Global Organization and Proposed Megataxonomy of the Virus World

Viruses and mobile genetic elements are molecular parasites or symbionts that coevolve with nearly all forms of cellular life. The route of virus replication and protein expression is determined by the viral genome type. Comparison of these routes led to the classification of viruses into seven “Bal...

Full description

Saved in:
Bibliographic Details
Published inMicrobiology and molecular biology reviews Vol. 84; no. 2; pp. e00061 - 19
Main Authors Koonin, Eugene V., Dolja, Valerian V., Krupovic, Mart, Varsani, Arvind, Wolf, Yuri I., Yutin, Natalya, Zerbini, F. Murilo, Kuhn, Jens H.
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 20.05.2020
Subjects
Online AccessGet full text
ISSN1092-2172
1098-5557
1098-5557
DOI10.1128/MMBR.00061-19

Cover

Abstract Viruses and mobile genetic elements are molecular parasites or symbionts that coevolve with nearly all forms of cellular life. The route of virus replication and protein expression is determined by the viral genome type. Comparison of these routes led to the classification of viruses into seven “Baltimore classes” (BCs) that define the major features of virus reproduction. However, recent phylogenomic studies identified multiple evolutionary connections among viruses within each of the BCs as well as between different classes. Viruses and mobile genetic elements are molecular parasites or symbionts that coevolve with nearly all forms of cellular life. The route of virus replication and protein expression is determined by the viral genome type. Comparison of these routes led to the classification of viruses into seven “Baltimore classes” (BCs) that define the major features of virus reproduction. However, recent phylogenomic studies identified multiple evolutionary connections among viruses within each of the BCs as well as between different classes. Due to the modular organization of virus genomes, these relationships defy simple representation as lines of descent but rather form complex networks. Phylogenetic analyses of virus hallmark genes combined with analyses of gene-sharing networks show that replication modules of five BCs (three classes of RNA viruses and two classes of reverse-transcribing viruses) evolved from a common ancestor that encoded an RNA-directed RNA polymerase or a reverse transcriptase. Bona fide viruses evolved from this ancestor on multiple, independent occasions via the recruitment of distinct cellular proteins as capsid subunits and other structural components of virions. The single-stranded DNA (ssDNA) viruses are a polyphyletic class, with different groups evolving by recombination between rolling-circle-replicating plasmids, which contributed the replication protein, and positive-sense RNA viruses, which contributed the capsid protein. The double-stranded DNA (dsDNA) viruses are distributed among several large monophyletic groups and arose via the combination of distinct structural modules with equally diverse replication modules. Phylogenomic analyses reveal the finer structure of evolutionary connections among RNA viruses and reverse-transcribing viruses, ssDNA viruses, and large subsets of dsDNA viruses. Taken together, these analyses allow us to outline the global organization of the virus world. Here, we describe the key aspects of this organization and propose a comprehensive hierarchical taxonomy of viruses.
AbstractList SUMMARY : Viruses and mobile genetic elements are molecular parasites or symbionts that coevolve with nearly all forms of cellular life. The route of virus replication and protein expression is determined by the viral genome type. Comparison of these routes led to the classification of viruses into seven "Baltimore classes" (BCs) that define the major features of virus reproduction. However, recent phylogenomic studies identified multiple evolutionary connections among viruses within each of the BCs as well as between different classes. Due to the modular organization of virus genomes, these relationships defy simple representation as lines of descent but rather form complex networks. Phylogenetic analyses of virus hallmark genes combined with analyses of gene-sharing networks show that replication modules of five BCs (three classes of RNA viruses and two classes of reverse-transcribing viruses) evolved from a common ancestor that encoded an RNA-directed RNA polymerase or a reverse transcriptase. Bona fide viruses evolved from this ancestor on multiple, independent occasions via the recruitment of distinct cellular proteins as capsid subunits and other structural components of virions. The single-stranded DNA (ssDNA) viruses are a polyphyletic class, with different groups evolving by recombination between rolling-circle-replicating plasmids, which contributed the replication protein, and positive-sense RNA viruses, which contributed the capsid protein. The double-stranded DNA (dsDNA) viruses are distributed among several large monophyletic groups and arose via the combination of distinct structural modules with equally diverse replication modules. Phylogenomic analyses reveal the finer structure of evolutionary connections among RNA viruses and reverse-transcribing viruses, ssDNA viruses, and large subsets of dsDNA viruses. Taken together, these analyses allow us to outline the global organization of the virus world. Here, we describe the key aspects of this organization and propose a comprehensive hierarchical taxonomy of viruses.
Viruses and mobile genetic elements are molecular parasites or symbionts that coevolve with nearly all forms of cellular life. The route of virus replication and protein expression is determined by the viral genome type. Comparison of these routes led to the classification of viruses into seven "Baltimore classes" (BCs) that define the major features of virus reproduction. However, recent phylogenomic studies identified multiple evolutionary connections among viruses within each of the BCs as well as between different classes. Due to the modular organization of virus genomes, these relationships defy simple representation as lines of descent but rather form complex networks. Phylogenetic analyses of virus hallmark genes combined with analyses of gene-sharing networks show that replication modules of five BCs (three classes of RNA viruses and two classes of reverse-transcribing viruses) evolved from a common ancestor that encoded an RNA-directed RNA polymerase or a reverse transcriptase. Bona fide viruses evolved from this ancestor on multiple, independent occasions via the recruitment of distinct cellular proteins as capsid subunits and other structural components of virions. The single-stranded DNA (ssDNA) viruses are a polyphyletic class, with different groups evolving by recombination between rolling-circle-replicating plasmids, which contributed the replication protein, and positive-sense RNA viruses, which contributed the capsid protein. The double-stranded DNA (dsDNA) viruses are distributed among several large monophyletic groups and arose via the combination of distinct structural modules with equally diverse replication modules. Phylogenomic analyses reveal the finer structure of evolutionary connections among RNA viruses and reverse-transcribing viruses, ssDNA viruses, and large subsets of dsDNA viruses. Taken together, these analyses allow us to outline the global organization of the virus world. Here, we describe the key aspects of this organization and propose a comprehensive hierarchical taxonomy of viruses.
Viruses and mobile genetic elements are molecular parasites or symbionts that coevolve with nearly all forms of cellular life. The route of virus replication and protein expression is determined by the viral genome type. Comparison of these routes led to the classification of viruses into seven "Baltimore classes" (BCs) that define the major features of virus reproduction. However, recent phylogenomic studies identified multiple evolutionary connections among viruses within each of the BCs as well as between different classes. Due to the modular organization of virus genomes, these relationships defy simple representation as lines of descent but rather form complex networks. Phylogenetic analyses of virus hallmark genes combined with analyses of gene-sharing networks show that replication modules of five BCs (three classes of RNA viruses and two classes of reverse-transcribing viruses) evolved from a common ancestor that encoded an RNA-directed RNA polymerase or a reverse transcriptase. Bona fide viruses evolved from this ancestor on multiple, independent occasions via the recruitment of distinct cellular proteins as capsid subunits and other structural components of virions. The single-stranded DNA (ssDNA) viruses are a polyphyletic class, with different groups evolving by recombination between rolling-circle-replicating plasmids, which contributed the replication protein, and positive-sense RNA viruses, which contributed the capsid protein. The double-stranded DNA (dsDNA) viruses are distributed among several large monophyletic groups and arose via the combination of distinct structural modules with equally diverse replication modules. Phylogenomic analyses reveal the finer structure of evolutionary connections among RNA viruses and reverse-transcribing viruses, ssDNA viruses, and large subsets of dsDNA viruses. Taken together, these analyses allow us to outline the global organization of the virus world. Here, we describe the key aspects of this organization and propose a comprehensive hierarchical taxonomy of viruses.Viruses and mobile genetic elements are molecular parasites or symbionts that coevolve with nearly all forms of cellular life. The route of virus replication and protein expression is determined by the viral genome type. Comparison of these routes led to the classification of viruses into seven "Baltimore classes" (BCs) that define the major features of virus reproduction. However, recent phylogenomic studies identified multiple evolutionary connections among viruses within each of the BCs as well as between different classes. Due to the modular organization of virus genomes, these relationships defy simple representation as lines of descent but rather form complex networks. Phylogenetic analyses of virus hallmark genes combined with analyses of gene-sharing networks show that replication modules of five BCs (three classes of RNA viruses and two classes of reverse-transcribing viruses) evolved from a common ancestor that encoded an RNA-directed RNA polymerase or a reverse transcriptase. Bona fide viruses evolved from this ancestor on multiple, independent occasions via the recruitment of distinct cellular proteins as capsid subunits and other structural components of virions. The single-stranded DNA (ssDNA) viruses are a polyphyletic class, with different groups evolving by recombination between rolling-circle-replicating plasmids, which contributed the replication protein, and positive-sense RNA viruses, which contributed the capsid protein. The double-stranded DNA (dsDNA) viruses are distributed among several large monophyletic groups and arose via the combination of distinct structural modules with equally diverse replication modules. Phylogenomic analyses reveal the finer structure of evolutionary connections among RNA viruses and reverse-transcribing viruses, ssDNA viruses, and large subsets of dsDNA viruses. Taken together, these analyses allow us to outline the global organization of the virus world. Here, we describe the key aspects of this organization and propose a comprehensive hierarchical taxonomy of viruses.
Viruses and mobile genetic elements are molecular parasites or symbionts that coevolve with nearly all forms of cellular life. The route of virus replication and protein expression is determined by the viral genome type. Comparison of these routes led to the classification of viruses into seven “Baltimore classes” (BCs) that define the major features of virus reproduction. However, recent phylogenomic studies identified multiple evolutionary connections among viruses within each of the BCs as well as between different classes. Viruses and mobile genetic elements are molecular parasites or symbionts that coevolve with nearly all forms of cellular life. The route of virus replication and protein expression is determined by the viral genome type. Comparison of these routes led to the classification of viruses into seven “Baltimore classes” (BCs) that define the major features of virus reproduction. However, recent phylogenomic studies identified multiple evolutionary connections among viruses within each of the BCs as well as between different classes. Due to the modular organization of virus genomes, these relationships defy simple representation as lines of descent but rather form complex networks. Phylogenetic analyses of virus hallmark genes combined with analyses of gene-sharing networks show that replication modules of five BCs (three classes of RNA viruses and two classes of reverse-transcribing viruses) evolved from a common ancestor that encoded an RNA-directed RNA polymerase or a reverse transcriptase. Bona fide viruses evolved from this ancestor on multiple, independent occasions via the recruitment of distinct cellular proteins as capsid subunits and other structural components of virions. The single-stranded DNA (ssDNA) viruses are a polyphyletic class, with different groups evolving by recombination between rolling-circle-replicating plasmids, which contributed the replication protein, and positive-sense RNA viruses, which contributed the capsid protein. The double-stranded DNA (dsDNA) viruses are distributed among several large monophyletic groups and arose via the combination of distinct structural modules with equally diverse replication modules. Phylogenomic analyses reveal the finer structure of evolutionary connections among RNA viruses and reverse-transcribing viruses, ssDNA viruses, and large subsets of dsDNA viruses. Taken together, these analyses allow us to outline the global organization of the virus world. Here, we describe the key aspects of this organization and propose a comprehensive hierarchical taxonomy of viruses.
Author Wolf, Yuri I.
Koonin, Eugene V.
Zerbini, F. Murilo
Krupovic, Mart
Dolja, Valerian V.
Varsani, Arvind
Yutin, Natalya
Kuhn, Jens H.
Author_xml – sequence: 1
  givenname: Eugene V.
  orcidid: 0000-0003-3943-8299
  surname: Koonin
  fullname: Koonin, Eugene V.
  organization: National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
– sequence: 2
  givenname: Valerian V.
  orcidid: 0000-0002-8148-4670
  surname: Dolja
  fullname: Dolja, Valerian V.
  organization: Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
– sequence: 3
  givenname: Mart
  orcidid: 0000-0001-5486-0098
  surname: Krupovic
  fullname: Krupovic, Mart
  organization: Institut Pasteur, Archaeal Virology Unit, Department of Microbiology, Paris, France
– sequence: 4
  givenname: Arvind
  orcidid: 0000-0003-4111-2415
  surname: Varsani
  fullname: Varsani, Arvind
  organization: The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, Arizona, USA, Structural Biology Research Unit, Department of Clinical Laboratory Sciences, University of Cape Town, Observatory, Cape Town, South Africa
– sequence: 5
  givenname: Yuri I.
  orcidid: 0000-0002-0247-8708
  surname: Wolf
  fullname: Wolf, Yuri I.
  organization: National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
– sequence: 6
  givenname: Natalya
  orcidid: 0000-0002-3633-5123
  surname: Yutin
  fullname: Yutin, Natalya
  organization: National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
– sequence: 7
  givenname: F. Murilo
  orcidid: 0000-0001-8617-0200
  surname: Zerbini
  fullname: Zerbini, F. Murilo
  organization: Departamento de Fitopatologia/Bioagro, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
– sequence: 8
  givenname: Jens H.
  orcidid: 0000-0002-7800-6045
  surname: Kuhn
  fullname: Kuhn, Jens H.
  organization: Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32132243$$D View this record in MEDLINE/PubMed
https://pasteur.hal.science/pasteur-02558270$$DView record in HAL
BookMark eNp1kUtv1DAUhS1URB-wZIsisWGT4nsdJ_EGUSpokWZUhHgsLSe5M-MqY0_tpKL8epzpC0ZiZUv-7vG55xyyPecdMfYS-DEA1m_n8w9fjznnJeSgnrAD4KrOpZTV3vaOOUKF--wwxstEFVKpZ2xfIAjEQhyw92e9b0yfXYSlcfa3Gax3mXFd9iX4jY_UZXNamsH88s6vbzK_yIYVZT9sGGP204e-e86eLkwf6cXdecS-f_r47fQ8n12cfT49meWtBDXkXQEltKhEKUvZCSK5aIh4h12jjCoaoOSzKNtaSawN8qbAFkFSIZqESC6O2Ltb3c3YrKlryQ3B9HoT7NqEG-2N1f--OLvSS3-tK14i8kkgvxVY7Yydn8z0xsSBxqA5Slljxa8h8W_uPgz-aqQ46LWNLfW9ceTHqFFUUKeg5YS-3kEv_RhciiNRtapQ1kIl6tXfGzx4uC_j0WEbfIyBFg8IcD2Vraey9bZsDZOg2OFbO2wbTAHY_j9TfwBSYKtG
CitedBy_id crossref_primary_10_1093_molbev_msad134
crossref_primary_10_1128_mbio_01495_21
crossref_primary_10_1007_s00705_020_04731_2
crossref_primary_10_15407_microbiolj85_04_072
crossref_primary_10_1042_EBC20240012
crossref_primary_10_3389_fmolb_2022_821197
crossref_primary_10_1264_jsme2_ME22034
crossref_primary_10_1016_j_coviro_2021_11_003
crossref_primary_10_1016_j_egg_2023_100210
crossref_primary_10_1128_mbio_03200_24
crossref_primary_10_1016_j_coviro_2021_11_006
crossref_primary_10_1038_s41564_023_01345_7
crossref_primary_10_1186_s40168_021_01017_w
crossref_primary_10_3390_v14112572
crossref_primary_10_1007_s00705_022_05454_2
crossref_primary_10_3389_fmicb_2023_1240993
crossref_primary_10_1016_j_bbrc_2020_11_015
crossref_primary_10_1016_j_coviro_2021_03_004
crossref_primary_10_1016_j_virol_2024_110098
crossref_primary_10_1128_jvi_00318_22
crossref_primary_10_3390_v13030506
crossref_primary_10_1016_j_tim_2023_04_008
crossref_primary_10_1016_j_cell_2022_08_023
crossref_primary_10_1016_j_cell_2024_08_028
crossref_primary_10_2139_ssrn_4174577
crossref_primary_10_1080_07391102_2021_1965028
crossref_primary_10_3390_pathogens12121458
crossref_primary_10_3390_v12121436
crossref_primary_10_1093_molbev_msad244
crossref_primary_10_1146_annurev_virology_100520_125832
crossref_primary_10_1186_s12884_023_05562_0
crossref_primary_10_1128_mSphere_01298_20
crossref_primary_10_3390_v14061344
crossref_primary_10_1038_s42003_024_07212_3
crossref_primary_10_1051_medsci_2021007
crossref_primary_10_1126_sciadv_adk1954
crossref_primary_10_1128_msystems_00161_23
crossref_primary_10_3389_fviro_2022_981177
crossref_primary_10_1093_nar_gkac1037
crossref_primary_10_3389_fmicb_2021_683294
crossref_primary_10_1016_j_virol_2022_03_005
crossref_primary_10_3390_v15040840
crossref_primary_10_1186_s12985_024_02482_z
crossref_primary_10_3390_v15041015
crossref_primary_10_3390_v15122331
crossref_primary_10_1016_j_virol_2024_110308
crossref_primary_10_1093_nargab_lqae183
crossref_primary_10_3389_fmicb_2022_1032918
crossref_primary_10_1128_spectrum_04944_22
crossref_primary_10_1016_j_virusres_2022_199002
crossref_primary_10_1093_molbev_msab098
crossref_primary_10_1128_Spectrum_00064_21
crossref_primary_10_3390_v14071362
crossref_primary_10_3390_v14102308
crossref_primary_10_1093_ve_veae096
crossref_primary_10_1094_PHYTO_05_20_0191_FI
crossref_primary_10_1371_journal_pbio_3001430
crossref_primary_10_1128_mbio_03206_23
crossref_primary_10_1128_mbio_00408_23
crossref_primary_10_1128_JVI_00582_20
crossref_primary_10_31797_vetbio_1072218
crossref_primary_10_47612_2226_3136_2021_13_83_102
crossref_primary_10_1016_j_cub_2021_02_052
crossref_primary_10_3390_microorganisms9091819
crossref_primary_10_1128_jvi_00463_23
crossref_primary_10_1038_s41564_024_01884_7
crossref_primary_10_1016_j_virol_2025_110476
crossref_primary_10_3390_v13020150
crossref_primary_10_3389_fmicb_2023_1126707
crossref_primary_10_1128_jvi_01381_22
crossref_primary_10_3389_fcimb_2023_1163569
crossref_primary_10_3390_ijms251910838
crossref_primary_10_3389_fvets_2023_1158023
crossref_primary_10_1038_s41598_022_26251_6
crossref_primary_10_1128_msystems_00293_21
crossref_primary_10_1146_annurev_virology_010421_053015
crossref_primary_10_1093_ve_veae088
crossref_primary_10_1128_MMBR_00193_20
crossref_primary_10_1038_s41564_022_01148_2
crossref_primary_10_1093_ve_veac100
crossref_primary_10_1007_s00705_022_05493_9
crossref_primary_10_1038_s41467_024_52906_1
crossref_primary_10_3390_ijms231911043
crossref_primary_10_1089_phage_2022_0003
crossref_primary_10_3390_v14061320
crossref_primary_10_3390_v15051196
crossref_primary_10_1128_mbio_01685_22
crossref_primary_10_1007_s00705_021_05114_x
crossref_primary_10_1128_spectrum_02340_23
crossref_primary_10_3390_ijms242317029
crossref_primary_10_3390_v12040422
crossref_primary_10_1007_s00248_021_01874_w
crossref_primary_10_1016_j_coviro_2020_06_011
crossref_primary_10_1016_j_csbj_2021_12_032
crossref_primary_10_1038_s41467_023_38301_2
crossref_primary_10_3390_pathogens11121453
crossref_primary_10_1093_ve_veac097
crossref_primary_10_1111_1758_2229_12912
crossref_primary_10_1038_d41586_021_01749_7
crossref_primary_10_1128_aem_00315_22
crossref_primary_10_1038_s41587_020_00774_7
crossref_primary_10_1146_annurev_phyto_021622_121351
crossref_primary_10_1093_ve_veac095
crossref_primary_10_1038_s41467_023_43824_9
crossref_primary_10_3390_v17030355
crossref_primary_10_1038_s41467_022_33633_x
crossref_primary_10_1038_s41579_022_00754_5
crossref_primary_10_1016_j_cell_2024_09_027
crossref_primary_10_1093_ve_veaa100
crossref_primary_10_1007_s00705_021_05242_4
crossref_primary_10_1016_j_virol_2024_109992
crossref_primary_10_1128_spectrum_01872_21
crossref_primary_10_1038_s41396_021_01005_w
crossref_primary_10_1093_molbev_msad060
crossref_primary_10_1016_j_mam_2021_101005
crossref_primary_10_1371_journal_ppat_1011980
crossref_primary_10_1093_femsre_fuac011
crossref_primary_10_1093_plcell_koab214
crossref_primary_10_1002_anie_202203067
crossref_primary_10_1093_ve_veae022
crossref_primary_10_3390_v14040702
crossref_primary_10_1073_pnas_2022310118
crossref_primary_10_1128_jvi_02166_24
crossref_primary_10_1093_ve_veac082
crossref_primary_10_1371_journal_pbio_3001442
crossref_primary_10_7717_peerj_14055
crossref_primary_10_1007_s00705_021_05205_9
crossref_primary_10_3390_ijms242015302
crossref_primary_10_3390_v13071304
crossref_primary_10_1007_s00239_024_10221_9
crossref_primary_10_1016_j_chom_2022_06_008
crossref_primary_10_1128_JVI_00673_21
crossref_primary_10_1128_mbio_01035_24
crossref_primary_10_1038_s43705_023_00295_9
crossref_primary_10_3390_v13030362
crossref_primary_10_7717_peerj_13875
crossref_primary_10_1002_ange_202203067
crossref_primary_10_3390_microorganisms11041054
crossref_primary_10_1093_ve_veae051
crossref_primary_10_1007_s00705_022_05423_9
crossref_primary_10_1128_msystems_00751_21
crossref_primary_10_1186_s42523_021_00114_3
crossref_primary_10_1021_acschembio_2c00531
crossref_primary_10_3390_v15041007
crossref_primary_10_1128_mmbr_00086_23
crossref_primary_10_3389_fmicb_2021_719703
crossref_primary_10_1038_s41564_020_0709_x
crossref_primary_10_3390_v17030334
crossref_primary_10_1128_mbio_00588_22
crossref_primary_10_3389_fmicb_2022_1024933
crossref_primary_10_3390_v15122282
crossref_primary_10_1016_j_coviro_2021_10_011
crossref_primary_10_1016_j_tim_2020_01_010
crossref_primary_10_1128_mBio_01410_20
crossref_primary_10_1007_s00239_022_10059_z
crossref_primary_10_3390_biom12101363
crossref_primary_10_3390_v12101146
crossref_primary_10_1093_ve_veae040
crossref_primary_10_1099_mgen_0_000686
crossref_primary_10_3390_v14020206
crossref_primary_10_1128_MMBR_00053_21
crossref_primary_10_1186_s12859_024_05846_y
crossref_primary_10_1093_ve_veaf005
crossref_primary_10_1128_mbio_02686_22
crossref_primary_10_3390_v17030328
crossref_primary_10_1038_s41579_020_0408_x
crossref_primary_10_1128_aem_01954_21
crossref_primary_10_1016_j_virs_2022_01_003
crossref_primary_10_3390_life11060571
crossref_primary_10_1128_JVI_00541_21
crossref_primary_10_1093_molbev_msae161
crossref_primary_10_1128_msystems_00907_22
crossref_primary_10_1126_science_abm4096
crossref_primary_10_3390_biom12091247
crossref_primary_10_1126_science_abo5590
crossref_primary_10_1016_j_hpj_2024_07_003
crossref_primary_10_1371_journal_pbio_3002347
crossref_primary_10_1093_ve_veab081
crossref_primary_10_1016_j_pt_2024_06_009
crossref_primary_10_1038_s41564_022_01178_w
crossref_primary_10_1093_ve_veab083
crossref_primary_10_3390_v16101583
crossref_primary_10_1038_s41564_023_01579_5
crossref_primary_10_1111_mec_15997
crossref_primary_10_1098_rsta_2020_0422
crossref_primary_10_1038_s41587_023_01844_2
crossref_primary_10_1128_mbio_01921_21
crossref_primary_10_1038_s41467_023_37681_9
crossref_primary_10_3389_fmicb_2020_561092
crossref_primary_10_1128_msystems_00799_21
crossref_primary_10_1128_spectrum_00802_24
crossref_primary_10_1016_j_virusres_2021_198606
crossref_primary_10_3390_v12111337
crossref_primary_10_1007_s00705_021_05071_5
crossref_primary_10_1038_s41586_021_04332_2
crossref_primary_10_1128_jvi_00465_23
crossref_primary_10_3390_v13061089
crossref_primary_10_2108_zs220069
crossref_primary_10_1073_pnas_2219962120
crossref_primary_10_1371_journal_ppat_1011386
crossref_primary_10_7554_eLife_97261
crossref_primary_10_1007_s10327_022_01051_y
crossref_primary_10_1016_j_virol_2020_09_005
crossref_primary_10_1371_journal_pbio_3001922
crossref_primary_10_1016_j_fsi_2022_01_019
crossref_primary_10_1016_j_plipres_2021_101092
crossref_primary_10_1038_s41396_022_01194_y
crossref_primary_10_1111_1755_0998_13378
crossref_primary_10_1007_s13337_024_00887_6
crossref_primary_10_1039_D3CS00655G
crossref_primary_10_1007_s11262_022_01908_6
crossref_primary_10_1016_j_coviro_2021_05_008
crossref_primary_10_1007_s00705_020_04752_x
crossref_primary_10_1016_j_watbs_2022_100062
crossref_primary_10_1093_gigascience_giae020
crossref_primary_10_1016_j_watres_2021_117568
crossref_primary_10_1073_pnas_2120620119
crossref_primary_10_3390_v14091842
crossref_primary_10_1016_j_coviro_2021_05_004
crossref_primary_10_1016_j_isci_2021_102452
crossref_primary_10_48112_bcs_v2i2_450
crossref_primary_10_1007_s00705_022_05400_2
crossref_primary_10_1093_ve_veac038
crossref_primary_10_1128_jvi_01853_21
crossref_primary_10_31857_S0134347524010018
crossref_primary_10_1186_s12864_024_10432_w
crossref_primary_10_3390_v14050973
crossref_primary_10_1128_jvi_00831_24
crossref_primary_10_1089_phage_2021_0016
crossref_primary_10_7554_eLife_97261_3
crossref_primary_10_1007_s00705_021_04983_6
crossref_primary_10_1016_j_csbj_2020_06_019
crossref_primary_10_1111_1462_2920_16312
crossref_primary_10_3390_pathogens11101127
crossref_primary_10_3390_v16071152
crossref_primary_10_1038_s41396_023_01431_y
crossref_primary_10_4049_jimmunol_2400101
crossref_primary_10_1146_annurev_phyto_030320_041346
crossref_primary_10_1073_pnas_2100936118
crossref_primary_10_1093_ve_veac070
crossref_primary_10_3389_fmicb_2020_588427
crossref_primary_10_1134_S106307402401005X
crossref_primary_10_1371_journal_ppat_1011136
crossref_primary_10_1038_s41586_023_05962_4
crossref_primary_10_1128_mBio_03705_20
crossref_primary_10_3389_fmars_2023_1159754
crossref_primary_10_1093_ve_vead042
crossref_primary_10_3390_v15122402
crossref_primary_10_1128_jvi_01149_23
crossref_primary_10_3390_v13020313
crossref_primary_10_1038_s43705_022_00110_x
crossref_primary_10_1038_s41586_023_06376_y
crossref_primary_10_1126_science_abm5847
crossref_primary_10_1128_jb_00346_21
crossref_primary_10_3390_v15030660
crossref_primary_10_3390_v16071061
crossref_primary_10_3389_fviro_2021_684608
crossref_primary_10_1186_s40168_024_01967_x
crossref_primary_10_1099_mgen_0_000649
crossref_primary_10_1007_s11262_023_02041_8
crossref_primary_10_1016_j_micinf_2024_105467
crossref_primary_10_1146_annurev_virology_100220_112915
crossref_primary_10_1093_ve_vead035
crossref_primary_10_1093_ve_veae003
crossref_primary_10_1038_s41564_022_01144_6
crossref_primary_10_1099_jgv_0_001840
crossref_primary_10_1134_S0006297921030020
crossref_primary_10_31857_S0320972521030027
crossref_primary_10_3390_v17030365
crossref_primary_10_1016_j_tibs_2023_09_003
crossref_primary_10_1371_journal_pone_0283930
crossref_primary_10_1038_s41579_022_00811_z
crossref_primary_10_1093_gbe_evab240
crossref_primary_10_1016_j_coviro_2021_02_002
crossref_primary_10_1128_jvi_01069_24
crossref_primary_10_3390_v15020519
crossref_primary_10_1016_j_coviro_2021_12_004
crossref_primary_10_3390_v15081758
crossref_primary_10_1007_s00705_022_05633_1
crossref_primary_10_18705_2782_3806_2022_2_6_91_97
crossref_primary_10_3390_agronomy13051300
crossref_primary_10_3390_biom12070861
crossref_primary_10_1007_s00284_024_03745_2
crossref_primary_10_1093_ve_veaa076
crossref_primary_10_1007_s00705_024_06081_9
crossref_primary_10_7554_eLife_86617
crossref_primary_10_3390_v16030415
crossref_primary_10_23902_trkjnat_1478899
crossref_primary_10_1038_s41598_024_58171_y
crossref_primary_10_3389_faquc_2024_1390415
crossref_primary_10_7554_eLife_86617_3
crossref_primary_10_1073_pnas_2301522120
crossref_primary_10_1093_ve_veac123
crossref_primary_10_1002_imt2_59
crossref_primary_10_1016_j_celrep_2021_110204
crossref_primary_10_7554_eLife_59753
crossref_primary_10_1111_brv_12920
crossref_primary_10_1093_ismejo_wraf002
crossref_primary_10_1038_s41467_024_52610_0
crossref_primary_10_1038_s41598_022_24651_2
crossref_primary_10_1073_pnas_2405771121
crossref_primary_10_3389_fmicb_2021_657471
crossref_primary_10_1099_jgv_0_001706
crossref_primary_10_1016_j_mib_2023_102283
crossref_primary_10_3390_v13010126
crossref_primary_10_1038_s41564_023_01378_y
crossref_primary_10_3390_v14061148
crossref_primary_10_1264_jsme2_ME22001
crossref_primary_10_1093_ve_veaa058
crossref_primary_10_1126_sciadv_ado2631
crossref_primary_10_1093_ve_veaa055
crossref_primary_10_1371_journal_pgen_1010998
crossref_primary_10_1073_pnas_2023202118
crossref_primary_10_3390_v15051091
crossref_primary_10_1186_s12915_020_00919_9
crossref_primary_10_1093_ve_veaa059
crossref_primary_10_3390_microorganisms8121944
crossref_primary_10_3390_microorganisms11030693
crossref_primary_10_1007_s00705_021_05176_x
crossref_primary_10_1016_j_chom_2022_10_008
crossref_primary_10_1073_pnas_2001637117
crossref_primary_10_3389_fmicb_2022_808499
crossref_primary_10_3390_biom12081061
crossref_primary_10_1038_s43705_022_00145_0
crossref_primary_10_1093_molbev_msac022
crossref_primary_10_1111_1462_2920_16207
crossref_primary_10_1038_s41467_024_51230_y
crossref_primary_10_3390_biom13010110
crossref_primary_10_1038_s42003_024_06001_2
crossref_primary_10_1128_JVI_01367_21
crossref_primary_10_3390_microorganisms12040696
crossref_primary_10_1093_nar_gkaa946
crossref_primary_10_1093_bioinformatics_btab026
crossref_primary_10_1051_medsci_2022166
crossref_primary_10_1051_medsci_2022164
crossref_primary_10_1111_plb_13338
crossref_primary_10_1093_femsml_uqae006
crossref_primary_10_1093_ismejo_wrad042
crossref_primary_10_1093_nar_gkae1278
crossref_primary_10_3390_v13122341
crossref_primary_10_1128_jvi_00411_23
crossref_primary_10_3390_biom13020289
crossref_primary_10_1038_s41467_021_21350_w
crossref_primary_10_1016_j_foodres_2022_112197
crossref_primary_10_1038_s41575_021_00536_z
crossref_primary_10_1093_ismejo_wrae129
crossref_primary_10_1186_s40168_020_00990_y
crossref_primary_10_1002_bies_202100239
crossref_primary_10_1038_s41564_022_01297_4
crossref_primary_10_1186_s12859_022_05022_0
crossref_primary_10_3389_fmicb_2021_715608
crossref_primary_10_1128_JVI_01594_20
crossref_primary_10_1080_08830185_2024_2314577
crossref_primary_10_1099_jgv_0_001488
crossref_primary_10_3390_ph16050728
crossref_primary_10_1371_journal_pbio_3002157
crossref_primary_10_1128_JVI_01962_20
crossref_primary_10_1128_mbio_00783_22
crossref_primary_10_1016_j_fmre_2024_11_006
crossref_primary_10_1016_j_cimid_2023_102111
crossref_primary_10_1038_s43705_023_00252_6
crossref_primary_10_3390_v14122680
crossref_primary_10_3390_v15010001
crossref_primary_10_1038_s41396_021_01097_4
crossref_primary_10_1093_nar_gkab133
crossref_primary_10_1128_JVI_00467_21
crossref_primary_10_1128_jvi_01824_22
crossref_primary_10_3390_pathogens10080935
crossref_primary_10_1093_gbe_evae271
Cites_doi 10.1038/s41467-019-11433-0
10.7717/peerj.5761
10.1016/j.coviro.2018.07.011
10.1016/j.coviro.2011.06.004
10.1073/pnas.1704925114
10.1038/ncomms5498
10.1016/s0092-8674(03)00276-9
10.1093/sysbio/syz036
10.1371/journal.ppat.1007314
10.1056/NEJMoa1805068
10.1007/s00705-015-2613-x
10.1038/190302a0
10.1146/annurev-virology-031413-085444
10.1128/mBio.02329-18
10.1002/j.1460-2075.1990.tb07536.x
10.1073/pnas.1703834114
10.1016/j.jsb.2003.10.010
10.1016/j.coviro.2019.05.008
10.1159/000107603
10.1371/journal.ppat.1002239
10.1128/JVI.00694-10
10.1146/annurev-virology-031413-085540
10.1016/j.virol.2018.01.006
10.1128/JVI.02203-10
10.1186/1743-422X-6-223
10.1007/s00239-007-9044-6
10.1128/br.35.3.235-241.1971
10.1002/bies.201200083
10.1016/j.virusres.2006.01.007
10.1128/JVI.70.9.6083-6096.1996
10.1371/journal.pone.0040418
10.1038/nrmicro.2016.46
10.1371/journal.pbio.1002409
10.1093/gbe/evv034
10.1007/s00705-013-1970-6
10.1186/s12915-014-0066-4
10.1186/1471-2148-9-112
10.1186/1471-2148-13-154
10.1073/pnas.142680199
10.1038/s41467-019-09451-z
10.1371/journal.ppat.1006755
10.1099/jgv.0.001110
10.1007/bf01240522
10.1186/jbiol159
10.1128/JVI.02036-15
10.1101/697771
10.1038/nrmicro3389
10.7554/eLife.51971
10.1038/s41586-018-0012-7
10.1073/pnas.1100266108
10.1007/s00705-019-04306-w
10.1073/pnas.1813204116
10.1128/JVI.00212-17
10.1126/sciadv.aay5981
10.1038/nrmicro2030
10.1186/1743-422X-9-161
10.1099/vir.0.045948-0
10.1038/s41579-019-0205-6
10.1128/JVI.07196-11
10.1186/1745-6150-8-25
10.1093/gbe/evt002
10.1073/pnas.0502164102
10.1534/genetics.118.301556
10.1128/mBio.02497-18
10.1016/j.jip.2009.03.013
10.1038/nrmicro1750
10.1016/B978-0-12-394315-6.00006-4
10.1007/bf02602932
10.1093/genetics/148.4.1667
10.1073/pnas.1300601110
10.1101/341131
10.1016/bs.aivir.2014.11.005
10.1146/annurev-biochem-060910-095130
10.1002/j.1460-2075.1989.tb08565.x
10.1007/978-3-030-14741-9_5
10.1099/vir.0.013086-0
10.1016/j.coviro.2013.06.013
10.1099/0022-1317-72-9-2197
10.1186/1745-6150-7-13
10.1007/s10482-017-0849-z
10.1016/0014-5793(89)80886-5
10.1016/S0022-2836(02)01033-1
10.1073/pnas.1510795112
10.1023/a:1023003412859
10.1016/j.coviro.2013.06.008
10.1007/BF01244584
10.1016/j.cub.2017.03.052
10.1371/journal.ppat.1006183
10.1038/nature20167
10.1016/0042-6822(61)90366-x
10.5772/27793
10.1128/mBio.00289-19
10.1038/srep05347
10.1128/JVI.01622-16
10.1038/d41586-019-00599-8
10.1126/science.aao7298
10.1007/978-1-4614-0980-9_22
10.1186/s13062-015-0047-8
10.1038/s41564-018-0338-9
10.1038/215013a0
10.1093/ve/vez061
10.1038/s41564-017-0053-y
10.1099/00207713-52-1-7
10.1159/000312913
10.1371/journal.pgen.1007518
10.3390/v10040187
10.1038/nature08060
10.1007/s00018-016-2299-6
10.1128/mBio.02938-19
10.1098/rstb.2015.0442
10.1016/j.virol.2015.11.027
10.7717/peerj.2777
10.1093/nar/12.18.7269
10.3390/v7062761
10.1126/sciadv.1600492
10.1155/2012/874153
10.1128/JVI.00372-18
10.1016/j.virusres.2006.01.009
10.1016/j.virol.2015.02.039
10.1038/ncomms3700
10.1007/s10577-017-9570-z
10.3181/00379727-112-28247
10.1073/pnas.1320670111
10.1371/journal.pgen.1008271
10.1128/JVI.75.23.11720-11734.2001
10.3390/v8110300
10.1016/j.cell.2015.06.018
10.1111/j.1749-6632.2009.04993.x
10.1093/nar/gki702
10.1099/jgv.0.001248
10.1128/JVI.02130-18
10.1186/s13062-015-0084-3
10.1038/nature04160
10.1186/s13062-017-0202-5
10.1038/nrmicro.2016.177
10.1016/j.virusres.2017.10.016
10.1093/nar/gkw322
10.1016/j.shpsc.2016.02.016
10.1128/JVI.00515-18
10.1128/JVI.00210-17
10.1186/s13062-018-0230-9
10.1038/nature03056
10.1186/1745-6150-1-29
10.1016/j.coviro.2013.06.010
10.1038/nature04546
10.1016/j.str.2013.06.017
10.1038/nature25474
10.1146/annurev-virology-100114-054952
10.1016/j.virol.2018.08.010
10.1016/j.gde.2018.02.007
10.1038/nature14008
10.1007/s00705-006-0743-x
10.1126/science.7041255
10.1016/j.plrev.2012.06.001
10.1093/gbe/evw193
10.1016/bs.aivir.2018.10.001
10.1016/0014-5793(90)80175-i
10.1093/nar/gkh828
10.1073/pnas.1621061114
10.1038/ismej.2013.110
10.1128/JB.01801-12
10.1016/j.coviro.2018.08.013
10.3389/fcimb.2012.00119
10.1016/j.virol.2018.09.008
10.3390/v10080404
10.1101/572362
10.1126/science.289.5487.2129
10.1016/0303-2647(74)90003-3
10.1073/pnas.1521291113
10.1038/nrmicro751
10.1093/nar/20.13.3279
10.1099/0022-1317-73-10-2763
10.1128/mBio.00978-16
10.1073/pnas.1404330111
10.1111/nyas.12696
10.1038/s41564-019-0510-x
10.1007/s00705-017-3679-4
10.1006/jtbi.1996.0389
10.1128/mBio.00999-16
10.1128/mBio.00542-19
10.1038/s41576-019-0172-9
10.1016/S0962-8924(99)01664-5
10.1128/mBio.00699-16
10.1038/s41467-018-04698-4
10.1146/annurev-virology-110615-042323
10.1126/science.1239181
10.1146/annurev.mi.20.100166.000401
10.1038/nrmicro2108
10.1038/s41467-019-08319-6
10.3389/fmicb.2017.02643
10.1038/s41467-019-08927-2
10.1016/j.str.2011.03.023
10.1038/227561a0
10.1007/s00705-018-3915-6
10.1007/s00705-018-04136-2
10.1038/nrmicro.2017.125
10.1016/j.chom.2017.07.019
10.1146/annurev.genet.42.110807.091545
10.1128/mBio.00185-18
10.1186/1745-6150-3-29
10.1126/science.284.5423.2124
10.1128/microbiolspec.MDNA3-0058-2014
10.1038/s41467-018-07225-7
10.1007/s10327-012-0423-5
10.1159/000150054
10.1038/s41564-019-0448-z
10.12688/f1000research.16248.1
10.1007/s00705-008-0041-x
10.1016/j.virol.2014.06.032
10.1038/nrmicro1163
10.1007/s13337-019-00519-4
10.1016/bs.aivir.2018.09.002
10.1101/2020.01.28.923185
10.1016/j.virol.2017.01.010
10.1016/j.virusres.2017.11.025
10.1073/pnas.1324194111
10.1186/s12985-018-0974-y
10.1080/19420889.2017.1296614
10.3109/10409239309078440
10.1038/263106a0
10.1038/nrmicro3067
10.1146/annurev.micro.55.1.709
10.1093/nar/gkn668
10.1006/viro.1999.9837
10.1023/a:1005907310553
ContentType Journal Article
Copyright Copyright © 2020 American Society for Microbiology.
Copyright American Society for Microbiology Jun 2020
Distributed under a Creative Commons Attribution 4.0 International License
Copyright © 2020 American Society for Microbiology. 2020 American Society for Microbiology
Copyright_xml – notice: Copyright © 2020 American Society for Microbiology.
– notice: Copyright American Society for Microbiology Jun 2020
– notice: Distributed under a Creative Commons Attribution 4.0 International License
– notice: Copyright © 2020 American Society for Microbiology. 2020 American Society for Microbiology
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7QR
7TK
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
1XC
5PM
DOI 10.1128/MMBR.00061-19
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE
Virology and AIDS Abstracts
MEDLINE - Academic

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Megataxonomy of Viruses
EISSN 1098-5557
EndPage 19
ExternalDocumentID PMC7062200
oai_HAL_pasteur_02558270v1
32132243
10_1128_MMBR_00061_19
Genre Research Support, N.I.H., Intramural
Review
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: HHSN272200700016I
– fundername: ;
– fundername: ;
  grantid: #ANR-17-CE15-0005-01
– fundername: ;
  grantid: HHSN272200700016I
GroupedDBID ---
-DZ
-~X
.55
0R~
123
18M
29M
2KS
2WC
39C
4.4
5RE
5VS
85S
AAGFI
AAIKC
AAMNW
AAYXX
ABPPZ
ACGFO
ACGOD
ACIWK
ACNCT
ACPRK
ADBBV
AENEX
AFRAH
AGHSJ
AGVNZ
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BKOMP
BTFSW
CITATION
CJ0
CS3
D0L
DIK
DU5
E3Z
EBS
F5P
GX1
H13
HF~
HYE
HZ~
KQ8
L7B
O9-
OMK
P2P
PQQKQ
RHI
RNS
RPM
RSF
RXW
TAE
TR2
W8F
WH7
WOQ
X7M
YNT
YQT
~02
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7QR
7TK
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
1XC
5PM
ID FETCH-LOGICAL-c519t-d4161c2936565d3ee5fbee0d2db9a94b1e21746c89528a20b42c215e43b2db503
ISSN 1092-2172
1098-5557
IngestDate Thu Aug 21 14:03:55 EDT 2025
Thu Sep 18 06:20:48 EDT 2025
Fri Sep 05 08:56:07 EDT 2025
Mon Jun 30 08:47:25 EDT 2025
Mon Jul 21 05:14:13 EDT 2025
Tue Sep 16 05:23:55 EDT 2025
Tue Jul 01 04:14:27 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords virosphere
megataxonomy
virus nomenclature
phylogeny
realm
evolution
virus classification
virus taxonomy
ICTV
phylogenomics
Language English
License Copyright © 2020 American Society for Microbiology.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
All Rights Reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c519t-d4161c2936565d3ee5fbee0d2db9a94b1e21746c89528a20b42c215e43b2db503
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
PMCID: PMC7062200
Citation Koonin EV, Dolja VV, Krupovic M, Varsani A, Wolf YI, Yutin N, Zerbini FM, Kuhn JH. 2020. Global organization and proposed megataxonomy of the virus world. Microbiol Mol Biol Rev 84:e00061-19. https://doi.org/10.1128/MMBR.00061-19.
ORCID 0000-0002-3633-5123
0000-0003-4111-2415
0000-0002-7800-6045
0000-0003-3943-8299
0000-0001-5486-0098
0000-0002-0247-8708
0000-0002-8148-4670
0000-0001-8617-0200
OpenAccessLink https://mmbr.asm.org/content/mmbr/84/2/e00061-19.full.pdf
PMID 32132243
PQID 2389725839
PQPubID 42367
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7062200
hal_primary_oai_HAL_pasteur_02558270v1
proquest_miscellaneous_2371855551
proquest_journals_2389725839
pubmed_primary_32132243
crossref_primary_10_1128_MMBR_00061_19
crossref_citationtrail_10_1128_MMBR_00061_19
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-05-20
PublicationDateYYYYMMDD 2020-05-20
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-20
  day: 20
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
– name: 1752 N St., N.W., Washington, DC
PublicationTitle Microbiology and molecular biology reviews
PublicationTitleAlternate Microbiol Mol Biol Rev
PublicationYear 2020
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References e_1_3_4_3_2
e_1_3_4_152_2
e_1_3_4_175_2
e_1_3_4_198_2
e_1_3_4_114_2
e_1_3_4_137_2
e_1_3_4_61_2
e_1_3_4_212_2
e_1_3_4_84_2
e_1_3_4_23_2
e_1_3_4_69_2
e_1_3_4_208_2
e_1_3_4_163_2
e_1_3_4_140_2
e_1_3_4_102_2
e_1_3_4_186_2
e_1_3_4_200_2
e_1_3_4_223_2
e_1_3_4_72_2
e_1_3_4_125_2
e_1_3_4_95_2
e_1_3_4_148_2
e_1_3_4_11_2
e_1_3_4_34_2
e_1_3_4_57_2
e_1_3_4_19_2
e_1_3_4_2_2
e_1_3_4_174_2
e_1_3_4_219_2
e_1_3_4_151_2
e_1_3_4_113_2
e_1_3_4_197_2
e_1_3_4_211_2
e_1_3_4_234_2
e_1_3_4_136_2
e_1_3_4_62_2
e_1_3_4_85_2
e_1_3_4_159_2
e_1_3_4_24_2
e_1_3_4_47_2
e_1_3_4_162_2
e_1_3_4_207_2
e_1_3_4_101_2
e_1_3_4_124_2
e_1_3_4_185_2
e_1_3_4_222_2
e_1_3_4_73_2
e_1_3_4_96_2
e_1_3_4_147_2
e_1_3_4_50_2
e_1_3_4_109_2
e_1_3_4_12_2
e_1_3_4_58_2
Holmes FO (e_1_3_4_44_2) 1948
e_1_3_4_35_2
Lwoff A (e_1_3_4_51_2) 1962; 254
e_1_3_4_131_2
e_1_3_4_237_2
e_1_3_4_154_2
e_1_3_4_177_2
e_1_3_4_214_2
e_1_3_4_9_2
e_1_3_4_139_2
e_1_3_4_48_2
e_1_3_4_86_2
e_1_3_4_25_2
Condit R (e_1_3_4_59_2) 2013
e_1_3_4_180_2
e_1_3_4_142_2
e_1_3_4_188_2
e_1_3_4_202_2
e_1_3_4_225_2
e_1_3_4_165_2
e_1_3_4_104_2
e_1_3_4_74_2
e_1_3_4_127_2
e_1_3_4_97_2
e_1_3_4_13_2
e_1_3_4_36_2
e_1_3_4_191_2
e_1_3_4_153_2
e_1_3_4_199_2
e_1_3_4_130_2
e_1_3_4_213_2
e_1_3_4_236_2
e_1_3_4_176_2
e_1_3_4_115_2
e_1_3_4_8_2
e_1_3_4_138_2
e_1_3_4_41_2
e_1_3_4_26_2
e_1_3_4_49_2
e_1_3_4_87_2
e_1_3_4_141_2
e_1_3_4_164_2
e_1_3_4_187_2
e_1_3_4_209_2
e_1_3_4_224_2
e_1_3_4_103_2
e_1_3_4_126_2
e_1_3_4_149_2
e_1_3_4_201_2
e_1_3_4_52_2
e_1_3_4_90_2
Li W-H (e_1_3_4_64_2) 1997
e_1_3_4_75_2
e_1_3_4_98_2
e_1_3_4_37_2
Wildy P (e_1_3_4_46_2) 1962
Goldbach R (e_1_3_4_116_2) 1987; 4
e_1_3_4_14_2
e_1_3_4_190_2
e_1_3_4_239_2
e_1_3_4_110_2
e_1_3_4_133_2
e_1_3_4_156_2
e_1_3_4_179_2
e_1_3_4_194_2
e_1_3_4_216_2
e_1_3_4_231_2
e_1_3_4_7_2
e_1_3_4_118_2
Felsenstein J (e_1_3_4_63_2) 2004
e_1_3_4_80_2
e_1_3_4_42_2
e_1_3_4_27_2
e_1_3_4_65_2
e_1_3_4_88_2
e_1_3_4_182_2
e_1_3_4_204_2
e_1_3_4_227_2
e_1_3_4_121_2
e_1_3_4_167_2
e_1_3_4_144_2
e_1_3_4_106_2
e_1_3_4_30_2
e_1_3_4_129_2
e_1_3_4_91_2
e_1_3_4_53_2
e_1_3_4_15_2
e_1_3_4_38_2
e_1_3_4_76_2
e_1_3_4_99_2
e_1_3_4_193_2
e_1_3_4_170_2
e_1_3_4_238_2
e_1_3_4_132_2
e_1_3_4_178_2
e_1_3_4_215_2
e_1_3_4_155_2
Сердюк ИН (e_1_3_4_235_2) 2007; 41
e_1_3_4_117_2
e_1_3_4_230_2
e_1_3_4_6_2
e_1_3_4_81_2
e_1_3_4_20_2
e_1_3_4_43_2
e_1_3_4_66_2
e_1_3_4_89_2
e_1_3_4_28_2
e_1_3_4_181_2
e_1_3_4_120_2
e_1_3_4_189_2
e_1_3_4_226_2
e_1_3_4_143_2
e_1_3_4_166_2
e_1_3_4_203_2
e_1_3_4_105_2
e_1_3_4_128_2
e_1_3_4_92_2
e_1_3_4_54_2
e_1_3_4_31_2
e_1_3_4_16_2
e_1_3_4_77_2
e_1_3_4_192_2
e_1_3_4_39_2
e_1_3_4_150_2
e_1_3_4_173_2
e_1_3_4_218_2
e_1_3_4_112_2
e_1_3_4_135_2
e_1_3_4_196_2
e_1_3_4_82_2
e_1_3_4_233_2
e_1_3_4_158_2
e_1_3_4_210_2
e_1_3_4_5_2
e_1_3_4_21_2
López-García P (e_1_3_4_40_2) 2012; 34
e_1_3_4_67_2
e_1_3_4_29_2
e_1_3_4_206_2
e_1_3_4_229_2
e_1_3_4_161_2
e_1_3_4_100_2
e_1_3_4_146_2
e_1_3_4_184_2
e_1_3_4_123_2
e_1_3_4_93_2
e_1_3_4_221_2
e_1_3_4_169_2
e_1_3_4_108_2
e_1_3_4_70_2
e_1_3_4_55_2
e_1_3_4_32_2
e_1_3_4_78_2
e_1_3_4_17_2
e_1_3_4_172_2
e_1_3_4_217_2
e_1_3_4_111_2
e_1_3_4_157_2
e_1_3_4_195_2
e_1_3_4_134_2
e_1_3_4_60_2
e_1_3_4_83_2
e_1_3_4_232_2
e_1_3_4_119_2
e_1_3_4_4_2
e_1_3_4_22_2
e_1_3_4_45_2
e_1_3_4_68_2
e_1_3_4_160_2
e_1_3_4_228_2
e_1_3_4_122_2
e_1_3_4_145_2
e_1_3_4_168_2
e_1_3_4_183_2
e_1_3_4_205_2
e_1_3_4_71_2
e_1_3_4_94_2
e_1_3_4_220_2
e_1_3_4_107_2
e_1_3_4_79_2
e_1_3_4_33_2
e_1_3_4_10_2
e_1_3_4_56_2
e_1_3_4_18_2
e_1_3_4_171_2
References_xml – ident: e_1_3_4_86_2
  doi: 10.1038/s41467-019-11433-0
– ident: e_1_3_4_143_2
  doi: 10.7717/peerj.5761
– ident: e_1_3_4_35_2
  doi: 10.1016/j.coviro.2018.07.011
– ident: e_1_3_4_5_2
  doi: 10.1016/j.coviro.2011.06.004
– ident: e_1_3_4_76_2
  doi: 10.1073/pnas.1704925114
– ident: e_1_3_4_215_2
  doi: 10.1038/ncomms5498
– ident: e_1_3_4_4_2
  doi: 10.1016/s0092-8674(03)00276-9
– ident: e_1_3_4_212_2
  doi: 10.1093/sysbio/syz036
– ident: e_1_3_4_107_2
  doi: 10.1371/journal.ppat.1007314
– ident: e_1_3_4_119_2
  doi: 10.1056/NEJMoa1805068
– ident: e_1_3_4_155_2
  doi: 10.1007/s00705-015-2613-x
– ident: e_1_3_4_45_2
  doi: 10.1038/190302a0
– ident: e_1_3_4_151_2
  doi: 10.1146/annurev-virology-031413-085444
– ident: e_1_3_4_83_2
  doi: 10.1128/mBio.02329-18
– ident: e_1_3_4_92_2
  doi: 10.1002/j.1460-2075.1990.tb07536.x
– ident: e_1_3_4_160_2
  doi: 10.1073/pnas.1703834114
– ident: e_1_3_4_210_2
  doi: 10.1016/j.jsb.2003.10.010
– ident: e_1_3_4_225_2
  doi: 10.1016/j.coviro.2019.05.008
– ident: e_1_3_4_173_2
  doi: 10.1159/000107603
– ident: e_1_3_4_198_2
  doi: 10.1371/journal.ppat.1002239
– ident: e_1_3_4_18_2
  doi: 10.1128/JVI.00694-10
– ident: e_1_3_4_2_2
  doi: 10.1146/annurev-virology-031413-085540
– ident: e_1_3_4_114_2
  doi: 10.1016/j.virol.2018.01.006
– ident: e_1_3_4_25_2
  doi: 10.1128/JVI.02203-10
– ident: e_1_3_4_200_2
  doi: 10.1186/1743-422X-6-223
– ident: e_1_3_4_30_2
  doi: 10.1007/s00239-007-9044-6
– ident: e_1_3_4_58_2
  doi: 10.1128/br.35.3.235-241.1971
– ident: e_1_3_4_159_2
  doi: 10.1002/bies.201200083
– ident: e_1_3_4_224_2
  doi: 10.1016/j.virusres.2006.01.007
– ident: e_1_3_4_93_2
  doi: 10.1128/JVI.70.9.6083-6096.1996
– ident: e_1_3_4_144_2
  doi: 10.1371/journal.pone.0040418
– ident: e_1_3_4_22_2
  doi: 10.1038/nrmicro.2016.46
– ident: e_1_3_4_96_2
  doi: 10.1371/journal.pbio.1002409
– ident: e_1_3_4_166_2
  doi: 10.1093/gbe/evv034
– ident: e_1_3_4_180_2
  doi: 10.1007/s00705-013-1970-6
– ident: e_1_3_4_68_2
  doi: 10.1186/s12915-014-0066-4
– ident: e_1_3_4_163_2
  doi: 10.1186/1471-2148-9-112
– ident: e_1_3_4_131_2
  doi: 10.1186/1471-2148-13-154
– ident: e_1_3_4_13_2
  doi: 10.1073/pnas.142680199
– ident: e_1_3_4_181_2
  doi: 10.1038/s41467-019-09451-z
– ident: e_1_3_4_125_2
  doi: 10.1371/journal.ppat.1006755
– ident: e_1_3_4_214_2
  doi: 10.1099/jgv.0.001110
– ident: e_1_3_4_47_2
  doi: 10.1007/bf01240522
– ident: e_1_3_4_72_2
  doi: 10.1186/jbiol159
– ident: e_1_3_4_120_2
  doi: 10.1128/JVI.02036-15
– ident: e_1_3_4_228_2
  doi: 10.1101/697771
– ident: e_1_3_4_177_2
  doi: 10.1038/nrmicro3389
– ident: e_1_3_4_149_2
  doi: 10.7554/eLife.51971
– ident: e_1_3_4_122_2
  doi: 10.1038/s41586-018-0012-7
– ident: e_1_3_4_133_2
  doi: 10.1073/pnas.1100266108
– ident: e_1_3_4_229_2
  doi: 10.1007/s00705-019-04306-w
– ident: e_1_3_4_205_2
  doi: 10.1073/pnas.1813204116
– ident: e_1_3_4_190_2
  doi: 10.1128/JVI.00212-17
– ident: e_1_3_4_237_2
  doi: 10.1126/sciadv.aay5981
– ident: e_1_3_4_104_2
  doi: 10.1038/nrmicro2030
– ident: e_1_3_4_74_2
  doi: 10.1186/1743-422X-9-161
– ident: e_1_3_4_148_2
  doi: 10.1099/vir.0.045948-0
– ident: e_1_3_4_81_2
  doi: 10.1038/s41579-019-0205-6
– ident: e_1_3_4_132_2
  doi: 10.1128/JVI.07196-11
– ident: e_1_3_4_194_2
  doi: 10.1186/1745-6150-8-25
– ident: e_1_3_4_78_2
  doi: 10.1093/gbe/evt002
– ident: e_1_3_4_206_2
  doi: 10.1073/pnas.0502164102
– ident: e_1_3_4_20_2
  doi: 10.1534/genetics.118.301556
– start-page: 21
  volume-title: Fields virology
  year: 2013
  ident: e_1_3_4_59_2
– ident: e_1_3_4_203_2
  doi: 10.1128/mBio.02497-18
– ident: e_1_3_4_220_2
  doi: 10.1016/j.jip.2009.03.013
– ident: e_1_3_4_11_2
  doi: 10.1038/nrmicro1750
– ident: e_1_3_4_97_2
  doi: 10.1016/B978-0-12-394315-6.00006-4
– ident: e_1_3_4_24_2
  doi: 10.1007/bf02602932
– ident: e_1_3_4_16_2
  doi: 10.1093/genetics/148.4.1667
– ident: e_1_3_4_175_2
  doi: 10.1073/pnas.1300601110
– ident: e_1_3_4_227_2
  doi: 10.1101/341131
– ident: e_1_3_4_232_2
– ident: e_1_3_4_154_2
  doi: 10.1016/bs.aivir.2014.11.005
– ident: e_1_3_4_172_2
  doi: 10.1146/annurev-biochem-060910-095130
– ident: e_1_3_4_91_2
  doi: 10.1002/j.1460-2075.1989.tb08565.x
– ident: e_1_3_4_184_2
  doi: 10.1007/978-3-030-14741-9_5
– ident: e_1_3_4_99_2
  doi: 10.1099/vir.0.013086-0
– ident: e_1_3_4_33_2
  doi: 10.1016/j.coviro.2013.06.013
– ident: e_1_3_4_89_2
  doi: 10.1099/0022-1317-72-9-2197
– ident: e_1_3_4_165_2
  doi: 10.1186/1745-6150-7-13
– ident: e_1_3_4_15_2
  doi: 10.1007/s10482-017-0849-z
– ident: e_1_3_4_90_2
  doi: 10.1016/0014-5793(89)80886-5
– ident: e_1_3_4_130_2
  doi: 10.1016/S0022-2836(02)01033-1
– ident: e_1_3_4_196_2
  doi: 10.1073/pnas.1510795112
– ident: e_1_3_4_112_2
  doi: 10.1023/a:1023003412859
– volume-title: Inferring phylogenies
  year: 2004
  ident: e_1_3_4_63_2
– ident: e_1_3_4_9_2
  doi: 10.1016/j.coviro.2013.06.008
– ident: e_1_3_4_43_2
  doi: 10.1007/BF01244584
– ident: e_1_3_4_233_2
– ident: e_1_3_4_217_2
  doi: 10.1016/j.cub.2017.03.052
– ident: e_1_3_4_129_2
  doi: 10.1371/journal.ppat.1006183
– ident: e_1_3_4_101_2
  doi: 10.1038/nature20167
– ident: e_1_3_4_48_2
  doi: 10.1016/0042-6822(61)90366-x
– ident: e_1_3_4_219_2
  doi: 10.5772/27793
– ident: e_1_3_4_94_2
  doi: 10.1128/mBio.00289-19
– ident: e_1_3_4_152_2
  doi: 10.1038/srep05347
– ident: e_1_3_4_84_2
  doi: 10.1128/JVI.01622-16
– ident: e_1_3_4_53_2
  doi: 10.1038/d41586-019-00599-8
– ident: e_1_3_4_207_2
  doi: 10.1126/science.aao7298
– ident: e_1_3_4_208_2
  doi: 10.1007/978-1-4614-0980-9_22
– ident: e_1_3_4_115_2
  doi: 10.1186/s13062-015-0047-8
– ident: e_1_3_4_218_2
  doi: 10.1038/s41564-018-0338-9
– ident: e_1_3_4_50_2
  doi: 10.1038/215013a0
– ident: e_1_3_4_124_2
  doi: 10.1093/ve/vez061
– ident: e_1_3_4_169_2
  doi: 10.1038/s41564-017-0053-y
– ident: e_1_3_4_234_2
  doi: 10.1099/00207713-52-1-7
– ident: e_1_3_4_187_2
  doi: 10.1159/000312913
– ident: e_1_3_4_71_2
  doi: 10.1371/journal.pgen.1007518
– ident: e_1_3_4_150_2
  doi: 10.3390/v10040187
– ident: e_1_3_4_10_2
  doi: 10.1038/nature08060
– ident: e_1_3_4_17_2
  doi: 10.1007/s00018-016-2299-6
– ident: e_1_3_4_238_2
  doi: 10.1128/mBio.02938-19
– ident: e_1_3_4_42_2
  doi: 10.1098/rstb.2015.0442
– ident: e_1_3_4_100_2
  doi: 10.1016/j.virol.2015.11.027
– ident: e_1_3_4_145_2
  doi: 10.7717/peerj.2777
– ident: e_1_3_4_88_2
  doi: 10.1093/nar/12.18.7269
– ident: e_1_3_4_108_2
  doi: 10.3390/v7062761
– ident: e_1_3_4_8_2
  doi: 10.1126/sciadv.1600492
– ident: e_1_3_4_37_2
  doi: 10.1155/2012/874153
– ident: e_1_3_4_189_2
  doi: 10.1128/JVI.00372-18
– ident: e_1_3_4_186_2
  doi: 10.1016/j.virusres.2006.01.009
– ident: e_1_3_4_62_2
  doi: 10.1016/j.virol.2015.02.039
– ident: e_1_3_4_164_2
  doi: 10.1038/ncomms3700
– ident: e_1_3_4_136_2
  doi: 10.1007/s10577-017-9570-z
– ident: e_1_3_4_49_2
  doi: 10.3181/00379727-112-28247
– ident: e_1_3_4_197_2
  doi: 10.1073/pnas.1320670111
– ident: e_1_3_4_21_2
  doi: 10.1371/journal.pgen.1008271
– ident: e_1_3_4_185_2
  doi: 10.1128/JVI.75.23.11720-11734.2001
– ident: e_1_3_4_188_2
  doi: 10.3390/v8110300
– ident: e_1_3_4_128_2
  doi: 10.1016/j.cell.2015.06.018
– ident: e_1_3_4_32_2
  doi: 10.1111/j.1749-6632.2009.04993.x
– ident: e_1_3_4_167_2
  doi: 10.1093/nar/gki702
– ident: e_1_3_4_221_2
  doi: 10.1099/jgv.0.001248
– ident: e_1_3_4_192_2
  doi: 10.1128/JVI.02130-18
– ident: e_1_3_4_57_2
  doi: 10.1186/s13062-015-0084-3
– ident: e_1_3_4_6_2
  doi: 10.1038/nature04160
– ident: e_1_3_4_28_2
  doi: 10.1186/s13062-017-0202-5
– ident: e_1_3_4_54_2
  doi: 10.1038/nrmicro.2016.177
– ident: e_1_3_4_117_2
  doi: 10.1016/j.virusres.2017.10.016
– ident: e_1_3_4_211_2
  doi: 10.1093/nar/gkw322
– ident: e_1_3_4_39_2
  doi: 10.1016/j.shpsc.2016.02.016
– ident: e_1_3_4_137_2
  doi: 10.1128/JVI.00515-18
– ident: e_1_3_4_139_2
  doi: 10.1128/JVI.00210-17
– ident: e_1_3_4_26_2
  doi: 10.1186/s13062-018-0230-9
– ident: e_1_3_4_171_2
  doi: 10.1038/nature03056
– ident: e_1_3_4_73_2
  doi: 10.1186/1745-6150-1-29
– ident: e_1_3_4_162_2
  doi: 10.1016/j.coviro.2013.06.010
– ident: e_1_3_4_98_2
  doi: 10.1038/nature04546
– ident: e_1_3_4_109_2
  doi: 10.1016/j.str.2013.06.017
– start-page: 1125
  volume-title: Bergey’s manual of determinative bacteriology
  year: 1948
  ident: e_1_3_4_44_2
– ident: e_1_3_4_179_2
  doi: 10.1038/nature25474
– volume: 41
  start-page: 1042
  year: 2007
  ident: e_1_3_4_235_2
  article-title: Неструктурированные области в элонгационных факторах EF1А трех надцарств живого мира
  publication-title: Mol Biol (Mosk)
– ident: e_1_3_4_7_2
  doi: 10.1146/annurev-virology-100114-054952
– ident: e_1_3_4_106_2
  doi: 10.1016/j.virol.2018.08.010
– volume: 4
  start-page: 197
  year: 1987
  ident: e_1_3_4_116_2
  article-title: Genome similarities between plant and animal RNA viruses
  publication-title: Microbiol Sci
– ident: e_1_3_4_135_2
  doi: 10.1016/j.gde.2018.02.007
– ident: e_1_3_4_127_2
  doi: 10.1038/nature14008
– ident: e_1_3_4_87_2
  doi: 10.1007/s00705-006-0743-x
– ident: e_1_3_4_19_2
  doi: 10.1126/science.7041255
– ident: e_1_3_4_31_2
  doi: 10.1016/j.plrev.2012.06.001
– ident: e_1_3_4_27_2
  doi: 10.1093/gbe/evw193
– ident: e_1_3_4_140_2
  doi: 10.1016/bs.aivir.2018.10.001
– ident: e_1_3_4_158_2
  doi: 10.1016/0014-5793(90)80175-i
– ident: e_1_3_4_176_2
  doi: 10.1093/nar/gkh828
– ident: e_1_3_4_82_2
  doi: 10.1073/pnas.1621061114
– ident: e_1_3_4_141_2
  doi: 10.1038/ismej.2013.110
– ident: e_1_3_4_79_2
  doi: 10.1128/JB.01801-12
– ident: e_1_3_4_23_2
  doi: 10.1016/j.coviro.2018.08.013
– ident: e_1_3_4_34_2
  doi: 10.3389/fcimb.2012.00119
– ident: e_1_3_4_113_2
  doi: 10.1016/j.virol.2018.09.008
– ident: e_1_3_4_146_2
  doi: 10.3390/v10080404
– ident: e_1_3_4_170_2
  doi: 10.1101/572362
– ident: e_1_3_4_204_2
  doi: 10.1126/science.289.5487.2129
– ident: e_1_3_4_60_2
  doi: 10.1016/0303-2647(74)90003-3
– ident: e_1_3_4_14_2
  doi: 10.1073/pnas.1521291113
– volume: 254
  start-page: 4225
  year: 1962
  ident: e_1_3_4_51_2
  article-title: Un système des virus
  publication-title: C R Hebd Seances Acad Sci
– ident: e_1_3_4_69_2
  doi: 10.1038/nrmicro751
– ident: e_1_3_4_231_2
– ident: e_1_3_4_157_2
  doi: 10.1093/nar/20.13.3279
– ident: e_1_3_4_161_2
  doi: 10.1099/0022-1317-73-10-2763
– ident: e_1_3_4_80_2
  doi: 10.1128/mBio.00978-16
– ident: e_1_3_4_110_2
  doi: 10.1073/pnas.1404330111
– ident: e_1_3_4_38_2
  doi: 10.1111/nyas.12696
– ident: e_1_3_4_147_2
  doi: 10.1038/s41564-019-0510-x
– ident: e_1_3_4_230_2
– ident: e_1_3_4_126_2
  doi: 10.1007/s00705-017-3679-4
– ident: e_1_3_4_29_2
  doi: 10.1006/jtbi.1996.0389
– ident: e_1_3_4_12_2
  doi: 10.1128/mBio.00999-16
– ident: e_1_3_4_95_2
  doi: 10.1128/mBio.00542-19
– ident: e_1_3_4_236_2
  doi: 10.1038/s41576-019-0172-9
– ident: e_1_3_4_66_2
  doi: 10.1016/S0962-8924(99)01664-5
– ident: e_1_3_4_183_2
  doi: 10.1128/mBio.00699-16
– ident: e_1_3_4_195_2
  doi: 10.1038/s41467-018-04698-4
– ident: e_1_3_4_36_2
  doi: 10.1146/annurev-virology-110615-042323
– ident: e_1_3_4_193_2
  doi: 10.1126/science.1239181
– ident: e_1_3_4_52_2
  doi: 10.1146/annurev.mi.20.100166.000401
– ident: e_1_3_4_41_2
  doi: 10.1038/nrmicro2108
– ident: e_1_3_4_174_2
  doi: 10.1038/s41467-019-08319-6
– ident: e_1_3_4_191_2
  doi: 10.3389/fmicb.2017.02643
– ident: e_1_3_4_182_2
  doi: 10.1038/s41467-019-08927-2
– ident: e_1_3_4_199_2
  doi: 10.1016/j.str.2011.03.023
– ident: e_1_3_4_56_2
  doi: 10.1038/227561a0
– ident: e_1_3_4_55_2
  doi: 10.1007/s00705-018-3915-6
– ident: e_1_3_4_61_2
  doi: 10.1007/s00705-018-04136-2
– ident: e_1_3_4_223_2
  doi: 10.1038/nrmicro.2017.125
– ident: e_1_3_4_138_2
  doi: 10.1016/j.chom.2017.07.019
– ident: e_1_3_4_209_2
  doi: 10.1146/annurev.genet.42.110807.091545
– ident: e_1_3_4_226_2
  doi: 10.1128/mBio.00185-18
– ident: e_1_3_4_70_2
  doi: 10.1186/1745-6150-3-29
– ident: e_1_3_4_65_2
  doi: 10.1126/science.284.5423.2124
– ident: e_1_3_4_134_2
  doi: 10.1128/microbiolspec.MDNA3-0058-2014
– ident: e_1_3_4_216_2
  doi: 10.1038/s41467-018-07225-7
– ident: e_1_3_4_121_2
  doi: 10.1007/s10327-012-0423-5
– ident: e_1_3_4_102_2
  doi: 10.1159/000150054
– ident: e_1_3_4_213_2
  doi: 10.1038/s41564-019-0448-z
– ident: e_1_3_4_202_2
  doi: 10.12688/f1000research.16248.1
– ident: e_1_3_4_105_2
  doi: 10.1007/s00705-008-0041-x
– ident: e_1_3_4_201_2
  doi: 10.1016/j.virol.2014.06.032
– ident: e_1_3_4_3_2
  doi: 10.1038/nrmicro1163
– ident: e_1_3_4_142_2
  doi: 10.1007/s13337-019-00519-4
– ident: e_1_3_4_75_2
  doi: 10.1016/bs.aivir.2018.09.002
– ident: e_1_3_4_239_2
  doi: 10.1101/2020.01.28.923185
– ident: e_1_3_4_123_2
  doi: 10.1016/j.virol.2017.01.010
– ident: e_1_3_4_222_2
  doi: 10.1016/j.virusres.2017.11.025
– volume: 34
  start-page: 391
  year: 2012
  ident: e_1_3_4_40_2
  article-title: The place of viruses in biology in light of the metabolism- versus-replication-first debate
  publication-title: Hist Philos Life Sci
– ident: e_1_3_4_118_2
  doi: 10.1073/pnas.1324194111
– ident: e_1_3_4_168_2
  doi: 10.1186/s12985-018-0974-y
– volume-title: Molecular evolution
  year: 1997
  ident: e_1_3_4_64_2
– ident: e_1_3_4_85_2
  doi: 10.1080/19420889.2017.1296614
– ident: e_1_3_4_103_2
  doi: 10.3109/10409239309078440
– ident: e_1_3_4_153_2
  doi: 10.1038/263106a0
– ident: e_1_3_4_156_2
  doi: 10.1038/nrmicro3067
– ident: e_1_3_4_67_2
  doi: 10.1146/annurev.micro.55.1.709
– ident: e_1_3_4_77_2
  doi: 10.1093/nar/gkn668
– ident: e_1_3_4_178_2
  doi: 10.1006/viro.1999.9837
– start-page: 145
  year: 1962
  ident: e_1_3_4_46_2
  article-title: Classifying viruses at higher levels: symmetry and structure of virus particles as criteria
  publication-title: Symp Soc Gen Microbiol
– ident: e_1_3_4_111_2
  doi: 10.1023/a:1005907310553
SSID ssj0004599
Score 2.7068026
SecondaryResourceType review_article
Snippet Viruses and mobile genetic elements are molecular parasites or symbionts that coevolve with nearly all forms of cellular life. The route of virus replication...
SUMMARY : Viruses and mobile genetic elements are molecular parasites or symbionts that coevolve with nearly all forms of cellular life. The route of virus...
SourceID pubmedcentral
hal
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e00061
SubjectTerms Biological evolution
Capsid protein
Cellular structure
Deoxyribonucleic acid
DNA
DNA Replication
DNA viruses
DNA Viruses - genetics
DNA-directed RNA polymerase
Evolution, Molecular
Gene expression
Genes, Viral
Genome, Viral
Genomes
Life Sciences
Microbiology and Parasitology
Modules
Parasites
Phylogeny
Plasmids
Proteins
Recombination
Replication
Review
Ribonucleic acid
RNA
RNA polymerase
RNA viruses
RNA Viruses - genetics
RNA-directed DNA polymerase
RNA-directed RNA polymerase
Single-stranded DNA
Symbionts
Taxonomy
Virions
Virology
Virus Physiological Phenomena
Viruses
Viruses - classification
Title Global Organization and Proposed Megataxonomy of the Virus World
URI https://www.ncbi.nlm.nih.gov/pubmed/32132243
https://www.proquest.com/docview/2389725839
https://www.proquest.com/docview/2371855551
https://pasteur.hal.science/pasteur-02558270
https://pubmed.ncbi.nlm.nih.gov/PMC7062200
Volume 84
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fj5QwEG68M5p7Mf4WPU1NjC8nJxQK9M31V1ZPfDB3m3sj0BZvzR0QjjXqX--0pSysd4n6stnQbiGdj9lvYOYbhJ6JgjNSBp6rOgi4oeSxm0dSuJSSkvDc9wRXxcnp52h-FH48psfrdke6uqQr9vmvC-tK_seqcAzsqqpk_8Gyw6JwAL6DfeETLAyff2VjI9g_qae02f9NfQ5UMpVf8y7_oQsXbDbAYtmqrFerlGqZabrckGQ6s41z9-zRXrl08NG1epRrqmXgEuU6X_ZtffpNk9IF_P20yoUMQwftqqnBO_V1QkPSzQICbNNeam8G3qsS48cRRL9JJ-bNijQuVCmUUmpkp62PNW3geiyRi103UeUIafr6y74mVq5xpSMzNmfajgFREbQRd9rQyrZDW-gqiYFLKZL84WCkHs-Y1VklycvJuXbQdfvrCUXZOlEJsn9GH5tJtCNWcngT3ejDCTwz2LiFrsjqNrpmGoz-vINeGYTgMUIwGBdbhOAxQnBdYkAI1gjBGiF30dH7d4dv5m7fM8PlwMU7V6iAlQOHA55ORSAlLQspPUFEwXIWFr5UMWjEE0ZJkhOvCAkH1ifDoIAp1Avuoe2qruQDhElCy0gmPmdMhDIuEhEGQggW5QEPYCEHvbDblPFeUF71NTnNdGBJkkxtcKY3OPOZg54P0xujpHLpRNjzYY7SP5_PPmVNDm5v1WYqCE5I7H33HbRrzZL1d-V5BhSUxYQC73fQ02EYfKZ6EZZXsl6pOcDIAKIUlrhvrDiczoLAQfHEvpPrmY5UyxOtyx57EQH39PDSNR-hnfUts4u2u3YlHwOn7YonGqi_ATXtopU
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Global+Organization+and+Proposed+Megataxonomy+of+the+Virus+World&rft.jtitle=Microbiology+and+molecular+biology+reviews&rft.au=Koonin%2C+Eugene+V&rft.au=Dolja%2C+Valerian+V&rft.au=Krupovic%2C+Mart&rft.au=Varsani%2C+Arvind&rft.date=2020-05-20&rft.eissn=1098-5557&rft.volume=84&rft.issue=2&rft_id=info:doi/10.1128%2FMMBR.00061-19&rft_id=info%3Apmid%2F32132243&rft.externalDocID=32132243
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1092-2172&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1092-2172&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1092-2172&client=summon