Penalized regression for interval-censored times of disease progression: Selection of HLA markers in psoriatic arthritis
Times of disease progression are interval-censored when progression status is only known at a series of assessment times. This situation arises routinely in clinical trials and cohort studies when events of interest are only detectable upon imaging, based on blood tests, or upon careful clinical exa...
Saved in:
| Published in | Biometrics Vol. 71; no. 3; pp. 782 - 791 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Blackwell Publishing Ltd
01.09.2015
International Biometric Society |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0006-341X 1541-0420 1541-0420 |
| DOI | 10.1111/biom.12302 |
Cover
| Abstract | Times of disease progression are interval-censored when progression status is only known at a series of assessment times. This situation arises routinely in clinical trials and cohort studies when events of interest are only detectable upon imaging, based on blood tests, or upon careful clinical examination. We consider the problem of selecting important prognostic biomarkers from a large set of candidates when disease progression status is only known at irregularly spaced and individual-specific assessment times. Penalized regression techniques (e.g., LASSO, adaptive LASSO, and SCAD) are adapted to handle interval-censored time of disease progression. An expectation–maximization algorithm is described which is empirically shown to perform well. Application to the motivating study of the development of arthritis mutilans in patients with psoriatic arthritis is given and several important human leukocyte antigen (HLA) variables are identified for further investigation. |
|---|---|
| AbstractList | Times of disease progression are interval-censored when progression status is only known at a series of assessment times. This situation arises routinely in clinical trials and cohort studies when events of interest are only detectable upon imaging, based on blood tests, or upon careful clinical examination. We consider the problem of selecting important prognostic biomarkers from a large set of candidates when disease progression status is only known at irregularly spaced and individual-specific assessment times. Penalized regression techniques (e.g., LASSO, adaptive LASSO, and SCAD) are adapted to handle interval-censored time of disease progression. An expectation-maximization algorithm is described which is empirically shown to perform well. Application to the motivating study of the development of arthritis mutilans in patients with psoriatic arthritis is given and several important human leukocyte antigen (HLA) variables are identified for further investigation.Times of disease progression are interval-censored when progression status is only known at a series of assessment times. This situation arises routinely in clinical trials and cohort studies when events of interest are only detectable upon imaging, based on blood tests, or upon careful clinical examination. We consider the problem of selecting important prognostic biomarkers from a large set of candidates when disease progression status is only known at irregularly spaced and individual-specific assessment times. Penalized regression techniques (e.g., LASSO, adaptive LASSO, and SCAD) are adapted to handle interval-censored time of disease progression. An expectation-maximization algorithm is described which is empirically shown to perform well. Application to the motivating study of the development of arthritis mutilans in patients with psoriatic arthritis is given and several important human leukocyte antigen (HLA) variables are identified for further investigation. Summary Times of disease progression are interval‐censored when progression status is only known at a series of assessment times. This situation arises routinely in clinical trials and cohort studies when events of interest are only detectable upon imaging, based on blood tests, or upon careful clinical examination. We consider the problem of selecting important prognostic biomarkers from a large set of candidates when disease progression status is only known at irregularly spaced and individual‐specific assessment times. Penalized regression techniques (e.g., LASSO, adaptive LASSO, and SCAD) are adapted to handle interval‐censored time of disease progression. An expectation–maximization algorithm is described which is empirically shown to perform well. Application to the motivating study of the development of arthritis mutilans in patients with psoriatic arthritis is given and several important human leukocyte antigen (HLA) variables are identified for further investigation. Times of disease progression are interval-censored when progression status is only known at a series of assessment times. This situation arises routinely in clinical trials and cohort studies when events of interest are only detectable upon imaging, based on blood tests, or upon careful clinical examination. We consider the problem of selecting important prognostic biomarkers from a large set of candidates when disease progression status is only known at irregularly spaced and individual-specific assessment times. Penalized regression techniques (e.g., LASSO, adaptive LASSO, and SCAD) are adapted to handle interval-censored time of disease progression. An expectation–maximization algorithm is described which is empirically shown to perform well. Application to the motivating study of the development of arthritis mutilans in patients with psoriatic arthritis is given and several important human leukocyte antigen (HLA) variables are identified for further investigation. Summary Times of disease progression are interval-censored when progression status is only known at a series of assessment times. This situation arises routinely in clinical trials and cohort studies when events of interest are only detectable upon imaging, based on blood tests, or upon careful clinical examination. We consider the problem of selecting important prognostic biomarkers from a large set of candidates when disease progression status is only known at irregularly spaced and individual-specific assessment times. Penalized regression techniques (e.g., LASSO, adaptive LASSO, and SCAD) are adapted to handle interval-censored time of disease progression. An expectation-maximization algorithm is described which is empirically shown to perform well. Application to the motivating study of the development of arthritis mutilans in patients with psoriatic arthritis is given and several important human leukocyte antigen (HLA) variables are identified for further investigation. |
| Author | Cook, Richard J. Wu, Ying |
| Author_xml | – sequence: 1 givenname: Ying surname: Wu fullname: Wu, Ying organization: Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1 – sequence: 2 givenname: Richard J. surname: Cook fullname: Cook, Richard J. email: rjcook@uwaterloo.ca organization: Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1 |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25773729$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkc1v1DAUxC1URLeFC3dQJC4IKcVfceLeyoruVtpSEKBysxznBbwk8WJ7oeWvx2m6IFUI4Ytl-Tej92YO0N7gBkDoMcFHJJ2XtXX9EaEM03toRgpOcswp3kMzjLHIGSef9tFBCOv0lAWmD9A-LcqSlVTO0NVbGHRnf0KTefjsIQTrhqx1PrNDBP9dd7mBITifgGh7CJlrs8YG0AGyjXc7yXH2HjowcVQnYrk6yXrtv4IPySjbJAOrozWZ9vGLt9GGh-h-q7sAj27vQ_Tx9PWH-TJfXSzO5ier3BQU07yWgjLdyKaiDdSca8KZEbiusKh1AaIQshSl1KymvAJuNLSFroxmUtZlLQw7RM8n3zTsty2EqHobDHSdHsBtgyIlF6xggsv_QAmTXFYUJ_TZHXTttj4leUNRiVlFWaKe3lLbuodGbbxNoVyrXfwJwBNgvAvBQ6uMjXoMMXptO0WwGhtWY8PqpuEkeXFHsnP9K0wm-Ift4PofpHp1dnG-0zyZNOsQnf8zMy9YVZXjUvn0b0OEq9__qWwl0laFunyzUNW706VcnF-qOfsFZCHPlA |
| CODEN | BIOMA5 |
| CitedBy_id | crossref_primary_10_1002_bimj_202100310 crossref_primary_10_1177_09622802211009259 crossref_primary_10_1007_s00362_023_01486_1 crossref_primary_10_1002_bimj_201900180 crossref_primary_10_1016_j_csda_2020_107115 crossref_primary_10_1111_biom_13387 crossref_primary_10_1002_sim_7269 crossref_primary_10_1080_10618600_2024_2330523 crossref_primary_10_1016_j_wneu_2022_02_030 crossref_primary_10_1002_sim_8594 crossref_primary_10_1007_s12561_023_09391_9 crossref_primary_10_1177_0962280219884720 crossref_primary_10_1093_biostatistics_kxaa011 crossref_primary_10_1088_1757_899X_209_1_012075 crossref_primary_10_1016_j_csda_2024_107991 crossref_primary_10_1177_0962280219856238 crossref_primary_10_1111_biom_13548 crossref_primary_10_1080_01621459_2018_1537922 crossref_primary_10_1002_sim_70023 crossref_primary_10_1007_s10985_017_9392_5 crossref_primary_10_1111_insr_12480 crossref_primary_10_1093_infdis_jiae585 crossref_primary_10_1002_bimj_201900154 crossref_primary_10_1080_02664763_2022_2161488 crossref_primary_10_1016_j_csda_2022_107484 crossref_primary_10_1371_journal_pone_0249359 crossref_primary_10_1007_s42952_023_00204_9 crossref_primary_10_1002_sim_8165 |
| Cites_doi | 10.1198/016214501753382273 10.1093/jnci/dji193 10.1056/NEJM199612123352401 10.1214/13-AOS1175 10.1214/09-AOS729 10.1002/(SICI)1097-0258(19991130)18:22<3089::AID-SIM191>3.0.CO;2-0 10.1056/NEJM199003223221203 10.1111/j.2517-6161.1977.tb01600.x 10.1093/rheumatology/keq105 10.1111/j.2517-6161.1976.tb01597.x 10.1080/00401706.1979.10489751 10.1111/1541-0420.00067 10.1093/jnci/djt282 10.1186/1741-7015-10-51 10.1080/00401706.1970.10488634 10.2307/2532345 10.1198/016214506000000735 10.1214/aos/1176346060 10.1093/biomet/asm037 10.1111/j.2517-6161.1996.tb02080.x 10.1093/rheumatology/keh514 10.1093/jnci/dji237 10.1214/11-AOS911 10.1111/j.1467-9868.2005.00503.x 10.1093/rheumatology/37.7.760 10.1111/j.2517-6161.1972.tb00899.x 10.1080/01621459.1993.10476299 10.1214/009053607000000802 10.1002/(SICI)1097-0258(19980130)17:2<219::AID-SIM735>3.0.CO;2-O 10.1214/aos/1032181158 10.18637/jss.v033.i01 10.1201/9780429246593 10.1214/aos/1176345693 10.1177/0962280209105024 10.2307/3315717 10.2307/2532149 10.1201/b14978 10.1002/sim.993 10.1111/j.1467-9868.2005.00532.x |
| ContentType | Journal Article |
| Copyright | Copyright © 2015 International Biometric Society 2015, The International Biometric Society 2015, The International Biometric Society. |
| Copyright_xml | – notice: Copyright © 2015 International Biometric Society – notice: 2015, The International Biometric Society – notice: 2015, The International Biometric Society. |
| DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM JQ2 7X8 7S9 L.6 |
| DOI | 10.1111/biom.12302 |
| DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Computer Science Collection MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Computer Science Collection MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | MEDLINE - Academic AGRICOLA MEDLINE ProQuest Computer Science Collection |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Statistics Biology Mathematics |
| EISSN | 1541-0420 |
| EndPage | 791 |
| ExternalDocumentID | 3809512211 25773729 10_1111_biom_12302 BIOM12302 24538873 ark_67375_WNG_8QFH9GMW_C |
| Genre | article Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Canadian Institutes of Health Research grantid: FRN 13887 |
| GroupedDBID | --- -~X .3N .4S .DC .GA .GJ .Y3 05W 0R~ 10A 1OC 23N 2AX 2QV 3-9 31~ 33P 36B 3SF 4.4 44B 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 6J9 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 88E 88I 8AF 8C1 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 8UM 930 A03 A8Z AAESR AAEVG AAHBH AAMMB AANHP AANLZ AAONW AASGY AAUAY AAWIL AAXRX AAYCA AAZKR AAZSN ABAWQ ABBHK ABCQN ABCUV ABDBF ABDFA ABEJV ABEML ABFAN ABGNP ABJCF ABJNI ABLJU ABMNT ABPPZ ABPVW ABUWG ABXSQ ABXVV ABYWD ACAHQ ACBWZ ACCZN ACFBH ACGFO ACGFS ACGOD ACHJO ACIWK ACKIV ACMTB ACNCT ACPOU ACPRK ACRPL ACSCC ACTMH ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIPN ADIZJ ADKYN ADMGS ADNBA ADNMO ADODI ADOZA ADULT ADVOB ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEOTA AEUPB AEUYR AFBPY AFDVO AFEBI AFGKR AFKRA AFVYC AFWVQ AFZJQ AGLNM AGQPQ AGTJU AGXDD AHGBF AHMBA AIAGR AIDQK AIDYY AIHAF AIURR AJAOE AJBYB AJNCP AJXKR ALAGY ALEEW ALMA_UNASSIGNED_HOLDINGS ALRMG ALUQN AMBMR AMYDB APXXL ARAPS ARCSS ASPBG AS~ ATUGU AUFTA AVWKF AZBYB AZFZN AZQEC AZVAB BAFTC BBNVY BCRHZ BDRZF BENPR BFHJK BGLVJ BHBCM BHPHI BMNLL BMXJE BNHUX BPHCQ BROTX BRXPI BSCLL BVXVI BY8 CAG CCPQU COF CS3 D-E D-F DCZOG DPXWK DQDLB DR2 DRFUL DRSTM DSRWC DWQXO DXH EAD EAP EBC EBD EBS ECEWR EDO EJD EMB EMK EMOBN EST ESTFP ESX F00 F01 F04 F5P FD6 FEDTE FXEWX FYUFA G-S G.N GNUQQ GODZA GS5 H.T H.X H13 HCIFZ HF~ HGD HMCUK HQ6 HVGLF HZI HZ~ IHE IPSME IX1 J0M JAAYA JAC JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JST K48 K6V K7- KOP L6V LATKE LC2 LC3 LEEKS LH4 LITHE LK8 LOXES LP6 LP7 LUTES LW6 LYRES M1P M2P M7P M7S MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ NHB NU- O66 O9- OIG OJZSN OWPYF P0- P2P P2W P2X P4D P62 PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PUEGO Q.N Q11 Q2X QB0 R.K RNS ROL ROX RWL RX1 RXW SA0 SUPJJ SV3 TAE TN5 TUS UAP UB1 UKHRP V8K W8V W99 WBKPD WH7 WIH WIK WOHZO WQJ WYISQ X6Y XBAML XG1 XSW ZGI ZXP ZY4 ZZTAW ~02 ~IA ~KM ~WT AGORE ALIPV AAYXX CITATION CGR CUY CVF ECM EIF NPM JQ2 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c5202-b9623ad9d82deb44a143c60b806ba5e65697679a3b248e4caef5a8ca399b7b6c3 |
| IEDL.DBID | DR2 |
| ISSN | 0006-341X 1541-0420 |
| IngestDate | Fri Oct 03 00:04:03 EDT 2025 Wed Oct 01 14:54:23 EDT 2025 Wed Aug 13 11:17:48 EDT 2025 Mon Jul 21 05:55:35 EDT 2025 Wed Oct 01 01:41:31 EDT 2025 Thu Apr 24 22:52:24 EDT 2025 Wed Aug 20 07:26:49 EDT 2025 Thu Jul 03 22:31:29 EDT 2025 Sun Sep 21 06:19:13 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Penalized regression SCAD EM algorithm Interval-censoring LASSO Variable selection |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2015, The International Biometric Society. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5202-b9623ad9d82deb44a143c60b806ba5e65697679a3b248e4caef5a8ca399b7b6c3 |
| Notes | istex:25A8A583FAFC46C916A064C76ECEE8B762B48E02 ArticleID:BIOM12302 ark:/67375/WNG-8QFH9GMW-C ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PMID | 25773729 |
| PQID | 1712903823 |
| PQPubID | 35366 |
| PageCount | 10 |
| ParticipantIDs | proquest_miscellaneous_1746353649 proquest_miscellaneous_1713949820 proquest_journals_1712903823 pubmed_primary_25773729 crossref_citationtrail_10_1111_biom_12302 crossref_primary_10_1111_biom_12302 wiley_primary_10_1111_biom_12302_BIOM12302 jstor_primary_24538873 istex_primary_ark_67375_WNG_8QFH9GMW_C |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | September 2015 |
| PublicationDateYYYYMMDD | 2015-09-01 |
| PublicationDate_xml | – month: 09 year: 2015 text: September 2015 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Washington |
| PublicationTitle | Biometrics |
| PublicationTitleAlternate | Biom |
| PublicationYear | 2015 |
| Publisher | Blackwell Publishing Ltd International Biometric Society |
| Publisher_xml | – name: Blackwell Publishing Ltd – name: International Biometric Society |
| References | Betensky, R. A. and Finkelstein, D. M. (1999). A non-parametric maximum likelihood estimator for bivariate interval censored data. Statistics in Medicine 18, 3089-3100. Cai, T. and Betensky, R. A. (2003). Hazard regression for interval-censored data with penalized splines. Biometrics 59, 570-579. R Core Team (2013). R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. Zhang, C. H. (2010). Nearly unbiased variable selection under minimax concave penalty. Annals of Statistics 38, 894-942. Wu, C. J. (1983). On the convergence properties of the EM algorithm. Annals of Statistics 11, 95-103. Yuan, M. and Lin, Y. (2005). Model selection and estimation in regression with grouped variables. Journal of the Royal Statistical Society, Series B (Statistical Methodology) 68, 49-67. Chandran, V., Cook, R. J., Edwin, J., Shen, H., Pellett, F. J., Shanmugarajah, S., Rosen, C. F., and Gladman, D. D. (2010). Soluble biomarkers differentiate patients with psoriatic arthritis from those with psoriasis without arthritis. Rheumatology 49, 1399-1405. Zou, H. and Li, R. (2008). One-step sparse estimates in nonconcave penalized likelihood models. Annals of Statistics 36, 1509-1533. Friedman, J., Hastie, T., and Tibshirani, R. (2010). Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33, 1-22. Kyle, S., Chandler, D., Griffiths, C. E. M., Helliwell, P., Lewis, J., McInnes, I., Oliver, S., Symmons, D., and McHugh, N. (2005). Guideline for anti-TNF'α therapy in psoriatic arthritis. Rheumatology 44, 390-397. Lindsey, J. C. and Ryan, L. M. (1998). Tutorial in biostatistics: Methods for interval-censored data. Statistics in Medicine 17, 219-238. Turnbull, B. W. (1976). The empirical distribution function with arbitrarily grouped, censored and truncated data. Journal of the Royal Statistical Society, Series B (Methodological) 38, 290-295. Riggs, B. L., Hodgson, S. F., O'Fallon, W. M., Chao, E. Y., Wahner, H. W., Muhs, J. M., Cedel, S. L., and Melon, L. J. (1990). Effect of fluoride treatment on the fracture rate in postmenopausal women with osteoporosis. New England Journal of Medicine 322, 802-809. Chandran, V., Cook, R. J., Thavaneswaran, A., Lee, K.-A., Pellett, F., and Gladman, D. (2012). Parametric survival analysis as well as multi-state analysis confirms the association between human leukocyte antigen alleles and the development of arthritis mutilans in patients with psoriatic arthritis. Journal of Rheumatology 39, 1723-1723. Breiman, L. (1996). Heuristics of instability and stabilization in model selection. Annals of Statistics 24, 2350-2383. McShane, L. M., Altman, D. G., and Sauerbrei, W. (2005). Identification of clinically useful cancer prognostic factors: What are we missing? Journal of the National Cancer Institute 97, 1023-1025. Betensky, R. A., Lindsey, J. C., Ryan, L. M., and Wand, M. P. (2002). A local likelihood proportional hazards model for interval censored data. Statistics in Medicine 21, 263-275. Efron, B. and Tibshirani, R. J. (1994). An Introduction to the Bootstrap, Vol. 57. New York, Chapman & Hall: CRC Press. Shao, J. (1993). Linear model selection by cross-validation. Journal of the American Statistical Association 88, 486-494. Altman, D. G., McShane, L. M., Sauerbrei, W., and Taube, S. E. (2012). Reporting recommendations for tumor marker prognostic studies (REMARK): Explanation and elaboration. BMC Medicine 10, 51. Lockhart, R., Taylor, J., Tibshirani, R. J., Tibshirani, R., et al. (2014). A significance test for the LASSO. Annals of Statistics 42, 413-468. Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American Statistical Association 96, 1348-1360. Klein, J. P. (1992). Semiparametric estimation of random effects using the cox model based on the EM algorithm. Biometrics 48, 795-806. Polley, M.-Y. C., Freidlin, B., Korn, E. L., Conley, B. A., Abrams, J. S., and McShane, L. M. (2013). Statistical and practical considerations for clinical evaluation of predictive biomarkers. Journal of the National Cancer Institute 105, 1677-1683. Sun, J. (2006). The Statistical Analysis of Interval-Censored Failure Time Data. New York: Springer. Li, J. and Ma, S. (2013). Survival Analysis in Medicine and Genetics. Chapman & Hall/CRC Biostatistics Series: CRC Press. Lawless, J. and Zhan, M. (1998). Analysis of interval-grouped recurrent-event data using piecewise constant rate functions. Canadian Journal of Statistics 26, 549-565. Hortobagyi, G. N., Theriault, R. L., Porter, L., Blayney, D., Lipton, A., Sinoff, C., Wheeler, H., Simeone, J. F., Seaman, J., and Knight, R. D. (1996). Efficacy of pamidronate in reducing skeletal complications in patients with breast cancer and lytic bone metastases. New England Journal of Medicine 335, 1785-1792. Bradic, J., Fan, J., and Jiang, J. (2011). Regularization for Coxs proportional hazards model with NP-dimensionality. Annals of Statistics 39, 3092-3120. McShane, L. M., Altman, D. G., Sauerbrei, W., Taube, S. E., Gion, M., Clark, G. M., et al. (2005). Reporting recommendations for tumor marker prognostic studies (REMARK). Journal of the National Cancer Institute 97, 1180-1184. Zou, H. and Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society, Series B (Statistical Methodology) 67, 301-320. Friedman, M. (1982). Piecewise exponential models for survival data with covariates. Annals of Statistics 10, 101-113. Fan, J. and Lv, J. (2010). A selective overview of variable selection in high dimensional feature space. Statistica Sinica 20, 101-148. Rahman, P., Gladman, D. D., Cook, R. J., Zhou, Y., Young, G., and Salonen, D. (1998). Radiological assessment in psoriatic arthritis. Rheumatology 37, 760-765. Hoerl, A. E. and Kennard, R. W. (1970). Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12, 55-67. Tibshirani, R. (1996). Regression shrinkage and selection via the LASSO. Journal of the Royal Statistical Society, Series B (Methodological) 58, 267-288. Zhang, H. H. and Lu, W. (2007). Adaptive Lasso for Cox's proportional hazards model. Biometrika 94, 691-703. Grüger, J., Kay, R., and Schumacher, M. (1991). The validity of inferences based on incomplete observations in disease state models. Biometrics 47, 595-605. Cox, D. R. (1972). Regression models and life-tables (with discussion). Journal of the Royal Statistical Society, Series B (Methodological) 34, 187-220. Golub, G. H., Heath, M., and Wahba, G. (1979). Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics 21, 215-223. Fan, J., Feng, Y., Samworth, R., and Wu, Y. (2010). SIS: Sure Independence Screening. R package version 0.6. Witten, D. M. and Tibshirani, R. (2009). Survival analysis with high-dimensional covariates. Statistical Methods in Medical Research 19, 29-51. Zou, H. (2006). The adaptive LASSO and its oracle properties. Journal of the American Statistical Association 101, 1418-1429. Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B (Methodological) 39, 1-38. 2010; 33 1998; 26 2010; 38 2010 2013; 105 1993; 88 1982; 10 1970; 12 2008; 36 2003; 59 2006 1994 2012; 39 2007; 94 2011; 39 1996; 58 1990; 322 2012; 10 2005; 44 2005; 67 1983; 11 2005; 68 2014; 42 1998; 37 2010; 20 1998; 17 2010; 49 1991; 47 1977; 39 1999; 18 2002; 21 2005; 97 1992; 48 2013 1996; 335 1996; 24 2009; 19 1972; 34 1976; 38 1979; 21 2006; 101 2001; 96 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_26_1 e_1_2_8_27_1 (e_1_2_8_31_1) 2013 e_1_2_8_3_1 Fan J. (e_1_2_8_15_1) 2010; 20 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 Chandran V. (e_1_2_8_9_1) 2012; 39 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_41_1 e_1_2_8_40_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 Fan J. (e_1_2_8_13_1) 2010 Sun J. (e_1_2_8_35_1) 2006 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
| References_xml | – reference: Fan, J. and Lv, J. (2010). A selective overview of variable selection in high dimensional feature space. Statistica Sinica 20, 101-148. – reference: Hortobagyi, G. N., Theriault, R. L., Porter, L., Blayney, D., Lipton, A., Sinoff, C., Wheeler, H., Simeone, J. F., Seaman, J., and Knight, R. D. (1996). Efficacy of pamidronate in reducing skeletal complications in patients with breast cancer and lytic bone metastases. New England Journal of Medicine 335, 1785-1792. – reference: Friedman, J., Hastie, T., and Tibshirani, R. (2010). Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33, 1-22. – reference: Zou, H. and Li, R. (2008). One-step sparse estimates in nonconcave penalized likelihood models. Annals of Statistics 36, 1509-1533. – reference: Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American Statistical Association 96, 1348-1360. – reference: Golub, G. H., Heath, M., and Wahba, G. (1979). Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics 21, 215-223. – reference: Wu, C. J. (1983). On the convergence properties of the EM algorithm. Annals of Statistics 11, 95-103. – reference: Klein, J. P. (1992). Semiparametric estimation of random effects using the cox model based on the EM algorithm. Biometrics 48, 795-806. – reference: Li, J. and Ma, S. (2013). Survival Analysis in Medicine and Genetics. Chapman & Hall/CRC Biostatistics Series: CRC Press. – reference: Grüger, J., Kay, R., and Schumacher, M. (1991). The validity of inferences based on incomplete observations in disease state models. Biometrics 47, 595-605. – reference: Polley, M.-Y. C., Freidlin, B., Korn, E. L., Conley, B. A., Abrams, J. S., and McShane, L. M. (2013). Statistical and practical considerations for clinical evaluation of predictive biomarkers. Journal of the National Cancer Institute 105, 1677-1683. – reference: Riggs, B. L., Hodgson, S. F., O'Fallon, W. M., Chao, E. Y., Wahner, H. W., Muhs, J. M., Cedel, S. L., and Melon, L. J. (1990). Effect of fluoride treatment on the fracture rate in postmenopausal women with osteoporosis. New England Journal of Medicine 322, 802-809. – reference: Cai, T. and Betensky, R. A. (2003). Hazard regression for interval-censored data with penalized splines. Biometrics 59, 570-579. – reference: Fan, J., Feng, Y., Samworth, R., and Wu, Y. (2010). SIS: Sure Independence Screening. R package version 0.6. – reference: Betensky, R. A. and Finkelstein, D. M. (1999). A non-parametric maximum likelihood estimator for bivariate interval censored data. Statistics in Medicine 18, 3089-3100. – reference: Kyle, S., Chandler, D., Griffiths, C. E. M., Helliwell, P., Lewis, J., McInnes, I., Oliver, S., Symmons, D., and McHugh, N. (2005). Guideline for anti-TNF'α therapy in psoriatic arthritis. Rheumatology 44, 390-397. – reference: Friedman, M. (1982). Piecewise exponential models for survival data with covariates. Annals of Statistics 10, 101-113. – reference: Turnbull, B. W. (1976). The empirical distribution function with arbitrarily grouped, censored and truncated data. Journal of the Royal Statistical Society, Series B (Methodological) 38, 290-295. – reference: Zhang, H. H. and Lu, W. (2007). Adaptive Lasso for Cox's proportional hazards model. Biometrika 94, 691-703. – reference: Altman, D. G., McShane, L. M., Sauerbrei, W., and Taube, S. E. (2012). Reporting recommendations for tumor marker prognostic studies (REMARK): Explanation and elaboration. BMC Medicine 10, 51. – reference: Betensky, R. A., Lindsey, J. C., Ryan, L. M., and Wand, M. P. (2002). A local likelihood proportional hazards model for interval censored data. Statistics in Medicine 21, 263-275. – reference: Efron, B. and Tibshirani, R. J. (1994). An Introduction to the Bootstrap, Vol. 57. New York, Chapman & Hall: CRC Press. – reference: Lockhart, R., Taylor, J., Tibshirani, R. J., Tibshirani, R., et al. (2014). A significance test for the LASSO. Annals of Statistics 42, 413-468. – reference: Zhang, C. H. (2010). Nearly unbiased variable selection under minimax concave penalty. Annals of Statistics 38, 894-942. – reference: Tibshirani, R. (1996). Regression shrinkage and selection via the LASSO. Journal of the Royal Statistical Society, Series B (Methodological) 58, 267-288. – reference: Breiman, L. (1996). Heuristics of instability and stabilization in model selection. Annals of Statistics 24, 2350-2383. – reference: Lindsey, J. C. and Ryan, L. M. (1998). Tutorial in biostatistics: Methods for interval-censored data. Statistics in Medicine 17, 219-238. – reference: R Core Team (2013). R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. – reference: Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B (Methodological) 39, 1-38. – reference: McShane, L. M., Altman, D. G., and Sauerbrei, W. (2005). Identification of clinically useful cancer prognostic factors: What are we missing? Journal of the National Cancer Institute 97, 1023-1025. – reference: Sun, J. (2006). The Statistical Analysis of Interval-Censored Failure Time Data. New York: Springer. – reference: Rahman, P., Gladman, D. D., Cook, R. J., Zhou, Y., Young, G., and Salonen, D. (1998). Radiological assessment in psoriatic arthritis. Rheumatology 37, 760-765. – reference: Zou, H. (2006). The adaptive LASSO and its oracle properties. Journal of the American Statistical Association 101, 1418-1429. – reference: Zou, H. and Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society, Series B (Statistical Methodology) 67, 301-320. – reference: Bradic, J., Fan, J., and Jiang, J. (2011). Regularization for Coxs proportional hazards model with NP-dimensionality. Annals of Statistics 39, 3092-3120. – reference: Cox, D. R. (1972). Regression models and life-tables (with discussion). Journal of the Royal Statistical Society, Series B (Methodological) 34, 187-220. – reference: Lawless, J. and Zhan, M. (1998). Analysis of interval-grouped recurrent-event data using piecewise constant rate functions. Canadian Journal of Statistics 26, 549-565. – reference: Witten, D. M. and Tibshirani, R. (2009). Survival analysis with high-dimensional covariates. Statistical Methods in Medical Research 19, 29-51. – reference: Chandran, V., Cook, R. J., Edwin, J., Shen, H., Pellett, F. J., Shanmugarajah, S., Rosen, C. F., and Gladman, D. D. (2010). Soluble biomarkers differentiate patients with psoriatic arthritis from those with psoriasis without arthritis. Rheumatology 49, 1399-1405. – reference: Chandran, V., Cook, R. J., Thavaneswaran, A., Lee, K.-A., Pellett, F., and Gladman, D. (2012). Parametric survival analysis as well as multi-state analysis confirms the association between human leukocyte antigen alleles and the development of arthritis mutilans in patients with psoriatic arthritis. Journal of Rheumatology 39, 1723-1723. – reference: Shao, J. (1993). Linear model selection by cross-validation. Journal of the American Statistical Association 88, 486-494. – reference: Hoerl, A. E. and Kennard, R. W. (1970). Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12, 55-67. – reference: McShane, L. M., Altman, D. G., Sauerbrei, W., Taube, S. E., Gion, M., Clark, G. M., et al. (2005). Reporting recommendations for tumor marker prognostic studies (REMARK). Journal of the National Cancer Institute 97, 1180-1184. – reference: Yuan, M. and Lin, Y. (2005). Model selection and estimation in regression with grouped variables. Journal of the Royal Statistical Society, Series B (Statistical Methodology) 68, 49-67. – volume: 33 start-page: 1 year: 2010 end-page: 22 article-title: Regularization paths for generalized linear models via coordinate descent publication-title: Journal of Statistical Software – volume: 58 start-page: 267 year: 1996 end-page: 288 article-title: Regression shrinkage and selection via the LASSO publication-title: Journal of the Royal Statistical Society, Series B (Methodological) – volume: 10 start-page: 51 year: 2012 article-title: Reporting recommendations for tumor marker prognostic studies (REMARK): Explanation and elaboration publication-title: BMC Medicine – year: 2013 publication-title: R: A Language and Environment for Statistical Computing – volume: 39 start-page: 1 year: 1977 end-page: 38 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: Journal of the Royal Statistical Society, Series B (Methodological) – year: 1994 publication-title: An Introduction to the Bootstrap – volume: 39 start-page: 1723 year: 2012 end-page: 1723 article-title: Parametric survival analysis as well as multi‐state analysis confirms the association between human leukocyte antigen alleles and the development of arthritis mutilans in patients with psoriatic arthritis publication-title: Journal of Rheumatology – volume: 42 start-page: 413 year: 2014 end-page: 468 article-title: A significance test for the LASSO publication-title: Annals of Statistics – volume: 47 start-page: 595 year: 1991 end-page: 605 article-title: The validity of inferences based on incomplete observations in disease state models publication-title: Biometrics – year: 2013 publication-title: Survival Analysis in Medicine and Genetics – volume: 105 start-page: 1677 year: 2013 end-page: 1683 article-title: Statistical and practical considerations for clinical evaluation of predictive biomarkers publication-title: Journal of the National Cancer Institute – volume: 24 start-page: 2350 year: 1996 end-page: 2383 article-title: Heuristics of instability and stabilization in model selection publication-title: Annals of Statistics – volume: 59 start-page: 570 year: 2003 end-page: 579 article-title: Hazard regression for interval‐censored data with penalized splines publication-title: Biometrics – year: 2006 publication-title: The Statistical Analysis of Interval‐Censored Failure Time Data – volume: 21 start-page: 215 year: 1979 end-page: 223 article-title: Generalized cross‐validation as a method for choosing a good ridge parameter publication-title: Technometrics – volume: 18 start-page: 3089 year: 1999 end-page: 3100 article-title: A non‐parametric maximum likelihood estimator for bivariate interval censored data publication-title: Statistics in Medicine – volume: 97 start-page: 1180 year: 2005 end-page: 1184 article-title: Reporting recommendations for tumor marker prognostic studies (REMARK) publication-title: Journal of the National Cancer Institute – volume: 67 start-page: 301 year: 2005 end-page: 320 article-title: Regularization and variable selection via the elastic net publication-title: Journal of the Royal Statistical Society, Series B (Statistical Methodology) – year: 2010 publication-title: SIS: Sure Independence Screening – volume: 38 start-page: 290 year: 1976 end-page: 295 article-title: The empirical distribution function with arbitrarily grouped, censored and truncated data publication-title: Journal of the Royal Statistical Society, Series B (Methodological) – volume: 96 start-page: 1348 year: 2001 end-page: 1360 article-title: Variable selection via nonconcave penalized likelihood and its oracle properties publication-title: Journal of the American Statistical Association – volume: 10 start-page: 101 year: 1982 end-page: 113 article-title: Piecewise exponential models for survival data with covariates publication-title: Annals of Statistics – volume: 49 start-page: 1399 year: 2010 end-page: 1405 article-title: Soluble biomarkers differentiate patients with psoriatic arthritis from those with psoriasis without arthritis publication-title: Rheumatology – volume: 44 start-page: 390 year: 2005 end-page: 397 article-title: Guideline for anti‐TNF’ therapy in psoriatic arthritis publication-title: Rheumatology – volume: 12 start-page: 55 year: 1970 end-page: 67 article-title: Ridge regression: Biased estimation for nonorthogonal problems publication-title: Technometrics – volume: 37 start-page: 760 year: 1998 end-page: 765 article-title: Radiological assessment in psoriatic arthritis publication-title: Rheumatology – volume: 38 start-page: 894 year: 2010 end-page: 942 article-title: Nearly unbiased variable selection under minimax concave penalty publication-title: Annals of Statistics – volume: 26 start-page: 549 year: 1998 end-page: 565 article-title: Analysis of interval‐grouped recurrent‐event data using piecewise constant rate functions publication-title: Canadian Journal of Statistics – volume: 39 start-page: 3092 year: 2011 end-page: 3120 article-title: Regularization for Coxs proportional hazards model with NP‐dimensionality publication-title: Annals of Statistics – volume: 94 start-page: 691 year: 2007 end-page: 703 article-title: Adaptive Lasso for Cox's proportional hazards model publication-title: Biometrika – volume: 17 start-page: 219 year: 1998 end-page: 238 article-title: Tutorial in biostatistics: Methods for interval‐censored data publication-title: Statistics in Medicine – volume: 97 start-page: 1023 year: 2005 end-page: 1025 article-title: Identification of clinically useful cancer prognostic factors: What are we missing publication-title: Journal of the National Cancer Institute – volume: 36 start-page: 1509 year: 2008 end-page: 1533 article-title: One‐step sparse estimates in nonconcave penalized likelihood models publication-title: Annals of Statistics – volume: 101 start-page: 1418 year: 2006 end-page: 1429 article-title: The adaptive LASSO and its oracle properties publication-title: Journal of the American Statistical Association – volume: 19 start-page: 29 year: 2009 end-page: 51 article-title: Survival analysis with high‐dimensional covariates publication-title: Statistical Methods in Medical Research – volume: 21 start-page: 263 year: 2002 end-page: 275 article-title: A local likelihood proportional hazards model for interval censored data publication-title: Statistics in Medicine – volume: 20 start-page: 101 year: 2010 end-page: 148 article-title: A selective overview of variable selection in high dimensional feature space publication-title: Statistica Sinica – volume: 335 start-page: 1785 year: 1996 end-page: 1792 article-title: Efficacy of pamidronate in reducing skeletal complications in patients with breast cancer and lytic bone metastases publication-title: New England Journal of Medicine – volume: 48 start-page: 795 year: 1992 end-page: 806 article-title: Semiparametric estimation of random effects using the cox model based on the EM algorithm publication-title: Biometrics – volume: 11 start-page: 95 year: 1983 end-page: 103 article-title: On the convergence properties of the EM algorithm publication-title: Annals of Statistics – volume: 68 start-page: 49 year: 2005 end-page: 67 article-title: Model selection and estimation in regression with grouped variables publication-title: Journal of the Royal Statistical Society, Series B (Statistical Methodology) – volume: 88 start-page: 486 year: 1993 end-page: 494 article-title: Linear model selection by cross‐validation publication-title: Journal of the American Statistical Association – volume: 34 start-page: 187 year: 1972 end-page: 220 article-title: Regression models and life‐tables (with discussion) publication-title: Journal of the Royal Statistical Society, Series B (Methodological) – volume: 322 start-page: 802 year: 1990 end-page: 809 article-title: Effect of fluoride treatment on the fracture rate in postmenopausal women with osteoporosis publication-title: New England Journal of Medicine – year: 2013 – ident: e_1_2_8_14_1 doi: 10.1198/016214501753382273 – ident: e_1_2_8_28_1 doi: 10.1093/jnci/dji193 – year: 2013 ident: e_1_2_8_31_1 publication-title: R: A Language and Environment for Statistical Computing – ident: e_1_2_8_21_1 doi: 10.1056/NEJM199612123352401 – ident: e_1_2_8_27_1 doi: 10.1214/13-AOS1175 – ident: e_1_2_8_42_1 doi: 10.1214/09-AOS729 – ident: e_1_2_8_3_1 doi: 10.1002/(SICI)1097-0258(19991130)18:22<3089::AID-SIM191>3.0.CO;2-0 – ident: e_1_2_8_33_1 doi: 10.1056/NEJM199003223221203 – ident: e_1_2_8_11_1 doi: 10.1111/j.2517-6161.1977.tb01600.x – ident: e_1_2_8_8_1 doi: 10.1093/rheumatology/keq105 – ident: e_1_2_8_38_1 doi: 10.1111/j.2517-6161.1976.tb01597.x – ident: e_1_2_8_18_1 doi: 10.1080/00401706.1979.10489751 – ident: e_1_2_8_7_1 doi: 10.1111/1541-0420.00067 – ident: e_1_2_8_30_1 doi: 10.1093/jnci/djt282 – ident: e_1_2_8_2_1 doi: 10.1186/1741-7015-10-51 – ident: e_1_2_8_20_1 doi: 10.1080/00401706.1970.10488634 – ident: e_1_2_8_22_1 doi: 10.2307/2532345 – ident: e_1_2_8_36_1 – ident: e_1_2_8_44_1 doi: 10.1198/016214506000000735 – year: 2010 ident: e_1_2_8_13_1 publication-title: SIS: Sure Independence Screening – ident: e_1_2_8_40_1 doi: 10.1214/aos/1176346060 – ident: e_1_2_8_43_1 doi: 10.1093/biomet/asm037 – ident: e_1_2_8_37_1 doi: 10.1111/j.2517-6161.1996.tb02080.x – ident: e_1_2_8_23_1 doi: 10.1093/rheumatology/keh514 – ident: e_1_2_8_29_1 doi: 10.1093/jnci/dji237 – ident: e_1_2_8_5_1 doi: 10.1214/11-AOS911 – ident: e_1_2_8_45_1 doi: 10.1111/j.1467-9868.2005.00503.x – ident: e_1_2_8_32_1 doi: 10.1093/rheumatology/37.7.760 – volume: 20 start-page: 101 year: 2010 ident: e_1_2_8_15_1 article-title: A selective overview of variable selection in high dimensional feature space publication-title: Statistica Sinica – ident: e_1_2_8_10_1 doi: 10.1111/j.2517-6161.1972.tb00899.x – ident: e_1_2_8_34_1 doi: 10.1080/01621459.1993.10476299 – year: 2006 ident: e_1_2_8_35_1 publication-title: The Statistical Analysis of Interval‐Censored Failure Time Data – volume: 39 start-page: 1723 year: 2012 ident: e_1_2_8_9_1 article-title: Parametric survival analysis as well as multi‐state analysis confirms the association between human leukocyte antigen alleles and the development of arthritis mutilans in patients with psoriatic arthritis publication-title: Journal of Rheumatology – ident: e_1_2_8_46_1 doi: 10.1214/009053607000000802 – ident: e_1_2_8_26_1 doi: 10.1002/(SICI)1097-0258(19980130)17:2<219::AID-SIM735>3.0.CO;2-O – ident: e_1_2_8_6_1 doi: 10.1214/aos/1032181158 – ident: e_1_2_8_17_1 doi: 10.18637/jss.v033.i01 – ident: e_1_2_8_12_1 doi: 10.1201/9780429246593 – ident: e_1_2_8_16_1 doi: 10.1214/aos/1176345693 – ident: e_1_2_8_39_1 doi: 10.1177/0962280209105024 – ident: e_1_2_8_24_1 doi: 10.2307/3315717 – ident: e_1_2_8_19_1 doi: 10.2307/2532149 – ident: e_1_2_8_25_1 doi: 10.1201/b14978 – ident: e_1_2_8_4_1 doi: 10.1002/sim.993 – ident: e_1_2_8_41_1 doi: 10.1111/j.1467-9868.2005.00532.x |
| SSID | ssj0009502 |
| Score | 2.3052094 |
| Snippet | Times of disease progression are interval-censored when progression status is only known at a series of assessment times. This situation arises routinely in... Summary Times of disease progression are interval‐censored when progression status is only known at a series of assessment times. This situation arises... Summary Times of disease progression are interval-censored when progression status is only known at a series of assessment times. This situation arises... Times of disease progression are interval‐censored when progression status is only known at a series of assessment times. This situation arises routinely in... |
| SourceID | proquest pubmed crossref wiley jstor istex |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 782 |
| SubjectTerms | Algorithms Antigens Arthritis Arthritis, Psoriatic - blood Arthritis, Psoriatic - diagnosis Arthritis, Psoriatic - epidemiology biomarkers Biomarkers - blood BIOMETRIC PRACTICE Biometrics biometry clinical examination clinical trials cohort studies disease course Disease Progression EM algorithm hematologic tests HLA antigens HLA Antigens - blood Humans image analysis Interval-censoring LASSO Leukocytes patients Penalized regression Prevalence Psoriasis Regression Analysis Reproducibility of Results Risk Assessment - methods SCAD Sensitivity and Specificity Severity of Illness Index Time Factors Variable selection |
| Title | Penalized regression for interval-censored times of disease progression: Selection of HLA markers in psoriatic arthritis |
| URI | https://api.istex.fr/ark:/67375/WNG-8QFH9GMW-C/fulltext.pdf https://www.jstor.org/stable/24538873 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fbiom.12302 https://www.ncbi.nlm.nih.gov/pubmed/25773729 https://www.proquest.com/docview/1712903823 https://www.proquest.com/docview/1713949820 https://www.proquest.com/docview/1746353649 |
| Volume | 71 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCO Food Science Source customDbUrl: eissn: 1541-0420 dateEnd: 20241105 omitProxy: false ssIdentifier: ssj0009502 issn: 0006-341X databaseCode: A8Z dateStart: 20030301 isFulltext: true titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr providerName: EBSCOhost – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1541-0420 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0009502 issn: 0006-341X databaseCode: ABDBF dateStart: 20030301 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0006-341X databaseCode: DR2 dateStart: 19990101 customDbUrl: isFulltext: true eissn: 1541-0420 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009502 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtQwEB1VRUjlgctCIVCQEQgJpKyyiXMx4qVUbBfElmvVfaks2_HSipKt9iLBPvEJfCNfwoydpC2qKsFblIyt2JkZn4nHZwAe430b6TQPx1mCAQouCCGRqofojgU6ShVpToeThzvZYJe_GaWjFXjRnIXx_BDtDzeyDOevycCVnp0ycjqe3sXuHJNkL8lcPPUxPsW4G3mqcEru4r1RzU1KaTwnTc-sRpdoYr83iYnnQc6zCNYtQf1rsN-8vM88-dpdzHXXLP_idfzf0V2HqzU2ZZtemW7Aiq06cNlXq_zRgSvDluJ11oE1gqme5fkmLN9bAvRLW7Kp_eJTayuGeJgdupxKdfT75y-DEfNkiiKunj2bjFm9O8Rckphv9Jx9cpV5qD1KDN5usm-UQTSdYVfsGDsgXTIMNf7A8THdgt3-q89bg7Cu6hCaNEb3qwUiLlWKsohLqzlXiNhMFukiyrRKLeJLREi5UImOeWG5UXacqsIoRFI615lJ1mG1mlT2DjBtMBoiRjbBM96LSqGMIUJ6xY0pU6sCeNp8XWlqynOqvHEkm9CHplm6aQ7gUSt77Ik-zpV64pSkFcEZoNS4PJV7O9uy-NAfiO3hntwKYN1pUSsYc1xaijwJYKNRK1m7i5ns5fQ7kLZkA3jYPkZDp90bVdnJwskkggsc3kUyHAFkknERwG2vsicvkOZUkgifPHOKd8Eo5cvX74bu6u6_CN-DNYSTqc_A24DV-XRh7yNkm-sHzjT_AKPaPQo |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD5CmxDjgUthLDDACITEpFRp49x4GxNdBk25bVrfLNtxB2KkUy8S9ImfwG_kl3COnWYbmibBW9QcW7F7bH_H_vwdgGf4uwlUlPijOMQABRcEn0TVfZyOM5woZaA4XU4uBnF-wN8Mo2HNzaG7ME4fotlwo5Fh52sa4LQhfWaU0_30NtZHUpKrPMZAhTDRx-4Zzd3AiYUTvYt3hrU6KRF5TsueW49WqWu_L6mJF4HO8xjWLkK9my7T6tRqFxL35Gt7PlNtvfhL2fG_23cLbtTwlG07f7oNV0zVgqsuYeWPFlwvGpXXaQvWCKk6oec7sHhvCNMvTMkm5sixayuGkJh9sbRKefz75y-NQfN4giY2pT0bj1h9QMQsT8wVesk-2eQ8VB4t8v42-0YkoskUq2InWAG5k2bo9J-tJNNdOOi93t_J_Tqxg6-jLs7AKkPQJcusTLulUZxLBG06DlQaxEpGBiEmgqQkk6Hq8tRwLc0okqmWCKZUomIdrsNKNa7MBjClMSAiUbYMPaATlJnUmjTpJde6jIz04MXy7xW6Vj2n5BvHYhn9UDcL280ePG1sT5zWx4VWz62XNCbYA8SOSyJxONgV6Ydenu0Wh2LHg3XrRo1hl-PqkiahB5tLvxL1jDEVnYR2BOlU1oMnzWsc63SAIysznlubMOMZNu8yG44YMox55sE957OnHxAllJUI32xZz7ukleLV3rvCPt3_F-PHcC3fL_qivzd4-wDWEF1GjpC3CSuzydw8RAQ3U4_sOP0DYAFBKw |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbhMxEB2hVqDywCVQWChgBEICaaNN1nsxb6UlTaEJhVI1b5btdQBRNlEuEuSJT-Ab-RJm7M22RVUleIuyYyt2ZsbH6-MzAE_xexvpJAuHaYwbFFwQQhJVDzEdC0yUKtKcLif3-mn3kL8ZJIOKm0N3Ybw-RP3CjSLD5WsKcDsuhqeinO6nN7E_kpJc5YnIidG3_aF9SnM38mLhRO_irUGlTkpEnpO2Z9ajVZra70tq4nmg8yyGdYtQ57qvtDp12oXEPfnanM900yz-Unb87_HdgGsVPGWb3p9uwiVbNuCyL1j5owFXe7XK67QBa4RUvdDzLVjsW8L0C1uwif3k2bUlQ0jMvjhapTr-_fOXwU3zaIImrqQ9Gw1ZdUDEHE_MN3rJDlxxHmqPFt29TfaNSESTKXbFxtgBuZNh6PSfnSTTbTjsvP641Q2rwg6hSdqYgbVA0KUKUeTtwmrOFYI2k0Y6j1KtEosQE0FSJlSs2zy33Cg7TFRuFIIpnenUxOuwUo5KexeYNrghIlE2wVPeigqhjCFNesWNKRKrAni-_HulqVTPqfjGsVzufmiapZvmAJ7UtmOv9XGu1TPnJbUJzgCx47JEHvV3ZP6-0xU7vSO5FcC6c6PasM1xdcmzOICNpV_JKmNMZSujN4J0KhvA4_oxxjod4KjSjubOJhZc4PAusuGIIeOUiwDueJ89-QFJRlWJ8MkL53kXjFK-2n3Xc5_u_YvxI7iyv92Re7v9t_dhDcFl4vl4G7Aym8ztAwRwM_3QhekfsFdArw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Penalized+regression+for+interval-censored+times+of+disease+progression%3A+Selection+of+HLA+markers+in+psoriatic+arthritis&rft.jtitle=Biometrics&rft.au=Wu%2C+Ying&rft.au=Cook%2C+Richard+J.&rft.date=2015-09-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0006-341X&rft.eissn=1541-0420&rft.volume=71&rft.issue=3&rft.spage=782&rft.epage=791&rft_id=info:doi/10.1111%2Fbiom.12302&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_8QFH9GMW_C |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-341X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-341X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-341X&client=summon |