An automated proteomic data analysis workflow for mass spectrometry
Background Mass spectrometry-based protein identification methods are fundamental to proteomics. Biological experiments are usually performed in replicates and proteomic analyses generate huge datasets which need to be integrated and quantitatively analyzed. The Sequest™ search algorithm is a common...
        Saved in:
      
    
          | Published in | BMC bioinformatics Vol. 10; no. Suppl 11; p. S17 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        London
          BioMed Central
    
        08.10.2009
     BMC  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1471-2105 1471-2105  | 
| DOI | 10.1186/1471-2105-10-S11-S17 | 
Cover
| Abstract | Background
Mass spectrometry-based protein identification methods are fundamental to proteomics. Biological experiments are usually performed in replicates and proteomic analyses generate huge datasets which need to be integrated and quantitatively analyzed. The Sequest™ search algorithm is a commonly used algorithm for identifying peptides and proteins from two dimensional liquid chromatography electrospray ionization tandem mass spectrometry (2-D LC ESI MS
2
) data. A number of proteomic pipelines that facilitate high throughput 'post data acquisition analysis' are described in the literature. However, these pipelines need to be updated to accommodate the rapidly evolving data analysis methods. Here, we describe a proteomic data analysis pipeline that specifically addresses two main issues pertinent to protein identification and differential expression analysis: 1) estimation of the probability of peptide and protein identifications and 2) non-parametric statistics for protein differential expression analysis. Our proteomic analysis workflow analyzes replicate datasets from a single experimental paradigm to generate a list of identified proteins with their probabilities and significant changes in protein expression using parametric and non-parametric statistics.
Results
The input for our workflow is Bioworks™ 3.2 Sequest (or a later version, including cluster) output in XML format. We use a decoy database approach to assign probability to peptide identifications. The user has the option to select "quality thresholds" on peptide identifications based on the P value. We also estimate probability for protein identification. Proteins identified with peptides at a user-specified threshold value from biological experiments are grouped as either control or treatment for further analysis in ProtQuant. ProtQuant utilizes a parametric (ANOVA) method, for calculating differences in protein expression based on the quantitative measure ΣXcorr. Alternatively ProtQuant output can be further processed using non-parametric Monte-Carlo resampling statistics to calculate P values for differential expression. Correction for multiple testing of ANOVA and resampling P values is done using Benjamini and Hochberg's method. The results of these statistical analyses are then combined into a single output file containing a comprehensive protein list with probabilities and differential expression analysis, associated P values, and resampling statistics.
Conclusion
For biologists carrying out proteomics by mass spectrometry, our workflow facilitates automated, easy to use analyses of Bioworks (3.2 or later versions) data. All the methods used in the workflow are peer-reviewed and as such the results of our workflow are compliant with proteomic data submission guidelines to public proteomic data repositories including PRIDE. Our workflow is a necessary intermediate step that is required to link proteomics data to biological knowledge for generating testable hypotheses. | 
    
|---|---|
| AbstractList | Background
Mass spectrometry-based protein identification methods are fundamental to proteomics. Biological experiments are usually performed in replicates and proteomic analyses generate huge datasets which need to be integrated and quantitatively analyzed. The Sequest™ search algorithm is a commonly used algorithm for identifying peptides and proteins from two dimensional liquid chromatography electrospray ionization tandem mass spectrometry (2-D LC ESI MS
2
) data. A number of proteomic pipelines that facilitate high throughput 'post data acquisition analysis' are described in the literature. However, these pipelines need to be updated to accommodate the rapidly evolving data analysis methods. Here, we describe a proteomic data analysis pipeline that specifically addresses two main issues pertinent to protein identification and differential expression analysis: 1) estimation of the probability of peptide and protein identifications and 2) non-parametric statistics for protein differential expression analysis. Our proteomic analysis workflow analyzes replicate datasets from a single experimental paradigm to generate a list of identified proteins with their probabilities and significant changes in protein expression using parametric and non-parametric statistics.
Results
The input for our workflow is Bioworks™ 3.2 Sequest (or a later version, including cluster) output in XML format. We use a decoy database approach to assign probability to peptide identifications. The user has the option to select "quality thresholds" on peptide identifications based on the P value. We also estimate probability for protein identification. Proteins identified with peptides at a user-specified threshold value from biological experiments are grouped as either control or treatment for further analysis in ProtQuant. ProtQuant utilizes a parametric (ANOVA) method, for calculating differences in protein expression based on the quantitative measure ΣXcorr. Alternatively ProtQuant output can be further processed using non-parametric Monte-Carlo resampling statistics to calculate P values for differential expression. Correction for multiple testing of ANOVA and resampling P values is done using Benjamini and Hochberg's method. The results of these statistical analyses are then combined into a single output file containing a comprehensive protein list with probabilities and differential expression analysis, associated P values, and resampling statistics.
Conclusion
For biologists carrying out proteomics by mass spectrometry, our workflow facilitates automated, easy to use analyses of Bioworks (3.2 or later versions) data. All the methods used in the workflow are peer-reviewed and as such the results of our workflow are compliant with proteomic data submission guidelines to public proteomic data repositories including PRIDE. Our workflow is a necessary intermediate step that is required to link proteomics data to biological knowledge for generating testable hypotheses. Abstract Background Mass spectrometry-based protein identification methods are fundamental to proteomics. Biological experiments are usually performed in replicates and proteomic analyses generate huge datasets which need to be integrated and quantitatively analyzed. The Sequest™ search algorithm is a commonly used algorithm for identifying peptides and proteins from two dimensional liquid chromatography electrospray ionization tandem mass spectrometry (2-D LC ESI MS2) data. A number of proteomic pipelines that facilitate high throughput 'post data acquisition analysis' are described in the literature. However, these pipelines need to be updated to accommodate the rapidly evolving data analysis methods. Here, we describe a proteomic data analysis pipeline that specifically addresses two main issues pertinent to protein identification and differential expression analysis: 1) estimation of the probability of peptide and protein identifications and 2) non-parametric statistics for protein differential expression analysis. Our proteomic analysis workflow analyzes replicate datasets from a single experimental paradigm to generate a list of identified proteins with their probabilities and significant changes in protein expression using parametric and non-parametric statistics. Results The input for our workflow is Bioworks™ 3.2 Sequest (or a later version, including cluster) output in XML format. We use a decoy database approach to assign probability to peptide identifications. The user has the option to select "quality thresholds" on peptide identifications based on the P value. We also estimate probability for protein identification. Proteins identified with peptides at a user-specified threshold value from biological experiments are grouped as either control or treatment for further analysis in ProtQuant. ProtQuant utilizes a parametric (ANOVA) method, for calculating differences in protein expression based on the quantitative measure ΣXcorr. Alternatively ProtQuant output can be further processed using non-parametric Monte-Carlo resampling statistics to calculate P values for differential expression. Correction for multiple testing of ANOVA and resampling P values is done using Benjamini and Hochberg's method. The results of these statistical analyses are then combined into a single output file containing a comprehensive protein list with probabilities and differential expression analysis, associated P values, and resampling statistics. Conclusion For biologists carrying out proteomics by mass spectrometry, our workflow facilitates automated, easy to use analyses of Bioworks (3.2 or later versions) data. All the methods used in the workflow are peer-reviewed and as such the results of our workflow are compliant with proteomic data submission guidelines to public proteomic data repositories including PRIDE. Our workflow is a necessary intermediate step that is required to link proteomics data to biological knowledge for generating testable hypotheses. Mass spectrometry-based protein identification methods are fundamental to proteomics. Biological experiments are usually performed in replicates and proteomic analyses generate huge datasets which need to be integrated and quantitatively analyzed. The Sequest search algorithm is a commonly used algorithm for identifying peptides and proteins from two dimensional liquid chromatography electrospray ionization tandem mass spectrometry (2-D LC ESI MS(2)) data. A number of proteomic pipelines that facilitate high throughput 'post data acquisition analysis' are described in the literature. However, these pipelines need to be updated to accommodate the rapidly evolving data analysis methods. Here, we describe a proteomic data analysis pipeline that specifically addresses two main issues pertinent to protein identification and differential expression analysis: 1) estimation of the probability of peptide and protein identifications and 2) non-parametric statistics for protein differential expression analysis. Our proteomic analysis workflow analyzes replicate datasets from a single experimental paradigm to generate a list of identified proteins with their probabilities and significant changes in protein expression using parametric and non-parametric statistics. The input for our workflow is Bioworks 3.2 Sequest (or a later version, including cluster) output in XML format. We use a decoy database approach to assign probability to peptide identifications. The user has the option to select "quality thresholds" on peptide identifications based on the P value. We also estimate probability for protein identification. Proteins identified with peptides at a user-specified threshold value from biological experiments are grouped as either control or treatment for further analysis in ProtQuant. ProtQuant utilizes a parametric (ANOVA) method, for calculating differences in protein expression based on the quantitative measure SigmaXcorr. Alternatively ProtQuant output can be further processed using non-parametric Monte-Carlo resampling statistics to calculate P values for differential expression. Correction for multiple testing of ANOVA and resampling P values is done using Benjamini and Hochberg's method. The results of these statistical analyses are then combined into a single output file containing a comprehensive protein list with probabilities and differential expression analysis, associated P values, and resampling statistics. For biologists carrying out proteomics by mass spectrometry, our workflow facilitates automated, easy to use analyses of Bioworks (3.2 or later versions) data. All the methods used in the workflow are peer-reviewed and as such the results of our workflow are compliant with proteomic data submission guidelines to public proteomic data repositories including PRIDE. Our workflow is a necessary intermediate step that is required to link proteomics data to biological knowledge for generating testable hypotheses. Mass spectrometry-based protein identification methods are fundamental to proteomics. Biological experiments are usually performed in replicates and proteomic analyses generate huge datasets which need to be integrated and quantitatively analyzed. The Sequest search algorithm is a commonly used algorithm for identifying peptides and proteins from two dimensional liquid chromatography electrospray ionization tandem mass spectrometry (2-D LC ESI MS(2)) data. A number of proteomic pipelines that facilitate high throughput 'post data acquisition analysis' are described in the literature. However, these pipelines need to be updated to accommodate the rapidly evolving data analysis methods. Here, we describe a proteomic data analysis pipeline that specifically addresses two main issues pertinent to protein identification and differential expression analysis: 1) estimation of the probability of peptide and protein identifications and 2) non-parametric statistics for protein differential expression analysis. Our proteomic analysis workflow analyzes replicate datasets from a single experimental paradigm to generate a list of identified proteins with their probabilities and significant changes in protein expression using parametric and non-parametric statistics.BACKGROUNDMass spectrometry-based protein identification methods are fundamental to proteomics. Biological experiments are usually performed in replicates and proteomic analyses generate huge datasets which need to be integrated and quantitatively analyzed. The Sequest search algorithm is a commonly used algorithm for identifying peptides and proteins from two dimensional liquid chromatography electrospray ionization tandem mass spectrometry (2-D LC ESI MS(2)) data. A number of proteomic pipelines that facilitate high throughput 'post data acquisition analysis' are described in the literature. However, these pipelines need to be updated to accommodate the rapidly evolving data analysis methods. Here, we describe a proteomic data analysis pipeline that specifically addresses two main issues pertinent to protein identification and differential expression analysis: 1) estimation of the probability of peptide and protein identifications and 2) non-parametric statistics for protein differential expression analysis. Our proteomic analysis workflow analyzes replicate datasets from a single experimental paradigm to generate a list of identified proteins with their probabilities and significant changes in protein expression using parametric and non-parametric statistics.The input for our workflow is Bioworks 3.2 Sequest (or a later version, including cluster) output in XML format. We use a decoy database approach to assign probability to peptide identifications. The user has the option to select "quality thresholds" on peptide identifications based on the P value. We also estimate probability for protein identification. Proteins identified with peptides at a user-specified threshold value from biological experiments are grouped as either control or treatment for further analysis in ProtQuant. ProtQuant utilizes a parametric (ANOVA) method, for calculating differences in protein expression based on the quantitative measure SigmaXcorr. Alternatively ProtQuant output can be further processed using non-parametric Monte-Carlo resampling statistics to calculate P values for differential expression. Correction for multiple testing of ANOVA and resampling P values is done using Benjamini and Hochberg's method. The results of these statistical analyses are then combined into a single output file containing a comprehensive protein list with probabilities and differential expression analysis, associated P values, and resampling statistics.RESULTSThe input for our workflow is Bioworks 3.2 Sequest (or a later version, including cluster) output in XML format. We use a decoy database approach to assign probability to peptide identifications. The user has the option to select "quality thresholds" on peptide identifications based on the P value. We also estimate probability for protein identification. Proteins identified with peptides at a user-specified threshold value from biological experiments are grouped as either control or treatment for further analysis in ProtQuant. ProtQuant utilizes a parametric (ANOVA) method, for calculating differences in protein expression based on the quantitative measure SigmaXcorr. Alternatively ProtQuant output can be further processed using non-parametric Monte-Carlo resampling statistics to calculate P values for differential expression. Correction for multiple testing of ANOVA and resampling P values is done using Benjamini and Hochberg's method. The results of these statistical analyses are then combined into a single output file containing a comprehensive protein list with probabilities and differential expression analysis, associated P values, and resampling statistics.For biologists carrying out proteomics by mass spectrometry, our workflow facilitates automated, easy to use analyses of Bioworks (3.2 or later versions) data. All the methods used in the workflow are peer-reviewed and as such the results of our workflow are compliant with proteomic data submission guidelines to public proteomic data repositories including PRIDE. Our workflow is a necessary intermediate step that is required to link proteomics data to biological knowledge for generating testable hypotheses.CONCLUSIONFor biologists carrying out proteomics by mass spectrometry, our workflow facilitates automated, easy to use analyses of Bioworks (3.2 or later versions) data. All the methods used in the workflow are peer-reviewed and as such the results of our workflow are compliant with proteomic data submission guidelines to public proteomic data repositories including PRIDE. Our workflow is a necessary intermediate step that is required to link proteomics data to biological knowledge for generating testable hypotheses.  | 
    
| ArticleNumber | S17 | 
    
| Author | Burgess, Shane C Nanduri, Bindu Kumar, Ranjit Pendarvis, Ken  | 
    
| AuthorAffiliation | 4 MSU Life Sciences and Biotechnology Institute, Mississippi State University, Mississippi State, MS 39762, USA 1 Institute for Digital Biology, Mississippi State University, Mississippi State, MS 39762, USA 2 College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA 3 Mississippi Agriculture and Forestry Experiment Station, Mississippi State University, Mississippi State, MS 39762, USA  | 
    
| AuthorAffiliation_xml | – name: 2 College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA – name: 4 MSU Life Sciences and Biotechnology Institute, Mississippi State University, Mississippi State, MS 39762, USA – name: 1 Institute for Digital Biology, Mississippi State University, Mississippi State, MS 39762, USA – name: 3 Mississippi Agriculture and Forestry Experiment Station, Mississippi State University, Mississippi State, MS 39762, USA  | 
    
| Author_xml | – sequence: 1 givenname: Ken surname: Pendarvis fullname: Pendarvis, Ken organization: Institute for Digital Biology, Mississippi State University, MSU Life Sciences and Biotechnology Institute, Mississippi State University – sequence: 2 givenname: Ranjit surname: Kumar fullname: Kumar, Ranjit email: rkumar@cvm.msstate.edu organization: Institute for Digital Biology, Mississippi State University, College of Veterinary Medicine, Mississippi State University – sequence: 3 givenname: Shane C surname: Burgess fullname: Burgess, Shane C organization: Institute for Digital Biology, Mississippi State University, College of Veterinary Medicine, Mississippi State University, Mississippi Agriculture and Forestry Experiment Station, Mississippi State University, MSU Life Sciences and Biotechnology Institute, Mississippi State University – sequence: 4 givenname: Bindu surname: Nanduri fullname: Nanduri, Bindu organization: Institute for Digital Biology, Mississippi State University, College of Veterinary Medicine, Mississippi State University  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19811682$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqFUk1v1DAQtVAR_YB_gFBunFI8iWMnHJCqFZRKlTgAZ8txxosXJ15sp6v99zjsqrQcymFk63nem5nnOScnk5-QkNdALwFa_g6YgLIC2pRAy68AOcQzcnYPnzy4n5LzGDeUgmhp84KcQtcC8LY6I6urqVBz8qNKOBTb4BP60epiUEkValJuH20sdj78NM7vCuNDMaoYi7hFnYIfMYX9S_LcKBfx1fG8IN8_ffy2-lzefrm-WV3dlrqBLpXIGMBQtZ2u-4EJg702fduB6KCuBaMN07zpel41fKCmoQYYb9Ew2uc5VN3XF-TmoDt4tZHbYEcV9tIrK_8APqylCslqh7LrFaW9AM4rwzqjFaKoQNCmRpG1edZqDlrztFX7nXLuXhCoXAyWi3tycW9BIkAOkXkfDrzt3I84aJxSUO5RM49fJvtDrv2drKuKQ9tmgbdHgeB_zRiTHG3U6Jya0M9RippRwYHSnPnmYam__R0_LyewQ4IOPsaA5ukR8o7kWEZ4_w9N26SS9UvD1v2PfPQt5lrTGoPc-DnkPYlP834DMAfP0A | 
    
| CitedBy_id | crossref_primary_10_1186_s12864_015_1798_4 crossref_primary_10_1186_s12864_018_4442_2 crossref_primary_10_3382_ps_2012_02213 crossref_primary_10_1186_1471_2105_11_S6_S9 crossref_primary_10_1186_1752_0509_6_123 crossref_primary_10_1186_1471_2105_10_S11_S1 crossref_primary_10_1002_pmic_201000471 crossref_primary_10_1111_j_1365_2052_2010_02158_x crossref_primary_10_1021_acs_jproteome_8b00840 crossref_primary_10_1021_pr2000804 crossref_primary_10_1186_1471_2105_11_S6_S1 crossref_primary_10_1016_j_talanta_2010_10_029  | 
    
| Cites_doi | 10.1021/ac0498563 10.1002/pmic.200701048 10.1002/(SICI)1522-2683(19991201)20:18<3551::AID-ELPS3551>3.0.CO;2-2 10.1021/pr034038x 10.1016/j.dci.2006.02.002 10.1021/pr700747q 10.1093/bioinformatics/bth092 10.1577/H03-051.1 10.1021/ac049305c 10.1016/j.bbapap.2008.09.005 10.1186/1471-2105-8-S7-S24 10.1021/pr050360r 10.1021/pr070542g 10.1021/ac010617e 10.1002/pmic.200500112 10.1021/ac00104a020  | 
    
| ContentType | Journal Article | 
    
| Copyright | Pendarvis et al; licensee BioMed Central Ltd. 2009 This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Copyright ©2009 Pendarvis et al; licensee BioMed Central Ltd. 2009 Pendarvis et al; licensee BioMed Central Ltd.  | 
    
| Copyright_xml | – notice: Pendarvis et al; licensee BioMed Central Ltd. 2009 This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. – notice: Copyright ©2009 Pendarvis et al; licensee BioMed Central Ltd. 2009 Pendarvis et al; licensee BioMed Central Ltd.  | 
    
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM ADTOC UNPAY DOA  | 
    
| DOI | 10.1186/1471-2105-10-S11-S17 | 
    
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE MEDLINE - Academic  | 
    
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Biology | 
    
| EISSN | 1471-2105 | 
    
| EndPage | S17 | 
    
| ExternalDocumentID | oai_doaj_org_article_9ba00b71662f49fcaee7217053e70f56 10.1186/1471-2105-10-s11-s17 PMC3226188 19811682 10_1186_1471_2105_10_S11_S17  | 
    
| Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article  | 
    
| GroupedDBID | --- 0R~ 23N 2VQ 2WC 4.4 53G 5VS 6J9 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AAKPC AASML ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADMLS ADRAZ ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS ARAPS AZQEC BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C1A C6C CCPQU CS3 DIK DU5 DWQXO E3Z EAD EAP EAS EBD EBLON EBS EJD EMB EMK EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAO ICD IHR INH INR IPNFZ ISR ITC K6V K7- KQ8 LK8 M1P M48 M7P MK~ ML0 M~E O5R O5S OK1 OVT P2P P62 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RBZ RIG RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS UKHRP W2D WOQ WOW XH6 XSB AAYXX CITATION ALIPV CGR CUY CVF ECM EIF NPM 7X8 5PM 123 ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c519t-e4411d289c3bd47febcfb8917913374054c659b6256d0f50f1468ef40b147a3b3 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 1471-2105 | 
    
| IngestDate | Fri Oct 03 12:51:33 EDT 2025 Sun Oct 26 04:17:12 EDT 2025 Tue Sep 30 16:54:20 EDT 2025 Fri Sep 05 14:28:57 EDT 2025 Thu Apr 03 07:09:56 EDT 2025 Wed Oct 01 04:15:15 EDT 2025 Thu Apr 24 23:04:22 EDT 2025 Sat Sep 06 07:21:15 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | Suppl 11 | 
    
| Keywords | Differential Protein Expression Differential Expression Analysis Protein Identification Differentially Express Custom Perl Script  | 
    
| Language | English | 
    
| License | This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c519t-e4411d289c3bd47febcfb8917913374054c659b6256d0f50f1468ef40b147a3b3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://bmcbioinformatics.biomedcentral.com/counter/pdf/10.1186/1471-2105-10-S11-S17 | 
    
| PMID | 19811682 | 
    
| PQID | 734076100 | 
    
| PQPubID | 23479 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_9ba00b71662f49fcaee7217053e70f56 unpaywall_primary_10_1186_1471_2105_10_s11_s17 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3226188 proquest_miscellaneous_734076100 pubmed_primary_19811682 crossref_primary_10_1186_1471_2105_10_S11_S17 crossref_citationtrail_10_1186_1471_2105_10_S11_S17 springer_journals_10_1186_1471_2105_10_S11_S17  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20091008 | 
    
| PublicationDateYYYYMMDD | 2009-10-08 | 
    
| PublicationDate_xml | – month: 10 year: 2009 text: 20091008 day: 8  | 
    
| PublicationDecade | 2000 | 
    
| PublicationPlace | London | 
    
| PublicationPlace_xml | – name: London – name: England  | 
    
| PublicationTitle | BMC bioinformatics | 
    
| PublicationTitleAbbrev | BMC Bioinformatics | 
    
| PublicationTitleAlternate | BMC Bioinformatics | 
    
| PublicationYear | 2009 | 
    
| Publisher | BioMed Central BMC  | 
    
| Publisher_xml | – name: BioMed Central – name: BMC  | 
    
| References | JR Yates 3rd (3399_CR2) 1995; 67 Y Benjamini (3399_CR15) 1995; 57 R Craig (3399_CR4) 2004; 20 SR Lee (3399_CR5) 2009; 1794 SR Lee (3399_CR6) 2006; 30 DA Wolters (3399_CR1) 2001; 73 B Nanduri (3399_CR8) 2005; 5 B Nanduri (3399_CR14) 2008; 8 H Choi (3399_CR10) 2008; 7 SM Bridges (3399_CR13) 2007; 8 B Nanduri (3399_CR7) 2006; 5 DN Perkins (3399_CR3) 1999; 20 D Lopez-Ferrer (3399_CR16) 2004; 76 ML Williams (3399_CR17) 2003; 15 H Liu (3399_CR11) 2004; 76 J Gao (3399_CR12) 2003; 2 H Choi (3399_CR9) 2008; 7 10612281 - Electrophoresis. 1999 Dec;20(18):3551-67 15571333 - Anal Chem. 2004 Dec 1;76(23):6853-60 16247735 - Proteomics. 2005 Dec;5(18):4852-63 11774908 - Anal Chem. 2001 Dec 1;73(23):5683-90 18067251 - J Proteome Res. 2008 Jan;7(1):47-50 18047724 - BMC Bioinformatics. 2007;8 Suppl 7:S24 18159924 - J Proteome Res. 2008 Jan;7(1):254-65 18491321 - Proteomics. 2008 May;8(10):2104-14 14692458 - J Proteome Res. 2003 Nov-Dec;2(6):643-9 7741214 - Anal Chem. 1995 Apr 15;67(8):1426-36 16512672 - J Proteome Res. 2006 Mar;5(3):572-80 16566999 - Dev Comp Immunol. 2006;30(11):1070-83 14976030 - Bioinformatics. 2004 Jun 12;20(9):1466-7 18930168 - Biochim Biophys Acta. 2009 Jan;1794(1):14-22 15253663 - Anal Chem. 2004 Jul 15;76(14):4193-201  | 
    
| References_xml | – volume: 76 start-page: 4193 issue: 14 year: 2004 ident: 3399_CR11 publication-title: Anal Chem doi: 10.1021/ac0498563 – volume: 8 start-page: 2104 issue: 10 year: 2008 ident: 3399_CR14 publication-title: Proteomics doi: 10.1002/pmic.200701048 – volume: 20 start-page: 3551 issue: 18 year: 1999 ident: 3399_CR3 publication-title: Electrophoresis doi: 10.1002/(SICI)1522-2683(19991201)20:18<3551::AID-ELPS3551>3.0.CO;2-2 – volume: 2 start-page: 643 issue: 6 year: 2003 ident: 3399_CR12 publication-title: J Proteome Res doi: 10.1021/pr034038x – volume: 30 start-page: 1070 issue: 11 year: 2006 ident: 3399_CR6 publication-title: Dev Comp Immunol doi: 10.1016/j.dci.2006.02.002 – volume: 7 start-page: 47 issue: 1 year: 2008 ident: 3399_CR10 publication-title: J Proteome Res doi: 10.1021/pr700747q – volume: 20 start-page: 1466 issue: 9 year: 2004 ident: 3399_CR4 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bth092 – volume: 15 start-page: 264 year: 2003 ident: 3399_CR17 publication-title: Journal of Aquatic Animal Health doi: 10.1577/H03-051.1 – volume: 57 start-page: 289 issue: 1 year: 1995 ident: 3399_CR15 publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology) – volume: 76 start-page: 6853 issue: 23 year: 2004 ident: 3399_CR16 publication-title: Anal Chem doi: 10.1021/ac049305c – volume: 1794 start-page: 14 issue: 1 year: 2009 ident: 3399_CR5 publication-title: Biochim Biophys Acta doi: 10.1016/j.bbapap.2008.09.005 – volume: 8 start-page: S24 issue: Suppl 7 year: 2007 ident: 3399_CR13 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-8-S7-S24 – volume: 5 start-page: 572 issue: 3 year: 2006 ident: 3399_CR7 publication-title: J Proteome Res doi: 10.1021/pr050360r – volume: 7 start-page: 254 issue: 1 year: 2008 ident: 3399_CR9 publication-title: J Proteome Res doi: 10.1021/pr070542g – volume: 73 start-page: 5683 issue: 23 year: 2001 ident: 3399_CR1 publication-title: Anal Chem doi: 10.1021/ac010617e – volume: 5 start-page: 4852 issue: 18 year: 2005 ident: 3399_CR8 publication-title: Proteomics doi: 10.1002/pmic.200500112 – volume: 67 start-page: 1426 issue: 8 year: 1995 ident: 3399_CR2 publication-title: Anal Chem doi: 10.1021/ac00104a020 – reference: 14692458 - J Proteome Res. 2003 Nov-Dec;2(6):643-9 – reference: 18047724 - BMC Bioinformatics. 2007;8 Suppl 7:S24 – reference: 18491321 - Proteomics. 2008 May;8(10):2104-14 – reference: 18067251 - J Proteome Res. 2008 Jan;7(1):47-50 – reference: 7741214 - Anal Chem. 1995 Apr 15;67(8):1426-36 – reference: 15253663 - Anal Chem. 2004 Jul 15;76(14):4193-201 – reference: 18159924 - J Proteome Res. 2008 Jan;7(1):254-65 – reference: 11774908 - Anal Chem. 2001 Dec 1;73(23):5683-90 – reference: 16566999 - Dev Comp Immunol. 2006;30(11):1070-83 – reference: 15571333 - Anal Chem. 2004 Dec 1;76(23):6853-60 – reference: 16512672 - J Proteome Res. 2006 Mar;5(3):572-80 – reference: 18930168 - Biochim Biophys Acta. 2009 Jan;1794(1):14-22 – reference: 16247735 - Proteomics. 2005 Dec;5(18):4852-63 – reference: 14976030 - Bioinformatics. 2004 Jun 12;20(9):1466-7 – reference: 10612281 - Electrophoresis. 1999 Dec;20(18):3551-67  | 
    
| SSID | ssj0017805 | 
    
| Score | 2.0217664 | 
    
| Snippet | Background
Mass spectrometry-based protein identification methods are fundamental to proteomics. Biological experiments are usually performed in replicates and... Mass spectrometry-based protein identification methods are fundamental to proteomics. Biological experiments are usually performed in replicates and proteomic... Abstract Background Mass spectrometry-based protein identification methods are fundamental to proteomics. Biological experiments are usually performed in...  | 
    
| SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref springer  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | S17 | 
    
| SubjectTerms | Algorithms Bioinformatics Biomedical and Life Sciences Computational Biology/Bioinformatics Computer Appl. in Life Sciences Databases, Protein Life Sciences Mass Spectrometry - methods Microarrays Proceedings Proteins - chemistry Proteomics - methods Software Statistics as Topic Workflow  | 
    
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEB1KoLQ9lKRfcZMWHXpVYq1kST6mISEE2lMDuQnJlmhh6w1ZL2H_fWdkr5ulpXvpwRdZAutpJL2xZp4APmkbVJjZxLVVLVfBaB68kTxWAlsoEa2gBOcvX_XVjbq-rW4fXfVFMWGDPPAA3GkdfFkGZPV6llSdGh8jOi0GbSeaMlVZbLu09caZGs8PSKk_5xUZwdGpqcakOWH16VRGKxBOZnzM1qaUtfv_Rjj_jJucDk9fwLNVd-fXD34-f7Q_Xe7Dy5FYsrOhQwfwJHav4Olw1eT6NZyfdcyv-gUS1NiyrM5A-ciMIkSZH5VJGEVppfnigSGVZT-RV7OciUmSBv39-g3cXF58O7_i4wUKvEFi1vOIXEe06FI1MrTKpBiaFGxNiqRSGqRqqtFVHdAF0i1iWSbKw4pJlQFB8jLIt7DXLbp4CEzWbRsMFvqGKuGoYDskh6atQlOZsgC5QdA1o7o4XXIxd9nLsNoR7o5wpxLEHR9TAJ9a3Q3qGjvqf6bBmeqSNnYuQItxo8W4XRZTANsMrcO5RAckvouL1dIZqei3Tom9eTeM9O-vqq0Q2s4KMFs2sPUp22-6H9-zXDcumVpYW8DJxlrcuE4sd3T2ZLKpf6OzxAZLYd7_D3SO4Hk-MMthjsew19-v4gfkXX34mKfYL4LrI2c priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2VIgQcKr4JBeQDVy_J2rGdA0KlalUhlRMr9RbZiQ1IaVJ2syr775nxJltWLVTikIvXI9meGfvN2vMG4J0yTrqpCVwZWXPptOLOasF9nqGEzLzJKMH59Is6mcnPZ_nZDow1W4cFXNwY2lE9qdm8mfz6ufqIDv8hOrxR7zPcYDmGLpFSE90TP30H7uJZVVAxh1N5da9ADP5DAt3fJCONqMkyZaZbZ1Wk9L8Jh15_Trm5U30I95fthV1d2qb549g6fgR7A95kB2sDeQw7vn0C99YVKFdP4fCgZXbZd4hbfc0iaQOlKTN6OMrsQFjC6PFWaLpLhgiXnSPcZjFBk5gO-vnqGcyOj74envChrgKvEK_13CMEymqMtCrhaqmDd1VwpiCiUiE0IjhZqbxwGBmpOg15Gig9yweZOlwvK5x4Drtt1_qXwERR105jo62oU-EsyiFm1HXuqlynCYhxBctqIB2n2hdNGYMPo0pSQUkqoBZUAX46Ab6RuliTbtzS_xMpZ9OXKLNjQzf_Vg4eWOLY0tRheKimQRahst5j9KtxE_IaZ6kSYKNqS3Qxujexre-Wi1ILSf_2pDibF2tNX41qsJQE9JYNbA1l-5f2x_fI4o07qcqMSWAyWks5Wv8tk51sbOrfq7NAgUWmX_332PbhQbw8i08eX8NuP1_6N4jBevc2utVvgWsqLA priority: 102 providerName: Scholars Portal – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIgQ9VLwKoYB84IhLvHZs51hWrSokOFGpN8tObIG0ZKtuVtX-e2a82bQroBWHXByPYo9f32RmPgN80DaoMLGJa6taroLRPHgjeawESigRraAE56_f9Nm5-nJRXezAx00uzG3_vbD6k8DNk6NZkukycenhYx7AQzymdHbN6unoMyB2_iE57l-SW4dP5uj_G7D8Mz5ydJLuweNld-lX1342u3UOnT6F_QFAsuP1iD-Dndg9h0frKyVXL2B63DG_7OcIRGPLMgsD5R0zigRlfmAgYRSNlWbza4aQlf1C_MxyxiVRF_RXq5dwfnryfXrGh4sSeIMArOcRMY1o0XRqZGiVSTE0KdiamEelNAjJVKOrOqCpo9syVWWifKuYVBlQSV4GeQC73byLr4HJum2DwULfUKU6eJRDEGjaKjSVKQuQGw26ZmARp8ssZi5bE1Y70rsjvVMJ6h0fUwAfpS7XLBr31P9MgzPWJQ7sXIBTww1LymHbyjKgvacnSdWp8TGiOWtwV4kGe6kLYJuhdbhmyBHiuzhfLpyRin7flNibV-uRvmlVbYXQdlKA2ZoDW03ZftP9_JFpuXFr1MLaAo42s8UN-8Hins4ejXPqbu0sUGAhzJv__cIhPMlOsBy6-BZ2-6tlfIdYqg_v8xL6DRySEw0 priority: 102 providerName: Springer Nature  | 
    
| Title | An automated proteomic data analysis workflow for mass spectrometry | 
    
| URI | https://link.springer.com/article/10.1186/1471-2105-10-S11-S17 https://www.ncbi.nlm.nih.gov/pubmed/19811682 https://www.proquest.com/docview/734076100 https://pubmed.ncbi.nlm.nih.gov/PMC3226188 https://bmcbioinformatics.biomedcentral.com/counter/pdf/10.1186/1471-2105-10-S11-S17 https://doaj.org/article/9ba00b71662f49fcaee7217053e70f56  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 10 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMedCentral customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RBZ dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: KQ8 dateStart: 20000101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: KQ8 dateStart: 20000701 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DOA dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: ABDBF dateStart: 20000101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: ADMLS dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DIK dateStart: 20000101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M~E dateStart: 20000101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RPM dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: 8FG dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1471-2105 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M48 dateStart: 20000701 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: Springer Nature HAS Fully OA customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: AAJSJ dateStart: 20001201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: C6C dateStart: 20000112 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db5swED-1iaZ1D_texz4iP-yVFIKxzSONmlWRGlVbI2VPCIPpqlGIElCV_fU7G0ibdVo1aQ8mkuMTvuPO3OG7nwE-MSGpHInMZoKmNpWc2TLmnq18Fymoq4SrC5zPZux0TqcLf7EHF10tjLxO5FXZgoZqoOLh3TL0vKly0KcoqNXRMs0aoxfsyMVF1sbwxcBqooli4_vQZz566D3oz2fn4TdTaNQOa6vo7pGukXRtTi-7fUsZMP8_eaD3Eym3u6lP4HFdLOPNTZznd15Yk2dQd6w2eSo_hnUlh8nP31Ag_7csnsPT1sMlYaOSL2BPFS_hUXPm5eYVjMOCxHVV4r1USgxMhC6MJjpVlcQtRArR6WJZXt4QnBW5RgefmJJQja1QrTavYT45uRif2u1JDnaCHmJlK3S63BRju8STKeWZkkkmRaChUT2Po89IE3xSEmMxljqZ72S6IExl1JHIS-xJ7w30irJQb4F4QZpKjp1xogcFMkY69FJ56svE544FXvfkoqSFOdenbeSRCXcEi7R4Ii0e3YPiwcYtsLdUywbm44Hxx1optmM1SLfpKFeXUWvzEc7NcSQGpGyU0SBLYqUw3ua47CmOXDILSKdSERq13qmJC1XW64h7VH9fcpCbw0bDbmcVCNdlYmQB39G9nans_lNcfTe44bh2M1cIC4adlkbtgrV-gNnhVpf_Lh20Hmz83b8SvIcDs0tncis_QK9a1eojOnuVHMA-X3C8isnnAfTDcPp1ir_HJ7PzL9g7ZuOB-YyC1zMqBq2l_wJv-VP9 | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9swDCa6FkO7w7Bn5z112FWbFcmSfMyKFVnW9rIW6E2QbKkbkNlF4qDIvx-lON6CPYodfFEkRKJE-qNJfgJ4K7UTbqQDlVrUVDglqbOKU18wHCGY1ywWOJ-eycmFmF4WlzsgN7UwKdt9E5JMljqptZbvGZpRig5KIs5EJcRH3YG9mGaFCrk3Hk-_TIf4QWTq7wvl_jZ260WU-Pr_BDJ_z5UcAqb3YH_ZXNvVjZ3NfnknHT-A-z2YJOP17j-EHd88grvr6yVXj-Fo3BC77FoEpb4miZEh1iCTmBVKbM9GQmJmVpi1NwThK_mOWJqk6stIY9DNV0_g4vjj-dGE9pcm0ArBWEc94htWoxtVcVcLFbyrgtNlZCHlXCE8E5UsSoduj6zzUOQh1l75IHKHQrLc8aew27SNfwaEl3XtFDbaKnYqncVxCAhVXbiqUHkGfCNBU_WM4vFii5lJnoWWJsrdRLnHFpQ7PioDOoy6XjNq3NL_Q9ycoW_kw04N7fzK9OplcG557tD3k6MgylBZ79G1VWhhvMJVygzIZmsN6k8MitjGt8uFUVzETzk5ruZwvdM_Z1VqxqQeZaC2zsDWVLZ_ab59TRTdaCYl0zqD4Syb3jYsblnsu-FM_Vs6CxywYOr5__7DG9ifnJ-emJNPZ59fwEEKjqWUxpew282X_hVirM697hXqB81KG2Y | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BERQOiGcJTx-4hsYbx3aOZWFVXhUHKvVm2YkNSEuy2s2q2n_PjJMNXfGoOOTieBR7_PomM_MZ4KXUTriJDqnUok6FUzJ1VuWpLzhKCO41pwTnTyfy-FS8PyvOLuTCxGj3rUuyz2kglqamO1zUoV_iWh5y3FJTNFYiiSYuSHzUVbgm8HyjWwymcjp6Eoizf0iZ-5vkzpEUmfv_BDd_j5ocXae3YH_dLOzm3M7nF06n2R24PcBKdtTPg7twxTf34Hp_0eTmPkyPGmbXXYvw1NcscjNQNjKj-FBmB14SRjFaYd6eMwSy7AeiahbzMInQoFtuHsDp7O2X6XE6XJ-QVgjLutQj0uE1GlRV7mqhgndVcLokPtI8VwjURCWL0qEBJOssFFmgLCwfROZQSTZ3-UPYa9rGPwKWl3XtFBbaiiqVzqIcQkNVF64qVJZAvtWgqQZucbriYm6ijaGlIb0b0juVoN7xUQmko9Si59a4pP5rGpyxLjFjx4J2-dUMC81g27LMoRUoJ0GUobLeo5GrcK_xCnspE2DboTW4ksg9YhvfrldG5YJ-6mTYm4N-pH-1qtScSz1JQO3MgZ2m7L5pvn-LZN24YUqudQLjrDbDLrG6pLOvxjn1b-2sUGDF1eP__cILuPH5zcx8fHfy4QncjF6yGNv4FPa65do_Q7DVuedxNf0EFKAeQw | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9swDCa6FMO2w94P7wUddrVrx7IkH7NiRTFgxQ4N0J0MSZa2oq4dJDaK9NeXku20WYcVA3bQRRERkSZl0iI_AnxiQlE1FTZkgpYhVZyFSvI0NFmCFDQxInEFzt-O2OGcfj3JTnbgeKyFUedanTYDaKgDKo5ulqFXfZWD66JglnuL0vZGL9hegodsiOGLh9VEE8XB78Euy9BDn8Du_Oj77IcvNBqWDVV0t0hXSLry3cuu31IezP9PHujtRMrNbeojeNDVC7m-kFV144V18AS6kdU-T-Us6loV6cvfUCD_tyyewuPBwyWzXiWfwY6pn8P9vufl-gXsz2oiu7bB_zIl8TARrjCauFRVIgeIFOLSxWzVXBDcFTlHB5_4klCHrdAu1y9hfvDleP8wHDo5hBo9xDY06HQlJcZ2OlUl5dYobZXIHTRqmnL0GanGJ6UwFmNlbLPYuoIwY2mskBeZqvQVTOqmNm-ApHlZKo6TUrtFuZJIh14qLzOlMx4HkI5PrtADzLnrtlEVPtwRrHDiKZx43AyKBwcPINxQLXqYjzvWf3ZKsVnrQLr9RLP8WQw2X-De4lhhQMqmluZWS2Mw3uZ47BmOXLIAyKhSBRq1u6mRtWm6VcFT6r4vxcjN617DrneViyRhYhoA39K9ra1s_1Kf_vK44Xh2s0SIAKJRS4vhwFrdwWy00eW_SwetBwd_-68E7-Chv6XzuZXvYdIuO_MBnb1WfRxs9woZQ0xe | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+automated+proteomic+data+analysis+workflow+for+mass+spectrometry&rft.jtitle=BMC+bioinformatics&rft.au=Pendarvis%2C+Ken&rft.au=Kumar%2C+Ranjit&rft.au=Burgess%2C+Shane+C&rft.au=Nanduri%2C+Bindu&rft.date=2009-10-08&rft.pub=BioMed+Central&rft.eissn=1471-2105&rft.volume=10&rft.issue=Suppl+11&rft.spage=S17&rft.epage=S17&rft_id=info:doi/10.1186%2F1471-2105-10-S11-S17&rft_id=info%3Apmid%2F19811682&rft.externalDocID=PMC3226188 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon |