Shennong: A Python toolbox for audio speech features extraction

We introduce Shennong, a Python toolbox and command-line utility for audio speech features extraction. It implements a wide range of well-established state-of-the-art algorithms: spectro-temporal filters such as Mel-Frequency Cepstral Filterbank or Predictive Linear Filters, pre-trained neural netwo...

Full description

Saved in:
Bibliographic Details
Published inBehavior research methods Vol. 55; no. 8; pp. 4489 - 4501
Main Authors Bernard, Mathieu, Poli, Maxime, Karadayi, Julien, Dupoux, Emmanuel
Format Journal Article
LanguageEnglish
Published New York Springer US 01.12.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1554-3528
1554-351X
1554-3528
DOI10.3758/s13428-022-02029-6

Cover

Abstract We introduce Shennong, a Python toolbox and command-line utility for audio speech features extraction. It implements a wide range of well-established state-of-the-art algorithms: spectro-temporal filters such as Mel-Frequency Cepstral Filterbank or Predictive Linear Filters, pre-trained neural networks, pitch estimators, speaker normalization methods, and post-processing algorithms. Shennong is an open source, reliable and extensible framework built on top of the popular Kaldi speech processing library. The Python implementation makes it easy to use by non-technical users and integrates with third-party speech modeling and machine learning tools from the Python ecosystem. This paper describes the Shennong software architecture, its core components, and implemented algorithms. Then, three applications illustrate its use. We first present a benchmark of speech features extraction algorithms available in Shennong on a phone discrimination task. We then analyze the performances of a speaker normalization model as a function of the speech duration used for training. We finally compare pitch estimation algorithms on speech under various noise conditions.
AbstractList We introduce Shennong, a Python toolbox and command-line utility for audio speech features extraction. It implements a wide range of well-established state-of-the-art algorithms: spectro-temporal filters such as Mel-Frequency Cepstral Filterbank or Predictive Linear Filters, pre-trained neural networks, pitch estimators, speaker normalization methods, and post-processing algorithms. Shennong is an open source, reliable and extensible framework built on top of the popular Kaldi speech processing library. The Python implementation makes it easy to use by non-technical users and integrates with third-party speech modeling and machine learning tools from the Python ecosystem. This paper describes the Shennong software architecture, its core components, and implemented algorithms. Then, three applications illustrate its use. We first present a benchmark of speech features extraction algorithms available in Shennong on a phone discrimination task. We then analyze the performances of a speaker normalization model as a function of the speech duration used for training. We finally compare pitch estimation algorithms on speech under various noise conditions.
We introduce Shennong, a Python toolbox and command-line utility for audio speech features extraction. It implements a wide range of well-established state-of-the-art algorithms: spectro-temporal filters such as Mel-Frequency Cepstral Filterbank or Predictive Linear Filters, pre-trained neural networks, pitch estimators, speaker normalization methods, and post-processing algorithms. Shennong is an open source, reliable and extensible framework built on top of the popular Kaldi speech processing library. The Python implementation makes it easy to use by non-technical users and integrates with third-party speech modeling and machine learning tools from the Python ecosystem. This paper describes the Shennong software architecture, its core components, and implemented algorithms. Then, three applications illustrate its use. We first present a benchmark of speech features extraction algorithms available in Shennong on a phone discrimination task. We then analyze the performances of a speaker normalization model as a function of the speech duration used for training. We finally compare pitch estimation algorithms on speech under various noise conditions.We introduce Shennong, a Python toolbox and command-line utility for audio speech features extraction. It implements a wide range of well-established state-of-the-art algorithms: spectro-temporal filters such as Mel-Frequency Cepstral Filterbank or Predictive Linear Filters, pre-trained neural networks, pitch estimators, speaker normalization methods, and post-processing algorithms. Shennong is an open source, reliable and extensible framework built on top of the popular Kaldi speech processing library. The Python implementation makes it easy to use by non-technical users and integrates with third-party speech modeling and machine learning tools from the Python ecosystem. This paper describes the Shennong software architecture, its core components, and implemented algorithms. Then, three applications illustrate its use. We first present a benchmark of speech features extraction algorithms available in Shennong on a phone discrimination task. We then analyze the performances of a speaker normalization model as a function of the speech duration used for training. We finally compare pitch estimation algorithms on speech under various noise conditions.
Author Dupoux, Emmanuel
Poli, Maxime
Karadayi, Julien
Bernard, Mathieu
Author_xml – sequence: 1
  givenname: Mathieu
  orcidid: 0000-0001-7586-7133
  surname: Bernard
  fullname: Bernard, Mathieu
  email: mathieu.bernard.2@cnrs.fr
  organization: Cognitive Machine Learning, PSL Research University, CNRS, EHESS, ENS, Inria, EconomiX (UMR 7235), Université Paris Nanterre, CNRS
– sequence: 2
  givenname: Maxime
  surname: Poli
  fullname: Poli, Maxime
  organization: Cognitive Machine Learning, PSL Research University, CNRS, EHESS, ENS, Inria
– sequence: 3
  givenname: Julien
  surname: Karadayi
  fullname: Karadayi, Julien
  organization: Cognitive Machine Learning, PSL Research University, CNRS, EHESS, ENS, Inria
– sequence: 4
  givenname: Emmanuel
  surname: Dupoux
  fullname: Dupoux, Emmanuel
  organization: Cognitive Machine Learning, PSL Research University, CNRS, EHESS, ENS, Inria, Meta AI Research
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36750521$$D View this record in MEDLINE/PubMed
https://hal.science/hal-04312370$$DView record in HAL
BookMark eNqNkU1r3DAQhkVJaT7aP9BDMeSSHNxKI2kl5VKWkDSFhRbanoUky1kHr7SR7Cb776Ott03JIeQwaBied0bzziHaCzF4hN4T_JEKLj9lQhnIGgOUwKDq2St0QDhnNeUg9_7L99FhzjcYUwmEvUH7dCY45kAO0OcfSx9K3-uzal593wzLGKohxt7G-6qNqTJj08Uqr713y6r1ZhiTz5W_H5JxQxfDW_S6NX3273bvEfp1efHz_KpefPvy9Xy-qB0HPNRSUCmdFUoyqyxroCGM4FmjnGLUEoDWt8yCo6XqoLUOjGOWKGkUcCEcPUJ06juGtdncmb7X69StTNpogvXWDj3ZoYsd-o8delZUp5NqaR75aDp9NV_obQ0zSoAK_JsU9mRi1ynejj4PetVl5_veBB_HrEEIxhRXChf0-Al6E8cUyv4aZAGUVIQX6sOOGu3KN__m_zW_ADABLsWck29ftpJ8InLdYLanKCfp-uelOw9zmROufXr89jOqBxMZtRM
CitedBy_id crossref_primary_10_1016_j_apacoust_2024_110505
crossref_primary_10_3390_electronics12153342
crossref_primary_10_1007_s11042_024_19750_3
Cites_doi 10.21437/SpeechProsody.2006-134
10.1109/ICASSP.2014.6853678
10.21437/Interspeech.2018-2414
10.1145/1873951.1874246
10.1016/j.specom.2013.07.001
10.1109/ICASSP.1992.225957
10.1016/j.specom.2007.02.006
10.21437/Interspeech.2020-1057
10.21437/Interspeech.2019-1268
10.1109/ASRU.2017.8268953
10.21437/Interspeech.2020-2743
10.21437/Interspeech.2014-228
10.1109/ICASSP.2018.8461329
10.21437/Interspeech.2015-638
10.1371/journal.pone.0152686
10.1016/j.procs.2016.04.031
10.21437/Odyssey.2018-40
10.1109/89.326616
10.1121/1.4939739
10.1109/ICASSP.2014.6854049
10.1007/s10772-011-9125-1
10.1109/ICASSP39728.2021.9413528
10.1109/ICASSP.2018.8462463
10.1121/1.2916590
10.1121/1.399423
10.21437/Interspeech.2004-191
10.21437/Interspeech.2021-1208
10.21437/Interspeech.2020-2879
10.1016/j.csl.2017.06.008
10.21437/Interspeech.2013-441
10.1073/pnas.2001844118
10.1016/j.eswa.2017.08.015
10.21437/Eurospeech.1995-191
ContentType Journal Article
Copyright The Psychonomic Society, Inc. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
2023. The Psychonomic Society, Inc.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: The Psychonomic Society, Inc. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: 2023. The Psychonomic Society, Inc.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
4T-
7TK
K9.
7X8
1XC
BXJBU
ADTOC
UNPAY
DOI 10.3758/s13428-022-02029-6
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Docstoc
Neurosciences Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
Hyper Article en Ligne (HAL)
HAL-SHS: Archive ouverte en Sciences de l'Homme et de la Société
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Neurosciences Abstracts
Docstoc
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
MEDLINE
ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Psychology
EISSN 1554-3528
EndPage 4501
ExternalDocumentID oai:HAL:hal-03901826v1
oai:HAL:hal-04312370v1
36750521
10_3758_s13428_022_02029_6
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Institut national de recherche en informatique et en automatique (INRIA)
  grantid: ADT-193
  funderid: https://doi.org/10.13039/100012950
– fundername: Facebook
  funderid: https://doi.org/10.13039/100005801
– fundername: Canadian Institute for Advanced Research
  funderid: https://doi.org/10.13039/100007631
– fundername: Agence Nationale de la Recherche
  grantid: ANR-17- EURE-0017 Frontcog; ANR-10-IDEX-0001-02 PS
  funderid: https://doi.org/10.13039/501100001665
– fundername: Agence Nationale de la Recherche
  grantid: ANR-17- EURE-0017 Frontcog
– fundername: Agence Nationale de la Recherche
  grantid: ANR-10-IDEX-0001-02 PS
– fundername: Institut national de recherche en informatique et en automatique (INRIA)
  grantid: ADT-193
GroupedDBID ---
-55
-5G
-BR
-DZ
-EM
-ET
-~C
-~X
0-V
06D
0R~
0VY
199
1N0
203
23N
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
30V
3V.
4.4
406
408
40E
53G
5GY
7X7
875
88E
8AO
8FI
8FJ
8G5
8TC
8UJ
95.
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AAKPC
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABDZT
ABECU
ABFTV
ABHLI
ABIVO
ABJNI
ABJOX
ABJUD
ABKCH
ABMQK
ABNWP
ABPLI
ABPPZ
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHQT
ACHSB
ACHXU
ACIWK
ACKIV
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACPIV
ACPRK
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFFNX
AFKRA
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARALO
ARMRJ
ASPBG
AVWKF
AXYYD
AYQZM
AZFZN
AZQEC
B-.
BAWUL
BENPR
BGNMA
BPHCQ
BVXVI
C1A
CAG
CCPQU
COF
CSCUP
DDRTE
DIK
DNIVK
DPUIP
DWQXO
E3Z
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYUFA
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ3
GQ6
GQ7
GUQSH
H13
HF~
HMCUK
HMJXF
HRMNR
HVGLF
HZ~
H~9
IAO
IHR
IKXTQ
INH
IPY
IRVIT
ITC
ITM
IWAJR
J-C
JBSCW
JZLTJ
KOV
LLZTM
M1P
M2M
M2O
M2R
M4Y
MVM
N2Q
N9A
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9J
OHT
OK1
P2P
P9L
PADUT
PF-
PQQKQ
PROAC
PSQYO
PSYQQ
PT4
R9I
RIG
ROL
RPV
RSV
S16
S1Z
S27
S3B
SBS
SBU
SCLPG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
TN5
TR2
TSG
TUC
TUS
U2A
U9L
UG4
UKHRP
UOJIU
UPT
UTJUX
UZXMN
VFIZW
VXZ
W48
WH7
WK8
XJT
XOL
XSW
Z7R
Z7S
Z7W
Z81
Z83
Z88
Z8N
Z92
ZMTXR
ZOVNA
ZUP
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
4T-
7TK
K9.
7X8
1XC
ADHKG
AGQPQ
BXJBU
PHGZM
PHGZT
PJZUB
PPXIY
PRQQA
ADTOC
UNPAY
ID FETCH-LOGICAL-c520t-87388cb7984b9b4d2d14106d9c943b122fef4b2c3410c2fbc2ac4b198a92577c3
IEDL.DBID UNPAY
ISSN 1554-3528
1554-351X
IngestDate Sun Oct 26 04:00:10 EDT 2025
Tue Oct 14 21:00:56 EDT 2025
Wed Oct 01 14:48:12 EDT 2025
Tue Oct 07 06:31:06 EDT 2025
Wed Feb 19 02:05:25 EST 2025
Wed Oct 01 01:50:04 EDT 2025
Thu Apr 24 23:12:55 EDT 2025
Fri Feb 21 02:40:21 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Pitch estimation
Software
Speech processing
Features extraction
Python
No keyword available
Language English
License 2023. The Psychonomic Society, Inc.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
other-oa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c520t-87388cb7984b9b4d2d14106d9c943b122fef4b2c3410c2fbc2ac4b198a92577c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7586-7133
0000-0002-9377-9150
0000-0002-7814-2952
OpenAccessLink https://proxy.k.utb.cz/login?url=https://inria.hal.science/hal-03901826
PMID 36750521
PQID 2899098915
PQPubID 976348
PageCount 13
ParticipantIDs unpaywall_primary_10_3758_s13428_022_02029_6
hal_primary_oai_HAL_hal_04312370v1
proquest_miscellaneous_2774495990
proquest_journals_2899098915
pubmed_primary_36750521
crossref_primary_10_3758_s13428_022_02029_6
crossref_citationtrail_10_3758_s13428_022_02029_6
springer_journals_10_3758_s13428_022_02029_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Behavior research methods
PublicationTitleAbbrev Behav Res
PublicationTitleAlternate Behav Res Methods
PublicationYear 2023
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References VersteeghMAngueraXJansenADupouxEThe zero resource speech challenge 2015: Proposed approaches and resultsProcedia Computer Science201681677210.1016/j.procs.2016.04.031
PedregosaFVaroquauxGGramfortAMichelVThirionBGriselOBlondelMPrettenhoferPWeissRDubourgVScikit-learn: Machine learning in PythonThe Journal of Machine Learning Research20111228252830
RamirezJGórrizJMSeguraJCVoice activity detection. Fundamentals and speech recognition system robustnessRobust Speech Recognition and Understanding200769122
Saeed, A., Grangier, D., & Zeghidour, N. (2021). Contrastive learning of general-purpose audio representations. In IEEE international conference on acoustics, speech and signal processing (ICASSP) (pp. 3875–3879).
Zeghidour, N., Usunier, N., Synnaeve, G., Collobert, R., & Dupoux, E. (2018). End-to-end speech recognition from the raw waveform. In Interspeech 2018.
Ryant, N., Singh, P., Krishnamohan, V., Varma, R., Church, K., Cieri, C., ..., Liberman, M. (2020). The third dihard diarization challenge. arXiv:2012.01477.
Schatz, T., Bernard, M., & Thiollière, R. (2020). h5features: Efficient storage of large features data. https://github.com/bootphon/h5features/releases/tag/v1.3.3. Software. Version 1.3.3.
Versteegh, M., Thiollière, R., Schatz, T., Cao, X.N., Anguera, X., Jansen, A., & Dupoux, E. (2015). The zero resource speech challenge 2015. In Interspeech 2015.
Mauch, M., & Dixon, S. (2014). pYIN: A fundamental frequency estimator using probabilistic threshold distributions. In 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 659–663): IEEE.
Hermansky, H., Morgan, N., Bayya, A., & Kohn, P. (1991). RASTA-PLP speech analysis. In Proc. IEEE int’l conf. acoustics, speech and signal processing, (Vol. 1 pp. 121–124).
KoolagudiSGRaoKSEmotion recognition from speech: A reviewInternational Journal of Speech Technology20121529911710.1007/s10772-011-9125-1
De VriesNJDavelMHBadenhorstJBassonWDDe WetFBarnardEDe WaalAA smartphone-based ASR data collection tool for under-resourced languagesSpeech Communication20145611913110.1016/j.specom.2013.07.001
Eyben, F., Wöllmer, M., & Schuller, B. (2010). Opensmile: The munich versatile and fast open-source audio feature extractor. In Proceedings of the 18th ACM international conference on Multimedia (pp. 1459–1462).
Ryant, N., Church, K., Cieri, C., Cristia, A., Du, J., Ganapathy, S., & Liberman, M. (2019). The second dihard diarization challenge: Dataset, task, and baselines. Interspeech, 2019, (pp. 978–982).
Oord, A.v.d., Li, Y., & Vinyals, O. (2018). Representation learning with contrastive predictive coding. arXiv:1807.03748.
Povey, D. (2010). Notes for affine transform-based VTLN. Microsoft Research.
Schatz, T., Peddinti, V., Cao, X.N., Bach, F., Hermansky, H., & Dupoux, E. (2014). Evaluating speech features with the minimal-pair ABX task (II): Resistance to noise. In 15th annual conference of the international speech communication association.
Schatz, T., Feldman, N.H., Goldwater, S., Cao, X.N., & Dupoux, E. (2021). Early phonetic learning without phonetic categories: Insights from large-scale simulations on realistic input. Proceedings of the National Academy of Sciences, 118(7).
Can, D., Martinez, V.R., Papadopoulos, P., & Narayanan, S.S. (2018). Pykaldi: A python wrapper for kaldi. In 2018 IEEE international conference on acoustics, speech and signal processing (ICASSP): IEEE.
Dunbar, E., Karadayi, J., Bernard, M., Cao, X.N., Algayres, R., Ondel, L., ..., Dupoux, E. (2020). The zero resource speech challenge 2020: Discovering discrete subword and word units. In Interspeech 2020.
Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., ..., et al. (2019). Pytorch: An imperative style, high-performance deep learning library. Advances in Neural Information Processing Systems, 32.
Cieri, C., Miller, D., & Walker, K. (2004). The fisher corpus: A resource for the next generations of speech-to-text. In LREC, (Vol. 4 pp. 69–71).
BoersmaPPraat, a system for doing phonetics by computerGlot International200159/10341345
Ghahremani, P., BabaAli, B., Povey, D., Riedhammer, K., Trmal, J., & Khudanpur, S. (2014). A pitch extraction algorithm tuned for automatic speech recognition. In 2014 IEEE international conference on acoustics, speech and signal processing (ICASSP) (pp. 2494–2498).
Povey, D., Ghoshal, A., Boulianne, G., Burget, L., Glembek, O., Goel, N., ..., Vesely, K. (2011). The Kaldi speech recognition toolkit. In IEEE 2011 workshop on automatic speech recognition and understanding: IEEE Signal Processing Society.
Silnova, A., Matejka, P., Glembek, O., Plchot, O., Novotnỳ, O., Grezl, F., ..., Cernockỳ, J. (2018). But/phonexia bottleneck feature extractor. In Odyssey (pp. 283–287).
Plante, F., Meyer, G., & Ainsworth, W. (1995). A pitch extraction reference database. In Eurospeech-1995 (pp. 837–840).
Lenain, R., Weston, J., Shivkumar, A., & Fristed, E. (2020). Surfboard: Audio feature extraction for modern machine learning.
TirumalaSSShahamiriSRGarhwalASWangRSpeaker identification features extraction methods: A systematic reviewExpert Systems with Applications20179025027110.1016/j.eswa.2017.08.015
Harper, M. (2013). The babel program and low resource speech technology. Proc. of ASRU 2013.
Orozco-ArroyaveJHönigFArias-LondoñoJVargas-BonillaJDaqrouqKSkoddaSRuszJNöthEAutomatic detection of Parkinson’s disease in running speech spoken in three different languagesThe Journal of the Acoustical Society of America2016139148150010.1121/1.493973926827042
Dunbar, E., Cao, X.N., Benjumea, J., Karadayi, J., Bernard, M., Besacier, L., ..., Dupoux, E. (2017). The zero resource speech challenge 2017. In 2017 IEEE automatic speech recognition and understanding workshop (ASRU) (pp. 323–330): IEEE.
HungLHKristiyantoDLeeSBYeungKYGuidock: Using docker containers with a common graphics user interface to address the reproducibility of researchPloS ONE2016114e015268610.1371/journal.pone.0152686270455934821530
Liu, F., Surendran, D., & Xu, Y. (2006). Classification of statement and question intonations in Mandarin. Proc. 3rd speech prosody, (pp. 603–606).
Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., ..., et al (2016). Tensorflow: A system for large-scale machine learning. In 12th USENIX symposium on operating systems design and implementation (OSDI16) (pp. 265–283).
Kim, D., Umesh, S., Gales, M., Hain, T., & Woodland, P. (2004). Using VTLN for broadcast news transcription. In 8th international conference on spoken language processing.
Boersma, P. (1993). Accurate short-term analysis of the fundamental frequency and the harmonics-to-noise ratio of a sampled sound. In Proceedings of the institute of Phonetic sciences, (Vol. 17 pp. 97–110).
ZahorianSAHuHA spectral/temporal method for robust fundamental frequency trackingThe Journal of the Acoustical Society of America200812364559457110.1121/1.291659018537404
BenzeghibaMDe MoriRDerooODupontSErbesTJouvetDFissoreLLafacePMertinsARisCAutomatic speech recognition and speech variability: A reviewSpeech Communication20074910-1176378610.1016/j.specom.2007.02.006
HermanskyHMorganNRasta processing of speechIEEE Transactions on Speech and Audio Processing19942457858910.1109/89.326616
Pitt, M.A., Dilley, L., Johnson, K., Kiesling, S., Raymond, W., Hume, E., & Fosler-Lussier, E. (2007). Buckeye corpus of conversational speech (2nd release). Columbus, OH: Department of Psychology Ohio State University.
Ellis, D.P.W. (2005). PLP and RASTA (and MFCC, and inversion) in Matlab. http://www.ee.columbia.edu/~dpwe/resources/matlab/rastamat. Online web resource.
Kim, J.W., Salamon, J., Li, P., & Bello, J.P. (2018). Crepe: A convolutional representation for pitch estimation. In 2018 IEEE international conference on acoustics, speech and signal processing (ICASSP) (pp. 161–165).
HermanskyHPerceptual linear predictive (PLP) analysis of speechThe Journal of the Acoustical Society of America19908741738175210.1121/1.3994232341679
FerRMatějkaPGrézlFPlchotOVeselỳKČernockỳJHMultilingually trained bottleneck features in spoken language recognitionComputer Speech & Language20174625226710.1016/j.csl.2017.06.008
Schatz, T., Peddinti, V., Bach, F., Jansen, A., Hermansky, H., & Dupoux, E. (2013). Evaluating speech features with the minimal-pair ABX task: Analysis of the classical MFC/PLP pipeline. In Interspeech 2013 (pp. 1–5).
Riad, R., Titeux, H., Lemoine, L., Montillot, J., Bagnou, J.H., Cao, X.N., ..., Bachoud-Lévi, A.C. (2020). Vocal markers from sustained phonation in huntington’s disease. In Interspeech 2020.
2029_CR25
J Orozco-Arroyave (2029_CR26) 2016; 139
2029_CR47
2029_CR27
2029_CR22
2029_CR23
2029_CR45
M Benzeghiba (2029_CR2) 2007; 49
NJ De Vries (2029_CR7) 2014; 56
2029_CR24
2029_CR40
R Fer (2029_CR12) 2017; 46
2029_CR41
2029_CR20
2029_CR42
F Pedregosa (2029_CR28) 2011; 12
H Hermansky (2029_CR16) 1994; 2
LH Hung (2029_CR18) 2016; 11
2029_CR29
2029_CR14
2029_CR36
2029_CR37
2029_CR38
2029_CR17
2029_CR39
M Versteegh (2029_CR44) 2016; 81
2029_CR10
2029_CR32
2029_CR11
SG Koolagudi (2029_CR21) 2012; 15
2029_CR34
SS Tirumala (2029_CR43) 2017; 90
2029_CR13
2029_CR35
P Boersma (2029_CR4) 2001; 5
2029_CR8
2029_CR6
2029_CR30
2029_CR5
2029_CR31
2029_CR3
2029_CR1
J Ramirez (2029_CR33) 2007; 6
2029_CR9
H Hermansky (2029_CR15) 1990; 87
SA Zahorian (2029_CR46) 2008; 123
2029_CR19
References_xml – reference: Ellis, D.P.W. (2005). PLP and RASTA (and MFCC, and inversion) in Matlab. http://www.ee.columbia.edu/~dpwe/resources/matlab/rastamat. Online web resource.
– reference: Eyben, F., Wöllmer, M., & Schuller, B. (2010). Opensmile: The munich versatile and fast open-source audio feature extractor. In Proceedings of the 18th ACM international conference on Multimedia (pp. 1459–1462).
– reference: KoolagudiSGRaoKSEmotion recognition from speech: A reviewInternational Journal of Speech Technology20121529911710.1007/s10772-011-9125-1
– reference: PedregosaFVaroquauxGGramfortAMichelVThirionBGriselOBlondelMPrettenhoferPWeissRDubourgVScikit-learn: Machine learning in PythonThe Journal of Machine Learning Research20111228252830
– reference: Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., ..., et al (2016). Tensorflow: A system for large-scale machine learning. In 12th USENIX symposium on operating systems design and implementation (OSDI16) (pp. 265–283).
– reference: Mauch, M., & Dixon, S. (2014). pYIN: A fundamental frequency estimator using probabilistic threshold distributions. In 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 659–663): IEEE.
– reference: Oord, A.v.d., Li, Y., & Vinyals, O. (2018). Representation learning with contrastive predictive coding. arXiv:1807.03748.
– reference: Schatz, T., Peddinti, V., Cao, X.N., Bach, F., Hermansky, H., & Dupoux, E. (2014). Evaluating speech features with the minimal-pair ABX task (II): Resistance to noise. In 15th annual conference of the international speech communication association.
– reference: HermanskyHPerceptual linear predictive (PLP) analysis of speechThe Journal of the Acoustical Society of America19908741738175210.1121/1.3994232341679
– reference: Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., ..., et al. (2019). Pytorch: An imperative style, high-performance deep learning library. Advances in Neural Information Processing Systems, 32.
– reference: FerRMatějkaPGrézlFPlchotOVeselỳKČernockỳJHMultilingually trained bottleneck features in spoken language recognitionComputer Speech & Language20174625226710.1016/j.csl.2017.06.008
– reference: Riad, R., Titeux, H., Lemoine, L., Montillot, J., Bagnou, J.H., Cao, X.N., ..., Bachoud-Lévi, A.C. (2020). Vocal markers from sustained phonation in huntington’s disease. In Interspeech 2020.
– reference: TirumalaSSShahamiriSRGarhwalASWangRSpeaker identification features extraction methods: A systematic reviewExpert Systems with Applications20179025027110.1016/j.eswa.2017.08.015
– reference: Orozco-ArroyaveJHönigFArias-LondoñoJVargas-BonillaJDaqrouqKSkoddaSRuszJNöthEAutomatic detection of Parkinson’s disease in running speech spoken in three different languagesThe Journal of the Acoustical Society of America2016139148150010.1121/1.493973926827042
– reference: Kim, D., Umesh, S., Gales, M., Hain, T., & Woodland, P. (2004). Using VTLN for broadcast news transcription. In 8th international conference on spoken language processing.
– reference: Schatz, T., Feldman, N.H., Goldwater, S., Cao, X.N., & Dupoux, E. (2021). Early phonetic learning without phonetic categories: Insights from large-scale simulations on realistic input. Proceedings of the National Academy of Sciences, 118(7).
– reference: Harper, M. (2013). The babel program and low resource speech technology. Proc. of ASRU 2013.
– reference: Boersma, P. (1993). Accurate short-term analysis of the fundamental frequency and the harmonics-to-noise ratio of a sampled sound. In Proceedings of the institute of Phonetic sciences, (Vol. 17 pp. 97–110).
– reference: Schatz, T., Bernard, M., & Thiollière, R. (2020). h5features: Efficient storage of large features data. https://github.com/bootphon/h5features/releases/tag/v1.3.3. Software. Version 1.3.3.
– reference: Kim, J.W., Salamon, J., Li, P., & Bello, J.P. (2018). Crepe: A convolutional representation for pitch estimation. In 2018 IEEE international conference on acoustics, speech and signal processing (ICASSP) (pp. 161–165).
– reference: HungLHKristiyantoDLeeSBYeungKYGuidock: Using docker containers with a common graphics user interface to address the reproducibility of researchPloS ONE2016114e015268610.1371/journal.pone.0152686270455934821530
– reference: Povey, D., Ghoshal, A., Boulianne, G., Burget, L., Glembek, O., Goel, N., ..., Vesely, K. (2011). The Kaldi speech recognition toolkit. In IEEE 2011 workshop on automatic speech recognition and understanding: IEEE Signal Processing Society.
– reference: Ryant, N., Singh, P., Krishnamohan, V., Varma, R., Church, K., Cieri, C., ..., Liberman, M. (2020). The third dihard diarization challenge. arXiv:2012.01477.
– reference: Dunbar, E., Karadayi, J., Bernard, M., Cao, X.N., Algayres, R., Ondel, L., ..., Dupoux, E. (2020). The zero resource speech challenge 2020: Discovering discrete subword and word units. In Interspeech 2020.
– reference: Ryant, N., Church, K., Cieri, C., Cristia, A., Du, J., Ganapathy, S., & Liberman, M. (2019). The second dihard diarization challenge: Dataset, task, and baselines. Interspeech, 2019, (pp. 978–982).
– reference: VersteeghMAngueraXJansenADupouxEThe zero resource speech challenge 2015: Proposed approaches and resultsProcedia Computer Science201681677210.1016/j.procs.2016.04.031
– reference: Lenain, R., Weston, J., Shivkumar, A., & Fristed, E. (2020). Surfboard: Audio feature extraction for modern machine learning.
– reference: Liu, F., Surendran, D., & Xu, Y. (2006). Classification of statement and question intonations in Mandarin. Proc. 3rd speech prosody, (pp. 603–606).
– reference: Zeghidour, N., Usunier, N., Synnaeve, G., Collobert, R., & Dupoux, E. (2018). End-to-end speech recognition from the raw waveform. In Interspeech 2018.
– reference: Dunbar, E., Cao, X.N., Benjumea, J., Karadayi, J., Bernard, M., Besacier, L., ..., Dupoux, E. (2017). The zero resource speech challenge 2017. In 2017 IEEE automatic speech recognition and understanding workshop (ASRU) (pp. 323–330): IEEE.
– reference: Schatz, T., Peddinti, V., Bach, F., Jansen, A., Hermansky, H., & Dupoux, E. (2013). Evaluating speech features with the minimal-pair ABX task: Analysis of the classical MFC/PLP pipeline. In Interspeech 2013 (pp. 1–5).
– reference: Can, D., Martinez, V.R., Papadopoulos, P., & Narayanan, S.S. (2018). Pykaldi: A python wrapper for kaldi. In 2018 IEEE international conference on acoustics, speech and signal processing (ICASSP): IEEE.
– reference: BoersmaPPraat, a system for doing phonetics by computerGlot International200159/10341345
– reference: Pitt, M.A., Dilley, L., Johnson, K., Kiesling, S., Raymond, W., Hume, E., & Fosler-Lussier, E. (2007). Buckeye corpus of conversational speech (2nd release). Columbus, OH: Department of Psychology Ohio State University.
– reference: RamirezJGórrizJMSeguraJCVoice activity detection. Fundamentals and speech recognition system robustnessRobust Speech Recognition and Understanding200769122
– reference: BenzeghibaMDe MoriRDerooODupontSErbesTJouvetDFissoreLLafacePMertinsARisCAutomatic speech recognition and speech variability: A reviewSpeech Communication20074910-1176378610.1016/j.specom.2007.02.006
– reference: Ghahremani, P., BabaAli, B., Povey, D., Riedhammer, K., Trmal, J., & Khudanpur, S. (2014). A pitch extraction algorithm tuned for automatic speech recognition. In 2014 IEEE international conference on acoustics, speech and signal processing (ICASSP) (pp. 2494–2498).
– reference: De VriesNJDavelMHBadenhorstJBassonWDDe WetFBarnardEDe WaalAA smartphone-based ASR data collection tool for under-resourced languagesSpeech Communication20145611913110.1016/j.specom.2013.07.001
– reference: Silnova, A., Matejka, P., Glembek, O., Plchot, O., Novotnỳ, O., Grezl, F., ..., Cernockỳ, J. (2018). But/phonexia bottleneck feature extractor. In Odyssey (pp. 283–287).
– reference: Versteegh, M., Thiollière, R., Schatz, T., Cao, X.N., Anguera, X., Jansen, A., & Dupoux, E. (2015). The zero resource speech challenge 2015. In Interspeech 2015.
– reference: HermanskyHMorganNRasta processing of speechIEEE Transactions on Speech and Audio Processing19942457858910.1109/89.326616
– reference: Hermansky, H., Morgan, N., Bayya, A., & Kohn, P. (1991). RASTA-PLP speech analysis. In Proc. IEEE int’l conf. acoustics, speech and signal processing, (Vol. 1 pp. 121–124).
– reference: Cieri, C., Miller, D., & Walker, K. (2004). The fisher corpus: A resource for the next generations of speech-to-text. In LREC, (Vol. 4 pp. 69–71).
– reference: Plante, F., Meyer, G., & Ainsworth, W. (1995). A pitch extraction reference database. In Eurospeech-1995 (pp. 837–840).
– reference: Saeed, A., Grangier, D., & Zeghidour, N. (2021). Contrastive learning of general-purpose audio representations. In IEEE international conference on acoustics, speech and signal processing (ICASSP) (pp. 3875–3879).
– reference: Povey, D. (2010). Notes for affine transform-based VTLN. Microsoft Research.
– reference: ZahorianSAHuHA spectral/temporal method for robust fundamental frequency trackingThe Journal of the Acoustical Society of America200812364559457110.1121/1.291659018537404
– ident: 2029_CR27
– volume: 12
  start-page: 2825
  year: 2011
  ident: 2029_CR28
  publication-title: The Journal of Machine Learning Research
– ident: 2029_CR29
– volume: 6
  start-page: 1
  issue: 9
  year: 2007
  ident: 2029_CR33
  publication-title: Robust Speech Recognition and Understanding
– ident: 2029_CR23
  doi: 10.21437/SpeechProsody.2006-134
– ident: 2029_CR24
  doi: 10.1109/ICASSP.2014.6853678
– ident: 2029_CR47
  doi: 10.21437/Interspeech.2018-2414
– ident: 2029_CR11
  doi: 10.1145/1873951.1874246
– volume: 56
  start-page: 119
  year: 2014
  ident: 2029_CR7
  publication-title: Speech Communication
  doi: 10.1016/j.specom.2013.07.001
– ident: 2029_CR17
  doi: 10.1109/ICASSP.1992.225957
– ident: 2029_CR25
– volume: 49
  start-page: 763
  issue: 10-11
  year: 2007
  ident: 2029_CR2
  publication-title: Speech Communication
  doi: 10.1016/j.specom.2007.02.006
– ident: 2029_CR34
  doi: 10.21437/Interspeech.2020-1057
– ident: 2029_CR35
  doi: 10.21437/Interspeech.2019-1268
– ident: 2029_CR8
  doi: 10.1109/ASRU.2017.8268953
– ident: 2029_CR9
  doi: 10.21437/Interspeech.2020-2743
– ident: 2029_CR41
  doi: 10.21437/Interspeech.2014-228
– ident: 2029_CR20
  doi: 10.1109/ICASSP.2018.8461329
– ident: 2029_CR45
  doi: 10.21437/Interspeech.2015-638
– volume: 11
  start-page: e0152686
  issue: 4
  year: 2016
  ident: 2029_CR18
  publication-title: PloS ONE
  doi: 10.1371/journal.pone.0152686
– ident: 2029_CR3
– ident: 2029_CR10
– volume: 81
  start-page: 67
  year: 2016
  ident: 2029_CR44
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2016.04.031
– ident: 2029_CR42
  doi: 10.21437/Odyssey.2018-40
– ident: 2029_CR1
– ident: 2029_CR14
– ident: 2029_CR31
– volume: 2
  start-page: 578
  issue: 4
  year: 1994
  ident: 2029_CR16
  publication-title: IEEE Transactions on Speech and Audio Processing
  doi: 10.1109/89.326616
– volume: 139
  start-page: 481
  issue: 1
  year: 2016
  ident: 2029_CR26
  publication-title: The Journal of the Acoustical Society of America
  doi: 10.1121/1.4939739
– ident: 2029_CR13
  doi: 10.1109/ICASSP.2014.6854049
– volume: 15
  start-page: 99
  issue: 2
  year: 2012
  ident: 2029_CR21
  publication-title: International Journal of Speech Technology
  doi: 10.1007/s10772-011-9125-1
– ident: 2029_CR37
  doi: 10.1109/ICASSP39728.2021.9413528
– ident: 2029_CR5
  doi: 10.1109/ICASSP.2018.8462463
– volume: 123
  start-page: 4559
  issue: 6
  year: 2008
  ident: 2029_CR46
  publication-title: The Journal of the Acoustical Society of America
  doi: 10.1121/1.2916590
– volume: 87
  start-page: 1738
  issue: 4
  year: 1990
  ident: 2029_CR15
  publication-title: The Journal of the Acoustical Society of America
  doi: 10.1121/1.399423
– ident: 2029_CR19
  doi: 10.21437/Interspeech.2004-191
– volume: 5
  start-page: 341
  issue: 9/10
  year: 2001
  ident: 2029_CR4
  publication-title: Glot International
– ident: 2029_CR36
  doi: 10.21437/Interspeech.2021-1208
– ident: 2029_CR22
  doi: 10.21437/Interspeech.2020-2879
– ident: 2029_CR38
– volume: 46
  start-page: 252
  year: 2017
  ident: 2029_CR12
  publication-title: Computer Speech & Language
  doi: 10.1016/j.csl.2017.06.008
– ident: 2029_CR40
  doi: 10.21437/Interspeech.2013-441
– ident: 2029_CR6
– ident: 2029_CR39
  doi: 10.1073/pnas.2001844118
– volume: 90
  start-page: 250
  year: 2017
  ident: 2029_CR43
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2017.08.015
– ident: 2029_CR30
  doi: 10.21437/Eurospeech.1995-191
– ident: 2029_CR32
SSID ssj0038214
Score 2.4462636
Snippet We introduce Shennong, a Python toolbox and command-line utility for audio speech features extraction. It implements a wide range of well-established...
SourceID unpaywall
hal
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4489
SubjectTerms Algorithms
Behavioral Science and Psychology
Cognitive Psychology
Economics and Finance
Ecosystem
Filters
Frequency
Humanities and Social Sciences
Humans
Neural networks
Neural Networks, Computer
Psychology
Software
Speech
Temporal variations
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB615UA5ICjQprSVQdxohF9JbG4r1GpVAeqBlXqzbMdhK602q2YX2H_f8eZBEaKi18R2nBnP-Bt55jPAO0Ft0JaxVAXqUukqnmpaFqkLCO-FL5gMsTj5y9d8PJEXV9lVVxTW9Nnu_ZHkxlPHuBJB7YeGCRnZlDF4QogTkza24VEW6bxwFU_4qPe_QnEm2_KYf_T7YwvansYEyL_R5Z2T0SfweDVf2PVPO5vd2XzOn8HTDjWSUavm57AV5nuwOziv9QsE3VN0mfX8-0cyIpfryAhAlnU9c_UvgriU2FV5XZNmEYKfkips6Dwbgp75pq1seAmT87Nvn8ZpdzlC6jNOl-jFhFLeFVpJp50seRkzNvNSey2FY5xXoZKOe9ylqOeV89x66ZhWVqOVFl68gh2cVTgAgpBJ55zrCgeROa2c8miaoSx0FmiwKgHWy8v4jjk8XmAxMxhBRBmbVsYGZWw2MjZ5Au-HPouWN-Pe1m9RDUPDSHk9Hn028Vkk_-GioD9YAke9lkxnaI2J8SLVSrMsgTfDazSReO5h56FeYRuEuBgHYsME9lvtDp8SGDDF-uUETnt1_x78vgmfDkviP_7v8GGjv4bdeKt9mzVzBDvLm1U4RuyzdCebpX4LSCz2qg
  priority: 102
  providerName: Springer Nature
Title Shennong: A Python toolbox for audio speech features extraction
URI https://link.springer.com/article/10.3758/s13428-022-02029-6
https://www.ncbi.nlm.nih.gov/pubmed/36750521
https://www.proquest.com/docview/2899098915
https://www.proquest.com/docview/2774495990
https://hal.science/hal-04312370
https://inria.hal.science/hal-03901826
UnpaywallVersion submittedVersion
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1554-3528
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0038214
  issn: 1554-3528
  databaseCode: DIK
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1554-3528
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0038214
  issn: 1554-3528
  databaseCode: AFBBN
  dateStart: 19970301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1554-3528
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0038214
  issn: 1554-3528
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1554-3528
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0038214
  issn: 1554-3528
  databaseCode: U2A
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED_R9oHxwPdG2KgM4o2lc2znw7xFaFvFx7QHKnVPUew4FK1KqjVhK3_9zk2aDZAGvFnJxbF9Pvt38t3PAG85TY1MPc-NDFWuUDlzJc1CVxmE91yHnjA2OfnLSTCeiI9Tf9oGyK5zYQoc99EMcWe7Axxg2aXWM0cg3INB4CPm7sNgcnIan63JUH1hw9GnN2UWNdkxHLHwwdLjwpIwo8-FyMjGevyyA_VmNv7xT3B562D0Adyvi0W6ukzn81t7z9EjON60ugk5OR_VlRrpn78ROv69W4_hYQs_SdzMlydwzxRPYatbBVfPEL3PcO0ti2_vSUxOV5ZagFRlOVflFUGAS9I6-16S5cIYPSO5WfOCLgku8RdNisRzmBwdfv0wdttbFlztM1rhcsijSKtQRkJJJTKW2dDPIJNaCq48xnKTC8U0bndUs1xplmqhPBmlEs091Hwb-tgq8wIIYi8ZMCZzrEQENFeRRhs3WSh9Q00aOeBtRj7RLQW5vQljnqArYrWVNNpKUFvJWltJ4MC77ptFQ8Bxp_QbHNhO0HJnj-PPiX1mWYQYD-kPz4G9jb6T1mKXiXU8qYyk5zvwunuNtmYPUNLClDXKIFZGhxIFHdhp5kn3K46el02EdmB_M3FuKr-rwfvd5PqH_r38P_Fd2MICb8Jv9qBfXdTmFYKoSg1hEB-ffTocQm_C4mFrT9crPRJg
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7R7aHlwLsQKGAQN5ri1yYxtxVqWei24tCVysmKHYdFrDarJgGWX89486CAqOjVGTv2jGf8jTwzBnghaOpUyliYOGpCaXIeKprFoXEI74WNmXQ-Ofn4JBpP5fuz4VmbFFZ20e7dleTaUnu_EkHtq5IJ6aspo_OEEMcHbWzApkQHhQ9gc_T249FBZ4FFwplsEmT-0fO3Q2hj5kMg_8aXF-5Gr8NWvVimq2_pfH7h-Dm8CdNu4k3UyZf9ujL79scfNR2vurJbcKPFo2TUbKDbcM0t7sB2bxZXdxHOz9AYF4tPr8mIfFj5WgOkKoq5Kb4TRLwkrbPPBSmXztkZyd26UGhJ0OafNzkT92B6eHD6Zhy2zy6EdshphfZRJIk1sUqkUUZmPPOxoFGmrJLCMM5zl0vDLZ5_1PLcWJ5aaZhKUoX6H1uxAwOclXsABMGYijhXOQ4iI5qbxKLSuyxWQ0ddmgTAOjlo29Yk909jzDX6Jp43uuGNRt7oNW90FMDLvs-yqchxKfVzFG9P6Itpj0cT7dt8WSEuYvqVBbDbSV-3Klxq74lSlSg2DOBZ_xmVz9-opAtX1EiD4Bk9TCQM4H6za_pfCXTFfGZ0AHud1H8NftmE9_qt9h_re3i10Z_C1vj0eKIn706OHsE2NoomNmcXBtV57R4jwqrMk1ahfgIvvRal
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-xIcF4mPgmMMAg3lg0fzWx91YNqgJj2gOV9mbZjkORqqRaU6D_PeemyYoQE7wmtuPc-c6_k-9-BngjqA3aMpaqQF0qXclTTYs8dQHhvfA5kyEWJ38-y8YT-fFicLFVxb_Odu-OJNuahsjSVDVH86KMJi4Q4B4tmJCRWRkDKYQ7MYFjB27KSJSAK3rCh50vFooz2ZbK_KXfb9vRzjQmQ_6JNLdOSe_A7WU1t6sfdjbb2ohGd2F_gyDJsFX5PbgRqvuw1zuy1QME4FN0n3X19ZgMyfkqsgOQpq5nrv5JEKMSuyy-1WQxD8FPSRnW1J4Lgl76sq1yeAiT0fsvJ-N0c1FC6gecNujRhFLe5VpJp50seBGzN7NCey2FY5yXoZSOe9yxqOel89x66ZhWVqPF5l48gl2cVXgCBOGTzjjXJQ4iM1o65dFMQ5HrQaDBqgRYJy_jNyzi8TKLmcFoIsrYtDI2KGOzlrHJEnjb95m3HBrXtn6NaugbRvrr8fDUxGeRCIiLnH5nCRx0WjIbo1uYGDtSrTQbJPCqf43mEs9AbBXqJbZBuIsxITZM4HGr3f5TAoOnWMucwGGn7qvBr5vwYb8k_uH_nv7f6C_h1vm7kTn9cPbpGezFy-7bZJoD2G0ul-E5QqLGvViv-l-Ee_3S
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-x7oHtgW9GYCCDeGPpHNv5MG8VYlQIpj1QqTxZtuPQaVVSrQms--s5N2k2QBrwZiUXx_b57N_Jdz8DvOZUO6mjKMwcNaEwBQslzdPQOIT33KaRcD45-fNxMp6Ij9N42gXIrnNhShz34QxxZ7cDHGI5pN4zRyC8BdtJjJh7ANuT45PR1zUZaix8OPr0qsyyNjuGIxY-XEZceBJm9LkQGflYj192oK2Zj3_8E1xeOxjdhdtNudCrH3o-v7b3HN2FD5tWtyEnZ8OmNkN7-Ruh49-7dQ_udPCTjNr5ch9uufIB7PSr4OohovcZrr1V-e0tGZGTlacWIHVVzU11QRDgEt3kpxVZLpyzM1K4NS_okuASf96mSDyCydH7L-_GYXfLQmhjRmtcDnmWWZPKTBhpRM5yH_qZ5NJKwU3EWOEKYZjF7Y5aVhjLtBUmkpmWaO6p5Y9hgK1yT4Ag9pIJY7LASkRCC5NZtHGXpzJ21OksgGgz8sp2FOT-Joy5QlfEa0u12lKoLbXWlkoCeNN_s2gJOG6UfoUD2wt67uzx6JPyzzyLEOMp_R4FsL_Rt-osdqm840llJqM4gJf9a7Q1f4CiS1c1KINYGR1KFAxgr50n_a84el4-ETqAg83Euar8pgYf9JPrH_r39P_En8EOFngbfrMPg_q8cc8RRNXmRWdBPwE_Sw_j
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Shennong%3A+A+Python+toolbox+for+audio+speech+features+extraction&rft.jtitle=Behavior+research+methods&rft.au=Bernard%2C+Mathieu&rft.au=Poli%2C+Maxime&rft.au=Karadayi%2C+Julien&rft.au=Dupoux%2C+Emmanuel&rft.date=2023-12-01&rft.issn=1554-3528&rft_id=info:doi/10.3758%2Fs13428-022-02029-6&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-04312370v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1554-3528&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1554-3528&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1554-3528&client=summon