Imaging Large-Scale Neural Activity with Cellular Resolution in Awake, Mobile Mice

We report a technique for two-photon fluorescence imaging with cellular resolution in awake, behaving mice with minimal motion artifact. The apparatus combines an upright, table-mounted two-photon microscope with a spherical treadmill consisting of a large, air-supported Styrofoam ball. Mice, with i...

Full description

Saved in:
Bibliographic Details
Published inNeuron (Cambridge, Mass.) Vol. 56; no. 1; pp. 43 - 57
Main Authors Dombeck, Daniel A., Khabbaz, Anton N., Collman, Forrest, Adelman, Thomas L., Tank, David W.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 04.10.2007
Elsevier Limited
Subjects
Online AccessGet full text
ISSN0896-6273
1097-4199
1097-4199
DOI10.1016/j.neuron.2007.08.003

Cover

Abstract We report a technique for two-photon fluorescence imaging with cellular resolution in awake, behaving mice with minimal motion artifact. The apparatus combines an upright, table-mounted two-photon microscope with a spherical treadmill consisting of a large, air-supported Styrofoam ball. Mice, with implanted cranial windows, are head restrained under the objective while their limbs rest on the ball's upper surface. Following adaptation to head restraint, mice maneuver on the spherical treadmill as their heads remain motionless. Image sequences demonstrate that running-associated brain motion is limited to ∼2-5 μm. In addition, motion is predominantly in the focal plane, with little out-of-plane motion, making the application of a custom-designed Hidden-Markov-Model-based motion correction algorithm useful for postprocessing. Behaviorally correlated calcium transients from large neuronal and astrocytic populations were routinely measured, with an estimated motion-induced false positive error rate of <5%.
AbstractList We report a technique for two-photon fluorescence imaging with cellular resolution in awake, behaving mice with minimal motion artifact. The apparatus combines an upright, table-mounted two-photon microscope with a spherical treadmill consisting of a large, air-supported Styrofoam ball. Mice, with implanted cranial windows, are head restrained under the objective while their limbs rest on the ball's upper surface. Following adaptation to head restraint, mice maneuver on the spherical treadmill as their heads remain motionless. Image sequences demonstrate that running-associated brain motion is limited to approximately 2-5 microm. In addition, motion is predominantly in the focal plane, with little out-of-plane motion, making the application of a custom-designed Hidden-Markov-Model-based motion correction algorithm useful for postprocessing. Behaviorally correlated calcium transients from large neuronal and astrocytic populations were routinely measured, with an estimated motion-induced false positive error rate of <5%.We report a technique for two-photon fluorescence imaging with cellular resolution in awake, behaving mice with minimal motion artifact. The apparatus combines an upright, table-mounted two-photon microscope with a spherical treadmill consisting of a large, air-supported Styrofoam ball. Mice, with implanted cranial windows, are head restrained under the objective while their limbs rest on the ball's upper surface. Following adaptation to head restraint, mice maneuver on the spherical treadmill as their heads remain motionless. Image sequences demonstrate that running-associated brain motion is limited to approximately 2-5 microm. In addition, motion is predominantly in the focal plane, with little out-of-plane motion, making the application of a custom-designed Hidden-Markov-Model-based motion correction algorithm useful for postprocessing. Behaviorally correlated calcium transients from large neuronal and astrocytic populations were routinely measured, with an estimated motion-induced false positive error rate of <5%.
We report a technique for two-photon fluorescence imaging with cellular resolution in awake, behaving mice with minimal motion artifact. The apparatus combines an upright, table-mounted two-photon microscope with a spherical treadmill consisting of a large, air-supported Styrofoam ball. Mice, with implanted cranial windows, are head restrained under the objective while their limbs rest on the ball's upper surface. Following adaptation to head restraint, mice maneuver on the spherical treadmill as their heads remain motionless. Image sequences demonstrate that running-associated brain motion is limited to ∼2-5 μm. In addition, motion is predominantly in the focal plane, with little out-of-plane motion, making the application of a custom-designed Hidden-Markov-Model-based motion correction algorithm useful for postprocessing. Behaviorally correlated calcium transients from large neuronal and astrocytic populations were routinely measured, with an estimated motion-induced false positive error rate of <5%.
We report a technique for two-photon fluorescence imaging with cellular resolution in awake, behaving mice with minimal motion artifact. The apparatus combines an upright, table-mounted two-photon microscope with a spherical treadmill consisting of a large, air-supported Styrofoam ball. Mice, with implanted cranial windows, are head restrained under the objective while their limbs rest on the ball's upper surface. Following adaptation to head restraint, mice maneuver on the spherical treadmill as their heads remain motionless. Image sequences demonstrate that running-associated brain motion is limited to 2-5 is a subset of m. In addition, motion is predominantly in the focal plane, with little out-of-plane motion, making the application of a custom-designed Hidden-Markov-Model-based motion correction algorithm useful for postprocessing. Behaviorally correlated calcium transients from large neuronal and astrocytic populations were routinely measured, with an estimated motion-induced false positive error rate of <5%.
We report a technique for two-photon fluorescence imaging with cellular resolution in awake behaving mice with minimal motion artifact. The apparatus combines an upright table mounted two-photon microscope with a spherical treadmill consisting of a large air supported Styrofoam ball. Mice, with implanted cranial windows, are head restrained under the objective while their limbs rest on the ball’s upper surface. Following adaptation to head restraint, mice maneuver on the spherical treadmill as their head remains motionless. Image sequences demonstrate that running-associated brain motion is limited to ~2–5 µm. In addition, motion is predominantly in the focal plane, with little out-of-plane motion, making the application of a custom designed Hidden Markov Model based motion correction algorithm useful for post-processing. Behaviorally correlated calcium transients from large neuronal and astrocytic populations were routinely measured, with an estimated motion induced false positive error rate of <5%.
We report a technique for two-photon fluorescence imaging with cellular resolution in awake, behaving mice with minimal motion artifact. The apparatus combines an upright, table-mounted two-photon microscope with a spherical treadmill consisting of a large, air-supported Styrofoam ball. Mice, with implanted cranial windows, are head restrained under the objective while their limbs rest on the ball's upper surface. Following adaptation to head restraint, mice maneuver on the spherical treadmill as their heads remain motionless. Image sequences demonstrate that running-associated brain motion is limited to approximately 2-5 microm. In addition, motion is predominantly in the focal plane, with little out-of-plane motion, making the application of a custom-designed Hidden-Markov-Model-based motion correction algorithm useful for postprocessing. Behaviorally correlated calcium transients from large neuronal and astrocytic populations were routinely measured, with an estimated motion-induced false positive error rate of <5%.
We report a technique for two-photon fluorescence imaging with cellular resolution in awake, behaving mice with minimal motion artifact. The apparatus combines an upright, table-mounted two-photon microscope with a spherical treadmill consisting of a large, air-supported Styrofoam ball. Mice, with implanted cranial windows, are head restrained under the objective while their limbs rest on the ball's upper surface. Following adaptation to head restraint, mice maneuver on the spherical treadmill as their heads remain motionless. Image sequences demonstrate that running-associated brain motion is limited to ∼2-5 μm. In addition, motion is predominantly in the focal plane, with little out-of-plane motion, making the application of a custom-designed Hidden-Markov-Model-based motion correction algorithm useful for postprocessing. Behaviorally correlated calcium transients from large neuronal and astrocytic populations were routinely measured, with an estimated motion-induced false positive error rate of <5%.
Author Dombeck, Daniel A.
Tank, David W.
Adelman, Thomas L.
Khabbaz, Anton N.
Collman, Forrest
Author_xml – sequence: 1
  givenname: Daniel A.
  surname: Dombeck
  fullname: Dombeck, Daniel A.
  organization: Department of Molecular Biology, Carl Icahn Labs, Princeton University, Princeton, NJ 08544, USA
– sequence: 2
  givenname: Anton N.
  surname: Khabbaz
  fullname: Khabbaz, Anton N.
  organization: Department of Molecular Biology, Carl Icahn Labs, Princeton University, Princeton, NJ 08544, USA
– sequence: 3
  givenname: Forrest
  surname: Collman
  fullname: Collman, Forrest
  organization: Department of Molecular Biology, Carl Icahn Labs, Princeton University, Princeton, NJ 08544, USA
– sequence: 4
  givenname: Thomas L.
  surname: Adelman
  fullname: Adelman, Thomas L.
  organization: Department of Molecular Biology, Carl Icahn Labs, Princeton University, Princeton, NJ 08544, USA
– sequence: 5
  givenname: David W.
  surname: Tank
  fullname: Tank, David W.
  email: dwtank@princeton.edu
  organization: Department of Molecular Biology, Carl Icahn Labs, Princeton University, Princeton, NJ 08544, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/17920014$$D View this record in MEDLINE/PubMed
BookMark eNqVkV-LEzEUxYOsuN3qNxAZEHxyxpvMJJPxQSjFXRe6Cqs-hzS9001Nk5qZaem3N7XFP_vgIgRCyDmHc3_3gpz54JGQ5xQKClS8WRUehxh8wQDqAmQBUD4iIwpNnVe0ac7ICGQjcsHq8pxcdN0KgFa8oU_IOa0bdniNyO31Wi-tX2YzHZeYfzbaYfYxBWuXTUxvt7bfZzvb32VTdG5wOma32AU39Db4zPpsstPf8HV2E-Y2OW-swafkcatdh89O95h8vXz_Zfohn326up5OZrnhDPpcSCpajrqiUhvGa8GxRoPUUMkNqzS0MpXktEE-N5IvGilYBaXRtDJt1czLMeHH3MFv9H6nnVObaNc67hUFdWCkVurISB0YKZAqMUq-d0ffZpivcWHQ92naX96grfr7x9s7tQxbxZiQkGiOyatTQAzfB-x6tbadSXi0xzB0SshSpOIPCxnUskonCV_eE67CEH2ipyiHshbAfqpe_Fn897SnbSbB26PAxNB1EVtlbK8Pm0pzWPcQluqe-f9oYlr11mJUnbHoDS5sRNOrRbD_DvgBRgDeBg
CitedBy_id crossref_primary_10_1016_j_cell_2017_05_023
crossref_primary_10_1242_jcs_189001
crossref_primary_10_7554_eLife_51675
crossref_primary_10_1038_s41593_021_00943_0
crossref_primary_10_1016_j_biopsych_2020_02_008
crossref_primary_10_1038_s41593_024_01612_8
crossref_primary_10_1002_jemt_22342
crossref_primary_10_1371_journal_pbio_3001530
crossref_primary_10_1038_s41467_021_24211_8
crossref_primary_10_1523_JNEUROSCI_4400_10_2010
crossref_primary_10_1101_pdb_prot081778
crossref_primary_10_1109_TBCAS_2012_2218106
crossref_primary_10_1523_ENEURO_0143_19_2019
crossref_primary_10_1523_JNEUROSCI_2857_17_2018
crossref_primary_10_1038_s41467_022_28635_8
crossref_primary_10_1038_srep43388
crossref_primary_10_1016_j_expneurol_2012_07_014
crossref_primary_10_1038_nrn3962
crossref_primary_10_3389_fnsys_2016_00076
crossref_primary_10_1016_j_neuroscience_2024_10_035
crossref_primary_10_1111_j_1471_4159_2008_05830_x
crossref_primary_10_1016_j_neuron_2008_09_004
crossref_primary_10_1126_science_aaf3319
crossref_primary_10_1523_ENEURO_0417_17_2018
crossref_primary_10_1016_j_neuron_2020_05_022
crossref_primary_10_1016_j_neulet_2019_02_034
crossref_primary_10_1016_j_neures_2011_06_011
crossref_primary_10_1152_jn_00697_2019
crossref_primary_10_1038_s41592_021_01329_7
crossref_primary_10_1016_j_neuron_2016_03_014
crossref_primary_10_1364_JOSAB_393128
crossref_primary_10_1109_TBME_2022_3229513
crossref_primary_10_1073_pnas_1209448109
crossref_primary_10_1038_s41586_019_1261_9
crossref_primary_10_1038_s41592_022_01422_5
crossref_primary_10_3389_fninf_2014_00080
crossref_primary_10_1371_journal_pone_0075678
crossref_primary_10_2139_ssrn_3316810
crossref_primary_10_1016_j_jneumeth_2013_10_004
crossref_primary_10_1016_j_neuron_2019_01_009
crossref_primary_10_2217_fnl_13_38
crossref_primary_10_1016_j_celrep_2020_01_105
crossref_primary_10_1016_j_neuron_2017_06_049
crossref_primary_10_1038_nprot_2014_165
crossref_primary_10_1146_annurev_neuro_051508_135540
crossref_primary_10_1016_j_neuron_2011_08_009
crossref_primary_10_1016_j_ceca_2021_102358
crossref_primary_10_1371_journal_pone_0031896
crossref_primary_10_1523_JNEUROSCI_0895_19_2019
crossref_primary_10_1152_jn_01310_2007
crossref_primary_10_1016_j_celrep_2017_10_013
crossref_primary_10_1038_nature18942
crossref_primary_10_1364_OL_412760
crossref_primary_10_1088_1741_2552_ad83c0
crossref_primary_10_1038_nature14103
crossref_primary_10_1038_srep12621
crossref_primary_10_1038_s41467_023_40044_z
crossref_primary_10_1113_jphysiol_2008_167171
crossref_primary_10_1063_1_3081635
crossref_primary_10_1109_TBME_2015_2406113
crossref_primary_10_1016_j_ceca_2013_09_001
crossref_primary_10_1016_j_conb_2010_05_003
crossref_primary_10_1038_s41592_019_0663_9
crossref_primary_10_1016_j_neuron_2008_10_013
crossref_primary_10_1093_cercor_bhz083
crossref_primary_10_1002_dev_21305
crossref_primary_10_1038_s41467_018_04349_8
crossref_primary_10_1016_j_conb_2021_05_001
crossref_primary_10_1016_j_celrep_2018_05_062
crossref_primary_10_1016_j_pneurobio_2015_04_003
crossref_primary_10_1073_pnas_1210929109
crossref_primary_10_7554_eLife_85111
crossref_primary_10_1523_JNEUROSCI_0793_16_2016
crossref_primary_10_1016_j_neuron_2016_12_019
crossref_primary_10_7554_eLife_39777
crossref_primary_10_1038_nrn2864
crossref_primary_10_1016_j_neuron_2011_10_009
crossref_primary_10_1016_j_expneurol_2019_05_010
crossref_primary_10_2967_jnumed_112_109090
crossref_primary_10_1523_JNEUROSCI_1828_20_2021
crossref_primary_10_1016_j_neuron_2018_06_028
crossref_primary_10_1152_ajpcell_00416_2019
crossref_primary_10_1117_1_3505021
crossref_primary_10_1152_jn_00356_2012
crossref_primary_10_1364_BOE_6_000421
crossref_primary_10_1016_j_neuroscience_2016_09_035
crossref_primary_10_1117_1_NPh_1_1_011014
crossref_primary_10_1523_JNEUROSCI_5559_05_2008
crossref_primary_10_1016_j_bpj_2008_08_005
crossref_primary_10_3389_fncir_2017_00056
crossref_primary_10_1093_cercor_bhs122
crossref_primary_10_1093_function_zqad019
crossref_primary_10_1101_pdb_prot081737
crossref_primary_10_3389_fncir_2021_786293
crossref_primary_10_1016_j_neuron_2010_01_033
crossref_primary_10_1152_jn_00609_2011
crossref_primary_10_1038_s41598_019_43024_w
crossref_primary_10_1038_nmeth_1468
crossref_primary_10_7554_eLife_37683
crossref_primary_10_1016_j_celrep_2020_02_043
crossref_primary_10_1016_j_conb_2013_11_002
crossref_primary_10_1021_acschemneuro_6b00307
crossref_primary_10_7554_eLife_86805_4
crossref_primary_10_1038_s41592_020_0851_7
crossref_primary_10_1021_nn401410k
crossref_primary_10_1073_pnas_1901712116
crossref_primary_10_1038_nmeth_1582
crossref_primary_10_1016_j_neuron_2016_02_019
crossref_primary_10_1117_1_NPh_1_1_011008
crossref_primary_10_1016_j_jmp_2016_04_006
crossref_primary_10_7554_eLife_48571
crossref_primary_10_1038_s42003_023_04896_x
crossref_primary_10_1038_nature10918
crossref_primary_10_1038_ncomms4262
crossref_primary_10_3389_fnins_2014_00211
crossref_primary_10_1016_j_neuron_2013_07_052
crossref_primary_10_1016_j_cell_2015_11_061
crossref_primary_10_1142_S0129065715500264
crossref_primary_10_1038_s41598_018_21640_2
crossref_primary_10_1523_JNEUROSCI_2925_19_2020
crossref_primary_10_1523_ENEURO_0023_21_2021
crossref_primary_10_1038_s41467_021_23829_y
crossref_primary_10_1016_j_neuron_2018_06_002
crossref_primary_10_1038_s41586_023_06864_1
crossref_primary_10_1038_s41592_020_0961_2
crossref_primary_10_1016_j_ceca_2013_10_004
crossref_primary_10_1016_j_neuron_2020_04_013
crossref_primary_10_1364_BOE_434146
crossref_primary_10_1371_journal_pone_0019928
crossref_primary_10_1523_JNEUROSCI_5289_11_2011
crossref_primary_10_1002_jbio_202300214
crossref_primary_10_1016_j_neuron_2010_06_033
crossref_primary_10_3389_fncel_2024_1408607
crossref_primary_10_3390_ijms24086985
crossref_primary_10_3389_fnmol_2020_00030
crossref_primary_10_1038_s41467_023_36042_w
crossref_primary_10_7554_eLife_89986
crossref_primary_10_1016_j_compmedimag_2011_08_002
crossref_primary_10_1515_revneuro_2022_0127
crossref_primary_10_1080_10888705_2021_1941023
crossref_primary_10_1364_BOE_394649
crossref_primary_10_1016_j_neuron_2022_10_037
crossref_primary_10_1038_ncomms15557
crossref_primary_10_1073_pnas_1109202108
crossref_primary_10_1126_science_aav5282
crossref_primary_10_1038_s41467_020_17005_x
crossref_primary_10_1146_annurev_cellbio_100913_013053
crossref_primary_10_1016_j_neuron_2023_09_006
crossref_primary_10_1016_j_neuron_2023_11_019
crossref_primary_10_3389_fnins_2014_00118
crossref_primary_10_1117_1_3646209
crossref_primary_10_1016_j_cub_2019_07_037
crossref_primary_10_1016_j_neuron_2023_11_022
crossref_primary_10_1016_j_conb_2010_04_008
crossref_primary_10_1038_nmeth_1694
crossref_primary_10_1038_nmeth_1453
crossref_primary_10_3390_ma11081283
crossref_primary_10_1021_acs_nanolett_7b00956
crossref_primary_10_1142_S1793545819300027
crossref_primary_10_1038_s41593_025_01874_w
crossref_primary_10_1016_j_bbamcr_2012_12_017
crossref_primary_10_1038_s41592_018_0234_5
crossref_primary_10_1117_1_NPh_11_4_045010
crossref_primary_10_1016_j_brainresrev_2009_11_007
crossref_primary_10_1016_j_nlm_2011_04_010
crossref_primary_10_1016_j_jneumeth_2010_10_007
crossref_primary_10_1146_annurev_neuro_061010_113813
crossref_primary_10_1523_JNEUROSCI_2601_12_2012
crossref_primary_10_1016_j_neuroscience_2021_10_022
crossref_primary_10_1364_BOE_6_004546
crossref_primary_10_1038_s41592_020_0759_2
crossref_primary_10_1167_jov_20_2_7
crossref_primary_10_1038_s43586_022_00147_1
crossref_primary_10_1186_s40708_022_00166_4
crossref_primary_10_1016_j_jneumeth_2008_08_020
crossref_primary_10_1146_annurev_bioeng_071813_104733
crossref_primary_10_1515_RNS_2011_052
crossref_primary_10_1113_jphysiol_2013_253138
crossref_primary_10_1515_RNS_2011_053
crossref_primary_10_1364_OME_9_003729
crossref_primary_10_3389_fnbeh_2016_00236
crossref_primary_10_1016_j_cub_2019_10_017
crossref_primary_10_7554_eLife_10163
crossref_primary_10_1113_jphysiol_2013_259804
crossref_primary_10_1016_j_neuroscience_2012_06_022
crossref_primary_10_1038_s41593_021_00974_7
crossref_primary_10_1021_acsnano_4c10525
crossref_primary_10_1038_s41586_022_05328_2
crossref_primary_10_1038_s41467_018_04286_6
crossref_primary_10_1038_s41467_022_34039_5
crossref_primary_10_1126_science_1209168
crossref_primary_10_1152_jn_00702_2010
crossref_primary_10_7554_eLife_79848
crossref_primary_10_1016_j_neuroimage_2017_01_049
crossref_primary_10_1016_j_neuron_2020_11_018
crossref_primary_10_1016_j_cub_2016_08_035
crossref_primary_10_1016_j_neuroscience_2015_04_001
crossref_primary_10_1016_j_cub_2010_07_001
crossref_primary_10_1111_j_1476_5381_2010_00988_x
crossref_primary_10_1126_science_aat6766
crossref_primary_10_1103_PhysRevE_99_023311
crossref_primary_10_1038_s41586_022_05113_1
crossref_primary_10_1111_1365_2435_13010
crossref_primary_10_3390_app132312951
crossref_primary_10_1002_glia_24350
crossref_primary_10_1016_j_neuron_2020_11_013
crossref_primary_10_1038_nn_4046
crossref_primary_10_1093_cercor_bhx169
crossref_primary_10_1016_j_ymeth_2017_04_014
crossref_primary_10_3389_fncel_2023_1142267
crossref_primary_10_1038_nmeth_1398
crossref_primary_10_1523_JNEUROSCI_1527_18_2019
crossref_primary_10_4161_intv_28210
crossref_primary_10_1016_j_jneumeth_2016_02_005
crossref_primary_10_1016_j_conb_2009_08_005
crossref_primary_10_1093_cz_zow070
crossref_primary_10_1016_j_cub_2018_04_012
crossref_primary_10_1111_micc_12188
crossref_primary_10_7554_eLife_50855
crossref_primary_10_2976_1_3284977
crossref_primary_10_1523_JNEUROSCI_3255_13_2013
crossref_primary_10_3389_fninf_2017_00048
crossref_primary_10_3389_fnins_2020_00819
crossref_primary_10_1088_1741_2552_abae8b
crossref_primary_10_1515_nf_2017_A046
crossref_primary_10_1016_j_neuron_2016_09_057
crossref_primary_10_1038_s42003_023_04656_x
crossref_primary_10_1002_glia_22288
crossref_primary_10_7554_eLife_27702
crossref_primary_10_3390_biology11111601
crossref_primary_10_1038_nmeth_1243
crossref_primary_10_3389_fncel_2019_00141
crossref_primary_10_1002_cyto_a_23963
crossref_primary_10_1016_j_neuroimage_2014_10_030
crossref_primary_10_1152_jn_00197_2010
crossref_primary_10_1016_j_jneumeth_2023_109827
crossref_primary_10_1101_pdb_top081810
crossref_primary_10_1126_sciadv_adj1895
crossref_primary_10_1002_glia_23246
crossref_primary_10_1038_nn_4061
crossref_primary_10_1002_glia_24337
crossref_primary_10_1073_pnas_1711692115
crossref_primary_10_1016_j_brainres_2017_09_003
crossref_primary_10_1016_j_cub_2019_07_078
crossref_primary_10_1152_jn_00084_2008
crossref_primary_10_1152_jn_00046_2015
crossref_primary_10_7554_eLife_81958
crossref_primary_10_1038_s41593_018_0189_y
crossref_primary_10_1016_j_neuron_2013_03_020
crossref_primary_10_1038_nmeth_1256
crossref_primary_10_1523_ENEURO_0266_21_2021
crossref_primary_10_1109_TVCG_2020_2973063
crossref_primary_10_7554_eLife_36781
crossref_primary_10_1016_j_expneurol_2012_02_009
crossref_primary_10_1152_jn_00484_2010
crossref_primary_10_1016_j_fmre_2023_11_021
crossref_primary_10_1016_j_neuroimage_2015_04_054
crossref_primary_10_1073_pnas_1100428108
crossref_primary_10_1016_j_jneumeth_2017_12_018
crossref_primary_10_1038_s41593_019_0341_3
crossref_primary_10_1038_s41421_022_00498_9
crossref_primary_10_1109_TBCAS_2012_2226174
crossref_primary_10_1016_j_celrep_2022_111494
crossref_primary_10_1364_BOE_10_003343
crossref_primary_10_7554_eLife_57458
crossref_primary_10_1007_s00216_010_3740_6
crossref_primary_10_1152_jn_00669_2012
crossref_primary_10_1038_jcbfm_2011_196
crossref_primary_10_1523_JNEUROSCI_2550_12_2013
crossref_primary_10_7554_eLife_26839
crossref_primary_10_1002_jbio_201600007
crossref_primary_10_1016_j_neuron_2021_09_019
crossref_primary_10_1038_s41598_018_34472_x
crossref_primary_10_1016_j_neuron_2010_08_026
crossref_primary_10_1038_nprot_2009_5
crossref_primary_10_1126_science_aad3358
crossref_primary_10_1016_j_celrep_2023_113671
crossref_primary_10_1177_1073858409333076
crossref_primary_10_1038_nmeth_3482
crossref_primary_10_1364_BOE_8_000436
crossref_primary_10_1523_JNEUROSCI_3176_20_2021
crossref_primary_10_1016_j_neuron_2012_02_011
crossref_primary_10_1038_nprot_2016_021
crossref_primary_10_1016_j_tins_2011_02_001
crossref_primary_10_1093_cercor_bhz147
crossref_primary_10_1038_s41467_022_29180_0
crossref_primary_10_1073_pnas_1507110112
crossref_primary_10_1021_acs_accounts_6b00561
crossref_primary_10_1002_cpcy_40
crossref_primary_10_1016_j_heliyon_2024_e25910
crossref_primary_10_1038_nn_4365
crossref_primary_10_1523_ENEURO_0164_19_2019
crossref_primary_10_1523_JNEUROSCI_4599_15_2016
crossref_primary_10_1016_j_jneumeth_2015_01_020
crossref_primary_10_3389_fnbeh_2021_744715
crossref_primary_10_3389_fncel_2022_917713
crossref_primary_10_1016_j_conb_2015_01_015
crossref_primary_10_1073_pnas_0903680106
crossref_primary_10_1038_nmeth_4226
crossref_primary_10_3389_fncel_2022_866109
crossref_primary_10_1016_j_cell_2023_02_024
crossref_primary_10_1007_s12576_015_0414_3
crossref_primary_10_1016_j_neuroimage_2019_01_002
crossref_primary_10_1113_JP278957
crossref_primary_10_1038_s41467_022_31272_w
crossref_primary_10_1523_JNEUROSCI_2974_11_2011
crossref_primary_10_1364_OE_16_005556
crossref_primary_10_3389_fncel_2021_682888
crossref_primary_10_1016_j_conb_2009_09_003
crossref_primary_10_1038_s41586_020_2319_4
crossref_primary_10_1016_j_cub_2020_06_023
crossref_primary_10_1088_1741_2552_aac96d
crossref_primary_10_3389_fnins_2023_1277501
crossref_primary_10_1088_2050_6120_acba66
crossref_primary_10_1038_nn_4390
crossref_primary_10_1038_s41467_022_29236_1
crossref_primary_10_1038_s41583_020_0361_8
crossref_primary_10_1038_nn_4157
crossref_primary_10_1038_s41598_023_40638_z
crossref_primary_10_1016_j_tins_2023_03_003
crossref_primary_10_1016_j_expneurol_2016_08_003
crossref_primary_10_1038_s41467_018_06058_8
crossref_primary_10_1016_j_celrep_2021_108704
crossref_primary_10_1016_j_cell_2020_11_013
crossref_primary_10_1017_S1740925X09000064
crossref_primary_10_1523_JNEUROSCI_0017_17_2017
crossref_primary_10_2139_ssrn_3981904
crossref_primary_10_3389_fncel_2015_00011
crossref_primary_10_1371_journal_pone_0002525
crossref_primary_10_7554_eLife_43140
crossref_primary_10_1016_j_neuron_2014_06_031
crossref_primary_10_1152_jn_00069_2019
crossref_primary_10_1016_j_jneumeth_2022_109705
crossref_primary_10_7554_eLife_14985
crossref_primary_10_1038_nprot_2016_121
crossref_primary_10_1038_nature08897
crossref_primary_10_3389_fddev_2024_1397056
crossref_primary_10_1038_nm_3400
crossref_primary_10_1038_nn_4385
crossref_primary_10_1080_01677060802298517
crossref_primary_10_12688_f1000research_51755_1
crossref_primary_10_1016_j_conb_2011_10_015
crossref_primary_10_1152_jn_00170_2021
crossref_primary_10_12688_f1000research_51755_2
crossref_primary_10_1016_j_neuron_2012_03_040
crossref_primary_10_1038_nature08539
crossref_primary_10_1371_journal_pone_0089007
crossref_primary_10_1523_JNEUROSCI_3762_09_2010
crossref_primary_10_1152_jn_00230_2017
crossref_primary_10_1371_journal_pone_0233561
crossref_primary_10_1038_nature08540
crossref_primary_10_1152_jn_01056_2015
crossref_primary_10_1016_j_jneumeth_2011_10_029
crossref_primary_10_1364_BOE_445775
crossref_primary_10_1016_j_job_2024_100606
crossref_primary_10_1152_jn_00464_2015
crossref_primary_10_1038_nrn3293
crossref_primary_10_1101_pdb_top078147
crossref_primary_10_1016_j_plantsci_2021_110986
crossref_primary_10_1371_journal_pone_0252345
crossref_primary_10_1093_cercor_bhw002
crossref_primary_10_7554_eLife_21589
crossref_primary_10_1371_journal_pone_0196563
crossref_primary_10_1098_rstb_2021_0450
crossref_primary_10_1371_journal_pcbi_1009799
crossref_primary_10_2745_dds_31_146
crossref_primary_10_1038_s41467_019_13523_5
crossref_primary_10_1038_nn_3482
crossref_primary_10_1038_s41598_023_30524_z
crossref_primary_10_1371_journal_pcbi_1006041
crossref_primary_10_1016_j_cub_2021_02_031
crossref_primary_10_1038_aba1788
crossref_primary_10_1111_j_1748_1716_2008_01925_x
crossref_primary_10_7554_eLife_78005
crossref_primary_10_1016_j_conb_2015_04_001
crossref_primary_10_1016_j_conb_2014_09_009
crossref_primary_10_1109_JPHOT_2013_2250941
crossref_primary_10_1214_18_AOAS1162
crossref_primary_10_1016_j_neuron_2013_09_046
crossref_primary_10_7554_eLife_77153
crossref_primary_10_1038_s41598_018_25844_4
crossref_primary_10_1523_JNEUROSCI_2985_09_2009
crossref_primary_10_1073_pnas_1807192115
crossref_primary_10_1016_j_neuron_2023_06_009
crossref_primary_10_1038_s41380_023_02269_8
crossref_primary_10_1523_JNEUROSCI_1877_20_2020
crossref_primary_10_5607_en22015
crossref_primary_10_1016_j_neuron_2017_09_052
crossref_primary_10_1007_s13295_013_0042_4
crossref_primary_10_1016_j_jneumeth_2021_109434
crossref_primary_10_1126_sciadv_abk1378
crossref_primary_10_1364_BOE_7_003596
crossref_primary_10_1038_nn_2140
crossref_primary_10_7567_JJAP_55_04EM02
crossref_primary_10_1371_journal_pone_0220751
crossref_primary_10_1038_nature07150
crossref_primary_10_1038_s42003_020_01612_x
crossref_primary_10_1016_j_neuron_2017_01_027
crossref_primary_10_1073_pnas_1218654109
crossref_primary_10_1080_0964704X_2011_593118
crossref_primary_10_1016_j_jneumeth_2010_01_033
crossref_primary_10_1016_j_neuron_2007_11_009
crossref_primary_10_1016_j_neuron_2015_05_037
crossref_primary_10_1038_nn_4358
crossref_primary_10_1038_srep12196
crossref_primary_10_1016_j_crmeth_2024_100863
crossref_primary_10_1186_s12868_019_0533_5
crossref_primary_10_1007_s00424_011_1048_9
crossref_primary_10_1016_j_neuron_2020_08_024
crossref_primary_10_1038_s41586_018_0191_2
crossref_primary_10_1016_j_cub_2015_03_009
crossref_primary_10_3389_fbioe_2016_00030
crossref_primary_10_3389_fncir_2016_00020
crossref_primary_10_1515_nf_2013_0203
crossref_primary_10_1523_JNEUROSCI_1957_20_2021
crossref_primary_10_1016_j_celrep_2019_02_104
crossref_primary_10_1038_s41598_021_89974_y
crossref_primary_10_1152_jn_91037_2008
crossref_primary_10_1016_j_neuroscience_2020_07_054
crossref_primary_10_1038_s41593_018_0255_5
crossref_primary_10_1103_PhysRevE_99_042114
crossref_primary_10_1016_j_celrep_2018_08_010
crossref_primary_10_1016_j_ynstr_2023_100518
crossref_primary_10_7554_eLife_01982
crossref_primary_10_1016_j_jneumeth_2011_09_015
crossref_primary_10_1016_j_neuron_2021_03_032
crossref_primary_10_1371_journal_pcbi_1010421
crossref_primary_10_1523_JNEUROSCI_6689_10_2011
crossref_primary_10_1038_nprot_2009_142
crossref_primary_10_1038_nn_3134
crossref_primary_10_1038_503045a
crossref_primary_10_1016_j_neuron_2013_10_049
crossref_primary_10_1016_j_jneumeth_2016_04_012
crossref_primary_10_3389_fncel_2025_1558504
crossref_primary_10_1016_j_neuron_2016_06_020
crossref_primary_10_1016_j_brs_2018_11_007
crossref_primary_10_1364_BOE_6_004228
crossref_primary_10_1038_s41467_022_35383_2
crossref_primary_10_1002_glia_24162
crossref_primary_10_1038_s41467_019_10564_8
crossref_primary_10_1186_s12915_023_01660_9
crossref_primary_10_1371_journal_pcbi_1005148
crossref_primary_10_1038_nn_4653
crossref_primary_10_1523_JNEUROSCI_1828_17_2017
crossref_primary_10_1038_nn_4654
crossref_primary_10_1002_cne_22615
crossref_primary_10_1016_j_brainres_2010_11_007
crossref_primary_10_1002_jbio_201700131
crossref_primary_10_1016_j_conb_2015_03_016
crossref_primary_10_1038_nn_3567
crossref_primary_10_1109_JSTQE_2013_2279314
crossref_primary_10_1038_s41551_022_00851_z
crossref_primary_10_1371_journal_pone_0049637
crossref_primary_10_1038_nature13871
crossref_primary_10_1101_pdb_top083535
crossref_primary_10_1016_j_neuron_2009_08_009
crossref_primary_10_1038_jcbfm_2012_50
crossref_primary_10_1073_pnas_1318325110
crossref_primary_10_1016_j_conb_2011_05_003
crossref_primary_10_1152_jn_00100_2023
crossref_primary_10_1016_j_xpro_2024_103027
crossref_primary_10_1038_s41592_021_01226_z
crossref_primary_10_3389_fncir_2018_00015
crossref_primary_10_1038_s41593_018_0252_8
crossref_primary_10_1038_s41598_019_41966_9
crossref_primary_10_1016_j_jneumeth_2017_07_031
crossref_primary_10_1016_j_neures_2018_01_001
crossref_primary_10_1016_j_neuroscience_2017_05_033
crossref_primary_10_1038_nn_4516
crossref_primary_10_1016_j_ymeth_2013_05_016
crossref_primary_10_1021_jacs_5b03548
crossref_primary_10_3390_mi14020470
crossref_primary_10_1038_srep17847
crossref_primary_10_1038_nn_3552
crossref_primary_10_1002_glia_23181
crossref_primary_10_1523_JNEUROSCI_4595_15_2016
crossref_primary_10_1523_ENEURO_0245_16_2017
crossref_primary_10_1101_pdb_prot069294
crossref_primary_10_1038_nmeth_4183
crossref_primary_10_7554_eLife_28158
crossref_primary_10_1371_journal_pone_0013829
crossref_primary_10_1214_18_AOAS1159
crossref_primary_10_3390_mi9090428
crossref_primary_10_3389_fninf_2018_00098
crossref_primary_10_1038_s41377_019_0167_5
crossref_primary_10_1088_0034_4885_74_8_086602
crossref_primary_10_3389_fncel_2021_618658
crossref_primary_10_1016_j_tins_2020_05_005
crossref_primary_10_1523_JNEUROSCI_2570_19_2020
crossref_primary_10_3390_ijms19103033
crossref_primary_10_3390_photonics12010003
crossref_primary_10_1016_j_neuron_2017_11_033
crossref_primary_10_1016_j_tins_2009_05_001
crossref_primary_10_1117_1_NPh_11_3_033406
crossref_primary_10_1364_BOE_7_003686
crossref_primary_10_1016_j_jneumeth_2022_109549
crossref_primary_10_1113_jphysiol_2012_228114
crossref_primary_10_1523_JNEUROSCI_0594_14_2015
crossref_primary_10_1523_JNEUROSCI_0117_15_2015
crossref_primary_10_1016_j_neures_2017_04_009
crossref_primary_10_1111_rssb_12501
crossref_primary_10_3389_fnbeh_2018_00036
crossref_primary_10_7554_eLife_35800
crossref_primary_10_3389_fncir_2018_00033
crossref_primary_10_3390_mi9090436
crossref_primary_10_1016_j_neuron_2017_09_029
crossref_primary_10_1523_JNEUROSCI_1780_15_2015
crossref_primary_10_1038_nature08499
crossref_primary_10_1111_joa_14110
crossref_primary_10_1177_1073858418805427
crossref_primary_10_7554_eLife_07122
crossref_primary_10_1364_BOE_544383
crossref_primary_10_1016_j_conb_2011_12_002
crossref_primary_10_7554_eLife_86805
crossref_primary_10_1038_s41598_020_69132_6
crossref_primary_10_1093_cercor_bhw175
crossref_primary_10_1371_journal_pone_0204066
crossref_primary_10_1016_j_jneumeth_2021_109251
crossref_primary_10_1523_ENEURO_0065_18_2018
crossref_primary_10_1016_j_jneumeth_2017_07_014
crossref_primary_10_1117_1_NPh_4_3_035001
crossref_primary_10_1073_pnas_1524219113
crossref_primary_10_1111_jmi_12880
crossref_primary_10_1016_j_mehy_2013_09_021
crossref_primary_10_7554_eLife_85111_3
crossref_primary_10_1038_s41467_019_11050_x
crossref_primary_10_1016_j_neuron_2007_09_017
crossref_primary_10_1016_j_neures_2018_10_010
crossref_primary_10_1016_j_neuron_2014_10_048
crossref_primary_10_1016_j_neuroimage_2018_11_062
crossref_primary_10_1177_0271678X16629977
crossref_primary_10_1016_j_jneumeth_2019_108454
crossref_primary_10_1016_j_neuroimage_2016_11_069
crossref_primary_10_1113_jphysiol_2012_230532
crossref_primary_10_1038_s41586_019_1641_1
crossref_primary_10_1038_s41467_020_19948_7
crossref_primary_10_1038_s41583_023_00716_7
crossref_primary_10_1016_j_neuron_2012_09_037
crossref_primary_10_2139_ssrn_3155578
crossref_primary_10_1016_j_expneurol_2019_112972
crossref_primary_10_1186_s13064_020_00151_9
crossref_primary_10_1002_hipo_20519
crossref_primary_10_1016_j_copbio_2010_01_009
crossref_primary_10_1038_nn_2431
crossref_primary_10_1214_09_AOAS303
crossref_primary_10_1017_S1740925X10000219
crossref_primary_10_1038_s41467_017_02501_4
crossref_primary_10_1007_s10827_011_0376_2
crossref_primary_10_1073_pnas_1421753111
crossref_primary_10_1038_nbt_3594
crossref_primary_10_1371_journal_pone_0098842
crossref_primary_10_1002_glia_23940
crossref_primary_10_1101_pdb_top071464
crossref_primary_10_1016_j_brainres_2010_05_061
crossref_primary_10_1038_s41467_019_10498_1
crossref_primary_10_1016_j_cell_2017_07_020
crossref_primary_10_1038_s41598_022_10195_y
crossref_primary_10_1093_biostatistics_kxy083
crossref_primary_10_1364_OL_490087
crossref_primary_10_1523_ENEURO_0147_19_2019
crossref_primary_10_1073_pnas_1805517115
crossref_primary_10_1523_JNEUROSCI_3285_12_2013
crossref_primary_10_1038_nn_3867
crossref_primary_10_1523_JNEUROSCI_1060_20_2020
crossref_primary_10_1073_pnas_2108882119
crossref_primary_10_1007_s00467_011_1818_9
crossref_primary_10_1063_1_3184828
crossref_primary_10_1523_JNEUROSCI_0811_17_2017
crossref_primary_10_2197_ipsjtbio_16_1
crossref_primary_10_3389_fnsys_2023_1165307
crossref_primary_10_1063_5_0041394
crossref_primary_10_1016_j_conb_2018_04_020
crossref_primary_10_3389_fnana_2014_00016
crossref_primary_10_1364_BOE_9_002304
crossref_primary_10_3389_fncir_2021_747724
crossref_primary_10_1038_s41586_022_05146_6
crossref_primary_10_3109_08990220_2010_513111
crossref_primary_10_1371_journal_pone_0051789
crossref_primary_10_1038_s42003_024_05996_y
crossref_primary_10_1038_nn_4634
crossref_primary_10_1038_s41593_021_00914_5
crossref_primary_10_1016_j_jneumeth_2013_03_009
crossref_primary_10_1111_ejn_13074
crossref_primary_10_1016_j_neuron_2018_09_020
crossref_primary_10_1016_j_neuroimage_2015_02_070
crossref_primary_10_1523_JNEUROSCI_5319_10_2011
crossref_primary_10_1016_j_cell_2024_07_036
crossref_primary_10_1038_nrn2338
crossref_primary_10_1523_JNEUROSCI_3174_14_2015
crossref_primary_10_1364_BOE_8_003329
crossref_primary_10_1016_j_neuroscience_2013_05_049
crossref_primary_10_1038_s41586_021_03452_z
crossref_primary_10_1007_s12264_016_0053_6
crossref_primary_10_2139_ssrn_3155786
crossref_primary_10_1523_JNEUROSCI_4469_11_2012
crossref_primary_10_1016_j_neuroscience_2013_04_022
crossref_primary_10_1152_physiol_00032_2007
crossref_primary_10_7554_eLife_82367
crossref_primary_10_1016_j_brainres_2011_06_008
crossref_primary_10_2184_lsj_41_2_86
crossref_primary_10_1073_pnas_1406077111
crossref_primary_10_1016_j_jneumeth_2021_109173
crossref_primary_10_1038_nn_2557
crossref_primary_10_1016_j_bbr_2014_03_007
crossref_primary_10_1117_1_JBO_19_11_116011
crossref_primary_10_1038_nmeth0110_09
crossref_primary_10_1016_j_neuron_2023_08_015
crossref_primary_10_1016_j_neuron_2017_08_036
crossref_primary_10_1186_s12987_020_00214_3
crossref_primary_10_7554_eLife_71476
crossref_primary_10_1016_j_molmed_2008_07_005
crossref_primary_10_1371_journal_pone_0180452
crossref_primary_10_1016_j_jneumeth_2020_108905
crossref_primary_10_1038_nmeth1108_925
crossref_primary_10_1126_science_1247485
crossref_primary_10_1016_j_ceca_2016_06_002
crossref_primary_10_7554_eLife_29546
crossref_primary_10_1038_s41592_020_0817_9
crossref_primary_10_1007_s11064_017_2195_y
crossref_primary_10_1038_s41593_023_01280_0
crossref_primary_10_1007_s00429_016_1292_z
crossref_primary_10_1073_pnas_1718721115
crossref_primary_10_1038_s41586_019_1644_y
crossref_primary_10_1016_j_neuron_2015_03_055
crossref_primary_10_1515_nf_2017_0046
crossref_primary_10_1038_s41467_024_48505_9
crossref_primary_10_1523_JNEUROSCI_2043_14_2015
crossref_primary_10_7554_eLife_04006
crossref_primary_10_1038_s41592_024_02535_9
crossref_primary_10_1117_1_NPh_10_4_044304
crossref_primary_10_1016_j_cub_2009_02_033
crossref_primary_10_1038_srep20986
crossref_primary_10_1038_nature11057
crossref_primary_10_1016_j_jneumeth_2014_11_010
crossref_primary_10_1038_s41467_018_04457_5
crossref_primary_10_1038_ncomms11450
crossref_primary_10_1016_j_pneurobio_2014_06_005
crossref_primary_10_21468_SciPostPhysLectNotes_84
crossref_primary_10_24072_pcjournal_156
crossref_primary_10_1007_s12311_009_0139_z
crossref_primary_10_1371_journal_pone_0110475
crossref_primary_10_1016_j_neuron_2017_06_013
crossref_primary_10_1038_s41598_017_03340_5
crossref_primary_10_1017_S1551929517000785
crossref_primary_10_1038_s41467_022_35620_8
crossref_primary_10_1016_j_jneumeth_2019_03_019
crossref_primary_10_1016_j_neuron_2024_09_009
crossref_primary_10_7554_eLife_89986_5
crossref_primary_10_1038_s41592_022_01688_9
crossref_primary_10_3389_fnmol_2014_00097
crossref_primary_10_1002_wmts_48
crossref_primary_10_1016_j_ceca_2016_12_005
crossref_primary_10_1016_j_celrep_2021_109444
crossref_primary_10_4196_kjpp_2014_18_2_103
crossref_primary_10_3389_fninf_2022_851188
crossref_primary_10_1152_jn_00138_2013
crossref_primary_10_1371_journal_pone_0177396
crossref_primary_10_1523_JNEUROSCI_2012_09_2009
crossref_primary_10_1016_j_neuron_2009_03_019
crossref_primary_10_1016_j_jneumeth_2019_108403
crossref_primary_10_1371_journal_pone_0083171
crossref_primary_10_1016_j_celrep_2022_111700
crossref_primary_10_1016_j_neuron_2013_08_018
crossref_primary_10_1117_1_NPh_10_4_044411
crossref_primary_10_1038_s41467_017_01371_0
crossref_primary_10_1038_s41467_018_03262_4
crossref_primary_10_1007_s11263_022_01713_6
crossref_primary_10_1016_j_conb_2020_11_004
crossref_primary_10_2139_ssrn_4491483
crossref_primary_10_3389_fnins_2016_00169
crossref_primary_10_1016_j_celrep_2018_12_069
crossref_primary_10_1016_j_ceca_2021_102390
crossref_primary_10_1038_nn_3739
crossref_primary_10_3390_cells12091253
crossref_primary_10_1523_JNEUROSCI_4990_12_2013
crossref_primary_10_1038_nn_2648
crossref_primary_10_1371_journal_pcbi_1008835
crossref_primary_10_1016_j_neuron_2013_08_002
crossref_primary_10_1016_j_neuron_2015_03_027
crossref_primary_10_1016_j_neuron_2014_01_019
crossref_primary_10_1111_epi_12939
crossref_primary_10_1016_j_neures_2019_12_009
crossref_primary_10_1038_nature12485
crossref_primary_10_1515_revneuro_2020_0119
crossref_primary_10_1016_j_jneumeth_2009_06_031
crossref_primary_10_1016_j_neuron_2018_08_008
crossref_primary_10_31083_JIN26242
crossref_primary_10_1016_j_neuron_2013_08_007
crossref_primary_10_1016_j_conb_2010_06_005
crossref_primary_10_1101_pdb_prot080143
crossref_primary_10_1038_s41467_018_07926_z
crossref_primary_10_1111_j_1749_6632_2009_04110_x
crossref_primary_10_1016_j_jneumeth_2013_02_006
crossref_primary_10_1016_j_neuron_2018_09_045
crossref_primary_10_1073_pnas_1214912110
crossref_primary_10_1038_nn_2518
crossref_primary_10_1038_nn_2879
crossref_primary_10_1016_j_neuron_2012_07_011
crossref_primary_10_1364_OL_40_002553
crossref_primary_10_1007_s11633_021_1307_y
crossref_primary_10_1111_epi_12804
crossref_primary_10_1016_j_cub_2011_11_047
crossref_primary_10_2139_ssrn_3205414
crossref_primary_10_1016_j_neuron_2018_09_050
crossref_primary_10_1371_journal_pone_0146533
crossref_primary_10_1038_nature12236
crossref_primary_10_1113_expphysiol_2010_052597
crossref_primary_10_1016_j_crneur_2022_100040
crossref_primary_10_1016_j_xpro_2024_102911
crossref_primary_10_1007_s00429_015_1070_3
Cites_doi 10.1523/JNEUROSCI.4258-04.2005
10.1007/s00424-007-0234-2
10.1073/pnas.0509378103
10.1371/journal.pbio.0050189
10.1016/j.tins.2007.04.006
10.1016/j.conb.2006.08.011
10.1016/S0896-6273(00)81237-4
10.1016/S0896-6273(00)00057-X
10.1038/385161a0
10.1016/j.neuron.2007.02.018
10.1152/jn.00416.2005
10.1016/S0896-6273(01)00421-4
10.1016/j.neuron.2005.01.003
10.1016/j.neuron.2006.03.043
10.1109/5.18626
10.1016/0165-0270(82)90085-1
10.1007/s00359-006-0117-6
10.1038/nn1883
10.1038/14788
10.1038/nature05744
10.1038/nature04783
10.1523/JNEUROSCI.3238-06.2006
10.1111/j.1399-6576.1992.tb03480.x
10.1073/pnas.1232232100
10.1038/nn1233
10.1016/S0896-6273(00)00084-2
10.1038/nn1525
10.1152/jn.01207.2006
10.1371/journal.pbio.0030355
10.1152/jn.01007.2003
10.1186/1475-925X-2-13
10.1364/OL.30.002272
10.1152/physiolgenomics.00243.2004
10.1073/pnas.0506029102
10.1529/biophysj.104.040477
10.1038/nn1635
10.1038/nature03274
10.1126/science.2321027
10.1038/nmeth706
10.1038/35070564
10.1126/science.273.5283.1868
10.1038/nmeth989
10.1038/nn1703
10.1242/jeb.01371
10.1152/jn.00234.2004
10.1038/nmeth1009
10.1371/journal.pbio.0020329
10.1038/nn1690
10.1016/j.conb.2004.10.017
10.1016/S0896-6273(00)80955-1
10.1007/BF01970140
ContentType Journal Article
Copyright 2007 Elsevier Inc.
Copyright Elsevier Limited Oct 4, 2007
Copyright_xml – notice: 2007 Elsevier Inc.
– notice: Copyright Elsevier Limited Oct 4, 2007
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
8FD
FR3
K9.
NAPCQ
P64
RC3
7X8
5PM
ADTOC
UNPAY
DOI 10.1016/j.neuron.2007.08.003
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Nursing & Allied Health Premium
Genetics Abstracts
Technology Research Database
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Neurosciences Abstracts

MEDLINE
Nursing & Allied Health Premium
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Biology
EISSN 1097-4199
EndPage 57
ExternalDocumentID 10.1016/j.neuron.2007.08.003
PMC2268027
3235332741
17920014
10_1016_j_neuron_2007_08_003
S0896627307006149
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: R01 MH083686
– fundername: NIDA NIH HHS
  grantid: R90 DA023419
– fundername: NIGMS NIH HHS
  grantid: T32 GM007388
– fundername: NIMH NIH HHS
  grantid: K25 MH067876
GroupedDBID ---
--K
-DZ
-~X
.55
.GJ
0R~
123
1RT
1~5
26-
29N
2WC
3O-
3V.
4.4
457
4G.
53G
5RE
5VS
62-
6I.
7-5
7RV
7X7
8C1
8FE
8FH
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKRW
AAKUH
AALRI
AAQFI
AAQXK
AAUCE
AAVLU
AAXJY
AAXUO
ABJNI
ABMAC
ABMWF
ABVKL
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
ADBBV
ADEZE
ADFRT
ADJPV
ADMUD
AEFWE
AENEX
AEXQZ
AFKRA
AFTJW
AGHFR
AGKMS
AHHHB
AHMBA
AHPSJ
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AQUVI
ASPBG
AVWKF
AZFZN
BAWUL
BBNVY
BENPR
BHPHI
BKEYQ
BKNYI
BPHCQ
BVXVI
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FEDTE
FGOYB
FIRID
G-2
HCIFZ
HVGLF
HZ~
IAO
IHE
IHR
INH
IXB
J1W
JIG
K-O
KQ8
L7B
LK8
LX5
M0R
M0T
M2M
M2O
M3Z
M41
M7P
MVM
N9A
NCXOZ
O-L
O9-
OK1
OZT
P2P
P6G
PQQKQ
PROAC
R2-
RCE
RIG
ROL
RPZ
SCP
SDP
SES
SSZ
TR2
WOW
WQ6
X7M
ZA5
ZGI
ZKB
AAFWJ
AAMRU
AAYWO
AAYXX
ABDGV
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEUPX
AFPUW
AGQPQ
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
EFKBS
ITC
AGCQF
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
8FD
FR3
K9.
NAPCQ
P64
RC3
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c520t-6816f5ea418ac25765e7ece1c185c24a0f8920519e5bc85d9862403ca14cf49b3
IEDL.DBID UNPAY
ISSN 0896-6273
1097-4199
IngestDate Sun Oct 26 04:11:27 EDT 2025
Tue Sep 30 17:09:42 EDT 2025
Wed Oct 01 15:00:51 EDT 2025
Thu Oct 02 11:55:42 EDT 2025
Tue Oct 07 06:36:26 EDT 2025
Mon Jul 21 05:44:33 EDT 2025
Thu Oct 16 04:36:33 EDT 2025
Thu Apr 24 22:53:10 EDT 2025
Fri Feb 23 02:28:26 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords SYSNEURO
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c520t-6816f5ea418ac25765e7ece1c185c24a0f8920519e5bc85d9862403ca14cf49b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Authors contributed equally to this work.
OpenAccessLink https://proxy.k.utb.cz/login?url=http://www.cell.com/article/S0896627307006149/pdf
PMID 17920014
PQID 1503760284
PQPubID 2031076
PageCount 15
ParticipantIDs unpaywall_primary_10_1016_j_neuron_2007_08_003
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2268027
proquest_miscellaneous_68360517
proquest_miscellaneous_20784784
proquest_journals_1503760284
pubmed_primary_17920014
crossref_citationtrail_10_1016_j_neuron_2007_08_003
crossref_primary_10_1016_j_neuron_2007_08_003
elsevier_sciencedirect_doi_10_1016_j_neuron_2007_08_003
PublicationCentury 2000
PublicationDate 2007-10-04
PublicationDateYYYYMMDD 2007-10-04
PublicationDate_xml – month: 10
  year: 2007
  text: 2007-10-04
  day: 04
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Cambridge
PublicationTitle Neuron (Cambridge, Mass.)
PublicationTitleAlternate Neuron
PublicationYear 2007
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Holtmaat, Trachtenberg, Wilbrecht, Shepherd, Zhang, Knott, Svoboda (bib24) 2005; 45
Flusberg, Jung, Cocker, Anderson, Schnitzer (bib17) 2005; 30
Berg-Johnsen, Langmoen (bib2) 1992; 36
Rose, Kovalchuk, Eilers, Konnerth (bib40) 1999; 439
Dombeck, Sacconi, Blanchard-Desce, Webb (bib12) 2005; 94
Dunn, Wang, Colicos, Zaccolo, DiPilato, Zhang, Tsien, Feller (bib13) 2006; 26
Nevian, Helmchen (bib34) 2007; 454
Arieli, Sterkin, Grinvald, Aertsen (bib1) 1996; 273
Fee (bib14) 2000; 27
Tallini, Ohkura, Choi, Ji, Imoto, Doran, Lee, Plan, Wilson, Xin (bib48) 2006; 103
Shoham, O'Connor, Segev (bib43) 2006; 192
Major, Tank (bib31) 2004; 14
Levene, Dombeck, Kasischke, Molloy, Webb (bib30) 2004; 91
Denk, Horstmann (bib9) 2004; 2
Stevenson, Dyakonova, Rillich, Schildberger (bib45) 2005; 25
Feng, Mellor, Bernstein, Keller-Peck, Nguyen, Wallace, Nerbonne, Lichtman, Sanes (bib15) 2000; 28
Denk, Svoboda (bib8) 1997; 18
Nagayama, Zeng, Xiong, Fletcher, Masurkar, Davis, Pieribone, Chen (bib33) 2007; 53
Kuhn, Fromherz, Denk (bib29) 2004; 87
Xu, Pan, Yang, Gan (bib52) 2007; 10
Kerr, Greenberg, Helmchen (bib26) 2005; 102
Sato, Gray, Mainen, Svoboda (bib42) 2007; 5
Ohki, Chung, Ch'ng, Kara, Reid (bib36) 2005; 433
Helmchen, Svoboda, Denk, Tank (bib20) 1999; 2
Siegel, Isacoff (bib44) 1997; 19
Heim, Garaschuk, Friedrich, Mank, Milos, Kovalchuk, Konnerth, Griesbeck (bib19) 2007; 4
Svoboda, Denk, Kleinfeld, Tank (bib47) 1997; 385
Denk, Strickler, Webb (bib10) 1990; 248
Holscher, Schnee, Dahmen, Setia, Mallot (bib22) 2005; 208
Khabbaz, A.N., and Tank, D.W. (2004). Recording head direction cells in head fixed mice. Paper presented at: Society for Neuroscience (San Diego, Ca, Program No. 667.8).
Holtmaat, Wilbrecht, Knott, Welker, Svoboda (bib23) 2006; 441
Crochet, Petersen (bib6) 2006; 9
Britt, Rossi (bib4) 1982; 6
Stosiek, Garaschuk, Holthoff, Konnerth (bib46) 2003; 100
Destexhe, Hughes, Rudolph, Crunelli (bib11) 2007; 30
Dahmen (bib7) 1980; 36
Nimmerjahn, Kirchhoff, Kerr, Helmchen (bib35) 2004; 1
Ferezou, Bolea, Petersen (bib16) 2006; 50
Pologruto, Sabatini, Svoboda (bib38) 2003; 2
Paxinos, Franklin, Franklin (bib37) 2001
Zhang, Wang, Brauner, Liewald, Kay, Watzke, Wood, Bamberg, Nagel, Gottschalk, Deisseroth (bib54) 2007; 446
Jung, Mehta, Aksay, Stepnoski, Schnitzer (bib25) 2004; 92
Mason, Oshinsky, Hoy (bib32) 2001; 410
Saggau (bib41) 2006; 16
Gobel, Kampa, Helmchen (bib18) 2007; 4
Helmchen, Fee, Tank, Denk (bib21) 2001; 31
Boyden, Zhang, Bamberg, Nagel, Deisseroth (bib3) 2005; 8
Turner, Kleeberger, Lightfoot (bib49) 2005; 22
Wilson, Dombeck, Diaz-Rios, Harris-Warrick, Brownstone (bib51) 2007; 97
Kleinfeld, Griesbeck (bib28) 2005; 3
Yasuda, Harvey, Zhong, Sobczyk, van Aelst, Svoboda (bib53) 2006; 9
Rabiner (bib39) 1989; 77
Buzsaki (bib5) 2004; 7
Wang, Lou, Xu, Tian, Peng, Han, Kang, Takano, Nedergaard (bib50) 2006; 9
Flusberg (10.1016/j.neuron.2007.08.003_bib17) 2005; 30
Shoham (10.1016/j.neuron.2007.08.003_bib43) 2006; 192
Arieli (10.1016/j.neuron.2007.08.003_bib1) 1996; 273
Feng (10.1016/j.neuron.2007.08.003_bib15) 2000; 28
Dombeck (10.1016/j.neuron.2007.08.003_bib12) 2005; 94
Dunn (10.1016/j.neuron.2007.08.003_bib13) 2006; 26
Holtmaat (10.1016/j.neuron.2007.08.003_bib24) 2005; 45
Zhang (10.1016/j.neuron.2007.08.003_bib54) 2007; 446
Boyden (10.1016/j.neuron.2007.08.003_bib3) 2005; 8
Holscher (10.1016/j.neuron.2007.08.003_bib22) 2005; 208
Denk (10.1016/j.neuron.2007.08.003_bib8) 1997; 18
Kerr (10.1016/j.neuron.2007.08.003_bib26) 2005; 102
Wilson (10.1016/j.neuron.2007.08.003_bib51) 2007; 97
Crochet (10.1016/j.neuron.2007.08.003_bib6) 2006; 9
Xu (10.1016/j.neuron.2007.08.003_bib52) 2007; 10
Ferezou (10.1016/j.neuron.2007.08.003_bib16) 2006; 50
Nagayama (10.1016/j.neuron.2007.08.003_bib33) 2007; 53
Yasuda (10.1016/j.neuron.2007.08.003_bib53) 2006; 9
Buzsaki (10.1016/j.neuron.2007.08.003_bib5) 2004; 7
Gobel (10.1016/j.neuron.2007.08.003_bib18) 2007; 4
Denk (10.1016/j.neuron.2007.08.003_bib10) 1990; 248
Major (10.1016/j.neuron.2007.08.003_bib31) 2004; 14
Denk (10.1016/j.neuron.2007.08.003_bib9) 2004; 2
Berg-Johnsen (10.1016/j.neuron.2007.08.003_bib2) 1992; 36
Helmchen (10.1016/j.neuron.2007.08.003_bib21) 2001; 31
Dahmen (10.1016/j.neuron.2007.08.003_bib7) 1980; 36
Turner (10.1016/j.neuron.2007.08.003_bib49) 2005; 22
Destexhe (10.1016/j.neuron.2007.08.003_bib11) 2007; 30
Tallini (10.1016/j.neuron.2007.08.003_bib48) 2006; 103
Nevian (10.1016/j.neuron.2007.08.003_bib34) 2007; 454
Svoboda (10.1016/j.neuron.2007.08.003_bib47) 1997; 385
Heim (10.1016/j.neuron.2007.08.003_bib19) 2007; 4
Britt (10.1016/j.neuron.2007.08.003_bib4) 1982; 6
Mason (10.1016/j.neuron.2007.08.003_bib32) 2001; 410
Kleinfeld (10.1016/j.neuron.2007.08.003_bib28) 2005; 3
Levene (10.1016/j.neuron.2007.08.003_bib30) 2004; 91
Pologruto (10.1016/j.neuron.2007.08.003_bib38) 2003; 2
Holtmaat (10.1016/j.neuron.2007.08.003_bib23) 2006; 441
10.1016/j.neuron.2007.08.003_bib27
Jung (10.1016/j.neuron.2007.08.003_bib25) 2004; 92
Rabiner (10.1016/j.neuron.2007.08.003_bib39) 1989; 77
Kuhn (10.1016/j.neuron.2007.08.003_bib29) 2004; 87
Nimmerjahn (10.1016/j.neuron.2007.08.003_bib35) 2004; 1
Ohki (10.1016/j.neuron.2007.08.003_bib36) 2005; 433
Sato (10.1016/j.neuron.2007.08.003_bib42) 2007; 5
Rose (10.1016/j.neuron.2007.08.003_bib40) 1999; 439
Siegel (10.1016/j.neuron.2007.08.003_bib44) 1997; 19
Fee (10.1016/j.neuron.2007.08.003_bib14) 2000; 27
Saggau (10.1016/j.neuron.2007.08.003_bib41) 2006; 16
Helmchen (10.1016/j.neuron.2007.08.003_bib20) 1999; 2
Paxinos (10.1016/j.neuron.2007.08.003_bib37) 2001
Wang (10.1016/j.neuron.2007.08.003_bib50) 2006; 9
Stosiek (10.1016/j.neuron.2007.08.003_bib46) 2003; 100
Stevenson (10.1016/j.neuron.2007.08.003_bib45) 2005; 25
References_xml – volume: 31
  start-page: 903
  year: 2001
  end-page: 912
  ident: bib21
  article-title: A miniature head-mounted two-photon microscope. high-resolution brain imaging in freely moving animals
  publication-title: Neuron
– volume: 77
  start-page: 257
  year: 1989
  end-page: 286
  ident: bib39
  article-title: A tutorial on hidden Markov-models and selected applications in speech recognition
  publication-title: Proc. IEEE
– volume: 439
  start-page: 201
  year: 1999
  end-page: 207
  ident: bib40
  article-title: Two-photon Na+ imaging in spines and fine dendrites of central neurons
  publication-title: Pflugers Arch.
– volume: 2
  start-page: e329
  year: 2004
  ident: bib9
  article-title: Serial block-face scanning electron microscopy to reconstruct three-dimensional tissue nanostructure
  publication-title: PLoS Biol.
– volume: 441
  start-page: 979
  year: 2006
  end-page: 983
  ident: bib23
  article-title: Experience-dependent and cell-type-specific spine growth in the neocortex
  publication-title: Nature
– reference: Khabbaz, A.N., and Tank, D.W. (2004). Recording head direction cells in head fixed mice. Paper presented at: Society for Neuroscience (San Diego, Ca, Program No. 667.8).
– volume: 6
  start-page: 219
  year: 1982
  end-page: 229
  ident: bib4
  article-title: Quantitative analysis of methods for reducing physiological brain pulsations
  publication-title: J. Neurosci. Methods
– volume: 53
  start-page: 789
  year: 2007
  end-page: 803
  ident: bib33
  article-title: In vivo simultaneous tracing and ca(2+) imaging of local neuronal circuits
  publication-title: Neuron
– volume: 94
  start-page: 3628
  year: 2005
  end-page: 3636
  ident: bib12
  article-title: Optical recording of fast neuronal membrane potential transients in acute mammalian brain slices by second-harmonic generation microscopy
  publication-title: J. Neurophysiol.
– volume: 22
  start-page: 76
  year: 2005
  end-page: 85
  ident: bib49
  article-title: Influence of genetic background on daily running-wheel activity differs with aging
  publication-title: Physiol. Genomics
– volume: 19
  start-page: 735
  year: 1997
  end-page: 741
  ident: bib44
  article-title: A genetically encoded optical probe of membrane voltage
  publication-title: Neuron
– volume: 100
  start-page: 7319
  year: 2003
  end-page: 7324
  ident: bib46
  article-title: In vivo two-photon calcium imaging of neuronal networks
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 3
  start-page: e355
  year: 2005
  ident: bib28
  article-title: From art to engineering? The rise of in vivo mammalian electrophysiology via genetically targeted labeling and nonlinear imaging
  publication-title: PLoS Biol.
– volume: 92
  start-page: 3121
  year: 2004
  end-page: 3133
  ident: bib25
  article-title: In vivo mammalian brain imaging using one- and two-photon fluorescence microendoscopy
  publication-title: J. Neurophysiol.
– volume: 9
  start-page: 283
  year: 2006
  end-page: 291
  ident: bib53
  article-title: Supersensitive Ras activation in dendrites and spines revealed by two-photon fluorescence lifetime imaging
  publication-title: Nat. Neurosci.
– volume: 36
  start-page: 685
  year: 1980
  end-page: 687
  ident: bib7
  article-title: A simple apparatus to investigate the orientation of walking insects
  publication-title: Experientia
– volume: 30
  start-page: 334
  year: 2007
  end-page: 342
  ident: bib11
  article-title: Are corticothalamic ‘up’ states fragments of wakefulness?
  publication-title: Trends Neurosci.
– volume: 5
  start-page: e189
  year: 2007
  ident: bib42
  article-title: The functional microarchitecture of the mouse barrel cortex
  publication-title: PLoS Biol.
– volume: 25
  start-page: 1431
  year: 2005
  end-page: 1441
  ident: bib45
  article-title: Octopamine and experience-dependent modulation of aggression in crickets
  publication-title: J. Neurosci.
– volume: 10
  start-page: 549
  year: 2007
  end-page: 551
  ident: bib52
  article-title: Choice of cranial window type for in vivo imaging affects dendritic spine turnover in the cortex
  publication-title: Nat. Neurosci.
– volume: 446
  start-page: 633
  year: 2007
  end-page: 639
  ident: bib54
  article-title: Multimodal fast optical interrogation of neural circuitry
  publication-title: Nature
– volume: 9
  start-page: 608
  year: 2006
  end-page: 610
  ident: bib6
  article-title: Correlating whisker behavior with membrane potential in barrel cortex of awake mice
  publication-title: Nat. Neurosci.
– volume: 30
  start-page: 2272
  year: 2005
  end-page: 2274
  ident: bib17
  article-title: In vivo brain imaging using a portable 3.9 gram two-photon fluorescence microendoscope
  publication-title: Opt. Lett.
– volume: 454
  start-page: 675
  year: 2007
  end-page: 688
  ident: bib34
  article-title: Calcium indicator loading of neurons using single-cell electroporation
  publication-title: Pflugers Arch.
– volume: 102
  start-page: 14063
  year: 2005
  end-page: 14068
  ident: bib26
  article-title: Imaging input and output of neocortical networks in vivo
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 103
  start-page: 4753
  year: 2006
  end-page: 4758
  ident: bib48
  article-title: Imaging cellular signals in the heart in vivo: Cardiac expression of the high-signal Ca2+ indicator GCaMP2
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 4
  start-page: 127
  year: 2007
  end-page: 129
  ident: bib19
  article-title: Improved calcium imaging in transgenic mice expressing a troponin C-based biosensor
  publication-title: Nat. Methods
– volume: 385
  start-page: 161
  year: 1997
  end-page: 165
  ident: bib47
  article-title: In vivo dendritic calcium dynamics in neocortical pyramidal neurons
  publication-title: Nature
– volume: 18
  start-page: 351
  year: 1997
  end-page: 357
  ident: bib8
  article-title: Photon upmanship: why multiphoton imaging is more than a gimmick
  publication-title: Neuron
– volume: 45
  start-page: 279
  year: 2005
  end-page: 291
  ident: bib24
  article-title: Transient and persistent dendritic spines in the neocortex in vivo
  publication-title: Neuron
– volume: 273
  start-page: 1868
  year: 1996
  end-page: 1871
  ident: bib1
  article-title: Dynamics of ongoing activity: explanation of the large variability in evoked cortical responses
  publication-title: Science
– volume: 8
  start-page: 1263
  year: 2005
  end-page: 1268
  ident: bib3
  article-title: Millisecond-timescale, genetically targeted optical control of neural activity
  publication-title: Nat. Neurosci.
– volume: 9
  start-page: 816
  year: 2006
  end-page: 823
  ident: bib50
  article-title: Astrocytic Ca2+ signaling evoked by sensory stimulation in vivo
  publication-title: Nat. Neurosci.
– volume: 97
  start-page: 3118
  year: 2007
  end-page: 3125
  ident: bib51
  article-title: Two-photon calcium imaging of network activity in XFP-expressing neurons in the mouse
  publication-title: J. Neurophysiol.
– volume: 7
  start-page: 446
  year: 2004
  end-page: 451
  ident: bib5
  article-title: Large-scale recording of neuronal ensembles
  publication-title: Nat. Neurosci.
– year: 2001
  ident: bib37
  article-title: The mouse brain in stereotaxic coordinates
– volume: 2
  start-page: 13
  year: 2003
  ident: bib38
  article-title: ScanImage: flexible software for operating laser scanning microscopes
  publication-title: Biomed. Eng. Online
– volume: 1
  start-page: 31
  year: 2004
  end-page: 37
  ident: bib35
  article-title: Sulforhodamine 101 as a specific marker of astroglia in the neocortex in vivo
  publication-title: Nat. Methods
– volume: 2
  start-page: 989
  year: 1999
  end-page: 996
  ident: bib20
  article-title: In vivo dendritic calcium dynamics in deep-layer cortical pyramidal neurons
  publication-title: Nat. Neurosci.
– volume: 248
  start-page: 73
  year: 1990
  end-page: 76
  ident: bib10
  article-title: Two-photon laser scanning fluorescence microscopy
  publication-title: Science
– volume: 91
  start-page: 1908
  year: 2004
  end-page: 1912
  ident: bib30
  article-title: In vivo multiphoton microscopy of deep brain tissue
  publication-title: J. Neurophysiol.
– volume: 208
  start-page: 561
  year: 2005
  end-page: 569
  ident: bib22
  article-title: Rats are able to navigate in virtual environments
  publication-title: J. Exp. Biol.
– volume: 4
  start-page: 73
  year: 2007
  end-page: 79
  ident: bib18
  article-title: Imaging cellular network dynamics in three dimensions using fast 3D laser scanning
  publication-title: Nat. Methods
– volume: 192
  start-page: 777
  year: 2006
  end-page: 784
  ident: bib43
  article-title: How silent is the brain: is there a “dark matter” problem in neuroscience?
  publication-title: J. Comp. Physiol. A. Neuroethol. Sens. Neural. Behav. Physiol.
– volume: 50
  start-page: 617
  year: 2006
  end-page: 629
  ident: bib16
  article-title: Visualizing the cortical representation of whisker touch: voltage-sensitive dye imaging in freely moving mice
  publication-title: Neuron
– volume: 36
  start-page: 350
  year: 1992
  end-page: 355
  ident: bib2
  article-title: The effect of isoflurane on excitatory synaptic transmission in the rat hippocampus
  publication-title: Acta Anaesthesiol. Scand.
– volume: 87
  start-page: 631
  year: 2004
  end-page: 639
  ident: bib29
  article-title: High sensitivity of Stark-shift voltage-sensing dyes by one- or two-photon excitation near the red spectral edge
  publication-title: Biophys. J.
– volume: 14
  start-page: 675
  year: 2004
  end-page: 684
  ident: bib31
  article-title: Persistent neural activity: prevalence and mechanisms
  publication-title: Curr. Opin. Neurobiol.
– volume: 26
  start-page: 12807
  year: 2006
  end-page: 12815
  ident: bib13
  article-title: Imaging of cAMP levels and protein kinase A activity reveals that retinal waves drive oscillations in second-messenger cascades
  publication-title: J. Neurosci.
– volume: 28
  start-page: 41
  year: 2000
  end-page: 51
  ident: bib15
  article-title: Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP
  publication-title: Neuron
– volume: 16
  start-page: 543
  year: 2006
  end-page: 550
  ident: bib41
  article-title: New methods and uses for fast optical scanning
  publication-title: Curr. Opin. Neurobiol.
– volume: 433
  start-page: 597
  year: 2005
  end-page: 603
  ident: bib36
  article-title: Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex
  publication-title: Nature
– volume: 410
  start-page: 686
  year: 2001
  end-page: 690
  ident: bib32
  article-title: Hyperacute directional hearing in a microscale auditory system
  publication-title: Nature
– volume: 27
  start-page: 461
  year: 2000
  end-page: 468
  ident: bib14
  article-title: Active stabilization of electrodes for intracellular recording in awake behaving animals
  publication-title: Neuron
– volume: 25
  start-page: 1431
  year: 2005
  ident: 10.1016/j.neuron.2007.08.003_bib45
  article-title: Octopamine and experience-dependent modulation of aggression in crickets
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.4258-04.2005
– volume: 454
  start-page: 675
  year: 2007
  ident: 10.1016/j.neuron.2007.08.003_bib34
  article-title: Calcium indicator loading of neurons using single-cell electroporation
  publication-title: Pflugers Arch.
  doi: 10.1007/s00424-007-0234-2
– volume: 103
  start-page: 4753
  year: 2006
  ident: 10.1016/j.neuron.2007.08.003_bib48
  article-title: Imaging cellular signals in the heart in vivo: Cardiac expression of the high-signal Ca2+ indicator GCaMP2
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0509378103
– volume: 5
  start-page: e189
  year: 2007
  ident: 10.1016/j.neuron.2007.08.003_bib42
  article-title: The functional microarchitecture of the mouse barrel cortex
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.0050189
– year: 2001
  ident: 10.1016/j.neuron.2007.08.003_bib37
– volume: 30
  start-page: 334
  year: 2007
  ident: 10.1016/j.neuron.2007.08.003_bib11
  article-title: Are corticothalamic ‘up’ states fragments of wakefulness?
  publication-title: Trends Neurosci.
  doi: 10.1016/j.tins.2007.04.006
– volume: 16
  start-page: 543
  year: 2006
  ident: 10.1016/j.neuron.2007.08.003_bib41
  article-title: New methods and uses for fast optical scanning
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/j.conb.2006.08.011
– volume: 18
  start-page: 351
  year: 1997
  ident: 10.1016/j.neuron.2007.08.003_bib8
  article-title: Photon upmanship: why multiphoton imaging is more than a gimmick
  publication-title: Neuron
  doi: 10.1016/S0896-6273(00)81237-4
– volume: 27
  start-page: 461
  year: 2000
  ident: 10.1016/j.neuron.2007.08.003_bib14
  article-title: Active stabilization of electrodes for intracellular recording in awake behaving animals
  publication-title: Neuron
  doi: 10.1016/S0896-6273(00)00057-X
– volume: 385
  start-page: 161
  year: 1997
  ident: 10.1016/j.neuron.2007.08.003_bib47
  article-title: In vivo dendritic calcium dynamics in neocortical pyramidal neurons
  publication-title: Nature
  doi: 10.1038/385161a0
– volume: 53
  start-page: 789
  year: 2007
  ident: 10.1016/j.neuron.2007.08.003_bib33
  article-title: In vivo simultaneous tracing and ca(2+) imaging of local neuronal circuits
  publication-title: Neuron
  doi: 10.1016/j.neuron.2007.02.018
– volume: 94
  start-page: 3628
  year: 2005
  ident: 10.1016/j.neuron.2007.08.003_bib12
  article-title: Optical recording of fast neuronal membrane potential transients in acute mammalian brain slices by second-harmonic generation microscopy
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00416.2005
– volume: 31
  start-page: 903
  year: 2001
  ident: 10.1016/j.neuron.2007.08.003_bib21
  article-title: A miniature head-mounted two-photon microscope. high-resolution brain imaging in freely moving animals
  publication-title: Neuron
  doi: 10.1016/S0896-6273(01)00421-4
– volume: 45
  start-page: 279
  year: 2005
  ident: 10.1016/j.neuron.2007.08.003_bib24
  article-title: Transient and persistent dendritic spines in the neocortex in vivo
  publication-title: Neuron
  doi: 10.1016/j.neuron.2005.01.003
– volume: 50
  start-page: 617
  year: 2006
  ident: 10.1016/j.neuron.2007.08.003_bib16
  article-title: Visualizing the cortical representation of whisker touch: voltage-sensitive dye imaging in freely moving mice
  publication-title: Neuron
  doi: 10.1016/j.neuron.2006.03.043
– volume: 77
  start-page: 257
  year: 1989
  ident: 10.1016/j.neuron.2007.08.003_bib39
  article-title: A tutorial on hidden Markov-models and selected applications in speech recognition
  publication-title: Proc. IEEE
  doi: 10.1109/5.18626
– volume: 6
  start-page: 219
  year: 1982
  ident: 10.1016/j.neuron.2007.08.003_bib4
  article-title: Quantitative analysis of methods for reducing physiological brain pulsations
  publication-title: J. Neurosci. Methods
  doi: 10.1016/0165-0270(82)90085-1
– volume: 192
  start-page: 777
  year: 2006
  ident: 10.1016/j.neuron.2007.08.003_bib43
  article-title: How silent is the brain: is there a “dark matter” problem in neuroscience?
  publication-title: J. Comp. Physiol. A. Neuroethol. Sens. Neural. Behav. Physiol.
  doi: 10.1007/s00359-006-0117-6
– volume: 10
  start-page: 549
  year: 2007
  ident: 10.1016/j.neuron.2007.08.003_bib52
  article-title: Choice of cranial window type for in vivo imaging affects dendritic spine turnover in the cortex
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn1883
– volume: 2
  start-page: 989
  year: 1999
  ident: 10.1016/j.neuron.2007.08.003_bib20
  article-title: In vivo dendritic calcium dynamics in deep-layer cortical pyramidal neurons
  publication-title: Nat. Neurosci.
  doi: 10.1038/14788
– volume: 446
  start-page: 633
  year: 2007
  ident: 10.1016/j.neuron.2007.08.003_bib54
  article-title: Multimodal fast optical interrogation of neural circuitry
  publication-title: Nature
  doi: 10.1038/nature05744
– volume: 441
  start-page: 979
  year: 2006
  ident: 10.1016/j.neuron.2007.08.003_bib23
  article-title: Experience-dependent and cell-type-specific spine growth in the neocortex
  publication-title: Nature
  doi: 10.1038/nature04783
– volume: 26
  start-page: 12807
  year: 2006
  ident: 10.1016/j.neuron.2007.08.003_bib13
  article-title: Imaging of cAMP levels and protein kinase A activity reveals that retinal waves drive oscillations in second-messenger cascades
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3238-06.2006
– volume: 36
  start-page: 350
  year: 1992
  ident: 10.1016/j.neuron.2007.08.003_bib2
  article-title: The effect of isoflurane on excitatory synaptic transmission in the rat hippocampus
  publication-title: Acta Anaesthesiol. Scand.
  doi: 10.1111/j.1399-6576.1992.tb03480.x
– volume: 100
  start-page: 7319
  year: 2003
  ident: 10.1016/j.neuron.2007.08.003_bib46
  article-title: In vivo two-photon calcium imaging of neuronal networks
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1232232100
– volume: 7
  start-page: 446
  year: 2004
  ident: 10.1016/j.neuron.2007.08.003_bib5
  article-title: Large-scale recording of neuronal ensembles
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn1233
– ident: 10.1016/j.neuron.2007.08.003_bib27
– volume: 28
  start-page: 41
  year: 2000
  ident: 10.1016/j.neuron.2007.08.003_bib15
  article-title: Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP
  publication-title: Neuron
  doi: 10.1016/S0896-6273(00)00084-2
– volume: 8
  start-page: 1263
  year: 2005
  ident: 10.1016/j.neuron.2007.08.003_bib3
  article-title: Millisecond-timescale, genetically targeted optical control of neural activity
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn1525
– volume: 97
  start-page: 3118
  year: 2007
  ident: 10.1016/j.neuron.2007.08.003_bib51
  article-title: Two-photon calcium imaging of network activity in XFP-expressing neurons in the mouse
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.01207.2006
– volume: 3
  start-page: e355
  year: 2005
  ident: 10.1016/j.neuron.2007.08.003_bib28
  article-title: From art to engineering? The rise of in vivo mammalian electrophysiology via genetically targeted labeling and nonlinear imaging
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.0030355
– volume: 91
  start-page: 1908
  year: 2004
  ident: 10.1016/j.neuron.2007.08.003_bib30
  article-title: In vivo multiphoton microscopy of deep brain tissue
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.01007.2003
– volume: 2
  start-page: 13
  year: 2003
  ident: 10.1016/j.neuron.2007.08.003_bib38
  article-title: ScanImage: flexible software for operating laser scanning microscopes
  publication-title: Biomed. Eng. Online
  doi: 10.1186/1475-925X-2-13
– volume: 30
  start-page: 2272
  year: 2005
  ident: 10.1016/j.neuron.2007.08.003_bib17
  article-title: In vivo brain imaging using a portable 3.9 gram two-photon fluorescence microendoscope
  publication-title: Opt. Lett.
  doi: 10.1364/OL.30.002272
– volume: 22
  start-page: 76
  year: 2005
  ident: 10.1016/j.neuron.2007.08.003_bib49
  article-title: Influence of genetic background on daily running-wheel activity differs with aging
  publication-title: Physiol. Genomics
  doi: 10.1152/physiolgenomics.00243.2004
– volume: 102
  start-page: 14063
  year: 2005
  ident: 10.1016/j.neuron.2007.08.003_bib26
  article-title: Imaging input and output of neocortical networks in vivo
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0506029102
– volume: 87
  start-page: 631
  year: 2004
  ident: 10.1016/j.neuron.2007.08.003_bib29
  article-title: High sensitivity of Stark-shift voltage-sensing dyes by one- or two-photon excitation near the red spectral edge
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.104.040477
– volume: 9
  start-page: 283
  year: 2006
  ident: 10.1016/j.neuron.2007.08.003_bib53
  article-title: Supersensitive Ras activation in dendrites and spines revealed by two-photon fluorescence lifetime imaging
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn1635
– volume: 433
  start-page: 597
  year: 2005
  ident: 10.1016/j.neuron.2007.08.003_bib36
  article-title: Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex
  publication-title: Nature
  doi: 10.1038/nature03274
– volume: 248
  start-page: 73
  year: 1990
  ident: 10.1016/j.neuron.2007.08.003_bib10
  article-title: Two-photon laser scanning fluorescence microscopy
  publication-title: Science
  doi: 10.1126/science.2321027
– volume: 1
  start-page: 31
  year: 2004
  ident: 10.1016/j.neuron.2007.08.003_bib35
  article-title: Sulforhodamine 101 as a specific marker of astroglia in the neocortex in vivo
  publication-title: Nat. Methods
  doi: 10.1038/nmeth706
– volume: 410
  start-page: 686
  year: 2001
  ident: 10.1016/j.neuron.2007.08.003_bib32
  article-title: Hyperacute directional hearing in a microscale auditory system
  publication-title: Nature
  doi: 10.1038/35070564
– volume: 273
  start-page: 1868
  year: 1996
  ident: 10.1016/j.neuron.2007.08.003_bib1
  article-title: Dynamics of ongoing activity: explanation of the large variability in evoked cortical responses
  publication-title: Science
  doi: 10.1126/science.273.5283.1868
– volume: 439
  start-page: 201
  year: 1999
  ident: 10.1016/j.neuron.2007.08.003_bib40
  article-title: Two-photon Na+ imaging in spines and fine dendrites of central neurons
  publication-title: Pflugers Arch.
– volume: 4
  start-page: 73
  year: 2007
  ident: 10.1016/j.neuron.2007.08.003_bib18
  article-title: Imaging cellular network dynamics in three dimensions using fast 3D laser scanning
  publication-title: Nat. Methods
  doi: 10.1038/nmeth989
– volume: 9
  start-page: 816
  year: 2006
  ident: 10.1016/j.neuron.2007.08.003_bib50
  article-title: Astrocytic Ca2+ signaling evoked by sensory stimulation in vivo
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn1703
– volume: 208
  start-page: 561
  year: 2005
  ident: 10.1016/j.neuron.2007.08.003_bib22
  article-title: Rats are able to navigate in virtual environments
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.01371
– volume: 92
  start-page: 3121
  year: 2004
  ident: 10.1016/j.neuron.2007.08.003_bib25
  article-title: In vivo mammalian brain imaging using one- and two-photon fluorescence microendoscopy
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00234.2004
– volume: 4
  start-page: 127
  year: 2007
  ident: 10.1016/j.neuron.2007.08.003_bib19
  article-title: Improved calcium imaging in transgenic mice expressing a troponin C-based biosensor
  publication-title: Nat. Methods
  doi: 10.1038/nmeth1009
– volume: 2
  start-page: e329
  year: 2004
  ident: 10.1016/j.neuron.2007.08.003_bib9
  article-title: Serial block-face scanning electron microscopy to reconstruct three-dimensional tissue nanostructure
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.0020329
– volume: 9
  start-page: 608
  year: 2006
  ident: 10.1016/j.neuron.2007.08.003_bib6
  article-title: Correlating whisker behavior with membrane potential in barrel cortex of awake mice
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn1690
– volume: 14
  start-page: 675
  year: 2004
  ident: 10.1016/j.neuron.2007.08.003_bib31
  article-title: Persistent neural activity: prevalence and mechanisms
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/j.conb.2004.10.017
– volume: 19
  start-page: 735
  year: 1997
  ident: 10.1016/j.neuron.2007.08.003_bib44
  article-title: A genetically encoded optical probe of membrane voltage
  publication-title: Neuron
  doi: 10.1016/S0896-6273(00)80955-1
– volume: 36
  start-page: 685
  year: 1980
  ident: 10.1016/j.neuron.2007.08.003_bib7
  article-title: A simple apparatus to investigate the orientation of walking insects
  publication-title: Experientia
  doi: 10.1007/BF01970140
SSID ssj0014591
Score 2.497551
Snippet We report a technique for two-photon fluorescence imaging with cellular resolution in awake, behaving mice with minimal motion artifact. The apparatus combines...
We report a technique for two-photon fluorescence imaging with cellular resolution in awake behaving mice with minimal motion artifact. The apparatus combines...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 43
SubjectTerms Algorithms
Animals
Astrocytes - physiology
Behavior, Animal
Brain - cytology
Diagnostic Imaging - instrumentation
Diagnostic Imaging - methods
Equipment Design
Exercise Test - methods
Female
Fitness equipment
Luminescent Proteins - metabolism
Male
Markov Chains
Mice
Mice, Transgenic
Models, Neurological
Motor Activity - physiology
Neurons
Neurons - physiology
Organic Chemicals - metabolism
SYSNEURO
Wakefulness - physiology
Walking
SummonAdditionalLinks – databaseName: ScienceDirect Free and Delayed Access Journal
  dbid: IXB
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED8hpGl7QQy2UT42P0x7WtYkjuPksVRDgMYexpD6FjmuoxVSt4JWqP89d3aSrUIbE29Vc7Za-3wfzu_uB_Axj8cmlloFlZEaE5RxGiiOnzD2z9Ghj0upHNrie3p6lZyPxGgDhm0tDMEqG9vvbbqz1s03_WY1-_PJpH8ZZjl1LyelpbSGivh4khF9w9nouHuTkAjPmofCAUm35XMO4-V6RtqmkSGBKvnf3NPj8PMxivLl0s7V6l7V9R8u6mQbtprYkg38z38NG8buwO7AYl49XbFPzKE93TX6DrzwJJSrXfhxNnVMRewbgcKDS9w0w6hnB02lPbkEo-taNjR1TahVRnf-XmPZxLLBvboxn9nFrEQLwy7Q8ryBq5OvP4enQcO0EGgRh4sgzaK0EkYlUaY0pSDCSKNNpNGb6zhRYZXlMQV7RpQ6E-OcykpCrlWU6CrJS_4WNu3Mmj1gJuVhWVUqS1VJuWlZRVxjoGEiHBUa0QPeLnChmzbkxIZRFy3e7Lrw20IMmbIgksyQ9yDoRs19G44n5GW7d8WaOhXoKZ4YedhuddEc57sCo2YCD6Er78GH7jEeRHq7oqyZLe9wDome_l8SKRXMiEj24J3XnN9_ReaEbcOxck2nOgFqAr7-xE5-uWbgGD5nYYxzfum0779WaP_ZK3QAr9wFN6EokkPYXNwuzRFGZovyvTt6D1SVN1s
  priority: 102
  providerName: Elsevier
Title Imaging Large-Scale Neural Activity with Cellular Resolution in Awake, Mobile Mice
URI https://dx.doi.org/10.1016/j.neuron.2007.08.003
https://www.ncbi.nlm.nih.gov/pubmed/17920014
https://www.proquest.com/docview/1503760284
https://www.proquest.com/docview/20784784
https://www.proquest.com/docview/68360517
https://pubmed.ncbi.nlm.nih.gov/PMC2268027
http://www.cell.com/article/S0896627307006149/pdf
UnpaywallVersion publishedVersion
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1097-4199
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014591
  issn: 0896-6273
  databaseCode: KQ8
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVESC
  databaseName: Elsevier Free Content
  customDbUrl:
  eissn: 1097-4199
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0014591
  issn: 0896-6273
  databaseCode: IXB
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1097-4199
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0014591
  issn: 0896-6273
  databaseCode: DIK
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1097-4199
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014591
  issn: 0896-6273
  databaseCode: AKRWK
  dateStart: 19880301
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED9trRC88LHxURjFD4gn0uXLcfwYJqaNsQl1VJSnyHYcMdalFWs1lb-eOycpTBVsvEXKnZXEF_t39s-_A3gtw8KGwiivtMJgglIknorwCrG_xAm90EI5tsVJcjCKP4z5eAPawoXEqqQVazdGN99u99RPJemUU3hSAiN3Z0W5Cd2EI_zuQHd08in76tCiTDyyczucUtAOp2yPyzlOl9OIrBrhQiJRRn-bjtbh5jpr8u6imqnllZpM_piS9h_AsD3YUzNRzgeLuR6Yn-s6j7d_24dwvwGoLKvtHsGGrbZgO6swOb9YsjfMUUbdWvwW3KkrWS63YXh44codsY_ELPdOsectI-EPasrUFSoYrfmyPXwSor4y2jiow56dVSy7Uuf2LTueahym2DEOX49htP_-896B15Rr8AwP_bmXpEFScqviIFWG8hhuhTU2MAgJTBgrv0xlSIjRcm1SXkg6m-JHRgWxKWOpoyfQqaaVfQbMJpGvy1KlidKU4OoyiAyiFRugl295D6K213LTaJlTSY1J3pLWvud1X1OZTZFTpU0_6oG38prVWh432Is2IPIGj9Q4I8fp5gbPnTZ-8mZMuMwRehMDCfFAD16tbuPfTCGgKjtdXGIbAuHCvywSOnXDA9GDp3U4_n4VIYkgh77iWqCuDEhJ_Pqd6uybUxRHDJ76IbY5WIX0rb7Q8_91eAH33OI4MTDiHejMfyzsS0R1c92HbnY0_HLUh83D8bt-81f_AowgS9I
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NITReEGx8FAbzA-KJ0Hw5Th5LxdRBuwe2SX2zHNfRCplbsVZT_3vu7CRQTTDEW9WcrdY-3_3O-d0dwNsinplYaBVURmgMUGZZoBL8hNi_QIc-K4VybIvTbHSRfp7y6Q4M21wYolU2tt_bdGetm2_6zWr2l_N5_yzMC6peTkpLYU1xD-6nHNEJZfFNP3avElLu2-ahdEDibf6cI3m5opG2qWRIrMrkT_7pNv68TaPcW9ul2tyouv7NRx0_hkcNuGQD__ufwI6x-3AwsBhYX23YO-bonu4efR8e-C6UmwP4enLlWhWxMbHCgzPcNcOoaAdNpX13CUb3tWxo6ppoq4wu_b3Ksrllgxv13bxnk0WJJoZN0PQ8hYvjT-fDUdC0Wgg0j8NVkOVRVnGj0ihXmmIQboTRJtLoznWcqrDKi5jQnuGlzvmsoLySMNEqSnWVFmXyDHbtwpoXwEyWhGVVqTxTJQWnZRUlGpGGiXBUaHgPknaBpW7qkFM7jFq2hLNv0m8LtcgUkrpkhkkPgm7U0tfhuENetHsnt_RJoqu4Y-Rhu9WyOc_XEmEzsYfQl_fgqHuMJ5FeryhrFutrnEOgq_-bREYZMzwSPXjuNefXXxEFkdtwrNjSqU6AqoBvP7HzS1cNHPFzHsY454dO-_5phV7-9wodwd7ofDKW45PTL6_gobvtJkpFegi7qx9r8xph2qp8447hTwcxOoE
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED6NTghe-LEBKwzwA-KJdPllO36sJqaB2IQ2Ko2nyHEcbaxzq63VVP567uykMFWw8RYpd1YSX-zv7M_fAbxTaW1TaXTUWGkwQalFpDO8QuyvcEKvK6k92-JQ7I_yzyf8ZA26woXEqqQVaz9Gt99u5zguFOmUU3hSAqN2pnVzD9YFR_jdg_XR4dfhd48WlYjIzu9wKkk7nKo7Luc5XV4j0rXChUSizP42Ha3CzVXW5IO5m-rFtR6P_5iS9h7DUXewJzBRzgfzWTUwP1d1Hu_-tk_gUQtQ2TDYPYU16zZgc-gwOb9YsPfMU0b9WvwG3A-VLBebcPTpwpc7Yl-IWR4dY89bRsIf1JQJFSoYrfmyXXwSor4y2jgIYc_OHBte63P7gR1MKhym2AEOX89gtPfx2-5-1JZriAxP41kkikQ03Oo8KbShPIZbaY1NDEICk-Y6bgqVEmK0vDIFrxWdTYkzo5PcNLmqsufQcxNnt4BZkcVV0-hC6IoS3KpJMoNoxSboFVveh6zrtdK0WuZUUmNcdqS1H2XoayqzKUuqtBlnfYiWXtOg5XGLvewComzxSMAZJU43t3hud_FTtmPCVYnQmxhIiAf68HZ5G_9mCgHt7GR-hW1IhAv_shB06oYnsg8vQjj-fhWpiCCHvvJGoC4NSEn85h13duoVxRGDF3GKbQ6WIX2nL_Tyfx1ewUO_OE4MjHwberPLuX2NqG5WvWn_4198JUkr
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Imaging+Large-Scale+Neural+Activity+with+Cellular+Resolution+in+Awake%2C+Mobile+Mice&rft.jtitle=Neuron+%28Cambridge%2C+Mass.%29&rft.au=Dombeck%2C+Daniel+A&rft.au=Khabbaz%2C+Anton+N&rft.au=Collman%2C+rest&rft.au=Adelman%2C+Thomas+L&rft.date=2007-10-04&rft.issn=0896-6273&rft.volume=56&rft.issue=1&rft.spage=43&rft.epage=57&rft_id=info:doi/10.1016%2Fj.neuron.2007.08.003&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0896-6273&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0896-6273&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0896-6273&client=summon