Simultaneous UPLC–MS/MS quantification of the endocannabinoids 2-arachidonoyl glycerol (2AG), 1-arachidonoyl glycerol (1AG), and anandamide in human plasma: Minimization of matrix-effects, 2AG/1AG isomerization and degradation by toluene solvent extraction

Analysis of the endocannabinoid (EC) system's key molecules 2-arachidonoyl glycerol (2AG) and arachidonoyl ethanolamide (anandamide, AEA) is challenging due to several peculiarities. 2AG isomerizes spontaneously to its biologically inactive analogue 1-arachidonoyl glycerol (1AG) by acyl migrati...

Full description

Saved in:
Bibliographic Details
Published inJournal of chromatography. B, Analytical technologies in the biomedical and life sciences Vol. 883-884; no. 3; pp. 161 - 171
Main Authors Zoerner, Alexander A., Batkai, Sandor, Suchy, Maria-Theresia, Gutzki, Frank-Mathias, Engeli, Stefan, Jordan, Jens, Tsikas, Dimitrios
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.02.2012
Subjects
Online AccessGet full text
ISSN1570-0232
1873-376X
1873-376X
DOI10.1016/j.jchromb.2011.06.025

Cover

Abstract Analysis of the endocannabinoid (EC) system's key molecules 2-arachidonoyl glycerol (2AG) and arachidonoyl ethanolamide (anandamide, AEA) is challenging due to several peculiarities. 2AG isomerizes spontaneously to its biologically inactive analogue 1-arachidonoyl glycerol (1AG) by acyl migration and it is only chromatographically distinguishable from 1AG. Matrix-effects caused primarily by co-extracted phospholipids may further compromise analysis. In addition, 2AG and 1AG are unstable under certain conditions like solvent evaporation or reconstitution of dried extracts. We examined effects of different organic solvents and their mixtures, such as toluene, ethyl acetate, and chloroform-methanol, on 2AG/1AG isomerisation, 2AG/1AG stability, and matrix-effects in the UPLC–MS/MS analysis of 2AG and AEA in human plasma. Toluene prevented, both, 2AG isomerisation to 1AG and degradation of 2AG/1AG during evaporation. Toluene extracts contain only 2% of matrix-effect-causing plasma phospholipids compared to extracts from the traditionally used solvent mixture chloroform–methanol. Toluene and all other tested organic solvents provide comparable 2AG and AEA extraction yields (60–80%). Based on these favourable toluene properties, we developed and validated a UPLC–MS/MS method with positive electrospray ionization (ESI+) that allows for simultaneous accurate and precise measurement of 2AG and AEA in human plasma. The UPLC–MS/MS method was cross-validated with a previously described fully-validated GC–MS/MS method for AEA in human plasma. A close correlation (r2=0.821) was observed between the results obtained from UPLC–MS/MS (y) and GC–MS/MS (x) methods (y=0.01+0.85x). The UPLC–MS/MS method is suitable for routine measurement of 2AG and AEA in human plasma samples (1mL) in clinical settings as shown by quality control plasma samples processed over a period of 100 days. The UPLC–MS/MS method was further extended to human urine. In urine, AEA was not detectable and 2AG was detected in only 3 out of 19 samples from healthy subjects at 160, 180 and 212pM corresponding to 12.3, 14.5 and 9.9pmol/mmol creatinine, respectively.
AbstractList Analysis of the endocannabinoid (EC) system's key molecules 2-arachidonoyl glycerol (2AG) and arachidonoyl ethanolamide (anandamide, AEA) is challenging due to several peculiarities. 2AG isomerizes spontaneously to its biologically inactive analogue 1-arachidonoyl glycerol (1AG) by acyl migration and it is only chromatographically distinguishable from 1AG. Matrix-effects caused primarily by co-extracted phospholipids may further compromise analysis. In addition, 2AG and 1AG are unstable under certain conditions like solvent evaporation or reconstitution of dried extracts. We examined effects of different organic solvents and their mixtures, such as toluene, ethyl acetate, and chloroform-methanol, on 2AG/1AG isomerisation, 2AG/1AG stability, and matrix-effects in the UPLC-MS/MS analysis of 2AG and AEA in human plasma. Toluene prevented, both, 2AG isomerisation to 1AG and degradation of 2AG/1AG during evaporation. Toluene extracts contain only 2% of matrix-effect-causing plasma phospholipids compared to extracts from the traditionally used solvent mixture chloroform-methanol. Toluene and all other tested organic solvents provide comparable 2AG and AEA extraction yields (60-80%). Based on these favourable toluene properties, we developed and validated a UPLC-MS/MS method with positive electrospray ionization (ESI+) that allows for simultaneous accurate and precise measurement of 2AG and AEA in human plasma. The UPLC-MS/MS method was cross-validated with a previously described fully-validated GC-MS/MS method for AEA in human plasma. A close correlation (r2 = 0.821) was observed between the results obtained from UPLC-MS/MS (y) and GC-MS/MS (x) methods (y = 0.01 + 0.85x). The UPLC-MS/MS method is suitable for routine measurement of 2AG and AEA in human plasma samples (1 mL) in clinical settings as shown by quality control plasma samples processed over a period of 100 days. The UPLC-MS/MS method was further extended to human urine. In urine, AEA was not detectable and 2AG was detected in only 3 out of 19 samples from healthy subjects at 160, 180 and 212 pM corresponding to 12.3, 14.5 and 9.9 pmol/mmol creatinine, respectively. [character removed]DT: J Aims: To determine the maximum tolerated dose, the recommended dose (RD) for phase II studies, dose-limiting toxicities and pharmacokinetics (PK) for plitidepsin administered as a 3-h intravenous infusion every 2 weeks (one cycle) to children with refractory or relapsed solid tumours. Methods: Consecutive cohorts of patients were treated according to a standard '3 + 3' design with escalating doses of plitidepsin at 4, 5 and 6 mg/m2. Additional 15 patients were recruited at the RD to further evaluate safety and pharmacokinetic associations with respect to age, dose level and toxicity. Results: Thirty-eight of 41 patients registered received plitidepsin. Dose-limiting toxicities during the first three treatment cycles related to myalgia, elevated creatine phosphokinase, transaminase increase and nausea/vomiting. The RD for plitidepsin is 5 mg/m2. PK analyses revealed high inter-patient variability in plasma, but a similar clearance of plitidepsin in children and adolescents. One partial response confirmed at 4 weeks in a patient with neuroblastoma and one unconfirmed partial response in a pancreatoblastoma were observed; four other patients with neuroblastoma, medulloblastoma, glioblastoma and rhabdoid tumour had disease stabilisations lasting >=3 months. Conclusions: Plitidepsin administered to children as a 3-h infusion every 2 weeks is received with manageable toxicity for children with cancer, and the RD is 5 mg/m2. Pharmacokinetic parameters in children and adolescents are comparable to adults. Future phase II studies of plitidepsin are warranted, and our results suggest that plitidepsin could be appropriately developed in combination with other antitumour where myelosuppression is dose-limiting.
Analysis of the endocannabinoid (EC) system's key molecules 2-arachidonoyl glycerol (2AG) and arachidonoyl ethanolamide (anandamide, AEA) is challenging due to several peculiarities. 2AG isomerizes spontaneously to its biologically inactive analogue 1-arachidonoyl glycerol (1AG) by acyl migration and it is only chromatographically distinguishable from 1AG. Matrix-effects caused primarily by co-extracted phospholipids may further compromise analysis. In addition, 2AG and 1AG are unstable under certain conditions like solvent evaporation or reconstitution of dried extracts. We examined effects of different organic solvents and their mixtures, such as toluene, ethyl acetate, and chloroform-methanol, on 2AG/1AG isomerisation, 2AG/1AG stability, and matrix-effects in the UPLC-MS/MS analysis of 2AG and AEA in human plasma. Toluene prevented, both, 2AG isomerisation to 1AG and degradation of 2AG/1AG during evaporation. Toluene extracts contain only 2% of matrix-effect-causing plasma phospholipids compared to extracts from the traditionally used solvent mixture chloroform-methanol. Toluene and all other tested organic solvents provide comparable 2AG and AEA extraction yields (60-80%). Based on these favourable toluene properties, we developed and validated a UPLC-MS/MS method with positive electrospray ionization (ESI+) that allows for simultaneous accurate and precise measurement of 2AG and AEA in human plasma. The UPLC-MS/MS method was cross-validated with a previously described fully-validated GC-MS/MS method for AEA in human plasma. A close correlation (r(2)=0.821) was observed between the results obtained from UPLC-MS/MS (y) and GC-MS/MS (x) methods (y=0.01+0.85x). The UPLC-MS/MS method is suitable for routine measurement of 2AG and AEA in human plasma samples (1 mL) in clinical settings as shown by quality control plasma samples processed over a period of 100 days. The UPLC-MS/MS method was further extended to human urine. In urine, AEA was not detectable and 2AG was detected in only 3 out of 19 samples from healthy subjects at 160, 180 and 212 pM corresponding to 12.3, 14.5 and 9.9 pmol/mmol creatinine, respectively.Analysis of the endocannabinoid (EC) system's key molecules 2-arachidonoyl glycerol (2AG) and arachidonoyl ethanolamide (anandamide, AEA) is challenging due to several peculiarities. 2AG isomerizes spontaneously to its biologically inactive analogue 1-arachidonoyl glycerol (1AG) by acyl migration and it is only chromatographically distinguishable from 1AG. Matrix-effects caused primarily by co-extracted phospholipids may further compromise analysis. In addition, 2AG and 1AG are unstable under certain conditions like solvent evaporation or reconstitution of dried extracts. We examined effects of different organic solvents and their mixtures, such as toluene, ethyl acetate, and chloroform-methanol, on 2AG/1AG isomerisation, 2AG/1AG stability, and matrix-effects in the UPLC-MS/MS analysis of 2AG and AEA in human plasma. Toluene prevented, both, 2AG isomerisation to 1AG and degradation of 2AG/1AG during evaporation. Toluene extracts contain only 2% of matrix-effect-causing plasma phospholipids compared to extracts from the traditionally used solvent mixture chloroform-methanol. Toluene and all other tested organic solvents provide comparable 2AG and AEA extraction yields (60-80%). Based on these favourable toluene properties, we developed and validated a UPLC-MS/MS method with positive electrospray ionization (ESI+) that allows for simultaneous accurate and precise measurement of 2AG and AEA in human plasma. The UPLC-MS/MS method was cross-validated with a previously described fully-validated GC-MS/MS method for AEA in human plasma. A close correlation (r(2)=0.821) was observed between the results obtained from UPLC-MS/MS (y) and GC-MS/MS (x) methods (y=0.01+0.85x). The UPLC-MS/MS method is suitable for routine measurement of 2AG and AEA in human plasma samples (1 mL) in clinical settings as shown by quality control plasma samples processed over a period of 100 days. The UPLC-MS/MS method was further extended to human urine. In urine, AEA was not detectable and 2AG was detected in only 3 out of 19 samples from healthy subjects at 160, 180 and 212 pM corresponding to 12.3, 14.5 and 9.9 pmol/mmol creatinine, respectively.
Analysis of the endocannabinoid (EC) system's key molecules 2-arachidonoyl glycerol (2AG) and arachidonoyl ethanolamide (anandamide, AEA) is challenging due to several peculiarities. 2AG isomerizes spontaneously to its biologically inactive analogue 1-arachidonoyl glycerol (1AG) by acyl migration and it is only chromatographically distinguishable from 1AG. Matrix-effects caused primarily by co-extracted phospholipids may further compromise analysis. In addition, 2AG and 1AG are unstable under certain conditions like solvent evaporation or reconstitution of dried extracts. We examined effects of different organic solvents and their mixtures, such as toluene, ethyl acetate, and chloroform-methanol, on 2AG/1AG isomerisation, 2AG/1AG stability, and matrix-effects in the UPLC–MS/MS analysis of 2AG and AEA in human plasma. Toluene prevented, both, 2AG isomerisation to 1AG and degradation of 2AG/1AG during evaporation. Toluene extracts contain only 2% of matrix-effect-causing plasma phospholipids compared to extracts from the traditionally used solvent mixture chloroform–methanol. Toluene and all other tested organic solvents provide comparable 2AG and AEA extraction yields (60–80%). Based on these favourable toluene properties, we developed and validated a UPLC–MS/MS method with positive electrospray ionization (ESI+) that allows for simultaneous accurate and precise measurement of 2AG and AEA in human plasma. The UPLC–MS/MS method was cross-validated with a previously described fully-validated GC–MS/MS method for AEA in human plasma. A close correlation (r²=0.821) was observed between the results obtained from UPLC–MS/MS (y) and GC–MS/MS (x) methods (y=0.01+0.85x). The UPLC–MS/MS method is suitable for routine measurement of 2AG and AEA in human plasma samples (1mL) in clinical settings as shown by quality control plasma samples processed over a period of 100 days. The UPLC–MS/MS method was further extended to human urine. In urine, AEA was not detectable and 2AG was detected in only 3 out of 19 samples from healthy subjects at 160, 180 and 212pM corresponding to 12.3, 14.5 and 9.9pmol/mmol creatinine, respectively.
Analysis of the endocannabinoid (EC) system's key molecules 2-arachidonoyl glycerol (2AG) and arachidonoyl ethanolamide (anandamide, AEA) is challenging due to several peculiarities. 2AG isomerizes spontaneously to its biologically inactive analogue 1-arachidonoyl glycerol (1AG) by acyl migration and it is only chromatographically distinguishable from 1AG. Matrix-effects caused primarily by co-extracted phospholipids may further compromise analysis. In addition, 2AG and 1AG are unstable under certain conditions like solvent evaporation or reconstitution of dried extracts. We examined effects of different organic solvents and their mixtures, such as toluene, ethyl acetate, and chloroform-methanol, on 2AG/1AG isomerisation, 2AG/1AG stability, and matrix-effects in the UPLC-MS/MS analysis of 2AG and AEA in human plasma. Toluene prevented, both, 2AG isomerisation to 1AG and degradation of 2AG/1AG during evaporation. Toluene extracts contain only 2% of matrix-effect-causing plasma phospholipids compared to extracts from the traditionally used solvent mixture chloroform-methanol. Toluene and all other tested organic solvents provide comparable 2AG and AEA extraction yields (60-80%). Based on these favourable toluene properties, we developed and validated a UPLC-MS/MS method with positive electrospray ionization (ESI+) that allows for simultaneous accurate and precise measurement of 2AG and AEA in human plasma. The UPLC-MS/MS method was cross-validated with a previously described fully-validated GC-MS/MS method for AEA in human plasma. A close correlation (r(2)=0.821) was observed between the results obtained from UPLC-MS/MS (y) and GC-MS/MS (x) methods (y=0.01+0.85x). The UPLC-MS/MS method is suitable for routine measurement of 2AG and AEA in human plasma samples (1 mL) in clinical settings as shown by quality control plasma samples processed over a period of 100 days. The UPLC-MS/MS method was further extended to human urine. In urine, AEA was not detectable and 2AG was detected in only 3 out of 19 samples from healthy subjects at 160, 180 and 212 pM corresponding to 12.3, 14.5 and 9.9 pmol/mmol creatinine, respectively.
Analysis of the endocannabinoid (EC) system's key molecules 2-arachidonoyl glycerol (2AG) and arachidonoyl ethanolamide (anandamide, AEA) is challenging due to several peculiarities. 2AG isomerizes spontaneously to its biologically inactive analogue 1-arachidonoyl glycerol (1AG) by acyl migration and it is only chromatographically distinguishable from 1AG. Matrix-effects caused primarily by co-extracted phospholipids may further compromise analysis. In addition, 2AG and 1AG are unstable under certain conditions like solvent evaporation or reconstitution of dried extracts. We examined effects of different organic solvents and their mixtures, such as toluene, ethyl acetate, and chloroform-methanol, on 2AG/1AG isomerisation, 2AG/1AG stability, and matrix-effects in the UPLC–MS/MS analysis of 2AG and AEA in human plasma. Toluene prevented, both, 2AG isomerisation to 1AG and degradation of 2AG/1AG during evaporation. Toluene extracts contain only 2% of matrix-effect-causing plasma phospholipids compared to extracts from the traditionally used solvent mixture chloroform–methanol. Toluene and all other tested organic solvents provide comparable 2AG and AEA extraction yields (60–80%). Based on these favourable toluene properties, we developed and validated a UPLC–MS/MS method with positive electrospray ionization (ESI+) that allows for simultaneous accurate and precise measurement of 2AG and AEA in human plasma. The UPLC–MS/MS method was cross-validated with a previously described fully-validated GC–MS/MS method for AEA in human plasma. A close correlation (r2=0.821) was observed between the results obtained from UPLC–MS/MS (y) and GC–MS/MS (x) methods (y=0.01+0.85x). The UPLC–MS/MS method is suitable for routine measurement of 2AG and AEA in human plasma samples (1mL) in clinical settings as shown by quality control plasma samples processed over a period of 100 days. The UPLC–MS/MS method was further extended to human urine. In urine, AEA was not detectable and 2AG was detected in only 3 out of 19 samples from healthy subjects at 160, 180 and 212pM corresponding to 12.3, 14.5 and 9.9pmol/mmol creatinine, respectively.
Author Engeli, Stefan
Jordan, Jens
Gutzki, Frank-Mathias
Suchy, Maria-Theresia
Tsikas, Dimitrios
Zoerner, Alexander A.
Batkai, Sandor
Author_xml – sequence: 1
  givenname: Alexander A.
  surname: Zoerner
  fullname: Zoerner, Alexander A.
  email: zoerner.alexander@mh-hannover.de
  organization: Institute of Clinical Pharmacology, Hannover Medical School, Hannover, Germany
– sequence: 2
  givenname: Sandor
  surname: Batkai
  fullname: Batkai, Sandor
  organization: Institute of Clinical Pharmacology, Hannover Medical School, Hannover, Germany
– sequence: 3
  givenname: Maria-Theresia
  surname: Suchy
  fullname: Suchy, Maria-Theresia
  organization: Institute of Clinical Pharmacology, Hannover Medical School, Hannover, Germany
– sequence: 4
  givenname: Frank-Mathias
  surname: Gutzki
  fullname: Gutzki, Frank-Mathias
  organization: Institute of Clinical Pharmacology, Hannover Medical School, Hannover, Germany
– sequence: 5
  givenname: Stefan
  surname: Engeli
  fullname: Engeli, Stefan
  organization: Institute of Clinical Pharmacology, Hannover Medical School, Hannover, Germany
– sequence: 6
  givenname: Jens
  surname: Jordan
  fullname: Jordan, Jens
  organization: Institute of Clinical Pharmacology, Hannover Medical School, Hannover, Germany
– sequence: 7
  givenname: Dimitrios
  surname: Tsikas
  fullname: Tsikas, Dimitrios
  organization: Institute of Clinical Pharmacology, Hannover Medical School, Hannover, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21752730$$D View this record in MEDLINE/PubMed
BookMark eNqFkt1u0zAUx8M0xLbCIwC-Y0hLazu1k4wLNFUwkFqBVCpxZznOSesqsTs7mVaueAfekCfBXbpdIEEt-fP8zrF9zv8sOjbWQBS9JHhIMOGj9XCtVs42xZBiQoaYDzFlR9EpydIkTlL-_TisWYpjTBN6Ep15v8aYpDhNnkUnlKSMpgk-fXI0101Xt9KA7TxafJ1Ofv_8NZuPZnN000nT6kor2WprkK1QuwIEprRKGiMLbawuPaKxdFKtdGmN3dZoWW8VOFujc3p1_fYCkX-Zyb1ZmjL0MMpGl4C0QauukQZtaukbeYlm2uhG_3h8QiNbp-9iqCpQrb9A4ZJRiIS0tw24B3AXtYSlk2W_L7aotXUHBpC39S2YFsFdG961sz6Pnlay9vBiPw-ixccP3yaf4umX68-Tq2msGMVtDHiMMee0wkVSkayAhHBesnBU0jzHSUGB0mpMeJYxzLDKqMS8ygCSvMghockgetPH3Th704FvRaO9grruky9yklPKWKjfIDr_L0lxaJzlLDmIBq3knAYUB_TVHu2KBkqxcbqRbisexBAA1gPKWe8dVI8IwbtAXKzFXnRiJzqBuQiiC37v_vJTur1PfEixrg96v-69K2mFXDrtxWIeAL77Y0rHWSDe9wSE6txqcMIrDUZBqV1QgSitPnDHH0g5ARo
CitedBy_id crossref_primary_10_1016_j_resp_2019_05_002
crossref_primary_10_1016_j_molmet_2017_03_005
crossref_primary_10_1016_j_biopsycho_2018_03_006
crossref_primary_10_1016_j_chroma_2017_06_029
crossref_primary_10_1016_j_jchromb_2016_08_004
crossref_primary_10_1016_j_talanta_2019_06_004
crossref_primary_10_1016_j_prostaglandins_2014_11_002
crossref_primary_10_3390_cells11213382
crossref_primary_10_1002_ejlt_201500115
crossref_primary_10_1016_j_toxac_2021_07_004
crossref_primary_10_1016_j_jchromb_2016_06_002
crossref_primary_10_1186_s12991_023_00437_2
crossref_primary_10_1016_j_jpba_2023_115624
crossref_primary_10_1194_jlr_M032219
crossref_primary_10_3390_targets3010011
crossref_primary_10_1016_j_aca_2019_09_002
crossref_primary_10_1074_jbc_RA120_015278
crossref_primary_10_3390_ijms222212374
crossref_primary_10_1016_j_jchromb_2020_122252
crossref_primary_10_1016_j_jchromb_2020_122371
crossref_primary_10_1016_j_bbalip_2020_158807
crossref_primary_10_1016_j_jchromb_2017_09_007
crossref_primary_10_1016_j_talanta_2019_120593
crossref_primary_10_1016_j_jchromb_2022_123102
crossref_primary_10_1080_10408347_2024_2432998
crossref_primary_10_1016_j_jchromb_2014_03_017
crossref_primary_10_3390_ijms22115485
crossref_primary_10_1194_jlr_D094680
crossref_primary_10_1089_can_2023_0273
crossref_primary_10_1002_mnfr_201200840
crossref_primary_10_1021_acs_analchem_6b01862
crossref_primary_10_1002_brb3_3323
crossref_primary_10_1016_j_jchromb_2016_08_035
crossref_primary_10_1016_j_talanta_2020_121006
crossref_primary_10_1007_s13679_012_0027_6
crossref_primary_10_1016_j_taap_2014_06_023
crossref_primary_10_1021_jf4033365
crossref_primary_10_1007_s00216_016_9720_8
crossref_primary_10_1016_j_toxlet_2013_12_004
crossref_primary_10_2527_jas_2016_1025
crossref_primary_10_1016_j_jpba_2022_114768
crossref_primary_10_1038_s41467_024_54819_5
crossref_primary_10_1016_j_aca_2021_339316
crossref_primary_10_1038_s41398_024_03205_2
crossref_primary_10_1016_j_jmsacl_2021_11_001
crossref_primary_10_1152_ajpendo_00119_2017
crossref_primary_10_1016_j_jchromb_2013_01_016
crossref_primary_10_3390_molecules29153694
crossref_primary_10_3389_fncel_2017_00039
crossref_primary_10_3390_biomedicines10020243
crossref_primary_10_1007_s00216_014_8384_5
crossref_primary_10_1002_jssc_70068
crossref_primary_10_1016_j_jchromb_2016_06_018
crossref_primary_10_1016_j_ab_2012_11_008
crossref_primary_10_1016_j_prostaglandins_2023_106763
crossref_primary_10_3390_molecules26072086
crossref_primary_10_1016_j_ab_2011_11_003
crossref_primary_10_1016_j_jpba_2023_115844
crossref_primary_10_1002_rcm_7277
crossref_primary_10_1016_j_placenta_2013_08_007
crossref_primary_10_1038_s41598_019_45969_4
crossref_primary_10_1371_journal_pone_0187197
crossref_primary_10_1016_j_aca_2018_06_016
crossref_primary_10_1016_j_talanta_2015_11_016
crossref_primary_10_1016_j_bbalip_2011_08_004
crossref_primary_10_1016_j_talanta_2024_126518
crossref_primary_10_1007_s00204_019_02389_7
crossref_primary_10_1186_s40543_023_00381_6
crossref_primary_10_3390_jcm13237276
crossref_primary_10_1017_S0033291723001204
crossref_primary_10_4155_bio_2018_0173
crossref_primary_10_1038_s41598_021_02970_0
crossref_primary_10_1016_j_aca_2018_08_062
crossref_primary_10_1194_jlr_D043794
crossref_primary_10_1016_j_pnpbp_2021_110243
crossref_primary_10_1159_000501208
crossref_primary_10_1016_j_jchromb_2015_04_018
crossref_primary_10_3390_molecules28134905
crossref_primary_10_1111_j_1365_2125_2012_04175_x
crossref_primary_10_2174_1385272824666200204121746
crossref_primary_10_3390_nu13103587
crossref_primary_10_1097_j_pain_0000000000001447
crossref_primary_10_1002_bmc_4439
crossref_primary_10_1002_dta_1574
crossref_primary_10_1194_jlr_D070433
crossref_primary_10_1021_acs_jafc_9b08195
crossref_primary_10_1002_oby_20728
crossref_primary_10_4155_bio_2019_0144
crossref_primary_10_1186_s43094_019_0007_8
crossref_primary_10_1155_2016_2426398
Cites_doi 10.1002/rcm.3918
10.1126/science.1470919
10.1016/j.protis.2009.12.004
10.1016/j.prostaglandins.2006.08.002
10.1002/bmc.1373
10.1016/j.jchromb.2008.08.032
10.1016/0014-5793(96)00891-5
10.1021/ac0624086
10.1016/S0021-9258(18)64849-5
10.1016/j.jchromb.2009.04.010
10.1016/S0009-3084(02)00068-3
10.1016/j.jchromb.2009.02.029
10.1016/j.jchromb.2009.04.016
10.1016/j.jchromb.2010.04.025
10.1016/j.jchromb.2009.01.005
10.1016/j.ab.2008.08.040
10.1016/S0003-2697(02)00643-7
10.1016/j.jchromb.2007.09.007
10.1016/j.jchromb.2011.02.004
10.2337/diabetes.54.10.2838
10.1365/s10337-009-1413-4
10.1002/rcm.4121
10.1021/jm020818q
10.1139/o59-099
10.1002/jms.1701
10.1016/S0076-6879(07)33005-X
10.1016/j.jchromb.2009.01.008
10.2116/analsci.26.1199
10.1016/0952-3278(95)90130-2
10.1016/j.jchromb.2010.10.012
10.1124/pr.58.3.2
10.1006/abbi.1998.0688
ContentType Journal Article
Copyright 2011 Elsevier B.V.
Copyright © 2011 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2011 Elsevier B.V.
– notice: Copyright © 2011 Elsevier B.V. All rights reserved.
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TB
8FD
FR3
7S9
L.6
7X8
DOI 10.1016/j.jchromb.2011.06.025
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList Technology Research Database
MEDLINE - Academic

AGRICOLA
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1873-376X
EndPage 171
ExternalDocumentID 21752730
10_1016_j_jchromb_2011_06_025
US201600067248
S1570023211004107
Genre Journal Article
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFRF
ABGSF
ABJNI
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADECG
ADEZE
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AFKWA
AFTJW
AFXIZ
AFZHZ
AGHFR
AGUBO
AGYEJ
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DOVZS
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
RIG
RNS
ROL
RPZ
SCB
SCC
SDF
SDG
SDP
SES
SPC
SPCBC
SSK
SSU
SSZ
T5K
VH1
~G-
.GJ
29K
ABFNM
ABPIF
AGRDE
D-I
EJD
FBQ
NCXOZ
OHT
SEW
XFK
ZGI
AATTM
AAXKI
AAYWO
AAYXX
AEIPS
AFJKZ
AGCQF
AGRNS
AIIUN
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7TB
8FD
FR3
7S9
L.6
7X8
ID FETCH-LOGICAL-c520t-e0400662f0b3f18be3166d5066d29903b2e22f416885050c82a06f8ee39b9e323
IEDL.DBID AIKHN
ISSN 1570-0232
1873-376X
IngestDate Fri Sep 05 10:22:25 EDT 2025
Thu Sep 04 22:53:45 EDT 2025
Thu Sep 04 20:29:18 EDT 2025
Mon Jul 21 06:04:52 EDT 2025
Tue Jul 01 01:50:06 EDT 2025
Thu Apr 24 23:08:53 EDT 2025
Wed Dec 27 19:13:36 EST 2023
Fri Feb 23 02:21:37 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Isomerisation
Plasma
Tandem mass spectrometry
Quantification
2AG
Matrix-effects
AEA
Clinical studies
Endocannabinoids
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
Copyright © 2011 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c520t-e0400662f0b3f18be3166d5066d29903b2e22f416885050c82a06f8ee39b9e323
Notes http://dx.doi.org/10.1016/j.jchromb.2011.06.025
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PMID 21752730
PQID 1019625950
PQPubID 23500
PageCount 11
ParticipantIDs proquest_miscellaneous_919225587
proquest_miscellaneous_2000065953
proquest_miscellaneous_1019625950
pubmed_primary_21752730
crossref_primary_10_1016_j_jchromb_2011_06_025
crossref_citationtrail_10_1016_j_jchromb_2011_06_025
fao_agris_US201600067248
elsevier_sciencedirect_doi_10_1016_j_jchromb_2011_06_025
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-02-01
PublicationDateYYYYMMDD 2012-02-01
PublicationDate_xml – month: 02
  year: 2012
  text: 2012-02-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Journal of chromatography. B, Analytical technologies in the biomedical and life sciences
PublicationTitleAlternate J Chromatogr B Analyt Technol Biomed Life Sci
PublicationYear 2012
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Williams, Wood, Pandarinathan, Karanian, Bahr, Vouros, Makriyannis (bib0020) 2007; 79
Ismaiel, Halquist, Elmamly, Shalaby, Karnes (bib0095) 2007; 859
Xia, Jemal (bib0125) 2009; 23
Tsikas (bib0140) 2009; 877
Fontana, Di Marzo, Cadas, Piomelli (bib0160) 1995; 53
Balvers, Verhoeckx, Witkamp (bib0050) 2009; 877
Thomas, Hopfgartner, Giroud, Staub (bib0065) 2009; 23
Vogeser, Schelling (bib0045) 2007; 45
Tsikas (bib0130) 2009; 877
van der Stelt, van Kuik, Bari, van Zadelhoff, Leeflang, Veldink, Finazzi-Agro, Vliegenthart, Maccarrone (bib0010) 2002; 45
P.K. Bennett, K.C. Van Horne, in: AAPS Conference, Salt Lake City, Utah, 2003.
Anagnostopoulos, Rakiec, Wood, Pandarinathan, Zvonok, Makriyannis, Siafaka-Kapadai (bib0155) 2010; 161
Engeli, Bohnke, Feldpausch, Gorzelniak, Janke, Batkai, Pacher, Harvey-White, Luft, Sharma, Jordan (bib0025) 2005; 54
Rouzer, Ghebreselasie, Marnett (bib0015) 2002; 119
Pacher, Batkai, Kunos (bib0005) 2006; 58
Paudel, Chen, Stinchcomb (bib0040) 2009; 71
Felder, Nielsen, Briley, Palkovits, Priller, Axelrod, Nguyen, Richardson, Riggin, Koppel, Paul, Becker (bib0120) 1996; 393
Zoerner, Gutzki, Suchy, Beckmann, Engeli, Jordan, Tsikas (bib0075) 2009; 877
Kingsley, Marnett (bib0115) 2007; 433
Higuchi, Irie, Nakano, Sakamoto, Akitake, Araki, Ohji, Furuta, Katsuki, Yamaguchi, Matsuyama, Mishima, Iwasaki, Fujiwara (bib0175) 2010; 26
Hardison, Weintraub, Giuffrida (bib0060) 2006; 81
Lehtonen, Storvik, Malinen, Hyytiä, Lakso, Auriola, Wong, Callaway (bib0070) 2011; 879
Bligh, Dyer (bib0110) 1959; 37
Folch, Lees, Sloane Stanley (bib0105) 1957; 226
Zhang, Gao, Btesh, Kagan, Kerns, Samad, Chanda (bib0055) 2010; 45
Marczylo, Lam, Nallendran, Taylor, Konje (bib0035) 2009; 384
Ismaiel, Halquist, Elmamly, Shalaby, Karnes (bib0100) 2008; 875
Astarita, Piomelli (bib0150) 2009; 877
Jemal, Ouyang, Xia (bib0090) 2009; 24
Tsikas, Wolf, Mitschke, Gutzki, Will, Bader (bib0135) 2010; 878
Ismaiel, Zhang, Jenkins, Karnes (bib0080) 2010; 878
Kondo, Sugiura, Kodaka, Kudo, Waku, Tokumura (bib0165) 1998; 354
Kingsley, Marnett (bib0030) 2003; 314
Devane, Hanus, Breuer, Pertwee, Stevenson, Griffin, Gibson, Mandelbaum, Etinger, Mechoulam (bib0170) 1992; 258
Pacher (10.1016/j.jchromb.2011.06.025_bib0005) 2006; 58
Balvers (10.1016/j.jchromb.2011.06.025_bib0050) 2009; 877
Lehtonen (10.1016/j.jchromb.2011.06.025_bib0070) 2011; 879
Kingsley (10.1016/j.jchromb.2011.06.025_bib0030) 2003; 314
Engeli (10.1016/j.jchromb.2011.06.025_bib0025) 2005; 54
Xia (10.1016/j.jchromb.2011.06.025_bib0125) 2009; 23
Kondo (10.1016/j.jchromb.2011.06.025_bib0165) 1998; 354
Vogeser (10.1016/j.jchromb.2011.06.025_bib0045) 2007; 45
Fontana (10.1016/j.jchromb.2011.06.025_bib0160) 1995; 53
Zhang (10.1016/j.jchromb.2011.06.025_bib0055) 2010; 45
Bligh (10.1016/j.jchromb.2011.06.025_bib0110) 1959; 37
Kingsley (10.1016/j.jchromb.2011.06.025_bib0115) 2007; 433
Anagnostopoulos (10.1016/j.jchromb.2011.06.025_bib0155) 2010; 161
Paudel (10.1016/j.jchromb.2011.06.025_bib0040) 2009; 71
Zoerner (10.1016/j.jchromb.2011.06.025_bib0075) 2009; 877
Ismaiel (10.1016/j.jchromb.2011.06.025_bib0100) 2008; 875
van der Stelt (10.1016/j.jchromb.2011.06.025_bib0010) 2002; 45
Marczylo (10.1016/j.jchromb.2011.06.025_bib0035) 2009; 384
10.1016/j.jchromb.2011.06.025_bib0085
Devane (10.1016/j.jchromb.2011.06.025_bib0170) 1992; 258
Tsikas (10.1016/j.jchromb.2011.06.025_bib0140) 2009; 877
Williams (10.1016/j.jchromb.2011.06.025_bib0020) 2007; 79
Tsikas (10.1016/j.jchromb.2011.06.025_bib0135) 2010; 878
Thomas (10.1016/j.jchromb.2011.06.025_bib0065) 2009; 23
Hardison (10.1016/j.jchromb.2011.06.025_bib0060) 2006; 81
Ismaiel (10.1016/j.jchromb.2011.06.025_bib0080) 2010; 878
Tsikas (10.1016/j.jchromb.2011.06.025_bib0130) 2009; 877
Astarita (10.1016/j.jchromb.2011.06.025_bib0150) 2009; 877
Jemal (10.1016/j.jchromb.2011.06.025_bib0090) 2009; 24
Ismaiel (10.1016/j.jchromb.2011.06.025_bib0095) 2007; 859
Felder (10.1016/j.jchromb.2011.06.025_bib0120) 1996; 393
Folch (10.1016/j.jchromb.2011.06.025_bib0105) 1957; 226
Higuchi (10.1016/j.jchromb.2011.06.025_bib0175) 2010; 26
Rouzer (10.1016/j.jchromb.2011.06.025_bib0015) 2002; 119
References_xml – volume: 877
  start-page: 2755
  year: 2009
  ident: bib0150
  publication-title: J. Chromatogr. B
– volume: 45
  start-page: 1023
  year: 2007
  ident: bib0045
  publication-title: Clin. Chem. Lab. Med.
– volume: 859
  start-page: 84
  year: 2007
  ident: bib0095
  publication-title: J. Chromatogr. B
– volume: 226
  start-page: 497
  year: 1957
  ident: bib0105
  publication-title: J. Biol. Chem.
– volume: 161
  start-page: 452
  year: 2010
  ident: bib0155
  publication-title: Protist
– volume: 875
  start-page: 333
  year: 2008
  ident: bib0100
  publication-title: J. Chromatogr. B
– volume: 24
  start-page: 2
  year: 2009
  ident: bib0090
  publication-title: Biomed. Chromatogr.
– volume: 81
  start-page: 106
  year: 2006
  ident: bib0060
  publication-title: Prostaglandins Other Lipid Mediat.
– volume: 354
  start-page: 303
  year: 1998
  ident: bib0165
  publication-title: Arch. Biochem. Biophys.
– volume: 23
  start-page: 629
  year: 2009
  ident: bib0065
  publication-title: Rapid Commun. Mass Spectrom.
– volume: 314
  start-page: 8
  year: 2003
  ident: bib0030
  publication-title: Anal. Biochem.
– volume: 79
  start-page: 5582
  year: 2007
  ident: bib0020
  publication-title: Anal. Chem.
– volume: 393
  start-page: 231
  year: 1996
  ident: bib0120
  publication-title: FEBS Lett.
– volume: 37
  start-page: 911
  year: 1959
  ident: bib0110
  publication-title: Can. J. Biochem. Physiol.
– volume: 53
  start-page: 301
  year: 1995
  ident: bib0160
  publication-title: Prostaglandins Leukot. Essent. Fatty Acids
– volume: 58
  start-page: 389
  year: 2006
  ident: bib0005
  publication-title: Pharmacol. Rev.
– volume: 877
  start-page: 1583
  year: 2009
  ident: bib0050
  publication-title: J. Chromatogr. B
– volume: 258
  start-page: 1946
  year: 1992
  ident: bib0170
  publication-title: Science
– volume: 878
  start-page: 3303
  year: 2010
  ident: bib0080
  publication-title: J. Chromatogr. B
– volume: 45
  start-page: 167
  year: 2010
  ident: bib0055
  publication-title: J. Mass Spectrom.
– volume: 384
  start-page: 106
  year: 2009
  ident: bib0035
  publication-title: Anal. Biochem.
– reference: P.K. Bennett, K.C. Van Horne, in: AAPS Conference, Salt Lake City, Utah, 2003.
– volume: 71
  start-page: 65
  year: 2009
  ident: bib0040
  publication-title: Chromatographia
– volume: 45
  start-page: 3709
  year: 2002
  ident: bib0010
  publication-title: J. Med. Chem.
– volume: 433
  start-page: 91
  year: 2007
  ident: bib0115
  publication-title: Methods Enzymol.
– volume: 54
  start-page: 2838
  year: 2005
  ident: bib0025
  publication-title: Diabetes
– volume: 878
  start-page: 2582
  year: 2010
  ident: bib0135
  publication-title: J. Chromatogr. B
– volume: 119
  start-page: 69
  year: 2002
  ident: bib0015
  publication-title: Chem. Phys. Lipids
– volume: 879
  start-page: 677
  year: 2011
  ident: bib0070
  publication-title: J. Chromatogr. B
– volume: 26
  start-page: 1199
  year: 2010
  ident: bib0175
  publication-title: Anal. Sci.
– volume: 877
  start-page: 2909
  year: 2009
  ident: bib0075
  publication-title: J. Chromatogr. B
– volume: 877
  start-page: 2244
  year: 2009
  ident: bib0130
  publication-title: J. Chromatogr. B
– volume: 23
  start-page: 2125
  year: 2009
  ident: bib0125
  publication-title: Rapid Commun. Mass Spectrom.
– volume: 877
  start-page: 2308
  year: 2009
  ident: bib0140
  publication-title: J. Chromatogr. B
– volume: 23
  start-page: 629
  year: 2009
  ident: 10.1016/j.jchromb.2011.06.025_bib0065
  publication-title: Rapid Commun. Mass Spectrom.
  doi: 10.1002/rcm.3918
– volume: 258
  start-page: 1946
  year: 1992
  ident: 10.1016/j.jchromb.2011.06.025_bib0170
  publication-title: Science
  doi: 10.1126/science.1470919
– volume: 161
  start-page: 452
  year: 2010
  ident: 10.1016/j.jchromb.2011.06.025_bib0155
  publication-title: Protist
  doi: 10.1016/j.protis.2009.12.004
– volume: 81
  start-page: 106
  year: 2006
  ident: 10.1016/j.jchromb.2011.06.025_bib0060
  publication-title: Prostaglandins Other Lipid Mediat.
  doi: 10.1016/j.prostaglandins.2006.08.002
– volume: 24
  start-page: 2
  year: 2009
  ident: 10.1016/j.jchromb.2011.06.025_bib0090
  publication-title: Biomed. Chromatogr.
  doi: 10.1002/bmc.1373
– volume: 875
  start-page: 333
  year: 2008
  ident: 10.1016/j.jchromb.2011.06.025_bib0100
  publication-title: J. Chromatogr. B
  doi: 10.1016/j.jchromb.2008.08.032
– volume: 393
  start-page: 231
  year: 1996
  ident: 10.1016/j.jchromb.2011.06.025_bib0120
  publication-title: FEBS Lett.
  doi: 10.1016/0014-5793(96)00891-5
– volume: 79
  start-page: 5582
  year: 2007
  ident: 10.1016/j.jchromb.2011.06.025_bib0020
  publication-title: Anal. Chem.
  doi: 10.1021/ac0624086
– volume: 226
  start-page: 497
  year: 1957
  ident: 10.1016/j.jchromb.2011.06.025_bib0105
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)64849-5
– volume: 877
  start-page: 1583
  year: 2009
  ident: 10.1016/j.jchromb.2011.06.025_bib0050
  publication-title: J. Chromatogr. B
  doi: 10.1016/j.jchromb.2009.04.010
– ident: 10.1016/j.jchromb.2011.06.025_bib0085
– volume: 119
  start-page: 69
  year: 2002
  ident: 10.1016/j.jchromb.2011.06.025_bib0015
  publication-title: Chem. Phys. Lipids
  doi: 10.1016/S0009-3084(02)00068-3
– volume: 877
  start-page: 2244
  year: 2009
  ident: 10.1016/j.jchromb.2011.06.025_bib0130
  publication-title: J. Chromatogr. B
  doi: 10.1016/j.jchromb.2009.02.029
– volume: 877
  start-page: 2909
  year: 2009
  ident: 10.1016/j.jchromb.2011.06.025_bib0075
  publication-title: J. Chromatogr. B
  doi: 10.1016/j.jchromb.2009.04.016
– volume: 878
  start-page: 2582
  year: 2010
  ident: 10.1016/j.jchromb.2011.06.025_bib0135
  publication-title: J. Chromatogr. B
  doi: 10.1016/j.jchromb.2010.04.025
– volume: 877
  start-page: 2308
  year: 2009
  ident: 10.1016/j.jchromb.2011.06.025_bib0140
  publication-title: J. Chromatogr. B
  doi: 10.1016/j.jchromb.2009.01.005
– volume: 384
  start-page: 106
  year: 2009
  ident: 10.1016/j.jchromb.2011.06.025_bib0035
  publication-title: Anal. Biochem.
  doi: 10.1016/j.ab.2008.08.040
– volume: 314
  start-page: 8
  year: 2003
  ident: 10.1016/j.jchromb.2011.06.025_bib0030
  publication-title: Anal. Biochem.
  doi: 10.1016/S0003-2697(02)00643-7
– volume: 859
  start-page: 84
  year: 2007
  ident: 10.1016/j.jchromb.2011.06.025_bib0095
  publication-title: J. Chromatogr. B
  doi: 10.1016/j.jchromb.2007.09.007
– volume: 879
  start-page: 677
  year: 2011
  ident: 10.1016/j.jchromb.2011.06.025_bib0070
  publication-title: J. Chromatogr. B
  doi: 10.1016/j.jchromb.2011.02.004
– volume: 45
  start-page: 1023
  year: 2007
  ident: 10.1016/j.jchromb.2011.06.025_bib0045
  publication-title: Clin. Chem. Lab. Med.
– volume: 54
  start-page: 2838
  year: 2005
  ident: 10.1016/j.jchromb.2011.06.025_bib0025
  publication-title: Diabetes
  doi: 10.2337/diabetes.54.10.2838
– volume: 71
  start-page: 65
  year: 2009
  ident: 10.1016/j.jchromb.2011.06.025_bib0040
  publication-title: Chromatographia
  doi: 10.1365/s10337-009-1413-4
– volume: 23
  start-page: 2125
  year: 2009
  ident: 10.1016/j.jchromb.2011.06.025_bib0125
  publication-title: Rapid Commun. Mass Spectrom.
  doi: 10.1002/rcm.4121
– volume: 45
  start-page: 3709
  year: 2002
  ident: 10.1016/j.jchromb.2011.06.025_bib0010
  publication-title: J. Med. Chem.
  doi: 10.1021/jm020818q
– volume: 37
  start-page: 911
  year: 1959
  ident: 10.1016/j.jchromb.2011.06.025_bib0110
  publication-title: Can. J. Biochem. Physiol.
  doi: 10.1139/o59-099
– volume: 45
  start-page: 167
  year: 2010
  ident: 10.1016/j.jchromb.2011.06.025_bib0055
  publication-title: J. Mass Spectrom.
  doi: 10.1002/jms.1701
– volume: 433
  start-page: 91
  year: 2007
  ident: 10.1016/j.jchromb.2011.06.025_bib0115
  publication-title: Methods Enzymol.
  doi: 10.1016/S0076-6879(07)33005-X
– volume: 877
  start-page: 2755
  year: 2009
  ident: 10.1016/j.jchromb.2011.06.025_bib0150
  publication-title: J. Chromatogr. B
  doi: 10.1016/j.jchromb.2009.01.008
– volume: 26
  start-page: 1199
  year: 2010
  ident: 10.1016/j.jchromb.2011.06.025_bib0175
  publication-title: Anal. Sci.
  doi: 10.2116/analsci.26.1199
– volume: 53
  start-page: 301
  year: 1995
  ident: 10.1016/j.jchromb.2011.06.025_bib0160
  publication-title: Prostaglandins Leukot. Essent. Fatty Acids
  doi: 10.1016/0952-3278(95)90130-2
– volume: 878
  start-page: 3303
  year: 2010
  ident: 10.1016/j.jchromb.2011.06.025_bib0080
  publication-title: J. Chromatogr. B
  doi: 10.1016/j.jchromb.2010.10.012
– volume: 58
  start-page: 389
  year: 2006
  ident: 10.1016/j.jchromb.2011.06.025_bib0005
  publication-title: Pharmacol. Rev.
  doi: 10.1124/pr.58.3.2
– volume: 354
  start-page: 303
  year: 1998
  ident: 10.1016/j.jchromb.2011.06.025_bib0165
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1006/abbi.1998.0688
SSID ssj0017073
Score 2.3685598
Snippet Analysis of the endocannabinoid (EC) system's key molecules 2-arachidonoyl glycerol (2AG) and arachidonoyl ethanolamide (anandamide, AEA) is challenging due to...
SourceID proquest
pubmed
crossref
fao
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 161
SubjectTerms 2AG
Adolescents
AEA
Arachidonic Acids - blood
Arachidonic Acids - chemistry
Arachidonic Acids - isolation & purification
Arachidonic Acids - urine
Chemical Fractionation - methods
Children
chromatography
Chromatography, High Pressure Liquid - methods
Clinical studies
creatinine
Endocannabinoids
ethyl acetate
evaporation
Glycerides - blood
Glycerides - chemistry
Glycerides - isolation & purification
Glycerides - urine
Glycerols
Human
Humans
ionization
Isomerisation
Isomerism
isomerization
Limit of Detection
Linear Models
Matrix-effects
Patients
phospholipids
Plasma
Polyunsaturated Alkamides - blood
Polyunsaturated Alkamides - chemistry
Polyunsaturated Alkamides - isolation & purification
Polyunsaturated Alkamides - urine
quality control
Quantification
Reproducibility of Results
Solvents
Tandem mass spectrometry
Tandem Mass Spectrometry - methods
Toluene
Toluene - chemistry
Toxicity
urine
Title Simultaneous UPLC–MS/MS quantification of the endocannabinoids 2-arachidonoyl glycerol (2AG), 1-arachidonoyl glycerol (1AG), and anandamide in human plasma: Minimization of matrix-effects, 2AG/1AG isomerization and degradation by toluene solvent extraction
URI https://dx.doi.org/10.1016/j.jchromb.2011.06.025
https://www.ncbi.nlm.nih.gov/pubmed/21752730
https://www.proquest.com/docview/1019625950
https://www.proquest.com/docview/2000065953
https://www.proquest.com/docview/919225587
Volume 883-884
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEF7S9MKlAgo0_ESDhBBIdWyv7Y3NLYooAZqqIkTqzbK969ZRbIc0lcgF8Q68IU_CzHoThERUiYMPtmc3djw7883OH2MvpcpUmEvHikQUWr4rhZXIHHk5CrKIClRFeh9yfCZGU__jRXDRYsNNLgyFVRrZ38h0La3NFdv8m_aiKOyJS6XZERDoomcuZZTvc9T2YZvtDz58Gp1tnQl9Rzuaid6iAX8SeexZb5ZdLesyNcU8Rc-hptn_VlF7eVLvBqJaIZ3cYwcGScKgedj7rKWqB-xwUKEVXa7hFejYTr1pfninNSkocjCpFBr6MD0_Hf768XM8sccT-HqTNPFC-hNBnQNCQlCVRCVXVQkaznUhr4FbVNj5qpB1Va_ncDlfZ2pZz-E1H7x_cwzurtuuvp1UEg_atCgLqaCoQPcGhAVi9zJ5C-OiKkqTEUqPUFLjgG-WCTY5BvwRG2eC4romD5MhpFklFbto-kJBuoZVTS1XFOCKokBOQNWzbFI3HrLpybsvw5Fluj9YWcCdlaVIvAjBcyf1cjdMlecKIQO8JEmFeilXnOeIJ8MQUZyThTxxRB4q5UVppDzuPWLtqq7UEQOBIj9yZdLv56kv-4jJHJEJx_f7yKiZl3eYv_ngcWZKo1OHjnm8iYGbxYZPYuKTmGIBedBhve2wRVMb5LYB4Yab4r-YPEb9ddvQI-S-OLlE0R9PJ5wKA2o3uh922IsNS8YoG8jh07ATTReRfRs4u2m4RixI43UY7KCJ0AxA0zPsd9jjhuW374sWLZXwc578_6s9ZXfxjDeh8M9Ye7W8Uc8R6a3SLtvrfXe7uJ6Hn0_Pu2Zd_wbtu1RI
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5KeoALAgpteA4SQiDVsb22Nza3KKKkNImQ0ki9WbZ33TqK7ZCmErnxH_iH_BJm1psgJKJKHHzxzq5f43nszHzD2FupMhXm0rEiEYWW70phJTJHXo6CLCKAqkjvQ47GYjD1v1wEF3usv6mFobRKI_sbma6ltTljm7dpL4rCnrgEzY4GgQY9c6mifN-nptYttt87PRuMt8GErqMDzURv0YQ_hTz2rDPLrpZ1mRowT9FxqGn2v1XU3TypdxuiWiGdPGQPjCUJveZmH7E9VT1mB70KvehyDe9A53bqTfODO3uTgjIHk0qhow_Tr8P-rx8_RxN7NIFvN0mTL6Q_EdQ5oEkIqpKo5KoqQce5LuQ1cIuAna8KWVf1eg6X83WmlvUc3vPe5w_H4O4advVwUkk8aNOiLKSCogLdGxAWaLuXyUcYFVVRmopQuoWSGgd8t0yyyTHgRWxcCYrrmiJMhpBWlQR20fSFgnQNq5parijAP4oSOQFVz7Ip3XjCpiefzvsDy3R_sLKAOytLkXgRgudO6uVumCrPFUIGeEqSCvVSrjjP0Z4MQ7TinCzkiSPyUCkvSiPlce8pa1V1pY4YCBT5kSuTbjdPfdlFm8wRmXB8v4uMmnl5m_mbDx5nBhqdOnTM400O3Cw2fBITn8SUC8iDNutspy0abJDbJoQbbor_YvIY9ddtU4-Q--LkEkV_PJ1wAgbUYXQ_bLM3G5aMUTZQwKdhJ1ouIv82cHbTcG2xII3XZrCDJkI3AF3PsNtmhw3Lb58XPVqC8HOe_f-jvWb3BuejYTw8HZ89Z_dxhDdp8S9Ya7W8US_R6lulr8xf_RtE3FSZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simultaneous+UPLC%E2%80%93MS%2FMS+quantification+of+the+endocannabinoids+2-arachidonoyl+glycerol+%282AG%29%2C+1-arachidonoyl+glycerol+%281AG%29%2C+and+anandamide+in+human+plasma%3A+Minimization+of+matrix-effects%2C+2AG%2F1AG+isomerization+and+degradation+by+toluene+solvent+extraction&rft.jtitle=Journal+of+chromatography.+B%2C+Analytical+technologies+in+the+biomedical+and+life+sciences&rft.au=Zoerner%2C+Alexander+A&rft.au=Batkai%2C+Sandor&rft.au=Suchy%2C+Maria-Theresia&rft.au=Gutzki%2C+Frank-Mathias&rft.date=2012-02-01&rft.issn=1570-0232&rft.volume=883-884+p.161-171&rft.spage=161&rft.epage=171&rft_id=info:doi/10.1016%2Fj.jchromb.2011.06.025&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1570-0232&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1570-0232&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1570-0232&client=summon