Global Organization and Proposed Megataxonomy of the Virus World
Viruses and mobile genetic elements are molecular parasites or symbionts that coevolve with nearly all forms of cellular life. The route of virus replication and protein expression is determined by the viral genome type. Comparison of these routes led to the classification of viruses into seven “Bal...
Saved in:
Published in | Microbiology and molecular biology reviews Vol. 84; no. 2; pp. e00061 - 19 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Microbiology
20.05.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 1092-2172 1098-5557 1098-5557 |
DOI | 10.1128/MMBR.00061-19 |
Cover
Abstract | Viruses and mobile genetic elements are molecular parasites or symbionts that coevolve with nearly all forms of cellular life. The route of virus replication and protein expression is determined by the viral genome type. Comparison of these routes led to the classification of viruses into seven “Baltimore classes” (BCs) that define the major features of virus reproduction. However, recent phylogenomic studies identified multiple evolutionary connections among viruses within each of the BCs as well as between different classes.
Viruses and mobile genetic elements are molecular parasites or symbionts that coevolve with nearly all forms of cellular life. The route of virus replication and protein expression is determined by the viral genome type. Comparison of these routes led to the classification of viruses into seven “Baltimore classes” (BCs) that define the major features of virus reproduction. However, recent phylogenomic studies identified multiple evolutionary connections among viruses within each of the BCs as well as between different classes. Due to the modular organization of virus genomes, these relationships defy simple representation as lines of descent but rather form complex networks. Phylogenetic analyses of virus hallmark genes combined with analyses of gene-sharing networks show that replication modules of five BCs (three classes of RNA viruses and two classes of reverse-transcribing viruses) evolved from a common ancestor that encoded an RNA-directed RNA polymerase or a reverse transcriptase. Bona fide viruses evolved from this ancestor on multiple, independent occasions via the recruitment of distinct cellular proteins as capsid subunits and other structural components of virions. The single-stranded DNA (ssDNA) viruses are a polyphyletic class, with different groups evolving by recombination between rolling-circle-replicating plasmids, which contributed the replication protein, and positive-sense RNA viruses, which contributed the capsid protein. The double-stranded DNA (dsDNA) viruses are distributed among several large monophyletic groups and arose via the combination of distinct structural modules with equally diverse replication modules. Phylogenomic analyses reveal the finer structure of evolutionary connections among RNA viruses and reverse-transcribing viruses, ssDNA viruses, and large subsets of dsDNA viruses. Taken together, these analyses allow us to outline the global organization of the virus world. Here, we describe the key aspects of this organization and propose a comprehensive hierarchical taxonomy of viruses. |
---|---|
AbstractList | SUMMARY : Viruses and mobile genetic elements are molecular parasites or symbionts that coevolve with nearly all forms of cellular life. The route of virus replication and protein expression is determined by the viral genome type. Comparison of these routes led to the classification of viruses into seven "Baltimore classes" (BCs) that define the major features of virus reproduction. However, recent phylogenomic studies identified multiple evolutionary connections among viruses within each of the BCs as well as between different classes. Due to the modular organization of virus genomes, these relationships defy simple representation as lines of descent but rather form complex networks. Phylogenetic analyses of virus hallmark genes combined with analyses of gene-sharing networks show that replication modules of five BCs (three classes of RNA viruses and two classes of reverse-transcribing viruses) evolved from a common ancestor that encoded an RNA-directed RNA polymerase or a reverse transcriptase. Bona fide viruses evolved from this ancestor on multiple, independent occasions via the recruitment of distinct cellular proteins as capsid subunits and other structural components of virions. The single-stranded DNA (ssDNA) viruses are a polyphyletic class, with different groups evolving by recombination between rolling-circle-replicating plasmids, which contributed the replication protein, and positive-sense RNA viruses, which contributed the capsid protein. The double-stranded DNA (dsDNA) viruses are distributed among several large monophyletic groups and arose via the combination of distinct structural modules with equally diverse replication modules. Phylogenomic analyses reveal the finer structure of evolutionary connections among RNA viruses and reverse-transcribing viruses, ssDNA viruses, and large subsets of dsDNA viruses. Taken together, these analyses allow us to outline the global organization of the virus world. Here, we describe the key aspects of this organization and propose a comprehensive hierarchical taxonomy of viruses. Viruses and mobile genetic elements are molecular parasites or symbionts that coevolve with nearly all forms of cellular life. The route of virus replication and protein expression is determined by the viral genome type. Comparison of these routes led to the classification of viruses into seven "Baltimore classes" (BCs) that define the major features of virus reproduction. However, recent phylogenomic studies identified multiple evolutionary connections among viruses within each of the BCs as well as between different classes. Due to the modular organization of virus genomes, these relationships defy simple representation as lines of descent but rather form complex networks. Phylogenetic analyses of virus hallmark genes combined with analyses of gene-sharing networks show that replication modules of five BCs (three classes of RNA viruses and two classes of reverse-transcribing viruses) evolved from a common ancestor that encoded an RNA-directed RNA polymerase or a reverse transcriptase. Bona fide viruses evolved from this ancestor on multiple, independent occasions via the recruitment of distinct cellular proteins as capsid subunits and other structural components of virions. The single-stranded DNA (ssDNA) viruses are a polyphyletic class, with different groups evolving by recombination between rolling-circle-replicating plasmids, which contributed the replication protein, and positive-sense RNA viruses, which contributed the capsid protein. The double-stranded DNA (dsDNA) viruses are distributed among several large monophyletic groups and arose via the combination of distinct structural modules with equally diverse replication modules. Phylogenomic analyses reveal the finer structure of evolutionary connections among RNA viruses and reverse-transcribing viruses, ssDNA viruses, and large subsets of dsDNA viruses. Taken together, these analyses allow us to outline the global organization of the virus world. Here, we describe the key aspects of this organization and propose a comprehensive hierarchical taxonomy of viruses. Viruses and mobile genetic elements are molecular parasites or symbionts that coevolve with nearly all forms of cellular life. The route of virus replication and protein expression is determined by the viral genome type. Comparison of these routes led to the classification of viruses into seven "Baltimore classes" (BCs) that define the major features of virus reproduction. However, recent phylogenomic studies identified multiple evolutionary connections among viruses within each of the BCs as well as between different classes. Due to the modular organization of virus genomes, these relationships defy simple representation as lines of descent but rather form complex networks. Phylogenetic analyses of virus hallmark genes combined with analyses of gene-sharing networks show that replication modules of five BCs (three classes of RNA viruses and two classes of reverse-transcribing viruses) evolved from a common ancestor that encoded an RNA-directed RNA polymerase or a reverse transcriptase. Bona fide viruses evolved from this ancestor on multiple, independent occasions via the recruitment of distinct cellular proteins as capsid subunits and other structural components of virions. The single-stranded DNA (ssDNA) viruses are a polyphyletic class, with different groups evolving by recombination between rolling-circle-replicating plasmids, which contributed the replication protein, and positive-sense RNA viruses, which contributed the capsid protein. The double-stranded DNA (dsDNA) viruses are distributed among several large monophyletic groups and arose via the combination of distinct structural modules with equally diverse replication modules. Phylogenomic analyses reveal the finer structure of evolutionary connections among RNA viruses and reverse-transcribing viruses, ssDNA viruses, and large subsets of dsDNA viruses. Taken together, these analyses allow us to outline the global organization of the virus world. Here, we describe the key aspects of this organization and propose a comprehensive hierarchical taxonomy of viruses.Viruses and mobile genetic elements are molecular parasites or symbionts that coevolve with nearly all forms of cellular life. The route of virus replication and protein expression is determined by the viral genome type. Comparison of these routes led to the classification of viruses into seven "Baltimore classes" (BCs) that define the major features of virus reproduction. However, recent phylogenomic studies identified multiple evolutionary connections among viruses within each of the BCs as well as between different classes. Due to the modular organization of virus genomes, these relationships defy simple representation as lines of descent but rather form complex networks. Phylogenetic analyses of virus hallmark genes combined with analyses of gene-sharing networks show that replication modules of five BCs (three classes of RNA viruses and two classes of reverse-transcribing viruses) evolved from a common ancestor that encoded an RNA-directed RNA polymerase or a reverse transcriptase. Bona fide viruses evolved from this ancestor on multiple, independent occasions via the recruitment of distinct cellular proteins as capsid subunits and other structural components of virions. The single-stranded DNA (ssDNA) viruses are a polyphyletic class, with different groups evolving by recombination between rolling-circle-replicating plasmids, which contributed the replication protein, and positive-sense RNA viruses, which contributed the capsid protein. The double-stranded DNA (dsDNA) viruses are distributed among several large monophyletic groups and arose via the combination of distinct structural modules with equally diverse replication modules. Phylogenomic analyses reveal the finer structure of evolutionary connections among RNA viruses and reverse-transcribing viruses, ssDNA viruses, and large subsets of dsDNA viruses. Taken together, these analyses allow us to outline the global organization of the virus world. Here, we describe the key aspects of this organization and propose a comprehensive hierarchical taxonomy of viruses. Viruses and mobile genetic elements are molecular parasites or symbionts that coevolve with nearly all forms of cellular life. The route of virus replication and protein expression is determined by the viral genome type. Comparison of these routes led to the classification of viruses into seven “Baltimore classes” (BCs) that define the major features of virus reproduction. However, recent phylogenomic studies identified multiple evolutionary connections among viruses within each of the BCs as well as between different classes. Viruses and mobile genetic elements are molecular parasites or symbionts that coevolve with nearly all forms of cellular life. The route of virus replication and protein expression is determined by the viral genome type. Comparison of these routes led to the classification of viruses into seven “Baltimore classes” (BCs) that define the major features of virus reproduction. However, recent phylogenomic studies identified multiple evolutionary connections among viruses within each of the BCs as well as between different classes. Due to the modular organization of virus genomes, these relationships defy simple representation as lines of descent but rather form complex networks. Phylogenetic analyses of virus hallmark genes combined with analyses of gene-sharing networks show that replication modules of five BCs (three classes of RNA viruses and two classes of reverse-transcribing viruses) evolved from a common ancestor that encoded an RNA-directed RNA polymerase or a reverse transcriptase. Bona fide viruses evolved from this ancestor on multiple, independent occasions via the recruitment of distinct cellular proteins as capsid subunits and other structural components of virions. The single-stranded DNA (ssDNA) viruses are a polyphyletic class, with different groups evolving by recombination between rolling-circle-replicating plasmids, which contributed the replication protein, and positive-sense RNA viruses, which contributed the capsid protein. The double-stranded DNA (dsDNA) viruses are distributed among several large monophyletic groups and arose via the combination of distinct structural modules with equally diverse replication modules. Phylogenomic analyses reveal the finer structure of evolutionary connections among RNA viruses and reverse-transcribing viruses, ssDNA viruses, and large subsets of dsDNA viruses. Taken together, these analyses allow us to outline the global organization of the virus world. Here, we describe the key aspects of this organization and propose a comprehensive hierarchical taxonomy of viruses. |
Author | Wolf, Yuri I. Koonin, Eugene V. Zerbini, F. Murilo Krupovic, Mart Dolja, Valerian V. Varsani, Arvind Yutin, Natalya Kuhn, Jens H. |
Author_xml | – sequence: 1 givenname: Eugene V. orcidid: 0000-0003-3943-8299 surname: Koonin fullname: Koonin, Eugene V. organization: National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA – sequence: 2 givenname: Valerian V. orcidid: 0000-0002-8148-4670 surname: Dolja fullname: Dolja, Valerian V. organization: Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA – sequence: 3 givenname: Mart orcidid: 0000-0001-5486-0098 surname: Krupovic fullname: Krupovic, Mart organization: Institut Pasteur, Archaeal Virology Unit, Department of Microbiology, Paris, France – sequence: 4 givenname: Arvind orcidid: 0000-0003-4111-2415 surname: Varsani fullname: Varsani, Arvind organization: The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, Arizona, USA, Structural Biology Research Unit, Department of Clinical Laboratory Sciences, University of Cape Town, Observatory, Cape Town, South Africa – sequence: 5 givenname: Yuri I. orcidid: 0000-0002-0247-8708 surname: Wolf fullname: Wolf, Yuri I. organization: National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA – sequence: 6 givenname: Natalya orcidid: 0000-0002-3633-5123 surname: Yutin fullname: Yutin, Natalya organization: National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA – sequence: 7 givenname: F. Murilo orcidid: 0000-0001-8617-0200 surname: Zerbini fullname: Zerbini, F. Murilo organization: Departamento de Fitopatologia/Bioagro, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil – sequence: 8 givenname: Jens H. orcidid: 0000-0002-7800-6045 surname: Kuhn fullname: Kuhn, Jens H. organization: Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32132243$$D View this record in MEDLINE/PubMed https://pasteur.hal.science/pasteur-02558270$$DView record in HAL |
BookMark | eNp1kUtv1DAUhS1URB-wZIsisWGT4nsdJ_EGUSpokWZUhHgsLSe5M-MqY0_tpKL8epzpC0ZiZUv-7vG55xyyPecdMfYS-DEA1m_n8w9fjznnJeSgnrAD4KrOpZTV3vaOOUKF--wwxstEFVKpZ2xfIAjEQhyw92e9b0yfXYSlcfa3Gax3mXFd9iX4jY_UZXNamsH88s6vbzK_yIYVZT9sGGP204e-e86eLkwf6cXdecS-f_r47fQ8n12cfT49meWtBDXkXQEltKhEKUvZCSK5aIh4h12jjCoaoOSzKNtaSawN8qbAFkFSIZqESC6O2Ltb3c3YrKlryQ3B9HoT7NqEG-2N1f--OLvSS3-tK14i8kkgvxVY7Yydn8z0xsSBxqA5Slljxa8h8W_uPgz-aqQ46LWNLfW9ceTHqFFUUKeg5YS-3kEv_RhciiNRtapQ1kIl6tXfGzx4uC_j0WEbfIyBFg8IcD2Vraey9bZsDZOg2OFbO2wbTAHY_j9TfwBSYKtG |
CitedBy_id | crossref_primary_10_1093_molbev_msad134 crossref_primary_10_1128_mbio_01495_21 crossref_primary_10_1007_s00705_020_04731_2 crossref_primary_10_15407_microbiolj85_04_072 crossref_primary_10_1042_EBC20240012 crossref_primary_10_3389_fmolb_2022_821197 crossref_primary_10_1264_jsme2_ME22034 crossref_primary_10_1016_j_coviro_2021_11_003 crossref_primary_10_1016_j_egg_2023_100210 crossref_primary_10_1128_mbio_03200_24 crossref_primary_10_1016_j_coviro_2021_11_006 crossref_primary_10_1038_s41564_023_01345_7 crossref_primary_10_1186_s40168_021_01017_w crossref_primary_10_3390_v14112572 crossref_primary_10_1007_s00705_022_05454_2 crossref_primary_10_3389_fmicb_2023_1240993 crossref_primary_10_1016_j_bbrc_2020_11_015 crossref_primary_10_1016_j_coviro_2021_03_004 crossref_primary_10_1016_j_virol_2024_110098 crossref_primary_10_1128_jvi_00318_22 crossref_primary_10_3390_v13030506 crossref_primary_10_1016_j_tim_2023_04_008 crossref_primary_10_1016_j_cell_2022_08_023 crossref_primary_10_1016_j_cell_2024_08_028 crossref_primary_10_2139_ssrn_4174577 crossref_primary_10_1080_07391102_2021_1965028 crossref_primary_10_3390_pathogens12121458 crossref_primary_10_3390_v12121436 crossref_primary_10_1093_molbev_msad244 crossref_primary_10_1146_annurev_virology_100520_125832 crossref_primary_10_1186_s12884_023_05562_0 crossref_primary_10_1128_mSphere_01298_20 crossref_primary_10_3390_v14061344 crossref_primary_10_1038_s42003_024_07212_3 crossref_primary_10_1051_medsci_2021007 crossref_primary_10_1126_sciadv_adk1954 crossref_primary_10_1128_msystems_00161_23 crossref_primary_10_3389_fviro_2022_981177 crossref_primary_10_1093_nar_gkac1037 crossref_primary_10_3389_fmicb_2021_683294 crossref_primary_10_1016_j_virol_2022_03_005 crossref_primary_10_3390_v15040840 crossref_primary_10_1186_s12985_024_02482_z crossref_primary_10_3390_v15041015 crossref_primary_10_3390_v15122331 crossref_primary_10_1016_j_virol_2024_110308 crossref_primary_10_1093_nargab_lqae183 crossref_primary_10_3389_fmicb_2022_1032918 crossref_primary_10_1128_spectrum_04944_22 crossref_primary_10_1016_j_virusres_2022_199002 crossref_primary_10_1093_molbev_msab098 crossref_primary_10_1128_Spectrum_00064_21 crossref_primary_10_3390_v14071362 crossref_primary_10_3390_v14102308 crossref_primary_10_1093_ve_veae096 crossref_primary_10_1094_PHYTO_05_20_0191_FI crossref_primary_10_1371_journal_pbio_3001430 crossref_primary_10_1128_mbio_03206_23 crossref_primary_10_1128_mbio_00408_23 crossref_primary_10_1128_JVI_00582_20 crossref_primary_10_31797_vetbio_1072218 crossref_primary_10_47612_2226_3136_2021_13_83_102 crossref_primary_10_1016_j_cub_2021_02_052 crossref_primary_10_3390_microorganisms9091819 crossref_primary_10_1128_jvi_00463_23 crossref_primary_10_1038_s41564_024_01884_7 crossref_primary_10_1016_j_virol_2025_110476 crossref_primary_10_3390_v13020150 crossref_primary_10_3389_fmicb_2023_1126707 crossref_primary_10_1128_jvi_01381_22 crossref_primary_10_3389_fcimb_2023_1163569 crossref_primary_10_3390_ijms251910838 crossref_primary_10_3389_fvets_2023_1158023 crossref_primary_10_1038_s41598_022_26251_6 crossref_primary_10_1128_msystems_00293_21 crossref_primary_10_1146_annurev_virology_010421_053015 crossref_primary_10_1093_ve_veae088 crossref_primary_10_1128_MMBR_00193_20 crossref_primary_10_1038_s41564_022_01148_2 crossref_primary_10_1093_ve_veac100 crossref_primary_10_1007_s00705_022_05493_9 crossref_primary_10_1038_s41467_024_52906_1 crossref_primary_10_3390_ijms231911043 crossref_primary_10_1089_phage_2022_0003 crossref_primary_10_3390_v14061320 crossref_primary_10_3390_v15051196 crossref_primary_10_1128_mbio_01685_22 crossref_primary_10_1007_s00705_021_05114_x crossref_primary_10_1128_spectrum_02340_23 crossref_primary_10_3390_ijms242317029 crossref_primary_10_3390_v12040422 crossref_primary_10_1007_s00248_021_01874_w crossref_primary_10_1016_j_coviro_2020_06_011 crossref_primary_10_1016_j_csbj_2021_12_032 crossref_primary_10_1038_s41467_023_38301_2 crossref_primary_10_3390_pathogens11121453 crossref_primary_10_1093_ve_veac097 crossref_primary_10_1111_1758_2229_12912 crossref_primary_10_1038_d41586_021_01749_7 crossref_primary_10_1128_aem_00315_22 crossref_primary_10_1038_s41587_020_00774_7 crossref_primary_10_1146_annurev_phyto_021622_121351 crossref_primary_10_1093_ve_veac095 crossref_primary_10_1038_s41467_023_43824_9 crossref_primary_10_3390_v17030355 crossref_primary_10_1038_s41467_022_33633_x crossref_primary_10_1038_s41579_022_00754_5 crossref_primary_10_1016_j_cell_2024_09_027 crossref_primary_10_1093_ve_veaa100 crossref_primary_10_1007_s00705_021_05242_4 crossref_primary_10_1016_j_virol_2024_109992 crossref_primary_10_1128_spectrum_01872_21 crossref_primary_10_1038_s41396_021_01005_w crossref_primary_10_1093_molbev_msad060 crossref_primary_10_1016_j_mam_2021_101005 crossref_primary_10_1371_journal_ppat_1011980 crossref_primary_10_1093_femsre_fuac011 crossref_primary_10_1093_plcell_koab214 crossref_primary_10_1002_anie_202203067 crossref_primary_10_1093_ve_veae022 crossref_primary_10_3390_v14040702 crossref_primary_10_1073_pnas_2022310118 crossref_primary_10_1128_jvi_02166_24 crossref_primary_10_1093_ve_veac082 crossref_primary_10_1371_journal_pbio_3001442 crossref_primary_10_7717_peerj_14055 crossref_primary_10_1007_s00705_021_05205_9 crossref_primary_10_3390_ijms242015302 crossref_primary_10_3390_v13071304 crossref_primary_10_1007_s00239_024_10221_9 crossref_primary_10_1016_j_chom_2022_06_008 crossref_primary_10_1128_JVI_00673_21 crossref_primary_10_1128_mbio_01035_24 crossref_primary_10_1038_s43705_023_00295_9 crossref_primary_10_3390_v13030362 crossref_primary_10_7717_peerj_13875 crossref_primary_10_1002_ange_202203067 crossref_primary_10_3390_microorganisms11041054 crossref_primary_10_1093_ve_veae051 crossref_primary_10_1007_s00705_022_05423_9 crossref_primary_10_1128_msystems_00751_21 crossref_primary_10_1186_s42523_021_00114_3 crossref_primary_10_1021_acschembio_2c00531 crossref_primary_10_3390_v15041007 crossref_primary_10_1128_mmbr_00086_23 crossref_primary_10_3389_fmicb_2021_719703 crossref_primary_10_1038_s41564_020_0709_x crossref_primary_10_3390_v17030334 crossref_primary_10_1128_mbio_00588_22 crossref_primary_10_3389_fmicb_2022_1024933 crossref_primary_10_3390_v15122282 crossref_primary_10_1016_j_coviro_2021_10_011 crossref_primary_10_1016_j_tim_2020_01_010 crossref_primary_10_1128_mBio_01410_20 crossref_primary_10_1007_s00239_022_10059_z crossref_primary_10_3390_biom12101363 crossref_primary_10_3390_v12101146 crossref_primary_10_1093_ve_veae040 crossref_primary_10_1099_mgen_0_000686 crossref_primary_10_3390_v14020206 crossref_primary_10_1128_MMBR_00053_21 crossref_primary_10_1186_s12859_024_05846_y crossref_primary_10_1093_ve_veaf005 crossref_primary_10_1128_mbio_02686_22 crossref_primary_10_3390_v17030328 crossref_primary_10_1038_s41579_020_0408_x crossref_primary_10_1128_aem_01954_21 crossref_primary_10_1016_j_virs_2022_01_003 crossref_primary_10_3390_life11060571 crossref_primary_10_1128_JVI_00541_21 crossref_primary_10_1093_molbev_msae161 crossref_primary_10_1128_msystems_00907_22 crossref_primary_10_1126_science_abm4096 crossref_primary_10_3390_biom12091247 crossref_primary_10_1126_science_abo5590 crossref_primary_10_1016_j_hpj_2024_07_003 crossref_primary_10_1371_journal_pbio_3002347 crossref_primary_10_1093_ve_veab081 crossref_primary_10_1016_j_pt_2024_06_009 crossref_primary_10_1038_s41564_022_01178_w crossref_primary_10_1093_ve_veab083 crossref_primary_10_3390_v16101583 crossref_primary_10_1038_s41564_023_01579_5 crossref_primary_10_1111_mec_15997 crossref_primary_10_1098_rsta_2020_0422 crossref_primary_10_1038_s41587_023_01844_2 crossref_primary_10_1128_mbio_01921_21 crossref_primary_10_1038_s41467_023_37681_9 crossref_primary_10_3389_fmicb_2020_561092 crossref_primary_10_1128_msystems_00799_21 crossref_primary_10_1128_spectrum_00802_24 crossref_primary_10_1016_j_virusres_2021_198606 crossref_primary_10_3390_v12111337 crossref_primary_10_1007_s00705_021_05071_5 crossref_primary_10_1038_s41586_021_04332_2 crossref_primary_10_1128_jvi_00465_23 crossref_primary_10_3390_v13061089 crossref_primary_10_2108_zs220069 crossref_primary_10_1073_pnas_2219962120 crossref_primary_10_1371_journal_ppat_1011386 crossref_primary_10_7554_eLife_97261 crossref_primary_10_1007_s10327_022_01051_y crossref_primary_10_1016_j_virol_2020_09_005 crossref_primary_10_1371_journal_pbio_3001922 crossref_primary_10_1016_j_fsi_2022_01_019 crossref_primary_10_1016_j_plipres_2021_101092 crossref_primary_10_1038_s41396_022_01194_y crossref_primary_10_1111_1755_0998_13378 crossref_primary_10_1007_s13337_024_00887_6 crossref_primary_10_1039_D3CS00655G crossref_primary_10_1007_s11262_022_01908_6 crossref_primary_10_1016_j_coviro_2021_05_008 crossref_primary_10_1007_s00705_020_04752_x crossref_primary_10_1016_j_watbs_2022_100062 crossref_primary_10_1093_gigascience_giae020 crossref_primary_10_1016_j_watres_2021_117568 crossref_primary_10_1073_pnas_2120620119 crossref_primary_10_3390_v14091842 crossref_primary_10_1016_j_coviro_2021_05_004 crossref_primary_10_1016_j_isci_2021_102452 crossref_primary_10_48112_bcs_v2i2_450 crossref_primary_10_1007_s00705_022_05400_2 crossref_primary_10_1093_ve_veac038 crossref_primary_10_1128_jvi_01853_21 crossref_primary_10_31857_S0134347524010018 crossref_primary_10_1186_s12864_024_10432_w crossref_primary_10_3390_v14050973 crossref_primary_10_1128_jvi_00831_24 crossref_primary_10_1089_phage_2021_0016 crossref_primary_10_7554_eLife_97261_3 crossref_primary_10_1007_s00705_021_04983_6 crossref_primary_10_1016_j_csbj_2020_06_019 crossref_primary_10_1111_1462_2920_16312 crossref_primary_10_3390_pathogens11101127 crossref_primary_10_3390_v16071152 crossref_primary_10_1038_s41396_023_01431_y crossref_primary_10_4049_jimmunol_2400101 crossref_primary_10_1146_annurev_phyto_030320_041346 crossref_primary_10_1073_pnas_2100936118 crossref_primary_10_1093_ve_veac070 crossref_primary_10_3389_fmicb_2020_588427 crossref_primary_10_1134_S106307402401005X crossref_primary_10_1371_journal_ppat_1011136 crossref_primary_10_1038_s41586_023_05962_4 crossref_primary_10_1128_mBio_03705_20 crossref_primary_10_3389_fmars_2023_1159754 crossref_primary_10_1093_ve_vead042 crossref_primary_10_3390_v15122402 crossref_primary_10_1128_jvi_01149_23 crossref_primary_10_3390_v13020313 crossref_primary_10_1038_s43705_022_00110_x crossref_primary_10_1038_s41586_023_06376_y crossref_primary_10_1126_science_abm5847 crossref_primary_10_1128_jb_00346_21 crossref_primary_10_3390_v15030660 crossref_primary_10_3390_v16071061 crossref_primary_10_3389_fviro_2021_684608 crossref_primary_10_1186_s40168_024_01967_x crossref_primary_10_1099_mgen_0_000649 crossref_primary_10_1007_s11262_023_02041_8 crossref_primary_10_1016_j_micinf_2024_105467 crossref_primary_10_1146_annurev_virology_100220_112915 crossref_primary_10_1093_ve_vead035 crossref_primary_10_1093_ve_veae003 crossref_primary_10_1038_s41564_022_01144_6 crossref_primary_10_1099_jgv_0_001840 crossref_primary_10_1134_S0006297921030020 crossref_primary_10_31857_S0320972521030027 crossref_primary_10_3390_v17030365 crossref_primary_10_1016_j_tibs_2023_09_003 crossref_primary_10_1371_journal_pone_0283930 crossref_primary_10_1038_s41579_022_00811_z crossref_primary_10_1093_gbe_evab240 crossref_primary_10_1016_j_coviro_2021_02_002 crossref_primary_10_1128_jvi_01069_24 crossref_primary_10_3390_v15020519 crossref_primary_10_1016_j_coviro_2021_12_004 crossref_primary_10_3390_v15081758 crossref_primary_10_1007_s00705_022_05633_1 crossref_primary_10_18705_2782_3806_2022_2_6_91_97 crossref_primary_10_3390_agronomy13051300 crossref_primary_10_3390_biom12070861 crossref_primary_10_1007_s00284_024_03745_2 crossref_primary_10_1093_ve_veaa076 crossref_primary_10_1007_s00705_024_06081_9 crossref_primary_10_7554_eLife_86617 crossref_primary_10_3390_v16030415 crossref_primary_10_23902_trkjnat_1478899 crossref_primary_10_1038_s41598_024_58171_y crossref_primary_10_3389_faquc_2024_1390415 crossref_primary_10_7554_eLife_86617_3 crossref_primary_10_1073_pnas_2301522120 crossref_primary_10_1093_ve_veac123 crossref_primary_10_1002_imt2_59 crossref_primary_10_1016_j_celrep_2021_110204 crossref_primary_10_7554_eLife_59753 crossref_primary_10_1111_brv_12920 crossref_primary_10_1093_ismejo_wraf002 crossref_primary_10_1038_s41467_024_52610_0 crossref_primary_10_1038_s41598_022_24651_2 crossref_primary_10_1073_pnas_2405771121 crossref_primary_10_3389_fmicb_2021_657471 crossref_primary_10_1099_jgv_0_001706 crossref_primary_10_1016_j_mib_2023_102283 crossref_primary_10_3390_v13010126 crossref_primary_10_1038_s41564_023_01378_y crossref_primary_10_3390_v14061148 crossref_primary_10_1264_jsme2_ME22001 crossref_primary_10_1093_ve_veaa058 crossref_primary_10_1126_sciadv_ado2631 crossref_primary_10_1093_ve_veaa055 crossref_primary_10_1371_journal_pgen_1010998 crossref_primary_10_1073_pnas_2023202118 crossref_primary_10_3390_v15051091 crossref_primary_10_1186_s12915_020_00919_9 crossref_primary_10_1093_ve_veaa059 crossref_primary_10_3390_microorganisms8121944 crossref_primary_10_3390_microorganisms11030693 crossref_primary_10_1007_s00705_021_05176_x crossref_primary_10_1016_j_chom_2022_10_008 crossref_primary_10_1073_pnas_2001637117 crossref_primary_10_3389_fmicb_2022_808499 crossref_primary_10_3390_biom12081061 crossref_primary_10_1038_s43705_022_00145_0 crossref_primary_10_1093_molbev_msac022 crossref_primary_10_1111_1462_2920_16207 crossref_primary_10_1038_s41467_024_51230_y crossref_primary_10_3390_biom13010110 crossref_primary_10_1038_s42003_024_06001_2 crossref_primary_10_1128_JVI_01367_21 crossref_primary_10_3390_microorganisms12040696 crossref_primary_10_1093_nar_gkaa946 crossref_primary_10_1093_bioinformatics_btab026 crossref_primary_10_1051_medsci_2022166 crossref_primary_10_1051_medsci_2022164 crossref_primary_10_1111_plb_13338 crossref_primary_10_1093_femsml_uqae006 crossref_primary_10_1093_ismejo_wrad042 crossref_primary_10_1093_nar_gkae1278 crossref_primary_10_3390_v13122341 crossref_primary_10_1128_jvi_00411_23 crossref_primary_10_3390_biom13020289 crossref_primary_10_1038_s41467_021_21350_w crossref_primary_10_1016_j_foodres_2022_112197 crossref_primary_10_1038_s41575_021_00536_z crossref_primary_10_1093_ismejo_wrae129 crossref_primary_10_1186_s40168_020_00990_y crossref_primary_10_1002_bies_202100239 crossref_primary_10_1038_s41564_022_01297_4 crossref_primary_10_1186_s12859_022_05022_0 crossref_primary_10_3389_fmicb_2021_715608 crossref_primary_10_1128_JVI_01594_20 crossref_primary_10_1080_08830185_2024_2314577 crossref_primary_10_1099_jgv_0_001488 crossref_primary_10_3390_ph16050728 crossref_primary_10_1371_journal_pbio_3002157 crossref_primary_10_1128_JVI_01962_20 crossref_primary_10_1128_mbio_00783_22 crossref_primary_10_1016_j_fmre_2024_11_006 crossref_primary_10_1016_j_cimid_2023_102111 crossref_primary_10_1038_s43705_023_00252_6 crossref_primary_10_3390_v14122680 crossref_primary_10_3390_v15010001 crossref_primary_10_1038_s41396_021_01097_4 crossref_primary_10_1093_nar_gkab133 crossref_primary_10_1128_JVI_00467_21 crossref_primary_10_1128_jvi_01824_22 crossref_primary_10_3390_pathogens10080935 crossref_primary_10_1093_gbe_evae271 |
Cites_doi | 10.1038/s41467-019-11433-0 10.7717/peerj.5761 10.1016/j.coviro.2018.07.011 10.1016/j.coviro.2011.06.004 10.1073/pnas.1704925114 10.1038/ncomms5498 10.1016/s0092-8674(03)00276-9 10.1093/sysbio/syz036 10.1371/journal.ppat.1007314 10.1056/NEJMoa1805068 10.1007/s00705-015-2613-x 10.1038/190302a0 10.1146/annurev-virology-031413-085444 10.1128/mBio.02329-18 10.1002/j.1460-2075.1990.tb07536.x 10.1073/pnas.1703834114 10.1016/j.jsb.2003.10.010 10.1016/j.coviro.2019.05.008 10.1159/000107603 10.1371/journal.ppat.1002239 10.1128/JVI.00694-10 10.1146/annurev-virology-031413-085540 10.1016/j.virol.2018.01.006 10.1128/JVI.02203-10 10.1186/1743-422X-6-223 10.1007/s00239-007-9044-6 10.1128/br.35.3.235-241.1971 10.1002/bies.201200083 10.1016/j.virusres.2006.01.007 10.1128/JVI.70.9.6083-6096.1996 10.1371/journal.pone.0040418 10.1038/nrmicro.2016.46 10.1371/journal.pbio.1002409 10.1093/gbe/evv034 10.1007/s00705-013-1970-6 10.1186/s12915-014-0066-4 10.1186/1471-2148-9-112 10.1186/1471-2148-13-154 10.1073/pnas.142680199 10.1038/s41467-019-09451-z 10.1371/journal.ppat.1006755 10.1099/jgv.0.001110 10.1007/bf01240522 10.1186/jbiol159 10.1128/JVI.02036-15 10.1101/697771 10.1038/nrmicro3389 10.7554/eLife.51971 10.1038/s41586-018-0012-7 10.1073/pnas.1100266108 10.1007/s00705-019-04306-w 10.1073/pnas.1813204116 10.1128/JVI.00212-17 10.1126/sciadv.aay5981 10.1038/nrmicro2030 10.1186/1743-422X-9-161 10.1099/vir.0.045948-0 10.1038/s41579-019-0205-6 10.1128/JVI.07196-11 10.1186/1745-6150-8-25 10.1093/gbe/evt002 10.1073/pnas.0502164102 10.1534/genetics.118.301556 10.1128/mBio.02497-18 10.1016/j.jip.2009.03.013 10.1038/nrmicro1750 10.1016/B978-0-12-394315-6.00006-4 10.1007/bf02602932 10.1093/genetics/148.4.1667 10.1073/pnas.1300601110 10.1101/341131 10.1016/bs.aivir.2014.11.005 10.1146/annurev-biochem-060910-095130 10.1002/j.1460-2075.1989.tb08565.x 10.1007/978-3-030-14741-9_5 10.1099/vir.0.013086-0 10.1016/j.coviro.2013.06.013 10.1099/0022-1317-72-9-2197 10.1186/1745-6150-7-13 10.1007/s10482-017-0849-z 10.1016/0014-5793(89)80886-5 10.1016/S0022-2836(02)01033-1 10.1073/pnas.1510795112 10.1023/a:1023003412859 10.1016/j.coviro.2013.06.008 10.1007/BF01244584 10.1016/j.cub.2017.03.052 10.1371/journal.ppat.1006183 10.1038/nature20167 10.1016/0042-6822(61)90366-x 10.5772/27793 10.1128/mBio.00289-19 10.1038/srep05347 10.1128/JVI.01622-16 10.1038/d41586-019-00599-8 10.1126/science.aao7298 10.1007/978-1-4614-0980-9_22 10.1186/s13062-015-0047-8 10.1038/s41564-018-0338-9 10.1038/215013a0 10.1093/ve/vez061 10.1038/s41564-017-0053-y 10.1099/00207713-52-1-7 10.1159/000312913 10.1371/journal.pgen.1007518 10.3390/v10040187 10.1038/nature08060 10.1007/s00018-016-2299-6 10.1128/mBio.02938-19 10.1098/rstb.2015.0442 10.1016/j.virol.2015.11.027 10.7717/peerj.2777 10.1093/nar/12.18.7269 10.3390/v7062761 10.1126/sciadv.1600492 10.1155/2012/874153 10.1128/JVI.00372-18 10.1016/j.virusres.2006.01.009 10.1016/j.virol.2015.02.039 10.1038/ncomms3700 10.1007/s10577-017-9570-z 10.3181/00379727-112-28247 10.1073/pnas.1320670111 10.1371/journal.pgen.1008271 10.1128/JVI.75.23.11720-11734.2001 10.3390/v8110300 10.1016/j.cell.2015.06.018 10.1111/j.1749-6632.2009.04993.x 10.1093/nar/gki702 10.1099/jgv.0.001248 10.1128/JVI.02130-18 10.1186/s13062-015-0084-3 10.1038/nature04160 10.1186/s13062-017-0202-5 10.1038/nrmicro.2016.177 10.1016/j.virusres.2017.10.016 10.1093/nar/gkw322 10.1016/j.shpsc.2016.02.016 10.1128/JVI.00515-18 10.1128/JVI.00210-17 10.1186/s13062-018-0230-9 10.1038/nature03056 10.1186/1745-6150-1-29 10.1016/j.coviro.2013.06.010 10.1038/nature04546 10.1016/j.str.2013.06.017 10.1038/nature25474 10.1146/annurev-virology-100114-054952 10.1016/j.virol.2018.08.010 10.1016/j.gde.2018.02.007 10.1038/nature14008 10.1007/s00705-006-0743-x 10.1126/science.7041255 10.1016/j.plrev.2012.06.001 10.1093/gbe/evw193 10.1016/bs.aivir.2018.10.001 10.1016/0014-5793(90)80175-i 10.1093/nar/gkh828 10.1073/pnas.1621061114 10.1038/ismej.2013.110 10.1128/JB.01801-12 10.1016/j.coviro.2018.08.013 10.3389/fcimb.2012.00119 10.1016/j.virol.2018.09.008 10.3390/v10080404 10.1101/572362 10.1126/science.289.5487.2129 10.1016/0303-2647(74)90003-3 10.1073/pnas.1521291113 10.1038/nrmicro751 10.1093/nar/20.13.3279 10.1099/0022-1317-73-10-2763 10.1128/mBio.00978-16 10.1073/pnas.1404330111 10.1111/nyas.12696 10.1038/s41564-019-0510-x 10.1007/s00705-017-3679-4 10.1006/jtbi.1996.0389 10.1128/mBio.00999-16 10.1128/mBio.00542-19 10.1038/s41576-019-0172-9 10.1016/S0962-8924(99)01664-5 10.1128/mBio.00699-16 10.1038/s41467-018-04698-4 10.1146/annurev-virology-110615-042323 10.1126/science.1239181 10.1146/annurev.mi.20.100166.000401 10.1038/nrmicro2108 10.1038/s41467-019-08319-6 10.3389/fmicb.2017.02643 10.1038/s41467-019-08927-2 10.1016/j.str.2011.03.023 10.1038/227561a0 10.1007/s00705-018-3915-6 10.1007/s00705-018-04136-2 10.1038/nrmicro.2017.125 10.1016/j.chom.2017.07.019 10.1146/annurev.genet.42.110807.091545 10.1128/mBio.00185-18 10.1186/1745-6150-3-29 10.1126/science.284.5423.2124 10.1128/microbiolspec.MDNA3-0058-2014 10.1038/s41467-018-07225-7 10.1007/s10327-012-0423-5 10.1159/000150054 10.1038/s41564-019-0448-z 10.12688/f1000research.16248.1 10.1007/s00705-008-0041-x 10.1016/j.virol.2014.06.032 10.1038/nrmicro1163 10.1007/s13337-019-00519-4 10.1016/bs.aivir.2018.09.002 10.1101/2020.01.28.923185 10.1016/j.virol.2017.01.010 10.1016/j.virusres.2017.11.025 10.1073/pnas.1324194111 10.1186/s12985-018-0974-y 10.1080/19420889.2017.1296614 10.3109/10409239309078440 10.1038/263106a0 10.1038/nrmicro3067 10.1146/annurev.micro.55.1.709 10.1093/nar/gkn668 10.1006/viro.1999.9837 10.1023/a:1005907310553 |
ContentType | Journal Article |
Copyright | Copyright © 2020 American Society for Microbiology. Copyright American Society for Microbiology Jun 2020 Distributed under a Creative Commons Attribution 4.0 International License Copyright © 2020 American Society for Microbiology. 2020 American Society for Microbiology |
Copyright_xml | – notice: Copyright © 2020 American Society for Microbiology. – notice: Copyright American Society for Microbiology Jun 2020 – notice: Distributed under a Creative Commons Attribution 4.0 International License – notice: Copyright © 2020 American Society for Microbiology. 2020 American Society for Microbiology |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7QP 7QR 7TK 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 1XC 5PM |
DOI | 10.1128/MMBR.00061-19 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic Hyper Article en Ligne (HAL) PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE Virology and AIDS Abstracts MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Megataxonomy of Viruses |
EISSN | 1098-5557 |
EndPage | 19 |
ExternalDocumentID | PMC7062200 oai_HAL_pasteur_02558270v1 32132243 10_1128_MMBR_00061_19 |
Genre | Research Support, N.I.H., Intramural Review Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: HHSN272200700016I – fundername: ; – fundername: ; grantid: #ANR-17-CE15-0005-01 – fundername: ; grantid: HHSN272200700016I |
GroupedDBID | --- -DZ -~X .55 0R~ 123 18M 29M 2KS 2WC 39C 4.4 5RE 5VS 85S AAGFI AAIKC AAMNW AAYXX ABPPZ ACGFO ACGOD ACIWK ACNCT ACPRK ADBBV AENEX AFRAH AGHSJ AGVNZ ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BKOMP BTFSW CITATION CJ0 CS3 D0L DIK DU5 E3Z EBS F5P GX1 H13 HF~ HYE HZ~ KQ8 L7B O9- OMK P2P PQQKQ RHI RNS RPM RSF RXW TAE TR2 W8F WH7 WOQ X7M YNT YQT ~02 CGR CUY CVF ECM EIF NPM 7QL 7QP 7QR 7TK 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 1XC 5PM |
ID | FETCH-LOGICAL-c519t-d4161c2936565d3ee5fbee0d2db9a94b1e21746c89528a20b42c215e43b2db503 |
ISSN | 1092-2172 1098-5557 |
IngestDate | Thu Aug 21 14:03:55 EDT 2025 Thu Sep 18 06:20:48 EDT 2025 Fri Sep 05 08:56:07 EDT 2025 Mon Jun 30 08:47:25 EDT 2025 Mon Jul 21 05:14:13 EDT 2025 Tue Sep 16 05:23:55 EDT 2025 Tue Jul 01 04:14:27 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | virosphere megataxonomy virus nomenclature phylogeny realm evolution virus classification virus taxonomy ICTV phylogenomics |
Language | English |
License | Copyright © 2020 American Society for Microbiology. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 All Rights Reserved. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c519t-d4161c2936565d3ee5fbee0d2db9a94b1e21746c89528a20b42c215e43b2db503 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 PMCID: PMC7062200 Citation Koonin EV, Dolja VV, Krupovic M, Varsani A, Wolf YI, Yutin N, Zerbini FM, Kuhn JH. 2020. Global organization and proposed megataxonomy of the virus world. Microbiol Mol Biol Rev 84:e00061-19. https://doi.org/10.1128/MMBR.00061-19. |
ORCID | 0000-0002-3633-5123 0000-0003-4111-2415 0000-0002-7800-6045 0000-0003-3943-8299 0000-0001-5486-0098 0000-0002-0247-8708 0000-0002-8148-4670 0000-0001-8617-0200 |
OpenAccessLink | https://mmbr.asm.org/content/mmbr/84/2/e00061-19.full.pdf |
PMID | 32132243 |
PQID | 2389725839 |
PQPubID | 42367 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7062200 hal_primary_oai_HAL_pasteur_02558270v1 proquest_miscellaneous_2371855551 proquest_journals_2389725839 pubmed_primary_32132243 crossref_primary_10_1128_MMBR_00061_19 crossref_citationtrail_10_1128_MMBR_00061_19 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-05-20 |
PublicationDateYYYYMMDD | 2020-05-20 |
PublicationDate_xml | – month: 05 year: 2020 text: 2020-05-20 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington – name: 1752 N St., N.W., Washington, DC |
PublicationTitle | Microbiology and molecular biology reviews |
PublicationTitleAlternate | Microbiol Mol Biol Rev |
PublicationYear | 2020 |
Publisher | American Society for Microbiology |
Publisher_xml | – name: American Society for Microbiology |
References | e_1_3_4_3_2 e_1_3_4_152_2 e_1_3_4_175_2 e_1_3_4_198_2 e_1_3_4_114_2 e_1_3_4_137_2 e_1_3_4_61_2 e_1_3_4_212_2 e_1_3_4_84_2 e_1_3_4_23_2 e_1_3_4_69_2 e_1_3_4_208_2 e_1_3_4_163_2 e_1_3_4_140_2 e_1_3_4_102_2 e_1_3_4_186_2 e_1_3_4_200_2 e_1_3_4_223_2 e_1_3_4_72_2 e_1_3_4_125_2 e_1_3_4_95_2 e_1_3_4_148_2 e_1_3_4_11_2 e_1_3_4_34_2 e_1_3_4_57_2 e_1_3_4_19_2 e_1_3_4_2_2 e_1_3_4_174_2 e_1_3_4_219_2 e_1_3_4_151_2 e_1_3_4_113_2 e_1_3_4_197_2 e_1_3_4_211_2 e_1_3_4_234_2 e_1_3_4_136_2 e_1_3_4_62_2 e_1_3_4_85_2 e_1_3_4_159_2 e_1_3_4_24_2 e_1_3_4_47_2 e_1_3_4_162_2 e_1_3_4_207_2 e_1_3_4_101_2 e_1_3_4_124_2 e_1_3_4_185_2 e_1_3_4_222_2 e_1_3_4_73_2 e_1_3_4_96_2 e_1_3_4_147_2 e_1_3_4_50_2 e_1_3_4_109_2 e_1_3_4_12_2 e_1_3_4_58_2 Holmes FO (e_1_3_4_44_2) 1948 e_1_3_4_35_2 Lwoff A (e_1_3_4_51_2) 1962; 254 e_1_3_4_131_2 e_1_3_4_237_2 e_1_3_4_154_2 e_1_3_4_177_2 e_1_3_4_214_2 e_1_3_4_9_2 e_1_3_4_139_2 e_1_3_4_48_2 e_1_3_4_86_2 e_1_3_4_25_2 Condit R (e_1_3_4_59_2) 2013 e_1_3_4_180_2 e_1_3_4_142_2 e_1_3_4_188_2 e_1_3_4_202_2 e_1_3_4_225_2 e_1_3_4_165_2 e_1_3_4_104_2 e_1_3_4_74_2 e_1_3_4_127_2 e_1_3_4_97_2 e_1_3_4_13_2 e_1_3_4_36_2 e_1_3_4_191_2 e_1_3_4_153_2 e_1_3_4_199_2 e_1_3_4_130_2 e_1_3_4_213_2 e_1_3_4_236_2 e_1_3_4_176_2 e_1_3_4_115_2 e_1_3_4_8_2 e_1_3_4_138_2 e_1_3_4_41_2 e_1_3_4_26_2 e_1_3_4_49_2 e_1_3_4_87_2 e_1_3_4_141_2 e_1_3_4_164_2 e_1_3_4_187_2 e_1_3_4_209_2 e_1_3_4_224_2 e_1_3_4_103_2 e_1_3_4_126_2 e_1_3_4_149_2 e_1_3_4_201_2 e_1_3_4_52_2 e_1_3_4_90_2 Li W-H (e_1_3_4_64_2) 1997 e_1_3_4_75_2 e_1_3_4_98_2 e_1_3_4_37_2 Wildy P (e_1_3_4_46_2) 1962 Goldbach R (e_1_3_4_116_2) 1987; 4 e_1_3_4_14_2 e_1_3_4_190_2 e_1_3_4_239_2 e_1_3_4_110_2 e_1_3_4_133_2 e_1_3_4_156_2 e_1_3_4_179_2 e_1_3_4_194_2 e_1_3_4_216_2 e_1_3_4_231_2 e_1_3_4_7_2 e_1_3_4_118_2 Felsenstein J (e_1_3_4_63_2) 2004 e_1_3_4_80_2 e_1_3_4_42_2 e_1_3_4_27_2 e_1_3_4_65_2 e_1_3_4_88_2 e_1_3_4_182_2 e_1_3_4_204_2 e_1_3_4_227_2 e_1_3_4_121_2 e_1_3_4_167_2 e_1_3_4_144_2 e_1_3_4_106_2 e_1_3_4_30_2 e_1_3_4_129_2 e_1_3_4_91_2 e_1_3_4_53_2 e_1_3_4_15_2 e_1_3_4_38_2 e_1_3_4_76_2 e_1_3_4_99_2 e_1_3_4_193_2 e_1_3_4_170_2 e_1_3_4_238_2 e_1_3_4_132_2 e_1_3_4_178_2 e_1_3_4_215_2 e_1_3_4_155_2 Сердюк ИН (e_1_3_4_235_2) 2007; 41 e_1_3_4_117_2 e_1_3_4_230_2 e_1_3_4_6_2 e_1_3_4_81_2 e_1_3_4_20_2 e_1_3_4_43_2 e_1_3_4_66_2 e_1_3_4_89_2 e_1_3_4_28_2 e_1_3_4_181_2 e_1_3_4_120_2 e_1_3_4_189_2 e_1_3_4_226_2 e_1_3_4_143_2 e_1_3_4_166_2 e_1_3_4_203_2 e_1_3_4_105_2 e_1_3_4_128_2 e_1_3_4_92_2 e_1_3_4_54_2 e_1_3_4_31_2 e_1_3_4_16_2 e_1_3_4_77_2 e_1_3_4_192_2 e_1_3_4_39_2 e_1_3_4_150_2 e_1_3_4_173_2 e_1_3_4_218_2 e_1_3_4_112_2 e_1_3_4_135_2 e_1_3_4_196_2 e_1_3_4_82_2 e_1_3_4_233_2 e_1_3_4_158_2 e_1_3_4_210_2 e_1_3_4_5_2 e_1_3_4_21_2 López-García P (e_1_3_4_40_2) 2012; 34 e_1_3_4_67_2 e_1_3_4_29_2 e_1_3_4_206_2 e_1_3_4_229_2 e_1_3_4_161_2 e_1_3_4_100_2 e_1_3_4_146_2 e_1_3_4_184_2 e_1_3_4_123_2 e_1_3_4_93_2 e_1_3_4_221_2 e_1_3_4_169_2 e_1_3_4_108_2 e_1_3_4_70_2 e_1_3_4_55_2 e_1_3_4_32_2 e_1_3_4_78_2 e_1_3_4_17_2 e_1_3_4_172_2 e_1_3_4_217_2 e_1_3_4_111_2 e_1_3_4_157_2 e_1_3_4_195_2 e_1_3_4_134_2 e_1_3_4_60_2 e_1_3_4_83_2 e_1_3_4_232_2 e_1_3_4_119_2 e_1_3_4_4_2 e_1_3_4_22_2 e_1_3_4_45_2 e_1_3_4_68_2 e_1_3_4_160_2 e_1_3_4_228_2 e_1_3_4_122_2 e_1_3_4_145_2 e_1_3_4_168_2 e_1_3_4_183_2 e_1_3_4_205_2 e_1_3_4_71_2 e_1_3_4_94_2 e_1_3_4_220_2 e_1_3_4_107_2 e_1_3_4_79_2 e_1_3_4_33_2 e_1_3_4_10_2 e_1_3_4_56_2 e_1_3_4_18_2 e_1_3_4_171_2 |
References_xml | – ident: e_1_3_4_86_2 doi: 10.1038/s41467-019-11433-0 – ident: e_1_3_4_143_2 doi: 10.7717/peerj.5761 – ident: e_1_3_4_35_2 doi: 10.1016/j.coviro.2018.07.011 – ident: e_1_3_4_5_2 doi: 10.1016/j.coviro.2011.06.004 – ident: e_1_3_4_76_2 doi: 10.1073/pnas.1704925114 – ident: e_1_3_4_215_2 doi: 10.1038/ncomms5498 – ident: e_1_3_4_4_2 doi: 10.1016/s0092-8674(03)00276-9 – ident: e_1_3_4_212_2 doi: 10.1093/sysbio/syz036 – ident: e_1_3_4_107_2 doi: 10.1371/journal.ppat.1007314 – ident: e_1_3_4_119_2 doi: 10.1056/NEJMoa1805068 – ident: e_1_3_4_155_2 doi: 10.1007/s00705-015-2613-x – ident: e_1_3_4_45_2 doi: 10.1038/190302a0 – ident: e_1_3_4_151_2 doi: 10.1146/annurev-virology-031413-085444 – ident: e_1_3_4_83_2 doi: 10.1128/mBio.02329-18 – ident: e_1_3_4_92_2 doi: 10.1002/j.1460-2075.1990.tb07536.x – ident: e_1_3_4_160_2 doi: 10.1073/pnas.1703834114 – ident: e_1_3_4_210_2 doi: 10.1016/j.jsb.2003.10.010 – ident: e_1_3_4_225_2 doi: 10.1016/j.coviro.2019.05.008 – ident: e_1_3_4_173_2 doi: 10.1159/000107603 – ident: e_1_3_4_198_2 doi: 10.1371/journal.ppat.1002239 – ident: e_1_3_4_18_2 doi: 10.1128/JVI.00694-10 – ident: e_1_3_4_2_2 doi: 10.1146/annurev-virology-031413-085540 – ident: e_1_3_4_114_2 doi: 10.1016/j.virol.2018.01.006 – ident: e_1_3_4_25_2 doi: 10.1128/JVI.02203-10 – ident: e_1_3_4_200_2 doi: 10.1186/1743-422X-6-223 – ident: e_1_3_4_30_2 doi: 10.1007/s00239-007-9044-6 – ident: e_1_3_4_58_2 doi: 10.1128/br.35.3.235-241.1971 – ident: e_1_3_4_159_2 doi: 10.1002/bies.201200083 – ident: e_1_3_4_224_2 doi: 10.1016/j.virusres.2006.01.007 – ident: e_1_3_4_93_2 doi: 10.1128/JVI.70.9.6083-6096.1996 – ident: e_1_3_4_144_2 doi: 10.1371/journal.pone.0040418 – ident: e_1_3_4_22_2 doi: 10.1038/nrmicro.2016.46 – ident: e_1_3_4_96_2 doi: 10.1371/journal.pbio.1002409 – ident: e_1_3_4_166_2 doi: 10.1093/gbe/evv034 – ident: e_1_3_4_180_2 doi: 10.1007/s00705-013-1970-6 – ident: e_1_3_4_68_2 doi: 10.1186/s12915-014-0066-4 – ident: e_1_3_4_163_2 doi: 10.1186/1471-2148-9-112 – ident: e_1_3_4_131_2 doi: 10.1186/1471-2148-13-154 – ident: e_1_3_4_13_2 doi: 10.1073/pnas.142680199 – ident: e_1_3_4_181_2 doi: 10.1038/s41467-019-09451-z – ident: e_1_3_4_125_2 doi: 10.1371/journal.ppat.1006755 – ident: e_1_3_4_214_2 doi: 10.1099/jgv.0.001110 – ident: e_1_3_4_47_2 doi: 10.1007/bf01240522 – ident: e_1_3_4_72_2 doi: 10.1186/jbiol159 – ident: e_1_3_4_120_2 doi: 10.1128/JVI.02036-15 – ident: e_1_3_4_228_2 doi: 10.1101/697771 – ident: e_1_3_4_177_2 doi: 10.1038/nrmicro3389 – ident: e_1_3_4_149_2 doi: 10.7554/eLife.51971 – ident: e_1_3_4_122_2 doi: 10.1038/s41586-018-0012-7 – ident: e_1_3_4_133_2 doi: 10.1073/pnas.1100266108 – ident: e_1_3_4_229_2 doi: 10.1007/s00705-019-04306-w – ident: e_1_3_4_205_2 doi: 10.1073/pnas.1813204116 – ident: e_1_3_4_190_2 doi: 10.1128/JVI.00212-17 – ident: e_1_3_4_237_2 doi: 10.1126/sciadv.aay5981 – ident: e_1_3_4_104_2 doi: 10.1038/nrmicro2030 – ident: e_1_3_4_74_2 doi: 10.1186/1743-422X-9-161 – ident: e_1_3_4_148_2 doi: 10.1099/vir.0.045948-0 – ident: e_1_3_4_81_2 doi: 10.1038/s41579-019-0205-6 – ident: e_1_3_4_132_2 doi: 10.1128/JVI.07196-11 – ident: e_1_3_4_194_2 doi: 10.1186/1745-6150-8-25 – ident: e_1_3_4_78_2 doi: 10.1093/gbe/evt002 – ident: e_1_3_4_206_2 doi: 10.1073/pnas.0502164102 – ident: e_1_3_4_20_2 doi: 10.1534/genetics.118.301556 – start-page: 21 volume-title: Fields virology year: 2013 ident: e_1_3_4_59_2 – ident: e_1_3_4_203_2 doi: 10.1128/mBio.02497-18 – ident: e_1_3_4_220_2 doi: 10.1016/j.jip.2009.03.013 – ident: e_1_3_4_11_2 doi: 10.1038/nrmicro1750 – ident: e_1_3_4_97_2 doi: 10.1016/B978-0-12-394315-6.00006-4 – ident: e_1_3_4_24_2 doi: 10.1007/bf02602932 – ident: e_1_3_4_16_2 doi: 10.1093/genetics/148.4.1667 – ident: e_1_3_4_175_2 doi: 10.1073/pnas.1300601110 – ident: e_1_3_4_227_2 doi: 10.1101/341131 – ident: e_1_3_4_232_2 – ident: e_1_3_4_154_2 doi: 10.1016/bs.aivir.2014.11.005 – ident: e_1_3_4_172_2 doi: 10.1146/annurev-biochem-060910-095130 – ident: e_1_3_4_91_2 doi: 10.1002/j.1460-2075.1989.tb08565.x – ident: e_1_3_4_184_2 doi: 10.1007/978-3-030-14741-9_5 – ident: e_1_3_4_99_2 doi: 10.1099/vir.0.013086-0 – ident: e_1_3_4_33_2 doi: 10.1016/j.coviro.2013.06.013 – ident: e_1_3_4_89_2 doi: 10.1099/0022-1317-72-9-2197 – ident: e_1_3_4_165_2 doi: 10.1186/1745-6150-7-13 – ident: e_1_3_4_15_2 doi: 10.1007/s10482-017-0849-z – ident: e_1_3_4_90_2 doi: 10.1016/0014-5793(89)80886-5 – ident: e_1_3_4_130_2 doi: 10.1016/S0022-2836(02)01033-1 – ident: e_1_3_4_196_2 doi: 10.1073/pnas.1510795112 – ident: e_1_3_4_112_2 doi: 10.1023/a:1023003412859 – volume-title: Inferring phylogenies year: 2004 ident: e_1_3_4_63_2 – ident: e_1_3_4_9_2 doi: 10.1016/j.coviro.2013.06.008 – ident: e_1_3_4_43_2 doi: 10.1007/BF01244584 – ident: e_1_3_4_233_2 – ident: e_1_3_4_217_2 doi: 10.1016/j.cub.2017.03.052 – ident: e_1_3_4_129_2 doi: 10.1371/journal.ppat.1006183 – ident: e_1_3_4_101_2 doi: 10.1038/nature20167 – ident: e_1_3_4_48_2 doi: 10.1016/0042-6822(61)90366-x – ident: e_1_3_4_219_2 doi: 10.5772/27793 – ident: e_1_3_4_94_2 doi: 10.1128/mBio.00289-19 – ident: e_1_3_4_152_2 doi: 10.1038/srep05347 – ident: e_1_3_4_84_2 doi: 10.1128/JVI.01622-16 – ident: e_1_3_4_53_2 doi: 10.1038/d41586-019-00599-8 – ident: e_1_3_4_207_2 doi: 10.1126/science.aao7298 – ident: e_1_3_4_208_2 doi: 10.1007/978-1-4614-0980-9_22 – ident: e_1_3_4_115_2 doi: 10.1186/s13062-015-0047-8 – ident: e_1_3_4_218_2 doi: 10.1038/s41564-018-0338-9 – ident: e_1_3_4_50_2 doi: 10.1038/215013a0 – ident: e_1_3_4_124_2 doi: 10.1093/ve/vez061 – ident: e_1_3_4_169_2 doi: 10.1038/s41564-017-0053-y – ident: e_1_3_4_234_2 doi: 10.1099/00207713-52-1-7 – ident: e_1_3_4_187_2 doi: 10.1159/000312913 – ident: e_1_3_4_71_2 doi: 10.1371/journal.pgen.1007518 – ident: e_1_3_4_150_2 doi: 10.3390/v10040187 – ident: e_1_3_4_10_2 doi: 10.1038/nature08060 – ident: e_1_3_4_17_2 doi: 10.1007/s00018-016-2299-6 – ident: e_1_3_4_238_2 doi: 10.1128/mBio.02938-19 – ident: e_1_3_4_42_2 doi: 10.1098/rstb.2015.0442 – ident: e_1_3_4_100_2 doi: 10.1016/j.virol.2015.11.027 – ident: e_1_3_4_145_2 doi: 10.7717/peerj.2777 – ident: e_1_3_4_88_2 doi: 10.1093/nar/12.18.7269 – ident: e_1_3_4_108_2 doi: 10.3390/v7062761 – ident: e_1_3_4_8_2 doi: 10.1126/sciadv.1600492 – ident: e_1_3_4_37_2 doi: 10.1155/2012/874153 – ident: e_1_3_4_189_2 doi: 10.1128/JVI.00372-18 – ident: e_1_3_4_186_2 doi: 10.1016/j.virusres.2006.01.009 – ident: e_1_3_4_62_2 doi: 10.1016/j.virol.2015.02.039 – ident: e_1_3_4_164_2 doi: 10.1038/ncomms3700 – ident: e_1_3_4_136_2 doi: 10.1007/s10577-017-9570-z – ident: e_1_3_4_49_2 doi: 10.3181/00379727-112-28247 – ident: e_1_3_4_197_2 doi: 10.1073/pnas.1320670111 – ident: e_1_3_4_21_2 doi: 10.1371/journal.pgen.1008271 – ident: e_1_3_4_185_2 doi: 10.1128/JVI.75.23.11720-11734.2001 – ident: e_1_3_4_188_2 doi: 10.3390/v8110300 – ident: e_1_3_4_128_2 doi: 10.1016/j.cell.2015.06.018 – ident: e_1_3_4_32_2 doi: 10.1111/j.1749-6632.2009.04993.x – ident: e_1_3_4_167_2 doi: 10.1093/nar/gki702 – ident: e_1_3_4_221_2 doi: 10.1099/jgv.0.001248 – ident: e_1_3_4_192_2 doi: 10.1128/JVI.02130-18 – ident: e_1_3_4_57_2 doi: 10.1186/s13062-015-0084-3 – ident: e_1_3_4_6_2 doi: 10.1038/nature04160 – ident: e_1_3_4_28_2 doi: 10.1186/s13062-017-0202-5 – ident: e_1_3_4_54_2 doi: 10.1038/nrmicro.2016.177 – ident: e_1_3_4_117_2 doi: 10.1016/j.virusres.2017.10.016 – ident: e_1_3_4_211_2 doi: 10.1093/nar/gkw322 – ident: e_1_3_4_39_2 doi: 10.1016/j.shpsc.2016.02.016 – ident: e_1_3_4_137_2 doi: 10.1128/JVI.00515-18 – ident: e_1_3_4_139_2 doi: 10.1128/JVI.00210-17 – ident: e_1_3_4_26_2 doi: 10.1186/s13062-018-0230-9 – ident: e_1_3_4_171_2 doi: 10.1038/nature03056 – ident: e_1_3_4_73_2 doi: 10.1186/1745-6150-1-29 – ident: e_1_3_4_162_2 doi: 10.1016/j.coviro.2013.06.010 – ident: e_1_3_4_98_2 doi: 10.1038/nature04546 – ident: e_1_3_4_109_2 doi: 10.1016/j.str.2013.06.017 – start-page: 1125 volume-title: Bergey’s manual of determinative bacteriology year: 1948 ident: e_1_3_4_44_2 – ident: e_1_3_4_179_2 doi: 10.1038/nature25474 – volume: 41 start-page: 1042 year: 2007 ident: e_1_3_4_235_2 article-title: Неструктурированные области в элонгационных факторах EF1А трех надцарств живого мира publication-title: Mol Biol (Mosk) – ident: e_1_3_4_7_2 doi: 10.1146/annurev-virology-100114-054952 – ident: e_1_3_4_106_2 doi: 10.1016/j.virol.2018.08.010 – volume: 4 start-page: 197 year: 1987 ident: e_1_3_4_116_2 article-title: Genome similarities between plant and animal RNA viruses publication-title: Microbiol Sci – ident: e_1_3_4_135_2 doi: 10.1016/j.gde.2018.02.007 – ident: e_1_3_4_127_2 doi: 10.1038/nature14008 – ident: e_1_3_4_87_2 doi: 10.1007/s00705-006-0743-x – ident: e_1_3_4_19_2 doi: 10.1126/science.7041255 – ident: e_1_3_4_31_2 doi: 10.1016/j.plrev.2012.06.001 – ident: e_1_3_4_27_2 doi: 10.1093/gbe/evw193 – ident: e_1_3_4_140_2 doi: 10.1016/bs.aivir.2018.10.001 – ident: e_1_3_4_158_2 doi: 10.1016/0014-5793(90)80175-i – ident: e_1_3_4_176_2 doi: 10.1093/nar/gkh828 – ident: e_1_3_4_82_2 doi: 10.1073/pnas.1621061114 – ident: e_1_3_4_141_2 doi: 10.1038/ismej.2013.110 – ident: e_1_3_4_79_2 doi: 10.1128/JB.01801-12 – ident: e_1_3_4_23_2 doi: 10.1016/j.coviro.2018.08.013 – ident: e_1_3_4_34_2 doi: 10.3389/fcimb.2012.00119 – ident: e_1_3_4_113_2 doi: 10.1016/j.virol.2018.09.008 – ident: e_1_3_4_146_2 doi: 10.3390/v10080404 – ident: e_1_3_4_170_2 doi: 10.1101/572362 – ident: e_1_3_4_204_2 doi: 10.1126/science.289.5487.2129 – ident: e_1_3_4_60_2 doi: 10.1016/0303-2647(74)90003-3 – ident: e_1_3_4_14_2 doi: 10.1073/pnas.1521291113 – volume: 254 start-page: 4225 year: 1962 ident: e_1_3_4_51_2 article-title: Un système des virus publication-title: C R Hebd Seances Acad Sci – ident: e_1_3_4_69_2 doi: 10.1038/nrmicro751 – ident: e_1_3_4_231_2 – ident: e_1_3_4_157_2 doi: 10.1093/nar/20.13.3279 – ident: e_1_3_4_161_2 doi: 10.1099/0022-1317-73-10-2763 – ident: e_1_3_4_80_2 doi: 10.1128/mBio.00978-16 – ident: e_1_3_4_110_2 doi: 10.1073/pnas.1404330111 – ident: e_1_3_4_38_2 doi: 10.1111/nyas.12696 – ident: e_1_3_4_147_2 doi: 10.1038/s41564-019-0510-x – ident: e_1_3_4_230_2 – ident: e_1_3_4_126_2 doi: 10.1007/s00705-017-3679-4 – ident: e_1_3_4_29_2 doi: 10.1006/jtbi.1996.0389 – ident: e_1_3_4_12_2 doi: 10.1128/mBio.00999-16 – ident: e_1_3_4_95_2 doi: 10.1128/mBio.00542-19 – ident: e_1_3_4_236_2 doi: 10.1038/s41576-019-0172-9 – ident: e_1_3_4_66_2 doi: 10.1016/S0962-8924(99)01664-5 – ident: e_1_3_4_183_2 doi: 10.1128/mBio.00699-16 – ident: e_1_3_4_195_2 doi: 10.1038/s41467-018-04698-4 – ident: e_1_3_4_36_2 doi: 10.1146/annurev-virology-110615-042323 – ident: e_1_3_4_193_2 doi: 10.1126/science.1239181 – ident: e_1_3_4_52_2 doi: 10.1146/annurev.mi.20.100166.000401 – ident: e_1_3_4_41_2 doi: 10.1038/nrmicro2108 – ident: e_1_3_4_174_2 doi: 10.1038/s41467-019-08319-6 – ident: e_1_3_4_191_2 doi: 10.3389/fmicb.2017.02643 – ident: e_1_3_4_182_2 doi: 10.1038/s41467-019-08927-2 – ident: e_1_3_4_199_2 doi: 10.1016/j.str.2011.03.023 – ident: e_1_3_4_56_2 doi: 10.1038/227561a0 – ident: e_1_3_4_55_2 doi: 10.1007/s00705-018-3915-6 – ident: e_1_3_4_61_2 doi: 10.1007/s00705-018-04136-2 – ident: e_1_3_4_223_2 doi: 10.1038/nrmicro.2017.125 – ident: e_1_3_4_138_2 doi: 10.1016/j.chom.2017.07.019 – ident: e_1_3_4_209_2 doi: 10.1146/annurev.genet.42.110807.091545 – ident: e_1_3_4_226_2 doi: 10.1128/mBio.00185-18 – ident: e_1_3_4_70_2 doi: 10.1186/1745-6150-3-29 – ident: e_1_3_4_65_2 doi: 10.1126/science.284.5423.2124 – ident: e_1_3_4_134_2 doi: 10.1128/microbiolspec.MDNA3-0058-2014 – ident: e_1_3_4_216_2 doi: 10.1038/s41467-018-07225-7 – ident: e_1_3_4_121_2 doi: 10.1007/s10327-012-0423-5 – ident: e_1_3_4_102_2 doi: 10.1159/000150054 – ident: e_1_3_4_213_2 doi: 10.1038/s41564-019-0448-z – ident: e_1_3_4_202_2 doi: 10.12688/f1000research.16248.1 – ident: e_1_3_4_105_2 doi: 10.1007/s00705-008-0041-x – ident: e_1_3_4_201_2 doi: 10.1016/j.virol.2014.06.032 – ident: e_1_3_4_3_2 doi: 10.1038/nrmicro1163 – ident: e_1_3_4_142_2 doi: 10.1007/s13337-019-00519-4 – ident: e_1_3_4_75_2 doi: 10.1016/bs.aivir.2018.09.002 – ident: e_1_3_4_239_2 doi: 10.1101/2020.01.28.923185 – ident: e_1_3_4_123_2 doi: 10.1016/j.virol.2017.01.010 – ident: e_1_3_4_222_2 doi: 10.1016/j.virusres.2017.11.025 – volume: 34 start-page: 391 year: 2012 ident: e_1_3_4_40_2 article-title: The place of viruses in biology in light of the metabolism- versus-replication-first debate publication-title: Hist Philos Life Sci – ident: e_1_3_4_118_2 doi: 10.1073/pnas.1324194111 – ident: e_1_3_4_168_2 doi: 10.1186/s12985-018-0974-y – volume-title: Molecular evolution year: 1997 ident: e_1_3_4_64_2 – ident: e_1_3_4_85_2 doi: 10.1080/19420889.2017.1296614 – ident: e_1_3_4_103_2 doi: 10.3109/10409239309078440 – ident: e_1_3_4_153_2 doi: 10.1038/263106a0 – ident: e_1_3_4_156_2 doi: 10.1038/nrmicro3067 – ident: e_1_3_4_67_2 doi: 10.1146/annurev.micro.55.1.709 – ident: e_1_3_4_77_2 doi: 10.1093/nar/gkn668 – ident: e_1_3_4_178_2 doi: 10.1006/viro.1999.9837 – start-page: 145 year: 1962 ident: e_1_3_4_46_2 article-title: Classifying viruses at higher levels: symmetry and structure of virus particles as criteria publication-title: Symp Soc Gen Microbiol – ident: e_1_3_4_111_2 doi: 10.1023/a:1005907310553 |
SSID | ssj0004599 |
Score | 2.7068026 |
SecondaryResourceType | review_article |
Snippet | Viruses and mobile genetic elements are molecular parasites or symbionts that coevolve with nearly all forms of cellular life. The route of virus replication... SUMMARY : Viruses and mobile genetic elements are molecular parasites or symbionts that coevolve with nearly all forms of cellular life. The route of virus... |
SourceID | pubmedcentral hal proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e00061 |
SubjectTerms | Biological evolution Capsid protein Cellular structure Deoxyribonucleic acid DNA DNA Replication DNA viruses DNA Viruses - genetics DNA-directed RNA polymerase Evolution, Molecular Gene expression Genes, Viral Genome, Viral Genomes Life Sciences Microbiology and Parasitology Modules Parasites Phylogeny Plasmids Proteins Recombination Replication Review Ribonucleic acid RNA RNA polymerase RNA viruses RNA Viruses - genetics RNA-directed DNA polymerase RNA-directed RNA polymerase Single-stranded DNA Symbionts Taxonomy Virions Virology Virus Physiological Phenomena Viruses Viruses - classification |
Title | Global Organization and Proposed Megataxonomy of the Virus World |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32132243 https://www.proquest.com/docview/2389725839 https://www.proquest.com/docview/2371855551 https://pasteur.hal.science/pasteur-02558270 https://pubmed.ncbi.nlm.nih.gov/PMC7062200 |
Volume | 84 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fj5QwEG68M5p7Mf4WPU1NjC8nJxQK9M31V1ZPfDB3m3sj0BZvzR0QjjXqX--0pSysd4n6stnQbiGdj9lvYOYbhJ6JgjNSBp6rOgi4oeSxm0dSuJSSkvDc9wRXxcnp52h-FH48psfrdke6uqQr9vmvC-tK_seqcAzsqqpk_8Gyw6JwAL6DfeETLAyff2VjI9g_qae02f9NfQ5UMpVf8y7_oQsXbDbAYtmqrFerlGqZabrckGQ6s41z9-zRXrl08NG1epRrqmXgEuU6X_ZtffpNk9IF_P20yoUMQwftqqnBO_V1QkPSzQICbNNeam8G3qsS48cRRL9JJ-bNijQuVCmUUmpkp62PNW3geiyRi103UeUIafr6y74mVq5xpSMzNmfajgFREbQRd9rQyrZDW-gqiYFLKZL84WCkHs-Y1VklycvJuXbQdfvrCUXZOlEJsn9GH5tJtCNWcngT3ejDCTwz2LiFrsjqNrpmGoz-vINeGYTgMUIwGBdbhOAxQnBdYkAI1gjBGiF30dH7d4dv5m7fM8PlwMU7V6iAlQOHA55ORSAlLQspPUFEwXIWFr5UMWjEE0ZJkhOvCAkH1ifDoIAp1Avuoe2qruQDhElCy0gmPmdMhDIuEhEGQggW5QEPYCEHvbDblPFeUF71NTnNdGBJkkxtcKY3OPOZg54P0xujpHLpRNjzYY7SP5_PPmVNDm5v1WYqCE5I7H33HbRrzZL1d-V5BhSUxYQC73fQ02EYfKZ6EZZXsl6pOcDIAKIUlrhvrDiczoLAQfHEvpPrmY5UyxOtyx57EQH39PDSNR-hnfUts4u2u3YlHwOn7YonGqi_ATXtopU |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Global+Organization+and+Proposed+Megataxonomy+of+the+Virus+World&rft.jtitle=Microbiology+and+molecular+biology+reviews&rft.au=Koonin%2C+Eugene+V&rft.au=Dolja%2C+Valerian+V&rft.au=Krupovic%2C+Mart&rft.au=Varsani%2C+Arvind&rft.date=2020-05-20&rft.eissn=1098-5557&rft.volume=84&rft.issue=2&rft_id=info:doi/10.1128%2FMMBR.00061-19&rft_id=info%3Apmid%2F32132243&rft.externalDocID=32132243 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1092-2172&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1092-2172&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1092-2172&client=summon |