Phenotypic Modulation of Smooth Muscle Cells in Atherosclerosis Is Associated With Downregulation of LMOD1, SYNPO2, PDLIM7, PLN, and SYNM
OBJECTIVE—Key augmented processes in atherosclerosis have been identified, whereas less is known about downregulated pathways. Here, we applied a systems biology approach to examine suppressed molecular signatures, with the hypothesis that they may provide insight into mechanisms contributing to pla...
Saved in:
Published in | Arteriosclerosis, thrombosis, and vascular biology Vol. 36; no. 9; pp. 1947 - 1961 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Heart Association, Inc
01.09.2016
American Heart Association |
Subjects | |
Online Access | Get full text |
ISSN | 1079-5642 1524-4636 1524-4636 |
DOI | 10.1161/ATVBAHA.116.307893 |
Cover
Abstract | OBJECTIVE—Key augmented processes in atherosclerosis have been identified, whereas less is known about downregulated pathways. Here, we applied a systems biology approach to examine suppressed molecular signatures, with the hypothesis that they may provide insight into mechanisms contributing to plaque stability.
APPROACH AND RESULTS—Muscle contraction, muscle development, and actin cytoskeleton were the most downregulated pathways (false discovery rate=6.99e-21, 1.66e-6, 2.54e-10, respectively) in microarrays from human carotid plaques (n=177) versus healthy arteries (n=15). In addition to typical smooth muscle cell (SMC) markers, these pathways also encompassed cytoskeleton-related genes previously not associated with atherosclerosis. SYNPO2, SYNM, LMOD1, PDLIM7, and PLN expression positively correlated to typical SMC markers in plaques (Pearson r>0.6, P<0.0001) and in rat intimal hyperplasia (r>0.8, P<0.0001). By immunohistochemistry, the proteins were expressed in SMCs in normal vessels, but largely absent in human plaques and intimal hyperplasia. Subcellularly, most proteins localized to the cytoskeleton in cultured SMCs and were regulated by active enhancer histone modification H3K27ac by chromatin immunoprecipitation-sequencing. Functionally, the genes were downregulated by PDGFB (platelet-derived growth factor beta) and IFNg (interferron gamma), exposure to shear flow stress, and oxLDL (oxidized low-density lipoprotein) loading. Genetic variants in PDLIM7, PLN, and SYNPO2 loci associated with progression of carotid intima-media thickness in high-risk subjects without symptoms of cardiovascular disease (n=3378). By eQTL (expression quantitative trait locus), rs11746443 also associated with PDLIM7 expression in plaques. Mechanistically, silencing of PDLIM7 in vitro led to downregulation of SMC markers and disruption of the actin cytoskeleton, decreased cell spreading, and increased proliferation.
CONCLUSIONS—We identified a panel of genes that reflect the altered phenotype of SMCs in vascular disease and could be early sensitive markers of SMC dedifferentiation. |
---|---|
AbstractList | OBJECTIVE—Key augmented processes in atherosclerosis have been identified, whereas less is known about downregulated pathways. Here, we applied a systems biology approach to examine suppressed molecular signatures, with the hypothesis that they may provide insight into mechanisms contributing to plaque stability.
APPROACH AND RESULTS—Muscle contraction, muscle development, and actin cytoskeleton were the most downregulated pathways (false discovery rate=6.99e-21, 1.66e-6, 2.54e-10, respectively) in microarrays from human carotid plaques (n=177) versus healthy arteries (n=15). In addition to typical smooth muscle cell (SMC) markers, these pathways also encompassed cytoskeleton-related genes previously not associated with atherosclerosis. SYNPO2, SYNM, LMOD1, PDLIM7, and PLN expression positively correlated to typical SMC markers in plaques (Pearson r>0.6, P<0.0001) and in rat intimal hyperplasia (r>0.8, P<0.0001). By immunohistochemistry, the proteins were expressed in SMCs in normal vessels, but largely absent in human plaques and intimal hyperplasia. Subcellularly, most proteins localized to the cytoskeleton in cultured SMCs and were regulated by active enhancer histone modification H3K27ac by chromatin immunoprecipitation-sequencing. Functionally, the genes were downregulated by PDGFB (platelet-derived growth factor beta) and IFNg (interferron gamma), exposure to shear flow stress, and oxLDL (oxidized low-density lipoprotein) loading. Genetic variants in PDLIM7, PLN, and SYNPO2 loci associated with progression of carotid intima-media thickness in high-risk subjects without symptoms of cardiovascular disease (n=3378). By eQTL (expression quantitative trait locus), rs11746443 also associated with PDLIM7 expression in plaques. Mechanistically, silencing of PDLIM7 in vitro led to downregulation of SMC markers and disruption of the actin cytoskeleton, decreased cell spreading, and increased proliferation.
CONCLUSIONS—We identified a panel of genes that reflect the altered phenotype of SMCs in vascular disease and could be early sensitive markers of SMC dedifferentiation. Key augmented processes in atherosclerosis have been identified, whereas less is known about downregulated pathways. Here, we applied a systems biology approach to examine suppressed molecular signatures, with the hypothesis that they may provide insight into mechanisms contributing to plaque stability.OBJECTIVEKey augmented processes in atherosclerosis have been identified, whereas less is known about downregulated pathways. Here, we applied a systems biology approach to examine suppressed molecular signatures, with the hypothesis that they may provide insight into mechanisms contributing to plaque stability.Muscle contraction, muscle development, and actin cytoskeleton were the most downregulated pathways (false discovery rate=6.99e-21, 1.66e-6, 2.54e-10, respectively) in microarrays from human carotid plaques (n=177) versus healthy arteries (n=15). In addition to typical smooth muscle cell (SMC) markers, these pathways also encompassed cytoskeleton-related genes previously not associated with atherosclerosis. SYNPO2, SYNM, LMOD1, PDLIM7, and PLN expression positively correlated to typical SMC markers in plaques (Pearson r>0.6, P<0.0001) and in rat intimal hyperplasia (r>0.8, P<0.0001). By immunohistochemistry, the proteins were expressed in SMCs in normal vessels, but largely absent in human plaques and intimal hyperplasia. Subcellularly, most proteins localized to the cytoskeleton in cultured SMCs and were regulated by active enhancer histone modification H3K27ac by chromatin immunoprecipitation-sequencing. Functionally, the genes were downregulated by PDGFB (platelet-derived growth factor beta) and IFNg (interferron gamma), exposure to shear flow stress, and oxLDL (oxidized low-density lipoprotein) loading. Genetic variants in PDLIM7, PLN, and SYNPO2 loci associated with progression of carotid intima-media thickness in high-risk subjects without symptoms of cardiovascular disease (n=3378). By eQTL (expression quantitative trait locus), rs11746443 also associated with PDLIM7 expression in plaques. Mechanistically, silencing of PDLIM7 in vitro led to downregulation of SMC markers and disruption of the actin cytoskeleton, decreased cell spreading, and increased proliferation.APPROACH AND RESULTSMuscle contraction, muscle development, and actin cytoskeleton were the most downregulated pathways (false discovery rate=6.99e-21, 1.66e-6, 2.54e-10, respectively) in microarrays from human carotid plaques (n=177) versus healthy arteries (n=15). In addition to typical smooth muscle cell (SMC) markers, these pathways also encompassed cytoskeleton-related genes previously not associated with atherosclerosis. SYNPO2, SYNM, LMOD1, PDLIM7, and PLN expression positively correlated to typical SMC markers in plaques (Pearson r>0.6, P<0.0001) and in rat intimal hyperplasia (r>0.8, P<0.0001). By immunohistochemistry, the proteins were expressed in SMCs in normal vessels, but largely absent in human plaques and intimal hyperplasia. Subcellularly, most proteins localized to the cytoskeleton in cultured SMCs and were regulated by active enhancer histone modification H3K27ac by chromatin immunoprecipitation-sequencing. Functionally, the genes were downregulated by PDGFB (platelet-derived growth factor beta) and IFNg (interferron gamma), exposure to shear flow stress, and oxLDL (oxidized low-density lipoprotein) loading. Genetic variants in PDLIM7, PLN, and SYNPO2 loci associated with progression of carotid intima-media thickness in high-risk subjects without symptoms of cardiovascular disease (n=3378). By eQTL (expression quantitative trait locus), rs11746443 also associated with PDLIM7 expression in plaques. Mechanistically, silencing of PDLIM7 in vitro led to downregulation of SMC markers and disruption of the actin cytoskeleton, decreased cell spreading, and increased proliferation.We identified a panel of genes that reflect the altered phenotype of SMCs in vascular disease and could be early sensitive markers of SMC dedifferentiation.CONCLUSIONSWe identified a panel of genes that reflect the altered phenotype of SMCs in vascular disease and could be early sensitive markers of SMC dedifferentiation. Objective— Key augmented processes in atherosclerosis have been identified, whereas less is known about downregulated pathways. Here, we applied a systems biology approach to examine suppressed molecular signatures, with the hypothesis that they may provide insight into mechanisms contributing to plaque stability. Approach and Results— Muscle contraction, muscle development, and actin cytoskeleton were the most downregulated pathways (false discovery rate=6.99e-21, 1.66e-6, 2.54e-10, respectively) in microarrays from human carotid plaques (n=177) versus healthy arteries (n=15). In addition to typical smooth muscle cell (SMC) markers, these pathways also encompassed cytoskeleton-related genes previously not associated with atherosclerosis. SYNPO2, SYNM, LMOD1, PDLIM7 , and PLN expression positively correlated to typical SMC markers in plaques (Pearson r >0.6, P <0.0001) and in rat intimal hyperplasia ( r >0.8, P <0.0001). By immunohistochemistry, the proteins were expressed in SMCs in normal vessels, but largely absent in human plaques and intimal hyperplasia. Subcellularly, most proteins localized to the cytoskeleton in cultured SMCs and were regulated by active enhancer histone modification H3K27ac by chromatin immunoprecipitation-sequencing. Functionally, the genes were downregulated by PDGFB (platelet-derived growth factor beta) and IFNg (interferron gamma), exposure to shear flow stress, and oxLDL (oxidized low-density lipoprotein) loading. Genetic variants in PDLIM7, PLN , and SYNPO2 loci associated with progression of carotid intima-media thickness in high-risk subjects without symptoms of cardiovascular disease (n=3378). By eQTL (expression quantitative trait locus), rs11746443 also associated with PDLIM7 expression in plaques. Mechanistically, silencing of PDLIM7 in vitro led to downregulation of SMC markers and disruption of the actin cytoskeleton, decreased cell spreading, and increased proliferation. Conclusions— We identified a panel of genes that reflect the altered phenotype of SMCs in vascular disease and could be early sensitive markers of SMC dedifferentiation. Key augmented processes in atherosclerosis have been identified, whereas less is known about downregulated pathways. Here, we applied a systems biology approach to examine suppressed molecular signatures, with the hypothesis that they may provide insight into mechanisms contributing to plaque stability. Muscle contraction, muscle development, and actin cytoskeleton were the most downregulated pathways (false discovery rate=6.99e-21, 1.66e-6, 2.54e-10, respectively) in microarrays from human carotid plaques (n=177) versus healthy arteries (n=15). In addition to typical smooth muscle cell (SMC) markers, these pathways also encompassed cytoskeleton-related genes previously not associated with atherosclerosis. SYNPO2, SYNM, LMOD1, PDLIM7, and PLN expression positively correlated to typical SMC markers in plaques (Pearson r>0.6, P<0.0001) and in rat intimal hyperplasia (r>0.8, P<0.0001). By immunohistochemistry, the proteins were expressed in SMCs in normal vessels, but largely absent in human plaques and intimal hyperplasia. Subcellularly, most proteins localized to the cytoskeleton in cultured SMCs and were regulated by active enhancer histone modification H3K27ac by chromatin immunoprecipitation-sequencing. Functionally, the genes were downregulated by PDGFB (platelet-derived growth factor beta) and IFNg (interferron gamma), exposure to shear flow stress, and oxLDL (oxidized low-density lipoprotein) loading. Genetic variants in PDLIM7, PLN, and SYNPO2 loci associated with progression of carotid intima-media thickness in high-risk subjects without symptoms of cardiovascular disease (n=3378). By eQTL (expression quantitative trait locus), rs11746443 also associated with PDLIM7 expression in plaques. Mechanistically, silencing of PDLIM7 in vitro led to downregulation of SMC markers and disruption of the actin cytoskeleton, decreased cell spreading, and increased proliferation. We identified a panel of genes that reflect the altered phenotype of SMCs in vascular disease and could be early sensitive markers of SMC dedifferentiation. |
Author | Lengquist, Mariette Tremoli, Elena Veglia, Fabrizio Magné, Joelle Quertermous, Thomas Miller, Clint L. Jin, Hong de Faire, Ulf Li, Yuhuang Eriksson, Per Kronqvist, Malin Hansson, Göran K. Paulsson-Berne, Gabrielle Baldassarre, Damiano Röhl, Samuel Perisic Matic, Ljubica Ehrenborg, Ewa Sabater-Lleal, Maria Lehtiö, Janne Ericsson, Ida Diez, Maria Gonzalez Vukojević, Vladana Vesterlund, Mattias Roy, Joy Rykaczewska, Urszula Aldi, Silvia Hedin, Ulf Hamsten, Anders Humphries, Steve E. Razuvaev, Anton Lindeman, Jan H.N. Paloschi, Valentina Odeberg, Jacob Maegdefessel, Lars |
AuthorAffiliation | From the Departments of Molecular Medicine and Surgery (L.P.M., U.R., A.R., M.L., I.E., S.R., M.K., S.A., J.R., U.H.), Medicine (M.S.-L., J.M., V.P., Y.L., H.J., M.G.D., L.M., E.E., G.P.-B., G.K.H., P.E., A.H.), Division of Cardiovascular Epidemiology, Institute of Environmental Medicine (U.d.F.), and Department of Clinical Neuroscience, Center for Molecular Medicine (V.V.), Karolinska Institutet, Solna, Sweden; Division of Vascular Surgery, Stanford University, CA (C.L.M., T.Q.); Science for Life Laboratory, Solna, Sweden (M.V., J.L.); Dipartimento di Scienze Farmacologiche e Biomolecolari, Università di Milano, Italy (D.B., E.T.); Dipartimento di Scienze Cliniche e di Comunità, Centro Cardiologico Monzino, IRCCS, Milan, Italy (D.B., F.V., E.T.); British Heart Foundation Laboratories, Department of Medicine, University College of London, United Kingdom (S.E.H.); Department of Cardiology, Karolinska University Hospital Solna, Karolinska Institutet, Stockholm, Sweden (U.d.F.); Science f |
AuthorAffiliation_xml | – name: From the Departments of Molecular Medicine and Surgery (L.P.M., U.R., A.R., M.L., I.E., S.R., M.K., S.A., J.R., U.H.), Medicine (M.S.-L., J.M., V.P., Y.L., H.J., M.G.D., L.M., E.E., G.P.-B., G.K.H., P.E., A.H.), Division of Cardiovascular Epidemiology, Institute of Environmental Medicine (U.d.F.), and Department of Clinical Neuroscience, Center for Molecular Medicine (V.V.), Karolinska Institutet, Solna, Sweden; Division of Vascular Surgery, Stanford University, CA (C.L.M., T.Q.); Science for Life Laboratory, Solna, Sweden (M.V., J.L.); Dipartimento di Scienze Farmacologiche e Biomolecolari, Università di Milano, Italy (D.B., E.T.); Dipartimento di Scienze Cliniche e di Comunità, Centro Cardiologico Monzino, IRCCS, Milan, Italy (D.B., F.V., E.T.); British Heart Foundation Laboratories, Department of Medicine, University College of London, United Kingdom (S.E.H.); Department of Cardiology, Karolinska University Hospital Solna, Karolinska Institutet, Stockholm, Sweden (U.d.F.); Science for Life Laboratory, Department of Proteomics, Stockholm, Sweden (J.O.); and Department of Vascular Surgery, Leiden University Medical Center, The Netherlands (J.H.N.L.) |
Author_xml | – sequence: 1 givenname: Ljubica surname: Perisic Matic fullname: Perisic Matic, Ljubica organization: From the Departments of Molecular Medicine and Surgery (L.P.M., U.R., A.R., M.L., I.E., S.R., M.K., S.A., J.R., U.H.), Medicine (M.S.-L., J.M., V.P., Y.L., H.J., M.G.D., L.M., E.E., G.P.-B., G.K.H., P.E., A.H.), Division of Cardiovascular Epidemiology, Institute of Environmental Medicine (U.d.F.), and Department of Clinical Neuroscience, Center for Molecular Medicine (V.V.), Karolinska Institutet, Solna, Sweden; Division of Vascular Surgery, Stanford University, CA (C.L.M., T.Q.); Science for Life Laboratory, Solna, Sweden (M.V., J.L.); Dipartimento di Scienze Farmacologiche e Biomolecolari, Università di Milano, Italy (D.B., E.T.); Dipartimento di Scienze Cliniche e di Comunità, Centro Cardiologico Monzino, IRCCS, Milan, Italy (D.B., F.V., E.T.); British Heart Foundation Laboratories, Department of Medicine, University College of London, United Kingdom (S.E.H.); Department of Cardiology, Karolinska University Hospital Solna, Karolinska Institutet, Stockholm, Sweden (U.d.F.); Science for Life Laboratory, Department of Proteomics, Stockholm, Sweden (J.O.); and Department of Vascular Surgery, Leiden University Medical Center, The Netherlands (J.H.N.L.) – sequence: 2 givenname: Urszula surname: Rykaczewska fullname: Rykaczewska, Urszula – sequence: 3 givenname: Anton surname: Razuvaev fullname: Razuvaev, Anton – sequence: 4 givenname: Maria surname: Sabater-Lleal fullname: Sabater-Lleal, Maria – sequence: 5 givenname: Mariette surname: Lengquist fullname: Lengquist, Mariette – sequence: 6 givenname: Clint surname: Miller middlename: L. fullname: Miller, Clint L. – sequence: 7 givenname: Ida surname: Ericsson fullname: Ericsson, Ida – sequence: 8 givenname: Samuel surname: Röhl fullname: Röhl, Samuel – sequence: 9 givenname: Malin surname: Kronqvist fullname: Kronqvist, Malin – sequence: 10 givenname: Silvia surname: Aldi fullname: Aldi, Silvia – sequence: 11 givenname: Joelle surname: Magné fullname: Magné, Joelle – sequence: 12 givenname: Valentina surname: Paloschi fullname: Paloschi, Valentina – sequence: 13 givenname: Mattias surname: Vesterlund fullname: Vesterlund, Mattias – sequence: 14 givenname: Yuhuang surname: Li fullname: Li, Yuhuang – sequence: 15 givenname: Hong surname: Jin fullname: Jin, Hong – sequence: 16 givenname: Maria surname: Diez middlename: Gonzalez fullname: Diez, Maria Gonzalez – sequence: 17 givenname: Joy surname: Roy fullname: Roy, Joy – sequence: 18 givenname: Damiano surname: Baldassarre fullname: Baldassarre, Damiano – sequence: 19 givenname: Fabrizio surname: Veglia fullname: Veglia, Fabrizio – sequence: 20 givenname: Steve surname: Humphries middlename: E. fullname: Humphries, Steve E. – sequence: 21 givenname: Ulf surname: de Faire fullname: de Faire, Ulf – sequence: 22 givenname: Elena surname: Tremoli fullname: Tremoli, Elena – sequence: 23 givenname: Jacob surname: Odeberg fullname: Odeberg, Jacob – sequence: 24 givenname: Vladana surname: Vukojević fullname: Vukojević, Vladana – sequence: 25 givenname: Janne surname: Lehtiö fullname: Lehtiö, Janne – sequence: 26 givenname: Lars surname: Maegdefessel fullname: Maegdefessel, Lars – sequence: 27 givenname: Ewa surname: Ehrenborg fullname: Ehrenborg, Ewa – sequence: 28 givenname: Gabrielle surname: Paulsson-Berne fullname: Paulsson-Berne, Gabrielle – sequence: 29 givenname: Göran surname: Hansson middlename: K. fullname: Hansson, Göran K. – sequence: 30 givenname: Jan surname: Lindeman middlename: H.N. fullname: Lindeman, Jan H.N. – sequence: 31 givenname: Per surname: Eriksson fullname: Eriksson, Per – sequence: 32 givenname: Thomas surname: Quertermous fullname: Quertermous, Thomas – sequence: 33 givenname: Anders surname: Hamsten fullname: Hamsten, Anders – sequence: 34 givenname: Ulf surname: Hedin fullname: Hedin, Ulf |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27470516$$D View this record in MEDLINE/PubMed https://hal.science/hal-05269660$$DView record in HAL http://kipublications.ki.se/Default.aspx?queryparsed=id:134309466$$DView record from Swedish Publication Index |
BookMark | eNp9ks9u1DAQxiNURP_AC3BAPoK0KbbjOM4FKd0FdqVsu1ILiJPldSaNaTZe4qSrPgJvjUO2qO2hF9sz8_0-W545Dg4a20AQvCX4lBBOPmZX38-yeTYEpxFORBq9CI5ITFnIeMQP_BknaRhzRg-DY-d-YYwZpfhVcEgTluCY8KPgz6qCxnZ3W6PR0hZ9rTpjG2RLdLmxtqvQsne6BjSFunbINCjrKmjtkPOrcWjhUOac1UZ1UKAfxiMzu2tauH7glS8vZmSCLn-ery7oBK1m-WKZ-D0_nyDVFENh-Tp4WarawZv9fhJ8-_L5ajoP84uvi2mWhzqmJArXJWGx0AoLBqUSKU24KDloJSiUoLhKCx3RQq8ZV5rSJIkLnBZY8JIWpBAiOgnC0dftYNuv5bY1G9XeSauM3Kdu_AlkjKMYU6__NOp9ZQOFhqZrVf0Ie1xpTCWv7a0UaUoE4d7gw2hQPcHmWS6HHI4pTznHt8Rr3-8va-3vHlwnN8Zp__eqAds76Q0Z54xR5qXvHr7rv_N9b71AjALtO-VaKKU23b-W-GeaWhIshzGS-zEaAjmOkUfpE_Te_VmIj9DO1h207qbud9DKClTdVc-BfwG0Y9u4 |
CitedBy_id | crossref_primary_10_1016_j_foodchem_2022_134666 crossref_primary_10_1038_s41419_020_2240_7 crossref_primary_10_1161_ATVBAHA_118_311717 crossref_primary_10_3390_cells10061276 crossref_primary_10_1111_joim_12655 crossref_primary_10_1002_ctm2_682 crossref_primary_10_1161_ATVBAHA_123_320330 crossref_primary_10_1161_CIRCGEN_117_001977 crossref_primary_10_1016_j_vph_2023_107167 crossref_primary_10_1016_j_heliyon_2024_e29164 crossref_primary_10_1016_j_tice_2021_101598 crossref_primary_10_1371_journal_pgen_1007755 crossref_primary_10_1002_mabi_201900279 crossref_primary_10_1152_ajpcell_00047_2019 crossref_primary_10_1161_ATVBAHA_121_315969 crossref_primary_10_1016_j_celrep_2023_113468 crossref_primary_10_2174_1381612825666190430113212 crossref_primary_10_3390_ani11051423 crossref_primary_10_1096_fj_202400001RR crossref_primary_10_3389_fcvm_2021_655869 crossref_primary_10_1016_j_gene_2024_148605 crossref_primary_10_1161_ATVBAHA_118_311092 crossref_primary_10_3390_ijms18061260 crossref_primary_10_7717_peerj_15341 crossref_primary_10_1161_CIRCRESAHA_119_316063 crossref_primary_10_1016_j_omtm_2018_05_003 crossref_primary_10_1152_ajplung_00447_2021 crossref_primary_10_3390_cells13010085 crossref_primary_10_1016_j_atherosclerosis_2019_05_005 crossref_primary_10_1093_cvr_cvy206 crossref_primary_10_1002_jcp_29637 crossref_primary_10_1093_cvr_cvy022 crossref_primary_10_1016_j_lfs_2021_119092 crossref_primary_10_3390_cells11243976 crossref_primary_10_1186_s12915_022_01269_4 crossref_primary_10_5114_aoms_128387 crossref_primary_10_1038_s41592_019_0529_1 crossref_primary_10_3389_fcvm_2018_00072 crossref_primary_10_3390_cells9041009 crossref_primary_10_1016_j_atherosclerosis_2020_06_005 crossref_primary_10_1016_j_jvssci_2020_01_001 crossref_primary_10_1080_14017431_2018_1494303 crossref_primary_10_1016_j_meatsci_2020_108378 crossref_primary_10_1038_s41598_018_31328_2 crossref_primary_10_1016_j_jvssci_2020_07_004 crossref_primary_10_3390_cells10092209 crossref_primary_10_3390_gucdd1030016 crossref_primary_10_1002_path_5511 crossref_primary_10_26508_lsa_202101114 crossref_primary_10_1016_j_gendis_2024_101249 crossref_primary_10_1016_j_compbiomed_2022_106364 crossref_primary_10_1093_cvr_cvad038 crossref_primary_10_1002_ehf2_14048 crossref_primary_10_1152_ajpcell_00170_2018 crossref_primary_10_3390_cells11203279 crossref_primary_10_1161_ATVBAHA_121_317018 crossref_primary_10_1016_j_jacbts_2021_04_001 crossref_primary_10_1161_ATVBAHA_119_312141 crossref_primary_10_1161_ATVBAHA_122_317953 crossref_primary_10_1016_j_ajpath_2023_12_007 crossref_primary_10_1038_s41598_020_65361_x crossref_primary_10_3390_jcm11020373 |
Cites_doi | 10.1016/j.jvs.2010.03.069 10.1016/j.amjcard.2007.06.002 10.1111/joim.12448 10.1093/cvr/cvv005 10.1161/ATVBAHA.114.305065 10.1016/j.coph.2006.11.007 10.1007/s00018-015-1936-9 10.1161/ATVBAHA.113.301844 10.1371/journal.pgen.1005202 10.1186/1471-2164-6-68 10.1161/STROKEAHA.115.003390 10.1083/jcb.139.1.193 10.1007/978-1-59745-571-8_3 10.1083/jcb.200012039 10.1038/ncb1400 10.1093/eurjhf/hfs119 10.1083/jcb.107.2.555 10.1371/journal.pgen.1004263 10.1007/s00109-011-0773-z 10.1152/physiolgenomics.00076.2007 10.1093/nar/gkt984 10.1074/jbc.M111.302224 10.1161/01.RES.61.2.296 10.1016/j.bone.2010.03.013 10.1038/nm1459 10.1038/ki.2011.231 10.1159/000333800 10.1006/excr.2001.5427 10.1046/j.1432-0436.2001.067001050.x 10.1093/hmg/ddt167 10.1161/ATVBAHA.108.179739 10.1074/jbc.M112.440057 10.1146/annurev-physiol-012110-142315 10.1161/ATVBAHA.114.304405 10.1093/nar/gkq537 10.1161/01.ATV.18.3.333 10.1038/nm.3866 10.1161/ATVBAHA.114.304029 10.1016/j.jvs.2010.02.282 10.1101/gad.291004 10.1093/cvr/cvs115.x 10.1101/gr.087528.108 10.1097/00041433-200410000-00010 10.1016/j.atherosclerosis.2009.11.016 10.1038/nmeth.2332 10.1371/journal.pone.0080809 10.1038/srep21176 10.1007/BF00417860 10.1083/jcb.107.1.307 10.1161/CIRCULATIONAHA.113.005015 10.1007/s11883-000-0081-5 10.1161/CIRCULATIONAHA.113.002887 10.1016/j.lfs.2004.03.004 10.1038/ki.2012.321 10.1371/journal.pgen.1005155 10.1038/ng.2007.6 |
ContentType | Journal Article |
Copyright | 2016 American Heart Association, Inc. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2016 American Heart Association, Inc. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
CorporateAuthor | on behalf of the IMPROVE Study Group |
CorporateAuthor_xml | – name: on behalf of the IMPROVE Study Group |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 1XC 5PM ADTPV AOWAS |
DOI | 10.1161/ATVBAHA.116.307893 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Hyper Article en Ligne (HAL) PubMed Central (Full Participant titles) SwePub SwePub Articles |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1524-4636 |
EndPage | 1961 |
ExternalDocumentID | oai_swepub_ki_se_503502 PMC8991816 oai_HAL_hal_05269660v1 27470516 10_1161_ATVBAHA_116_307893 10.1161/ATVBAHA.116.307893 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: British Heart Foundation grantid: RG2008/014 – fundername: British Heart Foundation grantid: RG/08/008/25291 – fundername: NHLBI NIH HHS grantid: K99 HL125912 |
GroupedDBID | --- .3C .55 .GJ .Z2 01R 0R~ 1J1 23N 2WC 3O- 40H 4Q1 4Q2 4Q3 53G 5GY 5RE 5VS 71W 77Y 7O~ AAAAV AAAXR AAGIX AAHPQ AAIQE AAMOA AAMTA AAQKA AARTV AASCR AASOK AAXQO ABASU ABBUW ABDIG ABJNI ABPXF ABQRW ABVCZ ABXVJ ABZAD ABZZY ACCJW ACDDN ACEWG ACGFS ACGOD ACILI ACLDA ACPRK ACWDW ACWRI ACXJB ACXNZ ACZKN ADBBV ADFPA ADGGA ADHPY ADNKB AE3 AE6 AEETU AENEX AFBFQ AFDTB AFFNX AFUWQ AGINI AHJKT AHMBA AHOMT AHQNM AHRYX AHVBC AIJEX AINUH AJCLO AJIOK AJNWD AJNYG AJZMW AKCTQ AKULP ALKUP ALMA_UNASSIGNED_HOLDINGS ALMTX AMJPA AMKUR AMNEI AOHHW AOQMC AYCSE BAWUL BOYCO BQLVK BS7 C1A C45 CS3 DIK DIWNM DUNZO E.X E3Z EBS EEVPB EJD ERAAH EX3 F2K F2L F2M F2N F5P FCALG FL- FRP FW0 GNXGY GQDEL GX1 H0~ H13 HLJTE HZ~ IKREB IKYAY IN~ IPNFZ J5H JF9 JG8 JK3 JK8 K8S KD2 KMI KQ8 L-C L7B N9A N~7 N~B N~M O9- OAG OAH OB2 OCUKA ODA OL1 OLG OLH OLU OLV OLY OLZ OPUJH ORVUJ OUVQU OVD OVDNE OVIDH OVLEI OWU OWV OWW OWX OWY OWZ OXXIT P-K P2P PQQKQ PZZ RAH RIG RLZ S4R S4S T8P TEORI TR2 TSPGW V2I VVN W3M W8F WOQ WOW X3V X3W X7M XXN XYM YFH ZGI ZZMQN AAYXX ADGHP CITATION CGR CUY CVF ECM EIF NPM 7X8 ADKSD ADSXY 1XC 5PM ADTPV AOWAS |
ID | FETCH-LOGICAL-c5213-bf1458ca084efa892768f6eca82efea6a9dc32dcb46ac22775d09d086f2d1d883 |
ISSN | 1079-5642 1524-4636 |
IngestDate | Wed Sep 24 03:32:48 EDT 2025 Thu Aug 21 18:20:57 EDT 2025 Sat Sep 20 06:20:33 EDT 2025 Mon Sep 08 04:09:14 EDT 2025 Mon Jul 21 06:04:05 EDT 2025 Thu Apr 24 23:02:52 EDT 2025 Tue Jul 01 02:21:57 EDT 2025 Fri May 16 03:43:17 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | actin cytoskeleton atherosclerosis smooth muscle cells hyperplasia downregulation |
Language | English |
License | 2016 American Heart Association, Inc. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c5213-bf1458ca084efa892768f6eca82efea6a9dc32dcb46ac22775d09d086f2d1d883 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-0316-4046 |
OpenAccessLink | https://www.ahajournals.org/doi/pdf/10.1161/ATVBAHA.116.307893 |
PMID | 27470516 |
PQID | 1814664424 |
PQPubID | 23479 |
PageCount | 15 |
ParticipantIDs | swepub_primary_oai_swepub_ki_se_503502 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8991816 hal_primary_oai_HAL_hal_05269660v1 proquest_miscellaneous_1814664424 pubmed_primary_27470516 crossref_citationtrail_10_1161_ATVBAHA_116_307893 crossref_primary_10_1161_ATVBAHA_116_307893 wolterskluwer_health_10_1161_ATVBAHA_116_307893 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-September |
PublicationDateYYYYMMDD | 2016-09-01 |
PublicationDate_xml | – month: 09 year: 2016 text: 2016-September |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Arteriosclerosis, thrombosis, and vascular biology |
PublicationTitleAlternate | Arterioscler Thromb Vasc Biol |
PublicationYear | 2016 |
Publisher | American Heart Association, Inc American Heart Association |
Publisher_xml | – name: American Heart Association, Inc – name: American Heart Association |
References | e_1_3_4_3_2 e_1_3_4_9_2 e_1_3_4_7_2 e_1_3_4_40_2 e_1_3_4_5_2 e_1_3_4_23_2 e_1_3_4_44_2 e_1_3_4_21_2 e_1_3_4_42_2 e_1_3_4_27_2 e_1_3_4_48_2 e_1_3_4_25_2 e_1_3_4_46_2 e_1_3_4_29_2 e_1_3_4_30_2 e_1_3_4_51_2 e_1_3_4_11_2 e_1_3_4_34_2 e_1_3_4_57_2 e_1_3_4_55_2 e_1_3_4_32_2 e_1_3_4_53_2 e_1_3_4_15_2 e_1_3_4_38_2 e_1_3_4_13_2 e_1_3_4_36_2 e_1_3_4_19_2 e_1_3_4_17_2 e_1_3_4_2_2 e_1_3_4_8_2 e_1_3_4_41_2 e_1_3_4_6_2 e_1_3_4_4_2 e_1_3_4_22_2 e_1_3_4_45_2 e_1_3_4_20_2 e_1_3_4_43_2 e_1_3_4_26_2 e_1_3_4_49_2 e_1_3_4_24_2 e_1_3_4_47_2 e_1_3_4_28_2 e_1_3_4_52_2 e_1_3_4_50_2 e_1_3_4_12_2 e_1_3_4_33_2 e_1_3_4_54_2 e_1_3_4_10_2 e_1_3_4_31_2 e_1_3_4_16_2 e_1_3_4_37_2 e_1_3_4_14_2 e_1_3_4_35_2 e_1_3_4_56_2 e_1_3_4_18_2 e_1_3_4_39_2 |
References_xml | – ident: e_1_3_4_32_2 doi: 10.1016/j.jvs.2010.03.069 – ident: e_1_3_4_9_2 doi: 10.1016/j.amjcard.2007.06.002 – ident: e_1_3_4_14_2 doi: 10.1111/joim.12448 – ident: e_1_3_4_26_2 doi: 10.1093/cvr/cvv005 – ident: e_1_3_4_44_2 doi: 10.1161/ATVBAHA.114.305065 – ident: e_1_3_4_53_2 doi: 10.1016/j.coph.2006.11.007 – ident: e_1_3_4_31_2 doi: 10.1007/s00018-015-1936-9 – ident: e_1_3_4_23_2 doi: 10.1161/ATVBAHA.113.301844 – ident: e_1_3_4_30_2 doi: 10.1371/journal.pgen.1005202 – ident: e_1_3_4_36_2 doi: 10.1186/1471-2164-6-68 – ident: e_1_3_4_2_2 doi: 10.1161/STROKEAHA.115.003390 – ident: e_1_3_4_37_2 doi: 10.1083/jcb.139.1.193 – ident: e_1_3_4_18_2 doi: 10.1007/978-1-59745-571-8_3 – ident: e_1_3_4_43_2 doi: 10.1083/jcb.200012039 – ident: e_1_3_4_38_2 doi: 10.1038/ncb1400 – ident: e_1_3_4_34_2 doi: 10.1093/eurjhf/hfs119 – ident: e_1_3_4_33_2 doi: 10.1083/jcb.107.2.555 – ident: e_1_3_4_28_2 doi: 10.1371/journal.pgen.1004263 – ident: e_1_3_4_11_2 doi: 10.1007/s00109-011-0773-z – ident: e_1_3_4_12_2 doi: 10.1152/physiolgenomics.00076.2007 – ident: e_1_3_4_15_2 doi: 10.1093/nar/gkt984 – ident: e_1_3_4_35_2 doi: 10.1074/jbc.M111.302224 – ident: e_1_3_4_46_2 doi: 10.1161/01.RES.61.2.296 – ident: e_1_3_4_55_2 doi: 10.1016/j.bone.2010.03.013 – ident: e_1_3_4_13_2 doi: 10.1038/nm1459 – ident: e_1_3_4_40_2 doi: 10.1038/ki.2011.231 – ident: e_1_3_4_50_2 doi: 10.1159/000333800 – ident: e_1_3_4_48_2 doi: 10.1006/excr.2001.5427 – ident: e_1_3_4_49_2 doi: 10.1046/j.1432-0436.2001.067001050.x – ident: e_1_3_4_57_2 doi: 10.1093/hmg/ddt167 – ident: e_1_3_4_3_2 doi: 10.1161/ATVBAHA.108.179739 – ident: e_1_3_4_54_2 doi: 10.1074/jbc.M112.440057 – ident: e_1_3_4_5_2 doi: 10.1146/annurev-physiol-012110-142315 – ident: e_1_3_4_52_2 doi: 10.1161/ATVBAHA.114.304405 – ident: e_1_3_4_17_2 doi: 10.1093/nar/gkq537 – ident: e_1_3_4_24_2 doi: 10.1161/01.ATV.18.3.333 – ident: e_1_3_4_7_2 doi: 10.1038/nm.3866 – ident: e_1_3_4_21_2 doi: 10.1161/ATVBAHA.114.304029 – ident: e_1_3_4_22_2 doi: 10.1016/j.jvs.2010.02.282 – ident: e_1_3_4_51_2 doi: 10.1101/gad.291004 – ident: e_1_3_4_4_2 doi: 10.1093/cvr/cvs115.x – ident: e_1_3_4_16_2 doi: 10.1101/gr.087528.108 – ident: e_1_3_4_10_2 doi: 10.1097/00041433-200410000-00010 – ident: e_1_3_4_19_2 doi: 10.1016/j.atherosclerosis.2009.11.016 – ident: e_1_3_4_25_2 doi: 10.1038/nmeth.2332 – ident: e_1_3_4_42_2 doi: 10.1371/journal.pone.0080809 – ident: e_1_3_4_45_2 doi: 10.1038/srep21176 – ident: e_1_3_4_47_2 doi: 10.1007/BF00417860 – ident: e_1_3_4_20_2 doi: 10.1083/jcb.107.1.307 – ident: e_1_3_4_6_2 doi: 10.1161/CIRCULATIONAHA.113.005015 – ident: e_1_3_4_8_2 doi: 10.1007/s11883-000-0081-5 – ident: e_1_3_4_27_2 doi: 10.1161/CIRCULATIONAHA.113.002887 – ident: e_1_3_4_41_2 doi: 10.1016/j.lfs.2004.03.004 – ident: e_1_3_4_39_2 doi: 10.1038/ki.2012.321 – ident: e_1_3_4_29_2 doi: 10.1371/journal.pgen.1005155 – ident: e_1_3_4_56_2 doi: 10.1038/ng.2007.6 |
SSID | ssj0004220 |
Score | 2.4690955 |
Snippet | OBJECTIVE—Key augmented processes in atherosclerosis have been identified, whereas less is known about downregulated pathways. Here, we applied a systems... Key augmented processes in atherosclerosis have been identified, whereas less is known about downregulated pathways. Here, we applied a systems biology... Objective— Key augmented processes in atherosclerosis have been identified, whereas less is known about downregulated pathways. Here, we applied a systems... |
SourceID | swepub pubmedcentral hal proquest pubmed crossref wolterskluwer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1947 |
SubjectTerms | Actin Cytoskeleton - metabolism Adaptor Proteins, Signal Transducing - genetics Adaptor Proteins, Signal Transducing - metabolism Animals Apolipoproteins E - deficiency Apolipoproteins E - genetics Atherosclerosis - genetics Atherosclerosis - metabolism Atherosclerosis - pathology Autoantigens - genetics Autoantigens - metabolism Calcium-Binding Proteins - genetics Calcium-Binding Proteins - metabolism Carotid Arteries - metabolism Carotid Arteries - pathology Carotid Arteries - physiopathology Carotid Artery Diseases - genetics Carotid Artery Diseases - metabolism Carotid Artery Diseases - pathology Carotid Artery Diseases - physiopathology Carotid Artery Injuries - genetics Carotid Artery Injuries - metabolism Case-Control Studies Cell Dedifferentiation Cells, Cultured Cytoskeletal Proteins - genetics Cytoskeletal Proteins - metabolism Disease Models, Animal Down-Regulation Genetic Association Studies Humans Intermediate Filament Proteins - genetics Intermediate Filament Proteins - metabolism Life Sciences LIM Domain Proteins - genetics LIM Domain Proteins - metabolism Male Mice, Knockout Microfilament Proteins - genetics Microfilament Proteins - metabolism Middle Aged Muscle, Smooth, Vascular - metabolism Muscle, Smooth, Vascular - pathology Muscle, Smooth, Vascular - physiopathology Myocytes, Smooth Muscle - metabolism Myocytes, Smooth Muscle - pathology Neointima Phenotype Plaque, Atherosclerotic Rats, Sprague-Dawley RNA Interference Signal Transduction Time Factors Transfection Vasoconstriction |
Title | Phenotypic Modulation of Smooth Muscle Cells in Atherosclerosis Is Associated With Downregulation of LMOD1, SYNPO2, PDLIM7, PLN, and SYNM |
URI | https://www.ncbi.nlm.nih.gov/pubmed/27470516 https://www.proquest.com/docview/1814664424 https://hal.science/hal-05269660 https://pubmed.ncbi.nlm.nih.gov/PMC8991816 http://kipublications.ki.se/Default.aspx?queryparsed=id:134309466 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bT9swFLaASdNept3X3eShaS8l0NzTx4wOla0tbMCAp8hJHLVraVDTMNGfsF-9c2w3lxUhtpc0jmOnzrn4HOecz4R8iB0euqHlaCx0mGax2NbAqPe00PKsJIwNPREh__2B0z2xvpzZZ2vrm5WopXwebkeLG_NK_oeqcA3oilmy_0DZolO4AOdAXzgCheF4JxofDvk0nV9fjiLc00xtxCXSUC5SoECzn2fQornLJxMR9uqjtZfiNTiOsuZ-VpAH7M5TXJLtgFc-k_vTq756_YOOLhZJzweHB4YwOzug81xx1hs0iwDQ80G_auv6GC06Kh-H9-GuDBfhsoStilBYBQdV6mpQPzgwhJQVqwc_87ASWPT9esyiBajosTB_T2bZIp-UtWyRXzF4nxIfoYw1OGIhDHam9SZcbHWAyUojVl370J0iuGteSTdgiAkGNFhhaKnRW25bsx0J4bXNlZY3LA2R0qrTgCpJdm9XdLrelpigyj4AlaXfPPc4OPf4xz8--V0fi9smYvmb5Uy7jC7o-kfBYWcv6O0PvtZrC8Tvrt8LhsCQCMeDAKpX4OHfM1ywDzHw4FsFEd8wJOKGGuYyMczRd1b_Ss34Wh9i6O-qX7UaHqxAdKHiV4oxHNlYpHBUDLHjR-Sh8qCoL8XhMVnj0yfkfl_FiDwlv0upoKVU0DShUiqolAoqpIKOpvQvqaD7GS2lgqJU0LpUYF9CKraolIktKiUCfnsDukWBr7Gm_4yc7H0-3u1qascRLQIz1tTCRLdsL2Itz-IJ89rwwr3E4RHzDJ5w5rB2HJlGHIFyY5FhuK4dt9pxy3MSI9ZjzzOfk41pOuUvCY0T2_GYnYA_lFhW6DKXm3Gc6JFlxTpjZoPoS1IEkYLjx11hJoFwyx09UOTDQiDJ1yDNos2lBKO59e5N5KDljTdzVYO8XzJAABMLfi1kU57mWaDjxwHwlgyrQV5Ihij6wqUsmM2dBnFrrFJ7WL1mOhoK8HoPHFIPW36UTFVroi6N4YwHNgY9GA2yU2O6QOaH3zLuV3cZ92vyoFQob8jGfJbzt-BezMN3Qr7-AOSZJNM |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phenotypic+Modulation+of+Smooth+Muscle+Cells+in+Atherosclerosis+Is+Associated+With+Downregulation+of+LMOD1%2C+SYNPO2%2C+PDLIM7%2C+PLN+%2C+and+SYNM&rft.jtitle=Arteriosclerosis%2C+thrombosis%2C+and+vascular+biology&rft.au=Perisic+Matic%2C+Ljubica&rft.au=Rykaczewska%2C+Urszula&rft.au=Razuvaev%2C+Anton&rft.au=Sabater-Lleal%2C+Maria&rft.date=2016-09-01&rft.pub=American+Heart+Association&rft.issn=1079-5642&rft.eissn=1524-4636&rft.volume=36&rft.issue=9&rft.spage=1947&rft.epage=1961&rft_id=info:doi/10.1161%2FATVBAHA.116.307893&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_05269660v1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1079-5642&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1079-5642&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1079-5642&client=summon |