Improving Radiology Report Generation Quality and Diversity through Reinforcement Learning and Text Augmentation
Deep learning is revolutionizing radiology report generation (RRG) with the adoption of vision encoder–decoder (VED) frameworks, which transform radiographs into detailed medical reports. Traditional methods, however, often generate reports of limited diversity and struggle with generalization. Our...
Saved in:
Published in | Bioengineering (Basel) Vol. 11; no. 4; p. 351 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
01.04.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2306-5354 2306-5354 |
DOI | 10.3390/bioengineering11040351 |
Cover
Abstract | Deep learning is revolutionizing radiology report generation (RRG) with the adoption of vision encoder–decoder (VED) frameworks, which transform radiographs into detailed medical reports. Traditional methods, however, often generate reports of limited diversity and struggle with generalization. Our research introduces reinforcement learning and text augmentation to tackle these issues, significantly improving report quality and variability. By employing RadGraph as a reward metric and innovating in text augmentation, we surpass existing benchmarks like BLEU4, ROUGE-L, F1CheXbert, and RadGraph, setting new standards for report accuracy and diversity on MIMIC-CXR and Open-i datasets. Our VED model achieves F1-scores of 66.2 for CheXbert and 37.8 for RadGraph on the MIMIC-CXR dataset, and 54.7 and 45.6, respectively, on Open-i. These outcomes represent a significant breakthrough in the RRG field. The findings and implementation of the proposed approach, aimed at enhancing diagnostic precision and radiological interpretations in clinical settings, are publicly available on GitHub to encourage further advancements in the field. |
---|---|
AbstractList | Deep learning is revolutionizing radiology report generation (RRG) with the adoption of vision encoder–decoder (VED) frameworks, which transform radiographs into detailed medical reports. Traditional methods, however, often generate reports of limited diversity and struggle with generalization. Our research introduces reinforcement learning and text augmentation to tackle these issues, significantly improving report quality and variability. By employing RadGraph as a reward metric and innovating in text augmentation, we surpass existing benchmarks like BLEU4, ROUGE-L, F[sub.1] CheXbert, and RadGraph, setting new standards for report accuracy and diversity on MIMIC-CXR and Open-i datasets. Our VED model achieves F[sub.1] -scores of 66.2 for CheXbert and 37.8 for RadGraph on the MIMIC-CXR dataset, and 54.7 and 45.6, respectively, on Open-i. These outcomes represent a significant breakthrough in the RRG field. The findings and implementation of the proposed approach, aimed at enhancing diagnostic precision and radiological interpretations in clinical settings, are publicly available on GitHub to encourage further advancements in the field. Deep learning is revolutionizing radiology report generation (RRG) with the adoption of vision encoder–decoder (VED) frameworks, which transform radiographs into detailed medical reports. Traditional methods, however, often generate reports of limited diversity and struggle with generalization. Our research introduces reinforcement learning and text augmentation to tackle these issues, significantly improving report quality and variability. By employing RadGraph as a reward metric and innovating in text augmentation, we surpass existing benchmarks like BLEU4, ROUGE-L, F1CheXbert, and RadGraph, setting new standards for report accuracy and diversity on MIMIC-CXR and Open-i datasets. Our VED model achieves F1-scores of 66.2 for CheXbert and 37.8 for RadGraph on the MIMIC-CXR dataset, and 54.7 and 45.6, respectively, on Open-i. These outcomes represent a significant breakthrough in the RRG field. The findings and implementation of the proposed approach, aimed at enhancing diagnostic precision and radiological interpretations in clinical settings, are publicly available on GitHub to encourage further advancements in the field. Deep learning is revolutionizing radiology report generation (RRG) with the adoption of vision encoder-decoder (VED) frameworks, which transform radiographs into detailed medical reports. Traditional methods, however, often generate reports of limited diversity and struggle with generalization. Our research introduces reinforcement learning and text augmentation to tackle these issues, significantly improving report quality and variability. By employing RadGraph as a reward metric and innovating in text augmentation, we surpass existing benchmarks like BLEU4, ROUGE-L, F CheXbert, and RadGraph, setting new standards for report accuracy and diversity on MIMIC-CXR and Open-i datasets. Our VED model achieves F -scores of 66.2 for CheXbert and 37.8 for RadGraph on the MIMIC-CXR dataset, and 54.7 and 45.6, respectively, on Open-i. These outcomes represent a significant breakthrough in the RRG field. The findings and implementation of the proposed approach, aimed at enhancing diagnostic precision and radiological interpretations in clinical settings, are publicly available on GitHub to encourage further advancements in the field. Deep learning is revolutionizing radiology report generation (RRG) with the adoption of vision encoder-decoder (VED) frameworks, which transform radiographs into detailed medical reports. Traditional methods, however, often generate reports of limited diversity and struggle with generalization. Our research introduces reinforcement learning and text augmentation to tackle these issues, significantly improving report quality and variability. By employing RadGraph as a reward metric and innovating in text augmentation, we surpass existing benchmarks like BLEU4, ROUGE-L, F1CheXbert, and RadGraph, setting new standards for report accuracy and diversity on MIMIC-CXR and Open-i datasets. Our VED model achieves F1-scores of 66.2 for CheXbert and 37.8 for RadGraph on the MIMIC-CXR dataset, and 54.7 and 45.6, respectively, on Open-i. These outcomes represent a significant breakthrough in the RRG field. The findings and implementation of the proposed approach, aimed at enhancing diagnostic precision and radiological interpretations in clinical settings, are publicly available on GitHub to encourage further advancements in the field.Deep learning is revolutionizing radiology report generation (RRG) with the adoption of vision encoder-decoder (VED) frameworks, which transform radiographs into detailed medical reports. Traditional methods, however, often generate reports of limited diversity and struggle with generalization. Our research introduces reinforcement learning and text augmentation to tackle these issues, significantly improving report quality and variability. By employing RadGraph as a reward metric and innovating in text augmentation, we surpass existing benchmarks like BLEU4, ROUGE-L, F1CheXbert, and RadGraph, setting new standards for report accuracy and diversity on MIMIC-CXR and Open-i datasets. Our VED model achieves F1-scores of 66.2 for CheXbert and 37.8 for RadGraph on the MIMIC-CXR dataset, and 54.7 and 45.6, respectively, on Open-i. These outcomes represent a significant breakthrough in the RRG field. The findings and implementation of the proposed approach, aimed at enhancing diagnostic precision and radiological interpretations in clinical settings, are publicly available on GitHub to encourage further advancements in the field. |
Audience | Academic |
Author | Parres, Daniel Paredes, Roberto Albiol, Alberto |
Author_xml | – sequence: 1 givenname: Daniel orcidid: 0000-0002-2078-0329 surname: Parres fullname: Parres, Daniel – sequence: 2 givenname: Alberto orcidid: 0000-0002-1970-3289 surname: Albiol fullname: Albiol, Alberto – sequence: 3 givenname: Roberto orcidid: 0000-0002-5192-0021 surname: Paredes fullname: Paredes, Roberto |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38671773$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkktr3DAQx0VJaNI0XyEYeullU72sB_SypG26sBAS0rOQ5bGjxZa2sh26375yNukjBIIOkmZ-8x_m8Q4dhBgAoTOCzxnT-FPlI4TWB4DkQ0sI5piV5A06pgyLRclKfvDP-widDsMGY0wYLangb9ERU0ISKdkx2q76bYr3Waa4sbWPXWx3xQ1sYxqLSwiQ7OhjKK4n2_lxV9hQF1_8PaRh_o13KU7tXeZ9aGJy0EMYizXYFGbBGb6FX2OxnNrZ8yD1Hh02thvg9PE-QT--fb29-L5YX12uLpbrhSspHhd1zWpaKaao0mWllVRQKkYUJRocZrwhDSVUEeKoqnD2NqpihDmFbSUEaHaCVnvdOtqN2Sbf27Qz0XrzYIipNTaN3nVgnANdU5BUaMKFqrQktZBaSN5oyinLWh_3WrlVPycYRtP7wUHX2QBxGgzDXGpOKFUZ_fAM3cQphVzpTAlJiSrZX6q1Of_cvDFZN4uapdQUY65LkanzF6h8aui9yyvR-Gz_L-DsMflU9VD_qfpp3Bn4vAdcisOQoDHO78eSlX1nCDbzgpmXFyyHi2fhTxleCfwNNs7XXQ |
CitedBy_id | crossref_primary_10_1016_j_inffus_2024_102795 crossref_primary_10_3389_fdgth_2025_1535168 crossref_primary_10_1007_s10278_025_01411_y |
Cites_doi | 10.5626/JCSE.2012.6.2.168 10.1007/978-3-030-00928-1_51 10.1109/CVPR.2016.274 10.1109/CVPR.2017.131 10.1016/j.artmed.2023.102633 10.18653/v1/2021.acl-long.459 10.18653/v1/2020.emnlp-main.117 10.1109/CVPR.2015.7298594 10.1109/CVPR.2009.5206848 10.1016/j.artmed.2023.102714 10.1016/j.imu.2023.101273 10.1016/j.artmed.2020.101878 10.1109/CVPR.2018.00943 10.1109/TPAMI.2016.2599174 10.1016/j.media.2023.102798 10.1109/ICCV48922.2021.00986 10.18653/v1/2020.emnlp-main.112 10.1109/CVPR.2016.90 10.1016/j.imu.2021.100557 10.18653/v1/2022.findings-emnlp.319 10.18653/v1/2020.acl-main.703 10.1038/s41597-019-0322-0 10.1016/j.media.2022.102510 10.1109/ISBI.2019.8759236 10.18653/v1/2021.naacl-main.416 10.18653/v1/2020.acl-main.458 10.1109/CVPR.2017.243 10.3115/1073083.1073135 10.18653/v1/P18-1240 10.1109/CVPR46437.2021.01354 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION NPM 8FE 8FG 8FH ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO GNUQQ HCIFZ L6V LK8 M7P M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 DOA |
DOI | 10.3390/bioengineering11040351 |
DatabaseName | CrossRef PubMed ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Database (Proquest) ProQuest Central Technology Collection Natural Science Collection ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Engineering Collection Biological Sciences Biological Science Database Engineering Database (ProQuest) ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic DOAJ (Directory of Open Access Journals) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) Engineering Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ (Directory of Open Access Journals) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Architecture |
EISSN | 2306-5354 |
ExternalDocumentID | oai_doaj_org_article_cce9d2e72691468b971d679674f92423 A792004956 38671773 10_3390_bioengineering11040351 |
Genre | Journal Article |
GeographicLocations | Spain |
GeographicLocations_xml | – name: Spain |
GrantInformation_xml | – fundername: Generalitat Valenciana grantid: Predoctoral grant CIACIF/2022/289 |
GroupedDBID | 53G 5VS 8FE 8FG 8FH AAFWJ AAYXX ABDBF ABJCF ACUHS ADBBV AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BGLVJ BHPHI CCPQU CITATION GROUPED_DOAJ HCIFZ HYE IAO IHR INH ITC KQ8 L6V LK8 M7P M7S MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PROAC PTHSS RPM NPM PQGLB PMFND ABUWG AZQEC DWQXO GNUQQ PKEHL PQEST PQQKQ PQUKI PRINS 7X8 PUEGO |
ID | FETCH-LOGICAL-c520t-dd3d2b8382895b9878e58318219ec034f1f212811c28b078ef8b313c80ab66e93 |
IEDL.DBID | 8FG |
ISSN | 2306-5354 |
IngestDate | Wed Aug 27 01:28:42 EDT 2025 Thu Sep 04 22:07:01 EDT 2025 Fri Jul 25 11:48:13 EDT 2025 Tue Jun 17 22:08:25 EDT 2025 Tue Jun 10 21:02:48 EDT 2025 Mon Jul 21 05:45:24 EDT 2025 Tue Jul 01 04:35:31 EDT 2025 Thu Apr 24 22:59:24 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | text augmentation chest X-rays deep learning radiology report generation medical image machine learning vision transformer text generation reinforcement learning |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c520t-dd3d2b8382895b9878e58318219ec034f1f212811c28b078ef8b313c80ab66e93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2078-0329 0000-0002-1970-3289 0000-0002-5192-0021 |
OpenAccessLink | https://www.proquest.com/docview/3046721853?pq-origsite=%requestingapplication% |
PMID | 38671773 |
PQID | 3046721853 |
PQPubID | 2055440 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_cce9d2e72691468b971d679674f92423 proquest_miscellaneous_3047941228 proquest_journals_3046721853 gale_infotracmisc_A792004956 gale_infotracacademiconefile_A792004956 pubmed_primary_38671773 crossref_citationtrail_10_3390_bioengineering11040351 crossref_primary_10_3390_bioengineering11040351 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-04-01 |
PublicationDateYYYYMMDD | 2024-04-01 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Bioengineering (Basel) |
PublicationTitleAlternate | Bioengineering (Basel) |
PublicationYear | 2024 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | ref_50 ref_14 ref_13 ref_12 ref_11 ref_10 Zhao (ref_1) 2024; 71 ref_51 ref_19 ref_18 ref_17 ref_16 ref_15 Yang (ref_28) 2022; 80 Liao (ref_25) 2023; 39 ref_24 ref_23 ref_22 Donahue (ref_49) 2017; 39 ref_21 Antani (ref_44) 2012; 6 ref_27 Pan (ref_29) 2024; 17 Yang (ref_30) 2023; 86 ref_36 ref_35 ref_34 ref_39 ref_38 ref_37 Zhao (ref_31) 2023; 146 ref_47 ref_46 ref_45 ref_43 Alfarghaly (ref_26) 2021; 24 ref_42 ref_41 ref_40 ref_3 ref_2 Radford (ref_33) 2019; 1 ref_48 ref_9 Nicolson (ref_32) 2023; 144 ref_8 ref_5 ref_4 Monshi (ref_20) 2020; 106 ref_7 ref_6 |
References_xml | – volume: 6 start-page: 168 year: 2012 ident: ref_44 article-title: Design and development of a multimodal biomedical information retrieval system publication-title: J. Comput. Sci. Eng. doi: 10.5626/JCSE.2012.6.2.168 – ident: ref_5 – ident: ref_51 – ident: ref_17 doi: 10.1007/978-3-030-00928-1_51 – ident: ref_16 doi: 10.1109/CVPR.2016.274 – volume: 1 start-page: 9 year: 2019 ident: ref_33 article-title: Language Models are Unsupervised Multitask Learners publication-title: OpenAI Blog – ident: ref_42 doi: 10.1109/CVPR.2017.131 – volume: 144 start-page: 102633 year: 2023 ident: ref_32 article-title: Improving chest X-ray report generation by leveraging warm starting publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2023.102633 – ident: ref_35 – ident: ref_10 doi: 10.18653/v1/2021.acl-long.459 – ident: ref_48 doi: 10.18653/v1/2020.emnlp-main.117 – ident: ref_23 doi: 10.1109/CVPR.2015.7298594 – ident: ref_39 doi: 10.1109/CVPR.2009.5206848 – ident: ref_8 – volume: 146 start-page: 102714 year: 2023 ident: ref_31 article-title: Radiology report generation with medical knowledge and multilevel image-report alignment: A new method and its verification publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2023.102714 – volume: 39 start-page: 101273 year: 2023 ident: ref_25 article-title: Deep learning approaches to automatic radiology report generation: A systematic review publication-title: Inform. Med. Unlocked doi: 10.1016/j.imu.2023.101273 – ident: ref_27 – volume: 71 start-page: 652 year: 2024 ident: ref_1 article-title: Online Policy Learning-Based Output-Feedback Optimal Control of Continuous-Time Systems publication-title: IEEE Trans. Circuits Syst. II Express Briefs – volume: 106 start-page: 101878 year: 2020 ident: ref_20 article-title: Deep learning in generating radiology reports: A survey publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2020.101878 – volume: 17 start-page: 100823 year: 2024 ident: ref_29 article-title: Chest radiology report generation based on cross-modal multi-scale feature fusion publication-title: J. Radiat. Res. Appl. Sci. – ident: ref_4 doi: 10.1109/CVPR.2018.00943 – ident: ref_13 – ident: ref_38 – volume: 39 start-page: 677 year: 2017 ident: ref_49 article-title: Long-Term Recurrent Convolutional Networks for Visual Recognition and Description publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2599174 – volume: 86 start-page: 102798 year: 2023 ident: ref_30 article-title: Radiology report generation with a learned knowledge base and multi-modal alignment publication-title: Med. Image Anal. doi: 10.1016/j.media.2023.102798 – ident: ref_37 doi: 10.1109/ICCV48922.2021.00986 – ident: ref_9 doi: 10.18653/v1/2020.emnlp-main.112 – ident: ref_7 – ident: ref_3 – ident: ref_24 doi: 10.1109/CVPR.2016.90 – ident: ref_34 – volume: 24 start-page: 100557 year: 2021 ident: ref_26 article-title: Automated radiology report generation using conditioned transformers publication-title: Inform. Med. Unlocked doi: 10.1016/j.imu.2021.100557 – ident: ref_12 doi: 10.18653/v1/2022.findings-emnlp.319 – ident: ref_40 – ident: ref_14 – ident: ref_18 – ident: ref_41 doi: 10.18653/v1/2020.acl-main.703 – ident: ref_21 – ident: ref_43 doi: 10.1038/s41597-019-0322-0 – volume: 80 start-page: 102510 year: 2022 ident: ref_28 article-title: Knowledge matters: Chest radiology report generation with general and specific knowledge publication-title: Med. Image Anal. doi: 10.1016/j.media.2022.102510 – ident: ref_2 doi: 10.1109/ISBI.2019.8759236 – ident: ref_50 – ident: ref_11 doi: 10.18653/v1/2021.naacl-main.416 – ident: ref_46 – ident: ref_47 doi: 10.18653/v1/2020.acl-main.458 – ident: ref_36 doi: 10.1109/CVPR.2017.243 – ident: ref_15 – ident: ref_45 doi: 10.3115/1073083.1073135 – ident: ref_19 doi: 10.18653/v1/P18-1240 – ident: ref_22 – ident: ref_6 doi: 10.1109/CVPR46437.2021.01354 |
SSID | ssj0001325264 |
Score | 2.2955477 |
Snippet | Deep learning is revolutionizing radiology report generation (RRG) with the adoption of vision encoder–decoder (VED) frameworks, which transform radiographs... Deep learning is revolutionizing radiology report generation (RRG) with the adoption of vision encoder-decoder (VED) frameworks, which transform radiographs... |
SourceID | doaj proquest gale pubmed crossref |
SourceType | Open Website Aggregation Database Index Database Enrichment Source |
StartPage | 351 |
SubjectTerms | Architecture Automation Computational linguistics Datasets Deep learning Knowledge representation Language processing machine learning Natural language interfaces Natural language processing Neural networks Radiology radiology report generation Radiology, Medical Reinforcement reinforcement learning Reinforcement learning (Machine learning) Semantics Technology application text augmentation vision transformer X-rays |
SummonAdditionalLinks | – databaseName: DOAJ (Directory of Open Access Journals) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB5CTsmh9JG0btOgQiAns7YkW_Jx2ySEQnsICeQmrIdDofWGdPfQf98ZSevstoVcerVH2NKMRt9IM58ATpTwiFobXvqhFqXs66G0Qomy6qvgccEXdUwe__K1vbyRn2-b242rvignLNEDp4GbORc6z4PibUdVQrZTtae9DyWHjrAAed-qqzaCqbi7IvD7rUwlwQLj-pn9tgiPDH-46Ek6Q9tajSJp_9-u-Q_AGReei-fwLCNGNk9_-gJ2wvgS9jd4BF_B_bQ1wK56nwpQWILWLPFK0_CzxJfxi_WjZ2frfAyWb-pB-Uii6uJ-Icu8q3dR-Bo9OJuv7n7kQqXxAG4uzq8_XZb5KoXSNbxalt4Lz60WFF81ttNKh0bjdEZ_FVwl5FAPnM7Uase1RdQQBm1FLZyuetu2oROHsDsuxvAGmG4QYQmiRrOtbLTvMSixCNJ6qQPG2bKAZj2kxmWecbru4rvBeINUYf6tigJmU7v7xLTxZIuPpLFJmpiy4wO0H5PtxzxlPwWckr4NDTH-putzWQJ2lpixzFx15EgwjCzgaEsS56Hbfr22GJP9wE9D584YYyMmKuDD9JpaUm7bGBarKINOseZcF_A6WdrUJUH0g0qJt_-jq-9gj6PeUt7REewuH1bhPUKqpT2Os-c3sAocaA priority: 102 providerName: Directory of Open Access Journals |
Title | Improving Radiology Report Generation Quality and Diversity through Reinforcement Learning and Text Augmentation |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38671773 https://www.proquest.com/docview/3046721853 https://www.proquest.com/docview/3047941228 https://doaj.org/article/cce9d2e72691468b971d679674f92423 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3da9RAEB-0fdGCaP2K1mMFwadw2d18bJ4kZ3sWwSKlhb6F7EcOQZOzvXvof-_MZi_XU9Gng2T2SDK78z2_AXhXSItWayZi23IZpw1vYy0LGSdN4iwqfMl98fiXs_z0Mv18lV2FgNtNKKvcyEQvqG1vKEY-pQweeiuoXT4sf8Y0NYqyq2GExn3Y5wJ1LXWKzz9tYywSnyJPh8Zgid79VH_r3RbnD1VfSpm0HZ3kofv_FNC_mZ1e_cwfw6NgN7JqYPQTuOe6Qzio7qQBDuHhHXDBp7Ac4wXsvLFDVwob7G02gE0TT9gAonHLms6y402RBgvje5DeI6saH0RkAYx14YkvUKyzar34EbqXumdwOT-5-Hgah_kKsclEsoqtlVZoJcnpynSpCuUyhWcchZgziUxb3gpKtHEjlEZTwrVKSy6NShqd566Uz2Gv6zv3EpjK0OyShJem8zRTtkFPRaPl1qTKofOdRpBtvnBtAvg4zcD4XqMTQpyp_86ZCKbjuuUAv_HfFTNi4EhN8Nn-Qn-9qMNprI1xpRWuEHlJrWe6LLilgFqRtiUZmBG8J_bX9InxMU0TehXwZQkuq66KkqQL-pYRHO1Q4uE0u7c3G6gOwuGm3m7lCN6Ot2klFbx1rl97GpSUXAgVwYth442vJAmTsCjkq3__-Wt4IJAjQ5nREeytrtfuDVpQKz3xx2QC-9XseDbH39nJ2dfziY9H_AId6h4M |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5V5cBDQlCgBAoYCcQp2sR2EueA0EJZtvRxQFuptxA_skKiybbdFeqf4jcyEye7XUBw6jWxo9gznpdnvgF4lQmLVmvCQ1vFIpRlXIVaZCKMyshZVPgibpPHD4_S8bH8fJKcbMDPvhaG0ip7mdgKatsYipEP6AYPvRXULu9mZyF1jaLb1b6FhmeLfXf5A122i7d7u0jf15yPPk4-jMOuq0BoEh7NQ2uF5VoJcjUSjS63colCzsaj60wkZBVXnK6XYsOVRgXqKqVFLIyKSp2mjsCXUOTfkEIISiFUo0-rmI7AVafSFyILkUcD_a1xK1xBVLWSbu7WdGDbKuBPhfCbmduqu9E9uNvZqWzoGes-bLh6C-4Mr1w7bMHtK2CGD2C2jE-wL6X1VTDM2_fMg1sTDzAP2nHJytqy3T4phHXtgnB8i-Rq2qAl68Bfp-3gCaoRNlxMT7tqqfohHF_Lzj-Czbqp3WNgKkEzTxA-m05lomyJnpFGS7GUyqGzLwNI-h0uTAd2Tj03vhfo9BBlir9TJoDBct7Mw338d8Z7IuByNMF1tw-a82nRnf7CGJdb7jKe5lTqpvMsthTAy2SVk0EbwBsif0FbjL9pyq42AhdL8FzFMMtJmqEvG8DO2kgUBmb9dc9ARSeMLorV0Qng5fI1zaQEu9o1i3YMSuaYcxXAtme85ZIEYSBmmXjy74-_gJvjyeFBcbB3tP8UbnGkjk9x2oHN-fnCPUPrba6ft0eGwdfrPqO_AIh4VOs |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEB9KC6KCaNUarbqC4lO4ZDefD0WuXo_W6lFKC32L2Y8cgk2u7R3Sf9G_ypnNJtdT0ae-XmbDZWfnc2d-A_A2FRq91pj7ugqFH5Vh5UuRCj8oA6PR4IvQFo9_mST7p9Gns_hsDX52vTBUVtnpRKuodaMoRz6gGzyMVtC6DCpXFnE0Gn-YXfg0QYpuWrtxGqUbs6B3LNyYa_I4NNc_MJy72jkYIe_fcT7eO_m477uJA76KeTD3tRaay0xQGBJLDMczE2d46lGsjQpEVIUVp6unUPFMonE1VSZFKFQWlDJJDAEzoTnYSNHqYyC4sbs3OTpeZnwE7kkStW3KQuTBQH5rzBJ1EA1xRPd6KxbSDhL401z85gRbYzh-CA-cF8uG7bF7BGum3oT7wxuXEptw7wbU4WOY9dkLdlzqtkeGtd4_a6Gv6YSwFtLjmpW1ZqOuZIS5YUJIb3FelU1pMgcNO7XEJ8gpNlxMz10vVf0ETm9l75_Cet3U5hmwLEYnUBB6m0yiONMlxk0S_cgyykwa8ciDuNvhQjkodJrI8b3AkIg4U_ydMx4M-nWzFgzkvyt2iYE9NYF52x-ay2nhdEOhlMk1NylPcmqEk3kaakrvpVGVk7vrwXtif0FbjH9Tla5zAj-WwLuKYZqTrsNI14PtFUpUFWr1cXeACqeqroqlYHnwpn9MK6n8rjbNwtKg3g45zzzYag9e_0mCEBLTVDz_98tfwx2U1-LzweTwBdzlyJy2_mkb1ueXC_MSXbu5fOVkhsHX2xbTX20AX8Y |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+Radiology+Report+Generation+Quality+and+Diversity+through+Reinforcement+Learning+and+Text+Augmentation&rft.jtitle=Bioengineering+%28Basel%29&rft.au=Parres%2C+Daniel&rft.au=Albiol%2C+Alberto&rft.au=Paredes%2C+Roberto&rft.date=2024-04-01&rft.pub=MDPI+AG&rft.eissn=2306-5354&rft.volume=11&rft.issue=4&rft.spage=351&rft_id=info:doi/10.3390%2Fbioengineering11040351&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2306-5354&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2306-5354&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2306-5354&client=summon |