_2
e_1_3_4_21_2
e_1_3_4_42_2
e_1_3_4_27_2
e_1_3_4_48_2
e_1_3_4_25_2
e_1_3_4_46_2
e_1_3_4_29_2
e_1_3_4_30_2
e_1_3_4_51_2
e_1_3_4_11_2
e_1_3_4_34_2
e_1_3_4_57_2
e_1_3_4_55_2
e_1_3_4_32_2
e_1_3_4_53_2
e_1_3_4_15_2
e_1_3_4_38_2
e_1_3_4_13_2
e_1_3_4_36_2
e_1_3_4_19_2
e_1_3_4_17_2
e_1_3_4_2_2
e_1_3_4_8_2
e_1_3_4_41_2
e_1_3_4_6_2
e_1_3_4_4_2
e_1_3_4_22_2
e_1_3_4_45_2
e_1_3_4_20_2
e_1_3_4_43_2
e_1_3_4_26_2
e_1_3_4_49_2
e_1_3_4_24_2
e_1_3_4_47_2
e_1_3_4_28_2
e_1_3_4_52_2
e_1_3_4_50_2
e_1_3_4_12_2
e_1_3_4_33_2
e_1_3_4_54_2
e_1_3_4_10_2
e_1_3_4_31_2
e_1_3_4_16_2
e_1_3_4_37_2
e_1_3_4_14_2
e_1_3_4_35_2
e_1_3_4_56_2
e_1_3_4_18_2
e_1_3_4_39_2
References_xml – ident: e_1_3_4_32_2
  doi: 10.1016/j.jvs.2010.03.069
– ident: e_1_3_4_9_2
  doi: 10.1016/j.amjcard.2007.06.002
– ident: e_1_3_4_14_2
  doi: 10.1111/joim.12448
– ident: e_1_3_4_26_2
  doi: 10.1093/cvr/cvv005
– ident: e_1_3_4_44_2
  doi: 10.1161/ATVBAHA.114.305065
– ident: e_1_3_4_53_2
  doi: 10.1016/j.coph.2006.11.007
– ident: e_1_3_4_31_2
  doi: 10.1007/s00018-015-1936-9
– ident: e_1_3_4_23_2
  doi: 10.1161/ATVBAHA.113.301844
– ident: e_1_3_4_30_2
  doi: 10.1371/journal.pgen.1005202
– ident: e_1_3_4_36_2
  doi: 10.1186/1471-2164-6-68
– ident: e_1_3_4_2_2
  doi: 10.1161/STROKEAHA.115.003390
– ident: e_1_3_4_37_2
  doi: 10.1083/jcb.139.1.193
– ident: e_1_3_4_18_2
  doi: 10.1007/978-1-59745-571-8_3
– ident: e_1_3_4_43_2
  doi: 10.1083/jcb.200012039
– ident: e_1_3_4_38_2
  doi: 10.1038/ncb1400
– ident: e_1_3_4_34_2
  doi: 10.1093/eurjhf/hfs119
– ident: e_1_3_4_33_2
  doi: 10.1083/jcb.107.2.555
– ident: e_1_3_4_28_2
  doi: 10.1371/journal.pgen.1004263
– ident: e_1_3_4_11_2
  doi: 10.1007/s00109-011-0773-z
– ident: e_1_3_4_12_2
  doi: 10.1152/physiolgenomics.00076.2007
– ident: e_1_3_4_15_2
  doi: 10.1093/nar/gkt984
– ident: e_1_3_4_35_2
  doi: 10.1074/jbc.M111.302224
– ident: e_1_3_4_46_2
  doi: 10.1161/01.RES.61.2.296
– ident: e_1_3_4_55_2
  doi: 10.1016/j.bone.2010.03.013
– ident: e_1_3_4_13_2
  doi: 10.1038/nm1459
– ident: e_1_3_4_40_2
  doi: 10.1038/ki.2011.231
– ident: e_1_3_4_50_2
  doi: 10.1159/000333800
– ident: e_1_3_4_48_2
  doi: 10.1006/excr.2001.5427
– ident: e_1_3_4_49_2
  doi: 10.1046/j.1432-0436.2001.067001050.x
– ident: e_1_3_4_57_2
  doi: 10.1093/hmg/ddt167
– ident: e_1_3_4_3_2
  doi: 10.1161/ATVBAHA.108.179739
– ident: e_1_3_4_54_2
  doi: 10.1074/jbc.M112.440057
– ident: e_1_3_4_5_2
  doi: 10.1146/annurev-physiol-012110-142315
– ident: e_1_3_4_52_2
  doi: 10.1161/ATVBAHA.114.304405
– ident: e_1_3_4_17_2
  doi: 10.1093/nar/gkq537
– ident: e_1_3_4_24_2
  doi: 10.1161/01.ATV.18.3.333
– ident: e_1_3_4_7_2
  doi: 10.1038/nm.3866
– ident: e_1_3_4_21_2
  doi: 10.1161/ATVBAHA.114.304029
– ident: e_1_3_4_22_2
  doi: 10.1016/j.jvs.2010.02.282
– ident: e_1_3_4_51_2
  doi: 10.1101/gad.291004
– ident: e_1_3_4_4_2
  doi: 10.1093/cvr/cvs115.x
– ident: e_1_3_4_16_2
  doi: 10.1101/gr.087528.108
– ident: e_1_3_4_10_2
  doi: 10.1097/00041433-200410000-00010
– ident: e_1_3_4_19_2
  doi: 10.1016/j.atherosclerosis.2009.11.016
– ident: e_1_3_4_25_2
  doi: 10.1038/nmeth.2332
– ident: e_1_3_4_42_2
  doi: 10.1371/journal.pone.0080809
– ident: e_1_3_4_45_2
  doi: 10.1038/srep21176
– ident: e_1_3_4_47_2
  doi: 10.1007/BF00417860
– ident: e_1_3_4_20_2
  doi: 10.1083/jcb.107.1.307
– ident: e_1_3_4_6_2
  doi: 10.1161/CIRCULATIONAHA.113.005015
– ident: e_1_3_4_8_2
  doi: 10.1007/s11883-000-0081-5
– ident: e_1_3_4_27_2
  doi: 10.1161/CIRCULATIONAHA.113.002887
– ident: e_1_3_4_41_2
  doi: 10.1016/j.lfs.2004.03.004
– ident: e_1_3_4_39_2
  doi: 10.1038/ki.2012.321
– ident: e_1_3_4_29_2
  doi: 10.1371/journal.pgen.1005155
– ident: e_1_3_4_56_2
  doi: 10.1038/ng.2007.6
SSID ssj0004220
Score 2.4690955
Snippet OBJECTIVE—Key augmented processes in atherosclerosis have been identified, whereas less is known about downregulated pathways. Here, we applied a systems...
Key augmented processes in atherosclerosis have been identified, whereas less is known about downregulated pathways. Here, we applied a systems biology...
Objective— Key augmented processes in atherosclerosis have been identified, whereas less is known about downregulated pathways. Here, we applied a systems...
SourceID swepub
pubmedcentral
hal
proquest
pubmed
crossref
wolterskluwer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1947
SubjectTerms Actin Cytoskeleton - metabolism
Adaptor Proteins, Signal Transducing - genetics
Adaptor Proteins, Signal Transducing - metabolism
Animals
Apolipoproteins E - deficiency
Apolipoproteins E - genetics
Atherosclerosis - genetics
Atherosclerosis - metabolism
Atherosclerosis - pathology
Autoantigens - genetics
Autoantigens - metabolism
Calcium-Binding Proteins - genetics
Calcium-Binding Proteins - metabolism
Carotid Arteries - metabolism
Carotid Arteries - pathology
Carotid Arteries - physiopathology
Carotid Artery Diseases - genetics
Carotid Artery Diseases - metabolism
Carotid Artery Diseases - pathology
Carotid Artery Diseases - physiopathology
Carotid Artery Injuries - genetics
Carotid Artery Injuries - metabolism
Case-Control Studies
Cell Dedifferentiation
Cells, Cultured
Cytoskeletal Proteins - genetics
Cytoskeletal Proteins - metabolism
Disease Models, Animal
Down-Regulation
Genetic Association Studies
Humans
Intermediate Filament Proteins - genetics
Intermediate Filament Proteins - metabolism
Life Sciences
LIM Domain Proteins - genetics
LIM Domain Proteins - metabolism
Male
Mice, Knockout
Microfilament Proteins - genetics
Microfilament Proteins - metabolism
Middle Aged
Muscle, Smooth, Vascular - metabolism
Muscle, Smooth, Vascular - pathology
Muscle, Smooth, Vascular - physiopathology
Myocytes, Smooth Muscle - metabolism
Myocytes, Smooth Muscle - pathology
Neointima
Phenotype
Plaque, Atherosclerotic
Rats, Sprague-Dawley
RNA Interference
Signal Transduction
Time Factors
Transfection
Vasoconstriction
Title Phenotypic Modulation of Smooth Muscle Cells in Atherosclerosis Is Associated With Downregulation of LMOD1, SYNPO2, PDLIM7, PLN, and SYNM
URI https://www.ncbi.nlm.nih.gov/pubmed/27470516
https://www.proquest.com/docview/1814664424
https://hal.science/hal-05269660
https://pubmed.ncbi.nlm.nih.gov/PMC8991816
http://kipublications.ki.se/Default.aspx?queryparsed=id:134309466
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bT9swFLaASdNept3X3eShaS8l0NzTx4wOla0tbMCAp8hJHLVraVDTMNGfsF-9c2w3lxUhtpc0jmOnzrn4HOecz4R8iB0euqHlaCx0mGax2NbAqPe00PKsJIwNPREh__2B0z2xvpzZZ2vrm5WopXwebkeLG_NK_oeqcA3oilmy_0DZolO4AOdAXzgCheF4JxofDvk0nV9fjiLc00xtxCXSUC5SoECzn2fQornLJxMR9uqjtZfiNTiOsuZ-VpAH7M5TXJLtgFc-k_vTq756_YOOLhZJzweHB4YwOzug81xx1hs0iwDQ80G_auv6GC06Kh-H9-GuDBfhsoStilBYBQdV6mpQPzgwhJQVqwc_87ASWPT9esyiBajosTB_T2bZIp-UtWyRXzF4nxIfoYw1OGIhDHam9SZcbHWAyUojVl370J0iuGteSTdgiAkGNFhhaKnRW25bsx0J4bXNlZY3LA2R0qrTgCpJdm9XdLrelpigyj4AlaXfPPc4OPf4xz8--V0fi9smYvmb5Uy7jC7o-kfBYWcv6O0PvtZrC8Tvrt8LhsCQCMeDAKpX4OHfM1ywDzHw4FsFEd8wJOKGGuYyMczRd1b_Ss34Wh9i6O-qX7UaHqxAdKHiV4oxHNlYpHBUDLHjR-Sh8qCoL8XhMVnj0yfkfl_FiDwlv0upoKVU0DShUiqolAoqpIKOpvQvqaD7GS2lgqJU0LpUYF9CKraolIktKiUCfnsDukWBr7Gm_4yc7H0-3u1qascRLQIz1tTCRLdsL2Itz-IJ89rwwr3E4RHzDJ5w5rB2HJlGHIFyY5FhuK4dt9pxy3MSI9ZjzzOfk41pOuUvCY0T2_GYnYA_lFhW6DKXm3Gc6JFlxTpjZoPoS1IEkYLjx11hJoFwyx09UOTDQiDJ1yDNos2lBKO59e5N5KDljTdzVYO8XzJAABMLfi1kU57mWaDjxwHwlgyrQV5Ihij6wqUsmM2dBnFrrFJ7WL1mOhoK8HoPHFIPW36UTFVroi6N4YwHNgY9GA2yU2O6QOaH3zLuV3cZ92vyoFQob8jGfJbzt-BezMN3Qr7-AOSZJNM
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phenotypic+Modulation+of+Smooth+Muscle+Cells+in+Atherosclerosis+Is+Associated+With+Downregulation+of+LMOD1%2C+SYNPO2%2C+PDLIM7%2C+PLN+%2C+and+SYNM&rft.jtitle=Arteriosclerosis%2C+thrombosis%2C+and+vascular+biology&rft.au=Perisic+Matic%2C+Ljubica&rft.au=Rykaczewska%2C+Urszula&rft.au=Razuvaev%2C+Anton&rft.au=Sabater-Lleal%2C+Maria&rft.date=2016-09-01&rft.pub=American+Heart+Association&rft.issn=1079-5642&rft.eissn=1524-4636&rft.volume=36&rft.issue=9&rft.spage=1947&rft.epage=1961&rft_id=info:doi/10.1161%2FATVBAHA.116.307893&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_05269660v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1079-5642&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1079-5642&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1079-5642&client=summon