Penalized regression for interval-censored times of disease progression: Selection of HLA markers in psoriatic arthritis

Times of disease progression are interval-censored when progression status is only known at a series of assessment times. This situation arises routinely in clinical trials and cohort studies when events of interest are only detectable upon imaging, based on blood tests, or upon careful clinical exa...

Full description

Saved in:
Bibliographic Details
Published inBiometrics Vol. 71; no. 3; pp. 782 - 791
Main Authors Wu, Ying, Cook, Richard J.
Format Journal Article
LanguageEnglish
Published United States Blackwell Publishing Ltd 01.09.2015
International Biometric Society
Subjects
Online AccessGet full text
ISSN0006-341X
1541-0420
1541-0420
DOI10.1111/biom.12302

Cover

Abstract Times of disease progression are interval-censored when progression status is only known at a series of assessment times. This situation arises routinely in clinical trials and cohort studies when events of interest are only detectable upon imaging, based on blood tests, or upon careful clinical examination. We consider the problem of selecting important prognostic biomarkers from a large set of candidates when disease progression status is only known at irregularly spaced and individual-specific assessment times. Penalized regression techniques (e.g., LASSO, adaptive LASSO, and SCAD) are adapted to handle interval-censored time of disease progression. An expectation–maximization algorithm is described which is empirically shown to perform well. Application to the motivating study of the development of arthritis mutilans in patients with psoriatic arthritis is given and several important human leukocyte antigen (HLA) variables are identified for further investigation.
AbstractList Times of disease progression are interval-censored when progression status is only known at a series of assessment times. This situation arises routinely in clinical trials and cohort studies when events of interest are only detectable upon imaging, based on blood tests, or upon careful clinical examination. We consider the problem of selecting important prognostic biomarkers from a large set of candidates when disease progression status is only known at irregularly spaced and individual-specific assessment times. Penalized regression techniques (e.g., LASSO, adaptive LASSO, and SCAD) are adapted to handle interval-censored time of disease progression. An expectation-maximization algorithm is described which is empirically shown to perform well. Application to the motivating study of the development of arthritis mutilans in patients with psoriatic arthritis is given and several important human leukocyte antigen (HLA) variables are identified for further investigation.Times of disease progression are interval-censored when progression status is only known at a series of assessment times. This situation arises routinely in clinical trials and cohort studies when events of interest are only detectable upon imaging, based on blood tests, or upon careful clinical examination. We consider the problem of selecting important prognostic biomarkers from a large set of candidates when disease progression status is only known at irregularly spaced and individual-specific assessment times. Penalized regression techniques (e.g., LASSO, adaptive LASSO, and SCAD) are adapted to handle interval-censored time of disease progression. An expectation-maximization algorithm is described which is empirically shown to perform well. Application to the motivating study of the development of arthritis mutilans in patients with psoriatic arthritis is given and several important human leukocyte antigen (HLA) variables are identified for further investigation.
Summary Times of disease progression are interval‐censored when progression status is only known at a series of assessment times. This situation arises routinely in clinical trials and cohort studies when events of interest are only detectable upon imaging, based on blood tests, or upon careful clinical examination. We consider the problem of selecting important prognostic biomarkers from a large set of candidates when disease progression status is only known at irregularly spaced and individual‐specific assessment times. Penalized regression techniques (e.g., LASSO, adaptive LASSO, and SCAD) are adapted to handle interval‐censored time of disease progression. An expectation–maximization algorithm is described which is empirically shown to perform well. Application to the motivating study of the development of arthritis mutilans in patients with psoriatic arthritis is given and several important human leukocyte antigen (HLA) variables are identified for further investigation.
Times of disease progression are interval-censored when progression status is only known at a series of assessment times. This situation arises routinely in clinical trials and cohort studies when events of interest are only detectable upon imaging, based on blood tests, or upon careful clinical examination. We consider the problem of selecting important prognostic biomarkers from a large set of candidates when disease progression status is only known at irregularly spaced and individual-specific assessment times. Penalized regression techniques (e.g., LASSO, adaptive LASSO, and SCAD) are adapted to handle interval-censored time of disease progression. An expectation–maximization algorithm is described which is empirically shown to perform well. Application to the motivating study of the development of arthritis mutilans in patients with psoriatic arthritis is given and several important human leukocyte antigen (HLA) variables are identified for further investigation.
Summary Times of disease progression are interval-censored when progression status is only known at a series of assessment times. This situation arises routinely in clinical trials and cohort studies when events of interest are only detectable upon imaging, based on blood tests, or upon careful clinical examination. We consider the problem of selecting important prognostic biomarkers from a large set of candidates when disease progression status is only known at irregularly spaced and individual-specific assessment times. Penalized regression techniques (e.g., LASSO, adaptive LASSO, and SCAD) are adapted to handle interval-censored time of disease progression. An expectation-maximization algorithm is described which is empirically shown to perform well. Application to the motivating study of the development of arthritis mutilans in patients with psoriatic arthritis is given and several important human leukocyte antigen (HLA) variables are identified for further investigation.
Author Cook, Richard J.
Wu, Ying
Author_xml – sequence: 1
  givenname: Ying
  surname: Wu
  fullname: Wu, Ying
  organization: Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
– sequence: 2
  givenname: Richard J.
  surname: Cook
  fullname: Cook, Richard J.
  email: rjcook@uwaterloo.ca
  organization: Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25773729$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1v1DAUxC1URLeFC3dQJC4IKcVfceLeyoruVtpSEKBysxznBbwk8WJ7oeWvx2m6IFUI4Ytl-Tej92YO0N7gBkDoMcFHJJ2XtXX9EaEM03toRgpOcswp3kMzjLHIGSef9tFBCOv0lAWmD9A-LcqSlVTO0NVbGHRnf0KTefjsIQTrhqx1PrNDBP9dd7mBITifgGh7CJlrs8YG0AGyjXc7yXH2HjowcVQnYrk6yXrtv4IPySjbJAOrozWZ9vGLt9GGh-h-q7sAj27vQ_Tx9PWH-TJfXSzO5ier3BQU07yWgjLdyKaiDdSca8KZEbiusKh1AaIQshSl1KymvAJuNLSFroxmUtZlLQw7RM8n3zTsty2EqHobDHSdHsBtgyIlF6xggsv_QAmTXFYUJ_TZHXTttj4leUNRiVlFWaKe3lLbuodGbbxNoVyrXfwJwBNgvAvBQ6uMjXoMMXptO0WwGhtWY8PqpuEkeXFHsnP9K0wm-Ift4PofpHp1dnG-0zyZNOsQnf8zMy9YVZXjUvn0b0OEq9__qWwl0laFunyzUNW706VcnF-qOfsFZCHPlA
CODEN BIOMA5
CitedBy_id crossref_primary_10_1002_bimj_202100310
crossref_primary_10_1177_09622802211009259
crossref_primary_10_1007_s00362_023_01486_1
crossref_primary_10_1002_bimj_201900180
crossref_primary_10_1016_j_csda_2020_107115
crossref_primary_10_1111_biom_13387
crossref_primary_10_1002_sim_7269
crossref_primary_10_1080_10618600_2024_2330523
crossref_primary_10_1016_j_wneu_2022_02_030
crossref_primary_10_1002_sim_8594
crossref_primary_10_1007_s12561_023_09391_9
crossref_primary_10_1177_0962280219884720
crossref_primary_10_1093_biostatistics_kxaa011
crossref_primary_10_1088_1757_899X_209_1_012075
crossref_primary_10_1016_j_csda_2024_107991
crossref_primary_10_1177_0962280219856238
crossref_primary_10_1111_biom_13548
crossref_primary_10_1080_01621459_2018_1537922
crossref_primary_10_1002_sim_70023
crossref_primary_10_1007_s10985_017_9392_5
crossref_primary_10_1111_insr_12480
crossref_primary_10_1093_infdis_jiae585
crossref_primary_10_1002_bimj_201900154
crossref_primary_10_1080_02664763_2022_2161488
crossref_primary_10_1016_j_csda_2022_107484
crossref_primary_10_1371_journal_pone_0249359
crossref_primary_10_1007_s42952_023_00204_9
crossref_primary_10_1002_sim_8165
Cites_doi 10.1198/016214501753382273
10.1093/jnci/dji193
10.1056/NEJM199612123352401
10.1214/13-AOS1175
10.1214/09-AOS729
10.1002/(SICI)1097-0258(19991130)18:22<3089::AID-SIM191>3.0.CO;2-0
10.1056/NEJM199003223221203
10.1111/j.2517-6161.1977.tb01600.x
10.1093/rheumatology/keq105
10.1111/j.2517-6161.1976.tb01597.x
10.1080/00401706.1979.10489751
10.1111/1541-0420.00067
10.1093/jnci/djt282
10.1186/1741-7015-10-51
10.1080/00401706.1970.10488634
10.2307/2532345
10.1198/016214506000000735
10.1214/aos/1176346060
10.1093/biomet/asm037
10.1111/j.2517-6161.1996.tb02080.x
10.1093/rheumatology/keh514
10.1093/jnci/dji237
10.1214/11-AOS911
10.1111/j.1467-9868.2005.00503.x
10.1093/rheumatology/37.7.760
10.1111/j.2517-6161.1972.tb00899.x
10.1080/01621459.1993.10476299
10.1214/009053607000000802
10.1002/(SICI)1097-0258(19980130)17:2<219::AID-SIM735>3.0.CO;2-O
10.1214/aos/1032181158
10.18637/jss.v033.i01
10.1201/9780429246593
10.1214/aos/1176345693
10.1177/0962280209105024
10.2307/3315717
10.2307/2532149
10.1201/b14978
10.1002/sim.993
10.1111/j.1467-9868.2005.00532.x
ContentType Journal Article
Copyright Copyright © 2015 International Biometric Society
2015, The International Biometric Society
2015, The International Biometric Society.
Copyright_xml – notice: Copyright © 2015 International Biometric Society
– notice: 2015, The International Biometric Society
– notice: 2015, The International Biometric Society.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
JQ2
7X8
7S9
L.6
DOI 10.1111/biom.12302
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Computer Science Collection
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Computer Science Collection
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic


AGRICOLA
MEDLINE
ProQuest Computer Science Collection
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Biology
Mathematics
EISSN 1541-0420
EndPage 791
ExternalDocumentID 3809512211
25773729
10_1111_biom_12302
BIOM12302
24538873
ark_67375_WNG_8QFH9GMW_C
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Canadian Institutes of Health Research
  grantid: FRN 13887
GroupedDBID ---
-~X
.3N
.4S
.DC
.GA
.GJ
.Y3
05W
0R~
10A
1OC
23N
2AX
2QV
3-9
31~
33P
36B
3SF
4.4
44B
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
6J9
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
88E
88I
8AF
8C1
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
8UM
930
A03
A8Z
AAESR
AAEVG
AAHBH
AAMMB
AANHP
AANLZ
AAONW
AASGY
AAUAY
AAWIL
AAXRX
AAYCA
AAZKR
AAZSN
ABAWQ
ABBHK
ABCQN
ABCUV
ABDBF
ABDFA
ABEJV
ABEML
ABFAN
ABGNP
ABJCF
ABJNI
ABLJU
ABMNT
ABPPZ
ABPVW
ABUWG
ABXSQ
ABXVV
ABYWD
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOD
ACHJO
ACIWK
ACKIV
ACMTB
ACNCT
ACPOU
ACPRK
ACRPL
ACSCC
ACTMH
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIPN
ADIZJ
ADKYN
ADMGS
ADNBA
ADNMO
ADODI
ADOZA
ADULT
ADVOB
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEOTA
AEUPB
AEUYR
AFBPY
AFDVO
AFEBI
AFGKR
AFKRA
AFVYC
AFWVQ
AFZJQ
AGLNM
AGQPQ
AGTJU
AGXDD
AHGBF
AHMBA
AIAGR
AIDQK
AIDYY
AIHAF
AIURR
AJAOE
AJBYB
AJNCP
AJXKR
ALAGY
ALEEW
ALMA_UNASSIGNED_HOLDINGS
ALRMG
ALUQN
AMBMR
AMYDB
APXXL
ARAPS
ARCSS
ASPBG
AS~
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BBNVY
BCRHZ
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BHPHI
BMNLL
BMXJE
BNHUX
BPHCQ
BROTX
BRXPI
BSCLL
BVXVI
BY8
CAG
CCPQU
COF
CS3
D-E
D-F
DCZOG
DPXWK
DQDLB
DR2
DRFUL
DRSTM
DSRWC
DWQXO
DXH
EAD
EAP
EBC
EBD
EBS
ECEWR
EDO
EJD
EMB
EMK
EMOBN
EST
ESTFP
ESX
F00
F01
F04
F5P
FD6
FEDTE
FXEWX
FYUFA
G-S
G.N
GNUQQ
GODZA
GS5
H.T
H.X
H13
HCIFZ
HF~
HGD
HMCUK
HQ6
HVGLF
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JAC
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
K48
K6V
K7-
KOP
L6V
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LK8
LOXES
LP6
LP7
LUTES
LW6
LYRES
M1P
M2P
M7P
M7S
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
NHB
NU-
O66
O9-
OIG
OJZSN
OWPYF
P0-
P2P
P2W
P2X
P4D
P62
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PUEGO
Q.N
Q11
Q2X
QB0
R.K
RNS
ROL
ROX
RWL
RX1
RXW
SA0
SUPJJ
SV3
TAE
TN5
TUS
UAP
UB1
UKHRP
V8K
W8V
W99
WBKPD
WH7
WIH
WIK
WOHZO
WQJ
WYISQ
X6Y
XBAML
XG1
XSW
ZGI
ZXP
ZY4
ZZTAW
~02
~IA
~KM
~WT
AGORE
ALIPV
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
JQ2
7X8
7S9
L.6
ID FETCH-LOGICAL-c5202-b9623ad9d82deb44a143c60b806ba5e65697679a3b248e4caef5a8ca399b7b6c3
IEDL.DBID DR2
ISSN 0006-341X
1541-0420
IngestDate Fri Oct 03 00:04:03 EDT 2025
Wed Oct 01 14:54:23 EDT 2025
Wed Aug 13 11:17:48 EDT 2025
Mon Jul 21 05:55:35 EDT 2025
Wed Oct 01 01:41:31 EDT 2025
Thu Apr 24 22:52:24 EDT 2025
Wed Aug 20 07:26:49 EDT 2025
Thu Jul 03 22:31:29 EDT 2025
Sun Sep 21 06:19:13 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Penalized regression
SCAD
EM algorithm
Interval-censoring
LASSO
Variable selection
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2015, The International Biometric Society.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5202-b9623ad9d82deb44a143c60b806ba5e65697679a3b248e4caef5a8ca399b7b6c3
Notes istex:25A8A583FAFC46C916A064C76ECEE8B762B48E02
ArticleID:BIOM12302
ark:/67375/WNG-8QFH9GMW-C
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 25773729
PQID 1712903823
PQPubID 35366
PageCount 10
ParticipantIDs proquest_miscellaneous_1746353649
proquest_miscellaneous_1713949820
proquest_journals_1712903823
pubmed_primary_25773729
crossref_citationtrail_10_1111_biom_12302
crossref_primary_10_1111_biom_12302
wiley_primary_10_1111_biom_12302_BIOM12302
jstor_primary_24538873
istex_primary_ark_67375_WNG_8QFH9GMW_C
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2015
PublicationDateYYYYMMDD 2015-09-01
PublicationDate_xml – month: 09
  year: 2015
  text: September 2015
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Biometrics
PublicationTitleAlternate Biom
PublicationYear 2015
Publisher Blackwell Publishing Ltd
International Biometric Society
Publisher_xml – name: Blackwell Publishing Ltd
– name: International Biometric Society
References Betensky, R. A. and Finkelstein, D. M. (1999). A non-parametric maximum likelihood estimator for bivariate interval censored data. Statistics in Medicine 18, 3089-3100.
Cai, T. and Betensky, R. A. (2003). Hazard regression for interval-censored data with penalized splines. Biometrics 59, 570-579.
R Core Team (2013). R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.
Zhang, C. H. (2010). Nearly unbiased variable selection under minimax concave penalty. Annals of Statistics 38, 894-942.
Wu, C. J. (1983). On the convergence properties of the EM algorithm. Annals of Statistics 11, 95-103.
Yuan, M. and Lin, Y. (2005). Model selection and estimation in regression with grouped variables. Journal of the Royal Statistical Society, Series B (Statistical Methodology) 68, 49-67.
Chandran, V., Cook, R. J., Edwin, J., Shen, H., Pellett, F. J., Shanmugarajah, S., Rosen, C. F., and Gladman, D. D. (2010). Soluble biomarkers differentiate patients with psoriatic arthritis from those with psoriasis without arthritis. Rheumatology 49, 1399-1405.
Zou, H. and Li, R. (2008). One-step sparse estimates in nonconcave penalized likelihood models. Annals of Statistics 36, 1509-1533.
Friedman, J., Hastie, T., and Tibshirani, R. (2010). Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33, 1-22.
Kyle, S., Chandler, D., Griffiths, C. E. M., Helliwell, P., Lewis, J., McInnes, I., Oliver, S., Symmons, D., and McHugh, N. (2005). Guideline for anti-TNF'α therapy in psoriatic arthritis. Rheumatology 44, 390-397.
Lindsey, J. C. and Ryan, L. M. (1998). Tutorial in biostatistics: Methods for interval-censored data. Statistics in Medicine 17, 219-238.
Turnbull, B. W. (1976). The empirical distribution function with arbitrarily grouped, censored and truncated data. Journal of the Royal Statistical Society, Series B (Methodological) 38, 290-295.
Riggs, B. L., Hodgson, S. F., O'Fallon, W. M., Chao, E. Y., Wahner, H. W., Muhs, J. M., Cedel, S. L., and Melon, L. J. (1990). Effect of fluoride treatment on the fracture rate in postmenopausal women with osteoporosis. New England Journal of Medicine 322, 802-809.
Chandran, V., Cook, R. J., Thavaneswaran, A., Lee, K.-A., Pellett, F., and Gladman, D. (2012). Parametric survival analysis as well as multi-state analysis confirms the association between human leukocyte antigen alleles and the development of arthritis mutilans in patients with psoriatic arthritis. Journal of Rheumatology 39, 1723-1723.
Breiman, L. (1996). Heuristics of instability and stabilization in model selection. Annals of Statistics 24, 2350-2383.
McShane, L. M., Altman, D. G., and Sauerbrei, W. (2005). Identification of clinically useful cancer prognostic factors: What are we missing? Journal of the National Cancer Institute 97, 1023-1025.
Betensky, R. A., Lindsey, J. C., Ryan, L. M., and Wand, M. P. (2002). A local likelihood proportional hazards model for interval censored data. Statistics in Medicine 21, 263-275.
Efron, B. and Tibshirani, R. J. (1994). An Introduction to the Bootstrap, Vol. 57. New York, Chapman & Hall: CRC Press.
Shao, J. (1993). Linear model selection by cross-validation. Journal of the American Statistical Association 88, 486-494.
Altman, D. G., McShane, L. M., Sauerbrei, W., and Taube, S. E. (2012). Reporting recommendations for tumor marker prognostic studies (REMARK): Explanation and elaboration. BMC Medicine 10, 51.
Lockhart, R., Taylor, J., Tibshirani, R. J., Tibshirani, R., et al. (2014). A significance test for the LASSO. Annals of Statistics 42, 413-468.
Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American Statistical Association 96, 1348-1360.
Klein, J. P. (1992). Semiparametric estimation of random effects using the cox model based on the EM algorithm. Biometrics 48, 795-806.
Polley, M.-Y. C., Freidlin, B., Korn, E. L., Conley, B. A., Abrams, J. S., and McShane, L. M. (2013). Statistical and practical considerations for clinical evaluation of predictive biomarkers. Journal of the National Cancer Institute 105, 1677-1683.
Sun, J. (2006). The Statistical Analysis of Interval-Censored Failure Time Data. New York: Springer.
Li, J. and Ma, S. (2013). Survival Analysis in Medicine and Genetics. Chapman & Hall/CRC Biostatistics Series: CRC Press.
Lawless, J. and Zhan, M. (1998). Analysis of interval-grouped recurrent-event data using piecewise constant rate functions. Canadian Journal of Statistics 26, 549-565.
Hortobagyi, G. N., Theriault, R. L., Porter, L., Blayney, D., Lipton, A., Sinoff, C., Wheeler, H., Simeone, J. F., Seaman, J., and Knight, R. D. (1996). Efficacy of pamidronate in reducing skeletal complications in patients with breast cancer and lytic bone metastases. New England Journal of Medicine 335, 1785-1792.
Bradic, J., Fan, J., and Jiang, J. (2011). Regularization for Coxs proportional hazards model with NP-dimensionality. Annals of Statistics 39, 3092-3120.
McShane, L. M., Altman, D. G., Sauerbrei, W., Taube, S. E., Gion, M., Clark, G. M., et al. (2005). Reporting recommendations for tumor marker prognostic studies (REMARK). Journal of the National Cancer Institute 97, 1180-1184.
Zou, H. and Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society, Series B (Statistical Methodology) 67, 301-320.
Friedman, M. (1982). Piecewise exponential models for survival data with covariates. Annals of Statistics 10, 101-113.
Fan, J. and Lv, J. (2010). A selective overview of variable selection in high dimensional feature space. Statistica Sinica 20, 101-148.
Rahman, P., Gladman, D. D., Cook, R. J., Zhou, Y., Young, G., and Salonen, D. (1998). Radiological assessment in psoriatic arthritis. Rheumatology 37, 760-765.
Hoerl, A. E. and Kennard, R. W. (1970). Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12, 55-67.
Tibshirani, R. (1996). Regression shrinkage and selection via the LASSO. Journal of the Royal Statistical Society, Series B (Methodological) 58, 267-288.
Zhang, H. H. and Lu, W. (2007). Adaptive Lasso for Cox's proportional hazards model. Biometrika 94, 691-703.
Grüger, J., Kay, R., and Schumacher, M. (1991). The validity of inferences based on incomplete observations in disease state models. Biometrics 47, 595-605.
Cox, D. R. (1972). Regression models and life-tables (with discussion). Journal of the Royal Statistical Society, Series B (Methodological) 34, 187-220.
Golub, G. H., Heath, M., and Wahba, G. (1979). Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics 21, 215-223.
Fan, J., Feng, Y., Samworth, R., and Wu, Y. (2010). SIS: Sure Independence Screening. R package version 0.6.
Witten, D. M. and Tibshirani, R. (2009). Survival analysis with high-dimensional covariates. Statistical Methods in Medical Research 19, 29-51.
Zou, H. (2006). The adaptive LASSO and its oracle properties. Journal of the American Statistical Association 101, 1418-1429.
Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B (Methodological) 39, 1-38.
2010; 33
1998; 26
2010; 38
2010
2013; 105
1993; 88
1982; 10
1970; 12
2008; 36
2003; 59
2006
1994
2012; 39
2007; 94
2011; 39
1996; 58
1990; 322
2012; 10
2005; 44
2005; 67
1983; 11
2005; 68
2014; 42
1998; 37
2010; 20
1998; 17
2010; 49
1991; 47
1977; 39
1999; 18
2002; 21
2005; 97
1992; 48
2013
1996; 335
1996; 24
2009; 19
1972; 34
1976; 38
1979; 21
2006; 101
2001; 96
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_26_1
e_1_2_8_27_1
(e_1_2_8_31_1) 2013
e_1_2_8_3_1
Fan J. (e_1_2_8_15_1) 2010; 20
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
Chandran V. (e_1_2_8_9_1) 2012; 39
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_41_1
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
Fan J. (e_1_2_8_13_1) 2010
Sun J. (e_1_2_8_35_1) 2006
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – reference: Fan, J. and Lv, J. (2010). A selective overview of variable selection in high dimensional feature space. Statistica Sinica 20, 101-148.
– reference: Hortobagyi, G. N., Theriault, R. L., Porter, L., Blayney, D., Lipton, A., Sinoff, C., Wheeler, H., Simeone, J. F., Seaman, J., and Knight, R. D. (1996). Efficacy of pamidronate in reducing skeletal complications in patients with breast cancer and lytic bone metastases. New England Journal of Medicine 335, 1785-1792.
– reference: Friedman, J., Hastie, T., and Tibshirani, R. (2010). Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33, 1-22.
– reference: Zou, H. and Li, R. (2008). One-step sparse estimates in nonconcave penalized likelihood models. Annals of Statistics 36, 1509-1533.
– reference: Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American Statistical Association 96, 1348-1360.
– reference: Golub, G. H., Heath, M., and Wahba, G. (1979). Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics 21, 215-223.
– reference: Wu, C. J. (1983). On the convergence properties of the EM algorithm. Annals of Statistics 11, 95-103.
– reference: Klein, J. P. (1992). Semiparametric estimation of random effects using the cox model based on the EM algorithm. Biometrics 48, 795-806.
– reference: Li, J. and Ma, S. (2013). Survival Analysis in Medicine and Genetics. Chapman & Hall/CRC Biostatistics Series: CRC Press.
– reference: Grüger, J., Kay, R., and Schumacher, M. (1991). The validity of inferences based on incomplete observations in disease state models. Biometrics 47, 595-605.
– reference: Polley, M.-Y. C., Freidlin, B., Korn, E. L., Conley, B. A., Abrams, J. S., and McShane, L. M. (2013). Statistical and practical considerations for clinical evaluation of predictive biomarkers. Journal of the National Cancer Institute 105, 1677-1683.
– reference: Riggs, B. L., Hodgson, S. F., O'Fallon, W. M., Chao, E. Y., Wahner, H. W., Muhs, J. M., Cedel, S. L., and Melon, L. J. (1990). Effect of fluoride treatment on the fracture rate in postmenopausal women with osteoporosis. New England Journal of Medicine 322, 802-809.
– reference: Cai, T. and Betensky, R. A. (2003). Hazard regression for interval-censored data with penalized splines. Biometrics 59, 570-579.
– reference: Fan, J., Feng, Y., Samworth, R., and Wu, Y. (2010). SIS: Sure Independence Screening. R package version 0.6.
– reference: Betensky, R. A. and Finkelstein, D. M. (1999). A non-parametric maximum likelihood estimator for bivariate interval censored data. Statistics in Medicine 18, 3089-3100.
– reference: Kyle, S., Chandler, D., Griffiths, C. E. M., Helliwell, P., Lewis, J., McInnes, I., Oliver, S., Symmons, D., and McHugh, N. (2005). Guideline for anti-TNF'α therapy in psoriatic arthritis. Rheumatology 44, 390-397.
– reference: Friedman, M. (1982). Piecewise exponential models for survival data with covariates. Annals of Statistics 10, 101-113.
– reference: Turnbull, B. W. (1976). The empirical distribution function with arbitrarily grouped, censored and truncated data. Journal of the Royal Statistical Society, Series B (Methodological) 38, 290-295.
– reference: Zhang, H. H. and Lu, W. (2007). Adaptive Lasso for Cox's proportional hazards model. Biometrika 94, 691-703.
– reference: Altman, D. G., McShane, L. M., Sauerbrei, W., and Taube, S. E. (2012). Reporting recommendations for tumor marker prognostic studies (REMARK): Explanation and elaboration. BMC Medicine 10, 51.
– reference: Betensky, R. A., Lindsey, J. C., Ryan, L. M., and Wand, M. P. (2002). A local likelihood proportional hazards model for interval censored data. Statistics in Medicine 21, 263-275.
– reference: Efron, B. and Tibshirani, R. J. (1994). An Introduction to the Bootstrap, Vol. 57. New York, Chapman & Hall: CRC Press.
– reference: Lockhart, R., Taylor, J., Tibshirani, R. J., Tibshirani, R., et al. (2014). A significance test for the LASSO. Annals of Statistics 42, 413-468.
– reference: Zhang, C. H. (2010). Nearly unbiased variable selection under minimax concave penalty. Annals of Statistics 38, 894-942.
– reference: Tibshirani, R. (1996). Regression shrinkage and selection via the LASSO. Journal of the Royal Statistical Society, Series B (Methodological) 58, 267-288.
– reference: Breiman, L. (1996). Heuristics of instability and stabilization in model selection. Annals of Statistics 24, 2350-2383.
– reference: Lindsey, J. C. and Ryan, L. M. (1998). Tutorial in biostatistics: Methods for interval-censored data. Statistics in Medicine 17, 219-238.
– reference: R Core Team (2013). R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.
– reference: Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B (Methodological) 39, 1-38.
– reference: McShane, L. M., Altman, D. G., and Sauerbrei, W. (2005). Identification of clinically useful cancer prognostic factors: What are we missing? Journal of the National Cancer Institute 97, 1023-1025.
– reference: Sun, J. (2006). The Statistical Analysis of Interval-Censored Failure Time Data. New York: Springer.
– reference: Rahman, P., Gladman, D. D., Cook, R. J., Zhou, Y., Young, G., and Salonen, D. (1998). Radiological assessment in psoriatic arthritis. Rheumatology 37, 760-765.
– reference: Zou, H. (2006). The adaptive LASSO and its oracle properties. Journal of the American Statistical Association 101, 1418-1429.
– reference: Zou, H. and Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society, Series B (Statistical Methodology) 67, 301-320.
– reference: Bradic, J., Fan, J., and Jiang, J. (2011). Regularization for Coxs proportional hazards model with NP-dimensionality. Annals of Statistics 39, 3092-3120.
– reference: Cox, D. R. (1972). Regression models and life-tables (with discussion). Journal of the Royal Statistical Society, Series B (Methodological) 34, 187-220.
– reference: Lawless, J. and Zhan, M. (1998). Analysis of interval-grouped recurrent-event data using piecewise constant rate functions. Canadian Journal of Statistics 26, 549-565.
– reference: Witten, D. M. and Tibshirani, R. (2009). Survival analysis with high-dimensional covariates. Statistical Methods in Medical Research 19, 29-51.
– reference: Chandran, V., Cook, R. J., Edwin, J., Shen, H., Pellett, F. J., Shanmugarajah, S., Rosen, C. F., and Gladman, D. D. (2010). Soluble biomarkers differentiate patients with psoriatic arthritis from those with psoriasis without arthritis. Rheumatology 49, 1399-1405.
– reference: Chandran, V., Cook, R. J., Thavaneswaran, A., Lee, K.-A., Pellett, F., and Gladman, D. (2012). Parametric survival analysis as well as multi-state analysis confirms the association between human leukocyte antigen alleles and the development of arthritis mutilans in patients with psoriatic arthritis. Journal of Rheumatology 39, 1723-1723.
– reference: Shao, J. (1993). Linear model selection by cross-validation. Journal of the American Statistical Association 88, 486-494.
– reference: Hoerl, A. E. and Kennard, R. W. (1970). Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12, 55-67.
– reference: McShane, L. M., Altman, D. G., Sauerbrei, W., Taube, S. E., Gion, M., Clark, G. M., et al. (2005). Reporting recommendations for tumor marker prognostic studies (REMARK). Journal of the National Cancer Institute 97, 1180-1184.
– reference: Yuan, M. and Lin, Y. (2005). Model selection and estimation in regression with grouped variables. Journal of the Royal Statistical Society, Series B (Statistical Methodology) 68, 49-67.
– volume: 33
  start-page: 1
  year: 2010
  end-page: 22
  article-title: Regularization paths for generalized linear models via coordinate descent
  publication-title: Journal of Statistical Software
– volume: 58
  start-page: 267
  year: 1996
  end-page: 288
  article-title: Regression shrinkage and selection via the LASSO
  publication-title: Journal of the Royal Statistical Society, Series B (Methodological)
– volume: 10
  start-page: 51
  year: 2012
  article-title: Reporting recommendations for tumor marker prognostic studies (REMARK): Explanation and elaboration
  publication-title: BMC Medicine
– year: 2013
  publication-title: R: A Language and Environment for Statistical Computing
– volume: 39
  start-page: 1
  year: 1977
  end-page: 38
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: Journal of the Royal Statistical Society, Series B (Methodological)
– year: 1994
  publication-title: An Introduction to the Bootstrap
– volume: 39
  start-page: 1723
  year: 2012
  end-page: 1723
  article-title: Parametric survival analysis as well as multi‐state analysis confirms the association between human leukocyte antigen alleles and the development of arthritis mutilans in patients with psoriatic arthritis
  publication-title: Journal of Rheumatology
– volume: 42
  start-page: 413
  year: 2014
  end-page: 468
  article-title: A significance test for the LASSO
  publication-title: Annals of Statistics
– volume: 47
  start-page: 595
  year: 1991
  end-page: 605
  article-title: The validity of inferences based on incomplete observations in disease state models
  publication-title: Biometrics
– year: 2013
  publication-title: Survival Analysis in Medicine and Genetics
– volume: 105
  start-page: 1677
  year: 2013
  end-page: 1683
  article-title: Statistical and practical considerations for clinical evaluation of predictive biomarkers
  publication-title: Journal of the National Cancer Institute
– volume: 24
  start-page: 2350
  year: 1996
  end-page: 2383
  article-title: Heuristics of instability and stabilization in model selection
  publication-title: Annals of Statistics
– volume: 59
  start-page: 570
  year: 2003
  end-page: 579
  article-title: Hazard regression for interval‐censored data with penalized splines
  publication-title: Biometrics
– year: 2006
  publication-title: The Statistical Analysis of Interval‐Censored Failure Time Data
– volume: 21
  start-page: 215
  year: 1979
  end-page: 223
  article-title: Generalized cross‐validation as a method for choosing a good ridge parameter
  publication-title: Technometrics
– volume: 18
  start-page: 3089
  year: 1999
  end-page: 3100
  article-title: A non‐parametric maximum likelihood estimator for bivariate interval censored data
  publication-title: Statistics in Medicine
– volume: 97
  start-page: 1180
  year: 2005
  end-page: 1184
  article-title: Reporting recommendations for tumor marker prognostic studies (REMARK)
  publication-title: Journal of the National Cancer Institute
– volume: 67
  start-page: 301
  year: 2005
  end-page: 320
  article-title: Regularization and variable selection via the elastic net
  publication-title: Journal of the Royal Statistical Society, Series B (Statistical Methodology)
– year: 2010
  publication-title: SIS: Sure Independence Screening
– volume: 38
  start-page: 290
  year: 1976
  end-page: 295
  article-title: The empirical distribution function with arbitrarily grouped, censored and truncated data
  publication-title: Journal of the Royal Statistical Society, Series B (Methodological)
– volume: 96
  start-page: 1348
  year: 2001
  end-page: 1360
  article-title: Variable selection via nonconcave penalized likelihood and its oracle properties
  publication-title: Journal of the American Statistical Association
– volume: 10
  start-page: 101
  year: 1982
  end-page: 113
  article-title: Piecewise exponential models for survival data with covariates
  publication-title: Annals of Statistics
– volume: 49
  start-page: 1399
  year: 2010
  end-page: 1405
  article-title: Soluble biomarkers differentiate patients with psoriatic arthritis from those with psoriasis without arthritis
  publication-title: Rheumatology
– volume: 44
  start-page: 390
  year: 2005
  end-page: 397
  article-title: Guideline for anti‐TNF’ therapy in psoriatic arthritis
  publication-title: Rheumatology
– volume: 12
  start-page: 55
  year: 1970
  end-page: 67
  article-title: Ridge regression: Biased estimation for nonorthogonal problems
  publication-title: Technometrics
– volume: 37
  start-page: 760
  year: 1998
  end-page: 765
  article-title: Radiological assessment in psoriatic arthritis
  publication-title: Rheumatology
– volume: 38
  start-page: 894
  year: 2010
  end-page: 942
  article-title: Nearly unbiased variable selection under minimax concave penalty
  publication-title: Annals of Statistics
– volume: 26
  start-page: 549
  year: 1998
  end-page: 565
  article-title: Analysis of interval‐grouped recurrent‐event data using piecewise constant rate functions
  publication-title: Canadian Journal of Statistics
– volume: 39
  start-page: 3092
  year: 2011
  end-page: 3120
  article-title: Regularization for Coxs proportional hazards model with NP‐dimensionality
  publication-title: Annals of Statistics
– volume: 94
  start-page: 691
  year: 2007
  end-page: 703
  article-title: Adaptive Lasso for Cox's proportional hazards model
  publication-title: Biometrika
– volume: 17
  start-page: 219
  year: 1998
  end-page: 238
  article-title: Tutorial in biostatistics: Methods for interval‐censored data
  publication-title: Statistics in Medicine
– volume: 97
  start-page: 1023
  year: 2005
  end-page: 1025
  article-title: Identification of clinically useful cancer prognostic factors: What are we missing
  publication-title: Journal of the National Cancer Institute
– volume: 36
  start-page: 1509
  year: 2008
  end-page: 1533
  article-title: One‐step sparse estimates in nonconcave penalized likelihood models
  publication-title: Annals of Statistics
– volume: 101
  start-page: 1418
  year: 2006
  end-page: 1429
  article-title: The adaptive LASSO and its oracle properties
  publication-title: Journal of the American Statistical Association
– volume: 19
  start-page: 29
  year: 2009
  end-page: 51
  article-title: Survival analysis with high‐dimensional covariates
  publication-title: Statistical Methods in Medical Research
– volume: 21
  start-page: 263
  year: 2002
  end-page: 275
  article-title: A local likelihood proportional hazards model for interval censored data
  publication-title: Statistics in Medicine
– volume: 20
  start-page: 101
  year: 2010
  end-page: 148
  article-title: A selective overview of variable selection in high dimensional feature space
  publication-title: Statistica Sinica
– volume: 335
  start-page: 1785
  year: 1996
  end-page: 1792
  article-title: Efficacy of pamidronate in reducing skeletal complications in patients with breast cancer and lytic bone metastases
  publication-title: New England Journal of Medicine
– volume: 48
  start-page: 795
  year: 1992
  end-page: 806
  article-title: Semiparametric estimation of random effects using the cox model based on the EM algorithm
  publication-title: Biometrics
– volume: 11
  start-page: 95
  year: 1983
  end-page: 103
  article-title: On the convergence properties of the EM algorithm
  publication-title: Annals of Statistics
– volume: 68
  start-page: 49
  year: 2005
  end-page: 67
  article-title: Model selection and estimation in regression with grouped variables
  publication-title: Journal of the Royal Statistical Society, Series B (Statistical Methodology)
– volume: 88
  start-page: 486
  year: 1993
  end-page: 494
  article-title: Linear model selection by cross‐validation
  publication-title: Journal of the American Statistical Association
– volume: 34
  start-page: 187
  year: 1972
  end-page: 220
  article-title: Regression models and life‐tables (with discussion)
  publication-title: Journal of the Royal Statistical Society, Series B (Methodological)
– volume: 322
  start-page: 802
  year: 1990
  end-page: 809
  article-title: Effect of fluoride treatment on the fracture rate in postmenopausal women with osteoporosis
  publication-title: New England Journal of Medicine
– year: 2013
– ident: e_1_2_8_14_1
  doi: 10.1198/016214501753382273
– ident: e_1_2_8_28_1
  doi: 10.1093/jnci/dji193
– year: 2013
  ident: e_1_2_8_31_1
  publication-title: R: A Language and Environment for Statistical Computing
– ident: e_1_2_8_21_1
  doi: 10.1056/NEJM199612123352401
– ident: e_1_2_8_27_1
  doi: 10.1214/13-AOS1175
– ident: e_1_2_8_42_1
  doi: 10.1214/09-AOS729
– ident: e_1_2_8_3_1
  doi: 10.1002/(SICI)1097-0258(19991130)18:22<3089::AID-SIM191>3.0.CO;2-0
– ident: e_1_2_8_33_1
  doi: 10.1056/NEJM199003223221203
– ident: e_1_2_8_11_1
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– ident: e_1_2_8_8_1
  doi: 10.1093/rheumatology/keq105
– ident: e_1_2_8_38_1
  doi: 10.1111/j.2517-6161.1976.tb01597.x
– ident: e_1_2_8_18_1
  doi: 10.1080/00401706.1979.10489751
– ident: e_1_2_8_7_1
  doi: 10.1111/1541-0420.00067
– ident: e_1_2_8_30_1
  doi: 10.1093/jnci/djt282
– ident: e_1_2_8_2_1
  doi: 10.1186/1741-7015-10-51
– ident: e_1_2_8_20_1
  doi: 10.1080/00401706.1970.10488634
– ident: e_1_2_8_22_1
  doi: 10.2307/2532345
– ident: e_1_2_8_36_1
– ident: e_1_2_8_44_1
  doi: 10.1198/016214506000000735
– year: 2010
  ident: e_1_2_8_13_1
  publication-title: SIS: Sure Independence Screening
– ident: e_1_2_8_40_1
  doi: 10.1214/aos/1176346060
– ident: e_1_2_8_43_1
  doi: 10.1093/biomet/asm037
– ident: e_1_2_8_37_1
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– ident: e_1_2_8_23_1
  doi: 10.1093/rheumatology/keh514
– ident: e_1_2_8_29_1
  doi: 10.1093/jnci/dji237
– ident: e_1_2_8_5_1
  doi: 10.1214/11-AOS911
– ident: e_1_2_8_45_1
  doi: 10.1111/j.1467-9868.2005.00503.x
– ident: e_1_2_8_32_1
  doi: 10.1093/rheumatology/37.7.760
– volume: 20
  start-page: 101
  year: 2010
  ident: e_1_2_8_15_1
  article-title: A selective overview of variable selection in high dimensional feature space
  publication-title: Statistica Sinica
– ident: e_1_2_8_10_1
  doi: 10.1111/j.2517-6161.1972.tb00899.x
– ident: e_1_2_8_34_1
  doi: 10.1080/01621459.1993.10476299
– year: 2006
  ident: e_1_2_8_35_1
  publication-title: The Statistical Analysis of Interval‐Censored Failure Time Data
– volume: 39
  start-page: 1723
  year: 2012
  ident: e_1_2_8_9_1
  article-title: Parametric survival analysis as well as multi‐state analysis confirms the association between human leukocyte antigen alleles and the development of arthritis mutilans in patients with psoriatic arthritis
  publication-title: Journal of Rheumatology
– ident: e_1_2_8_46_1
  doi: 10.1214/009053607000000802
– ident: e_1_2_8_26_1
  doi: 10.1002/(SICI)1097-0258(19980130)17:2<219::AID-SIM735>3.0.CO;2-O
– ident: e_1_2_8_6_1
  doi: 10.1214/aos/1032181158
– ident: e_1_2_8_17_1
  doi: 10.18637/jss.v033.i01
– ident: e_1_2_8_12_1
  doi: 10.1201/9780429246593
– ident: e_1_2_8_16_1
  doi: 10.1214/aos/1176345693
– ident: e_1_2_8_39_1
  doi: 10.1177/0962280209105024
– ident: e_1_2_8_24_1
  doi: 10.2307/3315717
– ident: e_1_2_8_19_1
  doi: 10.2307/2532149
– ident: e_1_2_8_25_1
  doi: 10.1201/b14978
– ident: e_1_2_8_4_1
  doi: 10.1002/sim.993
– ident: e_1_2_8_41_1
  doi: 10.1111/j.1467-9868.2005.00532.x
SSID ssj0009502
Score 2.3052094
Snippet Times of disease progression are interval-censored when progression status is only known at a series of assessment times. This situation arises routinely in...
Summary Times of disease progression are interval‐censored when progression status is only known at a series of assessment times. This situation arises...
Summary Times of disease progression are interval-censored when progression status is only known at a series of assessment times. This situation arises...
Times of disease progression are interval‐censored when progression status is only known at a series of assessment times. This situation arises routinely in...
SourceID proquest
pubmed
crossref
wiley
jstor
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 782
SubjectTerms Algorithms
Antigens
Arthritis
Arthritis, Psoriatic - blood
Arthritis, Psoriatic - diagnosis
Arthritis, Psoriatic - epidemiology
biomarkers
Biomarkers - blood
BIOMETRIC PRACTICE
Biometrics
biometry
clinical examination
clinical trials
cohort studies
disease course
Disease Progression
EM algorithm
hematologic tests
HLA antigens
HLA Antigens - blood
Humans
image analysis
Interval-censoring
LASSO
Leukocytes
patients
Penalized regression
Prevalence
Psoriasis
Regression Analysis
Reproducibility of Results
Risk Assessment - methods
SCAD
Sensitivity and Specificity
Severity of Illness Index
Time Factors
Variable selection
Title Penalized regression for interval-censored times of disease progression: Selection of HLA markers in psoriatic arthritis
URI https://api.istex.fr/ark:/67375/WNG-8QFH9GMW-C/fulltext.pdf
https://www.jstor.org/stable/24538873
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fbiom.12302
https://www.ncbi.nlm.nih.gov/pubmed/25773729
https://www.proquest.com/docview/1712903823
https://www.proquest.com/docview/1713949820
https://www.proquest.com/docview/1746353649
Volume 71
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCO Food Science Source
  customDbUrl:
  eissn: 1541-0420
  dateEnd: 20241105
  omitProxy: false
  ssIdentifier: ssj0009502
  issn: 0006-341X
  databaseCode: A8Z
  dateStart: 20030301
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1541-0420
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0009502
  issn: 0006-341X
  databaseCode: ABDBF
  dateStart: 20030301
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0006-341X
  databaseCode: DR2
  dateStart: 19990101
  customDbUrl:
  isFulltext: true
  eissn: 1541-0420
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009502
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtQwEB1VRUjlgctCIVCQEQgJpKyyiXMx4qVUbBfElmvVfaks2_HSipKt9iLBPvEJfCNfwoydpC2qKsFblIyt2JkZn4nHZwAe430b6TQPx1mCAQouCCGRqofojgU6ShVpToeThzvZYJe_GaWjFXjRnIXx_BDtDzeyDOevycCVnp0ycjqe3sXuHJNkL8lcPPUxPsW4G3mqcEru4r1RzU1KaTwnTc-sRpdoYr83iYnnQc6zCNYtQf1rsN-8vM88-dpdzHXXLP_idfzf0V2HqzU2ZZtemW7Aiq06cNlXq_zRgSvDluJ11oE1gqme5fkmLN9bAvRLW7Kp_eJTayuGeJgdupxKdfT75y-DEfNkiiKunj2bjFm9O8Rckphv9Jx9cpV5qD1KDN5usm-UQTSdYVfsGDsgXTIMNf7A8THdgt3-q89bg7Cu6hCaNEb3qwUiLlWKsohLqzlXiNhMFukiyrRKLeJLREi5UImOeWG5UXacqsIoRFI615lJ1mG1mlT2DjBtMBoiRjbBM96LSqGMIUJ6xY0pU6sCeNp8XWlqynOqvHEkm9CHplm6aQ7gUSt77Ik-zpV64pSkFcEZoNS4PJV7O9uy-NAfiO3hntwKYN1pUSsYc1xaijwJYKNRK1m7i5ns5fQ7kLZkA3jYPkZDp90bVdnJwskkggsc3kUyHAFkknERwG2vsicvkOZUkgifPHOKd8Eo5cvX74bu6u6_CN-DNYSTqc_A24DV-XRh7yNkm-sHzjT_AKPaPQo
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD5CmxDjgUthLDDACITEpFRp49x4GxNdBk25bVrfLNtxB2KkUy8S9ImfwG_kl3COnWYbmibBW9QcW7F7bH_H_vwdgGf4uwlUlPijOMQABRcEn0TVfZyOM5woZaA4XU4uBnF-wN8Mo2HNzaG7ME4fotlwo5Fh52sa4LQhfWaU0_30NtZHUpKrPMZAhTDRx-4Zzd3AiYUTvYt3hrU6KRF5TsueW49WqWu_L6mJF4HO8xjWLkK9my7T6tRqFxL35Gt7PlNtvfhL2fG_23cLbtTwlG07f7oNV0zVgqsuYeWPFlwvGpXXaQvWCKk6oec7sHhvCNMvTMkm5sixayuGkJh9sbRKefz75y-NQfN4giY2pT0bj1h9QMQsT8wVesk-2eQ8VB4t8v42-0YkoskUq2InWAG5k2bo9J-tJNNdOOi93t_J_Tqxg6-jLs7AKkPQJcusTLulUZxLBG06DlQaxEpGBiEmgqQkk6Hq8tRwLc0okqmWCKZUomIdrsNKNa7MBjClMSAiUbYMPaATlJnUmjTpJde6jIz04MXy7xW6Vj2n5BvHYhn9UDcL280ePG1sT5zWx4VWz62XNCbYA8SOSyJxONgV6Ydenu0Wh2LHg3XrRo1hl-PqkiahB5tLvxL1jDEVnYR2BOlU1oMnzWsc63SAIysznlubMOMZNu8yG44YMox55sE957OnHxAllJUI32xZz7ukleLV3rvCPt3_F-PHcC3fL_qivzd4-wDWEF1GjpC3CSuzydw8RAQ3U4_sOP0DYAFBKw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbhMxEB2hVqDywCVQWChgBEICaaNN1nsxb6UlTaEJhVI1b5btdQBRNlEuEuSJT-Ab-RJm7M22RVUleIuyYyt2ZsbH6-MzAE_xexvpJAuHaYwbFFwQQhJVDzEdC0yUKtKcLif3-mn3kL8ZJIOKm0N3Ybw-RP3CjSLD5WsKcDsuhqeinO6nN7E_kpJc5YnIidG3_aF9SnM38mLhRO_irUGlTkpEnpO2Z9ajVZra70tq4nmg8yyGdYtQ57qvtDp12oXEPfnanM900yz-Unb87_HdgGsVPGWb3p9uwiVbNuCyL1j5owFXe7XK67QBa4RUvdDzLVjsW8L0C1uwif3k2bUlQ0jMvjhapTr-_fOXwU3zaIImrqQ9Gw1ZdUDEHE_MN3rJDlxxHmqPFt29TfaNSESTKXbFxtgBuZNh6PSfnSTTbTjsvP641Q2rwg6hSdqYgbVA0KUKUeTtwmrOFYI2k0Y6j1KtEosQE0FSJlSs2zy33Cg7TFRuFIIpnenUxOuwUo5KexeYNrghIlE2wVPeigqhjCFNesWNKRKrAni-_HulqVTPqfjGsVzufmiapZvmAJ7UtmOv9XGu1TPnJbUJzgCx47JEHvV3ZP6-0xU7vSO5FcC6c6PasM1xdcmzOICNpV_JKmNMZSujN4J0KhvA4_oxxjod4KjSjubOJhZc4PAusuGIIeOUiwDueJ89-QFJRlWJ8MkL53kXjFK-2n3Xc5_u_YvxI7iyv92Re7v9t_dhDcFl4vl4G7Aym8ztAwRwM_3QhekfsFdArw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Penalized+regression+for+interval-censored+times+of+disease+progression%3A+Selection+of+HLA+markers+in+psoriatic+arthritis&rft.jtitle=Biometrics&rft.au=Wu%2C+Ying&rft.au=Cook%2C+Richard+J.&rft.date=2015-09-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0006-341X&rft.eissn=1541-0420&rft.volume=71&rft.issue=3&rft.spage=782&rft.epage=791&rft_id=info:doi/10.1111%2Fbiom.12302&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_8QFH9GMW_C
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-341X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-341X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-341X&client=summon