Shennong: A Python toolbox for audio speech features extraction
We introduce Shennong, a Python toolbox and command-line utility for audio speech features extraction. It implements a wide range of well-established state-of-the-art algorithms: spectro-temporal filters such as Mel-Frequency Cepstral Filterbank or Predictive Linear Filters, pre-trained neural netwo...
Saved in:
| Published in | Behavior research methods Vol. 55; no. 8; pp. 4489 - 4501 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Springer US
01.12.2023
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1554-3528 1554-351X 1554-3528 |
| DOI | 10.3758/s13428-022-02029-6 |
Cover
| Abstract | We introduce Shennong, a Python toolbox and command-line utility for audio speech features extraction. It implements a wide range of well-established state-of-the-art algorithms: spectro-temporal filters such as Mel-Frequency Cepstral Filterbank or Predictive Linear Filters, pre-trained neural networks, pitch estimators, speaker normalization methods, and post-processing algorithms. Shennong is an open source, reliable and extensible framework built on top of the popular Kaldi speech processing library. The Python implementation makes it easy to use by non-technical users and integrates with third-party speech modeling and machine learning tools from the Python ecosystem. This paper describes the Shennong software architecture, its core components, and implemented algorithms. Then, three applications illustrate its use. We first present a benchmark of speech features extraction algorithms available in Shennong on a phone discrimination task. We then analyze the performances of a speaker normalization model as a function of the speech duration used for training. We finally compare pitch estimation algorithms on speech under various noise conditions. |
|---|---|
| AbstractList | We introduce Shennong, a Python toolbox and command-line utility for audio speech features extraction. It implements a wide range of well-established state-of-the-art algorithms: spectro-temporal filters such as Mel-Frequency Cepstral Filterbank or Predictive Linear Filters, pre-trained neural networks, pitch estimators, speaker normalization methods, and post-processing algorithms. Shennong is an open source, reliable and extensible framework built on top of the popular Kaldi speech processing library. The Python implementation makes it easy to use by non-technical users and integrates with third-party speech modeling and machine learning tools from the Python ecosystem. This paper describes the Shennong software architecture, its core components, and implemented algorithms. Then, three applications illustrate its use. We first present a benchmark of speech features extraction algorithms available in Shennong on a phone discrimination task. We then analyze the performances of a speaker normalization model as a function of the speech duration used for training. We finally compare pitch estimation algorithms on speech under various noise conditions. We introduce Shennong, a Python toolbox and command-line utility for audio speech features extraction. It implements a wide range of well-established state-of-the-art algorithms: spectro-temporal filters such as Mel-Frequency Cepstral Filterbank or Predictive Linear Filters, pre-trained neural networks, pitch estimators, speaker normalization methods, and post-processing algorithms. Shennong is an open source, reliable and extensible framework built on top of the popular Kaldi speech processing library. The Python implementation makes it easy to use by non-technical users and integrates with third-party speech modeling and machine learning tools from the Python ecosystem. This paper describes the Shennong software architecture, its core components, and implemented algorithms. Then, three applications illustrate its use. We first present a benchmark of speech features extraction algorithms available in Shennong on a phone discrimination task. We then analyze the performances of a speaker normalization model as a function of the speech duration used for training. We finally compare pitch estimation algorithms on speech under various noise conditions.We introduce Shennong, a Python toolbox and command-line utility for audio speech features extraction. It implements a wide range of well-established state-of-the-art algorithms: spectro-temporal filters such as Mel-Frequency Cepstral Filterbank or Predictive Linear Filters, pre-trained neural networks, pitch estimators, speaker normalization methods, and post-processing algorithms. Shennong is an open source, reliable and extensible framework built on top of the popular Kaldi speech processing library. The Python implementation makes it easy to use by non-technical users and integrates with third-party speech modeling and machine learning tools from the Python ecosystem. This paper describes the Shennong software architecture, its core components, and implemented algorithms. Then, three applications illustrate its use. We first present a benchmark of speech features extraction algorithms available in Shennong on a phone discrimination task. We then analyze the performances of a speaker normalization model as a function of the speech duration used for training. We finally compare pitch estimation algorithms on speech under various noise conditions. |
| Author | Dupoux, Emmanuel Poli, Maxime Karadayi, Julien Bernard, Mathieu |
| Author_xml | – sequence: 1 givenname: Mathieu orcidid: 0000-0001-7586-7133 surname: Bernard fullname: Bernard, Mathieu email: mathieu.bernard.2@cnrs.fr organization: Cognitive Machine Learning, PSL Research University, CNRS, EHESS, ENS, Inria, EconomiX (UMR 7235), Université Paris Nanterre, CNRS – sequence: 2 givenname: Maxime surname: Poli fullname: Poli, Maxime organization: Cognitive Machine Learning, PSL Research University, CNRS, EHESS, ENS, Inria – sequence: 3 givenname: Julien surname: Karadayi fullname: Karadayi, Julien organization: Cognitive Machine Learning, PSL Research University, CNRS, EHESS, ENS, Inria – sequence: 4 givenname: Emmanuel surname: Dupoux fullname: Dupoux, Emmanuel organization: Cognitive Machine Learning, PSL Research University, CNRS, EHESS, ENS, Inria, Meta AI Research |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36750521$$D View this record in MEDLINE/PubMed https://hal.science/hal-04312370$$DView record in HAL |
| BookMark | eNqNkU1r3DAQhkVJaT7aP9BDMeSSHNxKI2kl5VKWkDSFhRbanoUky1kHr7SR7Cb776Ott03JIeQwaBied0bzziHaCzF4hN4T_JEKLj9lQhnIGgOUwKDq2St0QDhnNeUg9_7L99FhzjcYUwmEvUH7dCY45kAO0OcfSx9K3-uzal593wzLGKohxt7G-6qNqTJj08Uqr713y6r1ZhiTz5W_H5JxQxfDW_S6NX3273bvEfp1efHz_KpefPvy9Xy-qB0HPNRSUCmdFUoyqyxroCGM4FmjnGLUEoDWt8yCo6XqoLUOjGOWKGkUcCEcPUJ06juGtdncmb7X69StTNpogvXWDj3ZoYsd-o8delZUp5NqaR75aDp9NV_obQ0zSoAK_JsU9mRi1ynejj4PetVl5_veBB_HrEEIxhRXChf0-Al6E8cUyv4aZAGUVIQX6sOOGu3KN__m_zW_ADABLsWck29ftpJ8InLdYLanKCfp-uelOw9zmROufXr89jOqBxMZtRM |
| CitedBy_id | crossref_primary_10_1016_j_apacoust_2024_110505 crossref_primary_10_3390_electronics12153342 crossref_primary_10_1007_s11042_024_19750_3 |
| Cites_doi | 10.21437/SpeechProsody.2006-134 10.1109/ICASSP.2014.6853678 10.21437/Interspeech.2018-2414 10.1145/1873951.1874246 10.1016/j.specom.2013.07.001 10.1109/ICASSP.1992.225957 10.1016/j.specom.2007.02.006 10.21437/Interspeech.2020-1057 10.21437/Interspeech.2019-1268 10.1109/ASRU.2017.8268953 10.21437/Interspeech.2020-2743 10.21437/Interspeech.2014-228 10.1109/ICASSP.2018.8461329 10.21437/Interspeech.2015-638 10.1371/journal.pone.0152686 10.1016/j.procs.2016.04.031 10.21437/Odyssey.2018-40 10.1109/89.326616 10.1121/1.4939739 10.1109/ICASSP.2014.6854049 10.1007/s10772-011-9125-1 10.1109/ICASSP39728.2021.9413528 10.1109/ICASSP.2018.8462463 10.1121/1.2916590 10.1121/1.399423 10.21437/Interspeech.2004-191 10.21437/Interspeech.2021-1208 10.21437/Interspeech.2020-2879 10.1016/j.csl.2017.06.008 10.21437/Interspeech.2013-441 10.1073/pnas.2001844118 10.1016/j.eswa.2017.08.015 10.21437/Eurospeech.1995-191 |
| ContentType | Journal Article |
| Copyright | The Psychonomic Society, Inc. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. 2023. The Psychonomic Society, Inc. Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: The Psychonomic Society, Inc. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: 2023. The Psychonomic Society, Inc. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 4T- 7TK K9. 7X8 1XC BXJBU ADTOC UNPAY |
| DOI | 10.3758/s13428-022-02029-6 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Docstoc Neurosciences Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic Hyper Article en Ligne (HAL) HAL-SHS: Archive ouverte en Sciences de l'Homme et de la Société Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Neurosciences Abstracts Docstoc MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE ProQuest Health & Medical Complete (Alumni) |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Psychology |
| EISSN | 1554-3528 |
| EndPage | 4501 |
| ExternalDocumentID | oai:HAL:hal-03901826v1 oai:HAL:hal-04312370v1 36750521 10_3758_s13428_022_02029_6 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Institut national de recherche en informatique et en automatique (INRIA) grantid: ADT-193 funderid: https://doi.org/10.13039/100012950 – fundername: Facebook funderid: https://doi.org/10.13039/100005801 – fundername: Canadian Institute for Advanced Research funderid: https://doi.org/10.13039/100007631 – fundername: Agence Nationale de la Recherche grantid: ANR-17- EURE-0017 Frontcog; ANR-10-IDEX-0001-02 PS funderid: https://doi.org/10.13039/501100001665 – fundername: Agence Nationale de la Recherche grantid: ANR-17- EURE-0017 Frontcog – fundername: Agence Nationale de la Recherche grantid: ANR-10-IDEX-0001-02 PS – fundername: Institut national de recherche en informatique et en automatique (INRIA) grantid: ADT-193 |
| GroupedDBID | --- -55 -5G -BR -DZ -EM -ET -~C -~X 0-V 06D 0R~ 0VY 199 1N0 203 23N 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 30V 3V. 4.4 406 408 40E 53G 5GY 7X7 875 88E 8AO 8FI 8FJ 8G5 8TC 8UJ 95. 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AAKPC AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABDZT ABECU ABFTV ABHLI ABIVO ABJNI ABJOX ABJUD ABKCH ABMQK ABNWP ABPLI ABPPZ ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABUWG ABXPI ACAOD ACBXY ACDTI ACGFS ACHQT ACHSB ACHXU ACIWK ACKIV ACKNC ACMDZ ACMLO ACNCT ACOKC ACPIV ACPRK ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFFNX AFKRA AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI AMKLP AMXSW AMYLF AMYQR AOCGG ARALO ARMRJ ASPBG AVWKF AXYYD AYQZM AZFZN AZQEC B-. BAWUL BENPR BGNMA BPHCQ BVXVI C1A CAG CCPQU COF CSCUP DDRTE DIK DNIVK DPUIP DWQXO E3Z EBD EBLON EBS EIOEI EJD EMOBN ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FYUFA GGCAI GGRSB GJIRD GNUQQ GNWQR GQ3 GQ6 GQ7 GUQSH H13 HF~ HMCUK HMJXF HRMNR HVGLF HZ~ H~9 IAO IHR IKXTQ INH IPY IRVIT ITC ITM IWAJR J-C JBSCW JZLTJ KOV LLZTM M1P M2M M2O M2R M4Y MVM N2Q N9A NB0 NPVJJ NQJWS NU0 O9- O93 O9G O9J OHT OK1 P2P P9L PADUT PF- PQQKQ PROAC PSQYO PSYQQ PT4 R9I RIG ROL RPV RSV S16 S1Z S27 S3B SBS SBU SCLPG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 TN5 TR2 TSG TUC TUS U2A U9L UG4 UKHRP UOJIU UPT UTJUX UZXMN VFIZW VXZ W48 WH7 WK8 XJT XOL XSW Z7R Z7S Z7W Z81 Z83 Z88 Z8N Z92 ZMTXR ZOVNA ZUP AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION CGR CUY CVF ECM EIF NPM 4T- 7TK K9. 7X8 1XC ADHKG AGQPQ BXJBU PHGZM PHGZT PJZUB PPXIY PRQQA ADTOC UNPAY |
| ID | FETCH-LOGICAL-c520t-87388cb7984b9b4d2d14106d9c943b122fef4b2c3410c2fbc2ac4b198a92577c3 |
| IEDL.DBID | UNPAY |
| ISSN | 1554-3528 1554-351X |
| IngestDate | Sun Oct 26 04:00:10 EDT 2025 Tue Oct 14 21:00:56 EDT 2025 Wed Oct 01 14:48:12 EDT 2025 Tue Oct 07 06:31:06 EDT 2025 Wed Feb 19 02:05:25 EST 2025 Wed Oct 01 01:50:04 EDT 2025 Thu Apr 24 23:12:55 EDT 2025 Fri Feb 21 02:40:21 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Keywords | Pitch estimation Software Speech processing Features extraction Python No keyword available |
| Language | English |
| License | 2023. The Psychonomic Society, Inc. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 other-oa |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c520t-87388cb7984b9b4d2d14106d9c943b122fef4b2c3410c2fbc2ac4b198a92577c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-7586-7133 0000-0002-9377-9150 0000-0002-7814-2952 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://inria.hal.science/hal-03901826 |
| PMID | 36750521 |
| PQID | 2899098915 |
| PQPubID | 976348 |
| PageCount | 13 |
| ParticipantIDs | unpaywall_primary_10_3758_s13428_022_02029_6 hal_primary_oai_HAL_hal_04312370v1 proquest_miscellaneous_2774495990 proquest_journals_2899098915 pubmed_primary_36750521 crossref_primary_10_3758_s13428_022_02029_6 crossref_citationtrail_10_3758_s13428_022_02029_6 springer_journals_10_3758_s13428_022_02029_6 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-12-01 |
| PublicationDateYYYYMMDD | 2023-12-01 |
| PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: United States |
| PublicationTitle | Behavior research methods |
| PublicationTitleAbbrev | Behav Res |
| PublicationTitleAlternate | Behav Res Methods |
| PublicationYear | 2023 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | VersteeghMAngueraXJansenADupouxEThe zero resource speech challenge 2015: Proposed approaches and resultsProcedia Computer Science201681677210.1016/j.procs.2016.04.031 PedregosaFVaroquauxGGramfortAMichelVThirionBGriselOBlondelMPrettenhoferPWeissRDubourgVScikit-learn: Machine learning in PythonThe Journal of Machine Learning Research20111228252830 RamirezJGórrizJMSeguraJCVoice activity detection. Fundamentals and speech recognition system robustnessRobust Speech Recognition and Understanding200769122 Saeed, A., Grangier, D., & Zeghidour, N. (2021). Contrastive learning of general-purpose audio representations. In IEEE international conference on acoustics, speech and signal processing (ICASSP) (pp. 3875–3879). Zeghidour, N., Usunier, N., Synnaeve, G., Collobert, R., & Dupoux, E. (2018). End-to-end speech recognition from the raw waveform. In Interspeech 2018. Ryant, N., Singh, P., Krishnamohan, V., Varma, R., Church, K., Cieri, C., ..., Liberman, M. (2020). The third dihard diarization challenge. arXiv:2012.01477. Schatz, T., Bernard, M., & Thiollière, R. (2020). h5features: Efficient storage of large features data. https://github.com/bootphon/h5features/releases/tag/v1.3.3. Software. Version 1.3.3. Versteegh, M., Thiollière, R., Schatz, T., Cao, X.N., Anguera, X., Jansen, A., & Dupoux, E. (2015). The zero resource speech challenge 2015. In Interspeech 2015. Mauch, M., & Dixon, S. (2014). pYIN: A fundamental frequency estimator using probabilistic threshold distributions. In 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 659–663): IEEE. Hermansky, H., Morgan, N., Bayya, A., & Kohn, P. (1991). RASTA-PLP speech analysis. In Proc. IEEE int’l conf. acoustics, speech and signal processing, (Vol. 1 pp. 121–124). KoolagudiSGRaoKSEmotion recognition from speech: A reviewInternational Journal of Speech Technology20121529911710.1007/s10772-011-9125-1 De VriesNJDavelMHBadenhorstJBassonWDDe WetFBarnardEDe WaalAA smartphone-based ASR data collection tool for under-resourced languagesSpeech Communication20145611913110.1016/j.specom.2013.07.001 Eyben, F., Wöllmer, M., & Schuller, B. (2010). Opensmile: The munich versatile and fast open-source audio feature extractor. In Proceedings of the 18th ACM international conference on Multimedia (pp. 1459–1462). Ryant, N., Church, K., Cieri, C., Cristia, A., Du, J., Ganapathy, S., & Liberman, M. (2019). The second dihard diarization challenge: Dataset, task, and baselines. Interspeech, 2019, (pp. 978–982). Oord, A.v.d., Li, Y., & Vinyals, O. (2018). Representation learning with contrastive predictive coding. arXiv:1807.03748. Povey, D. (2010). Notes for affine transform-based VTLN. Microsoft Research. Schatz, T., Peddinti, V., Cao, X.N., Bach, F., Hermansky, H., & Dupoux, E. (2014). Evaluating speech features with the minimal-pair ABX task (II): Resistance to noise. In 15th annual conference of the international speech communication association. Schatz, T., Feldman, N.H., Goldwater, S., Cao, X.N., & Dupoux, E. (2021). Early phonetic learning without phonetic categories: Insights from large-scale simulations on realistic input. Proceedings of the National Academy of Sciences, 118(7). Can, D., Martinez, V.R., Papadopoulos, P., & Narayanan, S.S. (2018). Pykaldi: A python wrapper for kaldi. In 2018 IEEE international conference on acoustics, speech and signal processing (ICASSP): IEEE. Dunbar, E., Karadayi, J., Bernard, M., Cao, X.N., Algayres, R., Ondel, L., ..., Dupoux, E. (2020). The zero resource speech challenge 2020: Discovering discrete subword and word units. In Interspeech 2020. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., ..., et al. (2019). Pytorch: An imperative style, high-performance deep learning library. Advances in Neural Information Processing Systems, 32. Cieri, C., Miller, D., & Walker, K. (2004). The fisher corpus: A resource for the next generations of speech-to-text. In LREC, (Vol. 4 pp. 69–71). BoersmaPPraat, a system for doing phonetics by computerGlot International200159/10341345 Ghahremani, P., BabaAli, B., Povey, D., Riedhammer, K., Trmal, J., & Khudanpur, S. (2014). A pitch extraction algorithm tuned for automatic speech recognition. In 2014 IEEE international conference on acoustics, speech and signal processing (ICASSP) (pp. 2494–2498). Povey, D., Ghoshal, A., Boulianne, G., Burget, L., Glembek, O., Goel, N., ..., Vesely, K. (2011). The Kaldi speech recognition toolkit. In IEEE 2011 workshop on automatic speech recognition and understanding: IEEE Signal Processing Society. Silnova, A., Matejka, P., Glembek, O., Plchot, O., Novotnỳ, O., Grezl, F., ..., Cernockỳ, J. (2018). But/phonexia bottleneck feature extractor. In Odyssey (pp. 283–287). Plante, F., Meyer, G., & Ainsworth, W. (1995). A pitch extraction reference database. In Eurospeech-1995 (pp. 837–840). Lenain, R., Weston, J., Shivkumar, A., & Fristed, E. (2020). Surfboard: Audio feature extraction for modern machine learning. TirumalaSSShahamiriSRGarhwalASWangRSpeaker identification features extraction methods: A systematic reviewExpert Systems with Applications20179025027110.1016/j.eswa.2017.08.015 Harper, M. (2013). The babel program and low resource speech technology. Proc. of ASRU 2013. Orozco-ArroyaveJHönigFArias-LondoñoJVargas-BonillaJDaqrouqKSkoddaSRuszJNöthEAutomatic detection of Parkinson’s disease in running speech spoken in three different languagesThe Journal of the Acoustical Society of America2016139148150010.1121/1.493973926827042 Dunbar, E., Cao, X.N., Benjumea, J., Karadayi, J., Bernard, M., Besacier, L., ..., Dupoux, E. (2017). The zero resource speech challenge 2017. In 2017 IEEE automatic speech recognition and understanding workshop (ASRU) (pp. 323–330): IEEE. HungLHKristiyantoDLeeSBYeungKYGuidock: Using docker containers with a common graphics user interface to address the reproducibility of researchPloS ONE2016114e015268610.1371/journal.pone.0152686270455934821530 Liu, F., Surendran, D., & Xu, Y. (2006). Classification of statement and question intonations in Mandarin. Proc. 3rd speech prosody, (pp. 603–606). Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., ..., et al (2016). Tensorflow: A system for large-scale machine learning. In 12th USENIX symposium on operating systems design and implementation (OSDI16) (pp. 265–283). Kim, D., Umesh, S., Gales, M., Hain, T., & Woodland, P. (2004). Using VTLN for broadcast news transcription. In 8th international conference on spoken language processing. Boersma, P. (1993). Accurate short-term analysis of the fundamental frequency and the harmonics-to-noise ratio of a sampled sound. In Proceedings of the institute of Phonetic sciences, (Vol. 17 pp. 97–110). ZahorianSAHuHA spectral/temporal method for robust fundamental frequency trackingThe Journal of the Acoustical Society of America200812364559457110.1121/1.291659018537404 BenzeghibaMDe MoriRDerooODupontSErbesTJouvetDFissoreLLafacePMertinsARisCAutomatic speech recognition and speech variability: A reviewSpeech Communication20074910-1176378610.1016/j.specom.2007.02.006 HermanskyHMorganNRasta processing of speechIEEE Transactions on Speech and Audio Processing19942457858910.1109/89.326616 Pitt, M.A., Dilley, L., Johnson, K., Kiesling, S., Raymond, W., Hume, E., & Fosler-Lussier, E. (2007). Buckeye corpus of conversational speech (2nd release). Columbus, OH: Department of Psychology Ohio State University. Ellis, D.P.W. (2005). PLP and RASTA (and MFCC, and inversion) in Matlab. http://www.ee.columbia.edu/~dpwe/resources/matlab/rastamat. Online web resource. Kim, J.W., Salamon, J., Li, P., & Bello, J.P. (2018). Crepe: A convolutional representation for pitch estimation. In 2018 IEEE international conference on acoustics, speech and signal processing (ICASSP) (pp. 161–165). HermanskyHPerceptual linear predictive (PLP) analysis of speechThe Journal of the Acoustical Society of America19908741738175210.1121/1.3994232341679 FerRMatějkaPGrézlFPlchotOVeselỳKČernockỳJHMultilingually trained bottleneck features in spoken language recognitionComputer Speech & Language20174625226710.1016/j.csl.2017.06.008 Schatz, T., Peddinti, V., Bach, F., Jansen, A., Hermansky, H., & Dupoux, E. (2013). Evaluating speech features with the minimal-pair ABX task: Analysis of the classical MFC/PLP pipeline. In Interspeech 2013 (pp. 1–5). Riad, R., Titeux, H., Lemoine, L., Montillot, J., Bagnou, J.H., Cao, X.N., ..., Bachoud-Lévi, A.C. (2020). Vocal markers from sustained phonation in huntington’s disease. In Interspeech 2020. 2029_CR25 J Orozco-Arroyave (2029_CR26) 2016; 139 2029_CR47 2029_CR27 2029_CR22 2029_CR23 2029_CR45 M Benzeghiba (2029_CR2) 2007; 49 NJ De Vries (2029_CR7) 2014; 56 2029_CR24 2029_CR40 R Fer (2029_CR12) 2017; 46 2029_CR41 2029_CR20 2029_CR42 F Pedregosa (2029_CR28) 2011; 12 H Hermansky (2029_CR16) 1994; 2 LH Hung (2029_CR18) 2016; 11 2029_CR29 2029_CR14 2029_CR36 2029_CR37 2029_CR38 2029_CR17 2029_CR39 M Versteegh (2029_CR44) 2016; 81 2029_CR10 2029_CR32 2029_CR11 SG Koolagudi (2029_CR21) 2012; 15 2029_CR34 SS Tirumala (2029_CR43) 2017; 90 2029_CR13 2029_CR35 P Boersma (2029_CR4) 2001; 5 2029_CR8 2029_CR6 2029_CR30 2029_CR5 2029_CR31 2029_CR3 2029_CR1 J Ramirez (2029_CR33) 2007; 6 2029_CR9 H Hermansky (2029_CR15) 1990; 87 SA Zahorian (2029_CR46) 2008; 123 2029_CR19 |
| References_xml | – reference: Ellis, D.P.W. (2005). PLP and RASTA (and MFCC, and inversion) in Matlab. http://www.ee.columbia.edu/~dpwe/resources/matlab/rastamat. Online web resource. – reference: Eyben, F., Wöllmer, M., & Schuller, B. (2010). Opensmile: The munich versatile and fast open-source audio feature extractor. In Proceedings of the 18th ACM international conference on Multimedia (pp. 1459–1462). – reference: KoolagudiSGRaoKSEmotion recognition from speech: A reviewInternational Journal of Speech Technology20121529911710.1007/s10772-011-9125-1 – reference: PedregosaFVaroquauxGGramfortAMichelVThirionBGriselOBlondelMPrettenhoferPWeissRDubourgVScikit-learn: Machine learning in PythonThe Journal of Machine Learning Research20111228252830 – reference: Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., ..., et al (2016). Tensorflow: A system for large-scale machine learning. In 12th USENIX symposium on operating systems design and implementation (OSDI16) (pp. 265–283). – reference: Mauch, M., & Dixon, S. (2014). pYIN: A fundamental frequency estimator using probabilistic threshold distributions. In 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 659–663): IEEE. – reference: Oord, A.v.d., Li, Y., & Vinyals, O. (2018). Representation learning with contrastive predictive coding. arXiv:1807.03748. – reference: Schatz, T., Peddinti, V., Cao, X.N., Bach, F., Hermansky, H., & Dupoux, E. (2014). Evaluating speech features with the minimal-pair ABX task (II): Resistance to noise. In 15th annual conference of the international speech communication association. – reference: HermanskyHPerceptual linear predictive (PLP) analysis of speechThe Journal of the Acoustical Society of America19908741738175210.1121/1.3994232341679 – reference: Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., ..., et al. (2019). Pytorch: An imperative style, high-performance deep learning library. Advances in Neural Information Processing Systems, 32. – reference: FerRMatějkaPGrézlFPlchotOVeselỳKČernockỳJHMultilingually trained bottleneck features in spoken language recognitionComputer Speech & Language20174625226710.1016/j.csl.2017.06.008 – reference: Riad, R., Titeux, H., Lemoine, L., Montillot, J., Bagnou, J.H., Cao, X.N., ..., Bachoud-Lévi, A.C. (2020). Vocal markers from sustained phonation in huntington’s disease. In Interspeech 2020. – reference: TirumalaSSShahamiriSRGarhwalASWangRSpeaker identification features extraction methods: A systematic reviewExpert Systems with Applications20179025027110.1016/j.eswa.2017.08.015 – reference: Orozco-ArroyaveJHönigFArias-LondoñoJVargas-BonillaJDaqrouqKSkoddaSRuszJNöthEAutomatic detection of Parkinson’s disease in running speech spoken in three different languagesThe Journal of the Acoustical Society of America2016139148150010.1121/1.493973926827042 – reference: Kim, D., Umesh, S., Gales, M., Hain, T., & Woodland, P. (2004). Using VTLN for broadcast news transcription. In 8th international conference on spoken language processing. – reference: Schatz, T., Feldman, N.H., Goldwater, S., Cao, X.N., & Dupoux, E. (2021). Early phonetic learning without phonetic categories: Insights from large-scale simulations on realistic input. Proceedings of the National Academy of Sciences, 118(7). – reference: Harper, M. (2013). The babel program and low resource speech technology. Proc. of ASRU 2013. – reference: Boersma, P. (1993). Accurate short-term analysis of the fundamental frequency and the harmonics-to-noise ratio of a sampled sound. In Proceedings of the institute of Phonetic sciences, (Vol. 17 pp. 97–110). – reference: Schatz, T., Bernard, M., & Thiollière, R. (2020). h5features: Efficient storage of large features data. https://github.com/bootphon/h5features/releases/tag/v1.3.3. Software. Version 1.3.3. – reference: Kim, J.W., Salamon, J., Li, P., & Bello, J.P. (2018). Crepe: A convolutional representation for pitch estimation. In 2018 IEEE international conference on acoustics, speech and signal processing (ICASSP) (pp. 161–165). – reference: HungLHKristiyantoDLeeSBYeungKYGuidock: Using docker containers with a common graphics user interface to address the reproducibility of researchPloS ONE2016114e015268610.1371/journal.pone.0152686270455934821530 – reference: Povey, D., Ghoshal, A., Boulianne, G., Burget, L., Glembek, O., Goel, N., ..., Vesely, K. (2011). The Kaldi speech recognition toolkit. In IEEE 2011 workshop on automatic speech recognition and understanding: IEEE Signal Processing Society. – reference: Ryant, N., Singh, P., Krishnamohan, V., Varma, R., Church, K., Cieri, C., ..., Liberman, M. (2020). The third dihard diarization challenge. arXiv:2012.01477. – reference: Dunbar, E., Karadayi, J., Bernard, M., Cao, X.N., Algayres, R., Ondel, L., ..., Dupoux, E. (2020). The zero resource speech challenge 2020: Discovering discrete subword and word units. In Interspeech 2020. – reference: Ryant, N., Church, K., Cieri, C., Cristia, A., Du, J., Ganapathy, S., & Liberman, M. (2019). The second dihard diarization challenge: Dataset, task, and baselines. Interspeech, 2019, (pp. 978–982). – reference: VersteeghMAngueraXJansenADupouxEThe zero resource speech challenge 2015: Proposed approaches and resultsProcedia Computer Science201681677210.1016/j.procs.2016.04.031 – reference: Lenain, R., Weston, J., Shivkumar, A., & Fristed, E. (2020). Surfboard: Audio feature extraction for modern machine learning. – reference: Liu, F., Surendran, D., & Xu, Y. (2006). Classification of statement and question intonations in Mandarin. Proc. 3rd speech prosody, (pp. 603–606). – reference: Zeghidour, N., Usunier, N., Synnaeve, G., Collobert, R., & Dupoux, E. (2018). End-to-end speech recognition from the raw waveform. In Interspeech 2018. – reference: Dunbar, E., Cao, X.N., Benjumea, J., Karadayi, J., Bernard, M., Besacier, L., ..., Dupoux, E. (2017). The zero resource speech challenge 2017. In 2017 IEEE automatic speech recognition and understanding workshop (ASRU) (pp. 323–330): IEEE. – reference: Schatz, T., Peddinti, V., Bach, F., Jansen, A., Hermansky, H., & Dupoux, E. (2013). Evaluating speech features with the minimal-pair ABX task: Analysis of the classical MFC/PLP pipeline. In Interspeech 2013 (pp. 1–5). – reference: Can, D., Martinez, V.R., Papadopoulos, P., & Narayanan, S.S. (2018). Pykaldi: A python wrapper for kaldi. In 2018 IEEE international conference on acoustics, speech and signal processing (ICASSP): IEEE. – reference: BoersmaPPraat, a system for doing phonetics by computerGlot International200159/10341345 – reference: Pitt, M.A., Dilley, L., Johnson, K., Kiesling, S., Raymond, W., Hume, E., & Fosler-Lussier, E. (2007). Buckeye corpus of conversational speech (2nd release). Columbus, OH: Department of Psychology Ohio State University. – reference: RamirezJGórrizJMSeguraJCVoice activity detection. Fundamentals and speech recognition system robustnessRobust Speech Recognition and Understanding200769122 – reference: BenzeghibaMDe MoriRDerooODupontSErbesTJouvetDFissoreLLafacePMertinsARisCAutomatic speech recognition and speech variability: A reviewSpeech Communication20074910-1176378610.1016/j.specom.2007.02.006 – reference: Ghahremani, P., BabaAli, B., Povey, D., Riedhammer, K., Trmal, J., & Khudanpur, S. (2014). A pitch extraction algorithm tuned for automatic speech recognition. In 2014 IEEE international conference on acoustics, speech and signal processing (ICASSP) (pp. 2494–2498). – reference: De VriesNJDavelMHBadenhorstJBassonWDDe WetFBarnardEDe WaalAA smartphone-based ASR data collection tool for under-resourced languagesSpeech Communication20145611913110.1016/j.specom.2013.07.001 – reference: Silnova, A., Matejka, P., Glembek, O., Plchot, O., Novotnỳ, O., Grezl, F., ..., Cernockỳ, J. (2018). But/phonexia bottleneck feature extractor. In Odyssey (pp. 283–287). – reference: Versteegh, M., Thiollière, R., Schatz, T., Cao, X.N., Anguera, X., Jansen, A., & Dupoux, E. (2015). The zero resource speech challenge 2015. In Interspeech 2015. – reference: HermanskyHMorganNRasta processing of speechIEEE Transactions on Speech and Audio Processing19942457858910.1109/89.326616 – reference: Hermansky, H., Morgan, N., Bayya, A., & Kohn, P. (1991). RASTA-PLP speech analysis. In Proc. IEEE int’l conf. acoustics, speech and signal processing, (Vol. 1 pp. 121–124). – reference: Cieri, C., Miller, D., & Walker, K. (2004). The fisher corpus: A resource for the next generations of speech-to-text. In LREC, (Vol. 4 pp. 69–71). – reference: Plante, F., Meyer, G., & Ainsworth, W. (1995). A pitch extraction reference database. In Eurospeech-1995 (pp. 837–840). – reference: Saeed, A., Grangier, D., & Zeghidour, N. (2021). Contrastive learning of general-purpose audio representations. In IEEE international conference on acoustics, speech and signal processing (ICASSP) (pp. 3875–3879). – reference: Povey, D. (2010). Notes for affine transform-based VTLN. Microsoft Research. – reference: ZahorianSAHuHA spectral/temporal method for robust fundamental frequency trackingThe Journal of the Acoustical Society of America200812364559457110.1121/1.291659018537404 – ident: 2029_CR27 – volume: 12 start-page: 2825 year: 2011 ident: 2029_CR28 publication-title: The Journal of Machine Learning Research – ident: 2029_CR29 – volume: 6 start-page: 1 issue: 9 year: 2007 ident: 2029_CR33 publication-title: Robust Speech Recognition and Understanding – ident: 2029_CR23 doi: 10.21437/SpeechProsody.2006-134 – ident: 2029_CR24 doi: 10.1109/ICASSP.2014.6853678 – ident: 2029_CR47 doi: 10.21437/Interspeech.2018-2414 – ident: 2029_CR11 doi: 10.1145/1873951.1874246 – volume: 56 start-page: 119 year: 2014 ident: 2029_CR7 publication-title: Speech Communication doi: 10.1016/j.specom.2013.07.001 – ident: 2029_CR17 doi: 10.1109/ICASSP.1992.225957 – ident: 2029_CR25 – volume: 49 start-page: 763 issue: 10-11 year: 2007 ident: 2029_CR2 publication-title: Speech Communication doi: 10.1016/j.specom.2007.02.006 – ident: 2029_CR34 doi: 10.21437/Interspeech.2020-1057 – ident: 2029_CR35 doi: 10.21437/Interspeech.2019-1268 – ident: 2029_CR8 doi: 10.1109/ASRU.2017.8268953 – ident: 2029_CR9 doi: 10.21437/Interspeech.2020-2743 – ident: 2029_CR41 doi: 10.21437/Interspeech.2014-228 – ident: 2029_CR20 doi: 10.1109/ICASSP.2018.8461329 – ident: 2029_CR45 doi: 10.21437/Interspeech.2015-638 – volume: 11 start-page: e0152686 issue: 4 year: 2016 ident: 2029_CR18 publication-title: PloS ONE doi: 10.1371/journal.pone.0152686 – ident: 2029_CR3 – ident: 2029_CR10 – volume: 81 start-page: 67 year: 2016 ident: 2029_CR44 publication-title: Procedia Computer Science doi: 10.1016/j.procs.2016.04.031 – ident: 2029_CR42 doi: 10.21437/Odyssey.2018-40 – ident: 2029_CR1 – ident: 2029_CR14 – ident: 2029_CR31 – volume: 2 start-page: 578 issue: 4 year: 1994 ident: 2029_CR16 publication-title: IEEE Transactions on Speech and Audio Processing doi: 10.1109/89.326616 – volume: 139 start-page: 481 issue: 1 year: 2016 ident: 2029_CR26 publication-title: The Journal of the Acoustical Society of America doi: 10.1121/1.4939739 – ident: 2029_CR13 doi: 10.1109/ICASSP.2014.6854049 – volume: 15 start-page: 99 issue: 2 year: 2012 ident: 2029_CR21 publication-title: International Journal of Speech Technology doi: 10.1007/s10772-011-9125-1 – ident: 2029_CR37 doi: 10.1109/ICASSP39728.2021.9413528 – ident: 2029_CR5 doi: 10.1109/ICASSP.2018.8462463 – volume: 123 start-page: 4559 issue: 6 year: 2008 ident: 2029_CR46 publication-title: The Journal of the Acoustical Society of America doi: 10.1121/1.2916590 – volume: 87 start-page: 1738 issue: 4 year: 1990 ident: 2029_CR15 publication-title: The Journal of the Acoustical Society of America doi: 10.1121/1.399423 – ident: 2029_CR19 doi: 10.21437/Interspeech.2004-191 – volume: 5 start-page: 341 issue: 9/10 year: 2001 ident: 2029_CR4 publication-title: Glot International – ident: 2029_CR36 doi: 10.21437/Interspeech.2021-1208 – ident: 2029_CR22 doi: 10.21437/Interspeech.2020-2879 – ident: 2029_CR38 – volume: 46 start-page: 252 year: 2017 ident: 2029_CR12 publication-title: Computer Speech & Language doi: 10.1016/j.csl.2017.06.008 – ident: 2029_CR40 doi: 10.21437/Interspeech.2013-441 – ident: 2029_CR6 – ident: 2029_CR39 doi: 10.1073/pnas.2001844118 – volume: 90 start-page: 250 year: 2017 ident: 2029_CR43 publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2017.08.015 – ident: 2029_CR30 doi: 10.21437/Eurospeech.1995-191 – ident: 2029_CR32 |
| SSID | ssj0038214 |
| Score | 2.4462636 |
| Snippet | We introduce Shennong, a Python toolbox and command-line utility for audio speech features extraction. It implements a wide range of well-established... |
| SourceID | unpaywall hal proquest pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 4489 |
| SubjectTerms | Algorithms Behavioral Science and Psychology Cognitive Psychology Economics and Finance Ecosystem Filters Frequency Humanities and Social Sciences Humans Neural networks Neural Networks, Computer Psychology Software Speech Temporal variations |
| SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB615UA5ICjQprSVQdxohF9JbG4r1GpVAeqBlXqzbMdhK602q2YX2H_f8eZBEaKi18R2nBnP-Bt55jPAO0Ft0JaxVAXqUukqnmpaFqkLCO-FL5gMsTj5y9d8PJEXV9lVVxTW9Nnu_ZHkxlPHuBJB7YeGCRnZlDF4QogTkza24VEW6bxwFU_4qPe_QnEm2_KYf_T7YwvansYEyL_R5Z2T0SfweDVf2PVPO5vd2XzOn8HTDjWSUavm57AV5nuwOziv9QsE3VN0mfX8-0cyIpfryAhAlnU9c_UvgriU2FV5XZNmEYKfkips6Dwbgp75pq1seAmT87Nvn8ZpdzlC6jNOl-jFhFLeFVpJp50seRkzNvNSey2FY5xXoZKOe9ylqOeV89x66ZhWVqOVFl68gh2cVTgAgpBJ55zrCgeROa2c8miaoSx0FmiwKgHWy8v4jjk8XmAxMxhBRBmbVsYGZWw2MjZ5Au-HPouWN-Pe1m9RDUPDSHk9Hn028Vkk_-GioD9YAke9lkxnaI2J8SLVSrMsgTfDazSReO5h56FeYRuEuBgHYsME9lvtDp8SGDDF-uUETnt1_x78vgmfDkviP_7v8GGjv4bdeKt9mzVzBDvLm1U4RuyzdCebpX4LSCz2qg priority: 102 providerName: Springer Nature |
| Title | Shennong: A Python toolbox for audio speech features extraction |
| URI | https://link.springer.com/article/10.3758/s13428-022-02029-6 https://www.ncbi.nlm.nih.gov/pubmed/36750521 https://www.proquest.com/docview/2899098915 https://www.proquest.com/docview/2774495990 https://hal.science/hal-04312370 https://inria.hal.science/hal-03901826 |
| UnpaywallVersion | submittedVersion |
| Volume | 55 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1554-3528 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0038214 issn: 1554-3528 databaseCode: DIK dateStart: 20050101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1554-3528 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0038214 issn: 1554-3528 databaseCode: AFBBN dateStart: 19970301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1554-3528 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0038214 issn: 1554-3528 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1554-3528 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0038214 issn: 1554-3528 databaseCode: U2A dateStart: 20050101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED_R9oHxwPdG2KgM4o2lc2znw7xFaFvFx7QHKnVPUew4FK1KqjVhK3_9zk2aDZAGvFnJxbF9Pvt38t3PAG85TY1MPc-NDFWuUDlzJc1CVxmE91yHnjA2OfnLSTCeiI9Tf9oGyK5zYQoc99EMcWe7Axxg2aXWM0cg3INB4CPm7sNgcnIan63JUH1hw9GnN2UWNdkxHLHwwdLjwpIwo8-FyMjGevyyA_VmNv7xT3B562D0Adyvi0W6ukzn81t7z9EjON60ugk5OR_VlRrpn78ROv69W4_hYQs_SdzMlydwzxRPYatbBVfPEL3PcO0ti2_vSUxOV5ZagFRlOVflFUGAS9I6-16S5cIYPSO5WfOCLgku8RdNisRzmBwdfv0wdttbFlztM1rhcsijSKtQRkJJJTKW2dDPIJNaCq48xnKTC8U0bndUs1xplmqhPBmlEs091Hwb-tgq8wIIYi8ZMCZzrEQENFeRRhs3WSh9Q00aOeBtRj7RLQW5vQljnqArYrWVNNpKUFvJWltJ4MC77ptFQ8Bxp_QbHNhO0HJnj-PPiX1mWYQYD-kPz4G9jb6T1mKXiXU8qYyk5zvwunuNtmYPUNLClDXKIFZGhxIFHdhp5kn3K46el02EdmB_M3FuKr-rwfvd5PqH_r38P_Fd2MICb8Jv9qBfXdTmFYKoSg1hEB-ffTocQm_C4mFrT9crPRJg |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7R7aHlwLsQKGAQN5ri1yYxtxVqWei24tCVysmKHYdFrDarJgGWX89486CAqOjVGTv2jGf8jTwzBnghaOpUyliYOGpCaXIeKprFoXEI74WNmXQ-Ofn4JBpP5fuz4VmbFFZ20e7dleTaUnu_EkHtq5IJ6aspo_OEEMcHbWzApkQHhQ9gc_T249FBZ4FFwplsEmT-0fO3Q2hj5kMg_8aXF-5Gr8NWvVimq2_pfH7h-Dm8CdNu4k3UyZf9ujL79scfNR2vurJbcKPFo2TUbKDbcM0t7sB2bxZXdxHOz9AYF4tPr8mIfFj5WgOkKoq5Kb4TRLwkrbPPBSmXztkZyd26UGhJ0OafNzkT92B6eHD6Zhy2zy6EdshphfZRJIk1sUqkUUZmPPOxoFGmrJLCMM5zl0vDLZ5_1PLcWJ5aaZhKUoX6H1uxAwOclXsABMGYijhXOQ4iI5qbxKLSuyxWQ0ddmgTAOjlo29Yk909jzDX6Jp43uuGNRt7oNW90FMDLvs-yqchxKfVzFG9P6Itpj0cT7dt8WSEuYvqVBbDbSV-3Klxq74lSlSg2DOBZ_xmVz9-opAtX1EiD4Bk9TCQM4H6za_pfCXTFfGZ0AHud1H8NftmE9_qt9h_re3i10Z_C1vj0eKIn706OHsE2NoomNmcXBtV57R4jwqrMk1ahfgIvvRal |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-xIcF4mPgmMMAg3lg0fzWx91YNqgJj2gOV9mbZjkORqqRaU6D_PeemyYoQE7wmtuPc-c6_k-9-BngjqA3aMpaqQF0qXclTTYs8dQHhvfA5kyEWJ38-y8YT-fFicLFVxb_Odu-OJNuahsjSVDVH86KMJi4Q4B4tmJCRWRkDKYQ7MYFjB27KSJSAK3rCh50vFooz2ZbK_KXfb9vRzjQmQ_6JNLdOSe_A7WU1t6sfdjbb2ohGd2F_gyDJsFX5PbgRqvuw1zuy1QME4FN0n3X19ZgMyfkqsgOQpq5nrv5JEKMSuyy-1WQxD8FPSRnW1J4Lgl76sq1yeAiT0fsvJ-N0c1FC6gecNujRhFLe5VpJp50seBGzN7NCey2FY5yXoZSOe9yxqOel89x66ZhWVqPF5l48gl2cVXgCBOGTzjjXJQ4iM1o65dFMQ5HrQaDBqgRYJy_jNyzi8TKLmcFoIsrYtDI2KGOzlrHJEnjb95m3HBrXtn6NaugbRvrr8fDUxGeRCIiLnH5nCRx0WjIbo1uYGDtSrTQbJPCqf43mEs9AbBXqJbZBuIsxITZM4HGr3f5TAoOnWMucwGGn7qvBr5vwYb8k_uH_nv7f6C_h1vm7kTn9cPbpGezFy-7bZJoD2G0ul-E5QqLGvViv-l-Ee_3S |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-x7oHtgW9GYCCDeGPpHNv5MG8VYlQIpj1QqTxZtuPQaVVSrQms--s5N2k2QBrwZiUXx_b57N_Jdz8DvOZUO6mjKMwcNaEwBQslzdPQOIT33KaRcD45-fNxMp6Ij9N42gXIrnNhShz34QxxZ7cDHGI5pN4zRyC8BdtJjJh7ANuT45PR1zUZaix8OPr0qsyyNjuGIxY-XEZceBJm9LkQGflYj192oK2Zj3_8E1xeOxjdhdtNudCrH3o-v7b3HN2FD5tWtyEnZ8OmNkN7-Ruh49-7dQ_udPCTjNr5ch9uufIB7PSr4OohovcZrr1V-e0tGZGTlacWIHVVzU11QRDgEt3kpxVZLpyzM1K4NS_okuASf96mSDyCydH7L-_GYXfLQmhjRmtcDnmWWZPKTBhpRM5yH_qZ5NJKwU3EWOEKYZjF7Y5aVhjLtBUmkpmWaO6p5Y9hgK1yT4Ag9pIJY7LASkRCC5NZtHGXpzJ21OksgGgz8sp2FOT-Joy5QlfEa0u12lKoLbXWlkoCeNN_s2gJOG6UfoUD2wt67uzx6JPyzzyLEOMp_R4FsL_Rt-osdqm840llJqM4gJf9a7Q1f4CiS1c1KINYGR1KFAxgr50n_a84el4-ETqAg83Euar8pgYf9JPrH_r39P_En8EOFngbfrMPg_q8cc8RRNXmRWdBPwE_Sw_j |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Shennong%3A+A+Python+toolbox+for+audio+speech+features+extraction&rft.jtitle=Behavior+research+methods&rft.au=Bernard%2C+Mathieu&rft.au=Poli%2C+Maxime&rft.au=Karadayi%2C+Julien&rft.au=Dupoux%2C+Emmanuel&rft.date=2023-12-01&rft.issn=1554-3528&rft_id=info:doi/10.3758%2Fs13428-022-02029-6&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-04312370v1 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1554-3528&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1554-3528&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1554-3528&client=summon |