An automated proteomic data analysis workflow for mass spectrometry

Background Mass spectrometry-based protein identification methods are fundamental to proteomics. Biological experiments are usually performed in replicates and proteomic analyses generate huge datasets which need to be integrated and quantitatively analyzed. The Sequest™ search algorithm is a common...

Full description

Saved in:
Bibliographic Details
Published inBMC bioinformatics Vol. 10; no. Suppl 11; p. S17
Main Authors Pendarvis, Ken, Kumar, Ranjit, Burgess, Shane C, Nanduri, Bindu
Format Journal Article
LanguageEnglish
Published London BioMed Central 08.10.2009
BMC
Subjects
Online AccessGet full text
ISSN1471-2105
1471-2105
DOI10.1186/1471-2105-10-S11-S17

Cover

Abstract Background Mass spectrometry-based protein identification methods are fundamental to proteomics. Biological experiments are usually performed in replicates and proteomic analyses generate huge datasets which need to be integrated and quantitatively analyzed. The Sequest™ search algorithm is a commonly used algorithm for identifying peptides and proteins from two dimensional liquid chromatography electrospray ionization tandem mass spectrometry (2-D LC ESI MS 2 ) data. A number of proteomic pipelines that facilitate high throughput 'post data acquisition analysis' are described in the literature. However, these pipelines need to be updated to accommodate the rapidly evolving data analysis methods. Here, we describe a proteomic data analysis pipeline that specifically addresses two main issues pertinent to protein identification and differential expression analysis: 1) estimation of the probability of peptide and protein identifications and 2) non-parametric statistics for protein differential expression analysis. Our proteomic analysis workflow analyzes replicate datasets from a single experimental paradigm to generate a list of identified proteins with their probabilities and significant changes in protein expression using parametric and non-parametric statistics. Results The input for our workflow is Bioworks™ 3.2 Sequest (or a later version, including cluster) output in XML format. We use a decoy database approach to assign probability to peptide identifications. The user has the option to select "quality thresholds" on peptide identifications based on the P value. We also estimate probability for protein identification. Proteins identified with peptides at a user-specified threshold value from biological experiments are grouped as either control or treatment for further analysis in ProtQuant. ProtQuant utilizes a parametric (ANOVA) method, for calculating differences in protein expression based on the quantitative measure ΣXcorr. Alternatively ProtQuant output can be further processed using non-parametric Monte-Carlo resampling statistics to calculate P values for differential expression. Correction for multiple testing of ANOVA and resampling P values is done using Benjamini and Hochberg's method. The results of these statistical analyses are then combined into a single output file containing a comprehensive protein list with probabilities and differential expression analysis, associated P values, and resampling statistics. Conclusion For biologists carrying out proteomics by mass spectrometry, our workflow facilitates automated, easy to use analyses of Bioworks (3.2 or later versions) data. All the methods used in the workflow are peer-reviewed and as such the results of our workflow are compliant with proteomic data submission guidelines to public proteomic data repositories including PRIDE. Our workflow is a necessary intermediate step that is required to link proteomics data to biological knowledge for generating testable hypotheses.
AbstractList Background Mass spectrometry-based protein identification methods are fundamental to proteomics. Biological experiments are usually performed in replicates and proteomic analyses generate huge datasets which need to be integrated and quantitatively analyzed. The Sequest™ search algorithm is a commonly used algorithm for identifying peptides and proteins from two dimensional liquid chromatography electrospray ionization tandem mass spectrometry (2-D LC ESI MS 2 ) data. A number of proteomic pipelines that facilitate high throughput 'post data acquisition analysis' are described in the literature. However, these pipelines need to be updated to accommodate the rapidly evolving data analysis methods. Here, we describe a proteomic data analysis pipeline that specifically addresses two main issues pertinent to protein identification and differential expression analysis: 1) estimation of the probability of peptide and protein identifications and 2) non-parametric statistics for protein differential expression analysis. Our proteomic analysis workflow analyzes replicate datasets from a single experimental paradigm to generate a list of identified proteins with their probabilities and significant changes in protein expression using parametric and non-parametric statistics. Results The input for our workflow is Bioworks™ 3.2 Sequest (or a later version, including cluster) output in XML format. We use a decoy database approach to assign probability to peptide identifications. The user has the option to select "quality thresholds" on peptide identifications based on the P value. We also estimate probability for protein identification. Proteins identified with peptides at a user-specified threshold value from biological experiments are grouped as either control or treatment for further analysis in ProtQuant. ProtQuant utilizes a parametric (ANOVA) method, for calculating differences in protein expression based on the quantitative measure ΣXcorr. Alternatively ProtQuant output can be further processed using non-parametric Monte-Carlo resampling statistics to calculate P values for differential expression. Correction for multiple testing of ANOVA and resampling P values is done using Benjamini and Hochberg's method. The results of these statistical analyses are then combined into a single output file containing a comprehensive protein list with probabilities and differential expression analysis, associated P values, and resampling statistics. Conclusion For biologists carrying out proteomics by mass spectrometry, our workflow facilitates automated, easy to use analyses of Bioworks (3.2 or later versions) data. All the methods used in the workflow are peer-reviewed and as such the results of our workflow are compliant with proteomic data submission guidelines to public proteomic data repositories including PRIDE. Our workflow is a necessary intermediate step that is required to link proteomics data to biological knowledge for generating testable hypotheses.
Abstract Background Mass spectrometry-based protein identification methods are fundamental to proteomics. Biological experiments are usually performed in replicates and proteomic analyses generate huge datasets which need to be integrated and quantitatively analyzed. The Sequest™ search algorithm is a commonly used algorithm for identifying peptides and proteins from two dimensional liquid chromatography electrospray ionization tandem mass spectrometry (2-D LC ESI MS2) data. A number of proteomic pipelines that facilitate high throughput 'post data acquisition analysis' are described in the literature. However, these pipelines need to be updated to accommodate the rapidly evolving data analysis methods. Here, we describe a proteomic data analysis pipeline that specifically addresses two main issues pertinent to protein identification and differential expression analysis: 1) estimation of the probability of peptide and protein identifications and 2) non-parametric statistics for protein differential expression analysis. Our proteomic analysis workflow analyzes replicate datasets from a single experimental paradigm to generate a list of identified proteins with their probabilities and significant changes in protein expression using parametric and non-parametric statistics. Results The input for our workflow is Bioworks™ 3.2 Sequest (or a later version, including cluster) output in XML format. We use a decoy database approach to assign probability to peptide identifications. The user has the option to select "quality thresholds" on peptide identifications based on the P value. We also estimate probability for protein identification. Proteins identified with peptides at a user-specified threshold value from biological experiments are grouped as either control or treatment for further analysis in ProtQuant. ProtQuant utilizes a parametric (ANOVA) method, for calculating differences in protein expression based on the quantitative measure ΣXcorr. Alternatively ProtQuant output can be further processed using non-parametric Monte-Carlo resampling statistics to calculate P values for differential expression. Correction for multiple testing of ANOVA and resampling P values is done using Benjamini and Hochberg's method. The results of these statistical analyses are then combined into a single output file containing a comprehensive protein list with probabilities and differential expression analysis, associated P values, and resampling statistics. Conclusion For biologists carrying out proteomics by mass spectrometry, our workflow facilitates automated, easy to use analyses of Bioworks (3.2 or later versions) data. All the methods used in the workflow are peer-reviewed and as such the results of our workflow are compliant with proteomic data submission guidelines to public proteomic data repositories including PRIDE. Our workflow is a necessary intermediate step that is required to link proteomics data to biological knowledge for generating testable hypotheses.
Mass spectrometry-based protein identification methods are fundamental to proteomics. Biological experiments are usually performed in replicates and proteomic analyses generate huge datasets which need to be integrated and quantitatively analyzed. The Sequest search algorithm is a commonly used algorithm for identifying peptides and proteins from two dimensional liquid chromatography electrospray ionization tandem mass spectrometry (2-D LC ESI MS(2)) data. A number of proteomic pipelines that facilitate high throughput 'post data acquisition analysis' are described in the literature. However, these pipelines need to be updated to accommodate the rapidly evolving data analysis methods. Here, we describe a proteomic data analysis pipeline that specifically addresses two main issues pertinent to protein identification and differential expression analysis: 1) estimation of the probability of peptide and protein identifications and 2) non-parametric statistics for protein differential expression analysis. Our proteomic analysis workflow analyzes replicate datasets from a single experimental paradigm to generate a list of identified proteins with their probabilities and significant changes in protein expression using parametric and non-parametric statistics. The input for our workflow is Bioworks 3.2 Sequest (or a later version, including cluster) output in XML format. We use a decoy database approach to assign probability to peptide identifications. The user has the option to select "quality thresholds" on peptide identifications based on the P value. We also estimate probability for protein identification. Proteins identified with peptides at a user-specified threshold value from biological experiments are grouped as either control or treatment for further analysis in ProtQuant. ProtQuant utilizes a parametric (ANOVA) method, for calculating differences in protein expression based on the quantitative measure SigmaXcorr. Alternatively ProtQuant output can be further processed using non-parametric Monte-Carlo resampling statistics to calculate P values for differential expression. Correction for multiple testing of ANOVA and resampling P values is done using Benjamini and Hochberg's method. The results of these statistical analyses are then combined into a single output file containing a comprehensive protein list with probabilities and differential expression analysis, associated P values, and resampling statistics. For biologists carrying out proteomics by mass spectrometry, our workflow facilitates automated, easy to use analyses of Bioworks (3.2 or later versions) data. All the methods used in the workflow are peer-reviewed and as such the results of our workflow are compliant with proteomic data submission guidelines to public proteomic data repositories including PRIDE. Our workflow is a necessary intermediate step that is required to link proteomics data to biological knowledge for generating testable hypotheses.
Mass spectrometry-based protein identification methods are fundamental to proteomics. Biological experiments are usually performed in replicates and proteomic analyses generate huge datasets which need to be integrated and quantitatively analyzed. The Sequest search algorithm is a commonly used algorithm for identifying peptides and proteins from two dimensional liquid chromatography electrospray ionization tandem mass spectrometry (2-D LC ESI MS(2)) data. A number of proteomic pipelines that facilitate high throughput 'post data acquisition analysis' are described in the literature. However, these pipelines need to be updated to accommodate the rapidly evolving data analysis methods. Here, we describe a proteomic data analysis pipeline that specifically addresses two main issues pertinent to protein identification and differential expression analysis: 1) estimation of the probability of peptide and protein identifications and 2) non-parametric statistics for protein differential expression analysis. Our proteomic analysis workflow analyzes replicate datasets from a single experimental paradigm to generate a list of identified proteins with their probabilities and significant changes in protein expression using parametric and non-parametric statistics.BACKGROUNDMass spectrometry-based protein identification methods are fundamental to proteomics. Biological experiments are usually performed in replicates and proteomic analyses generate huge datasets which need to be integrated and quantitatively analyzed. The Sequest search algorithm is a commonly used algorithm for identifying peptides and proteins from two dimensional liquid chromatography electrospray ionization tandem mass spectrometry (2-D LC ESI MS(2)) data. A number of proteomic pipelines that facilitate high throughput 'post data acquisition analysis' are described in the literature. However, these pipelines need to be updated to accommodate the rapidly evolving data analysis methods. Here, we describe a proteomic data analysis pipeline that specifically addresses two main issues pertinent to protein identification and differential expression analysis: 1) estimation of the probability of peptide and protein identifications and 2) non-parametric statistics for protein differential expression analysis. Our proteomic analysis workflow analyzes replicate datasets from a single experimental paradigm to generate a list of identified proteins with their probabilities and significant changes in protein expression using parametric and non-parametric statistics.The input for our workflow is Bioworks 3.2 Sequest (or a later version, including cluster) output in XML format. We use a decoy database approach to assign probability to peptide identifications. The user has the option to select "quality thresholds" on peptide identifications based on the P value. We also estimate probability for protein identification. Proteins identified with peptides at a user-specified threshold value from biological experiments are grouped as either control or treatment for further analysis in ProtQuant. ProtQuant utilizes a parametric (ANOVA) method, for calculating differences in protein expression based on the quantitative measure SigmaXcorr. Alternatively ProtQuant output can be further processed using non-parametric Monte-Carlo resampling statistics to calculate P values for differential expression. Correction for multiple testing of ANOVA and resampling P values is done using Benjamini and Hochberg's method. The results of these statistical analyses are then combined into a single output file containing a comprehensive protein list with probabilities and differential expression analysis, associated P values, and resampling statistics.RESULTSThe input for our workflow is Bioworks 3.2 Sequest (or a later version, including cluster) output in XML format. We use a decoy database approach to assign probability to peptide identifications. The user has the option to select "quality thresholds" on peptide identifications based on the P value. We also estimate probability for protein identification. Proteins identified with peptides at a user-specified threshold value from biological experiments are grouped as either control or treatment for further analysis in ProtQuant. ProtQuant utilizes a parametric (ANOVA) method, for calculating differences in protein expression based on the quantitative measure SigmaXcorr. Alternatively ProtQuant output can be further processed using non-parametric Monte-Carlo resampling statistics to calculate P values for differential expression. Correction for multiple testing of ANOVA and resampling P values is done using Benjamini and Hochberg's method. The results of these statistical analyses are then combined into a single output file containing a comprehensive protein list with probabilities and differential expression analysis, associated P values, and resampling statistics.For biologists carrying out proteomics by mass spectrometry, our workflow facilitates automated, easy to use analyses of Bioworks (3.2 or later versions) data. All the methods used in the workflow are peer-reviewed and as such the results of our workflow are compliant with proteomic data submission guidelines to public proteomic data repositories including PRIDE. Our workflow is a necessary intermediate step that is required to link proteomics data to biological knowledge for generating testable hypotheses.CONCLUSIONFor biologists carrying out proteomics by mass spectrometry, our workflow facilitates automated, easy to use analyses of Bioworks (3.2 or later versions) data. All the methods used in the workflow are peer-reviewed and as such the results of our workflow are compliant with proteomic data submission guidelines to public proteomic data repositories including PRIDE. Our workflow is a necessary intermediate step that is required to link proteomics data to biological knowledge for generating testable hypotheses.
ArticleNumber S17
Author Burgess, Shane C
Nanduri, Bindu
Kumar, Ranjit
Pendarvis, Ken
AuthorAffiliation 4 MSU Life Sciences and Biotechnology Institute, Mississippi State University, Mississippi State, MS 39762, USA
1 Institute for Digital Biology, Mississippi State University, Mississippi State, MS 39762, USA
2 College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA
3 Mississippi Agriculture and Forestry Experiment Station, Mississippi State University, Mississippi State, MS 39762, USA
AuthorAffiliation_xml – name: 2 College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA
– name: 4 MSU Life Sciences and Biotechnology Institute, Mississippi State University, Mississippi State, MS 39762, USA
– name: 1 Institute for Digital Biology, Mississippi State University, Mississippi State, MS 39762, USA
– name: 3 Mississippi Agriculture and Forestry Experiment Station, Mississippi State University, Mississippi State, MS 39762, USA
Author_xml – sequence: 1
  givenname: Ken
  surname: Pendarvis
  fullname: Pendarvis, Ken
  organization: Institute for Digital Biology, Mississippi State University, MSU Life Sciences and Biotechnology Institute, Mississippi State University
– sequence: 2
  givenname: Ranjit
  surname: Kumar
  fullname: Kumar, Ranjit
  email: rkumar@cvm.msstate.edu
  organization: Institute for Digital Biology, Mississippi State University, College of Veterinary Medicine, Mississippi State University
– sequence: 3
  givenname: Shane C
  surname: Burgess
  fullname: Burgess, Shane C
  organization: Institute for Digital Biology, Mississippi State University, College of Veterinary Medicine, Mississippi State University, Mississippi Agriculture and Forestry Experiment Station, Mississippi State University, MSU Life Sciences and Biotechnology Institute, Mississippi State University
– sequence: 4
  givenname: Bindu
  surname: Nanduri
  fullname: Nanduri, Bindu
  organization: Institute for Digital Biology, Mississippi State University, College of Veterinary Medicine, Mississippi State University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19811682$$D View this record in MEDLINE/PubMed
BookMark eNqFUk1v1DAQtVAR_YB_gFBunFI8iWMnHJCqFZRKlTgAZ8txxosXJ15sp6v99zjsqrQcymFk63nem5nnOScnk5-QkNdALwFa_g6YgLIC2pRAy68AOcQzcnYPnzy4n5LzGDeUgmhp84KcQtcC8LY6I6urqVBz8qNKOBTb4BP60epiUEkValJuH20sdj78NM7vCuNDMaoYi7hFnYIfMYX9S_LcKBfx1fG8IN8_ffy2-lzefrm-WV3dlrqBLpXIGMBQtZ2u-4EJg702fduB6KCuBaMN07zpel41fKCmoQYYb9Ew2uc5VN3XF-TmoDt4tZHbYEcV9tIrK_8APqylCslqh7LrFaW9AM4rwzqjFaKoQNCmRpG1edZqDlrztFX7nXLuXhCoXAyWi3tycW9BIkAOkXkfDrzt3I84aJxSUO5RM49fJvtDrv2drKuKQ9tmgbdHgeB_zRiTHG3U6Jya0M9RippRwYHSnPnmYam__R0_LyewQ4IOPsaA5ukR8o7kWEZ4_w9N26SS9UvD1v2PfPQt5lrTGoPc-DnkPYlP834DMAfP0A
CitedBy_id crossref_primary_10_1186_s12864_015_1798_4
crossref_primary_10_1186_s12864_018_4442_2
crossref_primary_10_3382_ps_2012_02213
crossref_primary_10_1186_1471_2105_11_S6_S9
crossref_primary_10_1186_1752_0509_6_123
crossref_primary_10_1186_1471_2105_10_S11_S1
crossref_primary_10_1002_pmic_201000471
crossref_primary_10_1111_j_1365_2052_2010_02158_x
crossref_primary_10_1021_acs_jproteome_8b00840
crossref_primary_10_1021_pr2000804
crossref_primary_10_1186_1471_2105_11_S6_S1
crossref_primary_10_1016_j_talanta_2010_10_029
Cites_doi 10.1021/ac0498563
10.1002/pmic.200701048
10.1002/(SICI)1522-2683(19991201)20:18<3551::AID-ELPS3551>3.0.CO;2-2
10.1021/pr034038x
10.1016/j.dci.2006.02.002
10.1021/pr700747q
10.1093/bioinformatics/bth092
10.1577/H03-051.1
10.1021/ac049305c
10.1016/j.bbapap.2008.09.005
10.1186/1471-2105-8-S7-S24
10.1021/pr050360r
10.1021/pr070542g
10.1021/ac010617e
10.1002/pmic.200500112
10.1021/ac00104a020
ContentType Journal Article
Copyright Pendarvis et al; licensee BioMed Central Ltd. 2009 This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright ©2009 Pendarvis et al; licensee BioMed Central Ltd. 2009 Pendarvis et al; licensee BioMed Central Ltd.
Copyright_xml – notice: Pendarvis et al; licensee BioMed Central Ltd. 2009 This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
– notice: Copyright ©2009 Pendarvis et al; licensee BioMed Central Ltd. 2009 Pendarvis et al; licensee BioMed Central Ltd.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1186/1471-2105-10-S11-S17
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2105
EndPage S17
ExternalDocumentID oai_doaj_org_article_9ba00b71662f49fcaee7217053e70f56
10.1186/1471-2105-10-s11-s17
PMC3226188
19811682
10_1186_1471_2105_10_S11_S17
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GroupedDBID ---
0R~
23N
2VQ
2WC
4.4
53G
5VS
6J9
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADRAZ
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C1A
C6C
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
ICD
IHR
INH
INR
IPNFZ
ISR
ITC
K6V
K7-
KQ8
LK8
M1P
M48
M7P
MK~
ML0
M~E
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RIG
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XH6
XSB
AAYXX
CITATION
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
123
ADTOC
UNPAY
ID FETCH-LOGICAL-c519t-e4411d289c3bd47febcfb8917913374054c659b6256d0f50f1468ef40b147a3b3
IEDL.DBID UNPAY
ISSN 1471-2105
IngestDate Fri Oct 03 12:51:33 EDT 2025
Sun Oct 26 04:17:12 EDT 2025
Tue Sep 30 16:54:20 EDT 2025
Fri Sep 05 14:28:57 EDT 2025
Thu Apr 03 07:09:56 EDT 2025
Wed Oct 01 04:15:15 EDT 2025
Thu Apr 24 23:04:22 EDT 2025
Sat Sep 06 07:21:15 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue Suppl 11
Keywords Differential Protein Expression
Differential Expression Analysis
Protein Identification
Differentially Express
Custom Perl Script
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c519t-e4411d289c3bd47febcfb8917913374054c659b6256d0f50f1468ef40b147a3b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://bmcbioinformatics.biomedcentral.com/counter/pdf/10.1186/1471-2105-10-S11-S17
PMID 19811682
PQID 734076100
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_9ba00b71662f49fcaee7217053e70f56
unpaywall_primary_10_1186_1471_2105_10_s11_s17
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3226188
proquest_miscellaneous_734076100
pubmed_primary_19811682
crossref_primary_10_1186_1471_2105_10_S11_S17
crossref_citationtrail_10_1186_1471_2105_10_S11_S17
springer_journals_10_1186_1471_2105_10_S11_S17
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20091008
PublicationDateYYYYMMDD 2009-10-08
PublicationDate_xml – month: 10
  year: 2009
  text: 20091008
  day: 8
PublicationDecade 2000
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC bioinformatics
PublicationTitleAbbrev BMC Bioinformatics
PublicationTitleAlternate BMC Bioinformatics
PublicationYear 2009
Publisher BioMed Central
BMC
Publisher_xml – name: BioMed Central
– name: BMC
References JR Yates 3rd (3399_CR2) 1995; 67
Y Benjamini (3399_CR15) 1995; 57
R Craig (3399_CR4) 2004; 20
SR Lee (3399_CR5) 2009; 1794
SR Lee (3399_CR6) 2006; 30
DA Wolters (3399_CR1) 2001; 73
B Nanduri (3399_CR8) 2005; 5
B Nanduri (3399_CR14) 2008; 8
H Choi (3399_CR10) 2008; 7
SM Bridges (3399_CR13) 2007; 8
B Nanduri (3399_CR7) 2006; 5
DN Perkins (3399_CR3) 1999; 20
D Lopez-Ferrer (3399_CR16) 2004; 76
ML Williams (3399_CR17) 2003; 15
H Liu (3399_CR11) 2004; 76
J Gao (3399_CR12) 2003; 2
H Choi (3399_CR9) 2008; 7
10612281 - Electrophoresis. 1999 Dec;20(18):3551-67
15571333 - Anal Chem. 2004 Dec 1;76(23):6853-60
16247735 - Proteomics. 2005 Dec;5(18):4852-63
11774908 - Anal Chem. 2001 Dec 1;73(23):5683-90
18067251 - J Proteome Res. 2008 Jan;7(1):47-50
18047724 - BMC Bioinformatics. 2007;8 Suppl 7:S24
18159924 - J Proteome Res. 2008 Jan;7(1):254-65
18491321 - Proteomics. 2008 May;8(10):2104-14
14692458 - J Proteome Res. 2003 Nov-Dec;2(6):643-9
7741214 - Anal Chem. 1995 Apr 15;67(8):1426-36
16512672 - J Proteome Res. 2006 Mar;5(3):572-80
16566999 - Dev Comp Immunol. 2006;30(11):1070-83
14976030 - Bioinformatics. 2004 Jun 12;20(9):1466-7
18930168 - Biochim Biophys Acta. 2009 Jan;1794(1):14-22
15253663 - Anal Chem. 2004 Jul 15;76(14):4193-201
References_xml – volume: 76
  start-page: 4193
  issue: 14
  year: 2004
  ident: 3399_CR11
  publication-title: Anal Chem
  doi: 10.1021/ac0498563
– volume: 8
  start-page: 2104
  issue: 10
  year: 2008
  ident: 3399_CR14
  publication-title: Proteomics
  doi: 10.1002/pmic.200701048
– volume: 20
  start-page: 3551
  issue: 18
  year: 1999
  ident: 3399_CR3
  publication-title: Electrophoresis
  doi: 10.1002/(SICI)1522-2683(19991201)20:18<3551::AID-ELPS3551>3.0.CO;2-2
– volume: 2
  start-page: 643
  issue: 6
  year: 2003
  ident: 3399_CR12
  publication-title: J Proteome Res
  doi: 10.1021/pr034038x
– volume: 30
  start-page: 1070
  issue: 11
  year: 2006
  ident: 3399_CR6
  publication-title: Dev Comp Immunol
  doi: 10.1016/j.dci.2006.02.002
– volume: 7
  start-page: 47
  issue: 1
  year: 2008
  ident: 3399_CR10
  publication-title: J Proteome Res
  doi: 10.1021/pr700747q
– volume: 20
  start-page: 1466
  issue: 9
  year: 2004
  ident: 3399_CR4
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bth092
– volume: 15
  start-page: 264
  year: 2003
  ident: 3399_CR17
  publication-title: Journal of Aquatic Animal Health
  doi: 10.1577/H03-051.1
– volume: 57
  start-page: 289
  issue: 1
  year: 1995
  ident: 3399_CR15
  publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology)
– volume: 76
  start-page: 6853
  issue: 23
  year: 2004
  ident: 3399_CR16
  publication-title: Anal Chem
  doi: 10.1021/ac049305c
– volume: 1794
  start-page: 14
  issue: 1
  year: 2009
  ident: 3399_CR5
  publication-title: Biochim Biophys Acta
  doi: 10.1016/j.bbapap.2008.09.005
– volume: 8
  start-page: S24
  issue: Suppl 7
  year: 2007
  ident: 3399_CR13
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-8-S7-S24
– volume: 5
  start-page: 572
  issue: 3
  year: 2006
  ident: 3399_CR7
  publication-title: J Proteome Res
  doi: 10.1021/pr050360r
– volume: 7
  start-page: 254
  issue: 1
  year: 2008
  ident: 3399_CR9
  publication-title: J Proteome Res
  doi: 10.1021/pr070542g
– volume: 73
  start-page: 5683
  issue: 23
  year: 2001
  ident: 3399_CR1
  publication-title: Anal Chem
  doi: 10.1021/ac010617e
– volume: 5
  start-page: 4852
  issue: 18
  year: 2005
  ident: 3399_CR8
  publication-title: Proteomics
  doi: 10.1002/pmic.200500112
– volume: 67
  start-page: 1426
  issue: 8
  year: 1995
  ident: 3399_CR2
  publication-title: Anal Chem
  doi: 10.1021/ac00104a020
– reference: 14692458 - J Proteome Res. 2003 Nov-Dec;2(6):643-9
– reference: 18047724 - BMC Bioinformatics. 2007;8 Suppl 7:S24
– reference: 18491321 - Proteomics. 2008 May;8(10):2104-14
– reference: 18067251 - J Proteome Res. 2008 Jan;7(1):47-50
– reference: 7741214 - Anal Chem. 1995 Apr 15;67(8):1426-36
– reference: 15253663 - Anal Chem. 2004 Jul 15;76(14):4193-201
– reference: 18159924 - J Proteome Res. 2008 Jan;7(1):254-65
– reference: 11774908 - Anal Chem. 2001 Dec 1;73(23):5683-90
– reference: 16566999 - Dev Comp Immunol. 2006;30(11):1070-83
– reference: 15571333 - Anal Chem. 2004 Dec 1;76(23):6853-60
– reference: 16512672 - J Proteome Res. 2006 Mar;5(3):572-80
– reference: 18930168 - Biochim Biophys Acta. 2009 Jan;1794(1):14-22
– reference: 16247735 - Proteomics. 2005 Dec;5(18):4852-63
– reference: 14976030 - Bioinformatics. 2004 Jun 12;20(9):1466-7
– reference: 10612281 - Electrophoresis. 1999 Dec;20(18):3551-67
SSID ssj0017805
Score 2.0217664
Snippet Background Mass spectrometry-based protein identification methods are fundamental to proteomics. Biological experiments are usually performed in replicates and...
Mass spectrometry-based protein identification methods are fundamental to proteomics. Biological experiments are usually performed in replicates and proteomic...
Abstract Background Mass spectrometry-based protein identification methods are fundamental to proteomics. Biological experiments are usually performed in...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage S17
SubjectTerms Algorithms
Bioinformatics
Biomedical and Life Sciences
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Databases, Protein
Life Sciences
Mass Spectrometry - methods
Microarrays
Proceedings
Proteins - chemistry
Proteomics - methods
Software
Statistics as Topic
Workflow
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEB1KoLQ9lKRfcZMWHXpVYq1kST6mISEE2lMDuQnJlmhh6w1ZL2H_fWdkr5ulpXvpwRdZAutpJL2xZp4APmkbVJjZxLVVLVfBaB68kTxWAlsoEa2gBOcvX_XVjbq-rW4fXfVFMWGDPPAA3GkdfFkGZPV6llSdGh8jOi0GbSeaMlVZbLu09caZGs8PSKk_5xUZwdGpqcakOWH16VRGKxBOZnzM1qaUtfv_Rjj_jJucDk9fwLNVd-fXD34-f7Q_Xe7Dy5FYsrOhQwfwJHav4Olw1eT6NZyfdcyv-gUS1NiyrM5A-ciMIkSZH5VJGEVppfnigSGVZT-RV7OciUmSBv39-g3cXF58O7_i4wUKvEFi1vOIXEe06FI1MrTKpBiaFGxNiqRSGqRqqtFVHdAF0i1iWSbKw4pJlQFB8jLIt7DXLbp4CEzWbRsMFvqGKuGoYDskh6atQlOZsgC5QdA1o7o4XXIxd9nLsNoR7o5wpxLEHR9TAJ9a3Q3qGjvqf6bBmeqSNnYuQItxo8W4XRZTANsMrcO5RAckvouL1dIZqei3Tom9eTeM9O-vqq0Q2s4KMFs2sPUp22-6H9-zXDcumVpYW8DJxlrcuE4sd3T2ZLKpf6OzxAZLYd7_D3SO4Hk-MMthjsew19-v4gfkXX34mKfYL4LrI2c
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2VIgQcKr4JBeQDVy_J2rGdA0KlalUhlRMr9RbZiQ1IaVJ2syr775nxJltWLVTikIvXI9meGfvN2vMG4J0yTrqpCVwZWXPptOLOasF9nqGEzLzJKMH59Is6mcnPZ_nZDow1W4cFXNwY2lE9qdm8mfz6ufqIDv8hOrxR7zPcYDmGLpFSE90TP30H7uJZVVAxh1N5da9ADP5DAt3fJCONqMkyZaZbZ1Wk9L8Jh15_Trm5U30I95fthV1d2qb549g6fgR7A95kB2sDeQw7vn0C99YVKFdP4fCgZXbZd4hbfc0iaQOlKTN6OMrsQFjC6PFWaLpLhgiXnSPcZjFBk5gO-vnqGcyOj74envChrgKvEK_13CMEymqMtCrhaqmDd1VwpiCiUiE0IjhZqbxwGBmpOg15Gig9yweZOlwvK5x4Drtt1_qXwERR105jo62oU-EsyiFm1HXuqlynCYhxBctqIB2n2hdNGYMPo0pSQUkqoBZUAX46Ab6RuliTbtzS_xMpZ9OXKLNjQzf_Vg4eWOLY0tRheKimQRahst5j9KtxE_IaZ6kSYKNqS3Qxujexre-Wi1ILSf_2pDibF2tNX41qsJQE9JYNbA1l-5f2x_fI4o07qcqMSWAyWks5Wv8tk51sbOrfq7NAgUWmX_332PbhQbw8i08eX8NuP1_6N4jBevc2utVvgWsqLA
  priority: 102
  providerName: Scholars Portal
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIgQ9VLwKoYB84IhLvHZs51hWrSokOFGpN8tObIG0ZKtuVtX-e2a82bQroBWHXByPYo9f32RmPgN80DaoMLGJa6taroLRPHgjeawESigRraAE56_f9Nm5-nJRXezAx00uzG3_vbD6k8DNk6NZkukycenhYx7AQzymdHbN6unoMyB2_iE57l-SW4dP5uj_G7D8Mz5ydJLuweNld-lX1342u3UOnT6F_QFAsuP1iD-Dndg9h0frKyVXL2B63DG_7OcIRGPLMgsD5R0zigRlfmAgYRSNlWbza4aQlf1C_MxyxiVRF_RXq5dwfnryfXrGh4sSeIMArOcRMY1o0XRqZGiVSTE0KdiamEelNAjJVKOrOqCpo9syVWWifKuYVBlQSV4GeQC73byLr4HJum2DwULfUKU6eJRDEGjaKjSVKQuQGw26ZmARp8ssZi5bE1Y70rsjvVMJ6h0fUwAfpS7XLBr31P9MgzPWJQ7sXIBTww1LymHbyjKgvacnSdWp8TGiOWtwV4kGe6kLYJuhdbhmyBHiuzhfLpyRin7flNibV-uRvmlVbYXQdlKA2ZoDW03ZftP9_JFpuXFr1MLaAo42s8UN-8Hins4ejXPqbu0sUGAhzJv__cIhPMlOsBy6-BZ2-6tlfIdYqg_v8xL6DRySEw0
  priority: 102
  providerName: Springer Nature
Title An automated proteomic data analysis workflow for mass spectrometry
URI https://link.springer.com/article/10.1186/1471-2105-10-S11-S17
https://www.ncbi.nlm.nih.gov/pubmed/19811682
https://www.proquest.com/docview/734076100
https://pubmed.ncbi.nlm.nih.gov/PMC3226188
https://bmcbioinformatics.biomedcentral.com/counter/pdf/10.1186/1471-2105-10-S11-S17
https://doaj.org/article/9ba00b71662f49fcaee7217053e70f56
UnpaywallVersion publishedVersion
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMedCentral
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: KQ8
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: KQ8
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: ABDBF
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: ADMLS
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DIK
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RPM
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 8FG
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M48
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: Springer Nature HAS Fully OA
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: AAJSJ
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: C6C
  dateStart: 20000112
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db5swED-1iaZ1D_texz4iP-yVFIKxzSONmlWRGlVbI2VPCIPpqlGIElCV_fU7G0ibdVo1aQ8mkuMTvuPO3OG7nwE-MSGpHInMZoKmNpWc2TLmnq18Fymoq4SrC5zPZux0TqcLf7EHF10tjLxO5FXZgoZqoOLh3TL0vKly0KcoqNXRMs0aoxfsyMVF1sbwxcBqooli4_vQZz566D3oz2fn4TdTaNQOa6vo7pGukXRtTi-7fUsZMP8_eaD3Eym3u6lP4HFdLOPNTZznd15Yk2dQd6w2eSo_hnUlh8nP31Ag_7csnsPT1sMlYaOSL2BPFS_hUXPm5eYVjMOCxHVV4r1USgxMhC6MJjpVlcQtRArR6WJZXt4QnBW5RgefmJJQja1QrTavYT45uRif2u1JDnaCHmJlK3S63BRju8STKeWZkkkmRaChUT2Po89IE3xSEmMxljqZ72S6IExl1JHIS-xJ7w30irJQb4F4QZpKjp1xogcFMkY69FJ56svE544FXvfkoqSFOdenbeSRCXcEi7R4Ii0e3YPiwcYtsLdUywbm44Hxx1optmM1SLfpKFeXUWvzEc7NcSQGpGyU0SBLYqUw3ua47CmOXDILSKdSERq13qmJC1XW64h7VH9fcpCbw0bDbmcVCNdlYmQB39G9nans_lNcfTe44bh2M1cIC4adlkbtgrV-gNnhVpf_Lh20Hmz83b8SvIcDs0tncis_QK9a1eojOnuVHMA-X3C8isnnAfTDcPp1ir_HJ7PzL9g7ZuOB-YyC1zMqBq2l_wJv-VP9
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9swDCa6FkO7w7Bn5z112FWbFcmSfMyKFVnW9rIW6E2QbKkbkNlF4qDIvx-lON6CPYodfFEkRKJE-qNJfgJ4K7UTbqQDlVrUVDglqbOKU18wHCGY1ywWOJ-eycmFmF4WlzsgN7UwKdt9E5JMljqptZbvGZpRig5KIs5EJcRH3YG9mGaFCrk3Hk-_TIf4QWTq7wvl_jZ260WU-Pr_BDJ_z5UcAqb3YH_ZXNvVjZ3NfnknHT-A-z2YJOP17j-EHd88grvr6yVXj-Fo3BC77FoEpb4miZEh1iCTmBVKbM9GQmJmVpi1NwThK_mOWJqk6stIY9DNV0_g4vjj-dGE9pcm0ArBWEc94htWoxtVcVcLFbyrgtNlZCHlXCE8E5UsSoduj6zzUOQh1l75IHKHQrLc8aew27SNfwaEl3XtFDbaKnYqncVxCAhVXbiqUHkGfCNBU_WM4vFii5lJnoWWJsrdRLnHFpQ7PioDOoy6XjNq3NL_Q9ycoW_kw04N7fzK9OplcG557tD3k6MgylBZ79G1VWhhvMJVygzIZmsN6k8MitjGt8uFUVzETzk5ruZwvdM_Z1VqxqQeZaC2zsDWVLZ_ab59TRTdaCYl0zqD4Syb3jYsblnsu-FM_Vs6CxywYOr5__7DG9ifnJ-emJNPZ59fwEEKjqWUxpew282X_hVirM697hXqB81KG2Y
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BERQOiGcJTx-4hsYbx3aOZWFVXhUHKvVm2YkNSEuy2s2q2n_PjJMNXfGoOOTieBR7_PomM_MZ4KXUTriJDqnUok6FUzJ1VuWpLzhKCO41pwTnTyfy-FS8PyvOLuTCxGj3rUuyz2kglqamO1zUoV_iWh5y3FJTNFYiiSYuSHzUVbgm8HyjWwymcjp6Eoizf0iZ-5vkzpEUmfv_BDd_j5ocXae3YH_dLOzm3M7nF06n2R24PcBKdtTPg7twxTf34Hp_0eTmPkyPGmbXXYvw1NcscjNQNjKj-FBmB14SRjFaYd6eMwSy7AeiahbzMInQoFtuHsDp7O2X6XE6XJ-QVgjLutQj0uE1GlRV7mqhgndVcLokPtI8VwjURCWL0qEBJOssFFmgLCwfROZQSTZ3-UPYa9rGPwKWl3XtFBbaiiqVzqIcQkNVF64qVJZAvtWgqQZucbriYm6ijaGlIb0b0juVoN7xUQmko9Si59a4pP5rGpyxLjFjx4J2-dUMC81g27LMoRUoJ0GUobLeo5GrcK_xCnspE2DboTW4ksg9YhvfrldG5YJ-6mTYm4N-pH-1qtScSz1JQO3MgZ2m7L5pvn-LZN24YUqudQLjrDbDLrG6pLOvxjn1b-2sUGDF1eP__cILuPH5zcx8fHfy4QncjF6yGNv4FPa65do_Q7DVuedxNf0EFKAeQw
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9swDCa6FMO2w94P7wUddrVrx7IkH7NiRTFgxQ4N0J0MSZa2oq4dJDaK9NeXku20WYcVA3bQRRERkSZl0iI_AnxiQlE1FTZkgpYhVZyFSvI0NFmCFDQxInEFzt-O2OGcfj3JTnbgeKyFUedanTYDaKgDKo5ulqFXfZWD66JglnuL0vZGL9hegodsiOGLh9VEE8XB78Euy9BDn8Du_Oj77IcvNBqWDVV0t0hXSLry3cuu31IezP9PHujtRMrNbeojeNDVC7m-kFV144V18AS6kdU-T-Us6loV6cvfUCD_tyyewuPBwyWzXiWfwY6pn8P9vufl-gXsz2oiu7bB_zIl8TARrjCauFRVIgeIFOLSxWzVXBDcFTlHB5_4klCHrdAu1y9hfvDleP8wHDo5hBo9xDY06HQlJcZ2OlUl5dYobZXIHTRqmnL0GanGJ6UwFmNlbLPYuoIwY2mskBeZqvQVTOqmNm-ApHlZKo6TUrtFuZJIh14qLzOlMx4HkI5PrtADzLnrtlEVPtwRrHDiKZx43AyKBwcPINxQLXqYjzvWf3ZKsVnrQLr9RLP8WQw2X-De4lhhQMqmluZWS2Mw3uZ47BmOXLIAyKhSBRq1u6mRtWm6VcFT6r4vxcjN617DrneViyRhYhoA39K9ra1s_1Kf_vK44Xh2s0SIAKJRS4vhwFrdwWy00eW_SwetBwd_-68E7-Chv6XzuZXvYdIuO_MBnb1WfRxs9woZQ0xe
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+automated+proteomic+data+analysis+workflow+for+mass+spectrometry&rft.jtitle=BMC+bioinformatics&rft.au=Pendarvis%2C+Ken&rft.au=Kumar%2C+Ranjit&rft.au=Burgess%2C+Shane+C&rft.au=Nanduri%2C+Bindu&rft.date=2009-10-08&rft.pub=BioMed+Central&rft.eissn=1471-2105&rft.volume=10&rft.issue=Suppl+11&rft.spage=S17&rft.epage=S17&rft_id=info:doi/10.1186%2F1471-2105-10-S11-S17&rft_id=info%3Apmid%2F19811682&rft.externalDocID=PMC3226188
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon