Simultaneous UPLC–MS/MS quantification of the endocannabinoids 2-arachidonoyl glycerol (2AG), 1-arachidonoyl glycerol (1AG), and anandamide in human plasma: Minimization of matrix-effects, 2AG/1AG isomerization and degradation by toluene solvent extraction
Analysis of the endocannabinoid (EC) system's key molecules 2-arachidonoyl glycerol (2AG) and arachidonoyl ethanolamide (anandamide, AEA) is challenging due to several peculiarities. 2AG isomerizes spontaneously to its biologically inactive analogue 1-arachidonoyl glycerol (1AG) by acyl migrati...
Saved in:
Published in | Journal of chromatography. B, Analytical technologies in the biomedical and life sciences Vol. 883-884; no. 3; pp. 161 - 171 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.02.2012
|
Subjects | |
Online Access | Get full text |
ISSN | 1570-0232 1873-376X 1873-376X |
DOI | 10.1016/j.jchromb.2011.06.025 |
Cover
Abstract | Analysis of the endocannabinoid (EC) system's key molecules 2-arachidonoyl glycerol (2AG) and arachidonoyl ethanolamide (anandamide, AEA) is challenging due to several peculiarities. 2AG isomerizes spontaneously to its biologically inactive analogue 1-arachidonoyl glycerol (1AG) by acyl migration and it is only chromatographically distinguishable from 1AG. Matrix-effects caused primarily by co-extracted phospholipids may further compromise analysis. In addition, 2AG and 1AG are unstable under certain conditions like solvent evaporation or reconstitution of dried extracts. We examined effects of different organic solvents and their mixtures, such as toluene, ethyl acetate, and chloroform-methanol, on 2AG/1AG isomerisation, 2AG/1AG stability, and matrix-effects in the UPLC–MS/MS analysis of 2AG and AEA in human plasma. Toluene prevented, both, 2AG isomerisation to 1AG and degradation of 2AG/1AG during evaporation. Toluene extracts contain only 2% of matrix-effect-causing plasma phospholipids compared to extracts from the traditionally used solvent mixture chloroform–methanol. Toluene and all other tested organic solvents provide comparable 2AG and AEA extraction yields (60–80%). Based on these favourable toluene properties, we developed and validated a UPLC–MS/MS method with positive electrospray ionization (ESI+) that allows for simultaneous accurate and precise measurement of 2AG and AEA in human plasma. The UPLC–MS/MS method was cross-validated with a previously described fully-validated GC–MS/MS method for AEA in human plasma. A close correlation (r2=0.821) was observed between the results obtained from UPLC–MS/MS (y) and GC–MS/MS (x) methods (y=0.01+0.85x). The UPLC–MS/MS method is suitable for routine measurement of 2AG and AEA in human plasma samples (1mL) in clinical settings as shown by quality control plasma samples processed over a period of 100 days. The UPLC–MS/MS method was further extended to human urine. In urine, AEA was not detectable and 2AG was detected in only 3 out of 19 samples from healthy subjects at 160, 180 and 212pM corresponding to 12.3, 14.5 and 9.9pmol/mmol creatinine, respectively. |
---|---|
AbstractList | Analysis of the endocannabinoid (EC) system's key molecules 2-arachidonoyl glycerol (2AG) and arachidonoyl ethanolamide (anandamide, AEA) is challenging due to several peculiarities. 2AG isomerizes spontaneously to its biologically inactive analogue 1-arachidonoyl glycerol (1AG) by acyl migration and it is only chromatographically distinguishable from 1AG. Matrix-effects caused primarily by co-extracted phospholipids may further compromise analysis. In addition, 2AG and 1AG are unstable under certain conditions like solvent evaporation or reconstitution of dried extracts. We examined effects of different organic solvents and their mixtures, such as toluene, ethyl acetate, and chloroform-methanol, on 2AG/1AG isomerisation, 2AG/1AG stability, and matrix-effects in the UPLC-MS/MS analysis of 2AG and AEA in human plasma. Toluene prevented, both, 2AG isomerisation to 1AG and degradation of 2AG/1AG during evaporation. Toluene extracts contain only 2% of matrix-effect-causing plasma phospholipids compared to extracts from the traditionally used solvent mixture chloroform-methanol. Toluene and all other tested organic solvents provide comparable 2AG and AEA extraction yields (60-80%). Based on these favourable toluene properties, we developed and validated a UPLC-MS/MS method with positive electrospray ionization (ESI+) that allows for simultaneous accurate and precise measurement of 2AG and AEA in human plasma. The UPLC-MS/MS method was cross-validated with a previously described fully-validated GC-MS/MS method for AEA in human plasma. A close correlation (r2 = 0.821) was observed between the results obtained from UPLC-MS/MS (y) and GC-MS/MS (x) methods (y = 0.01 + 0.85x). The UPLC-MS/MS method is suitable for routine measurement of 2AG and AEA in human plasma samples (1 mL) in clinical settings as shown by quality control plasma samples processed over a period of 100 days. The UPLC-MS/MS method was further extended to human urine. In urine, AEA was not detectable and 2AG was detected in only 3 out of 19 samples from healthy subjects at 160, 180 and 212 pM corresponding to 12.3, 14.5 and 9.9 pmol/mmol creatinine, respectively. [character removed]DT: J Aims: To determine the maximum tolerated dose, the recommended dose (RD) for phase II studies, dose-limiting toxicities and pharmacokinetics (PK) for plitidepsin administered as a 3-h intravenous infusion every 2 weeks (one cycle) to children with refractory or relapsed solid tumours. Methods: Consecutive cohorts of patients were treated according to a standard '3 + 3' design with escalating doses of plitidepsin at 4, 5 and 6 mg/m2. Additional 15 patients were recruited at the RD to further evaluate safety and pharmacokinetic associations with respect to age, dose level and toxicity. Results: Thirty-eight of 41 patients registered received plitidepsin. Dose-limiting toxicities during the first three treatment cycles related to myalgia, elevated creatine phosphokinase, transaminase increase and nausea/vomiting. The RD for plitidepsin is 5 mg/m2. PK analyses revealed high inter-patient variability in plasma, but a similar clearance of plitidepsin in children and adolescents. One partial response confirmed at 4 weeks in a patient with neuroblastoma and one unconfirmed partial response in a pancreatoblastoma were observed; four other patients with neuroblastoma, medulloblastoma, glioblastoma and rhabdoid tumour had disease stabilisations lasting >=3 months. Conclusions: Plitidepsin administered to children as a 3-h infusion every 2 weeks is received with manageable toxicity for children with cancer, and the RD is 5 mg/m2. Pharmacokinetic parameters in children and adolescents are comparable to adults. Future phase II studies of plitidepsin are warranted, and our results suggest that plitidepsin could be appropriately developed in combination with other antitumour where myelosuppression is dose-limiting. Analysis of the endocannabinoid (EC) system's key molecules 2-arachidonoyl glycerol (2AG) and arachidonoyl ethanolamide (anandamide, AEA) is challenging due to several peculiarities. 2AG isomerizes spontaneously to its biologically inactive analogue 1-arachidonoyl glycerol (1AG) by acyl migration and it is only chromatographically distinguishable from 1AG. Matrix-effects caused primarily by co-extracted phospholipids may further compromise analysis. In addition, 2AG and 1AG are unstable under certain conditions like solvent evaporation or reconstitution of dried extracts. We examined effects of different organic solvents and their mixtures, such as toluene, ethyl acetate, and chloroform-methanol, on 2AG/1AG isomerisation, 2AG/1AG stability, and matrix-effects in the UPLC-MS/MS analysis of 2AG and AEA in human plasma. Toluene prevented, both, 2AG isomerisation to 1AG and degradation of 2AG/1AG during evaporation. Toluene extracts contain only 2% of matrix-effect-causing plasma phospholipids compared to extracts from the traditionally used solvent mixture chloroform-methanol. Toluene and all other tested organic solvents provide comparable 2AG and AEA extraction yields (60-80%). Based on these favourable toluene properties, we developed and validated a UPLC-MS/MS method with positive electrospray ionization (ESI+) that allows for simultaneous accurate and precise measurement of 2AG and AEA in human plasma. The UPLC-MS/MS method was cross-validated with a previously described fully-validated GC-MS/MS method for AEA in human plasma. A close correlation (r(2)=0.821) was observed between the results obtained from UPLC-MS/MS (y) and GC-MS/MS (x) methods (y=0.01+0.85x). The UPLC-MS/MS method is suitable for routine measurement of 2AG and AEA in human plasma samples (1 mL) in clinical settings as shown by quality control plasma samples processed over a period of 100 days. The UPLC-MS/MS method was further extended to human urine. In urine, AEA was not detectable and 2AG was detected in only 3 out of 19 samples from healthy subjects at 160, 180 and 212 pM corresponding to 12.3, 14.5 and 9.9 pmol/mmol creatinine, respectively.Analysis of the endocannabinoid (EC) system's key molecules 2-arachidonoyl glycerol (2AG) and arachidonoyl ethanolamide (anandamide, AEA) is challenging due to several peculiarities. 2AG isomerizes spontaneously to its biologically inactive analogue 1-arachidonoyl glycerol (1AG) by acyl migration and it is only chromatographically distinguishable from 1AG. Matrix-effects caused primarily by co-extracted phospholipids may further compromise analysis. In addition, 2AG and 1AG are unstable under certain conditions like solvent evaporation or reconstitution of dried extracts. We examined effects of different organic solvents and their mixtures, such as toluene, ethyl acetate, and chloroform-methanol, on 2AG/1AG isomerisation, 2AG/1AG stability, and matrix-effects in the UPLC-MS/MS analysis of 2AG and AEA in human plasma. Toluene prevented, both, 2AG isomerisation to 1AG and degradation of 2AG/1AG during evaporation. Toluene extracts contain only 2% of matrix-effect-causing plasma phospholipids compared to extracts from the traditionally used solvent mixture chloroform-methanol. Toluene and all other tested organic solvents provide comparable 2AG and AEA extraction yields (60-80%). Based on these favourable toluene properties, we developed and validated a UPLC-MS/MS method with positive electrospray ionization (ESI+) that allows for simultaneous accurate and precise measurement of 2AG and AEA in human plasma. The UPLC-MS/MS method was cross-validated with a previously described fully-validated GC-MS/MS method for AEA in human plasma. A close correlation (r(2)=0.821) was observed between the results obtained from UPLC-MS/MS (y) and GC-MS/MS (x) methods (y=0.01+0.85x). The UPLC-MS/MS method is suitable for routine measurement of 2AG and AEA in human plasma samples (1 mL) in clinical settings as shown by quality control plasma samples processed over a period of 100 days. The UPLC-MS/MS method was further extended to human urine. In urine, AEA was not detectable and 2AG was detected in only 3 out of 19 samples from healthy subjects at 160, 180 and 212 pM corresponding to 12.3, 14.5 and 9.9 pmol/mmol creatinine, respectively. Analysis of the endocannabinoid (EC) system's key molecules 2-arachidonoyl glycerol (2AG) and arachidonoyl ethanolamide (anandamide, AEA) is challenging due to several peculiarities. 2AG isomerizes spontaneously to its biologically inactive analogue 1-arachidonoyl glycerol (1AG) by acyl migration and it is only chromatographically distinguishable from 1AG. Matrix-effects caused primarily by co-extracted phospholipids may further compromise analysis. In addition, 2AG and 1AG are unstable under certain conditions like solvent evaporation or reconstitution of dried extracts. We examined effects of different organic solvents and their mixtures, such as toluene, ethyl acetate, and chloroform-methanol, on 2AG/1AG isomerisation, 2AG/1AG stability, and matrix-effects in the UPLC–MS/MS analysis of 2AG and AEA in human plasma. Toluene prevented, both, 2AG isomerisation to 1AG and degradation of 2AG/1AG during evaporation. Toluene extracts contain only 2% of matrix-effect-causing plasma phospholipids compared to extracts from the traditionally used solvent mixture chloroform–methanol. Toluene and all other tested organic solvents provide comparable 2AG and AEA extraction yields (60–80%). Based on these favourable toluene properties, we developed and validated a UPLC–MS/MS method with positive electrospray ionization (ESI+) that allows for simultaneous accurate and precise measurement of 2AG and AEA in human plasma. The UPLC–MS/MS method was cross-validated with a previously described fully-validated GC–MS/MS method for AEA in human plasma. A close correlation (r²=0.821) was observed between the results obtained from UPLC–MS/MS (y) and GC–MS/MS (x) methods (y=0.01+0.85x). The UPLC–MS/MS method is suitable for routine measurement of 2AG and AEA in human plasma samples (1mL) in clinical settings as shown by quality control plasma samples processed over a period of 100 days. The UPLC–MS/MS method was further extended to human urine. In urine, AEA was not detectable and 2AG was detected in only 3 out of 19 samples from healthy subjects at 160, 180 and 212pM corresponding to 12.3, 14.5 and 9.9pmol/mmol creatinine, respectively. Analysis of the endocannabinoid (EC) system's key molecules 2-arachidonoyl glycerol (2AG) and arachidonoyl ethanolamide (anandamide, AEA) is challenging due to several peculiarities. 2AG isomerizes spontaneously to its biologically inactive analogue 1-arachidonoyl glycerol (1AG) by acyl migration and it is only chromatographically distinguishable from 1AG. Matrix-effects caused primarily by co-extracted phospholipids may further compromise analysis. In addition, 2AG and 1AG are unstable under certain conditions like solvent evaporation or reconstitution of dried extracts. We examined effects of different organic solvents and their mixtures, such as toluene, ethyl acetate, and chloroform-methanol, on 2AG/1AG isomerisation, 2AG/1AG stability, and matrix-effects in the UPLC-MS/MS analysis of 2AG and AEA in human plasma. Toluene prevented, both, 2AG isomerisation to 1AG and degradation of 2AG/1AG during evaporation. Toluene extracts contain only 2% of matrix-effect-causing plasma phospholipids compared to extracts from the traditionally used solvent mixture chloroform-methanol. Toluene and all other tested organic solvents provide comparable 2AG and AEA extraction yields (60-80%). Based on these favourable toluene properties, we developed and validated a UPLC-MS/MS method with positive electrospray ionization (ESI+) that allows for simultaneous accurate and precise measurement of 2AG and AEA in human plasma. The UPLC-MS/MS method was cross-validated with a previously described fully-validated GC-MS/MS method for AEA in human plasma. A close correlation (r(2)=0.821) was observed between the results obtained from UPLC-MS/MS (y) and GC-MS/MS (x) methods (y=0.01+0.85x). The UPLC-MS/MS method is suitable for routine measurement of 2AG and AEA in human plasma samples (1 mL) in clinical settings as shown by quality control plasma samples processed over a period of 100 days. The UPLC-MS/MS method was further extended to human urine. In urine, AEA was not detectable and 2AG was detected in only 3 out of 19 samples from healthy subjects at 160, 180 and 212 pM corresponding to 12.3, 14.5 and 9.9 pmol/mmol creatinine, respectively. Analysis of the endocannabinoid (EC) system's key molecules 2-arachidonoyl glycerol (2AG) and arachidonoyl ethanolamide (anandamide, AEA) is challenging due to several peculiarities. 2AG isomerizes spontaneously to its biologically inactive analogue 1-arachidonoyl glycerol (1AG) by acyl migration and it is only chromatographically distinguishable from 1AG. Matrix-effects caused primarily by co-extracted phospholipids may further compromise analysis. In addition, 2AG and 1AG are unstable under certain conditions like solvent evaporation or reconstitution of dried extracts. We examined effects of different organic solvents and their mixtures, such as toluene, ethyl acetate, and chloroform-methanol, on 2AG/1AG isomerisation, 2AG/1AG stability, and matrix-effects in the UPLC–MS/MS analysis of 2AG and AEA in human plasma. Toluene prevented, both, 2AG isomerisation to 1AG and degradation of 2AG/1AG during evaporation. Toluene extracts contain only 2% of matrix-effect-causing plasma phospholipids compared to extracts from the traditionally used solvent mixture chloroform–methanol. Toluene and all other tested organic solvents provide comparable 2AG and AEA extraction yields (60–80%). Based on these favourable toluene properties, we developed and validated a UPLC–MS/MS method with positive electrospray ionization (ESI+) that allows for simultaneous accurate and precise measurement of 2AG and AEA in human plasma. The UPLC–MS/MS method was cross-validated with a previously described fully-validated GC–MS/MS method for AEA in human plasma. A close correlation (r2=0.821) was observed between the results obtained from UPLC–MS/MS (y) and GC–MS/MS (x) methods (y=0.01+0.85x). The UPLC–MS/MS method is suitable for routine measurement of 2AG and AEA in human plasma samples (1mL) in clinical settings as shown by quality control plasma samples processed over a period of 100 days. The UPLC–MS/MS method was further extended to human urine. In urine, AEA was not detectable and 2AG was detected in only 3 out of 19 samples from healthy subjects at 160, 180 and 212pM corresponding to 12.3, 14.5 and 9.9pmol/mmol creatinine, respectively. |
Author | Engeli, Stefan Jordan, Jens Gutzki, Frank-Mathias Suchy, Maria-Theresia Tsikas, Dimitrios Zoerner, Alexander A. Batkai, Sandor |
Author_xml | – sequence: 1 givenname: Alexander A. surname: Zoerner fullname: Zoerner, Alexander A. email: zoerner.alexander@mh-hannover.de organization: Institute of Clinical Pharmacology, Hannover Medical School, Hannover, Germany – sequence: 2 givenname: Sandor surname: Batkai fullname: Batkai, Sandor organization: Institute of Clinical Pharmacology, Hannover Medical School, Hannover, Germany – sequence: 3 givenname: Maria-Theresia surname: Suchy fullname: Suchy, Maria-Theresia organization: Institute of Clinical Pharmacology, Hannover Medical School, Hannover, Germany – sequence: 4 givenname: Frank-Mathias surname: Gutzki fullname: Gutzki, Frank-Mathias organization: Institute of Clinical Pharmacology, Hannover Medical School, Hannover, Germany – sequence: 5 givenname: Stefan surname: Engeli fullname: Engeli, Stefan organization: Institute of Clinical Pharmacology, Hannover Medical School, Hannover, Germany – sequence: 6 givenname: Jens surname: Jordan fullname: Jordan, Jens organization: Institute of Clinical Pharmacology, Hannover Medical School, Hannover, Germany – sequence: 7 givenname: Dimitrios surname: Tsikas fullname: Tsikas, Dimitrios organization: Institute of Clinical Pharmacology, Hannover Medical School, Hannover, Germany |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21752730$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkt1u0zAUx8M0xLbCIwC-Y0hLazu1k4wLNFUwkFqBVCpxZznOSesqsTs7mVaueAfekCfBXbpdIEEt-fP8zrF9zv8sOjbWQBS9JHhIMOGj9XCtVs42xZBiQoaYDzFlR9EpydIkTlL-_TisWYpjTBN6Ep15v8aYpDhNnkUnlKSMpgk-fXI0101Xt9KA7TxafJ1Ofv_8NZuPZnN000nT6kor2WprkK1QuwIEprRKGiMLbawuPaKxdFKtdGmN3dZoWW8VOFujc3p1_fYCkX-Zyb1ZmjL0MMpGl4C0QauukQZtaukbeYlm2uhG_3h8QiNbp-9iqCpQrb9A4ZJRiIS0tw24B3AXtYSlk2W_L7aotXUHBpC39S2YFsFdG961sz6Pnlay9vBiPw-ixccP3yaf4umX68-Tq2msGMVtDHiMMee0wkVSkayAhHBesnBU0jzHSUGB0mpMeJYxzLDKqMS8ygCSvMghockgetPH3Th704FvRaO9grruky9yklPKWKjfIDr_L0lxaJzlLDmIBq3knAYUB_TVHu2KBkqxcbqRbisexBAA1gPKWe8dVI8IwbtAXKzFXnRiJzqBuQiiC37v_vJTur1PfEixrg96v-69K2mFXDrtxWIeAL77Y0rHWSDe9wSE6txqcMIrDUZBqV1QgSitPnDHH0g5ARo |
CitedBy_id | crossref_primary_10_1016_j_resp_2019_05_002 crossref_primary_10_1016_j_molmet_2017_03_005 crossref_primary_10_1016_j_biopsycho_2018_03_006 crossref_primary_10_1016_j_chroma_2017_06_029 crossref_primary_10_1016_j_jchromb_2016_08_004 crossref_primary_10_1016_j_talanta_2019_06_004 crossref_primary_10_1016_j_prostaglandins_2014_11_002 crossref_primary_10_3390_cells11213382 crossref_primary_10_1002_ejlt_201500115 crossref_primary_10_1016_j_toxac_2021_07_004 crossref_primary_10_1016_j_jchromb_2016_06_002 crossref_primary_10_1186_s12991_023_00437_2 crossref_primary_10_1016_j_jpba_2023_115624 crossref_primary_10_1194_jlr_M032219 crossref_primary_10_3390_targets3010011 crossref_primary_10_1016_j_aca_2019_09_002 crossref_primary_10_1074_jbc_RA120_015278 crossref_primary_10_3390_ijms222212374 crossref_primary_10_1016_j_jchromb_2020_122252 crossref_primary_10_1016_j_jchromb_2020_122371 crossref_primary_10_1016_j_bbalip_2020_158807 crossref_primary_10_1016_j_jchromb_2017_09_007 crossref_primary_10_1016_j_talanta_2019_120593 crossref_primary_10_1016_j_jchromb_2022_123102 crossref_primary_10_1080_10408347_2024_2432998 crossref_primary_10_1016_j_jchromb_2014_03_017 crossref_primary_10_3390_ijms22115485 crossref_primary_10_1194_jlr_D094680 crossref_primary_10_1089_can_2023_0273 crossref_primary_10_1002_mnfr_201200840 crossref_primary_10_1021_acs_analchem_6b01862 crossref_primary_10_1002_brb3_3323 crossref_primary_10_1016_j_jchromb_2016_08_035 crossref_primary_10_1016_j_talanta_2020_121006 crossref_primary_10_1007_s13679_012_0027_6 crossref_primary_10_1016_j_taap_2014_06_023 crossref_primary_10_1021_jf4033365 crossref_primary_10_1007_s00216_016_9720_8 crossref_primary_10_1016_j_toxlet_2013_12_004 crossref_primary_10_2527_jas_2016_1025 crossref_primary_10_1016_j_jpba_2022_114768 crossref_primary_10_1038_s41467_024_54819_5 crossref_primary_10_1016_j_aca_2021_339316 crossref_primary_10_1038_s41398_024_03205_2 crossref_primary_10_1016_j_jmsacl_2021_11_001 crossref_primary_10_1152_ajpendo_00119_2017 crossref_primary_10_1016_j_jchromb_2013_01_016 crossref_primary_10_3390_molecules29153694 crossref_primary_10_3389_fncel_2017_00039 crossref_primary_10_3390_biomedicines10020243 crossref_primary_10_1007_s00216_014_8384_5 crossref_primary_10_1002_jssc_70068 crossref_primary_10_1016_j_jchromb_2016_06_018 crossref_primary_10_1016_j_ab_2012_11_008 crossref_primary_10_1016_j_prostaglandins_2023_106763 crossref_primary_10_3390_molecules26072086 crossref_primary_10_1016_j_ab_2011_11_003 crossref_primary_10_1016_j_jpba_2023_115844 crossref_primary_10_1002_rcm_7277 crossref_primary_10_1016_j_placenta_2013_08_007 crossref_primary_10_1038_s41598_019_45969_4 crossref_primary_10_1371_journal_pone_0187197 crossref_primary_10_1016_j_aca_2018_06_016 crossref_primary_10_1016_j_talanta_2015_11_016 crossref_primary_10_1016_j_bbalip_2011_08_004 crossref_primary_10_1016_j_talanta_2024_126518 crossref_primary_10_1007_s00204_019_02389_7 crossref_primary_10_1186_s40543_023_00381_6 crossref_primary_10_3390_jcm13237276 crossref_primary_10_1017_S0033291723001204 crossref_primary_10_4155_bio_2018_0173 crossref_primary_10_1038_s41598_021_02970_0 crossref_primary_10_1016_j_aca_2018_08_062 crossref_primary_10_1194_jlr_D043794 crossref_primary_10_1016_j_pnpbp_2021_110243 crossref_primary_10_1159_000501208 crossref_primary_10_1016_j_jchromb_2015_04_018 crossref_primary_10_3390_molecules28134905 crossref_primary_10_1111_j_1365_2125_2012_04175_x crossref_primary_10_2174_1385272824666200204121746 crossref_primary_10_3390_nu13103587 crossref_primary_10_1097_j_pain_0000000000001447 crossref_primary_10_1002_bmc_4439 crossref_primary_10_1002_dta_1574 crossref_primary_10_1194_jlr_D070433 crossref_primary_10_1021_acs_jafc_9b08195 crossref_primary_10_1002_oby_20728 crossref_primary_10_4155_bio_2019_0144 crossref_primary_10_1186_s43094_019_0007_8 crossref_primary_10_1155_2016_2426398 |
Cites_doi | 10.1002/rcm.3918 10.1126/science.1470919 10.1016/j.protis.2009.12.004 10.1016/j.prostaglandins.2006.08.002 10.1002/bmc.1373 10.1016/j.jchromb.2008.08.032 10.1016/0014-5793(96)00891-5 10.1021/ac0624086 10.1016/S0021-9258(18)64849-5 10.1016/j.jchromb.2009.04.010 10.1016/S0009-3084(02)00068-3 10.1016/j.jchromb.2009.02.029 10.1016/j.jchromb.2009.04.016 10.1016/j.jchromb.2010.04.025 10.1016/j.jchromb.2009.01.005 10.1016/j.ab.2008.08.040 10.1016/S0003-2697(02)00643-7 10.1016/j.jchromb.2007.09.007 10.1016/j.jchromb.2011.02.004 10.2337/diabetes.54.10.2838 10.1365/s10337-009-1413-4 10.1002/rcm.4121 10.1021/jm020818q 10.1139/o59-099 10.1002/jms.1701 10.1016/S0076-6879(07)33005-X 10.1016/j.jchromb.2009.01.008 10.2116/analsci.26.1199 10.1016/0952-3278(95)90130-2 10.1016/j.jchromb.2010.10.012 10.1124/pr.58.3.2 10.1006/abbi.1998.0688 |
ContentType | Journal Article |
Copyright | 2011 Elsevier B.V. Copyright © 2011 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2011 Elsevier B.V. – notice: Copyright © 2011 Elsevier B.V. All rights reserved. |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TB 8FD FR3 7S9 L.6 7X8 |
DOI | 10.1016/j.jchromb.2011.06.025 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Mechanical & Transportation Engineering Abstracts Engineering Research Database AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | Technology Research Database MEDLINE - Academic AGRICOLA MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1873-376X |
EndPage | 171 |
ExternalDocumentID | 21752730 10_1016_j_jchromb_2011_06_025 US201600067248 S1570023211004107 |
Genre | Journal Article |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFRF ABGSF ABJNI ABMAC ABUDA ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADECG ADEZE ADUVX AEBSH AEFWE AEHWI AEKER AFKWA AFTJW AFXIZ AFZHZ AGHFR AGUBO AGYEJ AI. AIEXJ AIKHN AITUG AJBFU AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DOVZS EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FLBIZ FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 RIG RNS ROL RPZ SCB SCC SDF SDG SDP SES SPC SPCBC SSK SSU SSZ T5K VH1 ~G- .GJ 29K ABFNM ABPIF AGRDE D-I EJD FBQ NCXOZ OHT SEW XFK ZGI AATTM AAXKI AAYWO AAYXX AEIPS AFJKZ AGCQF AGRNS AIIUN ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EFKBS EIF NPM 7TB 8FD FR3 7S9 L.6 7X8 |
ID | FETCH-LOGICAL-c520t-e0400662f0b3f18be3166d5066d29903b2e22f416885050c82a06f8ee39b9e323 |
IEDL.DBID | AIKHN |
ISSN | 1570-0232 1873-376X |
IngestDate | Fri Sep 05 10:22:25 EDT 2025 Thu Sep 04 22:53:45 EDT 2025 Thu Sep 04 20:29:18 EDT 2025 Mon Jul 21 06:04:52 EDT 2025 Tue Jul 01 01:50:06 EDT 2025 Thu Apr 24 23:08:53 EDT 2025 Wed Dec 27 19:13:36 EST 2023 Fri Feb 23 02:21:37 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Isomerisation Plasma Tandem mass spectrometry Quantification 2AG Matrix-effects AEA Clinical studies Endocannabinoids |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 Copyright © 2011 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c520t-e0400662f0b3f18be3166d5066d29903b2e22f416885050c82a06f8ee39b9e323 |
Notes | http://dx.doi.org/10.1016/j.jchromb.2011.06.025 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
PMID | 21752730 |
PQID | 1019625950 |
PQPubID | 23500 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_919225587 proquest_miscellaneous_2000065953 proquest_miscellaneous_1019625950 pubmed_primary_21752730 crossref_primary_10_1016_j_jchromb_2011_06_025 crossref_citationtrail_10_1016_j_jchromb_2011_06_025 fao_agris_US201600067248 elsevier_sciencedirect_doi_10_1016_j_jchromb_2011_06_025 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-02-01 |
PublicationDateYYYYMMDD | 2012-02-01 |
PublicationDate_xml | – month: 02 year: 2012 text: 2012-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Journal of chromatography. B, Analytical technologies in the biomedical and life sciences |
PublicationTitleAlternate | J Chromatogr B Analyt Technol Biomed Life Sci |
PublicationYear | 2012 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Williams, Wood, Pandarinathan, Karanian, Bahr, Vouros, Makriyannis (bib0020) 2007; 79 Ismaiel, Halquist, Elmamly, Shalaby, Karnes (bib0095) 2007; 859 Xia, Jemal (bib0125) 2009; 23 Tsikas (bib0140) 2009; 877 Fontana, Di Marzo, Cadas, Piomelli (bib0160) 1995; 53 Balvers, Verhoeckx, Witkamp (bib0050) 2009; 877 Thomas, Hopfgartner, Giroud, Staub (bib0065) 2009; 23 Vogeser, Schelling (bib0045) 2007; 45 Tsikas (bib0130) 2009; 877 van der Stelt, van Kuik, Bari, van Zadelhoff, Leeflang, Veldink, Finazzi-Agro, Vliegenthart, Maccarrone (bib0010) 2002; 45 P.K. Bennett, K.C. Van Horne, in: AAPS Conference, Salt Lake City, Utah, 2003. Anagnostopoulos, Rakiec, Wood, Pandarinathan, Zvonok, Makriyannis, Siafaka-Kapadai (bib0155) 2010; 161 Engeli, Bohnke, Feldpausch, Gorzelniak, Janke, Batkai, Pacher, Harvey-White, Luft, Sharma, Jordan (bib0025) 2005; 54 Rouzer, Ghebreselasie, Marnett (bib0015) 2002; 119 Pacher, Batkai, Kunos (bib0005) 2006; 58 Paudel, Chen, Stinchcomb (bib0040) 2009; 71 Felder, Nielsen, Briley, Palkovits, Priller, Axelrod, Nguyen, Richardson, Riggin, Koppel, Paul, Becker (bib0120) 1996; 393 Zoerner, Gutzki, Suchy, Beckmann, Engeli, Jordan, Tsikas (bib0075) 2009; 877 Kingsley, Marnett (bib0115) 2007; 433 Higuchi, Irie, Nakano, Sakamoto, Akitake, Araki, Ohji, Furuta, Katsuki, Yamaguchi, Matsuyama, Mishima, Iwasaki, Fujiwara (bib0175) 2010; 26 Hardison, Weintraub, Giuffrida (bib0060) 2006; 81 Lehtonen, Storvik, Malinen, Hyytiä, Lakso, Auriola, Wong, Callaway (bib0070) 2011; 879 Bligh, Dyer (bib0110) 1959; 37 Folch, Lees, Sloane Stanley (bib0105) 1957; 226 Zhang, Gao, Btesh, Kagan, Kerns, Samad, Chanda (bib0055) 2010; 45 Marczylo, Lam, Nallendran, Taylor, Konje (bib0035) 2009; 384 Ismaiel, Halquist, Elmamly, Shalaby, Karnes (bib0100) 2008; 875 Astarita, Piomelli (bib0150) 2009; 877 Jemal, Ouyang, Xia (bib0090) 2009; 24 Tsikas, Wolf, Mitschke, Gutzki, Will, Bader (bib0135) 2010; 878 Ismaiel, Zhang, Jenkins, Karnes (bib0080) 2010; 878 Kondo, Sugiura, Kodaka, Kudo, Waku, Tokumura (bib0165) 1998; 354 Kingsley, Marnett (bib0030) 2003; 314 Devane, Hanus, Breuer, Pertwee, Stevenson, Griffin, Gibson, Mandelbaum, Etinger, Mechoulam (bib0170) 1992; 258 Pacher (10.1016/j.jchromb.2011.06.025_bib0005) 2006; 58 Balvers (10.1016/j.jchromb.2011.06.025_bib0050) 2009; 877 Lehtonen (10.1016/j.jchromb.2011.06.025_bib0070) 2011; 879 Kingsley (10.1016/j.jchromb.2011.06.025_bib0030) 2003; 314 Engeli (10.1016/j.jchromb.2011.06.025_bib0025) 2005; 54 Xia (10.1016/j.jchromb.2011.06.025_bib0125) 2009; 23 Kondo (10.1016/j.jchromb.2011.06.025_bib0165) 1998; 354 Vogeser (10.1016/j.jchromb.2011.06.025_bib0045) 2007; 45 Fontana (10.1016/j.jchromb.2011.06.025_bib0160) 1995; 53 Zhang (10.1016/j.jchromb.2011.06.025_bib0055) 2010; 45 Bligh (10.1016/j.jchromb.2011.06.025_bib0110) 1959; 37 Kingsley (10.1016/j.jchromb.2011.06.025_bib0115) 2007; 433 Anagnostopoulos (10.1016/j.jchromb.2011.06.025_bib0155) 2010; 161 Paudel (10.1016/j.jchromb.2011.06.025_bib0040) 2009; 71 Zoerner (10.1016/j.jchromb.2011.06.025_bib0075) 2009; 877 Ismaiel (10.1016/j.jchromb.2011.06.025_bib0100) 2008; 875 van der Stelt (10.1016/j.jchromb.2011.06.025_bib0010) 2002; 45 Marczylo (10.1016/j.jchromb.2011.06.025_bib0035) 2009; 384 10.1016/j.jchromb.2011.06.025_bib0085 Devane (10.1016/j.jchromb.2011.06.025_bib0170) 1992; 258 Tsikas (10.1016/j.jchromb.2011.06.025_bib0140) 2009; 877 Williams (10.1016/j.jchromb.2011.06.025_bib0020) 2007; 79 Tsikas (10.1016/j.jchromb.2011.06.025_bib0135) 2010; 878 Thomas (10.1016/j.jchromb.2011.06.025_bib0065) 2009; 23 Hardison (10.1016/j.jchromb.2011.06.025_bib0060) 2006; 81 Ismaiel (10.1016/j.jchromb.2011.06.025_bib0080) 2010; 878 Tsikas (10.1016/j.jchromb.2011.06.025_bib0130) 2009; 877 Astarita (10.1016/j.jchromb.2011.06.025_bib0150) 2009; 877 Jemal (10.1016/j.jchromb.2011.06.025_bib0090) 2009; 24 Ismaiel (10.1016/j.jchromb.2011.06.025_bib0095) 2007; 859 Felder (10.1016/j.jchromb.2011.06.025_bib0120) 1996; 393 Folch (10.1016/j.jchromb.2011.06.025_bib0105) 1957; 226 Higuchi (10.1016/j.jchromb.2011.06.025_bib0175) 2010; 26 Rouzer (10.1016/j.jchromb.2011.06.025_bib0015) 2002; 119 |
References_xml | – volume: 877 start-page: 2755 year: 2009 ident: bib0150 publication-title: J. Chromatogr. B – volume: 45 start-page: 1023 year: 2007 ident: bib0045 publication-title: Clin. Chem. Lab. Med. – volume: 859 start-page: 84 year: 2007 ident: bib0095 publication-title: J. Chromatogr. B – volume: 226 start-page: 497 year: 1957 ident: bib0105 publication-title: J. Biol. Chem. – volume: 161 start-page: 452 year: 2010 ident: bib0155 publication-title: Protist – volume: 875 start-page: 333 year: 2008 ident: bib0100 publication-title: J. Chromatogr. B – volume: 24 start-page: 2 year: 2009 ident: bib0090 publication-title: Biomed. Chromatogr. – volume: 81 start-page: 106 year: 2006 ident: bib0060 publication-title: Prostaglandins Other Lipid Mediat. – volume: 354 start-page: 303 year: 1998 ident: bib0165 publication-title: Arch. Biochem. Biophys. – volume: 23 start-page: 629 year: 2009 ident: bib0065 publication-title: Rapid Commun. Mass Spectrom. – volume: 314 start-page: 8 year: 2003 ident: bib0030 publication-title: Anal. Biochem. – volume: 79 start-page: 5582 year: 2007 ident: bib0020 publication-title: Anal. Chem. – volume: 393 start-page: 231 year: 1996 ident: bib0120 publication-title: FEBS Lett. – volume: 37 start-page: 911 year: 1959 ident: bib0110 publication-title: Can. J. Biochem. Physiol. – volume: 53 start-page: 301 year: 1995 ident: bib0160 publication-title: Prostaglandins Leukot. Essent. Fatty Acids – volume: 58 start-page: 389 year: 2006 ident: bib0005 publication-title: Pharmacol. Rev. – volume: 877 start-page: 1583 year: 2009 ident: bib0050 publication-title: J. Chromatogr. B – volume: 258 start-page: 1946 year: 1992 ident: bib0170 publication-title: Science – volume: 878 start-page: 3303 year: 2010 ident: bib0080 publication-title: J. Chromatogr. B – volume: 45 start-page: 167 year: 2010 ident: bib0055 publication-title: J. Mass Spectrom. – volume: 384 start-page: 106 year: 2009 ident: bib0035 publication-title: Anal. Biochem. – reference: P.K. Bennett, K.C. Van Horne, in: AAPS Conference, Salt Lake City, Utah, 2003. – volume: 71 start-page: 65 year: 2009 ident: bib0040 publication-title: Chromatographia – volume: 45 start-page: 3709 year: 2002 ident: bib0010 publication-title: J. Med. Chem. – volume: 433 start-page: 91 year: 2007 ident: bib0115 publication-title: Methods Enzymol. – volume: 54 start-page: 2838 year: 2005 ident: bib0025 publication-title: Diabetes – volume: 878 start-page: 2582 year: 2010 ident: bib0135 publication-title: J. Chromatogr. B – volume: 119 start-page: 69 year: 2002 ident: bib0015 publication-title: Chem. Phys. Lipids – volume: 879 start-page: 677 year: 2011 ident: bib0070 publication-title: J. Chromatogr. B – volume: 26 start-page: 1199 year: 2010 ident: bib0175 publication-title: Anal. Sci. – volume: 877 start-page: 2909 year: 2009 ident: bib0075 publication-title: J. Chromatogr. B – volume: 877 start-page: 2244 year: 2009 ident: bib0130 publication-title: J. Chromatogr. B – volume: 23 start-page: 2125 year: 2009 ident: bib0125 publication-title: Rapid Commun. Mass Spectrom. – volume: 877 start-page: 2308 year: 2009 ident: bib0140 publication-title: J. Chromatogr. B – volume: 23 start-page: 629 year: 2009 ident: 10.1016/j.jchromb.2011.06.025_bib0065 publication-title: Rapid Commun. Mass Spectrom. doi: 10.1002/rcm.3918 – volume: 258 start-page: 1946 year: 1992 ident: 10.1016/j.jchromb.2011.06.025_bib0170 publication-title: Science doi: 10.1126/science.1470919 – volume: 161 start-page: 452 year: 2010 ident: 10.1016/j.jchromb.2011.06.025_bib0155 publication-title: Protist doi: 10.1016/j.protis.2009.12.004 – volume: 81 start-page: 106 year: 2006 ident: 10.1016/j.jchromb.2011.06.025_bib0060 publication-title: Prostaglandins Other Lipid Mediat. doi: 10.1016/j.prostaglandins.2006.08.002 – volume: 24 start-page: 2 year: 2009 ident: 10.1016/j.jchromb.2011.06.025_bib0090 publication-title: Biomed. Chromatogr. doi: 10.1002/bmc.1373 – volume: 875 start-page: 333 year: 2008 ident: 10.1016/j.jchromb.2011.06.025_bib0100 publication-title: J. Chromatogr. B doi: 10.1016/j.jchromb.2008.08.032 – volume: 393 start-page: 231 year: 1996 ident: 10.1016/j.jchromb.2011.06.025_bib0120 publication-title: FEBS Lett. doi: 10.1016/0014-5793(96)00891-5 – volume: 79 start-page: 5582 year: 2007 ident: 10.1016/j.jchromb.2011.06.025_bib0020 publication-title: Anal. Chem. doi: 10.1021/ac0624086 – volume: 226 start-page: 497 year: 1957 ident: 10.1016/j.jchromb.2011.06.025_bib0105 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)64849-5 – volume: 877 start-page: 1583 year: 2009 ident: 10.1016/j.jchromb.2011.06.025_bib0050 publication-title: J. Chromatogr. B doi: 10.1016/j.jchromb.2009.04.010 – ident: 10.1016/j.jchromb.2011.06.025_bib0085 – volume: 119 start-page: 69 year: 2002 ident: 10.1016/j.jchromb.2011.06.025_bib0015 publication-title: Chem. Phys. Lipids doi: 10.1016/S0009-3084(02)00068-3 – volume: 877 start-page: 2244 year: 2009 ident: 10.1016/j.jchromb.2011.06.025_bib0130 publication-title: J. Chromatogr. B doi: 10.1016/j.jchromb.2009.02.029 – volume: 877 start-page: 2909 year: 2009 ident: 10.1016/j.jchromb.2011.06.025_bib0075 publication-title: J. Chromatogr. B doi: 10.1016/j.jchromb.2009.04.016 – volume: 878 start-page: 2582 year: 2010 ident: 10.1016/j.jchromb.2011.06.025_bib0135 publication-title: J. Chromatogr. B doi: 10.1016/j.jchromb.2010.04.025 – volume: 877 start-page: 2308 year: 2009 ident: 10.1016/j.jchromb.2011.06.025_bib0140 publication-title: J. Chromatogr. B doi: 10.1016/j.jchromb.2009.01.005 – volume: 384 start-page: 106 year: 2009 ident: 10.1016/j.jchromb.2011.06.025_bib0035 publication-title: Anal. Biochem. doi: 10.1016/j.ab.2008.08.040 – volume: 314 start-page: 8 year: 2003 ident: 10.1016/j.jchromb.2011.06.025_bib0030 publication-title: Anal. Biochem. doi: 10.1016/S0003-2697(02)00643-7 – volume: 859 start-page: 84 year: 2007 ident: 10.1016/j.jchromb.2011.06.025_bib0095 publication-title: J. Chromatogr. B doi: 10.1016/j.jchromb.2007.09.007 – volume: 879 start-page: 677 year: 2011 ident: 10.1016/j.jchromb.2011.06.025_bib0070 publication-title: J. Chromatogr. B doi: 10.1016/j.jchromb.2011.02.004 – volume: 45 start-page: 1023 year: 2007 ident: 10.1016/j.jchromb.2011.06.025_bib0045 publication-title: Clin. Chem. Lab. Med. – volume: 54 start-page: 2838 year: 2005 ident: 10.1016/j.jchromb.2011.06.025_bib0025 publication-title: Diabetes doi: 10.2337/diabetes.54.10.2838 – volume: 71 start-page: 65 year: 2009 ident: 10.1016/j.jchromb.2011.06.025_bib0040 publication-title: Chromatographia doi: 10.1365/s10337-009-1413-4 – volume: 23 start-page: 2125 year: 2009 ident: 10.1016/j.jchromb.2011.06.025_bib0125 publication-title: Rapid Commun. Mass Spectrom. doi: 10.1002/rcm.4121 – volume: 45 start-page: 3709 year: 2002 ident: 10.1016/j.jchromb.2011.06.025_bib0010 publication-title: J. Med. Chem. doi: 10.1021/jm020818q – volume: 37 start-page: 911 year: 1959 ident: 10.1016/j.jchromb.2011.06.025_bib0110 publication-title: Can. J. Biochem. Physiol. doi: 10.1139/o59-099 – volume: 45 start-page: 167 year: 2010 ident: 10.1016/j.jchromb.2011.06.025_bib0055 publication-title: J. Mass Spectrom. doi: 10.1002/jms.1701 – volume: 433 start-page: 91 year: 2007 ident: 10.1016/j.jchromb.2011.06.025_bib0115 publication-title: Methods Enzymol. doi: 10.1016/S0076-6879(07)33005-X – volume: 877 start-page: 2755 year: 2009 ident: 10.1016/j.jchromb.2011.06.025_bib0150 publication-title: J. Chromatogr. B doi: 10.1016/j.jchromb.2009.01.008 – volume: 26 start-page: 1199 year: 2010 ident: 10.1016/j.jchromb.2011.06.025_bib0175 publication-title: Anal. Sci. doi: 10.2116/analsci.26.1199 – volume: 53 start-page: 301 year: 1995 ident: 10.1016/j.jchromb.2011.06.025_bib0160 publication-title: Prostaglandins Leukot. Essent. Fatty Acids doi: 10.1016/0952-3278(95)90130-2 – volume: 878 start-page: 3303 year: 2010 ident: 10.1016/j.jchromb.2011.06.025_bib0080 publication-title: J. Chromatogr. B doi: 10.1016/j.jchromb.2010.10.012 – volume: 58 start-page: 389 year: 2006 ident: 10.1016/j.jchromb.2011.06.025_bib0005 publication-title: Pharmacol. Rev. doi: 10.1124/pr.58.3.2 – volume: 354 start-page: 303 year: 1998 ident: 10.1016/j.jchromb.2011.06.025_bib0165 publication-title: Arch. Biochem. Biophys. doi: 10.1006/abbi.1998.0688 |
SSID | ssj0017073 |
Score | 2.3685598 |
Snippet | Analysis of the endocannabinoid (EC) system's key molecules 2-arachidonoyl glycerol (2AG) and arachidonoyl ethanolamide (anandamide, AEA) is challenging due to... |
SourceID | proquest pubmed crossref fao elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 161 |
SubjectTerms | 2AG Adolescents AEA Arachidonic Acids - blood Arachidonic Acids - chemistry Arachidonic Acids - isolation & purification Arachidonic Acids - urine Chemical Fractionation - methods Children chromatography Chromatography, High Pressure Liquid - methods Clinical studies creatinine Endocannabinoids ethyl acetate evaporation Glycerides - blood Glycerides - chemistry Glycerides - isolation & purification Glycerides - urine Glycerols Human Humans ionization Isomerisation Isomerism isomerization Limit of Detection Linear Models Matrix-effects Patients phospholipids Plasma Polyunsaturated Alkamides - blood Polyunsaturated Alkamides - chemistry Polyunsaturated Alkamides - isolation & purification Polyunsaturated Alkamides - urine quality control Quantification Reproducibility of Results Solvents Tandem mass spectrometry Tandem Mass Spectrometry - methods Toluene Toluene - chemistry Toxicity urine |
Title | Simultaneous UPLC–MS/MS quantification of the endocannabinoids 2-arachidonoyl glycerol (2AG), 1-arachidonoyl glycerol (1AG), and anandamide in human plasma: Minimization of matrix-effects, 2AG/1AG isomerization and degradation by toluene solvent extraction |
URI | https://dx.doi.org/10.1016/j.jchromb.2011.06.025 https://www.ncbi.nlm.nih.gov/pubmed/21752730 https://www.proquest.com/docview/1019625950 https://www.proquest.com/docview/2000065953 https://www.proquest.com/docview/919225587 |
Volume | 883-884 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEF7S9MKlAgo0_ESDhBBIdWyv7Y3NLYooAZqqIkTqzbK969ZRbIc0lcgF8Q68IU_CzHoThERUiYMPtmc3djw7883OH2MvpcpUmEvHikQUWr4rhZXIHHk5CrKIClRFeh9yfCZGU__jRXDRYsNNLgyFVRrZ38h0La3NFdv8m_aiKOyJS6XZERDoomcuZZTvc9T2YZvtDz58Gp1tnQl9Rzuaid6iAX8SeexZb5ZdLesyNcU8Rc-hptn_VlF7eVLvBqJaIZ3cYwcGScKgedj7rKWqB-xwUKEVXa7hFejYTr1pfninNSkocjCpFBr6MD0_Hf768XM8sccT-HqTNPFC-hNBnQNCQlCVRCVXVQkaznUhr4FbVNj5qpB1Va_ncDlfZ2pZz-E1H7x_cwzurtuuvp1UEg_atCgLqaCoQPcGhAVi9zJ5C-OiKkqTEUqPUFLjgG-WCTY5BvwRG2eC4romD5MhpFklFbto-kJBuoZVTS1XFOCKokBOQNWzbFI3HrLpybsvw5Fluj9YWcCdlaVIvAjBcyf1cjdMlecKIQO8JEmFeilXnOeIJ8MQUZyThTxxRB4q5UVppDzuPWLtqq7UEQOBIj9yZdLv56kv-4jJHJEJx_f7yKiZl3eYv_ngcWZKo1OHjnm8iYGbxYZPYuKTmGIBedBhve2wRVMb5LYB4Yab4r-YPEb9ddvQI-S-OLlE0R9PJ5wKA2o3uh922IsNS8YoG8jh07ATTReRfRs4u2m4RixI43UY7KCJ0AxA0zPsd9jjhuW374sWLZXwc578_6s9ZXfxjDeh8M9Ye7W8Uc8R6a3SLtvrfXe7uJ6Hn0_Pu2Zd_wbtu1RI |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5KeoALAgpteA4SQiDVsb22Nza3KKKkNImQ0ki9WbZ33TqK7ZCmErnxH_iH_BJm1psgJKJKHHzxzq5f43nszHzD2FupMhXm0rEiEYWW70phJTJHXo6CLCKAqkjvQ47GYjD1v1wEF3usv6mFobRKI_sbma6ltTljm7dpL4rCnrgEzY4GgQY9c6mifN-nptYttt87PRuMt8GErqMDzURv0YQ_hTz2rDPLrpZ1mRowT9FxqGn2v1XU3TypdxuiWiGdPGQPjCUJveZmH7E9VT1mB70KvehyDe9A53bqTfODO3uTgjIHk0qhow_Tr8P-rx8_RxN7NIFvN0mTL6Q_EdQ5oEkIqpKo5KoqQce5LuQ1cIuAna8KWVf1eg6X83WmlvUc3vPe5w_H4O4advVwUkk8aNOiLKSCogLdGxAWaLuXyUcYFVVRmopQuoWSGgd8t0yyyTHgRWxcCYrrmiJMhpBWlQR20fSFgnQNq5parijAP4oSOQFVz7Ip3XjCpiefzvsDy3R_sLKAOytLkXgRgudO6uVumCrPFUIGeEqSCvVSrjjP0Z4MQ7TinCzkiSPyUCkvSiPlce8pa1V1pY4YCBT5kSuTbjdPfdlFm8wRmXB8v4uMmnl5m_mbDx5nBhqdOnTM400O3Cw2fBITn8SUC8iDNutspy0abJDbJoQbbor_YvIY9ddtU4-Q--LkEkV_PJ1wAgbUYXQ_bLM3G5aMUTZQwKdhJ1ouIv82cHbTcG2xII3XZrCDJkI3AF3PsNtmhw3Lb58XPVqC8HOe_f-jvWb3BuejYTw8HZ89Z_dxhDdp8S9Ya7W8US_R6lulr8xf_RtE3FSZ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simultaneous+UPLC%E2%80%93MS%2FMS+quantification+of+the+endocannabinoids+2-arachidonoyl+glycerol+%282AG%29%2C+1-arachidonoyl+glycerol+%281AG%29%2C+and+anandamide+in+human+plasma%3A+Minimization+of+matrix-effects%2C+2AG%2F1AG+isomerization+and+degradation+by+toluene+solvent+extraction&rft.jtitle=Journal+of+chromatography.+B%2C+Analytical+technologies+in+the+biomedical+and+life+sciences&rft.au=Zoerner%2C+Alexander+A&rft.au=Batkai%2C+Sandor&rft.au=Suchy%2C+Maria-Theresia&rft.au=Gutzki%2C+Frank-Mathias&rft.date=2012-02-01&rft.issn=1570-0232&rft.volume=883-884+p.161-171&rft.spage=161&rft.epage=171&rft_id=info:doi/10.1016%2Fj.jchromb.2011.06.025&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1570-0232&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1570-0232&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1570-0232&client=summon |